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The Internet gives us access to a wealth of information in lan-
guages we don’t understand. The investigation of automated 
or semi-automated approaches to translation has become a 
thriving research field with enormous commercial potential. 
This volume investigates how machine learning techniques can 
improve statistical machine translation, currently at the fore-
front of research in the field.
 The book looks first at enabling technologies—technol-
ogies that solve problems that are not machine translation 
proper but are linked closely to the development of a machine 
translation system. These include the acquisition of bilingual 
sentence-aligned data from comparable corpora, automatic 
construction of multilingual name dictionaries, and word 
alignment. The book then presents new or improved statistical 
machine translation techniques, including a discriminative 
training framework for leveraging syntactic information, the 
use of semi-supervised and kernel-based learning methods, 
and the combination of multiple machine translation outputs 
in order to improve overall translation quality.
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11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.2 Approaches to Dedicated Word Selection . . . . . . . . . . . . . . . . 207
11.3 Discriminative Phrase Translation . . . . . . . . . . . . . . . . . . . 209
11.4 Local Phrase Translation . . . . . . . . . . . . . . . . . . . . . . . . 212
11.5 Exploiting Local DPT Models for the Global Task . . . . . . . . . . 218
11.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

12 Semisupervised Learning for Machine Translation . . . . . . . . 237
Nicola Ueffing, Gholamreza Haffari, and Anoop Sarkar
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
12.2 Baseline MT System . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
12.3 The Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240



viii Contents

12.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
12.5 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253
12.6 Conclusion and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . 255

13 Learning to Combine Machine Translation Systems . . . . . . . 257
Evgeny Matusov, Gregor Leusch, and Hermann Ney
13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
13.2 Word Alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
13.3 Confusion Network Generation and Scoring . . . . . . . . . . . . . . 266
13.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272
13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313



Series Foreword

The yearly Neural Information Processing Systems (NIPS) workshops bring to-
gether scientists with broadly varying backgrounds in statistics, mathematics, com-
puter science, physics, electrical engineering, neuroscience, and cognitive science,
unified by a common desire to develop novel computational and statistical strate-
gies for information processing and to understand the mechanisms for information
processing in the brain. In contrast to conferences, these workshops maintain a
flexible format that both allows and encourages the presentation and discussion
of work in progress. They thus serve as an incubator for the development of im-
portant new ideas in this rapidly evolving field. The series editors, in consultation
with workshop organizers and members of the NIPS Foundation Board, select spe-
cific workshop topics on the basis of scientific excellence, intellectual breadth, and
technical impact. Collections of papers chosen and edited by the organizers of spe-
cific workshops are built around pedagogical introductory chapters, while research
monographs provide comprehensive descriptions of workshop-related topics, to cre-
ate a series of books that provides a timely, authoritative account of the latest
developments in the exciting field of neural computation.

Michael I. Jordan and Thomas G. Dietterich





Preface

Foreign languages are all around us. Modern communication technologies give us
access to a wealth of information in languages we do not fully understand. Millions of
internet users are online at any time with whom we cannot communicate, essentially
because of a language barrier. The dream of automatic translation has fueled
a sustained interest in automated or semiautomated approaches to translation.
Despite some success in limited domains and applications, and the fact that millions
of webpages are translated automatically on a daily basis, machine translation (MT)
is often met with skepticism, usually by people who do not appreciate the challenges
of producing fully automated translations. It is, however, a very dynamic and fertile
field where statistical approaches seem to have taken the mainstream, at least at
the moment.

This book is a follow-up to the workshop on Machine Learning for Multilingual
Information Access organized at the NIPS 19 conference in December 2006. Several
of the contributors to this book also presented their work there in 2006. However,
a number of contributions were also submitted to the book only, which means that
roughly half of the content of the final book is newer material that was not presented
at the workshop.

Compared to the original workshop, this book is also firmly focused on statis-
tical machine translation (SMT). Its aim is to investigate how machine learning
techniques can improve various aspects of SMT. This book is split into two roughly
equal parts. The first part deals with enabling technologies, i.e., technologies that
solve problems that are not machine translation proper, but are closely linked to the
development of a machine translation system. For example, chapter 2 deals with the
acquisition of bilingual sentence–aligned data from comparable corpora, a crucial
task for domains or language pairs where no parallel corpus is available. Chapters 3
and 4 address the problem of identifying multilingual equivalents of various named
entities. One application for such a technology would be to improve the translation
of named entities across languages. Chapter 5 deals with word alignment, an essen-
tial enabling technology for most SMT systems. It shows how to leverage multiple
preprocessing schemes to improve the quality of the alignment. Finally, chapter 6
shows how word-sequence kernels may be used to combine various types of linguistic
information, and suggests that this can improve discriminative language modeling.

The second part of the book presents either new statistical MT techniques, or
improvements over existing techniques, relying on statistics or machine learning.
Chapter 7 addresses the problem of including syntactic information in the trans-



xii Preface

lation model, which is estimated in a discriminative training framework. Chapter
8 proposes a new approach to reranking the hypotheses output by an SMT sys-
tem trained on a very large corpus. Chapter 9 presents a novel approach to MT
that eschews the traditional log-linear combination of feature functions in favor of
a kernel-based approach (to our knowledge the first of its kind in the context of
MT). Chapters 10 and 11 focus on improving the selection of words or phrases in
the translation models. In chapter 10, a discriminative procedure decides whether
a word of the target vocabulary is present in the target sentence based on global
information on the source sentence, and uses a weighted transducer incorporating
a language model to correctly order the selected target words. In chapter 11, a dis-
criminative phrase selection model is integrated with a phrase-based SMT system.
The chapter also provides an interesting analysis and comparison of a large number
of automatic MT evaluation metrics. Chapter 12 explores the use of semisupervised
learning to improve MT output by leveraging large amounts of untranslated mate-
rial in the source language. Finally, chapter 13 shows how outputs of multiple MT
systems may be combined in order to improve the overall translation quality. This
approach allows collaborative projects where several partners contribute different
MT systems. System combination currently yields the best results in international
evaluation campaigns.

We intend this book to be useful both to the machine learning and to the
statistical machine translation communities. We hope that the machine learning
researcher will get a good overview of various advanced aspects of SMT, and get an
idea of the different ways in which learning approaches can directly influence and
have an impact on a very challenging and important problem. We also hope that the
statistical MT researcher will be interested in this book, in part as a presentation
of some advanced topics that may not be covered in introductory SMT textbooks,
and in part as a presentation of some novel machine learning–inspired techniques
which have the potential to yield new directions of research in this fertile field.

We wish to thank The MIT Press who gave us the opportunity to publish
this book, and in particular Susan Buckley and Robert Prior for their support in
preparing the manuscript. All the contributed chapters of this book were reviewed,
and we are grateful to the reviewers who took the time to provide comments and
criticism which contributed to improving the overall quality of the book: Thanks
to Caroline Brun, Marine Carpuat, Mauro Cettolo, Hal Daumé III, Hervé Déjean,
Andreas Eisele, Alex Fraser, Patrick Haffner, Xiaodong He, Pierre Isabelle, Roland
Kuhn, Dragos Munteanu, Miles Osborne, Jean-Michel Renders, Antti-Veikko Rosti,
Craig Saunders, Libin Shen, Michel Simard, Sandor Szedmak, and Dan Tufis.

Cyril Goutte
Nicola Cancedda
Marc Dymetman
George Foster



1 A Statistical Machine Translation Primer

Nicola Cancedda
Marc Dymetman
George Foster
Cyril Goutte

This first chapter is a short introduction to the main aspects of statistical machine
translation (SMT). In particular, we cover the issues of automatic evaluation
of machine translation output, language modeling, word-based and phrase-based
translation models, and the use of syntax in machine translation. We will also do a
quick roundup of some more recent directions that we believe may gain importance
in the future. We situate statistical machine translation in the general context of
machine learning research, and put the emphasis on similarities and differences with
standard machine learning problems and practice.

1.1 Background

Machine translation (MT) has a long history of ambitious goals and unfulfilled
promises. Early work in automatic, or “mechanical” translation, as it was known at
the time, goes back at least to the 1940s. Its progress has, in many ways, followed
and been fueled by advances in computer science and artificial intelligence, despite a
few stumbling blocks like the ALPAC report in the United States (Hutchins, 2003).

