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ABSTRACT
Many applications within natural language processing involve performing text-to-text transfor-
mations, i.e., given a text in natural language as input, systems are required to produce a version
of this text (e.g., a translation), also in natural language, as output. Automatically evaluating
the output of such systems is an important component in developing text-to-text applications.
Two approaches have been proposed for this problem: (i) to compare the system outputs against
one or more reference outputs using string matching-based evaluation metrics and (ii) to build
models based on human feedback to predict the quality of system outputs without reference
texts. Despite their popularity, reference-based evaluation metrics are faced with the challenge
that multiple good (and bad) quality outputs can be produced by text-to-text approaches for
the same input. This variation is very hard to capture, even with multiple reference texts. In ad-
dition, reference-based metrics cannot be used in production (e.g., online machine translation
systems), when systems are expected to produce outputs for any unseen input. In this book, we
focus on the second set of metrics, so-called Quality Estimation (QE) metrics, where the goal is
to provide an estimate on how good or reliable the texts produced by an application are without
access to gold-standard outputs. QE enables different types of evaluation that can target differ-
ent types of users and applications. Machine learning techniques are used to build QE models
with various types of quality labels and explicit features or learnt representations, which can then
predict the quality of unseen system outputs. This book describes the topic of QE for text-to-text
applications, covering quality labels, features, algorithms, evaluation, uses, and state-of-the-art
approaches. It focuses on machine translation as application, since this represents most of the
QE work done to date. It also briefly describes QE for several other applications, including text
simplification, text summarization, grammatical error correction, and natural language genera-
tion.

KEYWORDS
quality estimation, quality prediction, evaluation, machine translation, natural lan-
guage processing
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1

C H A P T E R 1

Introduction
Quality Estimation (QE) for Natural Language Processing (NLP) applications is an area of
emerging interest. The goal is to provide an estimate on how good or reliable the results re-
turned by an application are without access to gold-standard outputs. This is therefore differ-
ent from standard evaluation methods where the task is to compare system outputs with their
gold-standard counterparts which are generally created by experts with knowledge of language.
While NLP systems can be evaluated using gold-standard datasets and their average quality can
be measured on those data points, it is known that the quality on individual outputs can vary
considerably depending on a number of factors. QE is aimed at estimating the performance
of a system on individual data points, rather than only overall system performance. The main
motivation is to make applications more useful in real-world settings, where information on the
quality of each output is needed and reference outputs are not available. QE approaches also
have the advantage of allowing for a flexible modeling of the concept of quality, depending,
among other things, on the user or intended use of the application’s output.

QE approaches are normally framed as a supervised Machine Learning (ML) problem;
therefore, the concept of quality can be implemented through specific labels used to train the
models, as well as through specific features or representations extracted from the data. Generally
speaking, this could be done for any application, for example part-of-speech tagging, parsing,
or machine translation, but the need for QE becomes clearer in the context of applications that
produce, as output, natural language. For such applications there is generally more than one
possible “correct” output, and while it is easy to reason about what the output should look like,
modeling this computationally is far from trivial. In this book, we target such applications and
focus on describing methods and existing work that analyze the actual output of a system rather
than the confidence of the system in producing this output. A related area that is also outside
of the scope of this book is that of scoring or error detection in human texts, such as learner
essays. While the general framework that is used to address QE of human texts can be similar
to that for QE of automatic applications, texts written by humans involve issues in more varied
dimensions of quality, which makes the two types of texts substantially different. We therefore
focus on texts produced by automatic language output applications.

A question often asked about the motivation for QE is the following: If we can predict
the quality of results returned by a particular system, why are we not able to modify the system
before the system generates the output and thus avoid quality issues in the first place? As in many
other research areas, estimating the existence of errors is a somewhat easier task than fixing them.



2 1. INTRODUCTION
While it may be possible to identify that a text has issues, it may not be possible to pinpoint
exactly which issues it has and—more important—to diagnose which parts of a system should
be modified to prevent those issues from happening, especially when systems are complex, with
at least a few components induced from data. In addition, given that an output has already been
produced by the system, scoring it according to complex functions, such as using sophisticated
linguistic information, is much more feasible than using such scoring functions during output
generation process (referred to as decoding in many applications), where this information (i) may
be too expensive to compute (i.e., running a syntactic parser over thousands of candidates) or
(ii) not possible (i.e., the entire sentence is needed for the computation, which is only available
at the end of the decoding process).

Among the various applications that generate natural language, arguably one of the most
prominent in terms of number of users is Machine Translation (MT). There are various online
systems that can be used for free (within a limited number of words) and are often embedded in
other online software, in particular social media applications. It is estimated that Google Trans-
late alone is used by 500 million people, translating more than 100 billion words everyday.1 In
the context of online MT systems, QE is clearly a useful tool to help users understand whether
or not the translation provided can be trusted, especially when the speaker is not able to under-
stand the source language. MT is clearly an area that can benefit from QE. In fact, most existing
work in QE targets this application.

QE of MT has become increasingly popular over the last decade. Given a source language
text and its machine translated version, which we often refer to as target text, the task of QE
consists in providing a prediction on the quality of this machine translated text. QE systems
have the potential to make MT more useful in a number of scenarios by, for example, improv-
ing post-editing efficiency by filtering out segments that require more effort to correct than to
translate from scratch [Specia, 2011], selecting high-quality segments to be published as they
are [Soricut and Echihabi, 2010], selecting a translation from either an MT system or a transla-
tion memory [He et al., 2010], selecting the best translation from multiple MT systems [Shah
and Specia, 2014], and highlighting words or phrases that are not reliable and need attention
and/or revision [Bach et al., 2011]. These examples of different applications of QE for MT
cover the most popular levels at which predictions can be made: word, sentence or document.
Figure 1.1 illustrates a possible interpretation of such levels, where for word-level QE a binary
(“good”/“bad”) label is predicted for each word, while for sentence or document-level QE a gen-
eral quality score in Œ0; 1� is predicted (the higher the better). Variants of these levels of prediction
include phrase and paragraph-level QE.

The majority of current work focuses on either word or sentence-level QE. In word-level
QE a quality label is to be produced for each target word, e.g., a binary “good”/“bad” label or
labels describing specific error types. A critical challenge is the acquisition of large training sets,
since traditionally each word in such datasets needs to be labeled. Significant improvements

1https://blog.google/products/translate/ten-years-of-google-translate/

https://blog.google/products/translate/ten-years-of-google-translate/
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Original Document Machine Translation

Word-Level QE

OK BAD OK … BAD OK OK 0.693 0.581

Sentence-Level QE Document-Level QE

… de distancia por un camino de cabras 
entre la maleza. “No me jubilaré, moriré 
aqui porque el volcán ha sido toda mi 

vida,” proclama Unainik abriendo bien la 
boca, donde le faltan varios dientes.

De sus cinco hijos, el mayor, de 30 años, 
también trabaja cargando azufre.

… road among the brush. “I will not retire, 
I will die here because the volcano has 
been all my life,” proclaims Unainik 

opening her mouth wide, where she lacks 
several teeth.

Of its five children , the biggest , of 30 
years , also works loading sulfur .

Figure 1.1: Different levels of translation quality prediction.

have been achieved since 2015 using neural network models and additional unlabeled training
data, as we discuss in Chapter 2. Word-level QE has been covered in shared tasks organized by
the Conference on Machine Translation (WMT) annually since 2013 [Bojar et al., 2013, 2014,
2017, 2016, 2015]. While most WMT13-14 QE shared task submissions were unable to beat
a trivial baseline, in WMT15-17 most systems outperformed even stronger baselines, with the
top systems doing so by a substantial margin.

Sentence-level QE is addressed using several supervised ML algorithms to induce mod-
els from examples of sentence translations described through a number of features (or learned
representations) and annotated for quality using a variety of types of labels, e.g., 1–5 Likert
scores. Sentence-level QE has been covered in shared tasks organized by the WMT annually
since 2012 [Bojar et al., 2013, 2014, 2017, 2016, 2015, Callison-Burch et al., 2012]. Standard
supervised ML algorithms can be used to build prediction models, with work on feature engi-
neering having played a key role in this problem until very recently. In the last 2–3 years, with
the popularisation of neural network approaches, the focus has shifted toward devising effective
architectures that learn feature representations from the data, as we will discuss in Chapter 3.
Since the second edition of the task, a significant proportion of the submissions has been out-
performing a well known baseline by a large margin.

QE at other textual levels has received less attention. Document-level QE consists in
predicting a single label for entire documents of variable lengths, be it an absolute score [Scar-
ton, 2017, Scarton and Specia, 2014a] or a relative ranking of translations by one or more MT
systems [Soricut and Echihabi, 2010, Soricut and Narsale, 2012]. The assumption is that the
quality of a document is more than the simple aggregation of its sentence-level quality scores.
While certain sentences are perfect in isolation, their combination in context may lead to an in-
coherent document. Conversely, while a sentence can be poor in isolation, when put in context,
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it may benefit from information in surrounding sentences, leading to a good quality document.
Feature engineering is a challenge given the lack of processing tools to extract discourse-wide
information, such as the topic and structure of the document and the relationship between its
sentences. In addition, the notion of quality at document level is a very subjective concept. Few
and very small datasets with human labels are available and scores produced by automatic met-
rics tend to be used as an approximation. This task was introduced at WMT in 2015 and ran for
two years. Very few systems were submitted and the results were somewhat disappointing, with
most systems performing similarly to a baseline that uses mostly sentence-level features. This
is a hard variant of QE to address; nonetheless, its potential applications become increasingly
popular as users move away from consuming sentence translations to consuming entire docu-
ment translations, such as machine-translated product descriptions, product reviews, and news
articles.

A variant of the word-level task that has been introduced more recently (WMT16-17)
considers a phrase as a unit for quality prediction, as we will describe in Chapter 2. While a
phrase could be defined as linguistically motivated, e.g., using a chunker [Blain et al., 2016], for
the purposes of the shared tasks a phrase was defined as any sequence of one or more words that
is handled by a statistical phrase-based MT system. This was done to avoid making the problem
more complex by introducing the task of phrase segmentation. This definition of phrase is also
appealing as it makes it feasible to use the predictions to guide decoding in statistical phrase-
based translation systems. This task is not as well defined and harder to evaluate than word-level
QE. Very few approaches have been proposed for it and it is likely to become obsolete given
that the vast majority of MT systems now follow neural models, where the unit of translation is
a sentence that is generated word by word, rather than phrase by phrase.

Having different levels of prediction is important for different applications. While most
applications would probably benefit from sentence-level predictions, e.g., for the decision on
whether or not to post-edit a sentence, some applications require more fine-grained, word or
phrase-level information on quality. For example, one may want to highlight words that need
fixing or inform readers of portions of a sentence that are not reliable. Document-level QE is
needed particularly for gisting purposes, where post-editing is not an option.

This book provides an introduction to the field of QE focusing on MT as a language out-
put application and covering all the aforementioned levels of prediction. It is structured such
that one chapter is dedicated to each prediction level: Chapter 2 describes subsentence-level
MTQE, covering word and phrase-level prediction, Chapter 3 focuses on sentence-levelMT
QE, and Chapter 4 introduces document-level MT QE. All chapters follow a similar struc-
ture, containing an introduction to the prediction level, its applications, labels, features, and
models used, and finally evaluation methods and state-of-the-art results. Chapter 5 presents an
overview of QE for other NLP applications, more specifically, Text Simplification (TS), Au-
tomatic Text Summarization (ATS), Grammatical Error Correction (GEC), Automatic Speech
Recognition (ASR), and Natural Language Generation (NLG).
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C H A P T E R 2

Quality Estimation forMT at
Subsentence Level

2.1 INTRODUCTION
MT systems can make various types of errors during translation. Systems can fail to disam-
biguate words correctly and subsequently fail to capture the meaning of the source text, omit
important words from the source, make grammatical errors such as incorrect verb and noun in-
flection, or fail to find a suitable translation to a given word, to name a few. Take, for example,
the Portuguese-English translation case in Table 2.1, produced by Google Translate.1

Table 2.1: Example of sentence translation from Portuguese to English with one word error

SRC (PT) As confi gurações deste computador são bárbaras!

MT (EN) � e specs of this computer are barbaric!

PE (EN) � e specs of this computer are terrifi c!

In this example, the MT system failed to capture the fact that “bárbaras”, which can mean
“barbaric” in some contexts, is used as a slang in this Portuguese sentence. In this context, “bár-
baras” means “terrific” or “excellent”. Notice, however, that if it were not for this mistake, Google
Translate would have produced a perfect translation: The sentence does not contain any gram-
matical errors, and every word aside from “barbaric” perfectly reproduces the meaning of the
source sentence. For this example, an effective sentence-level QE method would produce a nu-
merical score that informs the user that the translation is of good quality overall, but contains
errors nonetheless. However, it would not be able to tell which parts of the sentence contain
such errors, nor the kind of error they are. It was in an effort to address these limitations that
the tasks of word and phrase-level QE were conceived.

In word-level QE, the input is a translation along with the source sentence and the output
is a sequence of labels, one for each word of the translation. Each label will indicate the quality
of the word in question. A translated word that has been incorrectly translated would ideally
receive a label that represents such an error.

1https://translate.google.com

https://translate.google.com
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Suppose that there is a sentence-level QE system that produces a quality score between

0 and 1, where 1 represents a perfect translation, and a word-level QE system that labels cor-
rectly translated word as “G” (for “good”), and incorrectly translated words as “B” (for “bad”),
regardless of the type of error made. These systems would produce an output similar to what is
illustrated in Figure 2.1 for the translation example in Table 2.1.

Original 

Translation

Sentence-Level
QE System

Document-Level
QE System

As configurações deste computador são bárbaras!

The specs of this computer are barbaric!

The specs of this computer are barbaric  !

0.0 1.0

G G G G G G B G

Figure 2.1: Comparison between sentence and word-level QE systems.

Even though the word-level quality labels used here are simple binary labels, they already
allow for a more insightful analysis of the translation quality than the sentence-level score. A
phrase-level QE system would operate in the same way, the only difference being that it would
provide a label for each phrase identified in the sentence, rather than each word. The main goal
behind phrase-level QE is to label errors as they are produced: An error cannot always be isolated
from other words in its context, especially for MT systems that translate phrases as a unit, and
therefore considering an entire phrasal construct, such as a multi-word expression or compound
noun, as a unit of prediction is a reasonable assumption.

In QE work, phrases are often obtained from the MT systems themselves. Phrase-based
MT models, for example, natively employ phrase segmentation. Most neural translation models,
however, tend to treat the sentence being translated as a single sequence of tokens, which makes
it more challenging to infer phrasal constructs. In this case, methods to automatically identify
multi-word expressions and other compound constructs could be used for phrase segmentation.

The foundational concepts of word and phrase-level QE were laid back in 1996 by Schür-
mann [1996], who addressed confidence estimation for pattern recognition. Soon after, Fetter
et al. [1996] introduced the use of confidence measures in the task of rescoring word graphs
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in speech recognition models in order to improve their reliability. Many similar contributions
appeared after that, such as those of Bergen and Ward [1997] and Chase [1997], which focused
on analyzing and improving the performance of speech recognition with confidence estimates.
Gandrabur and Foster [2003], Ueffing and Ney [2004], and Blatz et al. [2004] introduced QE
in translation tasks, which was referred to as “confidence estimation”. Ueffing and Ney [2007]
established the first framework for word-level QE. Their contribution fostered numerous others
both within the context of MT, such as in Bach et al. [2011], de Gispert et al. [2013], Xiong
et al. [2010], as well as in other contexts, such as parsing [Goldwasser et al., 2011, Reichart and
Rappoport, 2009].

Another major milestone in the history of word-level QE was the introduction of the first
shared task on this prediction level, WMT13 [Bojar et al., 2013]. In this shared task, teams
were asked to submit binary and 4-class predictions by word-level QE systems for the English-
Spanish language pair. Since then, word-level QE shared tasks continue to be hosted yearly at
WMT [Bojar et al., 2014, 2017, 2016, 2015], and in 2016 that a phrase-level QE shared task was
introduced. The latter focused on predicting the quality of phrase-based machine translations
for English-German.

In what follows, we describe the various aspects of word and phrase-level QE, such as their
applications (Section 2.2), quality labels and features used for training (Sections 2.3 and 2.4),
architectures (Section 2.5), evaluation methods (Section 2.6), and state-of-the-art approaches
(Section 2.7).

2.2 APPLICATIONS
The earliest application of word-level QE is in the context of ASR, where the task is more fre-
quently referred to as word confidence estimation. Simply put, the task of ASR consists in trans-
forming an audio signal containing spoken language into its equivalent textual representation.
As pointed out by Jiang [2005], quality estimates, otherwise known as confidence estimates in the
context of ASR, can aid the performance of speech recognizers in various ways. The purpose
of a word confidence estimator is to quantify how confident a speech recognizer is that each
predicted word in the textual output is actually being said during a certain portion of the spoken
audio input. One of the most popular applications of confidence estimates can be found in word
graph decoding. A word graph, such as depicted in Figure 2.2, is a data structure that describes
the array of hypothetical sentences that can represent the speech excerpt that is being recognized.
The task of speech recognizers—called decoding—consists in finding a suitable hypothesis in the
word graph. In Figure 2.2, a hypothesis that is very likely to be suitable is the sentence “The shoe
is on the other foot”, since this is a more common sentence in the English language than any of
the other candidates.

To search for a “good” hypothesis, speech recognizers can assign a confidence estimate to
each of the words in the graph, then employ a decoding algorithm to find the best sentence based
on a given optimization metric. By investigating different ways of calculating such confidence



8 2. QUALITY ESTIMATIONFORMTAT SUBSENTENCELEVEL
�e shoo

shoe ease

juice

otter foot

is on the other fruit

Figure 2.2: Example of word graph generated by a speech recognition model.

estimates, researchers have been able to effectively push the performance of ASR models. The
work of Fetter et al. [1996] and Wessel et al. [2000] are some examples of that. Confidence
estimates have also been successfully employed in many other processes inherent to ASR, such
as stack search [Neti et al., 1997], out-of-vocabulary word filtering [Jitsuhiro et al., 1998], and
utterance verification [Lleida and Rose, 2000]. There have also been efforts in directly predicting
the quality of audio utterances as a whole [Negri et al., 2014] in order to facilitate the process
of deciding which automatically produced text transcriptions are of acceptable quality.

Analogously to what has been done in the context of ASR, word-level QE has also been
employed in order to improve the performance of MT systems. Much like speech recognizers,
many MT models, such as phrase-based models, include a step of decoding in order to find a
suitable translation hypothesis for a given source sentence based on a translation word lattice.The
word lattice has the same structure as the word graphs previously described for ASR. Word- and
phrase-level quality estimates have been used to better guide the process of decoding in phrase-
based [Kumar et al., 2009, Tromble et al., 2008], syntax-based [Venugopal et al., 2007, Zhang
and Gildea, 2008], and neural MT (NMT) [Chatterjee et al., 2017, Rikters and Fishel, 2017].

Another approach used in MT is that of reranking: The model produces a list of candidate
translation hypotheses from the graph, then reranks them using another method in order to
determine which of them should ultimately be chosen. Word-level quality estimates have been
successfully used in reranking to improve the performance of MT systems [Luong et al., 2014b,
Zhang et al., 2006].

Finally, word- and phrase-level QE systems have great potential use in industry as well. As
discussed in Section 3.2, one of the main applications of sentence-level QE systems is helping
human translators to decide what course to take when manually correcting a translation: Is it
good enough to be kept as is? If not, is it good enough for post-editing? However, as discussed
in Section 2.1, sentence-level systems offer a rather vague notion of quality, not allowing for the
human translator to immediately know which parts of the translation are “good” or “bad”. Word
and phrase-level approaches can hence further improve post-editing workflows by offering more
informative labels including, potentially, not only the words that are incorrect but also the types
of errors that need correction.
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2.3 LABELS
Word- and phrase-level QE for MT are often framed as a classification task, using discrete
labels for training and prediction. Sometimes, however, the classification task is framed in a
probabilistic fashion, such as in the case of word confidence estimation for ASR. The earliest
examples of word- and phrase-level quality labels were confidence estimates for ASR [Fetter
et al., 1996]. Fetter et al. [1996] use Equation (2.1) to define a confidence estimate to rescore
the words in a word graph:

Pw .C jsw/ D

�
1 C

Pw .sw jE/

Pw .sw jC /

Pw .E/

Pw .C /

��1

: (2.1)

In Equation (2.1), C represents the class of correctly predicted words, and E the class of errors
made by the recognizers. Pw represents the confidence that a word w was correctly predicted (and
hence is in class C ) conditioned on sw , which is the original score of word w in the word graph.
Pw .sw jC / and Pw .sw jE/ are the inverse probabilities of the original score sw with respect to
classes C and E, and Pw .C / and Pw .E/ are their prior probabilities. Since this equation follows
the probabilistic principles of the Bayes rule, the quality estimate Pw is hence a continuous
floating-point value between 0 and 1.

As discussed by Jiang [2005], continuous confidence estimates can be calculated in a num-
ber of ways, but in most cases they are produced in unsupervised fashion, i.e., without the help
of any manually annotated data. The estimates are usually incorporated within the probabilistic
framework that allows speech recognizers to perform crucial steps in the recognition process,
such as word graph decoding and utterance verification. Ultimately, the continuous confidence
estimates are used for binary classification: The ASR system uses them to decide which words
will be part of the transcription, and which will not.

All WMT shared tasks on word-level QE employ discrete labels. In these tasks, QE is
not framed as a tool for another end task, like for ASR, but is instead the end task itself. The
datasets used for the first word-level QE shared task, held at WMT13, featured the English-
Spanish language pair. Each instance was composed by a source sentence in English, its machine
translation in Spanish, and two different sets of discrete labels.

• Binary: Each word receives either a “keep” (K) or “change” (C) label, where a “change”
label represents words that should be corrected in the translation. This corresponds to a
“good”/“bad” distinction.

• Multi-class: Each word receives either a “keep” (K), “delete” (D) or “substitute” (S) label,
where “delete” and “substitute” represent words that should be edited in the translation in
order for it to be correct.

In order to obtain these labels, the task organizers resorted to a technique that relies on post-
editing. First, they obtained post-edited versions for each translation in the training and test
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sets. These post-edited versions are corrected versions of the machine translations edited by
professionals. They then employed a tool that automatically calculates the Translation Error
Rate (TER) between the machine translation and the post-edited version (i.e., Human-targeted
Translation Edit Rate (HTER)). The TER score is calculated based on the smallest number of
word deletions and substitutions necessary in order to transform the machine translation into
the post-edited version. This process yields not only a numerical score, which is the TER itself
that represents the minimum edit distance between the two versions, but also a label for each
word in the machine translation, indicating which words should be changed.

A subset of TER labels (deletions and substitutions) were used in their raw form for the
shared task’s multi-class and grouped into two labels to create “good”/“bad” labels for their binary
setting. Figure 2.3 shows an example of a translation from the shared task’s training set with both
label sets. This example also highlights an important limitation of TER-inferred word-level QE
labels. The post-edited version featured in Figure 2.3 is considerably longer than the translation.
This is due to the fact that the human post-editor felt the need to not only remove and substitute
some words in the machine translation, but also add the segment “comparten este punto de vista,”
which means “share this point of view,” in order for it to appropriately capture the meaning of
the source. Since word-level QE only assigns labels to words that actually occur in the machine
translation, additions such as these cannot be represented.2

And so, it is clear, do Haitians themselves.

Y está claro que los propios haitianos comparten este punto de vista .

Y así , está claro , hacer los propios haitianos .

K D D K    K   D   S     K      K           K       K

K C C K    K   C   C    K      K           K       K

Original Sentence:

Human Post-edit:

Machine Translation:

Multi-class Labels:

Binary Labels:

Figure 2.3: Multi-class and binary word-level QE labels for an instance of the WMT13 training
set.

WMT14 held a word-level QE shared task that used a different set of quality labels. In-
stead of collecting human post-edits and automatically inferring word-level labels throughTER,
they employed professional human annotators to identify and categorize the different types of
errors made by the MT systems. The error categorization used is a subset of the Multidimen-
sional Quality Metrics (MQM) [Lommel et al., 2014], which is illustrated in Figure 2.4. They
also addressed more language pairs: English-German, German-English, English-Spanish, and
Spanish-English.

Based on the MQM scheme, they annotated each translation in their datasets with three
label sets.
2The word-level QE shared task of WMT18, which was yet to happen at the time of writing this book, addresses this
limitation by providing annotations that allow QE systems to predict error labels for missing words.
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Terminology

Mistranslation

Omission

Addition

Untranslated

 

 

Accuracy

 

 

 

 

Issue Types 

 

 

 

Fluency 

 

Register/Style

Spelling 

Typography

 

Grammar

Unintelligible

Capitalization

Punctuation

Morphology (word form)

Part of Speeech

Agreement

Word Order

Function Words

Tense/Mood/Aspect

Figure 2.4: MQM error typology.

• Multi-class: Each mistranslated word is labeled with one of the fine-grained error cat-
egories in the MQM scheme (capitalization, punctuation, terminology, mistranslation,
omission, etc).

• Level 1: Mistranslated words are labeled with the coarse-grained error categories in the
MQM scheme (accuracy and fluency).

• Binary: Translated words are labeled as either “good” or “bad”.

Level 1 labels were inferred from the multi-class labels by simply generalizing them in their
coarse-grained error categories, and binary labels were generalized from the level 1 labels by
simply grouping every label that represents an error in the “bad” category. Figure 2.5 illustrates
an instance from the WMT14 shared task Spanish-English training set. It should be noted that
each word in the phrase “of 30 years” received an individual “register/style” label. They are shown
as a single label here for presentation purposes.

De sus cinco hijos, el mayor, de 30 años, también trabaja cargando azufre.

Of its five children , the biggest , of 30 years , also works loading sulfur .

Original Sentence:

Machine Translation:

Multi-class Labels:

Level 1 Labels:

Binary Labels:

OK
Function Words

Fluency

BAD BAD BAD BAD

FluencyAccuracy Accuracy

Mistranslation Style/Register Mistranslation
OK OK OK OKOK OK OK OKOK OK

Figure 2.5: QE labels for an instance of the WMT14 training set.

Using a fine-grained label set can potentially make the output produced by the QE sys-
tem much more informative for human translators. However, using fine-grained label sets also
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increases the complexity of the problem, since the estimator needs to capture more subtle nu-
ances between a broad array of error types. This generally requires more labeled data, which was
not the case in the WMT14 shared task: The same number of data points were provided for all
prediction levels. The results reported for the task highlight the impact of this complexity. For
example, the F1 scores (described in detail in Section 2.6) obtained by the submitted systems
for the binary, level 1 and multi-class labels in the Spanish-English language pair averaged 0:26,
0:20, and 0:06, respectively.

Because the annotation process used to collect the WMT14 datasets was complex and
the scores obtained for the finer-grained label sets were rather low, the subsequent WMT15,
WMT16, and WMT17 word-level QE shared tasks featured only binary “good” and “bad” label
sets collected through the previously described post-editing-based approach used in WMT13.

The first phrase-level QE shared task was held at WMT16 and it was framed as an ex-
tension of the word-level QE task. The training and test sets used for the phrase and word-level
tasks were the same, the only difference being that word-level datasets contained one label for
each word and phrase-level datasets one label for each phrase in the translation. Since the MT
systems used to produce the sentences for the datasets were phrase-based statistical systems,
inferring phrasal constructs could be done easily. The phrase segmentation as used by the MT
systems decoders was taken and used to segment the sentences.

The phrase labels were inferred using a very simple method: If any of the words that
compose a phrase has a “bad” label in the word-level dataset, the phrase is assigned a “bad”
label. This approach works under the premise that any type of word-level error spans across the
entirety of the phrasal construct of which it is a part.This is a fair premise if one intends to replace
or fix or replace entire phrases, for example, when using quality estimates to guide decoders in
MT systems. Other, less pessimistic approaches have also been suggested as alternatives, for
example, labeling as “bad” only phrases in which at least 50% of the words are labeled as “bad”.

2.4 FEATURES
In the general case, word- and phrase-level QE are addressed in a supervised setting, in which
ML models are built using data produced by human annotators. Supervised QE models rely
very heavily on features.

Most of the features commonly used in the training of sentence-level QE models are
continuous values such as language and translation model probabilities, length and token count
ratios, etc., as discussed in Section 3.4. These types of features attempt to capture important
aspects of the overall quality of the sentence such as fluency, appropriateness, and grammaticality.

Word- and phrase-level QE differ significantly from sentence-level QE in that respect.
The features used for these QE variants focus much more on localized pieces of information
that pertain specifically to the neighborhood of the word or phrase. These features are often also
more specific, and for that they need to be lexicalized. Models are thus trained not only with
continuous but also with discrete features.
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Discrete features are features whose value can be only one in a closed set of possible values.

A discrete word-level feature could be, for example, the bigram composed of the labeled word
and its subsequent word in the translated sentence, while an analogous continuous feature could
be the raw frequency of this bigram in a language model. Notice that for this particular dis-
crete feature the set of possible values would be the bigram vocabulary of the target translation
language.

Based on the source sentence and its machine translation counterpart, a number of con-
tinuous and discrete features have been proposed to capture the quality of words and phrases in
context. Some of them focus exclusively on either the source or target side of the translation,
and some exploit the interactions between the two. As discussed in Section 3.4, we categorize
features that exploit the source sentence and translation as “complexity” and “fluency” features
respectively, those that exploit the relationship between them as “adequacy” features and those
that reflect the confidence of the MT system as “confidence” features. We present the discrete
and continuous features that have been most frequently used in the creation of supervised word-
and phrase-level QE models.

2.4.1 WORD-LEVEL FEATURES
Discrete features are the most popular for word-level QE. They can be found in almost every
approach submitted to the WMT shared tasks on word-level QE [Bojar et al., 2013, 2014, 2017,
2016, 2015]. In order to illustrate features, we will use the Portuguese-English translation in
Figure 2.6. Along with the translation itself, we also include part-of-speech (POS) tags for the
source and translation, dependency relations for the translation, and word alignments between
the sentences.

POS Tags:

POS Tags:

Dependencies:

Original:

Translation:

As configuraçōes deste computador são bárbaras !

DET NOM NOM V !ADJPRP+P

DT

DET DET COP

NMOD

NSUBJ

CASE

NNS NN VBP !JJIN  DT

The specs of this computer are barbaric !