Availability of greater computing power has made access to and usage of MT
more straightforward. Machine translation has also gained wider exposure to the
public through several dedicated services, typically available through search engine
services. Most internet users will be familiar with at least one of Babel Fish,1 Google
Language Tools,2 or Windows Live Translator.3 Most of these services used to be

1. http://babelfish.yahoo.com/ or http://babelfish.altavista.com/
2. http://www.google.com/language_tools
3. http://translator.live.com/
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Interlingua

Direct translation

Transfer

TargetSource

An
al

ys
is

G
eneration

Figure 1.1 The machine translation pyramid. Approaches vary depending on how
much analysis and generation is needed. The interlingua approach does full analysis
and generation, whereas the direct translation approach does a minimum of analysis and
generation. The transfer approach is somewhere in between.

powered by the rule-based system developped by Systran.4 However, some of them
(e.g., Google and Microsoft) now use statistical approaches, at least in part.

In this introduction and the rest of this book, translation is defined as the task
of transforming an existing text written in a source language, into an equivalent
text in a different language, the target language. Traditional MT (which in the
context of this primer, we take as meaning “prestatistical”) relied on various levels
of linguistic analysis on the source side and language generation on the target side
(see figure 1.1).

The first statistical approach to MT was pioneered by a group of researchers
from IBM in the late 1980s (Brown et al., 1990). This may in fact be seen as part
of a general move in computational linguistics: Within about a decade, statistical
approaches became overwhelmingly dominant in the field, as shown, for example,
in the proceedings of the annual conference of the Association for Computational
Linguistics (ACL).

The general setting of statistical machine translation is to learn how to translate
from a large corpus of pairs of equivalent source and target sentences. This is
typically a machine learning framework: we have an input (the source sentence),
an output (the target sentence), and a model trying to produce the correct output
for each given input.

There are a number of key issues, however, some of them specific to the MT
application. One crucial issue is the evaluation of translation quality. Machine
learning techniques typically rely on some kind of cost optimization in order to learn
relationships between the input and output data. However, evaluating automatically
the quality of a translation, or the cost associated with a given MT output, is a very
hard problem. It may be subsumed in the broader issue of language understanding,
and will therefore, in all likelihood, stay unresolved for some time. The difficulties

4. http://www.systransoft.com/
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associated with defining and automatically calculating an evaluation cost for MT
will be addressed in section 1.2.

The early approach to SMT advocated by the IBM group relies on the source-
channel approach. This is essentially a framework for combining two models: a
word-based translation model (section 1.3) and a language model (section 1.4).
The translation model ensures that the system produces target hypotheses that
correspond to the source sentence, while the language model ensures that the output
is as grammatical and fluent as possible.

Some progress was made with word-based translation models. However, a signifi-
cant breakthrough was obtained by switching to log-linear models and phrase-based
translation. This is described in more detail in section 1.5.

Although the early SMT models essentially ignored linguistic aspects, a number
of efforts have attempted to reintroduce linguistic considerations into either the
translation or the language models. This will be covered in section 1.6 and in some
of the contributed chapters later on. In addition, we do a quick overview of some of
the current trends in statistical machine translation in section 1.7, some of which
are also addressed in later chapters.

Finally, we close this introductory chapter with a discussion of the relationships
between machine translation and machine learning (section 1.8). We will address
the issue of positioning translation as a learning problem, but also issues related to
optimization and the problem of learning from an imprecise or unavailable loss.

1.2 Evaluation of Machine Translation

Entire books have been devoted to discussing what makes a translation a good
translation. Relevant factors range from whether translation should convey emotion
as well and above meaning, to more down-to-earth questions like the intended use
of the translation itself.

Restricting our attention to machine translation, there are at least three different
tasks which require a quantitative measure of quality:

1. assessing whether the output of an MT system can be useful for a specific
application (absolute evaluation);

2. (a) comparing systems with one another, or similarly (b) assessing the impact
of changes inside a system (relative evaluation);

3. in the case of systems based on learning, providing a loss function to guide
parameter tuning.

Depending on the task, it can be more or less useful or practical to require a
human intervention in the evaluation process. On the one hand, humans can rely on
extensive language and world knowledge, and their judgment of quality tends to be
more accurate than any automatic measure. On the other hand, human judgments
tend to be highly subjective, and have been shown to vary considerably between
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different judges, and even between different evaluations produced by the same judge
at different times.

Whatever one’s position is concerning the relative merits of human and automatic
measures, there are contexts—such as (2(b)) and (3)—where requiring human
evaluation is simply impractical because too expensive or time-consuming. In such
contexts fully automatic measures are necessary.

A good automatic measure should above all correlate well with the quality of a
translation as it is perceived by human readers. The ranking of different systems
given by such a measure (on a given sample from a given distribution) can then
be reliably used as a proxy for the ranking humans would produce. Additionally,
a good measure should also display low intrasystem variance (similar scores for
the same system when, e.g., changing samples from the same dataset, or changing
human reference translations for the same sample) and high intersystem variance (to
reliably discriminate between systems with similar performance). If those criteria
are met, then it becomes meaningful to compare scores of different systems on
different samples from the same distribution.

Correlation with human judgment is often assessed based on collections of (human
and automatic) translations manually scored with adequacy and fluency marks
on a scale from 1 to 5. Adequacy indicates the extent to which the information
contained in one or more reference translations is also present in the translation
under examination, whereas fluency measures how grammatical and natural the
translation is. An alternate metric is the direct test of a user’s comprehension of
the source text, based on its translation (Jones et al., 2006).

A fairly large number of automatic measures have been proposed, as we will see,
and automatic evaluation has become an active research topic in itself. In many
cases new measures are justified in terms of correlation with human judgment. Many
of the measures that we will briefly describe below can reach Pearson correlation
coefficients in the 90% region on the task of ranking systems using a few hundred
translated sentences. Such a high correlation led to the adoption of some such
measures (e.g., BLEU and NIST scores) by government bodies running comparative
technology evaluations, which in turn explains their broad diffusion in the research
community. The dominant approach to perform model parameter tuning in current
SMT systems is “minimum error–rate training” (MERT; see section 1.5.3), where
an automatic measure is explicitly optimized.

It is important to notice at this point that high correlation was demonstrated for
existing measures only at the system level: when it comes to the score given to indi-
vidual translated sentences, the Pearson correlation coefficient between automatic
measures and human assessments of adequacy and fluency drops to 0.3 to 0.5 (see,
e.g., Banerjee and Lavie, 2005; Leusch et al., 2005). As a matter of fact, even the
correlation between human judgments decreases drastically. This is an important
observation in the context of this book, because many machine learning algorithms
require the loss function to decompose over individual inferences/translations. Un-
like in many other applications, when dealing with machine translation loss func-
tions that decompose over inferences are only pale indicators of quality as perceived
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by users. While in document categorization it is totally reasonable to penalize the
number of misclassified documents, and the agreement between the system decision
on a single document and its manually assigned label is a very good indicator of
the perceived performance of the system on that document, an automatic score
computed on an individual sentence translation is a much less reliable indicator of
what a human would think of it.

Assessing the quality of a translation is a very difficult task even for humans,
as witnessed by the relatively low interannotator agreement even when quality is
decomposed into adequacy and fluency. For this reason most automatic measures
actually evaluate something different, sometimes called human likeness. For each
source sentence in a test set a reference translation produced by a human is
made available, and the measure assesses how similar the translation proposed
by a system is to the reference translation. Ideally, one would like to measure
how similar the meaning of the proposed translation is to the meaning of the
reference translation: an ideal measure should be invariant with respect to sentence
transformations that leave meaning unchanged (paraphrases). One source sentence
can have many perfectly valid translations. However, most measures compare
sentences based on superficial features which can be extracted very reliably, such as
the presence or absence in the references of n-grams from the proposed translation.
As a consequence, these measures are far from being invariant with respect to
paraphrasing. In order to compensate for this problem, at least in part, most
measures allow considering more than one reference translation. This has the effect
of improving the correlation with human judgment, although it imposes on the
evaluator the additional burden of providing multiple reference translations.

In the following we will briefly present the most widespread automatic evaluation
metrics, referring to the literature for further details.

1.2.1 Levenshtein-Based Measures

A first group of measures is inherited from speech recognition and is based on
computing the edit distance between the candidate translation and the reference.
This distance can be computed using simple dynamic programming algorithms.

Word error rate (WER) (Nießen et al., 2000) is the sum of insertions, deletions,
and substitutions normalized by the length of the reference sentence. A slight
variant (WERg) normalizes this value by the length of the Levenshtein path, i.e.,
the sum of insertions, deletions, substitutions, and matches: this ensures that the
measure is between zero (when the produced sentence is identical to the reference)
and one (when the candidate must be entirely deleted, and all words in the reference
must be inserted).

Position-independent word error rate (PER) (Tillmann et al., 1997b) is a variant
that does not take into account the relative position of words: it simply computes
the size of the intersection of the bags of words of the candidate and the reference,
seen as multi-sets, and normalizes it by the size of the bag of words of the reference.
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A large U.S. government project called “Global Autonomous Language Ex-
ploitation” (GALE) introduced another variant called the translation edit rate
(TER)(Snover et al., 2006). Similarly to WER, TER counts the minimal number
of insertion, deletions, and substitutions, but unlike WER it introduces a further
unit-cost operation, called a “shift,” which moves a whole substring from one place
to another in the sentence.

In the same project a further semiautomatic human-targeted translation edit rate
(HTER) is also used. While WER and TER only consider a pre-defined set of
references, and compare candidates to them, in computing HTER a human is
instructed to perform the minimal number of operations to turn the candidate
translation into a grammatical and fluent sentence that conveys the same meaning
as the references. Not surprisingly, Snover et al. (2006) show that HTER correlates
with human judgments considerably better than TER, BLEU, and METEOR (see
below), which are fully automatic.

1.2.2 N-Gram–Based Measures

A second group of measures, by far the most widespread, is based on notions derived
from information retrieval, applied to the n-grams of different length that appear
in the candidate translation. In particular, the basic element is the clipped n-gram
precision, i.e., the fraction of n-grams in a set of translated sentences that can be
found in the respective references.5

BLEU (Papineni et al., 2002) is the geometric mean of clipped n-gram precisions
for different n-gram lengths (usually from one to four), multiplied by a factor
(brevity penalty) that penalizes producing short sentences containing only highly
reliable portions of the translation.

BLEU was the starting point for a measure that was used in evaluations organized
by the U.S. National Institute for Standards and Technology (NIST), and is
thereafter referred to as the NIST score (Doddington, 2002). NIST is the arithmetic
mean of clipped n-gram precisions for different n-gram lengths, also multiplied
by a (different) brevity penalty. Also, when computing the NIST score, n-grams
are weighted according to their frequency, so that less frequent (and thus more
informative) n-grams are given more weight.

1.2.3 The Importance of Recall

BLEU and NIST are forced to include a brevity penalty because they are based
only on n-gram precision. N-gram recall was not introduced because it was not
immediately obvious how to meaningfully define it in cases where multiple reference

5. Precision is clipped because counts are thresholded to the number of occurrences of
n-grams in the reference, so that each n-gram occurrence in the reference can be used
to “match” at most one n-gram occurrence in the proposed sentence. Note also that the
precision is computed for all n-grams in a document at once, not sentence by sentence.



1.2 Evaluation of Machine Translation 7

translations are available. A way to do so was presented in Melamed et al. (2003):
the general text matcher (GTM) measure relies on first finding a maximum matching
between a candidate translation and a set of references, and then computing the
ratio between the size of this matching (modified to favor long matching contiguous
n-grams) and the length of the translation (for precision) or the mean length of the
reference (for recall). The harmonic mean of precision and recall can furthermore be
taken to provide the F-measure, familiar in natural language processing. Two very
similar measures are ROUGE-L and ROUGE-W, derived from automatic quality
measures used for assessing document summaries, and extended to MT (Lin and
Och, 2004a). ROUGE-S, introduced in the same paper, computes precision, recall,
and F-measure based on skip-bigram statistics, i.e., on the number of bigrams
possibly interrupted by gaps.

A further measure, which can be seen as a generalization of both BLEU and
ROUGE (both -L and -S), is BLANC (Lita et al., 2005). In BLANC the score
is computed as a weighted sum of all matches of all subsequences (i.e., n-grams
possibly interrupted by gaps) between the candidate translation and the reference.
Parameters of the scoring function can be tuned on corpora for which human
judgments are available in order to improve correlation with adequacy, fluency,
or any other measure that is deemed relevant.

Finally, the proposers of METEOR (Banerjee and Lavie, 2005) put more weight
on recall than on precision in the harmonic mean, as they observed that this
improved correlation with human judgment. METEOR also allows matching words
which are not identical, based on stemming and possibly on additional linguistic
processing.

1.2.4 Measures Using Syntax

Liu and Gildea (2005) propose a set of measures capable of taking long-distance
syntactic phenomena into account. These measures require the candidates and the
references to be syntactically analyzed. Inspired by BLEU and NIST, averaged
precision of paths or subtrees in the syntax trees are then computed. In the
same line, Giménez and Màrquez (2007b) also use linguistic processing, up to
shallow semantic analysis, to extract additional statistics that are integrated in
new measures.

While these measures have the drawback of requiring the availability of an ac-
curate and robust parser for the target language, and of making the measure de-
pendent on the selected parser, the authors show significantly improved correlation
with human judgments of quality.

1.2.5 Evaluating and Combining Measures

Measures of translation quality are usually themselves evaluated according to
Pearson (and less often Spearman) correlation coefficients with human judgments
on some test set. Lin and Och (2004b) observe that this criterion is not stable
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across data sets. They thus propose an alternative metameasure, ORANGE , based
on the additional assumption that a good measure should tend to rank reference
translations higher than machine translations. Using a machine translation system,
an n–best list of candidate translations is generated. Each element in the list is
then scored using the measure of interest against a set of m reference translations.
Reference translations themselves are scored using the same measure, and a global
ranking is established. From this ranking, it is possible to compute the average rank
of reference translations. Averaging this average rank across all sentences in the test
set provides the ORANGE score. This score is then shown to be more consistent
than correlation coefficients in ranking evaluation measures on data produced by a
single MT system on a given test corpus.

An interesting method to combine the complementary strengths of different
measures, and at the same time evaluate evaluation measures and estimate the
reliability of a test set, is QARLA (Giménez and Amigó, 2006).

1.2.6 Statistical Significance Tests

Whatever automatic measure one uses, tests of statistical significance provparamet-
ric methods are usually considered better suited to the task, especially bootstrap
resampling and approximate randomization. Riezler and Maxwell (2005) provide a
good discussion of these tests in the context of machine translation evaluation.

1.3 Word-Based MT

Word-based statistical MT originated with the classic work of Brown et al. (1993).
Given a source sentence f , Brown et al. seek a translation ê defined by the
“fundamental equation of statistical MT”:

ê = argmax
e

p(f |e) p(e). (1.1)

Here the conditional distribution p(e|f) is decomposed into a translation model
p(f |e) and a language model p(e). By analogy with cryptography or communication
theory, this is sometimes referred to as a source-channel (or noisy-channel) model,
where p(e) is a known “source” distribution, p(f |e) is a model of the process that
encodes (or corrupts) it into the observed sentence f , and the argmax is a decoding
operation. This decomposition has the advantage of simplifying the design of p(f |e)
by factoring out responsibility for ensuring that e is well formed into the language
model p(e) (language models will be covered in more detail in section 1.4). It also
allows the language model to be trained separately on monolingual corpora, which
are typically more abundant than parallel corpora.

Brown et al. elaborate a series of five generative models (numbered 1 through
5) for p(f |e) which are known collectively as the IBM models. Each model in the
series improves on its predecessor by adding or reinterpreting parameters. The
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models are trained to maximize the likelihood of a parallel corpus seen as a set of
statistically independent sentence pairs,6 with the earlier models used to provide
initial parameter estimates for later models. Early stopping during expectation–
maximization (EM) training is typically used to avoid overfitting.

The IBM models are defined over a hidden alignment variable a which captures
word-level correspondences between f and e:

p(f |e) =
∑
a

p(f , a|e)

where a is a vector of alignment positions aj for each word fj in f = f1 . . . fJ . Each
aj takes on a value i in [1, I] to indicate a connection to word ei in e − e1 . . . eI ,
or is 0 to indicate a null connection. Note that this scheme is asymmetrical: words
in f may have at most a single connection, while words in e may have from 0 to J

connections. This asymmetry greatly reduces the number of alignments which must
be considered, from 2IJ if arbitrary connections are allowed, to (I + 1)J .

1.3.1 Models 1, 2, and HMM

IBM models 1 and 2, as well as the commonly used HMM variant due to Vogel
et al. (1996), are based on the following decomposition7 of p(f , a|e):

p(f , a|e) ≈
J∏

j=1

p(fj |eaj )p(aj |aj−1, j, I, J).