Figure 2.6: Portuguese-English translation with POS tags and dependencies.
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Fluency Features
Suppose we are calculating features for the word computer in the translation of Figure 2.6. We
will refer to it henceforth as our “target word”. Some of the most widely used discrete fluency
(or target-side) features for it are:

• target word itself: computer;

• POS tag of the target word: NN ;

• bigrams including the target word: this computer, computer are;

• POS bigrams including the target word: DT NN, NN VBP;

• bigrams composed of the target word and the POS tags of its surrounding words: DT
computer, computer VBP;

• trigrams including the target word: of this computer, this computer are, computer are barbaric;

• POS trigrams including the target word: IN DT NN, DT NN VBP, NN VBP JJ ; and

• trigrams composed of the target word and the POS tags of its surrounding words: IN DT
computer, DT computer VBP, computer VBP JJ.

These features describe the target and its surrounding context and can potentially help the QE
system associate certain lexical patterns with a given quality label. A language model can be used
to calculate the probability of these n-grams as well, and hence produce continuous features. If
the target word is part of an n-gram with a high probability in a language model, then it is less
likely that it constitutes a grammatical error, for example.

Other popular continuous features that can be calculated with language models are:

• length of the longest n-gram to the left/right of the target present word in the language
model, and

• length of the longest POS n-gram to the left/right of the target word present in the tagged
language model.

The intuition behind these features is similar to that of n-gram language model probabilities:
The higher the length of known n-grams in the translation, the less likely it is that the MT
system made a mistake. A POS-tagged language model is a language model trained over the
POS tags of the sentences in a given corpus.

Language models can also be used for discrete feature extraction. Raybaud et al. [2011]
conceived a feature called the “language model backoff behavior”, which looks at the bigram and
trigram composed by the target word and the words preceding it in order to categorize the target
word with respect to the presence or absence of n-grams in the language model. This feature is
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described by Equation (2.2), in which B .wi / is the backoff behavior of the i-th target word wi

in a sentence.

B.wi / D

8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂:

7; if wi�2wi�1wi is in the language model
6; if wi�2wi�1 and wi�1wi are in the language model
5; if only wi�1wi is in the language model
4; if wi�2wi�1 and wi are in the language model
3; if wi�1 and wi are in the language model
2; if only wi is in the language model
1; if wi is out of the vocabulary:

(2.2)

The concept behind the backoff behavior features is simple: The larger the value obtained, the
less likely it is that the target word constitutes an error in the translated sentence, since its
surrounding context is more strongly represented in the language model. A variant is to look at
the n-grams of the POS tags rather than the words themselves.

Some binary word class indicators are also popular discrete features. They capture whether
or not the target word should be treated in a special manner by the QE system. Proper nouns,
for example, are correctly translated (or copied from the source) more often than not, hence the
estimator can be more optimistic about them. Popular binary features are as follows.

• Is it a stop-word?

• Is it a punctuation symbol?

• Is it a proper noun?

• Is it a numeral?

For our example target word computer, the answer to these questions would be “no”. De-
pendency parses can also yield very useful fluency features. The word-level QE model of Martins
et al. [2016], which achieved the highest scores in the WMT16 shared task, is trained with var-
ious features that combine the information from the dependency relations and POS tags of the
translation in question. In order to illustrate these features with respect to the target word com-
puter, we must refer to its syntactic head word and grand-word. In Figure 2.6, the head word of
computer is specs, since it is from specs that comes the incident dependency relation NMOD, and
the head grand-word of computer is barbaric, since it is from barbaric that comes the dependency
relation NSUBJ incident to specs. We also define the target’s dependency siblings as the words
to which the target is either directly or indirectly connected through dependency relations. The
main dependency features used by Martins et al. [2016] are:

• dependency relation between the target word and the head word, and its concatenation
with the target word itself: NMOD, NMOD+computer;
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• concatenation of the target word, the head word and their respective POS tags: com-
puter/NN+specs/NNS;

• concatenation between the target word, its closest sibling to either its left or right in the
sentence, and their respective POS tags: computer/NN+this/DT, computer/NN+barbaric/JJ ;
and

• concatenation between the target word, the head word, the head grand-word, and their
respective POS tags: computer/NN+specs/NNS+barbaric/JJ.

Another important fluency feature that relies on dependency parses is the “null link” fea-
ture [Xiong et al., 2010]. It is a binary feature that receives value 1 if there is at least one
dependency relation between the target and another word in the sentence. In all other cases
it receives a value of 0. Hence, if the dependency parser cannot associate a given target word
with any other word of the translation, it is very likely that it constitutes an error. As illustrated
in Figure 2.6, our example target word computer is part of various dependency relations, and
hence this feature would receive value 1.

Pseudo-reference translations can also be used to calculate fluency features. For word-level
QE, pseudo-reference features are binary and receive value 1 if a given target word is present
in the pseudo-reference in question, and 0 otherwise. The intuition is that if the target word
appears in a translation produced by a different MT system, then it is likely that it does not
constitute an error. Multiple pseudo-references can also be used to make this information about
consensus: The larger the number of pseudo-references the target word appears in, the less likely
an error it is. These features tend to disregard any information on position of the target word in
the pseudo-references with respect to its position in the machine translated sentence.

Finally, there are also numerous semantic features that have been used in QE sys-
tems [Martins et al., 2017a, Shah et al., 2015b, Tezcan et al., 2015]. By using lexical databases
such as WordNet [Miller, 1995] and BabelNet [Navigli and Ponzetto, 2012], it is possible to
calculate features such as the number of senses, synonyms, hypernyms, or hyponyms for the
target word. If no such databases are available, distributional semantic models can be exploited
instead, such as the skip-gram and bag-of-words models in word2vec [Mikolov et al., 2013a].
From these models, word embeddings for the target word can be extracted and used as features
directly. As discussed in Section 3.4, modern QE approaches are moving away from feature
engineering and toward these word representations, since they manage to capture interesting
properties of words, can be seamlessly incorporated in neural architectures, and can be obtained
from raw, unlabeled text. Section 2.7 demonstrates the most effective word- and phrase-level
QE approaches to date use these representations exclusively as input features [Kim et al., 2017b].

Complexity Features
Using similar resources and techniques, a number of features that exploit cues about the source
sentence being translated can also be calculated. Since these features generally attempt to indi-
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cate how challenging it was for the MT system to translate the source sentence, they are often
referred to as complexity features. Many of these features rely on word alignments between the
source sentence and its machine translation, which can be obtained as a by-product in statistical
MT (SMT) systems. In the previous example in Figure 2.6, the target word computer is aligned
with computador, which is its direct translation in Portuguese. Using this link between them,
various features can be extracted, including:

• source word aligned to the target word: computador;

• POS tag of the source word aligned to the target word: NOM;

• bigrams including the source word: deste computador, computador são;

• bigram POS tags including the source word: PRP+P NOM, NOM V;

• bigrams composed of the source word aligned to the target word and the POS tags of its
surrounding words: PRP+P computador, computador V;

• trigrams including the source word: configurações deste computador, deste computador são, com-
putador são bárbaras;

• trigram POS tags including the source word:NOMPRP+PNOM, PRP+PNOMV, NOM
V ADJ ; and

• trigrams composed of the word aligned to the target word and the POS tags of its sur-
rounding words: NOM PRP+P computador, PRP+P computador V, computador V ADJ.

Notice that because all the information these features use can be produced after the trans-
lation is produced (mainly alignments, n-grams, and POS tags), systems that exploit them can
still be considered black-box QE approaches. QE systems use these features in an attempt to
identify patterns within the source sentence that are likely to lead to errors in the MT system.
If the QE system observes that the trigram “deste computador são” is commonly associated with
“bad” quality labels in the training data, for example, it could become more pessimistic about
the quality of the words aligned to it in the translation.

Adequacy Features
Adequacy features aim to combine information from both source and target sentences. Their
primary aim is to capture how adequate the translation is with respect to the source provided.
It does so by capturing the relationship between the target word being analyzed and its context
within the source sentence being translated. Adequacy features for word-level QE that could be
calculated for the target word computer in Figure 2.6 include:

• bigrams composed of the target word and the words in the source sentence surrounding
the word aligned to it: deste computer, computer são;
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• bigram POS tags of these words: PRP+P NN, NN V;

• bigrams composed of the target word and the POS tags of words in the source sentence
surrounding the aligned word: PRP+P computer, computer V;

• trigrams composed of the target word and the words in the source sentence surrounding
the word aligned to it: configurações deste computer, deste computer são, computer são bárbaras;

• trigram POS tags of these words: NOM PRP+P NN, PRP+P NN V, NN V ADJ; and

• trigrams composed of the target word and the POS tags of words in the source sentence
surrounding the aligned word:NOMPRP+P computer, PRP+P computer V, computer V ADJ.

There are also binary adequacy features that can capture important quality clues by com-
paring the target word and its aligned word in the source sentence, for example [Tezcan et al.,
2015].

• Are both the target word and its aligned word identical? No: Computer is not identical to
computador.

• Are both the target word and its aligned word content words? Yes: Computer is a noun
(NN) and so is computador (NOM).

• Are both the target word and its aligned word function words? No: Both of them are
content words.

Confidence Features
Interesting continuous confidence features can be calculated, using the translation probability
tables produced by SMT models. These tables list the prior probability that a given word will
be translated into another. For example, the probability that computador will be translated into
computer is much higher than the probability of it being translated into chair, or love. Common
features extracted from these tables are:

• translation probability between the word aligned to the target and the target itself;

• number of translations for the target word with a probability over ˛; and

• number of translations for the word aligned to the target with a probability over ˛.

It is very intuitive to see how these features could help a QE system. If the translation
probability between the aligned word and the target is too small, for example, then there is
a good chance that the MT system made a mistake. Also, if the number of translations with
probability above a certain threshold ˛ available for the aligned word is very high, then there
is a higher chance that the MT system made a mistake, since there are many ways in which it
could have translated the word. Different values for ˛ will lead to variants of these features.
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2.4.2 PHRASE-LEVEL FEATURES
Since word- and phrase-level QE are very similar in principle, many of the word-level features
described in the previous section can be used in the creation of phrase-level QE systems. Word
alignments can be used to infer alignments between phrases in the translation and in the source
sentence, subsequently allowing fluency, complexity, adequacy, and confidence features to be
adapted.

Logacheva et al. [2016a] adapt various word-level features for phrase-level QE. To illus-
trate them, consider as example the translation illustrated in Figure 2.7, which was taken from
the WMT16 datasets for German-English translation.

Die empfohlene  Dosis von    Adenuric    beträgt 80 mg     einmal täglich .

The recommended dose of     Adenuric      is 80 mg     once daily .

POS Tags:

POS Tags:

Original:

Translation:

ART ADJA APPR CARD ADV .ADJDNN NE VVFIN NN

DT VBN IN CD RB .RBNN NNP VBZ NN

Figure 2.7: German-English translation with POS tags.

Given the target phrase “is 80 mg”, aligned to “beträgt 80 mg” in Figure 2.7, the following
context features can be extracted:

• words preceding and succeeding the target phrase: Adenuric, once;

• POS tags of these words: NNP, RB;

• words preceding and succeeding the aligned phrase: Adenuric, einmal;

• POS tags of these words: NE, NN;

• whether there are named entities in the target phrase: No; and

• whether there are named entities in the source phrase: No.

Using a vocabulary and a language model, adapted versions of important word-level fea-
tures can also be extracted in a content-aware fashion, such as:

• existence of a word in the source phrase that is out of the vocabulary;

• length of the longest n-gram present in the language model to the left of the first word in
the target phrase (is);

• length of the longest n-gram present in the language model to the right of the last word
in the target phrase (mg);
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• language model backoff behavior with respect to the first word of the target phrase and its

two preceding words (“of Adenuric is”); and

• language model backoff behavior with respect to the last word of the target phrase and its
two succeeding words (“mg once daily”).

Phrase-level QE also has many similarities with sentence-level QE. Like sentences,
phrases are composed of more than one word and can be of arbitrary size. Many continuous
sentence-level features have been employed in phrase-level QE, for example:

• Punctuation features:

– proportion of tokens in the target phrase that are punctuation characters;
– proportion of tokens in the word/phrase aligned to the target phrase that are punc-

tuation characters; and
– difference in number of punctuation characters in the target phrase and the aligned

word/phrase.

• Language model features:

– number of tokens in the target phrase;
– number of tokens in the word/phrase aligned to the target phrase;
– average length of tokens in the target phrase;
– average length of tokens in the word/phrase aligned to the target phrase; and
– ratio between the number of tokens in the target phrase and its aligned word/phrase.

• Alignment features:

– number of words in the target phrase that are not aligned to any word in the source
sentence;

– number of words in the target phrase aligned to more than one word in the source
sentence; and

– average number of alignments between the words in the target phrase and the words
in the source sentence.

• Part-of-speech features:

– percentage of content words in the target phrase;
– percentage of content words in the aligned word/phrase;
– percentage of nouns/verbs/adjectives/adverbs/numerals/pronouns in the target

phrase;
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– percentage of nouns/verbs/adjectives/adverbs/numerals/pronouns in the word/phrase

aligned to the target phrase; and
– ratio of nouns/verbs/adjectives/adverbs/numerals/pronouns between the target

phrase and its aligned word/phrase.

Multi-level prediction features can also be exploited to model the relationship between
phrase-, word- and sentence-level QE. Given a sentence-level QE model that predicts HTER
scores and a word-level QE model that produces binary “good”/“bad” labels, the following fea-
tures can be extracted:

• quality label produced by the sentence-level QE model;

• number of words in the target sentence predicted as “good”/“bad” by the word-level model;
and

• number of words in the target phrase predicted as “good”/“bad” by the word-level model.
These features could help the model learn to be more pessimistic toward the phrases that com-
pose a sentence with a low quality score, for example, or to be more optimistic about a given
phrase if all words it contains have been predicted as “good”.

2.5 ARCHITECTURES
Supervised word- and phrase-level QE models are trained on a set of machine translations an-
notated with labels derived from human annotation. These labels are often discrete, although
probabilistic methods can be used to infer models that output a probability score on the cor-
rectness of a word or phrase. For feature extraction, approaches can resort to external tools and
resources such as POS taggers, parsers, language models, translation probability models, and
pseudo references. For model learning, since both word- and phrase-level QE tasks consist in
estimating a sequence of quality labels rather than a single label for a sentence, different archi-
tectures can be used. We describe three types of architectures: non-sequential, sequential, and
automatic post-editing-based approaches.

2.5.1 NON-SEQUENTIALAPPROACHES
Non-sequential approaches are arguably the simplest way to address word- or phrase-level QE.
These approaches predict the labels of each word/phrase in the analyzed sentence independently
from the predictions of other words/phrases. In other words, they do not exploit the fact that
the words in a sentence constitute a sequence, and that there may be interdependencies in the
way labels are assigned.

In Figure 2.8, which illustrates the application of a typical non-sequential QE approach,
the target word is barbaric in the machine translated sentence “The specs of this computer are bar-
baric!” After relevant features are extracted for this word, a trained non-sequential ML model
estimates the quality label of the target word in question.
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�e cat sat on the mat.

Feature Estimator

Non-Sequential Model

Good

Training Data

Quest Features MT Metrics

Figure 2.8: Architecture of a non-sequential QE approach.

The only information available as input to a non-sequential model are the features that
describe the target word itself. The model does not take advantage of the quality predictions it
has made for other target words in the past, since it assumes that they are not related to the
respective target word. However, this does not mean that the non-sequential model is oblivious
to the context in which the target word is inserted: As discussed in Section 2.4, the features that
represent the target word can capture many aspects of its context, such as the words surrounding
it, its POS tag, its dependency relations with other words, etc.

Many standard ML classifiers can be used to train non-sequential models. These include
random forest classifiers, which learn an ensemble of decision trees over the training data [Esplà-
Gomis et al., 2016, Singh et al., 2013], multi-layer perceptrons, i.e., a neural model composed
of various stacked layers of feed-forward nodes [Esplà-Gomis et al., 2015, Tezcan et al., 2016],
support vector machines (SVM) [Rubino et al., 2013], and many other classifiers. While these
have shown competitive performance in the past, in recent evaluation campaigns non-sequential
models have been outperformed by sequential alternatives. For example, in contrast with the first
place obtained by Esplà-Gomis et al. [2015] in WMT15, the improved version of the models
in Esplà-Gomis et al. [2016] placed seventh in the word-level QE shared task in WMT16.

By disregarding the fact that the words in a sentence are part of a sequence, non-sequential
approaches ignore important information regarding the interdependencies between them. As
demonstrated by the datasets provided for the WMT word- and phrase-level shared tasks, ma-
chine translations often feature various sequences of incorrectly translated words. A verb dis-
ambiguation error, for example, could lead an MT system to mistranslate the object of such a
verb. If a QE model is able to find a disambiguation error at a given point of a translation, it
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could in theory exploit this information in order to more accurately capture subsequent inter-
dependent errors. Non-sequential models are also incapable of performing any form of “global”
optimization of the sequence of quality labels with respect to the sentence as a whole, which is
something many sequential models attempt to do.

One of the biggest drawbacks of non-sequential models is the fact that they do not offer
effective ways to address long-distance relationships between the words in a sentence. Although
not all sequential models are capable of doing so, some sequential models are, such as long short-
term memories (LSTMs). Consider, for example, the Portuguese-English translation featured
in Figure 2.9, which contains human-produced “G” labels for properly translated words, and
“B” labels for translation errors. The English translation would be perfect if not for the wrong
choice of pronoun made by the MT system.

John vacated the house very hastily,
since he very soon acknowledged it was haunted.

John left the house very quickly,
since he very soon realized it was haunted.

John vacated the house very hastily. John did
that after acknowledging the house was haunted.

John left the house very quickly. John did
that after realizing the house was haunted.

Original Sentence:

Lexical Simplification:

Syntactic Simplification:

Both Simplifications:

Figure 2.9: Portuguese-English translation with an error.

If this annotated translation were to be part of a training set for word-level QE, non-
sequential models would have a difficult time learning how to assimilate the fact that the fem-
inine pronoun she should not be associated with the word man. As discussed in Section 2.4,
most of the features commonly used to create approaches for word- and phrase-level QE focus
only the information pertaining to the target word’s close vicinity, such as its two preceding and
succeeding words. Since man is six tokens apart from her in the translation, and non-sequential
models are not directly aware of the sequence to which her belongs, it becomes very difficult for
these models to capture this particular clue. One could try to address this problem by simply
using longer n-grams as features, for example, but this would most likely be ineffective since
the non-sequential model used would have difficulty handling the inherent sparsity of long n-
grams. Also, since sentences can be many times larger than the one illustrated in Figure 2.9,
it would be challenging to even decide how long the n-grams should be. An alternative would
be to calculate a feature that captures the relationship between the gender of pronouns and the
subject to which they pertain in the sentence. But this is a complex task, since pronoun gender
is only one of the many types of long-distance relationships that can be found within sentences,
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which means that an extensive feature engineering process would have to be undertaken in order
for a non-sequential model to address all of them.

2.5.2 SEQUENTIALAPPROACHES
As the name suggests, a sequential QE approach takes word- or phrase-level QE as a sequence
labeling problem. In other words, it takes advantage of the fact that the words being labeled
are part of a sequence, namely the sentence. Sequential approaches seek to determine which
sequence of quality labels best represents the quality of multiple words in a sentence.

Figure 2.10 illustrates the overall way in which a simple sequential QE approach operates.
Its structure is quite similar to that of a non-sequential approach, the only difference being that
it uses a sequential ML model that can predict the label of a target word by taking into account
the words preceding it, as well as the predictions that it has made for them. It is important to
mention, however, that this architecture does not accurately represent the exact way in which
each and every sequential ML model operates, it only offers insight into the overall way these
models are applied.

�e specs of this computer are      barbaric!

Feature Estimator

POS Taggers
Syntax Parsers

Language Models
Translation Models
Pseudo-references

…

Sequential Model

Good Bad Good Good Good Bad         Bad

Training Data

Features

Figure 2.10: Architecture of a sequential QE approach.

Sequential QE approaches constitute the majority of systems submitted to the word and
phrase-level QE shared tasks held at WMT conferences. One of the sequential models most
frequently used to create these approaches are conditional random fields (CRFs) [Lafferty et al.,
2001]. In general terms, a CRF can be described as a discriminative undirected graph model
where each random variable yi 2 fy1; y2; :::; yn�1; yng is represented by a node conditioned on
an input observation X . In word- and phrase-level QE, X represents the input sentence, and
each yi represents a quality label to be predicted. CRFs are similar to generative Hidden Markov
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Models (HMMs) [Stratonovich, 1960] in the sense that they are also bounded by the Markov
assumption: The value of any variable in the graph is conditioned on the value of its neighbors.
In other words, in order to determine the value of a certain node in the graph, one needs only
to know the value of the nodes directly adjacent to it.

Because they are graph models, CRFs are inherently flexible and can take different shapes
depending on the task being addressed. In parsing tasks, for example, CRFs can take the shape
of the syntactic tree nodes themselves. In tasks characterized by linear sequences, such as word-
and phrase-level QE, linear-chain CRFs can be used, as illustrated in Figure 2.11.

y1 y2 y3 y4

X

y5 yn…

Figure 2.11: A linear-chain CRF model.

Word-level CRF models used to be very popular and performed well in early work and
shared tasks, placing first and second in WMT13 [Luong et al., 2013]. However, they were
outperformed by other approaches from WMT14 [Luong et al., 2014a, Shang et al., 2015]. The
same applies for phrase-level CRFs [Logacheva et al., 2016a]. Interestingly, no CRF systems
were submitted to either theWMT17word- or phrase-level shared tasks, other than the baseline
systems provided by the task organizers, which placed between fourth and eighth across all
settings. CRFs have recently been replaced by another kind of sequencemodel: RecurrentNeural
Networks (RNNs).

Neural networks are models composed of interconnected nodes commonly organized in
layers. A complete neural model is composed of three types of layers: input, output, and hidden.
Figure 2.12 illustrates a simple neural model. It has one input layer with two nodes, three hidden
layers with four nodes, and one output layer with a single node.

The behavior and applicability of a neural model can be influenced by a number of design
decisions, such as the number of layers and nodes used and the arrangement of connections
between nodes, but arguably themost important of all aspects is the type of nodes used. recurrent
neural networks (RNNs) are variants of neural models characterized by recurrent nodes that are
appropriate for structured prediction tasks such as sequence labeling.

Suppose the information pertaining to a given target word Xi in a translation is being
passed onto a recurrent neural node in a hidden layer. The node will apply a transformation to
this information and produce a hidden representation Hi . A non-recurrent node would simply
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Hidden
Layers

Input
Layer

Output
Layer

Figure 2.12: A simple neural model.

pass Hi as input to the connected nodes in the next layer, but a recurrent node would also pass
Hi as input to itself when calculating the representation HiC1 for the next target word XiC1.
Figure 2.13 illustrates this.

Hi Hi+1

Xi Xi+1

Hi Hi+1

Xi Xi+1

……

Non-Recurrent Node Recurrent Node

Figure 2.13: Functioning of a recurrent neural node.

Variants of these recurrent nodes have been proposed.Gated recurrent units (GRUs) [Cho
et al., 2014] and LSTM nodes [Hochreiter and Schmidhuber, 1997] are the two most popular
choices for word- and phrase-level QE approaches. The RNN model by Camargo de Souza et al.
[2014] was the first to use this architecture for QE. They use LSTMs and achieve first place in
the WMT14 word-level QE shared task for binary labels. In the most recent task editions,
RNNs were used by all winning submissions for word- and phrase-level QE [Kim and Lee,
2016, Kim et al., 2017b, Martins et al., 2016], as we discuss in Section 2.7.
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2.5.3 APE-BASEDAPPROACHES
A substantially different approach for word- and phrase-level QE is the use of Automatic Post-
Editing (APE) for these tasks. As previously discussed, PE has been extensively used to label
words and phrases for model training by:

1. manually producing post-edited versions of the translations through human annotation;

2. calculating the TER between the translation and its post-edited version; and

3. transforming the keep/delete/substitute labels onto a set of quality labels.

For phrases, once word-level QE labels are produced, phrase segments in the translations are
identified and word-level labels are transformed into phrase-level labels by assigning “bad” to
each phrase with at least one word with a “bad” label, and “good” to the rest.

APE-based QE approaches exploit this process to tackle word and phrase-level QE. Fig-
ure 2.14 illustrates how APE-based QE approaches operate. Instead of attempting to learn how
to label words and phrases directly, an APE-based approach attempts to learn how to post-edit
machine translations. Once that is done, TER can be computed and labels can be extracted in
the same way. Its main component is the automatic post-editor, which is not trained with quality
labels, but rather post-edited versions of machine translations. Datasets such as those provided
for recent WMT shared tasks contain not only source sentences, their machine translations and
quality labels inferred through TER, but also the post-edited versions of machine translations
used to calculate TER labels. In addition, to build effective APE modules, other datasets with
post-edited translations can and have also been used for training, including synthetically gener-
ated data via back-translation.

Martins et al. [2017a] present a hybrid QE approach that combines different types of lin-
ear, neural, and APE-based models trained with a wide array of features. Their best-performing
system substantially outperforms the other participating systems in the WMT16 word-level
task [Bojar et al., 2016]. Hokamp [2017] introduces an APE-based QE approach that com-
bines various APE systems trained with recurrent neural models and a much lighter set of fea-
tures than the one used by Martins et al. [2017a]. Their approach achieves second and third place
in the WMT16 and WMT17 word-level QE shared tasks, respectively [Bojar et al., 2017].

APE-based approaches can be effective if the post-editing model is reliable. The main
limitation of these approaches is the fact that they cannot be employed (on their own) for non-
binary prediction tasks, where more detailed error types are to be predicted.

2.6 EVALUATION
The context in which a word or phrase-level QE approach is applied is an important factor
in its evaluation. If QE is the end task and there is an evaluation dataset available, common
classification evaluation metrics can be used. On the other hand, if the QE approach is to be
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Automatic Post Editor

Y así , está claro , hacer los propios haitianos .

And so , it is clear , do Haitians themselves .

TER Estimator

K   D  D   K       K   D    S    K     K       K     K

G   C  C   G       G   C    C    G     G       G     G

Training Data

Y está claro que los propios haitianos comparten este punto de vista.

Original Sentence:

Machine Translation:

TER Labels:

Quality Labels:

Automatic Post-edit:

Figure 2.14: Architecture of an APE-based QE approach.

used as part of a solution for another end task, extrinsic evaluation methods for the task at hand
would be needed to assess how the QE approach affects the results of the end task.

The shared tasks held at WMT events have served as main benchmarks for dedicated
word- and phrase-level QE approaches. Labels used in the WMT tasks are all discrete: Either
binary “good”/“bad” labels, multi-class “keep”/“delete”/“substitute”, or MQM labels. Classifica-
tion tasks are commonly evaluated using metrics like precision, recall, and F-measure. Precision
measures the proportion of correct predictions made for a certain class with respect to the total
number of predictions made for that class, while recall measures the proportion of correct pre-
dictions made for a certain class with respect to the total number of instances with that class
in the evaluation dataset. The F-measure is calculated as the harmonic mean between precision
and recall. For the “bad” class in a binary “good”/“bad” setup, for example, these metrics can be
calculated via (2.3), (2.4), and (2.5):

Precision .“bad”/ D
correct “bad” predictions

correct “bad” predictions C incorrect “bad” predictions (2.3)

Recall .“bad”/ D
correct “bad” predictions

correct “bad” predictions C incorrect “good” predictions (2.4)
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F-measure .“bad”/ D
2 � precision .“bad”/ � recall .“bad”/
precision .“bad”/ C recall .“bad”/ : (2.5)

Up until WMT15, word-level systems were ranked based on the F-measure, more specif-
ically, the F-measure for the “bad” class. Given that the vast majority of words in the datasets
have a “good” label, predicting a “bad” label is the biggest challenge for systems. Hence, the
choice for F-bad as the primary metric. In order to avoid favoring extremely pessimistic ap-
proaches, including dummy systems that classify all words as “bad”, a new metric was introduced
by Logacheva et al. [2016c]: the F-mult score. F-mult is the product between the F-measure for
“good” and the F-measure for “bad” classes, as illustrated in Equation (2.6). This metric favors
neither pessimistic nor optimistic approaches. It is better than the standard F-measure for both
classes as it will ensure a score of 0 or very low for any system that over predicts either “good” or
“bad” labels:

F-mult D F-measure
�
“good”

�
� F-measure .“bad”/ : (2.6)

F-mult cannot be directly applied, however, in settings where words can receive more
than two types of labels, i.e., in multi-class classification setups. Bojar et al. [2014] address this
problem using the average F-measure, which consists of the weighted multiplication of the F-
measure for all possible labels. In Equation (2.7), which describes the average F-measure for a
set of N quality labels, ˛i is calculated as the proportion with which label Li appears in the task’s
datasets. This weighting scheme accounts for the fact that the distribution of labels in multi-class
QE setups is often heavily skewed toward a small group of labels:

Average F-measure D

NX
iD1

˛i � F-measure .Li / : (2.7)

For phrase-level QE, evaluation can be done in the same way: either treating each phrase
as a unit and counting correct and incorrect labels for that unit [Bojar et al., 2017], or assign-
ing the label predicted for each phrase to all words in the phrase and performing word-level
evaluation [Bojar et al., 2016].

It is only possible to assess if (and to what extent) a QE system performs well in another
end task if its presence improves (by how much) the performance of this end task, using metrics
specific to that task. Besacier et al. [2015] evaluate the effectiveness of their word-level QE
approach in guiding the decoding process of an MT system by looking at the BLEU scores
produced. If an MT system achieves a higher BiLingual Evaluation Understudy (BLEU) score
by using their QE approach as opposed to not using it, the QE model offers an improvement
to the translation model.