These three models share the family of lexical translation parameters p(f |e), but
differ in how they parameterize alignments:

p(aj |aj−1, j, I, J) =

⎧⎪⎪⎨⎪⎪⎩
1/(I + 1) IBM 1

p(aj|j, I, J) IBM 2

p(aj − aj−1) HMM

,

i.e., in IBM 1 all connections are equally likely, in IBM 2 they depend on the absolute
positions of the words being connected, and in the HMM model they depend on
the displacement from the previous connection. Och and Ney (2003) discuss how to
extend the HMM model to handle null connections. Maximum likelihood training
using the EM algorithm is straightforward for all three models; for IBM 1 it is
guaranteed to find a global maximum (Brown et al., 1993), making this model a
good choice for initializing the lexical parameters. Due to the large number of lexical

6. A necessary prerequisite is identifying translated sentence pairs in parallel documents.
This is nontrivial in principle, but in practice fairly simple methods based on sentence
length and surface lexical cues, e.g., Simard et al. (1992), are often adequate. For more
difficult corpora, a bootstrapping approach (Moore, 2002) can be used.
7. Omitting a factor for normalizing across all sentence lengths J .
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parameters, it is common practice to prune out word pairs (f,e) whose probability
p(f |e) falls below a certain threshold after IBM1 training.

1.3.2 Models 3, 4, and 5

IBM 1/2 and HMM are based on a generative process in which each word in f is
filled in (from left to right) by first choosing a connecting position in e according
to the position’s alignment probability, then choosing the word’s identity according
to its translation probability given the connected target word. In the more complex
models 3, 4, and 5, the emphasis of the generative process shifts to the target
sentence: for each word in e, first the number of connected words is chosen (its
fertility), then the identities of these words, and finally their positions in f . These
models retain word-for-word translation parameters p(f |e), as well as asymmetrical
alignments in which each source word may connect to at most one target word.

Model 3 incorporates a set of fertility parameters p(φ|e), where φ is the number of
words connected to e, and reinterprets model 2’s alignment parameters as distortion
parameters p(j|i, I, J).

Model 4 replaces model 3’s distortion parameters with ones designed to model
the way the set of source words generated by a single target word tends to behave
as a unit for the purpose of assigning positions. The first word in the ith unit is
assigned to position j in the source sentence with probability p(j − Ui−1|ei, fj),
where Ui−1 is the average position of the words in the (i − 1)th unit.8 Subsequent
words in the ith unit are placed with probability p(j−Ui,j−1|fj), where Ui,j−1 gives
the position of the (j − 1)th word in this unit.

Models 3 and 4 are deficient (nonnormalized) because their generative processes
may assign more than one source word to the same position. Model 5 is a technical
adjustment to correct for this problem.

The EM algorithm is intractable for models 3, 4, and 5 because of the expense of
summing over all alignments to calculate expectations. The exact sum is therefore
approximated by summing over a small set of highly probable alignments, each
of whose probability can be calculated efficiently. Model 2 Viterbi alignments are
used to initialize the set, which is then expanded using a greedy perturbative search
involving moving or swapping individual links.

1.3.3 Search

The problem of searching for an optimal translation (the argmax operation in
Eq. (1.1)) is a difficult one for the IBM models. Roughly speaking, there are two
sources of complexity: finding the best bag of target words according to the many-
to-one source-target mapping implicit in p(f |e); and finding the best target word

8. To combat data sparseness, Brown et al. map ei and fj in this expression to one of 50
equivalence classes defined over source and target vocabularies.
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order according to p(e). Knight (1999) shows that decoding is in fact NP-complete
for the IBM models through separate reductions exploiting each of these sources
of complexity. However, in practice, heuristic techniques work quite well. Germann
et al. (2001) describe a Viterbi stack-based algorithm that operates quickly and
makes relatively few search errors, at least on short sentences. As this algorithm is
similar to search algorithms used with phrase-based translation models, we defer a
description to section 1.5.

1.3.4 Current Status

The IBM models have been supplanted by the more recent phrase-based approach
to SMT, described in section 1.5, which is conceptually simpler and produces better
results. However, they retain a central role due to their ability to produce good word
alignments, which are a key ingredient in training phrase-based models. Despite
significant recent attention to the problem of word alignment for this and other
purposes, IBM 4 alignments—typically produced using the GIZA++ toolkit (see
appendix), and symmetrized using the method of Och and Ney (2000a)—remain
the most often-used baseline for work in this area.

Unlike the phrase-based model and the later IBM models, models 1/2 and HMM
also allow efficient computation of a smooth conditional distribution p(f |e) over
bilingual sentence pairs. This makes them well suited for applications requiring
analysis of existing sentence pairs, such as cross-language information retrieval.

1.4 Language Models

A language model (LM), in the basic sense of the term, is a computable prob-
ability distribution over word sequences, typically sentences, which attempts to
approximate an underlying stochastic process on the basis of an observed corpus of
sequences produced by that process.

Language models have many applications apart from statistical machine transla-
tion, among them: speech recognition (SR), spelling correction, handwriting recog-
nition, optical character recognition, information retrieval. Historically, much of
their development has been linked to speech recognition and often the methods
developed in this context have been transposed to other areas; to a large extent
this remains true today.

According to the dominant “generative”paradigm in language modeling (and to
our definition above), developing a language model should actually only depend on
a corpus of texts, not on the application context. The standard measure of adequacy
of the language model is then its perplexity,9 an information-theoretic quantity that

9. If LLp(T ) = log2 p(T ) represents the log-likelihood of the test corpus T relative to the
model p, then the perplexity of p on T is defined as 2−LLp(T ).
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measures the cost of coding a test corpus with the model, and which is provably
minimized when the model represents the “true” distribution of the underlying
stochastic process.

Recently, some work has started to challenge the dominant paradigm, in an
approach known as “discriminative” or “corrective” language modeling, where the
focus is more on minimizing errors in the context of a specific application, a criterion
that, due to inevitable inadequacies in the application-dependent aspects of the
overall probabilistic model (such as the “acoustic model” in SR, or the “translation
model” in SMT), does not coincide with perplexity minimization.

This section will mostly focus on the generative paradigm, and will give some
pointers to discriminative approaches. Good general references on language models
are Goodman (2001) and Rosenfeld (2000), as well as the tutorial of Charniak and
Goodman (2002), which have influenced parts of this section.

1.4.1 N-Gram Models and Smoothing Techniques

Still by far the dominant technique for language modeling is the n-gram approach,
where the probability of a sequence of words w1 , w2, . . . , wm is approximated, using
the case n=3 (trigram) as an illustration, as

p(w1 , w2, . . . , wm) ≈
∏

i
p(wi|wi−2, wi−1).

The central issue in such models is how to estimate the conditional probabilities
p(wi|wi−2, wi−1) from the corpus. The simplest way, maximum likelihood, corre-
sponds to estimating these probabilities as a ratio of counts in the corpus (where
# indicates a count of occurrences):

p(wi|wi−2, wi−1) =
#(wi−2, wi−1, wi)

#(wi−2, wi−1)
,

but this approach suffers from obvious “overfitting” defects; in particular the model
assigns a zero probability to a trigram which has not been observed in the corpus. In
order to address this problem, several “smoothing” techniques have been devised,
which can be roughly characterized by three central representatives.

In Jelinek-Mercer interpolated smoothing, one writes

pJM (wi|wi−2, wi−1) = λ3
#(wi−2, wi−1, wi)

#(wi−2, wi−1)
+ λ2

#(wi−1, wi)
#(wi−1)

+ λ1
#(wi)
#(•) ,

which corresponds to interpolating trigram, bigram, and unigram estimates, and
where the λ weights are tuned through cross-validation on the corpus. In refined
versions of this approach the weights may be tuned differently depending on
different ranges of frequencies of the corresponding denominators.
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In Katz backoff smoothing, the general idea is that when the trigram counts are
low, one will back off to the bigram estimates:

pK(wi|wi−2, wi−1) =

{
#∗(wi−2,wi−1,wi)

#(wi−2,wi−1)
if #(wi−2, wi−1, wi) > 0

λ pK(wi|wi−1) > 0 otherwise
,

where #∗(wi−2, wi−1, wi) is a “discounted” count according to the Good-Turing
formula, which has the effect of displacing some mass from observed events to
unobserved events (and which is based on the insight that the number of types10

which are observed once in the corpus is indicative of the number of unobserved
types which are “just waiting there” to be observed, for which some mass should
be reserved), and where λ is a normalization factor that weighs the influence of the
backoff to bigram model.