There are, however, other ways of assessing the impact of QE approaches incorporated
as part of another end task. In order to decide which “good”/“bad” quality label to assign to a
certain word in a sentence, for example, a QE approach can apply a threshold t to a continuous
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probabilistic quality score. If the score is greater than t , then the word will receive an “good”
label; otherwise, it will receive a “bad” label. If the goal is to compare the performance of two
QE approaches, one could simply choose a threshold t and then calculate the resulting F-mult,
for example, for each one of them. The problem is that different choices of t could lead to
different verdicts on which QE approach is better. To address this problem, Receiver Operating
Characteristic (ROC) curves can be used. As discussed in Section 3.6, an ROC curve consists
of a plot between the rate of true and false positives with respect to a large set of increasing
continuous t values between 0 and 1. This true positive rate (TPR) and the false positive rate
(FPR) can be calculated as:

TPR D
Number of correctly predicted positives

Number of positives in the test set (2.8)

FPR D
Number of incorrectly predicted positives

Number of negatives in the test set : (2.9)

Figure 2.15 illustrates an example of an ROC curve. Each point in the curve represents a
TPR/FPR coordinate with respect to a certain threshold value. Good-quality estimates should
create a curve that “walks” as closely as possible to the upper-left corner of the graph, since that
corner represents the association between a high TPR and a low FPR. Looking at Figure 2.15,
for example, “QE method 2” is clearly the most effective approach.
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Figure 2.15: Example of an ROC curve.

Another example of an evaluation plot that could be used is the Detection Error Tradeoff
(DET) curve [Martin et al., 1997], which allows better insight into the types of errors made by
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the QE approach. DET curves plot the previously introduced false positive rate (FPR) against
the false negative rate (FNR), which is calculated as:

FNR D
Number of incorrectly predicted negatives

Number of positives in the test set : (2.10)

Notice that these methods can be used to evaluate not only QE approaches incorporated
as part of MT systems, but also word confidence estimation approaches incorporated into ASR
systems.

2.7 STATE-OF-THE-ARTRESULTS
WMT shared tasks have been instrumental in comparing both word- and phrase-level QE ap-
proaches. In what follows we describe the three most successful approaches for word-level QE:
The predictor-estimator for word-, phrase-, and sentence-level QE [Kim et al., 2017b], and
the hybrid models for word- and sentence-level QE [Martins et al., 2017a], and the APE-
based approach by Hokamp [2017]. These models have achieved the highest performance in
WMT15-17 by using sophisticated sequential architectures. Before that, we show how these
compare to other approaches in the most recent WMT campaigns.

In the latest edition of the WMT shared task, participants were encouraged to evaluate
their approaches using not only the current edition’s datasets, but also datasets from the 2016
edition. The training set in 2017 is a superset of that in 2016, produced by the same MT system,
for the same text domain and annotated in the same way. This way, it was possible to quantify
progress over time and check whether the winning approaches perform well on the task in gen-
eral, or if they just happened to perform well on a specific dataset. Results showed that most
WMT17 systems perform better than the ones submitted in 2016. The winning submission at
WMT16 was outperformed by four WMT17 systems, and the majority of WMT16 systems
performed closely to the WMT17 baseline system (which we note is the same model in 2016
and 2017, but uses more training data in 2017). We refer the reader to the report from WMT17
for more detailed results [Bojar et al., 2017].

2.7.1 THEPREDICTOR-ESTIMATORAPPROACH
Kim et al. [2017b] introduced an effective approach that achieved first place in every variant of
the word-, phrase-, and sentence-level QE shared tasks of WMT17. It is a sequential approach
that uses RNN models in a very sophisticated way. The models are called predictor-estimators,
because they are composed of two major components: a predictor, which predicts words based
on the context in which they appear; and an estimator, which produces quality estimates for
words and phrases. The predictor uses an encoder-decoder RNN model, and the estimator uses
a typical unidirectional RNN model. By attempting to predict words, the predictor produces
various important context representations that are used as input by the estimator, which in turn
is able to produce quality estimates.
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Before we delve into how the predictor and the estimator details, we define some key

components that will be referred to throughout the text that follows.

• xD.x1; x2; :::; xn/: A sequence of n one-hot vectors that describe the source sentence being
translated.

• yD.y1; y2; :::; ym/: A sequence of m one-hot vectors that describe the machine translation
sentence.

• yj : The j th target word in the machine translation y.

• y D
�
y1; y2; :::; yj�1

�
: The context that precedes the target word yj in the translation y.

• y!D
�
yjC1; yjC2; :::; ym

�
: The context that succeeds the target word yj in the translation

y.

The predictor will receive as input yj , x, y , and y!, and attempt to predict the probability
that yj is expected to be found in the j th position in y. The predictor does not need QE data to
be trained: It can simply be trained over any parallel corpus of the language pair being addressed.
Kim et al. [2017b] train the predictor over large corpora such as Europarl [Koehn, 2005]. The
predictor’s architecture is illustrated in Figure 2.16. Its main components are as follows.

• Exj : The embedding vector of the j th word in the source sentence x, produced by an
embedding layer.

• Eyj : The embedding vector of the j th word in the machine translation y, produced by an
embedding layer.

• hj : The hidden representation of the j th word in the source sentence x, produced by an
RNN layer.

• s!j : The hidden representation of the j th word in the machine translation y, produced by
a forward RNN layer.

• s j : The hidden representation of the j th word in the machine translation y, produced by
a backward RNN layer.

• cj : The source sentence context vector for the j th word in the machine translation y,
produced by the attention layer placed over the encoder.

• Co, Vo, and So: Matrices that regularize different pieces of information to the same di-
mensionality so that they can be easily combined through summation.

• Qtj : An intermediate representation that encompasses various pieces of contextual informa-
tion regarding the j th word in the machine translation y.
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Figure 2.16: Architecture of the Kim et al. [2017b] predictor.

• tj : The final representation of the contextual information of the j th word in the machine
translation y.

The predictor first encodes the information from the source sentence onto cj using a bi-
directional RNN model with the attention layer. It then combines cj with two other pieces of in-
formation: the embeddings of the words that immediately precede (Eyj�1) and succeed (EyjC1)
the target word yj , and their hidden representations s!j�1 and s jC1. These are produced, respec-
tively, by a forward RNN layer that processes the translation segment that precedes yj (y ),
and a backward RNN layer that processes the segment that succeeds it (y!). This combination
is performed by matrices Co, Vo, and So through the summation illustrated in Equation (2.11):

Qtj D Cocj C Vo

�
Eyj�1I EyjC1

�
C So

�
s!j�1I s jC1

�
: (2.11)

These three combination layers produce outputs with the same dimensionality, which allows for
them to be summed. This process results in Qtj , which is then passed onto a maxout layer [Good-
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fellow et al., 2013] which calculates tj using Equation (2.12):

tj D
�
max

˚
Qtj;2k�1; Qtj;2k

	�
1�k�l

>: (2.12)

With tj at hand, the predictor can then calculate the probability p
�
yj jx; y ; y!

�
using Equa-

tion (2.13):

p
�
yj jx; y ; y!

�
D

exp
�
y>j Wo1 ˇ Wo2tj

�
P

v2V exp
�
v>Wo1 ˇ Wo2tj

� : (2.13)

In Equation (2.13), Wo1 and Wo2 are two additional matrices of parameters learned by the model
that combine yj and tj , and v is a one-hot vector representation of a given word in vocabulary
V . Notice that yj is also a one-hot vector representation.

The output probability distribution p
�
yj jx; y ; y!

�
is used for the training of the predic-

tor, but it is not passed onto the estimator as input. Instead, using some of the byproducts from
the predictor, QE feature vectors (QEFVs) are calculated. Two types of QEFVs are defined:
Pre-prediction (Pre-QEFV) and post-prediction (Post-QEFV), which are calculated as shown
in Equations (2.14) and (2.15).

Pre-QEFVj D y>j Wo1Wo2tj (2.14)

Post-QEFVj D
�
s!j I s j

�
: (2.15)

Pre-QEFV vectors are part of the numerator of Equation (2.13) and represent the most funda-
mental piece of information in calculating p

�
yj jx; y ; y!

�
. Post-QEFV vectors, on the other

hand, are the concatenation between the j th hidden states produced by the forward and back-
ward RNN models that encode y and y! respectively. Note that Post-QEFVs encompass
information that is not used in the calculation of p

�
yj jx; y ; y!

�
, which is why they are called

“post-prediction” feature vectors.
Kim et al. [2017b] calculate and concatenate Pre- and Post-QEFV vectors for each target

word in a given machine translation and then send them as a sequence to the estimator, which
then assigns quality labels to them. The estimator has a much simpler architecture than the pre-
dictor: It is a simple bi-directional RNN model that takes as input QEFVs and produces word-,
phrase-, and sentence-level quality labels as output. Figure 2.17 illustrates the architecture of
the estimator.

Kim et al. [2017b] train a model on the WMT17 QE shared task datasets using a multi-
task learning setup. These datasets provide labels for word, phrase, and sentence on the same
set of translations. In order to connect the estimator to the predictor, a technique called stacked
propagation is used, which allows for the information learned by the estimator to be propagated
back to the predictor. The Kim et al. [2017b] submission to the WMT17 shared tasks was
not a single predictor-estimator, but rather an ensemble of 15 model variants. These variants
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Figure 2.17: Architecture of the Kim et al. [2017b] estimator.

use different embedding, vocabulary, and hidden layer sizes. These variants are combined by
averaging their output.

Using this approach, Kim et al. [2017b] achieve the best results in the official competition
for both word, phrase and sentence-level QE 2017.

One of the main features of this work is the way a typical RNN model trained over QE
data (the estimator) can be complemented with a powerful underlying model that learns from
much more abundant data (the predictor). Collecting QE labels is an expensive process; hence,
this approach makes the task more cost-effective. Another positive aspect of this work is that
it does not resort to any form of feature engineering. While the predictor takes as input auto-
matically learned embedding representations, the estimator takes as input vectors automatically
produced by the predictor.

The main drawback of a predictor-estimator approach is its inherent complexity. The
model is composed of several parts that can be configured and structured in numerous ways,
and the training process requires significant experience with neural sequential models and hy-
perparameter optimization.

2.7.2 UNBABEL’SHYBRIDAPPROACH
Martins et al. [2017a] introduce a hybrid word and sentence-level QE approach that outper-
formed former state-of-the-art approaches submitted to WMT15 and WMT16 QE shared
tasks by up to 13.36% in Pearson’s r for sentence-level QE. This hybrid approach combines
three components:

• an RNN model that interleaves recurrent layers with feed-forward layers for word-level
QE;
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• an APE-based encoder-decoder model that automatically post-edits a machine translation

and infers word- and sentence-level quality estimates based on TER; and

• a word-level linear sequential model that takes as input the word-level output of the se-
quential RNN model and the APE-based model, combines them with various other fea-
tures, then produces final word-level quality labels.

The architecture of the Martins et al. [2017a] hybrid approach is illustrated in Figure 2.18.
The word-level RNN model is referred as a “pure QE” model, since it is trained exclusively over
manually created word-level QE datasets, such as those used in WMT shared tasks. It takes as
input four sequences: the words in the machine translation, their POS tags, the words in the
source sentence aligned to each one of them, and their POS tags as well. It learns individual
embeddings for each one of these input sequences, passes them onto a series of RNN layers,
then produces word-level quality labels. The predicted proportion of “bad” word-level labels is
used as sentence-level quality estimate.

The APE-based model is described in detail in Section 2.7, as it was also used by Hokamp
[2017]. Two post-editors named SRC!PE and an MT!PE are trained, which take as input
the source sentence and the machine translation, respectively, and produce as output a post-
edited version of the machine translation. Martins et al. [2017a] train these models over arti-
ficially produced machine translations combined with WMT shared task data up-sampled 20
times. The quality labels produced by these two models are combined by taking their weighted
sum. The weights are fine-tuned with respect to a given evaluation metric, for example, those
used in WMT15 and WMT16 shared tasks. The resulting model produces a TER score between
the machine translation and its post-edited version, as well as a sequence of word-level quality
labels extracted from the TER calculation process.

The word-level linear sequential model is trained over the word-level output of the two
other models combined with various engineered features [Martins et al., 2017a] on QE datasets.
The linear model is the one which produces the final word-level quality labels. To obtain a final
sentence-level quality estimate, the TER score produced by the APE-based model with the
proportion of “BAD” labels produced by the RNN model is simply averaged.

The overall approach relies on a stacking technique to combine the neural and non-neural
models. This stacking technique makes the models very flexible since any system’s prediction
(neural, non-neural, APE-based) can be incorporated as additional features in the linear model.

The proposed approach is compared to the highest performing word- and sentence-level
QE approaches submitted to WMT15 and WMT16. For word-level QE an F-mult perfor-
mance gain of 3:96% is obtained over the best WMT15 system, and 7:95% over the best
WMT16 system. Results for sentence-level QE are also very positive: Pearson’s r gains of 5:08%
and 13.36% are obtained over the best WMT15 and WMT16 systems. A modified version of
the Martins et al. [2017a] approach was also submitted to WMT17 by Martins et al. [2017b].
The main difference between the Martins et al. [2017a] and Martins et al. [2017b] approaches
is that Martins et al. [2017b] use an ensemble of five sequential RNN models rather than just
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Figure 2.18: Architecture of the Martins et al. [2017a] hybrid approach.
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two. Using this modified version, the Martins et al. [2017b] system achieved second place in the
English-German and German-English word-level QE shared tasks of WMT17, being outper-
formed only by the predictor-estimators of Kim et al. [2017a].

The experiments highlight that the output of the APE-based model is a great comple-
ment to the other features used by the sequential linear model, yielding a noticeable perfor-
mance increase. This observation further highlights the importance of pairing models trained
over manually produced QE data with models trained with other, more abundant data. The
main disadvantage of the Martins et al. [2017a] approach is the fact that it requires combining
three systems in a relatively complex architecture, which may make reproducing it difficult.

2.7.3 THEAPE-BASEDAPPROACH
Hokamp [2017] introduces a word-level QE approach whose performance is not significantly
different from that of the predictor-estimator and hybrid approaches by Kim et al. [2017b] and
Martins et al. [2017a] for the English-German WMT17 word-level shared task. It is a sequen-
tial APE-based approach that expands on the architecture introduced by Martins et al. [2017a]
by using a larger ensemble of different encoder-decoder neural post-editing models to produce
word-level predictions, as discussed in Section 2.5. All neural models use the architecture illus-
trated in Figure 2.19. The main components of the model are as follows.

• xD.x1; x2; :::; xn/: A sequence of n one-hot vectors that describe an input sequence.

• Exj : The embedding vector of the j th element in the input sequence x, produced by an
embedding layer.

• h!j : The hidden representation of the j th element in the input sequence x, produced by a
forward RNN layer.

• h j : The hidden representation of the j th element in the input sequence x, produced by a
backward RNN layer.

• s!j : The hidden representation of the j th word in the machine translation y, produced by
a forward RNN layer.

• yD.y1; y2; :::; ym/: A sequence of m one-hot vectors that describe the output post-edited
translation.

These models take as input a sequence that describes some type of information about
the machine translation in question, which is then encoded by a bi-directional RNN layer. The
encoding is then passed onto an attention layer, and then a forward RNN layer decodes a post-
edited version of the machine translation. The multiple models use different kinds of inputs.

• SRC!PE: The input sequence is the source sentence.

• MT!PE: The input sequence is the translation.
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Figure 2.19: Architecture of the APE-based models used by Hokamp [2017]. They train and
combine multiple models with this architecture using different types of input sequences.

• MT-aligned!PE: The input sequence is a modified version of the the translation where
each word is concatenated with the word in the source sentence aligned to it. The word
alignments are extracted from the attention layer of the SRC!PE model. If a word in the
machine translation is not aligned to any word in the source sentence, then it is included
on its own in the input sequence.

• SRC+MT!PE: The input sequence is the source sentence concatenated with the ma-
chine translation by a special BREAK marker.

• SRC+MT-factored!PE: The input sequence is a modified version of the sequence of
the SRC+MT!PE model where each word in both the source sentence and the machine
translation is concatenated with its POS tag, the dependency relation with its head word
according to a dependency parse, as well as the POS tag of the head word.

Hokamp [2017] provides examples that clarify the differences between these input se-
quences. These examples are replicate in Table 2.2, which are given for the English source sen-
tence “auto vector masks apply predefined patterns as vector masks to bitmap and vector objects” and
its German machine translation “automatische Vektor-masken vordefinierten Mustern wie Vektor-
masken, Bitmaps und Vektor-objekte anwenden”.

In order to train these five models, they use a set of 500,000 artificial post-edits created
by Junczys-Dowmunt and Grundkiewicz [2016]. To create this corpus, Junczys-Dowmunt and
Grundkiewicz [2016] took a corpus of source English sentences and their German reference
translations (an abundant resource), and applied an MT system to translate the references back
into English.Then anMT systemwas applied again to translate the sentences back intoGerman.
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Table 2.2: Examples of the input sequences used by model variants in Hokamp [2017].
“BREAK” tokens represent a marker used by the authors to indicate a sentence split.

Model Input Sequence

SEC Auto vector masks apply predefi ned patterns as vector masks to bitmap 

and vector objects .

MT Automatische Vektor- masken vordefi nierten Mustern wie Vektor- 

masken , Bitmaps und Vektor- objekte anwenden .

MT→Aligned automatische|auto Vektor-|vector masken|masks vordefi nierten|apply

Mustern|patterns wie|as Vektor-|vector masken|masks ,|to Bitmaps|to

und|and Vektor-|vector objekte|objects anwenden|apply .|.

SRC+MT Auto vector masks apply predefi ned patterns as vector masks to bitmap

and vector objects . BREAK automatische Vektor- masken vordefi nierten 

Mustern wie Vektor- masken , Bitmaps und Vektor- objekte anwenden .

SRC+MT→Factored Auto|JJ|amod|NNS vector|NN|compound|NNS masks|NNS|nsub-

j|VBP apply|VBP|ROOT|VBP predefi ned|VBN|amod|NNS pat-

terns|NNS|dobj|VBP as|IN|prep|NNS vector|NN|compound|NNS 

masks|NNS|pobj|IN to|TO|aux|VB bitmap|VB|relcl|NNS 

and|CC|cc|VB vector|NN|compound|NNS objects|NNS|conj|VB 

.|.|punct|VBP BREAK|BREAK|BREAK|BREAK Automatische|-

ADJA|nk|NN Vektor-|B-NN|B-sb|B-VVINF masken|I-NN|I-

sb|I-VVINF vordefi nierten|ADJA|nk|NN Mustern|NN|pd|NN 

wie|KOKOM|cd|NN Vektor-|B-NN|B-cj|B-KOKOM masken|I-

NN|I-cj|I-KOKOM ,|,|punctjNN Bitmaps|NN|cj|NN und|KON|c-

d|NN Vektor-|B-NN|B-cj|B-KON objekte|I-NN|I-cj|I-KON anwen-

den|VVINF|ROOT|VVINF .|.|punct|VVINF

The goal was to use the automatically produced German sentence as machine translations and
the German reference as its “post-edited” version. The corpus was then complemented by “up-
sampling” 20 times (i.e., creating 20 copies of ) the data provided for the WMT17 English-
German APE shared task (the same sentences as those in the QE word-level task). The instances
in this dataset are composed of a source sentence, its machine translation, and a post-edited
version of this translation. The data was up-sampled because it contains only 11,000 instances,
too few compared to the 500,000 artificially produced ones.

During the training procedure, different versions of each model are kept. Once the train-
ing of a given model is concluded, the final version of this model is created by averaging the
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parameter values of the four highest performing kept versions. These final versions are then
combined by taking a weighted average of their output. These weights are fine-tuned using the
WMT17 English-German word-level shared task data with respect to F-mult.

Although this APE-based approach uses a different strategy from that used by predictor-
estimator approach, they share a very important characteristic: Both use the manually produced
QE data in a “supporting role”. Kim et al. [2017b] train the word predictor model on raw parallel
text to produce the feature vectors used as input by an estimator trained on QE data. Hokamp
[2017] creates large amounts of artificial post-edits in a cost-effective way, then uses these to
train APE systems that are only fine tuned over QE data.

Another interesting aspect of this approach is that it does rely on linguistic information
other than just the words themselves: The SRC+MT!factored model requires POS tagging
and dependency parsing for both the source and target language.





43

C H A P T E R 3

Quality Estimation forMT at
Sentence Level

3.1 INTRODUCTION
QE for MT is inspired by work on ASR (see Section 2.1), which is done at the word level.
However, most work in QE to date has focused on sentence-level prediction. The motivation
for sentence-level prediction is two-fold. First, MT systems generally process one sentence at a
time. Even though the current state-of-the-art neural approaches to MT produce translations
one word at a time, they still take as input the entire source sentence and produce as output
a target sentence. Therefore, this is a rather natural unit for QE. Second, readers and other
applications are very likely to consume translations one sentence at a time, or even larger chunks
of text in some cases (see Chapter 4).

In sentence-level QE we are interested in producing a score that reflects the quality of
an entire sentence translation. Depending on the application at hand, this score would vary but
generally speaking it would be more than the simple aggregation of scores for the individual
words in the sentence. Consider the example in Table 3.1, with a source (SRC) Portuguese
(PT) sentence and its translation (MT) to English (EN), produced by Google Translate, and the
minimally post-edited (correct) version of this translation (PE). In this example the translation
has many issues with meaning preservation and disfluencies, but these are not very localized, i.e.,
they involve several words and ordering discrepancies, as evidenced by the comparison between
the MT and PE versions.

Humans can score a sentence translation differently depending on whether it is meant
for gisting purposes (fluency is less critical), for post-editing (some errors are easier to fix),
for publication (both fluency—i.e., how well the translation reads in the target language—and
adequacy—i.e., how faithful the meaning of the translation is to the source sentence—are im-
portant), to be read by someone who cannot speak the source language (adequacy is very critical),
etc. Similarly, we aim to buildmodels to predict a score that represents a specific interpretation of
sentence-level quality, as indicated in the training data. This interpretation is strongly connected
to the application intended for the sentence-level QE model (Section 3.2).

To build QE models we require a number of examples of source-MT sentence pairs.
The number will vary depending on the ML algorithm used and how carefully the data is se-
lected [Beck et al., 2013b], but the general rule is that at least a few thousand examples are
needed, with better models built by using larger numbers of data points. Each data point is an-
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Table 3.1: Example of sentence translation from Portuguese to English with various errors (in
italics)

SRC (PT) Em alguns casos, bolsas de tutoria foram concedidas para pessoas sem qualquer 

vínculo com as atividades de magistério, “inclusive parentes de professores que in-

tegravam o programa receberam, a título de bolsas, quantias expressivas, além disto 

também foram identicados casos de direcionamento de licitação com o emprego de 

empresas de fachada na produção de falsas cotações de preços de serviços, especial-

mente para a locação de veículos”.

MT (EN) In some cases, tutoring scholarships were awarded to people with no connection 

to teaching activities, “including teachers’ relatives who received the program received 

scholarships, expressive amounts, and also identifi ed cases of bidding with the use of 

façade companies in the production of false prices of service prices, especially for the 

leasing of vehicles.”

PE (EN) In some cases, tutoring scholarships were awarded to people with no connection 

to teaching activities, “in fact relatives of teachers who were part of the program 

received expressive amounts of money as scholarships; in addition, cases of bidding 

with the use of façade companies to produce false quotes for service prices, espe-

cially for the leasing of vehicles, were also identifi ed”

notated, ideally by humans, with a quality score (Section 3.3). Given such examples, traditional
approaches extract a number of features using dedicated feature extractors (Section 3.4), while
neural approaches induce representations as part of the process of model building. These repre-
sentations replace features extracted explicitly. Different algorithms and architectures are then
used to learn a prediction model from pairs of labels and feature sets per data point (Section 3.5).
Depending on the labels and algorithms used, different metrics and methods are commonly used
to intrinsically and extrinsically evaluate the performance of the resulting models (Section 3.6).

The first significant effort toward sentence-level QE is reported by Blatz et al. [2003,
2004]. A large number of source, target andMT system features are used to trainML algorithms
to estimate automatic metrics such as NIST [Martin and Przybocki, 2003], which are then
thresholded into binary scores to distinguish “good” from “bad” translations, before or after
prediction. The results were not very encouraging, possibly due to the fact that the automatic
metrics used do not correlate well with human judgements at the sentence level. It may be
also be the case that translations produced by MT systems at the time were too homogeneous
in terms of quality: Most translations would probably be considered low quality by humans.
Quirk [2004] shows that using a small set of translations manually labeled for quality makes
it possible to obtain classifiers that outperform those trained on a larger set of automatically
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labeled translations. Specia et al. [2009a] use similar features to those in Blatz et al. [2003,
2004] to train regression algorithms on larger datasets annotated by humans for post-editing
effort, rather than for “general quality”. This is a much more objective notion of quality, and has
become the most predominantly used label in sentence-level QE since then, as discussed in the
remainder of this chapter. Much progress has been made in the past decade or so, with many
new approaches emerging that predict this label type (Section 3.7).

In what follows, we describe the various aspects of sentence-level QE: Their applications
(Section 3.2), quality labels (Section 3.3) and features used for training (Section 3.4), archi-
tectures (Section 3.5), evaluation methods (Section 3.6) and state-of-the-art approaches (Sec-
tion 3.7).

3.2 APPLICATIONS
Work on sentence-level QE started with a focus on general quality scores—such as automatic
metrics like BLEU (BiLingual Evaluation Understudy) [Papineni et al., 2002]—for tasks like
n-best list reordering [Blatz et al., 2003]. This is a very intuitive application: Given a list of top
translation candidates from an MT system for each source sentence that can be as large as 1,000
or 10,000 translations (depending on whether such a large number of distinct candidates can be
produced), the task is to rescore these translations using information that complements that of
the MT system, such that the order of candidates may change. In other words, translations with
higher qualitymay be scored higher andmoved to the top of the list.The final translation for each
source sentence is chosen to be its (possibly reordered) one-best translation. N-best rescoring
is a common technique in MT, where many have proposed reordering according to additional
features that are only feasible or cheaper to compute after decoding is done [Och et al., 2004].
The combination of the scores from these additional features with the overall MT model score is
normally done using reference translations. In QE-based rescoring, the predicted quality is used
for rescoring, either individually or in combination with other scores. Despite being intuitive,
this is a hard task for QE, since the translation candidates can be very similar to each other (in
SMT), or so distinct from each other that comparing their predicted quality is hard (in NMT).
Therefore, only marginal gains have been reported when using this technique. QE has also been
used in the context of rescoring translations for spoken language translation [Ng et al., 2015a,b,
2016]. In this case, the baseline approach follows a pipeline of two modules: an ASR system
followed by an MT system that takes the one-best output of the ASR system and translates it.
QE-based rescoring, on the other hand, takes multiple outputs from the ASR system for each
audio utterance (which in this case roughly corresponded to a sentence), translates them all, and
selects the most promising one according to its estimated translation quality. The QE module
uses a combination of MT and ASR features. This re-scoring approach leads to significant gains
in final translation quality.

Applications targeted directly at end-users have dominated most research in QE, mainly
with the goal of supporting translators in the process of post-editing MT output [Bojar et al.,
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2013, 2017, 2016, 2015, Callison-Burch et al., 2012, He et al., 2010, Specia, 2011, Specia and
Farzindar, 2010]. Post-editing is the task of checking and, when necessary, correcting machine
translations. Even though methods for APE exist (we refer the reader to the WMT APE shared
task [Bojar et al., 2017, 2016, 2015]), in the context of QE we assume human post-editing, since
the quality labels need to be reliable. In production workflows, this is common practice, given
that it has been shown that correcting a machine translated text is faster and cheaper than trans-
lating it from scratch [Plitt and Masselot, 2010]. However, while on average post-editing MT
is faster than translating from scratch, this is not the case for all sentences. Some sentences have
such low a translation quality or are so complex to fix that reading, understanding, and correcting
them is more time-consuming than translating them from scratch. Therefore, estimating post-
editing effort to support the work of translators is a desirable feature in computer-aided human
translation workflows. QE can be framed as either a binary indicator (Is it worth post-editing a
translated sentence?) or a quantifier (How much effort would be involved in fixing a translated
sentence?).

The first positive results in this direction are reported in Specia et al. [2009a], where regres-
sors are trained to predict post-editing effort on a 1–4-point scale. Subsequently, Specia et al.
[2009b] use a technique to allow the automatic identification of a threshold to map a continu-
ous predicted score (based on human annotation) to “good” and “bad” categories for filtering out
low-quality translations.This threshold can be defined according to the expected confidence level
of the QE model. Instead of a Likert-point scale, Specia and Farzindar [2010] use TER [Snover
et al., 2010] to estimate the distance betweenmachine translations and their post-edited versions
(i.e., HTER [Snover et al., 2006]). The estimated scores have been shown to correlate well with
human post-editing effort. However, no extrinsic evaluation with human translators is given in
any of these approaches. Specia [2011] focuses on HTER and other more objective types of
post-editing based annotations, such as post-editing time, and propose an extrinsic evaluation
for the resulting QE models. Post-editing time is shown to be the most useful label to rank
translations according to the post-editing effort they require. Specia [2011] shows that, given a
fixed amount of time, human translators can correct many more words in sentences ranked by
predicted post-editing time (shortest time first) than in sentences taken at random.

He et al. [2010] suggest using QE to recommend translations to post-edit from either an
MT or a TranslationMemory (TM) system for each source sentence.TheQEmodel was trained
on automatic annotation for TER against reference translations and the goal was to predict the
translation that would yield the minimum edit distance to a reference translation. At training
time this information is used to annotate sentences with a binary score indicating the systemwith
the lowest TER (MT or Translation Memory (TM)). A classifier is then trained to recommend
theMTorTM for each new source segment. Promising results have also been shownwhen using
the estimated scores for the selection of the best translation among alternatives from different
MT systems, using either individual QE models, i.e., one per MT system [Specia et al., 2010],
or combined QE models, for example through multi-task learning [Shah and Specia, 2014].
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Turchi et al. [2013] focus on including QE in a CAT (Computer-Aided Translation)

framework. Binary classifiers (“good”—suitable for post-editing vs. “bad”—useless for post-
editing) learned over training data labeled for post-editing effort (e.g., HTER), that was bina-
rized using different ways of setting thresholds (see Section 3.3), are proposed.

Turchi et al. [2014] evaluate the empirically established thresholds with human post-
editors. By comparing the time that the post-editors took to post-edit vs. the time they spent
translating from scratch, individual thresholds for each post-editor are drawn. The range is
[0:36–0:42] HTER, which is in line with the threshold proposed for binarizing the scores (0:40).
Finally, Turchi et al. [2015] present a deeper analysis of QE as part of a CAT environment using
the same 0:4 threshold over HTER to distinguish “bad” from “good” machine translations. In
order to inform post-editors about the quality of machine translated sentences, each sentence
received a color (green for “good” and red for “bad”). The color-coded machine translations were
compared against a control group in terms of post-editing time. No strong differences between
the two settings were found. However, when analyzing individual segments, in around 51% of
the segments post-editors were found to be faster when they were given information about the
quality of the MT output. Turchi et al. [2015] suggest that segments with 0:2 < HTER � 0:5

would benefit more from having color-coded translations than segments in other HTER inter-
vals.