In Kneser-Ney backoff smoothing, and for expository reasons considering only
bigram models here, one writes

pKN (wi|wi−1) =

⎧⎨⎩
#(wi−1,wi)−D

#(wi−1)
if #(wi−1, wi) > 0

λ #̃(•,wi)

#̃(•,•) otherwise
,

where D ∈ [0, 1] is a fixed discounting factor, λ is a normalization factor, and where
(our notation/reconstruction) #̃(•, •) (resp. #̃(•, wi)) is the number of different
bigram types (resp. bigram types ending in wi) found in the corpus. Thus, a crucial
difference between Kneser-Ney and other techniques is that it does not back off to a
quantity that measures the relative frequency #(wi)

#(•) of occurrences of the word wi,

which can also be written in the form #(•,wi)
#(•,•) = #(wi)

#(•) , but to a quantity #̃(•,wi)

#̃(•,•)
that measures the “context-type unspecificity” of wi in terms of the number of
different word types which may precede wi. The intuition is that the less context
type–specific (i.e., more context type–unspecific) wi is, the more we would expect
to recognize it in a context wi−1, wi we have never witnessed before.

It is probably fair to say that n-gram with Kneser-Ney smoothing is currently
the most widely accepted language modeling technique in practice, sometimes even
applied to 4-gram or 5-gram modeling when large enough corpora are available.

Caching

N-gram models are severely limited in their ability to account for nonlocal statistical
dependencies. One simple and efficient technique allowing use of the nonlocal
context is caching: remembering words that have been produced in the recent
history, for example during a dictation session, and predicting that such words have
a tendency to repeat later in the session (Kuhn and de Mori, 1990). In its simplest

10. Types correspond to classes of objects, as opposed to tokens, which correspond to
occurrences of these classes. For instance, there are two tokens of the type “man” in the
expression “man is a wolf to man.”
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form, this consists in interpolating a standard trigram model with a unigram cache
model pcache(wi|w1, . . . wi−1) = (i − 1)−1(#instances of wi in w1, . . . wi−1), but
variants exist which consider instances of bigrams or trigrams in the history. One
potential problem with caching is that recognition errors early in the history may
have a snowball effect later on, unless the history is guaranteed to be accurate, such
as in an interactive dictation environment in which the user validates the system
outputs.

Class-Based Smoothing

Rather than using words as the basis for n-gram smoothing as discussed so far,
another option is to first group words into classes that exhibit similar linguistic
behavior, then to use these classes to model statistical dependencies. A simple
example of this approach is the following:

p(wi|wi−2, wi−1) ≈ p(wi|Ci) p(Ci|wi−2, wi−1),

where Ci is the class associated with wi . The point of this model is that the
classes have higher corpus frequencies than the individual words, and therefore
conditional probabilities involving classes can be more reliably estimated on the
basis of training data. There are many variants of this basic idea, along three main
dimensions: (i) the classes may appear in diverse combinations on the left or right
side of the conditioning sign; (ii) the association of a class to a word may be hard,
with one class per word (equation shown), or soft, with several classes per word (in
this case the equation shown needs to include a sum over classes); (iii) the classes
may be associated with the words according to predefined categorization schemes,
for instance part-of-speech tags or predefined semantic categories; the last case is
especially useful for restricted target domains, for instance speech recognition for
air travel reservations. At the opposite end of the spectrum, the classes may be
data-driven and obtained through various clustering techniques, a criterion of a
good clustering being a low perplexity of the corresponding language model.

One especially interesting application of classes is their possible use for modeling
languages with a richer morphology than English, for instance by taking a class to
be a lemma or a part of speech or by combining both aspects (Maltese and Mancini,
1992; El-Bèze and Derouault, 1990). Recent approaches to factored translation and
language models (see sections 1.4.3 and 1.7.1) work in a similar spirit.

1.4.2 Maximum Entropy Models

Maximum entropy models (aka log-linear models), have been an important tool of
statistical natural language processing (NLP) since the early 1990s, in particular
in the context of statistical machine translation as we will see in the next section,
but also for language modeling proper (Rosenfeld, 2000; Jelinek, 1998), where their
role is more controversial.
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For language modeling, these models come in two flavors. The main one, which
we will call history-based maxent models, will be discussed first, then we will briefly
discuss so-called whole-sentence maxent models.

History-Based Maximum Entropy Models

Generally speaking, history-based language models are models of the form

p(w1 , w2, . . . , wm) =
∏

i
p(wi|hi),

where hi = w1 , . . . , wi−2, wi−1 is the history, and where p(wi|hi) is a model of the
probability of the next word given its history. N-gram models take the view that
p(wi|hi) depends only on the value of the N − 1 last words in the history, but some
models attempt to extract richer information from hi; for instance, decision trees
over hi have been used as a basis for constructing probability distributions over wi.

A powerful approach to constructing history-based models is based on conditional
maximum entropy distributions of the form

p(w|h) =
1

Z(h)
exp

∑
k
λkfk(h, w),

where the fks are feature functions of the input-output pair (h, w), the λk are the
parameters to be trained, and Z(h) is a normalizing term. In some sense that can be
made formally precise, such a distribution is the most “neutral” among distributions
constrained to preserve the empirical expectations of the fks. By adding well-chosen
features, one can then force the distribution to be consistent with certain empirical
observations. Among features that have been proved practically useful, one finds
“skipping bigrams” that model the dependency of wi relative to wi−2, skipping
over wi−1, and “triggers,” which generalize caches and model long-range lexical
influences (for instance, if stock appears somewhere in a document, bond is more
likely to occur later), but in principle the addition of various other syntactic or
semantic features is possible, under the usual caveat that adding too many features
may lead to overfitting effects and must be controlled by feature selection procedures
or some form of regularization.

History-based maximum entropy models have been reported by some to signif-
icantly decrease the perplexity of n-gram models, but other researchers are more
cautious, pointing out that combinations of smoothed n-gram and cache often per-
form at similar levels.

Whole Sentence Maximum Entropy Models

Because the history-based approach models a sentence by predicting one word at
a time, phenomena which refer to a whole sentence, such as parsability, global
semantic coherence, or even sentence length are at best awkward to model in the
approach. In addition, the partition function Z(h), which involves a sum over all
the words in the lexicon, has in principle to be computed at decoding time for each
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position in the sentence, which is computationally demanding. For these reasons,
the following whole-sentence maximum entropy model is sometimes considered:

p(s) =
1
Z

p0(s) exp
∑

k
λkfk(s),

where s is a whole sentence, the fks are arbitrary features of s, p0(s) is a baseline
distribution (typically corresponding to a standard n-gram model), the λk are
parameters, and Z is a normalization constant.11 At decoding time, Z being a
constant need not be considered at all and the objective to maximize is a simple
linear combination of the features.12 On the other hand, training is computationally
expensive because, at this stage, Z does need to be considered (it depends on the
λks, which vary during training), and in principle it involves an implicit sum over
the space of all sentences s. This is infeasible, and approximations are necessary,
typically in the form of MCMC (Monte Carlo Markov chain) sampling techniques.

1.4.3 Some Recent Research Trends

Syntactically Structured Language Models

There is a large and well-established body of research on statistical parsing tech-
niques for computational linguistics. Until recently, there have been relatively few
approaches to language modeling based on such techniques, in part because the
focus in traditional models has been on parsing accuracy rather than on the per-
plexity of the associated text-generation processes (when they are well-defined),
in part because most probabilistic parsing models require the availability of man-
ually annotated treebanks, which are scarce and have limited coverage, and may
not be immediately suitable to tasks such as large-scale speech recognition. Two
recent language models that use statistical parsing are Chelba and Jelinek (1998)
and Charniak (2001), which are both based on a form of stochastic dependency
grammar, the former operating in a strict left-to-right manner and trying to pre-
dict the next word on the basis of a partial parse for its previous history, the latter
assigning probabilities to the immediate descendants of a constituent conditioned
on the content of its lexical head (which may be to the right of the descendant,
which makes this model non–left to right). Perplexity reductions of up to 25% over
a baseline trigram model have been reported, but again such reductions tend to
decrease when simple improvements to the baseline are included, such as a cache
mechanism.

11. Although introduced later in the language model literature than the previous history-
based models, these nonconditional maximum entropy models are actually closer to the
original formulation of the maximum entropy principle by Jaynes (1957).
12. Note, however, that decoding here means assessing a complete sentence s, and that
these models are ill-suited for incremental evaluation of sentence prefixes.
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Topic-Based Modeling and Related Approaches

Topic-based document modeling has been for some time now a hot topic in infor-
mation retrieval, one of the best-known techniques being latent semantic analysis
(LSA) or its probabilistic counterpart (PLSA). Such techniques allow words to be
mapped to a real-valued vector in a low-dimensional “topic space,” where Euclid-
ian distance between vectors is an indication of the “semantic” proximity between
words, as measured by their propensity to appear in lexically related documents.
In Bellagarda (1997) these vectorial representations are used in conjunction with
n-grams to build language models where the probability of producing a word is con-
ditioned in part by the topical constitution of its history, as summarized by a vector
that accumulates the topical contributions of each of the words in the history.

The previous approach is an instance of modeling statistical dependencies that
may span over long ranges, such as a whole sentence or even a document. The neural
network–based model of Bengio et al. (2003) is another approach that falls in this
category. In this model, words are also represented as vectors in a low-dimensional
space, and the process of generating texts is seen as one of generating sequences of
such vectors. The model learns simultanously the mapping of words to vectors and
the conditional probabilities of the next vector given the few previous vectors in
the history. As words are “forced” into a low-dimensional vectorial representation
by the learning process (in which different occurrences of a word get the same
representation), words that show similar contextual behaviors tend to be mapped
to vectors that are close in Euclidian space. Recently, similar techniques have been
applied to language models in the context of SMT (Déchelotte et al., 2007).

Bayesian Language Modeling

Some recent approaches to document topic-modeling, such as latent Dirichlet
allocation (LDA; see Blei et al., 2003) attempt to characterize the problem in
strict “Bayesian” terms, that is, in terms of a hierarchical generative process where
probabilistic priors are provided for the parameters. Dynamic Bayesian networks
is another active area of research which also considers hierarchical time-dependent
generative processes which are actually generalizations of hidden Markov models
(HMM) with structured hidden layers. These methods are starting to percolate
to language modeling, in models that attempt to characterize the production of
word sequences through a structured generative process that incorporates a topic-
modeling component (Wallach, 2006; Wang, 2005; Mochihashi and Matsumoto,
2006).

Also in the Bayesian tradition are recent attempts to provide “probabilistic-
generative” explanations of the Kneser-Ney smoothing procedure in terms of the
so-called Chinese restaurant process which is claimed to explain the differential
treatment of type counts and occurrence counts in the procedure (Goldwater et al.,
2006; Teh, 2006).
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Discriminative Language Modeling

As mentioned at the beginning of this section, while perplexity as a measure of per-
formance of a language model has the advantage of universality across applications,
it is not always correlated with task-related measures of performance, such as the
word error rate in speech recognition, or the BLEU or NIST scores in statistical
machine translation. In speech recognition, for more than 15 years, this problem has
been addressed, not so much in the subtask of language modeling proper, but rather
in the so-called acoustic modeling subtask (recovering a word hypothesis from its
acoustic realization), where acoustic models have been trained with methods such
as maximum mutual information estimation (MMIE) or minimum classification er-
ror (MCE), which attempt to learn model parameters with the direct objective of
minimizing recognition errors (Huang et al., 2001).

Such discriminative methods have recently gained a large following in all areas
of NLP, and especially in statistical machine translation, as witnessed by several
chapters in this book (chapters 7, 8, 10, 11). Concerning the use of discriminative
models for language modeling proper, a representative paper is Roark et al. (2004),
which applies learning based on perceptrons and conditional random fields, in a
speech recognition context, to the task of tuning the parameters of a language model
(weights of individual n-gram features) on the basis of a training set consisting of
input-output pairs where the input is a lattice of word choices returned by a baseline
speech-recognition system and the output is the correct transcription, and where the
objective is to find parameters that favor the selection of the correct transcription
from the choices proposed by the input lattice, as often as possible on the training
set. In chapter 6, Mahé and Cancedda introduce another approach to learning a
language model discriminatively in the context of machine translation, this time by
using kernels rather than explicit features.

1.5 Phrase-Based MT

Phrase-based MT is currently the dominant approach in statistical MT. It incorpo-
rates five key innovations relative to the classic approach discussed in section 1.3:

the use of log-linear models instead of a simple product of language and transla-
tion models;

the use of multiword “phrases” instead of words as the basic unit of translation,
within a simple one-to-one generative translation model;

minimum error-rate training of log-linear models with respect to an automatic
metric such as BLEU, instead of maximum likelihood training;

a clearly defined and efficient heuristic Viterbi beam search procedure; and

a second rescoring pass to select the best hypothesis from a small set of candidates
identified during search.
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The phrase-based approach is due to Och and Ney (2004). Our presentation in the
following sections is loosely based on Koehn et al. (2003), who give a synthesis of
Och’s method and related approaches by other researchers.

1.5.1 Log-Linear Models

Recall that the noisy-channel approach combines contributions from a language
model p(e) and a “reversed” translation model p(f |e) by multiplying them. A
slight generalization of this is to apply exponential weights in order to calibrate
the contribution of each model: p(e)α1p(f |e)α2 . Taking logs and generalizing the
language and translation models to arbitrary feature functions h(f , e) gives a log-
linear analog to Eq. (1.1):

ê = argmax
e

∑
i

αihi(f , e) (1.2)

≈ argmax
e,a

∑
i

αihi(f , a, e),

where the standard Viterbi approximation on the second line simplifies the search
problem and gives features access to the alignment a connecting f and e. This
framework is more flexible than the original noisy-channel approach because it can
easily accommodate sources of information such as bilingual dictionaries which are
difficult to incorporate into generative probabilistic translation models. Commonly
used features are logs of forward and reversed translation model probabilities
and language model probabilities, as well as a simple word count and a phrase
distortion model (described in more detail below). A key assumption made by the
search procedure is that features decompose linearly; that is, if (f , a, e) can be
split into a set of disjoint phrase triples (f̃k, ak, ẽk), k = 1 . . .K, then h(f , a, e) =∑K

k=1 h(f̃k, ak, ẽk). This motivates calling the framework log-linear rather than
simply linear, since log probabilities have this property, but ordinary probabilities
do not. It is also worth noting that pα(e|f) = exp(

∑
i αihi(f , e))/Z(f) can be

interpreted as a maximum entropy model for p(e|f), where Z(f) is a normalizing
factor. This was the original formulation of the log-linear approach in Och (2002).

1.5.2 The Phrase-Based Translation Model

The key features used in Eq. (1.2) are related to the phrase-based model for p(e, a|f).
This model is based on a simple and intuitive generative process: first, f is

segmented into contiguous phrases (word sequences of arbitrary length), then a
translation is chosen for each phrase, and finally the resulting target phrases are
reordered to form e. Unlike the IBM models, there are no parts of f or e that are
not covered by a phrase, and each phrase has exactly one translation.

Segmentations are usually assumed to be uniformly distributed, but the other two
parts of the generative process—translation and reordering—each give rise to log-
linear features. Let ẽ1 . . . ẽK be a segmentation of e into phrases, and f̃1 . . . f̃K be the
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corresponding source phrases (i.e., the phrases in f , in the order their translations
appear in e). Then a “reversed” translation feature can be defined by assuming
that phrases are generated independently:

hT (f , a, e) =
K∑

k=1

log p(f̃k|ẽk).

A “forward” translation feature can be defined analogously using p(ẽk|f̃k). Koehn
et al. (2003) propose a simple distortion feature for capturing reordering13:

hD(f , a, e) =
K∑

k=1

−|begin(f̃k) − end(f̃k−1) − 1|,

where begin(f̃) and end(f̃) are the initial and final word positions of f̃ in f (with
end(f̃0) = 0). This assigns a score of 0 to translations which preserve source phrase
order, and penalizes displacements from the “expected” position of the current
source phrase (immediately after the preceding phrase) by the number of words
moved in either direction.