In a more recent study, Parra Escartín et al. [2017] simulate a similar production work-
flow with post-editors informed on translation quality using QE scores. Following Turchi et al.
[2015], a “traffic light” scheme is proposed for showing the quality of a machine translation for
the post-editors.

• Yellow:The post-editor should translate the sentence from scratch, i.e., no machine trans-
lation is given.

• Blue: The machine translation is given to the post-editor, but no information about its
quality is revealed, i.e., QE is not used.

• Green:The machine translation is given to the post-editor, with a hint that the QE system
suggests that it should be post-edited.

• Red: The machine translation is given to the post-editor, but with a hint that the QE
system suggests that is should be translated from scratch.

Instead of predicting HTER, Parra Escartín et al. [2017] use the target-side Fuzzy Match
Score (FMS), i.e., the FMS score between the machine translation and the post-edited version,
as quality labels for QE. FMS is a concept borrowed from translation memories that measures
the percentage of character or word changes needed between a translation found for a given new
source sentence and the closest matching sentence in a database of previously collected transla-
tions (i.e., a TM). For the color scheme, sentences scoring 75% or higher were considered worth
post-editing (green). In order to evaluate the impact of QE on translator productivity, portions
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of the data were selected where the QE system performed well (small difference between pre-
dicted FMS and true FMS), and segments where QE performed poorly. Four post-editors were
asked to perform the task with the “traffic light” approach. Parra Escartín et al. [2017] report
that when faced with accurate QE predictions the productivity of post-editors improves. Post-
editors are faster when editing sentences predicted as good.

Other potential applications for sentence-level QE include making a decision on whether
or not a translation can be published as is. For example, social media platforms used by native
speakers of multiple languages to communicate, can use MT to translate posts and show them
directly in the native language of the user. However, if the translation is predicted to be un-
reliable, it would be better to show the post in its original language and offer MT as optional
(potentially with a disclaimer). The application, in this case, is gisting, and the challenge is to
make sure the translation is comprehensible and not misleading. This applies to a wide range of
content types where the question is whether or not to publish or use the translation as is, but
more often this decision is taken at the entire text level, such as with e-mails and other inter-
nal communication, product descriptions and reviews on e-commerce platforms, and any other
online content. Along this line of application, Turchi et al. [2012] use QE at sentence level and
metrics for sentence informativeness within a document in order to rank machine-translated
sentences according to their quality and relevance.

3.3 LABELS
As mentioned earlier, the first type of label for sentence-level QE was computed automatically
based on reference translations. Blatz et al. [2003, 2004] attempt to use these metric scores
directly to predict a continuous score between 0 and 1, which is then thresholded to obtain a
“good” vs. “bad” final decision. This has proved to be a hard problem given the low reliability
of MT evaluation metrics. To remedy this issue, the metric scores are then first discretized into
two classes: the top 5% or 30% of all translations according to a given metric are considered
good quality, while the remaining, bad quality. The 5%/30% thresholds are defined in somewhat
arbitrary ways.

Gamon et al. [2005] propose a way to automatically label sentences with “good”/“bad”
labels by collecting a mix of human and machine translations and labeling the former as “bad”
and while the latter as “good”. The task becomes then to distinguish human from machine trans-
lations, which perhaps at the time was a fair proxy to distinguishing good from bad translations.
Nowadays, however, we know that machine translations for certain types of texts can have the
same level of quality as one would expect from humans. In other words, low human-likeness
does not necessarily imply low MT quality.

Quirk [2004] was the first to introduce the use of manually assigned labels to sentences.
The labels vary from 1–4, with meanings as follows.

• 1 -Unacceptable:Absolutely incomprehensible and/or little or no information transferred
accurately.
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• 2 - Possibly Acceptable: Possibly comprehensible (given enough context and/or time to

work it out); some information transferred accurately.

• 3 - Acceptable: Not perfect (stylistically or grammatically odd), but definitely compre-
hensible, and with accurate transfer of all important information.

• 4 - Ideal: Not necessarily a perfect translation, but grammatically correct, and with all
information accurately transferred.

Each sentence was judged by six human annotators and the scores were averaged. Results on a
small set of 350 sentences proved much better than those obtained using automatic annotations
on a much larger set of instances, motivating most subsequent work in QE. A similar 1–4-point
scale also focusing on the adequacy of the translations is used in Specia et al. [2011], where these
scores are also converted into binary classes through different groupings: “adequate” (scores 3

and 4, i.e., same or very similar meaning to the source sentence) vs. “inadequate” (scores 1 and
2, i.e., different meaning than that of the source sentence) translations or “fully adequate” (score
4) from “partially adequate or inadequate” (scores 1, 2, and 3) translations.

As part of the annual WMT evaluation campaigns between 2007 and 2016, transla-
tions produced by different MT systems have been ranked by humans using a 5-way ranking
(i.e., 5 different MT systems sampled at a time). Given the availability of this data, some re-
search has addressed QE as a ranking task, generally converting the rankings into pairwise ranks
first [Avramidis, 2012, 2013].

Using the same WMT data, system ranking was also explored as a quality label for the
WMT13 QE shared task [Bojar et al., 2013]. Participants were asked to predict the order for
individual pairs of translations provided by different MT systems.

In addition to ranking across MT systems, a variant that has also been explored in all
editions of WMT QE shared tasks is the task of ranking sentences produced by the same MT
system: The idea is to predict the position of a sentence in relation to all the other sentences in
the test set. In the WMT tasks, the gold sentence rankings are obtained by sorting sentences ac-
cording to their scoring labels, while system rankings can be generated in any way using whatever
type of label participants choose.

More recently, sentence-level QE has been exploring various types of discrete and con-
tinuous post-editing effort labels. According to Krings [2001], post-editing effort has three
dimensions: temporal, cognitive, and technical. The temporal dimension is the measurement of
the time spent by the post-editor to transform the MT output into a good-quality post-edited
version. Although cognitive aspects are directly related to temporal effort, they cannot be fully
captured by time. Cognitive aspects encompass various linguistic phenomena and style patterns,
and they can only be measured by indirect means of effort assessment (e.g., keystrokes, pauses).
Finally, the technical dimension involves the practical transformations performed in order to
achieve the post-edited version. Such transformations can be insertions, deletions, movements,
or a combination of these. The technical dimension focuses on the different operations without
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accounting for the complexity of such operations as a function of linguistic properties of the text
as it is done in the cognitive dimension.

The most intuitive and direct measure of post-editing effort is post-editing time. The
(normalized) time taken to post-edit can be used as a proxy for quality: Segments that take longer
to be post-edited are considered worse than segments that can be quickly corrected. Koponen
et al. [2012] argue that post-editing time is the most effective way of measuring cognitive aspects
of the post-editing task and relating them to the quality of the machine translations. Such a
quality label was used in WMT13 and WMT14 QE shared tasks [Bojar et al., 2013, 2014].

Post-editing time can, however, be inaccurate and difficult to use in practice. First, it is
subject to outliers, since translators can get distracted or take breaks while translating a sentence.
Second, a high variation among different translators’ post-editing times is expected, given that
translators have different typing skills, translation experience, and proficiency with the post-
editing tool, among other aspects. Finally, post-editing time can encompass reading time, cor-
rection time and revision time, and the relationship between these factors is unclear.

Perceived post-editing effort is an alternative way of evaluating post-editing effort and it
has been generally used in an attempt to capture cognitive effort. In this evaluation approach,
humans are asked to give a score for the machine translated sentences according to a Likert
scale [Specia, 2011]. This type of score can be given with or without actual post-editing and
they represent the human’s belief on the degree of difficulty to fix the given machine translated
sentences. In the first and second editions of the WMT QE shared task [Bojar et al., 2013,
Callison-Burch et al., 2012], the Likert scale varied from 1 to 5 as follows:

• 1:TheMToutput is incomprehensible, with little or no information transferred accurately.
It cannot be edited and must be translated from scratch.

• 2:About 50–70% of the MT output needs to be edited. It requires significant editing effort
in order to reach publishable level.

• 3: About 25–50% of the MT output needs to be edited. It contains different errors and
mistranslations that need to be corrected.

• 4:About 10–25% of the MT output needs to be edited. It is generally clear and intelligible.

• 5: The MT output is perfectly clear and intelligible. It is not necessarily a perfect transla-
tion, but requires little to no editing.

For WMT14 the post-editing effort task was based on the following Likert scale [Bojar et al.,
2014].

• 1 - Perfect translation: No post-editing needed at all.

• 2 - Near miss translation: Translation contains no more than three errors, and possibly
additional errors that can be easily fixed (capitalization, punctuation).
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• 3 - Very low-quality translation: Cannot be easily fixed.

Even though cognitive effort is an important dimension of the post-editing process, its measure-
ment is usually expensive and unreliable. Perceived post-editing effort can be highly influenced
by differences in the view of annotators and how accepting of MT they are.

Finally, post-editing effort can also be evaluated indirectly by using a metric that takes
into account edit operations (technical effort). HTER is an example of such a metric. HTER
compares a post-edited machine translation to the original machine translation using TER,
and computes the minimum number of edits to transform the machine translation into the
post-edited version. HTER is the most widely used quality label for QE, having featured in all
editions of WMT since 2013 [Bojar et al., 2013, 2014, 2017, 2016, 2015] and is usually capped
such that it is between 0 and 1.

Turchi et al. [2014] argue that the notion of MT quality is inherently subjective, and rely-
ing on continuous scores such as HTER might result in unreliable or uninformative annotations.
An automatic method to obtain binary annotated data that explicitly discriminates between use-
ful (suitable for post-editing) and useless translations is proposed. This method measures simi-
larities and dissimilarities between an automatic translation (MT), its post-edited version (PE),
and the corresponding reference translation (REF). The assumption is that if the MT is far from
its post-edited version and also far from the reference translation, this is a strong indication that
it is a low-quality MT. Turchi et al. [2014] build a classifier that learns a similarity threshold T

such that: (i) a pair (MT,PE) with similarity less than or equal to T will be considered a nega-
tive example (“bad”), and (ii) a pair (MT,PE) with similarity greater than T will be considered
positive (“good”). Once the dataset is annotated in such a way, a binary classifier can be used
to train a prediction model for unseen source and machine translated sentences. Experiments
demonstrate that this yields better models than those based on the adaptation of available QE
corpora into binary datasets. Furthermore, analysis suggests that the induced thresholds sepa-
rating useful from useless translations are significantly lower than those suggested in the existing
guidelines for human annotators.

Finally, Parra Escartín et al. [2017] discuss the use of target-side FMS as a more adequate
indicator for post-editors and, therefore, a more reliable label for QE. The argument is that
post-editors are more familiar with FMS, since this is a widely used metric in the translation
industry, while HTER is only used for academic purposes. The target-side FMS is calculated on
the level of trigrams of characters between the machine translation and its post-edited version.
FMS scores vary in [0,100] and are usually reported as percentages.

3.4 FEATURES
Significant effort in QE has been dedicated to devising and extracting features of various types
to build models. One common distinction that is made among existing features is whether they
are extracted from the MT system that generated the translations (“glass-box” features) or in-
dependently from this MT system (“black-box” features). The former type is also referred to as
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“confidence” features. Extractors can rely on the source sentence, its machine translation, and a
number of external resources, such as the parallel corpus used to train the MT system, or larger
parallel corpora or corpora of the source or target language. Linguistic tools such as parsers or
even other MT systems can also be used. In Figure 3.1 we categorize different types of features
in four groups, depending on whether they process the source or target sentences, or both, and
whether they use MT-system specific information. We describe and exemplify each of these
categories in what follows, as well as discuss other features that fall outside these main groups.
The list we give for each category comprises examples of commonly used sentence-level features
and is not meant to be exhaustive.

Adequacy
Indicators

Confidence
Indicators

Fluency
Indicators

Complexity
Indicators

Source Text MT System Translation

Figure 3.1: Categories of features for QE.

3.4.1 COMPLEXITY FEATURES
Complexity features reflect how difficult it is to translate the source text. The harder it is to
translate a sentence, the higher the chances of its quality being low. They are extracted from the
source sentence only:

• source sentence length;

• source sentence type/token ratio;

• source sentence trigram LM (language model) probability obtained based on a large in-
domain corpus of the source language;

• percentage of unigrams to trigrams in the source sentence belonging to each frequency
quartile of the source corpus;

• percentage of distinct uni to trigrams seen in the source corpus;

• average frequency of source words in the source corpus;
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• width of parse tree of source sentence;

• maximum/average source parse tree depth;

• number of relative/attributive clauses in source sentence;

• average number of translations per source sentence word, as given by probabilistic dictio-
naries;

• partial source trees represented using tree kernels;

• existence of URL address in the source sentence; and

• features based on composition of word embeddings for the source sentence.

3.4.2 FLUENCY FEATURES
Fluency features attempt to measure how natural, fluent, and grammatical the translation is.
They are extracted from the target sentence only:

• target sentence trigram LM probability obtained based on a large in-domain corpus of the
target language, or web-scaled LM features;

• % of 1–5-grams that appear in a target LM at least once;

• target sentence length;

• target sentence type/token ratio;

• average number of occurrences of each target word within the target sentence;

• target sentence trigramLMprobability trained on a POS-tags version of a large in-domain
corpus of the target language;

• number of mismatching opening/closing brackets and quotation marks in the target sen-
tence;

• coherence of the target sentence using entity-grid models such as Burstein et al. [2010];

• number of subjects in target sentence;

• whether or not the target sentence begins with a verb;

• partial target trees represented using tree kernels;

• number of untranslated words;

• features based on composition of word embeddings for the target sentence; and

• grammaticality of the sentence using grammar checking tools.
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3.4.3 CONFIDENCEFEATURES
Most initial work focused on confidence features. These reflect how confident the MT system is
about the produced translation, such as the internal model component scores in SMT systems.
They are extracted from the MT system:

• global score of the MT system for the translation;

• if using SMT, internal features of the system, such as phrase probability;

• number of translation hypotheses in the n-best list;

• proportion of out-of-vocabulary words;

• uni to trigram LM probability using translations in the n-best as LM;

• relative frequency of the words in the translation in the n-best list;

• ratio of MT model score of the top translation to the sum of the scores of all hypotheses
in the n-best list;

• average size of hypotheses in the n-best list;

• n-best list density (vocabulary size/average sentence length);

• edit distance of the current hypothesis to the centroid hypothesis; and

• if using a search graph in SMT style, total of hypotheses in the search graph, proportion
of discarded/pruned/recombined graph nodes.

3.4.4 ADEQUACY FEATURES
Adequacy features attempt to capture how close or related the source and translation sentences
are on different linguistic levels. This is the most difficult type of feature to reliably extract since
the source and target sentences are in different languages. They are extracted from both the
source and target sentences:

• ratio of number of tokens in source and target sentences;

• bilingual word embedding models to measure the similarity between the source and target
sentences using their compositional vector representations;

• alignment features: e.g., mean number of alignments for each source word, maximum
number of alignments for each source word, number of unaligned words in target sentence;

• ratio of percentages of numbers, content-/non-content words in the source and target
sentences;
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• ratio of percentage of nouns/verbs/pronouns/etc. in the source and target sentences;

• absolute difference between number of superficial constructions in the source and target
sentences: brackets, numbers, punctuation marks;

• proportion of dependency relations with constituents aligned between source and target
sentences;

• difference between the depth of the syntactic trees of the source and target sentences;

• difference between the number of PP/NP/VP/ADJP/ADVP/CONJP phrases in the
source and target sentences;

• difference between the number of person/location/organization entities in source and tar-
get sentences; and

• proportion of matching chunk labels in the source and target sentences.

3.4.5 PSEUDO-REFERENCEANDBACK-TRANSLATIONFEATURES
A family of features that has been extensively explored and can be somewhat categorized as con-
fidence features are those based on so-called “pseudo-references”. Initially proposed by Albrecht
and Hwa [2008] as a proxy to using human references for traditional MT evaluation, pseudo-
references are machine translations produced by an MT system other than the one we want to
predict the quality for. Once such pseudo-references are available (one or more, from one of
more MT systems), different metrics of similarity between the pseudo-reference and the output
of the MT system of interest can be computed. These include standard evaluation metrics such
as BLEU, TER, etc., or any type of string similarity metric. The scores of these metrics are of-
ten then used as features to complement other feature sets. The intuition is that if two or more
independent systems lead to similar translations, there is a higher chance that the translation
is correct. This works as a “consensus” indicator, but it can of course be misleading if the MT
systems used follow very similar approaches and/or are built from the same training data, which
would make them more likely to produce similar translations, regardless of their quality. An-
other interpretation is that if an independent MT system is known to be consistently better (or
worse) than the MT system of interest, similarity (or dissimilarity) to the translations produced
by such a system would indicate high (or low) quality.

A related type of feature is based on back-translations: The sentence translation is back-
translated to the source language (using the same or another MT system) and metrics of string
similarity between source sentence and a back-translated version of a machine translated sen-
tence can be used as features. The intuition is that if the source sentence can be reconstructed
from its machine translated version, the quality of the translation is high. This, however, can be
misleading as any dissimilarities to the source sentence could be because of the MT system used
for the back-translation rather than the system used for the forward translation.
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3.4.6 LINGUISTICALLYMOTIVATEDFEATURES
A popular direction in QE until recently was the design of linguistically motivated, often
language-specific features. For example, Felice and Specia [2012] propose and study many of
the features described above through ablation tests. Through feature selection, linguistically mo-
tivated features make up 40% of the features selected as best. Kozlova et al. [2016] study the
contribution of a number of more traditional syntactic features over parse trees of source and
target sentences, such as width (number of dependencies from root node), maximum depth,
proportion of internal nodes, number of subjects, relative clauses, etc. These include examples
of language specific, linguistically motivated features, such as whether the German polite im-
perative is used as a translation for the simple English imperative in QE for English-German
MT. Overall, previous work has shown the potential of linguistic features for the task.

Given the large number and variety of features and often relatively small training sets, per-
forming feature selection is a very common practice and has proved beneficial. Many techniques
based on forward and backward selection have been used. Shah et al. [2015a] use Gaussian pro-
cesses (GPs) as an efficient technique to understand the contribution of larger feature sets on
the performance of prediction models.

Explicit features such as the ones described here have also been combined with represen-
tations learned from data using word or sentence embeddings [Martins et al., 2017b, Shah et al.,
2016, 2015b], or in some cases even replaced entirely by such representations for the source or
target languages [Kim et al., 2017b, Paetzold and Specia, 2016a] or bilingually [Abdelsalam
et al., 2016], as we will discuss in Section 3.7.

A final popular direction when it comes to features is the use of multi-level prediction
models, where predictions made by lower-level QE systems can be used directly as features,
such as the proportion of words (or specific types of words, e.g., as content words) that are
predicted as “bad” by a word-level QE system or length of the longest sequence of “good” or
“bad” word predictions [Camargo de Souza et al., 2014, Tezcan et al., 2016], or indirectly in
inherently multi-level approaches [Kim et al., 2017b, Martins et al., 2017b].

3.5 ARCHITECTURES
The main architectures for sentence-level QE revolve around classification and regression algo-
rithms. For labels represented as continuous scores (e.g., HTER, post-editing time, BLEU), re-
gression algorithms are the natural choice. The most popular algorithms used for that are1 naive
Bayes [Blatz et al., 2004], linear regression [Quirk, 2004, Tezcan et al., 2016], SVM [Felice
and Specia, 2012, Langlois et al., 2012, Specia et al., 2010], partial least squares [Specia et al.,
2009a], M5P [Soricut et al., 2012], SVM with tree kernels [Hardmeier et al., 2012], single-
and multi-layer perceptron [Blatz et al., 2004, Buck, 2012, Hildebrand and Vogel, 2013], ran-
dom forests [Tezcan et al., 2016], extremely randomized trees [Camargo de Souza et al., 2013],
1Note that we only provide a few examples of early work that used certain learning algorithms, many more examples can be
found in the WMT reports.
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GPs [Beck et al., 2013a, Cohn and Specia, 2013], ridge regression [Biçici and Way, 2014],
RNNs [Kim and Lee, 2016, Kim et al., 2017b, Paetzold and Specia, 2016a], and SVM or GPs
with multi-task learning with different types of kernels, for example tree kernels [Beck et al.,
2015, Hardmeier et al., 2012]. It is also common to ensemble models; for example Martins et al.
[2017a] combine a linear feature-based classifier with a neural network. Multi-level prediction
methods have also been proposed that perform word-level QE and use the proportion of words
predicted as “bad” as HTER scores, or that use the HTER between the machine translation and
the output of an automatic post-editing system on that machine-translated sentence [Martins
et al., 2017b].

For discrete labels (e.g., binary “good”/“bad”, 1–4- or 1–5-point scale), classification al-
gorithms are the most natural choice. Popular algorithms include SVM [Turchi et al., 2014]
and naive Bayes classifiers. In fact, for labels with more than two possible values, most work
has used regression or ranking algorithms. When treating the task as a ranking problem, it is a
common approach to decompose ranks into pairs and use classifiers for pairwise classification,
such as logistic regression [Avramidis and Popovic, 2013] and random forests [Formiga et al.,
2013].

The use of multiple MT systems at a time for ranking assumes the labels follow an ordi-
nal distribution, as in Shah and Specia [2014], where the datasets contained three alternative
translations produced by three different types of MT systems and the task was to select the best
translations using absolute annotations that had been produced independently for each system.

3.6 EVALUATION
Sentence-level QE evaluation is strongly connected to how the training (and test) data is
labeled—and therefore what type of model is built. The vast majority of work is addressed as a
scoring problem, where absolute numeric labels are predicted. As previously mentioned, even
though in some cases the training data is annotated with discrete (or ordinal) labels, regres-
sion algorithms are used for model building and therefore these models are evaluated as such.
For the evaluation of scoring tasks, where the labels are either continuous or ordinal, automatic
regression-based evaluation metrics are applied. Until 2015, Mean Absolute Error (MAE) was
the primary metric used for that, with Root-Mean-Squared Error (RMSE) used as a secondary
metric. MAE is calculated using Equation (3.1) where, for a given test set S , Oyi is the predicted
score for instance i (1 � i � n), yi is the true score, and n is the number of data points in the
test set. Similarly, RMSE is calculated using Equation (3.2):

MAE D

Pn
iD1 j Oyi � yi j

n
(3.1)

RMSE D

sPn
iD1. Oyi � yi /2

n
: (3.2)
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BothMAE andRMSE are nonparametric and deterministic.They can also be easily interpreted:
For instance, an MAE score of 0:5 means that, on average, the difference between the predicted
value and the true value is 0:5. RMSE has a similar interpretation, although it penalizes larger
errors more severely [Callison-Burch et al., 2012].

As Graham [2015] points out, MAE and RMSE are not reliable for evaluating QE tasks
since it is highly sensitive to variance. This means that, if the predictions of a given QE model
show high variance, it will lead to a high MAE, even though the distribution of the predictions
follows the distribution of the true labels.This problem is common in datasets forQE at sentence
level. Graham [2015] suggests instead the use of the Pearson’s r correlation coefficient as ametric
for QE system evaluation, which is described in Equation (3.3). Pearson’s r measures the linear
correlation between two variables, which in this case are the predicted labels Oy Df Oy1; Oy2; :::; Oyng

and the human-produced labels y Dfy1; y2; :::; yng (n is the number of samples):
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Pearson’s r correlation coefficient varies between �1 and 1, where �1 is the maximum
value of negative correlation, while 1 is the maximum value of positive correlation, and 0 indi-
cates no correlation at all. Most current work on sentence-level QE uses Pearson’s r as the main
evaluation metric, although MAE and RMSE are still used as secondary metrics, since infor-
mation about the variance of the data is also important. However, as pointed out by Camargo de
Souza [2016], Pearson’s r is defined with four assumptions about the variables under investiga-
tion: (i) both follow a continuous distribution; (ii) there is a linear relationship between them;
(iii) they both approximately follow a normal distribution; and (iv) the outliers in the data are not
significant. Camargo de Souza [2016] shows, however, several cases of datasets for sentence-
level QE where the quality labels are not normally distributed, which would make Pearson’s r

correlation coefficient less reliable. Also, there is no study of outliers in QE datasets in order to
guarantee that they are not significant. Therefore, it is not clear whether or not Pearson’s r is the
most reliable evaluation metric for all quality labels of sentence-level QE. A recommendation
is to consider both MAE and Pearson’s r in combination.

For models treating discrete labels as classes, standard classification metrics such as clas-
sification accuracy, precision and recall can be used. For binary classifiers, a more informative
metric is ROC curves or IROC, the integral of the curve for a single overall quantitative fig-
ure [Blatz et al., 2003, Quirk, 2004]. ROC curves plot the sensitivity (the true positive rate)
against the specificity (the true negative rate) for different thresholds. A perfect classifier will
have a curve that stays maximally close to the upper-left corner, where a random classifier will
stay on the line from .0; 0/ to .1; 1/. An ideal classifier will have an IROC of 1, whereas a random
classifier will have an IROC of 0:5.

For models performing translation ranking, DeltaAvg and Spearman’s � rank correlation
coefficient are popular metrics. DeltaAvg [Callison-Burch et al., 2012] was introduced in the



3.6. EVALUATION 59
context of the WMT shared tasks and was used as the primary metric until 2015. Spearman’s �

has been used as the primary metric since then because it is easier to interpret.
DeltaAvg is a useful metric to evaluate ranks derived from extrinsic metrics (e.g., ranks

derived from HTER values). It measures how useful a predicted rank is according to an extrinsic
quality metric. A parameterized version of DeltaAvg is defined in Equation (3.4). DeltaAvgV Œn�

is calculated, where V.s/ is the extrinsic quality label of a given sentence and V.S/ represents the
average of all V.s/ in the set of sentences S (s 2 S).2 n is a parameter that defines the number of
quantiles of equal sizes that will divide S .3 In this case, assuming S is a set of ranked sentences,
S1, the first quantile of S , contains the highest ranked sentences, S2 is the second quantile,
and so on until Sn. Also, Si;j D

Sj

kDi
Sk . Such parameterized version of DeltaAvg measures

the average difference in quality of n � 1 cases. Each case measures the impact of adding a new
quantile:

DeltaAvgV Œn� D

Pn�1
kD1 V.S1;k/

n � 1
� V.S/: (3.4)

The final DeltaAvg value is defined as shown by Equation (3.5), where N D jS j=2. This is non-
parametric and deterministic. It also has a reasonably intuitive interpretation: DeltaAvg equal
to 0:5 means that, on average, the difference in quality between the top-ranked quantiles and
the overall quality is 0:5:

DeltaAvgV D

PN
nD2 DeltaAvgV Œn�

N � 1
: (3.5)

Spearman’s � is a general metric of ranking correlation. It is a nonparametric test that aims
to measure to what degree the relationship between two variables can be defined as a monotonic
function. Spearman’s � is calculated using Equation (3.3), but using the ranks instead of the real
values [Zwillinger and Kokoska, 1999]. Equation (3.6) shows how Spearman’s � is calculated,
where n is the number of samples, u Oyi

is the rank for the i th instance in sample Oy and uyi
is

the rank for the i th instance in sample y (with n D jyj D j Oyj and 1 � i � n). Spearman’s � also
varies between �1 (maximum negative correlation) and 1 (maximum positive correlation):

� D
n

�Pn
iD1 u Oyi

uyi

�
�

�Pn
iD1 u Oyi

� �Pn
iD1 uyi

�rh
n

�Pn
iD1 u2

Oyi

�
�

�Pn
iD1 u Oyi

�2
i h

n
�Pn

iD1 u2
yi

�
�

�Pn
iD1 uyi

�2
i : (3.6)

For pairwise ranking tasks such as the one run during WMT13, Kendall’s � correlation
coefficient is used as evaluation metric. This metric compares the predicted pairwise rankings
of two translations for a given source segment from different systems with the corresponding
pairwise ranks given by humans. Equation (3.7) shows how this metric is calculated:

� D
jconcordant pairsj � jdiscordant pairsj

jtotal pairsj ; (3.7)

2V is a function of quality, which could be HTER, post-editing effort Likert scores, etc.
3If jS j is not divisible by n, Sn should contain the rest of the entries
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where concordant pairs are the cases in which a system translation for a given source segment
received the same rank value by both the human and the QE system, discordant pairs are the
pairs for which human and QE system do not agree, and total pairs is the total number of pairs
being evaluated.

The values for � vary between �1 (all pairs are discordant pairs) and 1 (all pairs are con-
cordant pairs). Systems with higher Kendall’s � values are expected to show higher correlation
with human scores. Kendall’s � is also calculated differently according to the way that ties are
treated. If ties are to be penalized, Kendall’s � will work as a recall metric where the purpose is
to measure how much of the difference in quality given by a human has been captured by the
predictions. On the other hand, if ties are ignored, this metric works as a precision metric, where
the purpose is to evaluate to how much of the difference in predicted quality actually occurs in
the human annotation.

Other metrics have been used for the extrinsic evaluation of quality predictions. Examples
include overall test set performance (e.g., using metrics like BLEU) after (i) n-best list reranking
based on quality predictions for candidate translations for each source sentence [Blatz et al.,
2003, Quirk, 2004] or (ii) system selection, where one of many alternative translations from
multiple MT systems is chosen for each source sentence [Shah and Specia, 2014], and time
needed to post-edit a set of translations selected to have the highest (predicted) quality vs. a set
of randomly selected translations [Specia, 2011].

3.7 STATE-OF-THE-ARTRESULTS
Based on the findings of WMT shared tasks, we found that two approaches have particularly
pushed the boundaries ofQE in recent years:The sequential predictor-estimator neural approach
of Kim et al. [2017b] for word-, phrase-, and sentence-level QE, and the hybrid sequential
and automatic post-editing-based approach of Martins et al. [2017a] for word- and sentence-
level QE. These contributions feature two distinct strategies with some similarities and achieved
exceptional results in the WMT shared tasks of 2015, 2016, and 2017. These contributions
were both described in Section 2.7, since they also perform word-level QE. For a head to head
comparison with other recent approaches, we refer the reader to the report from the WMT17
shared task [Bojar et al., 2017].

As with the word-level task, in the 2017 edition of the WMT shared task, participants
were encouraged to evaluate their approaches using not only the current edition’s datasets, but
also datasets from the previous edition. Again, the training set in 2017 is a superset of that
in 2016, produced by the same MT system, for the same text domain and annotated in the
same way. The top system at WMT2016 was only the fourth best compared to the WMT17
submissions. In addition, half of WMT16 participants were below the 2017 baseline system.
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C H A P T E R 4

Quality Estimation forMT at
Document Level

4.1 INTRODUCTION
In this chapter, we present document-level QE with a focus on MT. Document-level QE [Scar-
ton, 2015, 2017, Scarton and Specia, 2014a, Soricut and Echihabi, 2010] is the least explored
of the granularity levels. Given an entire translated “document”, the task consists in predicting
its quality as a whole. We use the term “document” to generally refer to texts that contain mul-
tiple sentences, from short paragraphs with 3–5 sentences to long texts such as a complete news
article.

Traditional MT systems process the input text sentence by sentence and are completely
oblivious to document-level information. This may affect the translation of discourse elements
and result in an incoherent text. Table 4.1 shows a paragraph extracted from a source text (SRC)
in Portuguese (PT) and its machine-translated version in English (EN) using Google Trans-
late. Although the machine-translated text has several problems, we will focus on the high-
lighted words that represent the same entity across mentions and constitute example of errors
that could only be solved if the MT system used information beyond sentences. In sentence
(2), the correctly translated pronoun “she” refers to “housewife” in sentence (1). In sentence (3),
instead of using pronouns, the entity changes to “the 63-year-old victim” which should still refer
to “housewife” in sentence (1), but is not marked for gender, as it is not necessary. However, as
a consequence, the pronoun “lhe” in the same source sentence, which still refers to housewife, is
incorrectly translated to “him”, when it should be translated to “her”.

Document-level QE is particularly appealing in gisting cases, where end users will con-
sume the MT as is (Section 4.2). It has some practical challenges that make it harder than
sentence- and word-level QE. One of the biggest challenges is the task of scoring documents
according to some perceived quality scale (e.g., perceived post-editing effort or perceived ade-
quacy). This task is expected to be even more subjective than it is for finer-grained levels. While
it is straightforward for a human to score words and, in most cases sentences, according to their
quality, the document-level assessment has proven to be more complex [Scarton et al., 2015b].
Annotators can bemisled by errors at other levels, and the annotationsmay not reflect the quality
of the document as a whole.

One solution for the problem of subjectivity in human annotation at document level would
be to use aggregated sentence or word-level scores. However, such an approach also has flaws.
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Table 4.1: Example of paragraph translation from Portuguese to English with various errors

SRC (PT) 1- Uma dona de casa foi vítima do golpe do bilhete premiado nesta terça-feira.

2- Ela perdeu R$ 5 mil.

3- De acordo com os registros policiais, após estacionar seu carro pela rua Enfrid 

Frick, no Jardim Paraíso, a vítima de 63 anos foi abordada por uma mulher que 

disse se chamar "Rosa", a qual lhe indagou sobre um endereço, iniciando uma con-

versa dizendo que procurava uma pessoa que havia oferecido R$ 20 mil por um 

bilhete premiado da Mega Sena.

MT (EN) 1- A housewife fell victim to the winning ticket on Tuesday.

2- She lost R$ 5 thousand.

3- According to police records, after parking his car down Enfrid Frick Street in 

Jardim Paraíso, the 63-year-old victim was approached by a woman who said she 

was called “Rosa”, who asked him about an address, starting a conversation saying-

who was looking for a person who had off ered R$ 20,000 for an award-winning

Mega Sena ticket.

PE (EN) 1- A housewife fell victim to the fraudulent winning ticket this Tuesday.

2- She lost R$ 5 thousand.

3- According to police records, after parking her car down Enfrid Frick Street in 

Jardim Paraíso, the 63-year-old victim was approached by a woman who intro-

duced herself as “Rosa”, and asked the housewife about an address, starting a con-

versation saying that she was looking for a person who had off ered her R$ 20,000 

for a winning Mega Sena ticket.

The main motivation behind devising quality scores at document level instead of simply combin-
ing word or sentence-level scores is that some sentences can be good in isolation but inadequate
when put into context. Conversely, sentences can score poorly in isolation but be considered
acceptable when put into document context, e.g., in a gisting scenario. This behavior is expected
mainly from MT approaches that translate at sentence level, disregarding any document-level
context, e.g., the majority of statistical and neural MT approaches, which are trained on parallel
data with shuffled sentences. Moreover, sentences can have different relevance in a document.
Sentences that are more important for document comprehension are more problematic if incor-
rectly translated than sentences that play a less important role in the document (Section 4.3).
Another solution is to rely on task-based labels, which are, however, more time-consuming and
expensive. For example, the reading comprehension approach presented in Section 4.3 requires
reliable questions to be devised for each document.
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Another major challenge is finding data for annotation. As stated in Chapter 2, for

building a QE model a few thousands annotated data points are need. However, datasets for
document-level QE, when available, are much smaller. The WMT16 shared task for document-
level QE [Bojar et al., 2016], for instance, made a training set with 146 documents available. The
difficulties in gathering data for document-level QE are two-fold. First, the majority of parallel
datasets with source-MT pairs are at the sentence level, without the possibility of recovering the
documents from which the sentences were taken.

The first work on document-level QE is by Soricut and Echihabi [2010]. It explores
document-level QE prediction to rank documents translated by a given MT system, predicting
BLEU scores. Following this work, others focus on scoring documents according to automatic
metrics [Scarton and Specia, 2014a], document-level labels devised from post-editing [Bojar
et al., 2016, Scarton, 2017, Scarton et al., 2015b] and scores devised from reading compre-
hension tests [Scarton, 2017, Scarton and Specia, 2016]. In terms of features, architectures,
and evaluation (Sections 4.4, 4.5 and 4.6, respectively), work for document-level QE primar-
ily follows approaches developed for sentence-level. In addition, a handful of specific features
have been proposed for this level of QE. The state-of-the-art solutions are very different for
document-level QE, since the successful sequential multi-level approaches presented in Chap-
ters 2 and 3 are not applicable to document-level prediction in practice.

In the remainder of this chapter, we present applications for document-level QE (Sec-
tion 4.2), different types of quality labels (Section 4.3), and the general architectures used for this
granularity level (Section 4.5) with popular feature sets (Section 4.4) and evaluation methods
(Section 4.6). Finally, we present state-of-the-art results in Section 4.7.

4.2 APPLICATIONS
As previously mentioned, document-level QE has been less explored than word and sentence-
level QE. Consequently, less work has been done and fewer applications explored for this level.

The most straightforward application for document-level QE is gisting. As motivation,
Soricut and Echihabi [2010] have an e-service that hosts travelers’ reviews about restaurants,
hotels, etc. The majority of the reviews may be written in English, but there may be a large
amount of users of this e-service that do not speak English and would need to have access to
such reviews in their own native language. The vast number of reviews are simply too large for
human translation, making this a perfect scenario for MT. The drawback is that the quality of
the machine translation needs to be assessed somehow. The seller of a product or the service
provider would not want to have the reputation of their product/service diminished because of
low quality translations. Moreover, the quality of single sentences and/or words is less relevant in
this scenario: For the end-user the main message is what is important. Therefore, a system able
to score entire reviews according to their quality for the end-user is the ideal tool. Such a system
could then be used to select only a handful of reviews for publication in a different language:
those predicted as having good translation quality. In addition to user-generated reviews, other
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on-line services could benefit from document-level QE, such as blogs, market place platforms,
and so on.

Another application suggested by Scarton [2017] is the use of document-level QE for
estimating the effort of a full translation job. It is common practice in the MT industry to sub-
contract freelancers to perform a post-editing task. It is also common for them to deal with
sensitive or confidential information and, consequently, the post-editors receive sentences in
rrandomized order for post-editing. The assumption is that when the sentences are put back in
their document context, there will still be errors that could only be solved with document-wide
information. Therefore, a reviewer (usually an internal translator) performs the task of further
correcting the post-edited documents in order to make them publishable. An ideal QE system
for this full process would need to deal not only with word- or sentence-level problems, but
also with the remaining problems at document level. A two-stage post-editing method [Scar-
ton et al., 2015b], presented in Section 4.3, can be used for this purpose since it encompasses
information about the full post-editing and reviewing process.

4.3 LABELS
Labels for document-level QE need to take into account the quality of entire documents. As
shown by Scarton et al. [2015b], asking humans for a single score for the entire document that
encompasses its overall quality is not feasible. Humans may get confused or distracted by prob-
lems at other lower levels and, consequently, bemisled in their assessment.Therefore, document-
level evaluation (in general) is less trivial than the evaluation of more fine-grained levels.

Three types of labels have been explored for document-level QE: reference-based metrics,
such as BLEU [Bojar et al., 2015, Scarton and Specia, 2014a, Soricut and Echihabi, 2010],
marks from reading comprehension tests [Scarton and Specia, 2016], and a variation of HTER
from a two-stage post-editing method [Scarton et al., 2015b].

Although BLEU-style metrics have been used in early work on this topic, they are not
reliable as a measure of document quality. Such metrics are limited by the use of human ref-
erences and only perform matches between MT output and such references. Therefore, they
are usually agnostic to a specific task. For instance, what does a 0:6 BLEU score mean for the
end-user? It says very little about the usefulness of the MT output for the end-user or even
for post-editing. In addition, metrics like BLEU are also unable to capture differences among
documents translated by the same (or very similar) MT system(s), which can be a problem for
several applications. Scarton [2017] shows that label variation in datasets with different docu-
ments machine translated by a given MT system is very low when BLEU-style metrics are used
to evaluate them.

Finally, one of the advantages of QE is that it enables task-based evaluation with relatively
few annotated data points.Therefore, it is possible to usemore informative labels that are suitable
for a given task. These, however, tend to be more expensive to collect than automatic metrics.
In what follows, we describe two types of labels.
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4.3.1 LABELS FOREVALUATINGGISTING
For the evaluation of MT for gisting purposes at document level, previous work has used read-
ing comprehension tests [Berka et al., 2011, Jones et al., 2005a,b]. The intuition behind this
approach is that if a test taker can correctly answer questions about a document based solely
on its machine-translated version in their native language, the quality of such a document is
good for the purposes of gisting; otherwise, the quality of the output is considered bad. In order
to avoid biases introduced by specific test takers, answers by multiple test takers on each given
translated document can be collected and their marks averaged. In the context of QE, the idea
is to take an aggregated score that represents the marks received by test takers for all questions
in a questionnaire on a given document as a quality label. A dataset of multiple documents with
labels collected in this fashion could then be used to train a QE model to predict such aggregated
marks.

This type of evaluation is, however, time-consuming and expensive, as reading compre-
hension questions must first be devised, and questions need to be marked. The latter task is
minimized if multiple-choice questions are used, but this type of question is limited in its ca-
pacity to capture text understanding, with guessing often playing a major role. In addition, it
requires the creation of plausible distractors for each correct answer, which is also time consum-
ing. Given that small datasets may be enough for document-level QE, previous work has used
reading comprehension test marks as labels for document-level QE [Scarton, 2017, Scarton and
Specia, 2016].

The type of label will depend on the type of question. If questions are open, labels are
more likely to be real values, e.g., an average score of the marks for all questions. On the other
hand, if multiple choice questions are used, more natural labels are a discrete value indicating
the (normalized) count of correct answers. The type of question should also play an important
role in the performance of the test takers, and therefore in how its contribution is accounted for
in the final marks. Scarton [2017], following the work of Meurers et al. [2011] on the effect
of different types of questions, proposes to incorporate the information about different types of
questions into the document scores. The CREG-MT-eval dataset [Scarton and Specia, 2016],
that is a version of the CREG corpus [Ott et al., 2012], is used for this work. CREG is a
reading comprehension corpus for second-language learners of German created with the aim
of building and evaluating systems that automatically correct answers to questions. Questions
were manually created by experts in the area of second-language learner proficiency assessment
for each document in this corpus. CREG has three types of questions: literal, reorganization,
and inference (from simpler to more complex). CREG-MT-eval is a selection of 208 docu-
ments from CREG, machine translated by 4 different MT systems into English. The questions
for each document were professionally translated. Test takers were recruited to answer read-
ing comprehension questions based on the machine-translated documents. The questions were
marked according to a scale that varied between 0 (incorrect) and 1 (perfect). Scarton [2017]
learns weights for each type of question in CREG-MT-eval, using random search [Bergstra and
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Bengio, 2012] and optimizing toward MAE or Pearson’s r . Equation (4.1) shows the function
proposed to devise a quality score for each document:
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where N l , Nr , and N i are the number of “literal”, “reorganization”, and “inference” questions,
respectively, lqk , rqk , and iqk are real values between 0 and 1, according to the mark of question
k, and ˛, ˇ, and  are weights for the different types of questions.

To illustrate the creation of labels from reading comprehension tests, Table 4.2 (extracted
from Scarton and Specia [2016]) shows an example of a document in German (SRC), its
machine-translated (MT) and human-translated (REF) versions in English, as well as the man-
ually translated questions. The human translation is only shown for reference. In the data col-
lection process, it was used as control group. It is possible to observe that, based only on the MT
output (plus potentially world knowledge), it is very difficult (or impossible) to answer ques-
tions 2, 3, and 4. Therefore, the quality scores based on the reading comprehension questions
answered using the MT output will be lower than if the human translation (or a better machine
translation) is used. We highlight the answers or clues for answers in the reference translation in
Table 4.2. The answers are explicit in the text, however, the machine translated version does not
contain the correct information. In this case, the problem is that the key sentences for answering
questions 2, 3, and 4 were poorly translated, which is a typical case of MT for gisting: There is no
need for all the sentences to be correctly translated, although it is important that the sentences
including the desirable information are adequate. For instance, the quality of sentences 1, 5, and
6 is irrelevant for answering the questions. Therefore, reading comprehension evaluation seems
to be a more reliable option to evaluate the quality of machine-translated documents with the
purpose of gisting than labels that aggregate sentence-level scores.

4.3.2 LABELS FORMEASURINGPOST-EDITINGEFFORT
If the purpose of the evaluation is to estimate post-editing cost, or the total cost of a translation
job—as mentioned in Section 4.2, a task-based method that relies on a post-editing workflow
is needed. Scarton et al. [2015b] propose a two-stage post-editing method to deal with this
challenge. In the first step of this method (PE1), sentences are post-edited in random order,
without document context. In the second stage (PE2), the post-edited sentences are put back in
their original order and then sent for post-editing again as a document. The motivation for this
method was to understand the linguistic issues that can only be solved with access to the entire
discourse, which would provide evidence on how a document-level score can be more than the
aggregation of the scores of its sentences when accessed independently.

To illustrate the concept behind this method, Table 4.3 (extracted from Scarton et al.
[2015b]) shows an example of changes from PE1 to PE2, both in German (DE), related to
discourse phenomena along with the source (SRC), English (EN). The text in bold in this table
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Table 4.2: Example of a document in the CREG corpus and its machine translation (extracted
from Scarton and Specia [2016])

SRC (DE) 1- Objektbeschreibung einer 15-jährigenWohneinheit
2-Am Ende der Straße umgeben von Einfamilienhäusern erreichen Sie Ihr neues Heim.
3- Von der Eingangstür treten Sie in den oberen Bereich dieser wunderbarenWohneinheit , 
die die Eigentümer sehr sorgfältig und mit Liebe zum Detail removiert haben.
4- Im Erdgeschoss befi nden sich ein Bad mit Tageslicht, Gäste WC, die Küche und ein 
äußerst geräumiges Wohn/Esszimmer mit faszinierendem Blick auf den gepfl egten Garten.
5- Die Treppe hinunter sind ein weiteres Bad mit Dusche - bisher noch nicht benutzt 
- sowie zwei gleich große Räume, beide mit Blick auf den herrlichen Garten und das an-
grenzendeWaldgebiet.
6- Die Zimmer in diesem Bereich sind in hochwertigem Laminat ausgelegt.
7- Wenn Sie verkehrsgünstig wohnen möchten und gleichzeitig eine familiäre Umgebung 
schätzen, ist dieseWohnung für Sie richtig.

MT (EN) 1- Description a 15-year residential unit
2- At the end of the street surrounded by family houses you reach your new home.
3- From the front door you enter into the upper region of this wonderful residential unit 
who remo four very carefully and with attention to detail the owners.
4- Downstairs there is a bathroom with daylight, guest toilet, kitchen and an extremely
spacious living/dining room with a fascinating view are the landscaped garden.
5- # e stairs are a further bathroom with shower –not yet used–and two equally sized  
rooms, both overlooking the beautiful garden and the adjacent forest.
6- # e rooms in this area are designed in high-quality laminate.
7- If you want to stay conveniently and simultaneously appreciate a family environment, 
this apartment is right for you.

REF (EN) 1- Property description for a 15-year-old residential unit
2- Your new home is at the end of the street surrounded by (Q1) single-family homes.
3-When you enter the front door, you fi nd yourself on the upper fl oor of this wonderful
property which the owners have carefully (Q2) renovated and decorated with much
attention to detail.
4- # e (Q3) ground fl oor has a bathroom with natural light, a guest toilet, the kitchen 
and a spacious living/dining room with a fascinating view of the beautiful garden.
5- Downstairs you will fi nd an additional bathroom with shower (that has not yet been 
used) and two equally large bedrooms overlooking the wonderful garden.
6- # e downstairs rooms have high-quality laminate fl ooring.
7- If you want to enjoy the benefi ts of a convenient location with a (Q4) suburban fl air,
this property is perfect for you.

Questions 1- For whom is this apartment ideal?
2- Is the apartment in a new building or an old building?
3- Name two rooms on the ground fl oor.
4-Where is the apartment?



68 4. QUALITY ESTIMATIONFORMTATDOCUMENTLEVEL

Table 4.3: Example of changes from PE1 to PE2 (extracted from Scarton et al. [2015b])

PE1 (DE) 1- St. Petersburg bietet nicht viel kulturelles Angebot, Moskau hat viel mehr Kul-

tur, es hat eine Grundlage.

2- Es ist schwer für die Kunst, sich in unserem Umfeld durchzusetzen .

3- Wir brauchen das kulturelle Fundament, aber wir haben jetzt mehr Schrifts-

teller als Leser.

4- Das ist falsch.

5- In Europa gibt es viele neugierige Menschen, die auf Kunstausstellungen , Kon-

zerte gehen.

6- Hier ist diese Schicht ist dünn.

PE2 (DE) 1- St. Petersburg bietet nicht viel kulturelles Angebot, Moskau hat viel mehr Kul-

tur, es hat eine Grundlage.

2- Es ist schwer für die Kunst, sich in unserem Umfeld durchzusetzen .

3- Wir brauchen das kulturelle Fundament, aber wir haben jetzt mehr Schrifts-

teller als Leser.

4- Das ist nicht gut.

5- In Europa gibt es viele neugierige Menschen, die auf Kunstausstellungen , Kon-

zerte gehen.

6- Hier ist die Anzahl solcherMenschen gering.

SRC (EN) 1- St. Petersburg is not a cultural capital, Moscow has much more culture, there is 

bedrock there.

2- It’s hard for art to grow on our rocks.

3- We need cultural bedrock, but we now have more writers than readers.

4- ! is is wrong.

5- In Europe, there are many curious people, who go to art exhibits, concerts.

6- Here, this layer is thin.

shows the segments that were changed from PE1 to PE2. First, sentence (4) in PE1 is a literal
translation of “This is wrong” and it was changed in PE2 (4) to better fit into the context, because
it gives the sense of “This is not good”. Second, sentence (6) in PE1—literal translation of “Here,
this layer is thin”—was corrected in PE2 (4) in order to better fit the context of the paragraph,
having the meaning: “Here, the number of such people is low”. It is important to highlight that in
both cases the changes could only be performed with document context. The sentences in PE1
are not incorrect translations in terms of grammar or word choice at sentence level, however,
they do not fit in the context of the surrounding sentences.
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One open issue in this two-stage post-editing approach is how to extract quality labels

from this data. The solution proposed by Scarton [2017] and used at WMT16 [Bojar et al.,
2016] is to compute HTER scores between the results of PE1 and the machine translation
(PE1 � MT ) and between PE1 and PE2 (PE2 � PE1). Then, these two values are linearly
combined and weights are learned for each component, as shown in Equation (4.2), where w2

and w1 are empirically defined:

f D w1 � PE1 � MT C w2 � PE2 � PE1: (4.2)

4.4 FEATURES
Work on features for document-level QE follows, to a large degree, work on features for
sentence-level QE. Although discourse-level features have been explored for document-level
QE [Scarton, 2017], the majority of features for this level are based on shallow linguistic infor-
mation.

As previously defined in Section 3.4, features for QE can be broadly divided into four
categories: confidence features, fluency features, complexity features, and adequacy features, with
the latter three types being explored for document-level QE, along with additional features that
rely on external MT systems or word embedding representations. We also present separately
features that attempt to capture discourse information.

4.4.1 COMPLEXITY FEATURES
Complexity features are extracted from the source document only to capture the difficulty of
translating such a text. Some examples used for document-level QE are:

• number of tokens in the source document;

• average number of translations per source word in the source document using probabilistic
dictionaries;

• average frequency of bigrams in the document that fall in the first quartile of frequency in
a large corpus of the source language;

• average frequency of words in the source document using a large corpus of the source
language;

• LM probability/perplexity of n-grams in the source document using a large corpus of the
source language to build the LM;

• average likelihood of parse trees for sentences in the source document as given by a prob-
abilistic parser; and

• number of pronouns.
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4.4.2 FLUENCY FEATURES
Fluency features are extracted from the target sentence only and aim to capture the likelihood of
the translation being a text found in the target language. Examples explored for document-level
QE include:

• number of tokens in the target document;

• number of punctuation marks in the target document;

• number of content words in the target document;

• proportion of out-of-vocabulary tokens in the target document, i.e., tokens in the source
language;

• number of sentences in the target document;

• LM probability/perplexity of n-grams in the target document using a large corpus of the
target language to build the LM;

• LM probability/perplexity of n-grams of POS tags in the target document using a large
corpus of POS-tagged target language to build the LM;

• average likelihood of parse trees for sentences in the target document as given by a prob-
abilistic parser; and

• number of pronouns.

4.4.3 ADEQUACY FEATURES
Adequacy features combine information from the source and the target documents. They are
usually based on differences or ratios of source and target language features. Examples of ade-
quacy features used for document-level QE are:

• ratio between the number of tokens in the source document and the number of tokens in
the target document;

• ratio of the number of content words in the source document and the number of content
words in the target document;

• Kullback-Leibler divergence between a source document and a target document docu-
ment topic distribution (topic distributions are extracted using latent Dirichlet alloca-
tion (LDA));

• Jensen-Shannon divergence between a source document and a target document document
topic distribution (topic distributions are extracted using LDA);
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• ratio of content word repetition between the target and source documents;

• ratio of content lemma repetition between the target and source documents; and

• ratio of noun repetition between the target and source documents.

4.4.4 DISCOURSE-AWAREFEATURES
Scarton and Specia [2014a] propose two sets of features to assess text cohesion. These features
rely on POS information and can be used for measuring complexity, fluency, and adequacy. The
first set of features consider word repetition. A document that presents high scores for repetition
is expected to have high lexical cohesion. The word repetition features are as follows.

• Average word repetition: For each content word, its frequency within the document is
counted. Then, the repetition counts are summed and divided by the total number of con-
tent words in the document. This feature can be computed for the source and target doc-
uments.

• Average lemma repetition: The same as word repetition, but the words are first lemma-
tized.

• Average noun repetition: The same as word repetition, but only nouns are considered.

• Ratios: The ratio values between source and target word, lemma, or noun repetitions.

The second set of features uses latent semantic analysis (LSA) [Landauer and Du-
mais, 1997] for assessing document cohesion. LSA aims to capture the topic of texts based
on the words that these texts contain. This method is based on singular vector decomposi-
tion (SVD) for dimensionality reduction. It is a robust method where texts can be full docu-
ments, paragraphs, or sentences. An LSA matrix can be built considering words � sentences,
words � paragraphs, words � documents, etc. In the case of words � sentence, each cell
contains the frequency of a given word in a given sentence. LSA was originally designed to be
used with large corpora of multiple documents (topic modeling). In Scarton and Specia [2014a],
however, since the aim is to measure coherence within documents, an LSA words � sentences

matrix is computed for each individual document. Scarton [2017] also worked with these fea-
tures and made some extensions. The LSA features are as follows.

• LSA cohesion—adjacent sentences (Spearman’s �): For each sentence in a document,
the Spearman’s � rank correlation coefficient is calculated between its word vector and the
word vectors of its adjacent neighbors (sentences which appear immediately before and
after the given sentence). For sentences with two neighbors (most cases), the correlation
values are averaged. After that, the values for all sentences in the document are averaged
in order to have a single figure for the entire document.
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• LSA cohesion—adjacent sentences (cosine distance): The same as above, but the cosine

distance is applied instead of Spearman’s � rank correlation.

• LSA cohesion—all sentences (Spearman’s �): For each sentence in a document, the
Spearman’s � rank correlation coefficient is calculated between the word vectors of a given
sentence and the word vectors of all the others.The values for all sentences in the document
are then averaged.

• LSA cohesion—all sentences (cosine distance): The same as above, the cosine distance
is applied instead of Spearman’s � rank correlation.

Scarton [2017] introduces a set of discourse-aware source features based on syntactic
parser and Rhetorical Structure Theory (RST) parser information. In theory, such features can
be applied to both source and target documents, as shown in Scarton and Specia [2015]. How-
ever, due to the performance of the parsers on the—at the time—numerous problematicmachine
translated sentences in the target language, these features proved more effective for source doc-
uments. These can be seen, therefore, as a special type of complexity feature. In addition, these
features are highly language dependent since they require robust parsers to be extracted. The list
of discourse-aware features for the source document in English includes the following.

• Number of expansion connectives: discourse relations where a second argument expands
the first argument (e.g., in addition).1

• Number of contingency connectives: discourse relations where one of the situations de-
scribed in an argument causes or influence another argument (e.g., because).

• Number of comparison connectives: discourse relations where two arguments are compared
(e.g., although).

• Number of temporal connectives: discourse relations where the arguments are related tem-
porally (e.g., when).

• Number of connectives: sum of the values for all the above types of connectives.

• Number of non-discourse connectives: some discourse connectives are ambiguous and my
assume roles other than connectives, for example, once can be a temporal connective or an
adverb meaning formerly [Pitler and Nenkova, 2009].

• Number of elementary discourse unit (EDU) breaks: EDUs are the minimum units of text
that assume some discourse role. In the following example, there are three EDU breaks:
“However , EDU_BREAK despite the economic success, EDU_BREAK it has become increas-
ingly clear EDU_BREAK that Blair was over .”

1Connective-related features can be extracted using either pre-defined lists (e.g., the lists used in the Coh-metrix tool:
http://141.225.41.245/cohmetrixhome/documentation_indices.html) or parsers (e.g., Pitler and Nenkova’s
parser: http://www.cis.upenn.edu/~nlp/software/discourse.html).

http://141.225.41.245/cohmetrixhome/documentation_indices.html
http://www.cis.upenn.edu/~nlp/software/discourse.html
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• Number of nucleus relations in the RST tree for the entire document. Figure 4.1 shows

an example of an RST relation between two EDUs, where “Brown has coveted the office of
Prime Minister since May 12, 1994, the fateful day” is the nucleus of the RST relation.

• Number of satellite relations in the RST tree for the entire document. Figure 4.1 shows an
example of an RST relation between two EDUs, where “when John Smith, the Lor leader
in opposition, died of a heart attack.” is the satellite of the RST relation.

• Height of the RST tree.

• Number of subtrees in the RST tree.

Brown has coveted 
the office of Prime 
Minister since May 
12, 1994, the fateful 
day

when John Smith, 
the Labour leader 
in opposition, died 
of a heart attack.

Elaboration

Figure 4.1: Example of RST relation between two EDUs.

4.4.5 WORDEMBEDDINGFEATURES
Word embeddings can also be used as features for document-level QE. Scarton et al. [2016]
propose the use of averaged word embeddings at document level. In this approach, word vectors
are extracted following standard word embedding tools. For example, Scarton et al. [2016] use
word2vec [Mikolov et al., 2013b] with the continuous bag-of-wordsmodel.This involves averag-
ing all of the word vectors in the document, generating a single vector for the document. Such
averaged word vectors can be extracted for both source and target documents and, therefore,
they can be used to measure fluency, complexity, or even adequacy by measuring the distance
between source and target word vectors. For document-level QE, word embeddings were used
as complexity and fluency features [Scarton, 2017, Scarton et al., 2016].

4.4.6 CONSENSUSANDPSEUDO-REFERENCEFEATURES
As previouslymentioned, pseudo-reference features have been used extensively for sentence- and
word-level QE. Pseudo-references were first used in the context of QE for document-level QE
in Soricut and Echihabi [2010]. In addition to proposing such features, Soricut and Echihabi
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[2010] emphasize the importance of the pseudo-references being generated by MT system(s)
which are as different as possible from the MT system of interest, and preferably of much better
quality. This should ensure that string similarity features (like BLEU) indicate more than sim-
ple consensus between two similar MT systems, which would produce the same (possibly bad
quality) translations.

Scarton [2017] proposes the use of consensus among different MT systems: If various
different MT systems output the same target, the respective target may be correct. In this case,
the quality of the various off-the-shelf systems does not need to be given.

BLEU, TER, and Meteor (Metric for Evaluation of Translation with Explicit OR-
dering) [Denkowski and Lavie, 2011] are the automatic metrics previously used as pseudo-
reference-based features for document-level QE [Scarton, 2017, Scarton and Specia, 2014a,
Soricut and Echihabi, 2010]. However, any automatic metric may be used for the same pur-
pose, e.g., Scarton and Specia [2014b] use metrics based on syntactic similarities from shallow
and dependency parser information.

4.5 ARCHITECTURES

Similarly to sentence-level QE, architectures for document-level QE are directly related to the
type of quality label being predicted. For instance, if the label follows a continuous distribution
or an ordered scale, the most widely used method is regression. On the other hand, if the label
is categorical (non-ordinal), the method applied is classification.