The phrase-translation distributions p(f̃ |ẽ) and p(ẽ|f̃) are defined over a set of
phrase pairs called a phrase table. Phrase-table induction from parallel corpora is
crucial to the performance of phrase-based translation. It typically proceeds by
first word-aligning the corpus, then, for each sentence pair, extracting all phrase
pairs that are compatible with the given word alignment, under the criterion that
a valid phrase pair must not contain links to words outside the pair. For example,
in the sentence pair: Je suis heureux / I am very happy, with word alignment Je/I,
suis/am, heureux/very happy, legal phrase pairs would include Je/I, Je suis/I am,
and heureux/very happy, but not heureux/happy. In general, this algorithm is fairly
robust to word-alignment errors, which tend to affect recall more than precision.

The existence of a standard phrase-extraction algorithm independent of the
underlying word alignment has stimulated interest in improved word-alignment
techniques. As mentioned in section 1.3, the baseline approach of Och and Ney
(2003) relies on IBM model (typically IBM 4) alignments carried out from each
translation direction, then symmetrizes them into a single alignment by beginning
with links in their intersection, then selectively adding links from their union,
according to various heuristics. Recently proposed alternatives include combining
alternate tokenizations (see chapter 5 by Elming, Habash and Crego), the use
of enhanced IBM models (He, 2007), more principled symmetrization techniques
(Liang et al., 2007), discriminative techniques (Blunsom and Cohn, 2006), and
semisupervised techniques (Fraser and Marcu, 2006), to name only a few.

One difficulty in judging alignment quality for SMT is that the ideal metric—
performance of the resulting MT system—is very expensive to compute. In a recent

13. This equation assumes that begin() and end() have access to a, which maps the
permuted source phrases f̃1 . . . f̃K to their positions in f .
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paper, Fraser and Marcu (2007) argue against the use of the popular alignment
error rate metric as a stand-in, and propose an alternative which correlates better
with MT performance.

Once phrase pairs have been extracted from the training corpus, it remains
to estimate the phrase-translation distributions p(f̃ |ẽ) and p(ẽ|f̃). These may be
obtained directly as relative frequencies from joint counts of the number of times
each phrase pair was extracted from the corpus. Compositional estimates based
on lexical probabilities from the IBM models or word-alignment counts are often
used in addition to relative frequencies (Koehn et al., 2003; Zens and Ney, 2004).
It is interesting that the heuristic method outlined in the previous paragraphs for
populating phrase tables and estimating conditional phrase probabilities seems to
perform better than more principled generative algorithms (e.g., Marcu and Wong,
2002) for estimating these distributions. DeNero et al. (2006) argue that this is
essentially due to the inclusive property of considering alternative segmentations
simultaneously (e.g., learning both Je/I, suis/am, and Je suis/I am in the example
above) rather than forcing segmentations to compete as would estimation with the
EM algorithm.

1.5.3 Minimum Error-Rate Training

Given an automatic metric as discussed in section 1.2—for instance, BLEU—
minimum error-rate training seeks the vector of log-linear parameters α̂ that
optimize the metric on a training corpus:

α̂ = argmax
α

BLEU(Ê = argmax
E

log pα(E|F ), R), (1.3)

where log pα(E|F ) =
∑

(e,f)∈(E,F ) log pα(e|f). The inner argmax is a search with
log-linear model log pα, applied to a source-language corpus F to find the best
translation Ê. The outer argmax finds the α for which Ê maximizes BLEU with
respect to a reference translation R. Och (2003) showed that this approach produces
models that score better on new corpora according to the chosen metric than does
a maximum likelihood criterion.

Eq. (1.3) is difficult to optimize because the inner argmax is very expensive
to compute, and also because BLEU is a nondifferentiable function of α. The
standard solution, proposed in Och (2003), is to approximate the inner argmax
with a maximization over a small set of n-best candidate translations for F (on
the order of 100 translations per source sentence). This makes it fast enough that
general optimization techniques can be applied to solve the outer argmax. The
success of this approximation depends on being able to identify n-best lists that are
representative of the entire search space. Och does this by iterating over different
values of α̂, each time using the new value of α̂ to add new candidates to the n-best
lists, which are in turn used to update α̂. Bad values of α̂ will therefore add bad
candidates to the lists which will allow the optimization to avoid these values in
future iterations. The complete algorithm is:
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1. Initialize α̂ and set the n-best set B = ∅.
2. Find B(α̂), the n-best translations for each source sentence according to pα̂.

3. Set B = B ∪ B(α̂). Stop if B doesn’t change.

4. Set α̂ = argmax
α

BLEU(Ê = argmax
E∈B

pα(E|F ), R) and go to step 2.

Since the number of hypotheses produced by the decoder is finite, this algorithm is
guaranteed to terminate. In practice, it converges fairly quickly, usually after ten
iterations or so.

The optimization in step 4 may be solved using Powell’s algorithm (Press
et al., 2002). This is a general optimization algorithm that iteratively chooses lines
α + γα′ which must be optimized in the scalar value γ by means of a user-supplied
“subroutine.” Since log pα is linear in α, the score it assigns to each hypothesis in
an n-best list is linear in γ. There are therefore at most n− 1 values of γ at which
BLEU can change for a single n-best list, and at most m(n − 1) values for a set
of m n-best lists. By examining the intervals between these points, it is possible
to efficiently obtain an exact solution to the problem of maximizing BLEU as a
function of γ.

The bottleneck in Och’s algorithm is the decoding operation in step 2. This makes
it impractical for use on training corpora larger than about 1000 sentences, which
in turn limits the number of log-linear parameters that can be reliably learned.
Also, the ability of Powell’s algorithm to find a good optimum appears to degrade
with larger parameter sets (Och et al., 2004), so the typical number of parameters
is on the order of ten. Och (2003) also proposes a smoothed version of BLEU which
would allow gradient-based techniques to be used instead of Powell’s algorithm,
but it is not clear whether this approach would give better performance with large
feature sets.

Alternatives to Och’s algorithm use a different strategy for solving the central
problem of costly decoding time: modify the decoder to work faster, typically
by considering only monotone alignments (i.e., ones in which source and target
phrases have the same order), and by using an aggressive pruning threshold. If
decoding is fast enough, the outer argmax in Eq. (1.3) can be solved directly with
a general optimization algorithm, e.g., downhill simplex (Zens and Ney, 2004) or
simultaneous perturbation stochastic approximation (Lambert and Banchs, 2006).
These approaches appear to be competitive with Och’s. They have the advantage
that they can optimize any parameter of the decoder, rather than just log-linear
model weights, but the disadvantage of making poor estimates for features that are
sensitive to monotonic decoding, for instance distortion.

Other approaches to minimum error-rate training include recent efforts to train
very large sets of parameters, such as weights for Boolean phrase-pair features de-
fined over the phrase table, on very large corpora. Liang et al. (2006) iterate the
following: generate n-best lists for the corpus, controlling decoder speed by using
a limited-distortion model (neighbor swaps only) and limiting to short sentences,
then use the perceptron algorithm to update toward the best candidate in each n-
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Je   l’   ai   vu   à   la   télévision

I     saw 
Figure 1.2 A partial hypothesis during decoding, including its alignment. This is
extended by choosing a phrase that matches part of the source sentence with no alignment
connection (the uncovered part), for instance, à la, and appending one of its translations
from the phrase table, for instance on, to the target prefix, giving in this case the new
prefix I saw on.

best list. Tillmann and Zhang (2006) iterate the following: decode and merge 1-best
translations with existing n-best lists, controlling decoder speed by limiting distor-
tion as above, then use stochastic gradient descent to minimize a “margin-inspired”
distance function between n-best candidates and oracle translations generated by
using the references to guide the decoder. These approaches give only fairly mod-
est gains, possibly because of sacrifices made for decoder efficiency, and possibly
because performance appears to be rather insensitive to the exact values of the
phrase-translation parameters p(f̃ |ẽ).

1.5.4 Search

As we have seen, the problem of decoding Eq. (1.2) is central to minimum error-rate
training, and of course in all applications of statistical MT as well. It is NP-complete
for phrase-based MT, as it is for the IBM models, but somewhat simpler due to
the one-to-one restriction on phrase translation. The standard Viterbi beam search
algorithm (Koehn, 2004a) builds target hypotheses left to right by successively
adding phrases. As each phrase is added to a hypothesis, the corresponding source
phrase is recorded, so the complete phrase alignment is always known for all
hypotheses, as illustrated in figure 1.2. Search terminates when the alignments
for all active hypotheses are complete, i.e. when all words in the source sentence
have been translated. At this point, the hypothesis that scores highest according to
the model is output.