For treating the task as a regression problem, in principle any regression algorithm can be
applied. Previous work used M5P regression trees [Soricut and Echihabi, 2010], Bayesian ridge
regression [Scarton et al., 2015a], extremely rrandomized trees [Biçici, 2016], SVM [Biçici,
2016, Biçici et al., 2015, Scarton, 2017, Scarton et al., 2016, Scarton and Specia, 2014a, Scar-
ton et al., 2015a], and GPs [Scarton, 2017, Scarton et al., 2016] methods, with the latter two
dominating most approaches.

Feature selection techniques were also explored for document-level QE, including: recur-
sive feature elimination [Biçici, 2016, Biçici et al., 2015], dimensionality reduction with partial
least squares [Biçici, 2016, Biçici et al., 2015], backward feature selection [Scarton et al., 2015a],
and exhaustive search [Scarton et al., 2015a]. Previous work that used GPs also explored feature
combination considering different kernels for different feature types, i.e., handcrafted features
were handled by one kernel, while word-embedding features or pseudo-reference-based features
were modeled in another kernel [Scarton, 2017, Scarton et al., 2016].

For classification, while any algorithm is applicable in principle, existing work explores
random forests, SVMs and ordinal classification [Scarton, 2017]. Both random forests and
SVMs treat the problem as a multi-class classification task in which the classes do not follow
any order, while the ordinal logistic model is able to take the order of the classes into account.
Since the labels have an order, ordinal classification is expected to be the most suitable approach.
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One potentially promising approach is to use fine-grained prediction levels in order to

improve document-level QE. For instance, a sequential prediction of paragraphs, sentences or
words could be used in the architecture to enhance prediction at document level. A starting
point in this direction could be the work on joint word- and sentence-level prediction by Kim
et al. [2017b], but it is not clear whether this would generalize for documents. In addition, the
approach would require data annotated at document level and at the finer-grained levels, which
is not yet available.

4.6 EVALUATION
The evaluation of document-level QE is also dependent on the type of label predicted and
the ML approach used. When using regression approaches for predicting continuous labels,
document-level QE is evaluated in the same way presented in Section 3.6 for both scoring and
ranking tasks.

As in sentence-level QE, document-level QE has adopted the Pearson’s r correlation co-
efficient as the primary metric and MAE and RMSE are complementary metrics. For evaluating
rankings of documents, Spearman’s � rank correlation coefficient is used as the primary metric
with DeltaAvg as secondary metric.

When the quality label considered is categorical and classification is applied, precision,
recall, and F-measure are used to evaluate the performance of the QE models, as in the work
of Scarton [2017].

4.7 STATE-OF-THE-ARTRESULTS
In what follows we describe the best systems in the two editions of the WMT shared tasks that
included either paragraph- or document-level QE. In addition, we include the work of Scarton
[2017] on document-level QE, which represents the best systems for predicting variants of post-
editing effort and reading comprehension scores.

4.7.1 REFERENTIALTRANSLATIONMACHINES
The WMT15 shared task focused on paragraph-level QE. The paragraphs were extracted from
the WMT13 news translation corpus. Taking the machine translations from all participating
systems, for each source language paragraph, a machine-translated version was randomly chosen
from the set of systems. Given a paragraph, participants were required to predict its Meteor
score, which was computed based on the WMT13 news reference corpus. Two language pairs
were included: English-German and German-English with 1,215 sentences per language pair.
Paragraphs were composed of 1–16 sentences. MAE was used as the official evaluation metric.

The winning system applies referential translation machines (RTMs) [Biçici et al., 2015].
RTMs [Biçici, 2013, Biçici and Way, 2014] aim to identify “acts of translation” when translating
from a given language into another using an external corpus (in the same domain) as reference.
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External data is used to select “interpretants” that contain data close to both training and test
sets to provide context for similarity comparison. In other words, interpretants are data instances
close to both training and test sets under investigation. These interpretants can then be used as
(pseudo) references for similarity calculation and for providing context [Biçici, 2013].

The steps, according to Biçici [2015], are as follows.

1. ParFDA(train, test, C ) ! I.

2. MTPP(I , train) ! Ftrain.

3. MTPP(I , test) ! Ftest.

4. learn(M , Ftrain) ! M.

5. predict(M, Ftest) ! Oq.

First, interpretants (I) that are relevant to both training and test sets are selected.This is achieved
using a corpus (C, in the same domain as training and test dataset) and the parallel Feature Decay
Algorithm (FDA) [Biçici et al., 2014]. FDA is an approach for instance selection that aims to
increase the diversity of data.Then, in steps 2 and 3, aMTPP (Machine Translation Performance
Predictor) uses I to extract features for both training and test sets (Ftrain and Ftest, respectively).
Such features will be in a space where similarities between acts can be extracted. In step 4, Ftrain

is used as input for a learning algorithm (M ), in order to build a prediction model (M). Finally,
M is used to predict the quality ( Oq) of Ftest.

Features for source and target paragraphs capture coverage, LM perplexity, translation
probability, similarity between vector representations and sentence length, among others. Fea-
ture selection is performed using a recursive feature elimination method. The winning ML mod-
els for both language pairs use SVM.

RTMs have been used in several WMT QE shared tasks for predicting the quality of all
granularity levels. It is robust since the MTPP module can encompass different types of features.
However, the need of in-domain external data is a drawback. The need for features to be in the
same space for similarity calculation also adds to its complexity.

4.7.2 DOCUMENTEMBEDDINGS
The WMT16 shared task on document-level QE addressed prediction for full documents. The
data consisted of entire documents evaluated using the two-stage post-editing method [Scarton,
2017, Scarton et al., 2015b] introduced in Section 4.3. The language pair was English-Spanish,
with a set of 208 post-edited documents. These documents were extracted from the English-
Spanish WMT news translation task data between 2008 and 2013. Given all system submissions
for all documents in all the years of the news task, a translation generated by a random MT
system was selected for each source document. The w1 and w2 parameters of Equation (4.2) were
derived empirically: w1 was fixed to 1, while w2 was optimized in order to meet two criteria.
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First, the final label should lead to significant data variation in terms of standard deviation from
the mean document-level score. Second, the difference between the MAE of a mean baseline
and the MAE of the official baseline QE system should be sufficiently large.2 The mean baseline
is built by using the mean value of the training set labels as the predicted value to all instances
of the test set. The official baseline QE system was built with 17 commonly used features that
are adaptations of sentence-level features, so-called baseline features:

• number of tokens in the target document;

• number of tokens in the source document;

• average source token length;

• type/token ratio (number of occurrences of the target word within the target hypothesis,
averaged for all words in the hypothesis);

• LM probability of target document;

• LM probability of source document;

• average number of translations per source word in the document;

• average number of translations per source word in the document weighted by the inverse
frequency of each word in the source corpus;

• percentage of unigrams/bigrams/trigrams in quartile 1 of frequency in a corpus of the
source language;

• percentage of unigrams/bigrams/trigrams in quartile 4 of frequency in a corpus of the
source language;

• percentage of unigrams in the source document seen in a corpus of the source language;

• number of punctuation marks in target document; and

• number of punctuation marks in source document.

Two systems achieved the best results in the competition. Scarton et al. [2016] combine
these 17 baseline features with word embeddings from the English source documents and build
a model using GP as the algorithm. The word embeddings were learned by using the CBOW
model trained on a very large corpus. Document embeddings were extracted by averaging the
word embeddings of the document. The GP model was trained with two kernels: one for the 17

baseline features and another for the 500 features from word embeddings. Since each kernel has
its own set of hyperparameters, the full model leverages the contributions from the two different
feature sets.
2w2 D 13 was the best result.
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The other winning system [Biçici, 2016] uses RTMs as previously presented in Sec-

tion 4.7.1. For this submission, after feature selection, a dimensionality reduction and mapping
step using partial least square (PLS) is applied. PLS is a technique for feature selection that
maps the source features into a latent space by also using information from target features. An
interactive process of orthogonalisation followed by vector selection are used to generate the la-
tent features [Biçici et al., 2013]. Extremely rrandomized trees, an ensemble method similar to
random forests, is used for building the prediction model.

The Scarton et al. [2016] system is simple and does not require complex ML approaches
nor complex feature engineering. However, as is the case for solutions using word embeddings,
it is not easily interpretable. For instance, it is hard to define why averaged word embeddings
work for this context, and the only way to select the parameters for training the embeddings is
empirically. The advantages and disadvantages of RTMs were discussed in Section 4.7.1.

4.7.3 BEST POST-EDITINGEFFORTANDGISTING SYSTEMS
Scarton [2017] presents a benchmark performance of different systems with several variations
of the label derived from Equation (4.2), repeated below for ease of reference. The best system
in the WMT16 dataset outperforms the two winning systems of the shared task. It is built with
all document-level features from the publicly available QuEst++ toolkit (Section 6.2) using GP
as the algorithm.

f D w1 � PE1 � MT C w2 � PE2 � PE1: (4.3)
In addition, two quality labels devised from Equation (4.3) for the same dataset used in

the WMT16 shared task are proposed.
• DISS-LC-P: w1 varies from 0:0 to 1:0 (w2 D 1 � w1), and f is chosen in order to max-

imize Pearson’s r for a baseline QE model built with the 17 baseline features listed pre-
viously using SVM. 10-fold cross-validation was applied in the data and Pearson’s r are
averages of all folds.

• DISS-LC-M: w1 was also rrandomized between 0:0 and 1:0 but instead of maximizing
Pearson’s r , the difference between the MAE of a mean baseline and the MAE of the
baseline QE model was maximized. The mean baseline is built by using the mean value of
the training set labels as the predicted value for all instances of the test set.

For both labels, the best models use GPs with one kernel for all QuEst++ features and another
kernel for discourse-aware features (presented in Section 4.4.4).

Focusing on reading comprehension tests, Scarton [2017] builds models for two types of
corpus: CREG and MCtest [Richardson et al., 2013]. For CREG, since the questions allow
open answers, Equation (4.1) was used to devise the quality labels.

• RC-CREG-P:Random search [Bergstra and Bengio, 2012] is used tomaximize the Pear-
son’s r correlation coefficient between a baseline QE model built with the 17 baseline fea-
tures and the true labels. At each iteration, ˛ is chosen randomly from the range Œ0:0; 1:0/.
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Another value � was chosen randomly (also from the range Œ0:0; 1:0/) in order to define ˇ

as .1 � ˛/ � � and  as .1 � ˛/ � .1 � �/. A baseline QE model built with the 17 baseline
features and SVM was trained at each iteration with 10-fold cross-validation applied and
the Pearson’s r correlation coefficients were the average of all folds.

• RC-CREG-M: Random search is used to maximize the difference between the MAE of
a mean baseline and the MAE of the baseline QE model. The mean baseline is built by
using the mean value of the training set labels as the predicted value to all instances of the
test set. The parameters are derived similarly to RC-CREG-P and a similar QE model is
built at each iteration.

The best model for RC-CREG-P was built with SVM and the 17 baseline features combined
with document embeddings from the source and from the target documents. For RC-CREG-
M, the best model was built with GP and all document-level features available in QuEst++.

The MCtest corpus is composed of multiple choice questions. The quality labels derived
for this dataset follow a discrete distribution, i.e., the number of correct answers. Each docu-
ment has four questions, therefore the number of correct answers varies between 0 and 4. Scarton
[2017] considers two cases: 5-class problem (each possible number of correct answers becomes
a class) and 3-class problem (classes 0, 1, and 2 are grouped into a single class for low scoring
results). The best system in the 5-class problem was built by combining the 17 baseline features
with word embeddings at document level from both source and target documents. The classifi-
cation algorithm used was random forests. For the three-class problem the best system was built
with all features available in QuEst++ plus advanced linguistic features (pronouns, connectives
and EDUs counts, and RST tree information). The classification algorithm was also random
forests.

The QE systems proposed by Scarton [2017] are straightforward and simple to reproduce.
The main drawback is that the discourse-aware features require advanced NLP resources to be
computed. This limits the approach to languages for which resources are available.
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C H A P T E R 5

Quality Estimation for other
Applications

In this chapter we describe QE work for language output applications other than MT, namely
Text Simplification (TS), Automatic Text Summarization (ATS), Grammatical Error Correc-
tion (GEC), Natural LanguageGeneration (NLG), andAutomatic Speech Recognition (ASR).
Most of this work is very recent, with many opportunities for further development. Various ap-
proaches have been proposed for TS in the context of a shared task in 2016, while very little work
could be found for the other areas. We hope that by providing this overview we will encour-
age researchers in these and other NLP applications to consider pursuing QE as an evaluation
framework.

Our focus in this book is on texts produced by automatic applications, rather than by hu-
mans. A large body of work exists that targets grammatical error detection (often in conjunction
with correction) as well as essay scoring in learner texts, i.e., texts written by those learning a
second language.

Grammatical error detection focuses on spotting (and often fixing) grammar errors at the
word or phrase level, in a similar fashion to subsentence-level QE but using fine-grained error
categories rather than “good”/“bad” labels. Examples of error tag sets include five salient errors—
determiner, preposition, noun number, verb form, and subject-verb agreement [Ng et al., 2013],
and supersets of these with up to 80 categories of errors (pronouns, word choice, sentence struc-
ture, punctuation, capitalization, contractions, etc.) [Ng et al., 2014]. Recent work also includes
amore holistic view of the problem than that of sentence-level grammaticality prediction.Meth-
ods that represent overall grammaticality include, for example, a 1–4-point scale score [Heilman
et al., 2014] and the use ofHTER onmanually corrected sentences [Sakaguchi et al., 2016].This
resembles sentence-level MT QE work. Broadly speaking, many of these types of grammatical
errors are also made by automatic applications. However, we believe that errors in human texts
are much more subtle than those made by machines, and therefore different approaches are re-
quired. Additionally, detection is often just a component in systems where the final goal is to
provide corrections that can then be used as feedback for learners. The QE for GEC systems
that we introduce in Section 5.3 is different in the sense that it focuses on predicting the quality
of texts generated by automatic systems that perform error correction, rather than the quality of
the text originally written by learners.
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Essay scoring consists in predicting a single score for an entire text (in literature, often a

5-paragraph essay), in a similar fashion to document-level QE for MT or ATS. Most work is
done in the context of grading non-native speakers texts in standard language certificate tests
[Burstein et al., 2013]. Different approaches range from heuristic methods that attempt to count
different types of errors, including grammar, organization, usage, mechanics (e.g., capitaliza-
tion), and style [Burstein et al., 2006] to ML methods that use a number of explicit features
such as text length, coherence, cohesion, style, syntax, readability, n-grams, argumentation, etc.
[Ghosh et al., 2016, Zesch et al., 2015] as well as learned features in neural models [Dong and
Zhang, 2016, Taghipour and Ng, 2016]. The main difference between this line of work and that
of QE at document level for tasks like MT is that the types of errors that are targeted by in essay
scoring require deeper discourse processing and are often not present in the output of automatic
systems. Essay scoring requires automatically representing deeper quality dimensions such as
stance, organization, thesis clarity, argument persuasiveness, etc. [Persing and Ng, 2013, 2014,
2016a,b]. These dimensions are more applicable to the process of idea conceptualization when
writing a text, and in particular, when writing with an essay on a specific topic, which makes
essay scoring a very different task.

5.1 TEXT SIMPLIFICATION
Text Simplification is the task of applying transformations to a portion of text in order to make
it more easily understandable by a certain target audience. Existing work can be classified into
three categories.

• Lexical simplification:Consists in applying transformations to the words in a text, mainly
by replacing complex words with simpler alternatives [Glavaš and Štajner, 2015, Horn
et al., 2014, Paetzold and Specia, 2017]. By doing so, it is possible to adapt the vocabulary
used in a text to suit the needs of a particular group of users, for example, children. This
is done via heuristic and ML-based methods to find (or generate) and rank substitution
candidates.

• Syntactic simplification: Consists in applying transformations that modify the syntactic
structure of a text, normally a sentence [Angrosh et al., 2014, Siddharthan and Mandya,
2014]. Examples of the most common syntactic operations are sentence splitting, passive-
to-active voice transformation, appositive clause removal, and pronoun resolution. This is
normally done through explicit rules that can be either manually crafted or learned from
data using grammar induction techniques.

• Translation-based simplification: An alternative to learning specific types of simplifica-
tion transformations is to use a more general approach that will learn how to “translate”
from complex to simple texts using complex-to-simple parallel corpora [Nisioi et al., 2017,
Wubben et al., 2012, Xu et al., 2016]. The “translations” cover both the lexical and syn-
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tactic levels, in similar ways to MT approaches, except that both input and output texts
are in the same language.

Figure 5.1 illustrates a sentence in the English language simplified in various ways. Much
likeMT systems, TS systems are also language output applications:They take as input an original
sentence and produce as output a simpler version. Since TS approaches operate at the sentence
level, QE systems can be very intuitively built for them.

In the sections that follow we consider all existing work in TS QE and describe the main
applications (Section 5.1.1), labels (Section 5.1.2), features (Section 5.1.3), architectures (Sec-
tion 5.1.4), and evaluation methods (Section 5.1.5) used in TS QE, and discuss the most effec-
tive approaches to this task (Section 5.1.6).
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Figure 5.1: Examples of simplification in English.

5.1.1 APPLICATIONS
The potential applications of QE for TS are similar to the applications of MT QE. Quality es-
timates can be used by those interested in producing simplified versions of texts, including com-
panies such as Newsela1 and Guten,2 which manually create adapted versions of news articles
for readers with different reading levels. Although there is no evidence that these companies
1https://newsela.com
2https://gutennews.com.br

https://newsela.com
https://gutennews.com.br
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have been using automatic TS to increase simplification productivity, there is no reason why
word-, phrase-, sentence-, or even document-level QE technologies could not be used in this
way. QE technologies could also help improve the performance of different types of automatic
TS systems. Take, for example, lexical simplification systems that replace single words with
simpler alternatives. An effective word-level QE approach would be able to indicate whether
or not the simplifier has made a mistake, which would consequently allow it to choose another
replacement.

MT-based TS systems are able to produce multiple simplifications in the form of an n-
best simplification list, hence a reliable sentence-level QE approach could help rerank them,
potentially increasing the quality of the final output produced. Word- and phrase-level QE
approaches could also help these and other types of TS systems by aiding in the decoding process.

Finally, QE for TS could be used to make a decision on whether a simplification, i.e., the
simplified version of the text,3 is reliable enough to be published as is or given directly to an end
user, or whether the original version should be given instead. We note that the quality threshold
for TS is likely to be much higher compared to MT. Since TS, by definition, assumes that the
original text may be difficult to process by certain readers, a TS system that makes a mistake
while simplifying such a text will make it even harder than its original version and, therefore,
worse for the reader.

5.1.2 LABELS
The labels used by TS QE approaches are defined based on the three main properties deemed
desirable for a high-quality simplified text.

• Grammaticality: Determines how grammatical the simplified text is.

• Meaning preservation: Determines how well the simplification captures the original
meaning of the text being simplified.

• Simplicity: Determines how much easier simplification is in comparison to the original
text.
These properties have been applied to collect manual annotations on the output of TS

systems [Glavaš and Štajner, 2015, Paetzold and Specia, 2013]. Each automatically simplified
sentence is judged with respect to each of these properties using a Likert scale, for example from
1–3 or 1–5. This type of evaluation has become standard in TS.

Using this type of manual evaluation, Štajner et al. [2014] devised the first sentence-
level QE dataset for TS. Simplifications of 280 complex sentences were produced using various
automatic simplification methods and then scored by humans on a 1–3-point scale with respect
to grammaticality, meaning preservation, and simplicity. The scores for these properties can be
interpreted as follows.
3We use the terms “simplification” and “simplified text/version” interchangeably, in the same way in which “machine trans-
lation” is used in the sense of a “machine-translated text”.
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• Grammaticality:

1. ungrammatical,
2. minor problems with grammaticality,
3. grammatical.

• Meaning preservation:

1. meaning is seriously changed or most of the relevant information lost,
2. some of the relevant information is lost but themeaning of the remaining information

is unchanged,
3. all relevant information is kept without any change in meaning.

• Simplicity:

1. a lot of irrelevant information is retained,
2. some of irrelevant information is retained,
3. all irrelevant information is eliminated.

This definition of simplicity focuses on how much irrelevant information the TS systems are
able to discard. This notion of simplicity is closely connected to that of text compression and
only applies to certain groups of readers, such as those who have issues with processing very
long sentences. Other aspects should also be considered, such as the familiarity of words in a
simplification, the complexity of its syntactic and semantic constructs, etc. Figure 5.2 shows a
few annotations extracted from this dataset [Štajner et al., 2014].

Using these scores, two more label sets are inferred: Total3 and Total2. These label sets
combine simplification properties in a single value. Total3 has three possible values.

• OK: Simplifications annotated with scores of value 3 for grammaticality and meaning
preservation.

• PE: Simplifications that do not fulfill the requirements of the “OK” label, but that have a
value of 2 or 3 for meaning preservation.

• Dis: Any other simplifications, i.e., the simplifications that have a value of 1 for meaning
preservation.

These values were determined through an analysis of the dataset. The first two simplification
examples in Figure 5.2 would be classified as “PE”, since neither of them have a score of 3 for
grammaticality andmeaning preservation, and both have a 2 or 3 score for meaning preservation.
TheTotal2 set was createdwith the goal ofmaking the task of sentence-levelQE for TS as simple
as possible. Total2 has only two labels, which are inferred from the following Total3 labels.
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Figure 5.2: Instances from the QE dataset for TS in Štajner et al. [2014].

• 0: Simplifications that received a “Dis” label in the Total3 set.

• 1: Simplifications that received either a “PE” or “OK” label in the Total3 set.

Neither of these label sets incorporates simplicity. According to Štajner et al. [2014], these
labels focus more on capturing whether or not the simplifications should be post-edited, hence
they were created under the assumption that simplicity does not play a substantial role in this
decision. Notice, however, that this is not necessarily true. Because the main purpose of simpli-
fying a sentence is presenting its information in more accessible fashion, it is not reasonable to
assume that a simplification that fails to do so is of good quality.

To address this issue, Štajner et al. [2016] collected a new dataset by combining three
datasets introduced in previous work [Glavaš and Štajner, 2013, 2015, Štajner et al., 2015]. The
instances in these datasets are composed of original sentences, simplified versions produced by a
certain type of simplification approach, and Likert quality labels produced by human annotators
for grammaticality, meaning preservation, and simplicity, using again 1–3 Likert scores.

Total3 and Total2 label sets were once again inferred from the original labels, but now
incorporating simplicity. Total3 labels are defined as follows.

• 3: Simplifications annotated with scores of 3 for grammaticality, meaning preservation and
simplicity.

• 1: Simplifications annotated with a score of 1 for either meaning preservation or simplicity.
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• 2: any other simplifications.

If the simplification is perfect in every aspect, it receives label 3. If it has either poor meaning
preservation or simplicity, it receives label 1. The remaining simplifications receive label 2. Total2
labels are defined as follows.

• 0: simplifications with a Total3 score of 1.

• 1: remaining simplifications.

Using this dataset, Štajner et al. [2016] conduct the first shared task on sentence-level QE
for TS, which was held at the 2016 workshop on Quality Assessment for Text Simplification
(QATS 2016). The interpretation of the original 1–3 Likert labels for grammaticality, meaning
preservation and simplification was said to be: 3 ! “good”, 2 ! “ok”, 1 ! “bad”. A fourth label
that describes the overall quality of the simplification was also introduced. To that end, the 3/2/1
Total3 labels were mapped into “good”/“ok”/“bad” labels using the same transformation.

It is important to note that these labels do not take into account any particular use of the
simplifications. Consider, for example, the sentence “Her mother wanted her to leave school and
marry, but she rebelled” and its simplification “Her mother wanted her to leave school and marry, but
she forced”, which were present in the dataset of Štajner et al. [2016]. This simplification received
a “bad” label for simplicity and overall quality, which suggests that it would be better to discard it
and simplify the original sentence from scratch. However, post-editing this simplification would
not necessarily be difficult. This could be done by simply replacing forced with something simpler
than rebelled, since the rest of the sentence would arguably not be challenging to most readers.

5.1.3 FEATURES
Sentence-level QE approaches for TS, much like from those for MT, need to use as input
features that capture different aspects of the simplification being evaluated. As discussed in the
previous section, the quality of an automatically produced simplification is commonly defined in
terms of its grammaticality, meaning preservation, and simplicity. Features should thus attempt
to capture these three quality dimensions to some extent.

Many of the features used for TS are similar to those used in MT QE. However, there
are also many other interesting features that are unique to TS QE.

MT-Inspired Features
Most systems that participated in the sentence-level TS QE shared task held at QATS 2016 use
at least a handful of features that are either commonly employed for MT or inspired by them,
for example, length-based features:

• number of chunks, tokens, characters, word types, and punctuation markers in the original
sentence;
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• number of chunks, tokens, characters, word types, and punctuation markers in the sim-

plified sentence;

• ratio between the number of chunks, tokens, characters, word types, and punctuation
markers between the original and simplified sentences;

• average number of characters and syllables of the words in the original sentence;

• average number of characters and syllables of the words in the simplified sentence; and

• ratio between the average number of characters and syllables of the words in the original
and simplified sentences.

Length-based features can help a QE model identify simplifications that are likely to be of poor
quality. If the ratio between the number of tokens in the original and the simplified sentence
is too far from one, the model might have cut off too many words from the original sentence.
On the other hand, if the ratio is too close to one, it might be the case that the model was too
conservative and did not perform enough simplification transformations.

Frequency-based and language model features are also popular:
• language model probability of the original sentence;

• language model probability of the simplified sentence;

• ratio between the language model probability of the original and simplified sentences;

• average language model probability of the words in the original sentence;

• average language model probability of the words in the simplified sentence;

• ratio between the average language model probability of the words in the original and
simplified sentences;

• number of out-of-vocabulary words in the original sentence based on a language model of
complex texts;

• number of out-of-vocabulary words in the simplification based on a language model of
simplified texts; and

• percentage of words, bigrams, and trigrams in the simplified sentence with exceptionally
high or low frequency a corpus of simplified texts.

The language model probability of a simplified sentence can offer very valuable information with
respect to its grammaticality.

Based on parallel corpora containing complex sentences with simplified equivalents, such
as the Wikipedia/Simple Wikipedia corpus [Kauchak, 2013] and the Newsela corpus [Newsela,
2016], translation probability tables can be generated. They allow the extraction of features such
as:
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• average translation probability between the words in the simplified sentence and the words

aligned to them in the original sentence; and

• average number of translations of the words in the original sentence with a probability
larger than ˛.

These features can be good indicators of meaning preservation. If the average translation proba-
bility is low, for example, it could mean that the simplification model failed to properly disam-
biguate the original sentence. Similarly, if the number of translations of the words in the source
sentence is very high, then simplifying it could be hard, which increases the likelihood that the
simplification model will make a mistake.

Another interesting set ofMT-inspired features useMT evaluationmetrics such as BLEU
between the original and simplified sentences. Given that the original sentence and its simpli-
fication are written in the same language, such string similarity metrics can be used. BLEU for
example is used to calculate the precision of n-grams in the system output with respect to those
present in the original sentence. The resulting score is then used as a feature. A high BLEU score
could indicate that the simplification is grammatical, since the system preserved the structure
of the original sentence. A BLEU score that is too high, however, could mean that the system
did not apply any transformations to the original sentence. In addition to BLEU, other metrics
such as Meteor and TER have been used as features in TS QE.

We refer the reader to Popović and Štajner [2016] for an investigation on the correlation
between these and many other MT evaluation metrics and TS QE scores for grammaticality,
meaning preservation and simplicity. Štajner et al. [2014] and Popović and Štajner [2016] find
that these metrics are best at capturing meaning preservation.

Semantic Features
A number of features have also be devised specifically for TS QE. Many of these features at-
tempt to capture the semantic similarity between original and simplified sentences. The most
frequently used semantic similarity features in TS QE are:

• TF-IDF cosine similarity between the original and simplified sentences using bag-of-
words vectors with the words in these sentences, and alternatively with their synonyms;

• total, average, minimum, and maximum cosine similarity between the embeddings of all
words in the original and simplified sentences; and

• total, average, minimum, and maximum cosine similarity between the embeddings of
words in the original sentence that are aligned to words in the simplified sentence.

Instead of attempting to calculate similarity metrics between the original and the sim-
plification, the semantic representations extracted to calculate these metrics can also be used in
their raw form. Some frequent examples are:
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• TF-IDF bag-of-words vectors representing the original sentence;

• TF-IDF bag-of-words vectors representing the simplified sentence;

• average embedding values of all words in the original sentence; and

• average embedding values of all words in the simplified sentence.

Syntactic Features
The syntactic structure of the original sentence and its simplified version also contains a num-
ber of clues that could help a QE system. Graesser et al. [2004] successfully exploit syntactic
patterns extracted from constituency and dependency parses to quantify the cohesion and co-
herence of a sentence, two properties that could be seen as clues for grammaticality and meaning
preservation.

Mathias and Bhattacharyya [2016] and Nisioi and Nauze [2016] introduce sentence-level
QE approaches for TS that assess the constituency parses of the simplified sentences in order
to estimate their structural complexity. The main features extracted from these parse trees are:

• number of nouns;

• number of noun phrases;

• number of negated words;

• number of main clauses;

• number of relative clauses;

• number of appositive clauses;

• number of noun and verb participial phrases; and

• number of other types of subordinate clauses.

If a simplified sentence contains too many of these, it could be an indication that the simplifi-
cation system could not reduce its complexity to a desirable degree.

Readability Features
The readability of a sentence can be described as the degree of ease with which it can be read
and understood. Readability metrics have been used as a way of determining whether or not
a text would pose a challenge to a certain target audience [Kincaid et al., 1975, McLaughlin,
1969, Taylor, 1953]. Because of their inherently strong correlation with simplicity, readability
measures can potentially help TS QE approaches in quantifying simplicity.

Nisioi and Nauze [2016] present a QE system that employs some statistics that can be
extracted with the Flesch-Kincaid readability framework [Kincaid et al., 1975]. The features
extracted are:
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• the Flesch-Kincaid readability score of the simplification;

• the minimum age at which one is expected to be able to understand the simplification; and

• the U.S.-grade education level for which the simplification is most appropriate.

5.1.4 ARCHITECTURES
Existing architectures devised for sentence-level QE for TS resemble those used for MT. QE
for MT could, in theory, be adapted for TS by using a different feature set that explicitly en-
compasses grammaticality, meaning preservation and simplicity, either in isolation, or jointly.

Two types of architectures have been used to construct QE approaches for TS: non-
sequential and sequential, as introduced in Section 2.5. Due to the flexibility of modern ML
algorithms, sequential and non-sequential architectures can be used to create both regressors,
which predict continuous quality scores, and classifiers, which predict discrete values. In what
follows we focus on the ML algorithms and metrics that have been successfully incorporated in
these architectures for TS QE.

Non-Sequential Approaches
Non-sequential approaches are the most widely used in TS QE. Some of the most successful
approaches in the QATS 2016 shared task on sentence-level QE for TS use random forests
[Štajner et al., 2016], SVM,multi-layer perceptron [Paetzold and Specia, 2016b], and ensembles
of multiple algorithms [Nisioi and Nauze, 2016]. These non-sequential models represent the
winning submissions for grammaticality, meaning preservation, simplicity, and overall quality.

Sequential Approaches
Sequential approaches for sentence-level QE are those that exploit the fact that the input sen-
tence is actually a sequence of words. Two types of sequential approaches have been explored
for this task: linear RNN models and tree-based RNN models.

The few sequential approaches that were submitted to the QATS 2016 shared task per-
formed very well. Paetzold and Specia [2016b] trained RNN regressors that predict the quality
not of a sentence, but rather its n-grams. These models are used to predict the quality scores of
all n-grams in both the original and simplified sentences. One model is trained for each quality
dimension. The scores are then combined through averaging.

Figure 5.3 illustrates how this approach works. First, all n-grams (bigrams in the example)
are extracted from both the original and simplified sentences. Each n-gram is then transformed
into a sequence of word embeddings that are passed onto a linear unidirectional RNN.TheRNN
predicts an individual quality score for each n-gram. The resulting scores are then averaged in
order to produce a final continuous quality score, which is then transformed into a discrete
quality score that can be used in a classification setting. To train these models, the quality score
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Figure 5.3: Architecture of the SimpleNets approach [Paetzold and Specia, 2016b].
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of the simplified sentences in the training set is extrapolated to all of its n-grams. This approach
attains the highest accuracy scores for overall quality prediction.

The other sequential approach for TS QE was introduced by Nisioi and Nauze [2016].
This sentence-level QE approach consists of an ensemble that combines multiple models, one
of which is a sequential tree LSTM model [Tai et al., 2015]. Tree LSTM are a nonlinear type
of RNN that receives trees instead of sequences as input. Rather than connecting nodes linearly,
like most RNN approaches do, nodes are connected based on the structure of the trees that they
receive as input. Figure 5.4 illustrates the difference between a typical linear RNN model and a
tree LSTM.

The tree LSTMs approach [Nisioi and Nauze, 2016] takes as input embedding repre-
sentations of the nodes in the dependency parses of the original and simplified sentences, and
produce as output a discrete “good”/“bad” quality label. This label is then used by an ensemble
model to produce both continuous and discrete quality scores. The ensemble approach, which
we describe in more detail in Section 5.1.6, obtains the highest correlation with grammaticality,
simplicity, and overall quality scores in the QATS 2016 shared task. For meaning preservation,
they achieve the second highest correlation scores (0:585).

5.1.5 EVALUATION
The QATS 2016 shared task on sentence-level QE for TS covers both classification and re-
gression variants. The datasets are composed of a set of original sentences accompanied by their
respective simplification, and one “good”/“ok”/“bad” score for grammaticality, meaning preser-
vation, simplicity and overall quality. Since the “good”/“ok”/“bad” labels are of discrete nature,
participants could devise classification approaches for the task. In addition, a numeric represen-
tation for these labels was created:

• “good” ! 2,

• “ok” ! 1, and

• “bad” ! 0.

The classification and regression settings were evaluated usingmetrics previously described
in Section 3.6. For classification, the metrics used include accuracy, weighted f-measure, preci-
sion, and recall. For regression approaches, Pearson’s r correlation coefficient is used, along with
MAE and RMSE.

5.1.6 STATE-OF-THE-ARTRESULTS
Based on the results reported for the QATS 2016 shared task, two approaches obtained top per-
formance ranks across all quality properties: the random forest classifiers in Štajner et al. [2016]
and the hybrid regressors in Nisioi and Nauze [2016]. While the latter achieved the highest
weighted F-score values in the classification setting for all quality properties (grammaticality,
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meaning preservation, simplicity, and overall), the former achieved the highest Pearson’s r cor-
relation coefficient in the regression setting for grammaticality, simplicity, and overall quality.

TheRandom Forest Classifier Approach
The architecture of the approach in Štajner et al. [2016] is illustrated in Figure 5.5. It follows
that of a typical non-sequential QE system. Given an input simplification, two sets of features
are first extracted, both of which are MT-inspired:

• QuEst++baseline features: the 17 baseline features for sentence-level QE forMT [Specia
et al., 2013]; and

• MTmetrics: a set of 22 MT evaluation metrics scores, such as BLEU, Meteor, TER, etc.

Feature Estimator

Non-Sequential Model

Good

Quest Features MT Metrics

!e cat perched on the mat.

Original Sentence: Simplified Sentence:

!e cat sat on the mat.

Figure 5.5: Architecture of the Štajner et al. [2016] non-sequential approach.

The features are then passed as input to a non-sequential ML algorithm that learns a model
to classify the simplification using the “good”/“ok”/“bad” label set of the shared task. Eight
ML algorithms are used in the experiments. Random forest classifiers prove to be the most
effective, achieving the highest weighted F-measure scores for grammaticality, simplicity, and
overall quality. For meaning preservation, the logistic regression model is the best.

This is a simple and effective approach. Its main limitation is the fact that it relies heav-
ily on a large set of 39 features. While some of the QuEst++ baseline features can be calcu-
lated rather efficiently, many of the MT evaluation metrics cannot. Random forests and non-
sequential models alike tend to work well when the training sets available are small, which is the



96 5. QUALITY ESTIMATIONFOROTHERAPPLICATIONS
case for the QATS 2016 shared task. However, as indicated in Section 2.5, non-sequential mod-
els have difficulty exploiting important structural clues such as long-distance word relationships.
We believe the performance of non-sequential models would not likely hold against sequential
models as TS QE datasets grow in size.

TheHybrid Regressor Approach
Nisioi and Nauze [2016] introduce a sophisticated regression approach for TS QE. It achieved
the highest Pearson’s r correlation coefficient with human-produced labels for almost all quality
properties in the QATS 2016 shared task. This is a hybrid approach for regression that combines
a sequential tree LSTM model with a swarm optimization ensemble of various types of metrics
and models. The approach is illustrated in Figure 5.6.

Feature Estimator

1.970

!e cat perched on the mat.

Original Sentence: Simplified Sentence:

!e cat sat on the mat.

Word N-grams

Word BLEU SVM + Kernel POS BLEU SVM Boosted Trees Tree-LSTM ModelLogistic Regressor

Particle Swarm Optimization

POS N-grams Dependency Parses EmbeddingsFt1 Ft2 Ft3

+

Figure 5.6: Architecture of the Nisioi and Nauze [2016] hybrid approach.

The feature extractor produces n-grams, POS n-grams, dependency parses, word embed-
dings, and three other feature sets:

• Ft1: TF-IDF values for words and POS tags of the simplified sentence;

• Ft2: TF-IDF values for words and POS tags of the original and the simplified sentence;
and

• Ft3: numerical features extracted from the original and simplified sentences, such as read-
ability scores, number of chunks, etc.
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Using these features, various approaches are used to produce 12 types of estimators:

• BLEU score estimators that calculate either the word or the POS tag n-gram precision
between the original and simplified sentence;

• logistic regressors, SVM classifiers, and gradient boosted tree classifiers trained with each
of the feature sets: Ft1, Ft2, or Ft3; and

• an SVM classifier trained with string kernels that calculates the similarity between the
word and POS tag n-grams of the original and simplified sentences.

The supervised models are trained over the QATS 2016 shared task data using the appro-
priate regression/classification label set depending on the model. The quality label qf resulting
from the combination of these 12 estimators is produced by the weighted sum of all 12 qual-
ity estimates, with weights learned from the training set using a particle swarm optimization
method.

The output of this ensemble is combined with the quality label produced by a sequential
tree LSTM classification model, which was introduced in Section 5.1.4. The tree LSTM model
takes as input the original and simplified sentences as two sequences of word embeddings. It
passes these embedding representations to a tree-structured set of LSTM nodes, which in turn
produces a discrete quality label for the simplification in question.

Standard averaging is used to combine the quality label from the ensemble and tree LSTM
model. At the end of the process, a continuous quality label is produced, making this a regression
approach. The highest performing variant of this approach achieves first place in all quality
dimensions except meaning preservation, where it placed second.

This is a good example of a way to use a sequential model (tree LSTM) to complement
non-sequential models. The various ensembling techniques proposed in this approach can be
very useful for future work in TS QE. One of the main limitations of this approach is its com-
plexity: It includes 13 quality estimation models/metrics, each of which has to be trained and
configured individually.

5.2 AUTOMATICTEXT SUMMARIZATION
Automatic Text Summarization (ATS) is the task of automatically shortening one or more doc-
uments while preserving their most important information. When more than one document is
used as input for the summarization process, the task is referred to as multi-document sum-
marization (as opposed to single-document summarization). ATS systems are usually classified
in the following categories depending on the method used to reduce content [Nenkova and
McKeown, 2011].

• Extractive: Entire sentences are selected from the input document(s) and assembled in
order to produce the summary.
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• Abstractive: New text is generated by taking entire sentences or parts of sentences and

rewriting them where needed.

Another dimension according to which ATS approaches can be classified is whether or
not they are query-focused, i.e., whether the content of the summary depends on a predefined
topic.

The vast majority of work on ATS is on extractive summarization and, consequently, the
majority of the evaluation approaches are designed for this type of approach. One important
difference from TS and MT is that evaluation for ATS cannot be done at sentence level, since
sentences in the summary are usually repetitions from the source document(s). Therefore, they
focus on system or document level evaluation and, consequently, the existing work on QE for
this task also follows the same approach.

Themain aspects to be evaluated in automatically produced summaries are: content preser-
vation, i.e., whether the summary contains the most important information available on the
original document(s), and linguistic quality—mainly coherence, i.e., the selected sentences make
sense together [Louis and Nenkova, 2013]. Also, similarly to TS, ATS is a monolingual text-
to-text transformation that offers more possibilities of comparison between source and target
than MT. Although there are initiatives targeting multilingual summarization [Giannakopou-
los, 2013, Giannakopoulos et al., 2017, 2015], no quality prediction work has been done for this
type of summarization.

Traditional evaluation on ATS uses Recall-Oriented Understudy for Gisting Evaluation
(ROUGE) [Lin, 2004, Lin and Hovy, 2003], pyramid [Nenkova et al., 2007], or responsiveness
as metrics. Similarly to BLEU, ROUGE is a reference-based metric. However, while BLEU
focuses on precision, ROUGE is recall-oriented and measures similarity between sentences by
considering the longest common n-gram statistics between a system output sentence and the
corresponding reference text. Pyramid is also reference-based, although it is manually defined.
Humans annotate summary content units (SCUs) in all the references available. Each SCU will
then receive a weight that represents the number of reference summaries in which it appears.
Good automatic summaries are expected to show SCUs with higher weights. Both ROUGE
and pyramid require multiple references in order to provide reliable scores, with most datasets
containing at least four references. Responsiveness is based on human judgements of quality
(similar to judgements of fluency and adequacy in MT). Quality is defined in terms of content
and linguistic adequacy.

As with manually produced translations, manually produced summaries are time-
consuming and expensive and some previous work has explored ways to evaluate summaries
without human references. However, the majority of previous work in this direction differs from
the idea of QE for MT, since it does not build ML systems in order to predict a target score.
Instead, it uses similarity scores (e.g., cosine similarity or Jensen Shannon divergence) between
the source document(s) and the automatic summary [Donaway et al., 2000, Saggion et al., 2010,
Steinberger and Ježek, 2009]. Since content is probably the most salient and important factor
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in summary evaluation, such approaches show considerably high correlations with human eval-
uation (pyramid and responsiveness) [Louis and Nenkova, 2013].

Although similarity-based evaluation is an important step toward reference-free evalua-
tion in ATS, we do not consider this to be a full-fledged QE approach. This would correspond to
one particular dimension of quality, which could be used as a feature in a QE model. Our review
focuses on techniques that apply ML to generalize features to predict a quality score. To the best
of our knowledge, only two studies have explored QE for ATS. In Sections 5.2.1 and 5.2.2 we
present each of these studies in terms of features, models, and state-of-the-art performance.

Another related approach is the work by Rankel et al. [2012]. Regression models are
trained in order to predict pyramid, responsiveness, or readability. While some of these ideas
may be useful for QE, this work still relies on human summaries in order to extract the features
for the regression models. Therefore, we do not consider it a QE approach.

5.2.1 THE SUMMARYASSESSMENTAPPROACH
Louis and Nenkova [2013] provide an extensive study on ATS evaluation without human ref-
erences. They experiment with several similarity metrics as alternatives for pyramid, responsive-
ness, and ROUGE, and propose a combination of similarity metrics through regression, where
the objective is to predict pyramid scores. They also experiment with pseudo-references as fea-
tures for predicting human judgements for content coverage. In both cases, the evaluated ATS
systems are built for multi-document summarization, i.e., given an input instance that contains
multiple documents, the task is to generate a single output summary that contains all relevant
and non-redundant information.

Features
The features used in the models built to predict pyramid are divided in three groups: distribution
similarity, summary likelihood and topic signatures.

• The distribution similarity features compare the word distributions between the input and
the summary.

– Kullback Leibler (KL) divergence: KL is calculated between two probability distri-
butions P and Q and measures the information lost when coding instances from P

using Q, where Q is an approximation of P . KL is calculated as shown in Equa-
tion (5.1), where pP .w/ is the word probability distribution for the input and pQ.w/

is the word probability distribution for the summary:

D.P jjQ/ D
X

w

pP .w/ log2

pP .w/

pQ.w/
: (5.1)

Both input-summary and summary-input directions are calculated, since KL is not
symmetric.
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– Jensen Shannon ( JS) divergence: JS assumes that the distance between P and Q is

not much different from the average of distance from their respective mean distri-
bution. JS is defined in Equation (5.2), where A D

PCQ
2

is the mean distribution of
P and Q and D is calculated using Equation (5.1). Unlike the KL divergence, JS
divergence is symmetric and bounded:

J.P jjA/ D
1

2
ŒD.P jjA/ C D.QjjA/�: (5.2)

– Cosine similarity: Cosine distance is calculated between the TF-IDF vectors of the
input and summary. Two variations are used: one where the TF-IDF vector for the
input considers all of its words, and another where the TF-IDF vector for the input
only considers the topic signature words. For both cases, the TF-IDF vector for the
summary uses all words in the summary.

• The summary likelihood features use a model of word probabilities for the input to com-
pute the likelihood of the summary.

– The unigram summary probability is calculated as

.pinpw1/n1.pinpw2/n2 :::.pinpwr/nr ;

where .pinpw1/ is the probability of the summary word wi in the input and ni is the
frequency of wi in the summary.

– The multinomial summary probability is calculated as

N Š

n1Šn2Š:::nr Š
.pinpw1/n1.pinpw2/n2 :::.pinpwr/nr ;

where N is the total number of words in the summary.

• Topic signatures is the set of the most descriptive and topical words in the input, according
to a log-likelihood test. The topic signature features are:

– proportion of the summary that is composed by the input topic signatures, and
– percentage of the input topic signatures shared by the summary.

Pseudo-references are explored in a similar way to Albrecht and Hwa [2008]. They are
selected from a corpus of various ATS system outputs with quality scores given by humans. The
outputs of two best, two mediocre, and two worst systems are taken. For each system in the test
set, unigram, bigram, trigram, and fourgram ROUGE scores are calculated between the system
and each pseudo-reference group (best, mediocre, or worst) and used as features.
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QEModels
For building the model that predicts pyramid scores, the distribution similarity, summary like-
lihood and topic signature features are combined using a linear regression method, having the
pyramid scores as labels. The TAC2009 corpus4 was used as the evaluation dataset, while the
TAC2008 corpus5 is used as the development set. TAC 2009 has 44 inputs, where each input
has 10 documents and 53 system outputs. TAC2008 has 48 inputs, with 10 documents each,
and 58 system outputs.

The datasets from the DUC2002, DUC2003, DUC2004, and DUC2005 conferences6
are used for experiments with pseudo-references. The ROUGE-based features are fed to a lin-
ear regression algorithm to learn a model that aims to predict the manually assigned content
coverage score for each summary in the test set. In other words, the label to predict is a mea-
sure of how much of the content of a single reference is represented in the automatic summary.
Cross-validation is employed where the summaries from one system in the test set are used for
testing the model, while the summaries from the remaining systems are used for training the
model. The predicted scores in each interaction of the cross-validation process are averaged for
each document in order to compose the final score.

Evaluation
For evaluating the models to predict pyramid scores, two types of metrics are used.

• Macro (system-level evaluation): Ranks generated by the automatic metrics are com-
pared with ranks produced by manual evaluation at ATS system level in terms of Spear-
man’s � rank correlation coefficient.

• Micro (summary-level evaluation):Ranks are predicted for each document, and the com-
parison between predicted and manual scores is also performed at document level. The
evaluation represents a percentage of automatically generated ranks that achieved signifi-
cant correlation with the manual rank (p < 0:05).

For the test set (TAC2009 data) at the macro level, the regression model shows higher
Spearman’s � correlation (0:77) with ranks produced by true pyramid than JS (0:74). However,
when the predicted ranks are compared against responsiveness ranks, JS shows higher Spear-
man’s � scores (0:67 and 0:70, respectively). At the micro level, the regression model is worse
than JS in terms of correlations with pyramid and responsiveness.

The results for the models using pseudo-references are evaluated in terms of the Spear-
man’s � rank correlation coefficient between the predicted scores for content coverage and their
corresponding human judgements. ForDUC2001 andDUC2003, the highest correlation scores
are found when the set of two mediocre systems was used for pseudo-references. For DUC2002,
4https://tac.nist.gov/2009
5https://tac.nist.gov/2008
6http://www-nlpir.nist.gov/projects/duc/data.html

https://tac.nist.gov/2009
https://tac.nist.gov/2008
http://www-nlpir.nist.gov/projects/duc/data.html
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the highest correlation is found when the set of two worst systems is used for pseudo-references.
Finally, for DUC2004 and DUC2005 the highest correlation is achieved when the set of two
best systems is used for pseudo-references. This indicates that the type of system output that
should be used for pseudo-references is very dependent on the evaluation dataset.

The focus of Louis and Nenkova [2013] is not on regression-based models, but rather on
understanding the contribution of different features for the problem. Nevertheless, this work
represents the first QE approach to ATS. The regression models predicting pyramid are not
consistently better than individual similarity-based metrics between input and summary, such
as JS. However, this may be because only similarity-based features are used to built the QE
models and thus not all quality dimensions of summaries are explored. More informed models
that includemore varied features (including those derived from pseudo-references) could present
better results. The pseudo-reference-based models could also be extended by combining other
features to the ROUGE scores, similarly to what has been done for MT.

5.2.2 THE SUMMARYRANKINGAPPROACH
In Singh and Jin [2016] a QE ranking framework is proposed for ATS. The motivation is to
avoid the need for human references and to take advantage of features that combine different
dimensions of summary quality in a prediction model. While traditional ATS evaluation fo-
cuses on content overlap only, this framework includes coherence, topical relevance, and other
informativeness features to build a QE model. Similar to Louis and Nenkova [2013], the ATS
systems evaluated are built for multi-document summarization.

Features
The feature sets are split into three groups.

• Informativeness features:

– IDF (inverse document frequency): This is calculated by averaging the IDF for all
words in the summary, using frequency information from the entire corpus.

– Concreteness: The MRC database is used to extract the concreteness values for the
words in the summary.

– Pseudo-summary similarity: The first paragraph from each document in an input
are combined to form an artificial pseudo-reference. This pseudo-reference is then
compared to the summary by generating bag-of-words vectors for the two versions
and then computing the cosine similarity between them.

– SumBasic: The average weight of all sentences in the summary is measured based on
a method proposed by Nenkova and Vanderwende [2005].

– Inputdependent:Given an input, these featuresmeasure the relevance of a summary.
The frequency of the input terms that appear in the summary and the cosine similarity
between bag-of-words vectors of the input and the summary are taken as features.
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– Named entities frequency: A weight is given to the named entities that appear in a

summary according to their importance in the documents of the input.
– N-gram: The n-gram (unigram or bigram) similarity between the documents in the

input and the summary is measured.

• Coherence features: LSA is used to measure the coherence of a summary according to a
semantic space model built with all the documents in an input. The LSA matrix is built
with the documents in the input and decomposed using the first 15 dimensions. The sen-
tences in the summary are then mapped to a vector in the LSA matrix. The similarity
between all possible sentence pairs is computed using cosine similarity. The mean and
standard deviation are taken as features.

• Topic features: LDA is used to extract topical features, with 20 topics for each input. The
top 100 words for each topic are used to calculate the topic similarity. A topic-summary
distribution for all topics is taken as a feature.

QEModel
The DUC dataset7 is used to train the QE system. This dataset for multi-document summa-
rization has 50 inputs, where each input has between 25 and 50 documents that share the same
topic. Each input has between 30 and 40 system outputs. Outputs were manually annotated for
responsiveness and linguistic quality, which serve as labels for QE.

A classification QE model is built using SVM. The objective is to classify pairs of sum-
maries using either predicted responsiveness or predicted linguistic quality in order to derive
ranks for the summaries. For instance, if responsiveness is used as the metric, the label is 1 if
R1 > R2 or 0 if R2 < R1, where R1 and R2 are the responsiveness scores of the summaries from
system S1 and S2, respectively.

A regression model using SVM is also proposed. The model first predicts the quality score
(responsiveness or linguistic quality) for each summary, instead of classifying the summary pairs.
The pairwise ranking is then derived following the same approach.

Responsiveness is defined using a Likert score varying between 1 (least responsive) to 5

(most responsive). Linguistic quality encompasses four dimensions: non-redundancy, referential
clarity, focus and structure, and coherence. Each dimension also varies from 1 to 5. One QE
model is built for each dimension.

Evaluation
The DUC dataset used contains human and automatically generated summaries. To train the
model with the features and configurations defined in the previous sections, different versions of
the data are used: “human” (only human summaries), “human and machine” (human summaries
and automatic summaries together), and “machine” (only automatic summaries). One question
7http://www-nlpir.nist.gov/projects/duc/data.html

http://www-nlpir.nist.gov/projects/duc/data.html
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is whether the QE model is able to differentiate between human and automatic summaries
(“human vs. machine”). In addition, the analysis distinguishes cases “with ties”, i.e., when human
scores are the same for two summaries, and “without ties”, where ties are discarded. Accuracy is
used to evaluate the classifiers.

When the quality label is responsiveness, the QE model that incorporates all features is
better at predicting scores for the “human” subset than for the “machine” subset, in both “with
ties” and “without ties” settings. Results for “human and machine” are higher than for “human”
and “machine”. The regression model outperforms all alternative models when responsiveness is
predicted.

When predicting linguistic quality, results are better for prediction “without ties”. Struc-
ture and coherence are the dimensions with the highest accuracy in both scenarios. Conversely,
non-redundancy shows the worst accuracy in the “with ties” configuration, while for “without
ties” focus shows the worst accuracy.

Singh and Jin [2016] explore QE for ATS in more details than the previous work of Louis
and Nenkova [2013]. The models built for predicting each quality dimension use different fea-
ture types, including advanced features that measures coherence and topics. A potential im-
provement could be the use of feature selection approaches for defining the best features for
each quality dimension. Another interesting point to be explored is the prediction of all dimen-
sions using a single model.

5.3 GRAMMATICALERRORCORRECTION

Grammatical Error Correction (GEC) consists in automatically correcting grammar mistakes
in an input sentence. Similar to ATS and TS, GEC is a monolingual text-to-text transformation
application, where the output is also natural language and, therefore, there are many possible
correct alternatives. Most work has focused on automatically correcting grammatical errors in
essays produced by second language learners (i.e., non-native speakers of a language).

Traditional evaluation work in this area, which is summarized in the efforts at twoCoNLL
shared tasks [Ng et al., 2014, 2013], use reference-based metrics to evaluate the results of
GEC systems. In particular, the reference-based metrics used for this task are: M2 (MaxMatch)
[Dahlmeier and Ng, 2012], I-measure [Felice and Briscoe, 2015], and GLEU [Napoles et al.,
2015].M2 computes an F-measure over a set of phrase-level edits that leads tomaximum overlap
with references. I-measure calculates the accuracy of alignments between source, reference, and
GEC output. Finally, GLEU is an n-gram matching metric, similar to BLEU, that penalizes
n-grams that appear in the original and in the GEC output, but not in the references.

However, reference-based approaches have similar drawbacks to those that occur in other
NLP tasks: They require references and it is important that these represent the collection of
all possible correct outputs. Therefore, QE is also an appealing evaluation framework for GEC
systems.
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So far, two papers have addressed QE for GEC and we describe both in what follows.

Similar to Section 5.2, here we focus on features, models and evaluation.

5.3.1 THE “THERE’S NOCOMPARISON” APPROACH
Napoles et al. [2016] explore ways to rank GEC systems without relying on human references.
For this purpose, individual reference-less metrics are studied and ML models are built in order
to predict grammaticality.

Two metrics for ranking GEC systems that rely on counting grammatical errors are com-
puted using two tools that detect grammatical errors: e-rater8—ER—and Language Tool9—LT.
The final metric score is calculated as 1 �

#errors
#tokens . These two metrics alone show high correlation

with human-produced ranks. In fact, ER shows the same Spearman � as GLEU (calculated
using human references). These reference-less metrics, together with reference-based GLEU,
I-measure and M2 are compared to the QE model in the evaluation.

Features
For prediction, Napoles et al. [2016] experiment with a “linguistic feature-based model”. This is
a QE model built using features from the sentences in the system output and an ML algorithm
to predict grammaticality. QE is done, therefore, at sentence level, with grammaticality as label.
The following features are explored.

• Misspelled words: This includes number of misspelled words (nmiss), proportion of mis-
spelled words (nmiss

n
), and log.nmiss C 1/ (where n is the total number of words). Misspelled

words are identified using a dictionary.

• N-gram counts: For each sentence in the output, counts of its n-grams are obtained from
the English Gigaword corpus [Parker et al., 2011], with n D 1:::3. The following features
are then computed, where Sn are the n-grams of order n for a given sentence:

–
P

s2Sn

log.count.s/C1/
jjSnjj

,
– maxs2Sn

log.count.s/ C 1/,
– mins2Sn

log.count.s/ C 1/.

• LM: Average log-probability of sentence and number of out-of-vocabulary words. The
LM model is trained on the English Gigaword corpus.

• Link grammar parser: A binary feature that indicates whether at least one complete link-
age was found for a sentence, according to the Link Grammar Parser.10

8https://www.ets.org/erater/about
9https://www.languagetool.org

10http://www.link.cs.cmu.edu/link/

https://www.ets.org/erater/about
https://www.languagetool.org
http://www.link.cs.cmu.edu/link/
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• PCFG parsing: The parser score for the sentence (normalized by the sentence length),

a binary feature that indicates whether or not the top node of the parse tree is senten-
tial; and the number of “dep” relations in the dependency parse tree (“dep” relations are
underspecified and may be a sign of grammatical errors).

QEModel
GUG, the dataset used for training Heilman et al. [2014], consists of 3,129 sentences extracted
from essays produced by non-native speakers of English. These sentences were annotated using
a Likert scale of Œ1 � 4�, where 4 means perfect grammaticality. The QE model is built by using
ridge regression, with the hyperparameter ˛ tuned via 5-fold cross-validation on the training
data.

Evaluation
The CoNLL-2014 Shared Task dataset [Ng et al., 2014] is used for evaluating the QE model.
This corpus contains 12 GEC system outputs for each of the 50 essays in the test set (1,312 sen-
tences). In addition, human ranks are available for this dataset. The predicted grammaticality
scores are evaluated by means of Spearman’s � rank correlation coefficient between them and the
human ranks. The predicted scores can produce ranks that show higher correlation with human
scores than reference-based I-measure or M2. However, the model has worse correlation with
human scores than reference-based GLEU and reference-less ER or LT.

Although the focus of Napoles et al. [2016] is not to build prediction models, the first QE
model proposed and the comparisons against traditional reference-based and simple reference-
less metrics may be useful for future work in the area. In fact, the next section presents an
extension of this approach.

5.3.2 FLUENCYANDMEANINGPRESERVATION
Asano et al. [2017] extend the work of Napoles et al. [2016] by including fluency and meaning
preservation as evaluation dimensions in addition to grammaticality. Each dimension of quality
is extracted separately and then linearly combined into a single score in which weights are learned
for each criteria using data from an annotated corpus.

Features
For extracting grammaticality information, a QE model similar to the one built by Napoles
et al. [2016] is used. In addition to the features presented in the previous section, the number
of errors detected by the Language Tool is also included in the feature set. In addition, the LM
was trained using the Gigaword corpus and the TOEFL11 dataset [Blanchard et al., 2013]. The
model, represented here after by SG. Oy/, where Oy is a sentence output by a GEC system, was
also trained with the GUG dataset, with grammaticality as the quality label.
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For measuring fluency, they consider Equation (5.3):

SF . Oy/ D
log Pm. Oy/ � log Pu. Oy/

j Oyj
; (5.3)

where Oy is a sentence output by a GEC system, j Oyj is the sentence length, Pm. Oy/ is the language
model probability of sentence Oy and Pu. Oy/ is the unigram probability. The LM is trained with
the British National Corpus and Wikipedia data.

Meaning preservation is measured by calculating Meteor between the original and the
automatically corrected sentences. For a sentence output by a GEC system ( Oy) and an original
sentence (x), Meteor is calculated as shown in Equation (5.4), where t D 0:85, P D

m. Oyc ;xc/
j Oyc j

,
R D

m. Oyc ;xc/
jxc j

.The parameters Oyc and xc represent the content words in Oy and x, respectively.The
function m. Oyc ; xc/ defines the number of content word matches between Oyc and xc , considering
inflections, synonyms, and misspellings:

SM . Oy; x/ D
P � R

t � P C .1 � t / � R0
: (5.4)

QEModel
The SG. Oy/, SF . Oy/, and SM . Oy; x/ scores are linearly combined as shown in Equation (5.5), where
the sum of ˛, ˇ, and  is 1 and all the scores range between 0 and 1:

Score. Oy; x/ D ˛SG. Oy/ C ˇSF . Oy/ C SM . Oy; x/: (5.5)

The parameters ˛, ˇ, and  were learned using the JFLEG dataset [Napoles et al., 2017].
This dataset has a set of student essays, and for each essay the outputs of four GEC systems and
a human score are provided.11

Evaluation
The CoNLL-2014 Shared Task dataset is also used for evaluating the final combined quality
score, SF . Oy/, in the same way as Napoles et al. [2016]. Rankings produced by Score. Oy; x/ show
a stronger correlation with human scores than GLEU in terms of Spearman’s � rank correlation
coefficient. By considering only individual quality dimensions, SM . Oy; x/ is the only dimension
that, on its own, does not show strong correlation with human scores. However, when combined
with SF . Oy/, SM . Oy; x/ boosts the correlation score, which does not occur when only SG. Oy/ and
SM . Oy; x/ are combined.

The dataset produced by Sakaguchi et al. [2016] is also used for evaluation. This dataset is
a version of the CoNLL-2014 dataset, with minimal edits, i.e., the minimum edits to make the
sentence grammatical, and fluent edits, i.e., the edits need to make the sentence fluent. Both
minimal and fluent edit versions are produced by humans. This dataset is used to determine
11The weights learned were ˛ D 0:07, ˇ D 0:83 and  D 0:10.
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whether Score. Oy; x/ selects fluent edits over minimal edits. Score. Oy; x/ is shown to prefer fluent
sentences, whilst GLEU and M2 prefer sentences with minimal edits.

In summary, this work is an important extension of Napoles et al. [2016] toward a full
QE framework for GEC. However, a QE model for GEC may benefit from other feature
types, mainly for grammaticality and meaning preservation. A framework that jointly learns all
dimensions at once may also bring additional improvements to the task.

5.4 AUTOMATIC SPEECHRECOGNITION

An ASR system takes as input an audio signal containing speech segments and attempts to
produce an accurate transcription of it. The subsentence-level variant of QE for MT was actually
inspired by work on word- and phrase-level confidence estimation for ASR. As discussed in
Section 2.2, in word-level confidence estimation for ASR one aims to predict how confident a
given ASR system is that a certain segment of an audio signal can be translated into a certain
word. Jiang [2005] describes and compares several word-level confidence estimation approaches,
and highlight the fact that most of them produce confidence estimates in unsupervised fashion,
which is different from the general approach used for QE of MT.

Recently, however, Negri et al. [2014] introduced a supervised word-level QE approach
for ASR that aims at estimating the quality of transcriptions following a standard QE frame-
work. Their approach takes as input both the audio signal and the transcription of a given seg-
ment produced by an ASR system, and produces as output the segment’s estimated Word Error
Rate (WER). They use a non-sequential regression model trained using SVMs or extremely
rrandomized trees with data labeled for WER, which is calculated by comparing a system tran-
scription with a manually created reference transcription. As features they use language and
acoustic model probabilities, Mel Frequency Cepstral coefficients and energy measures from
the audio signal, word-type counts from the transcription, and hybrid features that combine
audio and transcription through alignment.

Their model proved more effective than a strong baseline and showed that predicting the
quality of audio transcriptions is feasible.

5.5 NATURALLANGUAGEGENERATION

Natural Language Generation (NLG) approaches aim to generate text in human language [Re-
iter and Dale, 2000] from a range of structured representations. Different from text-to-text
transformations, such as MT or ATS, NLG systems receive as input structured representations
that are more abstract than language and generally intend to express the meaning of the text to
be generated. Therefore, they perform data-to-text transformations [Gatt and Krahmer, 2018].
Such abstract representations can take different forms, for example structured knowledge bases,
meaning representations, or even images.
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Since the input can vary significantly, it is difficult to create a single evaluation frame-

work for NLG that generalizes across representations. We refer the reader to Gatt and Krahmer
[2018] for more details on NLG evaluation. In general, NLG is evaluated based on human judg-
ments (e.g., fluency, adequacy, or readability) or reference-based metrics (e.g., BLEU, ROUGE,
TER or pyramid). However, the fact that NLG can assume different inputs and that the size of
the output can also vary considerably, producing a representative set of references is even more
problematic in NLG than in other tasks. QE can be thus used to enable task-based evaluation
without reference texts.

QE for NLG is related to work on predicting stylistic characteristics in order to improve
the performance of NLG systems [Dethlefs et al., 2014, Mairesse and Walker, 2011, Paiva and
Evans, 2005]. Stylistic prediction consists in automatically identifying to which degree a text
encompasses a given stylistic realization. For example, Dethlefs et al. [2014] predict the degree
of politeness, colloquialism, and naturalness ofNLG system outputs. Although stylistic realizations
can be seen as aspects of quality, existing work has not addressed them as such and, therefore,
we to not detail it in this book. In what follows, we describe the only two approaches we are
aware of that address quality prediction for NLG.

5.5.1 THEQERANKINGAPPROACH
Dušek et al. [2017] propose an approach forQE ofNLGusing neural networks. AnRNN-based
model is trained to estimate the quality of the output of an NLG system by directly comparing
such an output to the corresponding input meaning representation, as we explain below.

Data
To obtain labeled data, the outputs of the three following NLG systems are manually evaluated
by crowdsourcing.

• LOLS: a system based on imitation learning [Lampouras and Vlachos, 2016].

• RNNLG: a system using RNNs [Wen et al., 2015].

• TGen: a perceptron-guided tree generation system [Dušek and Jurčíček, 2015].

Each crowd worker received two randomly selected system outputs and the corresponding
source meaning representation. They were asked to assess the overall quality of both system
outputs using a 1–6 Likert scale, where 6 is the highest score for quality. An output produced by
an NLG system is a segment composed of one or two sentences. These automatically generated
outputs are evaluated by at least three annotators. The final quality scores for each segment is
the median of all annotations. Three datasets are used.

• BAGEL [Mairesse et al., 2010]: 404 segments about restaurants.

• SFRest [Wen et al., 2015]: around 5,000 segments also from the restaurant domain.
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• SFHot [Wen et al., 2015]: around 5,000 segments from the hotel domain.

The input for NLG approaches are meaning representations in the form of dialogue acts
(DA). A DA is composed by the main DA type (e.g., inform, request), optional slots (e.g., food,
location), and values (e.g., Chinese). In the approach by Dušek et al. [2017], the DAs are con-
verted into triplets (DA type—slot—value), where the same DA type can be repeated several
times according to the number of slots/values associated with it. In order to prevent sparsity,
delexicalization is used where, for example, Chinese is replaced by X-food in both input and
output occurrences.

QEModel
The RNN model for QE as two encoders, one for the input DA and another for the target
segment, where each encoder uses a Gated Recurrent Unit (GRU). The GRU encoders are
followed by two fully connected tahn layers that use the final hidden states of both encoders as
input. The last layer in the architecture, a linear layer, predicts a number in 1–6 that represents
the quality score.

Dušek et al. [2017] also experiment with augmenting the training data. More data is gen-
erated by introducing errors into system outputs or human references and adapting the quality
score accordingly. When available, human references are considered as segments with the high-
est quality score (6). For each error introduced, the quality score of the segment is deducted by
1. If the segment has a score higher or equal to 5:5, the first error lowers the score to 4 and, from
the second error onward, 1 is deducted from the quality scores.

The neural network is trained for 500 epochs with the aim to maximize Pearson’s r and
Spearman’s � correlation scores on a validation set. The model showing the best correlation for
both measurements is then selected. For experiments with data augmentation, the QE system
is trained for 20 epochs with all the data. The best parameters are used to initialize the training
with only the original data.

Evaluation
In order to evaluate the QE systems, Dušek et al. [2017] use Pearson’s r correlation coefficient,
Spearman’s � rank correlation coefficient, MAE, and RMSE. Dušek et al. [2017] also com-
pare the results of the QE systems with traditional reference-based metrics: BLEU, Meteor,
ROUGE, and CIDEr [Vedantam et al., 2015].

The QE systems evaluated differ mainly regarding the type and amount of data used (i.e.,
whether or not data augmentation was used). All proposed systems outperform the reference-
based metrics. The best system is built with all the data available (original and augmented data,
including human references). Such a system achieves a Pearson’s r score of 0:354, a Spearman’s
� score of 0:287, a MAE of 0:909, and a RMSE of 1:208. The values for MAE and RMSE are
significantly better than the MAE and RMSE of a mean baseline (MAE D 1:013 and RMSE
D 1:233).
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Dušek et al. [2017] also experiment with out-of-domain and cross-system prediction

scenarios. Although the QE systems seems to perform well for the cross-system case, out-of-
domain data does not improve over a system trained with only a small amount of in-domain
data.

5.5.2 QE FORBROWSEPAGES
Ueffing et al. [2018] propose QE models for evaluating the quality of automatically generated
titles of browse pages for eCommerce websites. A browse page is an intermediate webpage that
groups various items together (e.g., smart phones). Browse pages contain a summary descrip-
tion of such items that share some, but not all, characteristics (e.g., smart phones from different
brands). The content of a browse page can be viewed as slot-value pairs (similarly to the real-
ization of food as a slot and Chinese as value in the previous section). More specifically, Ueffing
et al. [2018] describe the need for QE in NLG at companies like eBay, where the content of
browse pages refers to products for sale and there are millions of browse pages available in var-
ious languages. Examples of slots are color and brand, while the corresponding values could be
white and Apple, respectively, and the category could be cell phones and smart phones. The moti-
vation for QE in this task is that different browse pages should encode different features and,
therefore, should be represented by different titles. In a large eCommerce website, generating
titles manually is unfeasible not only due to the amount of data, but also because titles may be
needed in different languages. Therefore, approaches to automatically generate such titles are
desired and, consequently, automatic approaches for evaluating the quality of the titles, such as
QE approaches, are needed.

Data
The original data for automatically generating titles corresponds of a category name followed by
a number of slot-values pairs. For QE, titles automatically generated by a rule-based system are
also available and manually annotated according to the following classes.

1. Good quality: No issues.

2. Acceptable quality: Minor issues.

3. Medium quality: Issues that impact understandability.

4. Bad quality: Major issues (e.g., incorrect brand names).

Ueffing et al. [2018] simplify this annotation to a binary decision: 1 and 2 receive the “ok” label
and 3 and 4 receive the “bad” label. The experiments are performed with titles generated for
English.

Artificial data is also used in order to augment examples for the type “bad” (only around
1% of the titles were labeled with class 4). Ueffing et al. [2018] selected approximately 29,000
browse pages containing brand slots from the data and changed the reference titles for such



112 5. QUALITY ESTIMATIONFOROTHERAPPLICATIONS
browse pages, misspelling the brand name. For training, around 380,000 browse pages were
used, while for testing, 2 test sets of 500 browse pages each were used.

Three title generation systems were evaluated:

• a rule-based approach with a manually created grammar;

• a hybrid generation approach that combines rule-based and SMT techniques; and

• an automatic post-editing (APE) approach where the titles are first generated using a rule-
based approach and then post-edited using an SMT model.

QEModel
TwoML algorithms are explored by Ueffing et al. [2018]: random forests and Siamese networks.
Random forests ensemble multiple decision trees for classification based on a set of features.
Three types of features are used.

• MTQE: features inspired by those from QE for MT, e.g., LM probability.

• BP: features specifically developed for dealing with information from the browse page
metadata, e.g., indicators of incorrect brand names.

• Redundancy: features to capture redundancy in the titles (e.g., word repetition).

Random forest models are built taking each feature set individually and combined. Hy-
perparameters are optmized with random search for 100 iterations and 5-fold cross-validation.

Siamese networks are neural networks composed by two sub-networks that can predict
the similarity between paired inputs. In Ueffing et al. [2018], in order to predict how adequate
and fluent an automatically produced title is for a given browse page, the sub-networks are two
LSTMs—one for the browse pagesmetadata and another for the title—with tied weights, which
implies that both networks perform identical transformations. The output is a similarity score,
defined after calculating cosine similarity between the last hidden states of each LSTM.

Evaluation
F1-score per class, weighted F1-score and Matthew’s correlation coefficient12 are used as
evaluation metrics. When no artificial data is used, the Siamese network models are only
better than random forest models with all features in terms of F1-score of the “ok” class.
However, the additional data with more“bad” class cases improves the results of the Siamese
network models, which consistently outperform random forrest models according to all metrics.

12Matthew’s correlation coefficient is used to evaluate the quality of binary classification tasks. It is robust for cases where the
classes are considerably unbalanced and, therefore, it is a more reliable metric than accuracy for such cases. It can be seen as a
discretization of Pearson’s r correlation coefficient and it also varies from�1 to 1, where 1 indicates full positive correlation,
�1 indicates full negative correlation and 0 represents no correlation.
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Ueffing et al. [2018] also report the performance of QE for each title generation system. The
best F1-and Matthew’s correlation scores were achieved by the rule-based system, followed by
the hybrid system.
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C H A P T E R 6

Final Remarks
QE, as presented in this book, is the task of predicting the quality of a given output of an
NLP application without relying on comparisons against manually produced references. More
specifically, QE focuses on NLP applications that output natural language. Since there are often
multiple correct outputs for these applications, standard evaluation metrics that match system
outputs against reference texts are far from reliable. In addition, QE can improve user experience
with NLP applications by providing a quality prediction in real-world usage scenarios for which
human references are not available. QE models are learned from data using machine learning
techniques, which facilitates more flexible modeling of particular relevant quality dimensions
according to the respective application scenario.

This book concentrated on QE for MT, since MT is probably the most widely used lan-
guage output NLP application and, consequently, a considerable amount of work has been done
in this field. We covered three levels of prediction.

• Subsentence-level QE: A quality score is predicted for each word or phrase.

• Sentence-level QE: A quality score is predicted for each given sentence.

• Document-level QE: A quality score is predicted for an entire document.

For each prediction level we presented main applications, labels, features, and architec-
tures, as well as evaluation methodologies and state-of-the-art approaches. In general, the most
successful approaches use neural models, moving from the traditional focus on feature engineer-
ing to that of architecture engineering. Another promising direction is the use of joint models
to perform quality prediction and automatic post-editing.

Sentence-level QE is the most popular prediction level, with most current work predict-
ing some representation of post-editing effort. It is usually addressed as a supervised machine
learning regression task using a variety of algorithms to induce models from examples of sen-
tence translations annotated with quality labels, e.g., 1–5 Likert scores. This prediction level has
featured in all shared tasks organized by the WMT annually since 2012 [Bojar et al., 2013, 2014,
2017, 2016, 2015, Callison-Burch et al., 2012]. State-of-the-art approaches use neural meth-
ods to learn features and models from relatively small amounts of annotated data in combination
with large amounts of source-target language parallel data that is not annotated for quality.

Word-level QE has been receiving more attention recently, with most work predicting
binary “good”/“bad” labels, mostly due to the lack of annotated corpora with more fine-grained
error annotation. Both sequential and non-sequential algorithms have been used with a large
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variety of word and contextual features as well as learned representations. An application that
can benefit from word-level QE is error detection in a post-editing workflow. This prediction
level has featured in the last five editions of the WMT shared tasks. An open challenge with
word-level QE is the prediction of more specific types of error levels without depending on large
quantities of data annotated for the respective errors. Similarly to sentence-level QE, state-of-
the-art methods are based on neural architectures that explore weak supervision, such as parallel
data without explicit quality annotations.

Document-level QE was introduced more recently and still suffers from the lack of reli-
ably annotated corpora. This task was organized as a track at WMT15 and WMT16. Existing
work predicts absolute scores for a document or relative ranking of translations by one or more
systems. Algorithms and features similar to those used for sentence-level prediction are explored.
This level is particularly useful for gisting purposes, where post-editing is not an option. Anno-
tating a document with a single global quality score that represents more than the aggregation of
sentence-level scores is a very challenging task even for humans. The biggest challenge for this
prediction level is finding effective labels and annotation protocols. This may in practice only be
possible for very short documents.

6.1 FUTUREDIRECTIONS
Thus far, shared tasks as well as the vast majority of published work have built models for the
output of statistical- and rule-based MT systems. With neural systems quickly becoming the
de facto approach to MT, the natural next step is to build models to predict the quality of these
systems. This is likely to prove a more difficult challenge for QE: Neural MT systems are based
on a strong target LMs component that is primarily responsible for guiding the decoding process
to generate translations. As a result, these systems tend to produce translations that are fluent,
but in many cases inadequate. In feature-based QE work, LM features are among the strongest
in capturing translation quality. These and other fluency indicators are expected to be much less
effective for translations produced by neural MT systems. The 2018 edition of the WMT shared
task on QE1 includes neural MT output. The shared task results will provide the first benchmark
and certainly open new research avenues on effective QE approaches for this type of translation.

Neural architectures to QE such as the ones discussed in Chapter 2 are likely to predom-
inate among upcoming approaches, given their promising performance and also their flexibility
to deal with different granularity levels, as well as to deal with these levels jointly, for example us-
ing multi-task learning. An interesting direction that could be exploited using such approaches
are general purpose sentence embeddings [Kiros et al., 2015] instead of or in addition to word
embeddings, in particular for sentence-level QE. Methods that go beyond sentences to estimate
how well a sentence fits a document context also represent a promising direction, especially for
document-level QE. Another promising direction for document-level QE is to further exploit

1http://www.statmt.org/wmt18/quality-estimation-task.html

http://www.statmt.org/wmt18/quality-estimation-task.html
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extrinsic quality labels, such as the success in completing a task, for example buying a product
based on machine-translated content.

The promising results from addressing QE as a by-product of automatic post-editing
[Hokamp, 2017, Martins et al., 2017a] should also be further pursued. Even though fixing
MT output is not needed for cases where MT is used for gisting (and the process may actually
add errors to the translation), the general idea of treating the problem as that of automatic post-
editing could provide good approximations on the proportion of the content that would need to
be edited. This may prove more useful for sentence-level QE where, as opposed to word-level
QE, the actual words marked as incorrect are not as important, as long as the proportion of
words identified as incorrect is close enough to the actual proportion of incorrect words.

Neural approaches tend to require more training data as well as more time (and compu-
tational resources) to train models. While some approaches can be pre-trained with unlabeled
data [Kim et al., 2017b], they still perform better if more labeled data is available. Strategies to
automatically label data at various granularity levels, like it was done for traditional feature-based
QE on statistical MT data [Logacheva and Specia, 2015] and recently for quality prediction for
automatically generated browse page titles [Ueffing et al., 2018], could be very useful. Finding
and labeling negative data, i.e., translations with errors, would be particularly critical, given that
good quality translations can be easily taken from instances of human translation. Designing
neural QE models that can work on less data (and resources) or better leverage unlabeled data
are also important directions.

Another general challenge for QE is the investigation of realistic extrinsic evaluation
methodologies with end-users. Very little work has been done toward evaluating the use of QE
in real-world settings. For example, it is still not clear how predictions on post-editing effort
can be best included in a translation workflow in order to improve productivity and, potentially,
reduce costs.

This book also covered work on QE for other language output applications, namely TS,
ATS, GEC, ASR, and NLG. These are much more recent endeavours, but interesting results
have been reported and we hope that other researchers will consider developing approaches for
these and potentially other applications.

6.2 RESOURCESANDTOOLKITS
A non-exhaustive list of resources and toolkits that have been developed for QE—mostly for
MT—is presented in this section. We hope that this list can encourage and inspire further
research in QE not only for MT but also for other NLP tasks. The following toolkits have been
released.

• deeqQuest implements neural models for QE at word, sentence and document levels
[Ive et al., 2018]. These models include a re-implementation of the POSTECH approach
[Kim et al., 2017b] as well as a light-weight approach based on bi-directional RNNs which
performs competitively. The models do not require any additional resources other than
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the QE training data, but parallel (source-reference) data can be used for better results.
Available from: https://github.com/sheffieldnlp/deepQuest.

• QuEst++ offers feature extraction, model training, and prediction for word-, sentence-,
and document-level QE [Specia et al., 2015].The feature extractionmodule was developed
in Java and uses several wrappers to access external NLP tools, while for model training,
wrappers are provided for use with the Python scikit-learn [Pedregosa et al., 2011] and the
CRFSuite [Okazaki, 2007] toolkits. QuEst++ has been used to build the baseline systems
for the sentence and document-level tasks at the WMT. Available from: http://www.
quest.dcs.shef.ac.uk/. The previous version of QuEst++, called QuEst [Specia et al.,
2013], was integrated into the Okapi framework [Paetzold et al., 2015].2 In addition, a
graphical interface that uses QuEst, called QuEst-Online, is also available: http://ww
w.quest.dcs.shef.ac.uk/quest_files/Online-QuEst.zip.

• Marmot was developed in Python for feature extraction, model training, and prediction
focusing on word- and phrase-level QE [Logacheva et al., 2016b]. This tool relies on
NLP and ML libraries available for Python in order to perform feature extraction, model
training, and prediction. Marmot can use any classifier in scikit-learn. It can also output
features in various formats suitable for other ML tools. Marmot has been used as a baseline
system for the word and phrase-level tasks at the WMT. Available from: https://gith
ub.com/qe-team/marmot.

• WCE-LIG was developed in Python for feature extraction, training and prediction for
word-level QE [Servan et al., 2015]. For feature extraction, wrappers are used to access
externalNLP tools. CRF models can be built by using a wrapper to the Wapiti toolkit
[Lavergne et al., 2010]. Available from: https://github.com/besacier/WCE-LIG.

• Qualitative is a Python tool that supports feature extraction, model training, and predic-
tion for sentence-level QE [Avramidis, 2016]. This tool was mainly designed for sentence-
level machine translation ranking and enables an MT system combination on the output
of various types of MT systems. Features are extracted using wrappers to access exter-
nal NLP tools. The ML module supports Orange [Demšar et al., 2004], scikit-learn and
MLpython3 toolkits. Available from: https://github.com/lefterav/qualitative.

• QE::GUI [Avramidis, 2017] is a graphical interface for Qualitative: Available from:
https://github.com/lefterav/qegui.

• Asiya is a toolkit that was written in Perl to extracts metrics for traditional reference-
based MT evaluation and as well as a set of features for sentence- and document-level QE
[Giménez and Màrquez, 2010]. Available from: http://asiya.lsi.upc.edu/.

2 http://okapiframework.org/wiki/index.php?title=QuEst_Plugin
3http://www.dmi.usherb.ca/~larocheh/mlpython/

https://github.com/sheffieldnlp/deepQuest
http://www.quest.dcs.shef.ac.uk/
http://www.quest.dcs.shef.ac.uk/
http://www.quest.dcs.shef.ac.uk/quest_files/Online-QuEst.zip
http://www.quest.dcs.shef.ac.uk/quest_files/Online-QuEst.zip
https://github.com/qe-team/marmot
https://github.com/qe-team/marmot
https://github.com/besacier/WCE-LIG
https://github.com/lefterav/qualitative
https://github.com/lefterav/qegui
http://asiya.lsi.upc.edu/
http://okapiframework.org/wiki/index.php?title=QuEst_Plugin
http://www.dmi.usherb.ca/~larocheh/mlpython/
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Many datasets have been created and used in previous work, including the following.

• TheWMT annual QE shared tasks datasets 2012–2017. These include a range of language
pairs, text domains, MT systems, label types, and granularity of annotations.

– WMT12: Sentence-level scoring for perceived post-editing effort (English-Spanish,
news domain).

– WMT13: Sentence-level scoring for HTER and post-editing time (English-
Spanish, news domain), sentence-level system selection (German-English and
English-Spanish, news domain), and word-level binary and multi-class classification
(English-Spanish, news domain).

– WMT14: Sentence-level scoring for perceived post-editing effort (English-Spanish,
Spanish-English, English-German and German-English, news domain), sentence-
level scoring for HTER and post-editing time (English-Spanish, news domain), and
word-level binary and multi-class classification (English-Spanish, Spanish-English,
English-German and German-English, news domain).

– WMT15: Sentence-level scoring for HTER (English-Spanish, news domain),
word-level binary classification QE (English-Spanish, news domain), and
paragraph-level scoring for Meteor (English-German and German-English,
news domain).

– WMT16: Sentence-level scoring for HTER (English-German of IT domain),
word-level and phrase-level binary classification QE (English-German, IT domain),
and document-level scoring for two-stage post-editing effort (English-Spanish, news
domain).

– WMT17: Sentence-level scoring for HTER and word-level and phrase-level binary
classification (English-German, IT domain and German-English, life sciences do-
main).

– WMT18: Sentence-level scoring for HTER, word-level and phrase-level 2 and
3-way classification (English-German and English-Czech, IT domain, German-
English and English-Latvian, life sciences domain), as well as document-level scor-
ing for average MQM-score (English-French, product title and descriptions). This
shared task provides the output of neural MT for English-German, English-Latvian,
and English-French. Another novelty is the task of detecting missing words (dele-
tions errors) in the MT output, as well as the corresponding source words.

Available from the WMT QE shared task webpages: http://www.statmt.org/wmtx/
quality-estimation-task.html, where x represents a year in f12; 13; 14; 15; 16; 17g.

• AUTODESK is a large dataset (IT domain) containing professional post-edits for sen-
tences machine translated from English into 13 languages, from which HTER can be

http://www.statmt.org/wmtx/quality-estimation-task.html
http://www.statmt.org/wmtx/quality-estimation-task.html
x
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computed. Available from: https://autodesk.app.box.com/v/Autodesk-PostEdit
ing/folder/2960023815.

• LIG contains English-French sentences in the news domain with post-edits at sentence
level [Potet et al., 2012], from which HTER can be computed. Available from: http:
//www-clips.imag.fr/geod/User/marion.potet/index.php?page=download.

• TRACE contains English-French and French-English post-edited sentences including
news domains and TED talks [Wisniewski et al., 2013], from which HTER can be com-
puted. Available from: http://anrtrace.limsi.fr/trace_postedit.tar.bz2.

• QT21 is a large dataset of professionally produced post-edits for sentences in the IT
(English-German and English-Czech) and life sciences (English-Latvian and German-
English) domains. Besides the machine-translated sentences and their post-edited coun-
terparts, this corpus contains other effort indicators logged during post-editing process:
post-editing time, keystrokes, and Likert scores [Specia et al., 2017]. Available from:
https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390.

• EAMT09 is an English-Spanish dataset (Europarl domain) with source sentences trans-
lated by four MT systems. The translated sentences were evaluated by professional trans-
lators for perceived MT quality [Specia et al., 2009a]. Available from: http://staffwww
.dcs.shef.ac.uk/people/L.Specia/resources/ce_dataset.rar.

• EAMT11 contains English-Spanish and French-English sentences (news domain), in-
cluding post-edited sentences, post-editing time and HTER measurements, and per-
ceived MT quality score following a 1–4-point scale performed by professionals [Spe-
cia, 2011]. Available from: http://staffwww.dcs.shef.ac.uk/people/L.Specia/re
sources/datasets_ce_eamt.tar.gz.

• WPTP12 is an English-Spanish dataset (news domain) with machine translations from
eight MT systems [Koponen et al., 2012]. Post-edited sentences are given along with
measurements of post-editing time and HTER. Available from: http://staffwww.dcs
.shef.ac.uk/people/L.Specia/resources/wptp-2012_dataset.tar.gz.

• GREG-MT-eval is a German-English dataset containing documents that were machine
translated by four MT systems [Scarton and Specia, 2016]. This dataset contains marks
for reading comprehension tests on the machine-translated documents by a number of test
takers. Available from: https://github.com/carolscarton/CREG-MT-eval.

• QATS (for TS) is a dataset with original and automatically simplified English sentences
annotated with scores for grammaticality, meaning preservation and simplicity [Štajner
et al., 2016]. Available from: http://qats2016.github.io/shared.html.

https://autodesk.app.box.com/v/Autodesk-PostEditing/folder/2960023815
https://autodesk.app.box.com/v/Autodesk-PostEditing/folder/2960023815
http://www-clips.imag.fr/geod/User/marion.potet/index.php?page=download
http://www-clips.imag.fr/geod/User/marion.potet/index.php?page=download
http://anrtrace.limsi.fr/trace_postedit.tar.bz2
https://lindat.mff.cuni.cz/repository/xmlui/handle/11372/LRT-2390
http://staffwww.dcs.shef.ac.uk/people/L.Specia/resources/ce_dataset.rar
http://staffwww.dcs.shef.ac.uk/people/L.Specia/resources/ce_dataset.rar
http://staffwww.dcs.shef.ac.uk/people/L.Specia/resources/datasets_ce_eamt.tar.gz
http://staffwww.dcs.shef.ac.uk/people/L.Specia/resources/datasets_ce_eamt.tar.gz
http://staffwww.dcs.shef.ac.uk/people/L.Specia/resources/wptp-2012_dataset.tar.gz
http://staffwww.dcs.shef.ac.uk/people/L.Specia/resources/wptp-2012_dataset.tar.gz
https://github.com/carolscarton/CREG-MT-eval
http://qats2016.github.io/shared.html
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• DUC (for ATS) provides various corpora from the shared tasks on ATS of the Doc-

ument Understanding Conferences (DUC) between 2002 and 2007. Manual and au-
tomatic summaries are provided, where the latter are annotated with different types
of scores derived from human evaluation. Available under request from: http://www-
nlpir.nist.gov/projects/duc/data.html.

• TAC (for ATS) are datasets from the shared tasks in ATS organized for the Text Analysis
Conference (TAC) for the years of 2008, 2009, 2010, 2011, and 2014. For each edition,
different types of evaluation scores are available. Available under request from: https:
//tac.nist.gov/data/index.html.

• GUG (for GEC) is a dataset with sentences extracted from essays produced by English
language learners with Likert scores for grammaticality [Heilman et al., 2014]. Available
from: https://github.com/EducationalTestingService/gug-data.

• JF-LEG [Napoles et al., 2017] is an extension of the GUG corpus that contains human
corrections and an annotation of perceived correction effort according to a Likert scale.
Available from: https://github.com/keisks/jfleg.

http://www-nlpir.nist.gov/projects/duc/data.html
http://www-nlpir.nist.gov/projects/duc/data.html
https://tac.nist.gov/data/index.html
https://tac.nist.gov/data/index.html
https://github.com/EducationalTestingService/gug-data
https://github.com/keisks/jfleg
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