A straightforward implementation of this algorithm would create a large number
of hypotheses: for each valid segmentation of the source sentence, and each bag
of phrases created by choosing one translation for each source phrase in the
segmentation, there would be one hypothesis for each permutation of the contents of
the bag. Even when the phrase table is pruned to reduce the number of translations
available for each source phrase, the number of hypotheses is still unmanageably
huge for all but the shortest source sentences. Several measures are used to reduce
the number of active hypotheses and the space needed to store them.



24 A Statistical Machine Translation Primer

First, hypotheses are recombined: if any pair of hypotheses are indistinguishable
by the model in the sense that extending them in the same way will lead to the same
change in score, then only the higher-scoring one needs to be extended. Typically,
the lower-scoring one is kept in a lattice (word graph) structure, for the purpose of
extracting n-best lists (Ueffing et al., 2002) once search is complete. The conditions
for recombination depend on the features in the model. For the standard features
described above, two hypotheses must share the same last n − 1 words (assuming
an n-gram LM), they must have the same set of covered source words (though not
necessarily aligned the same way), and the source phrases aligned with their last
target phrase must end at the same point (for the distortion feature).

Recombination is a factoring operation that does not change the results of the
search. It is typically used in conjunction with a pruning operation that can affect
the search outcome. Pruning removes all hypotheses whose scores fall outside a
given range (or beam) defined with respect to the current best-scoring hypothesis;
or, in the case of histogram pruning, fall below a given rank.

Three strategies are used to make the comparison between hypotheses as fair
as possible during pruning. First, the scores on which pruning is based include
an estimate of the future score—the score of the suffix required to complete the
translation—added to the current hypothesis score. If future scores are guaranteed
never to underestimate the true suffix scores, then they are admissible, as in A*
search, and no search errors will be made. This is typically too expensive in practice,
however. Each feature contributes to the future score estimate, which is based on
analyzing the uncovered portion of the source sentence. The highest-probability
translations from the phrase table are chosen, and are assigned LM scores that
assume they can be concatenated with probability 1 (i.e., the LM scores only the
inside of each target phrase), and distortion scores that assume they are arranged
monotonically. Phrase table and language model future scores can be precomputed
for all subsequences of the source sentence prior to search, and looked up when
needed.

Comparing two hypotheses that cover different numbers of source words will
tend to be unfair to the hypothesis that covers the greater number, since it will
have a smaller future score component, and since future scores are intentionally
optimistic. To avoid this source of bias, hypotheses are partitioned into equivalence
classes called stacks, and pruning is applied only within each stack. Stacks are
usually based on the number of covered source words, but may be based on their
identities as well, in order to avoid bias caused by source words or phrases that are
particularly difficult to translate.

Along with recombination and pruning, a final third used to reduce the search
space is a limit on the distortion cost for two source phrases that are aligned
to neighboring target phrases. Any partial hypotheses that cannot be completed
without exceeding this limit are removed. Interestingly, imposing such a limit,
typically seven words, often improves translation performance as well as search
performance.
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There are a number of ways to arrange the hypothesis extension and pruning
operations described in the preceding paragraphs. A typical one is to organize the
search according to stacks, as summarized in the following algorithm from Koehn
(2004a):

Initialize stack 0 with an empty hypothesis.

For each stack from 0. . . J-1 (where J is the number of source words):

For each hypothesis g in the stack:

∗ For each possible extension of g, covering j source words:

· Add the extension to stack j, checking for recombination.

· Prune stack j.

Output the best hypothesis from stack J .

There have been several recent improvements to the basic Viterbi search algo-
rithm. Huang and Chiang (2007) propose cube pruning, which aims to reduce the
number of expensive calls to the language model by generating hypotheses and
performing an initial pruning step prior to applying the language model feature.
Moore and Quirk (2007) use an improved distortion future score calculation and
an early pruning step at the point of hypothesis extension (before LM calculation).
Both techniques yield approximately an order of magnitude speedup.

1.5.5 Rescoring

The ability of the Viterbi search algorithm to generate n-best lists with minimal
extra cost lends itself to a two-pass search strategy in which an initial log-linear
model is used to generate an n-best list, then a second, more powerful, model is used
to select new best candidates for each source sentence from this list in a rescoring
(aka reranking) pass.

The advantage of this strategy is that, unlike the candidates considered during
the first pass, the candidates in an n-best list can be explicitly enumerated for
evaluation by the model. This means that there is virtually no restriction on the
kinds of features that can be used. Examples of rescoring features that would not
be practical within the first-pass log-linear model for decoding include long-range
language models, “reversed” IBM 1 models for p(f |e), and features that use IBM
1 to ensure that all words have been translated. Och et al. (2004) list many others.

To assess the scope for improvement due to rescoring, one can perform an oracle
calculation in which the best candidates are chosen from the n-best list with
knowledge of the reference translations.14 This gives impressive gains, even for fairly
short n-best lists containing 1000 candidates per source sentence. However, this is

14. For metrics like BLEU, which are not additive over source sentences, this can be
approximated by choosing the candidate that gives the largest improvement in global
score, and iterating.
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somewhat misleading, because much of the gain comes from the oracle’s ability to
game the automatic metric by maximizing its matching criterion, and is thus not
accessible to any reasonable translation model (or even any human translator). In
practice, gains from rescoring are usually rather modest—often barely statistically
significant; by the time n-best lists have been compiled, most of the damage has
been done.

Rescoring is most often performed using log-linear models trained using one
of the minimum-error techniques described in section 1.5.3. Alternatives include
perceptron-based classification (learning to separate candidates at the top of the
list from those at the bottom) and ordinal regression (Shen et al., 2004); and also
Yamada and Muslea’s ensemble training approach, presented in chapter 8.

1.5.6 Current Status

Phrase-based translation remains the dominant approach in statistical MT. How-
ever, significant gains have recently been achieved by syntactic methods (particu-
larly on difficult language pairs such as Chinese-English; see section 1.6), by factored
methods, and by system combination approaches (see section 1.7).

1.6 Syntax-Based SMT

While the first SMT models were word-based, and the mainstream models are cur-
rently phrase-based, we have witnessed recently a surge of approaches that attempt
to incorporate syntactic structure, a movement that is reminiscent of the early
history of rule-based systems, which started with models directly relating source
strings to target strings, and gradually moved toward relating syntactic represen-
tations and even, at a later stage, logical forms and semantic representations.

The motivations for using syntax in SMT are related to consideration of fluency
and adequacy of the translations produced:

Fluency of output depends closely on the ability to handle such things as agree-
ment, case markers, verb-controlled prepositions, order of arguments and modifiers
relative to their head, and numerous other phenomena which are controlled by the
syntax of the target language and can only be approximated by n-gram language
models.

Adequacy of output depends on the ability to disambiguate the input and to
correctly reconstruct in the output the relative semantic roles of constituents in
the input. Disambiguation is sometimes possible only on the basis of parsing the
input, and reconstructing relative roles is often poorly approximated by models of
reordering that penalize distortions between the source and the target word orders,
as is common in phrase-based models; this problem becomes more and more severe
when the source and target languages are typologically remote from each other (e.g.,
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subject-verb-object languages such as English, subject-object-verb languages such
as Japanese, or languages that allow relatively “free” word order such as Czech).

There are many approaches to incorporating syntax in SMT systems, of which
we will describe only a few representative instances. One dimension that is useful
for organizing the different approaches is the extent to which they assume some
form of a priori knowledge about the syntactic structure of the source and target
languages. While certain approaches require that external parsers exist for both
the source and the target languages, and use parsed bilingual corpora for training
their models, some approaches only require that such parsers exist for the source or
for the target language,15 while some more radical approaches do not require any
externally given parser but learn aligned structured representations on the basis of
an unparsed bilingual corpus. We start with these “resource-poor” approaches and
move gradually toward the more “resource-intensive” ones.

1.6.1 Parser-Free Approaches

Currently probably the most representative among the parser-free approaches is
Chiang (2005)’s hierarchical phrase-based translation. The model is in line with
previous work by Wu (1997) on inversion transduction grammars for parsing
bilingual corpora and is formally based on a generalization of these grammars,
namely synchronous context-free grammars. Such grammars are bilateral context-
free grammars that simultaneously describe constituents in a source and in a target
language and have rules such as (source language is Chinese here)

X → 〈X zhiyi, one of X〉,

where the source and target expressions on the right-hand side contain termi-
nals and “coupled” nonterminals that correspond to subconstituents which are
in translation correspondence. These rules may be automatically extracted from
word-aligned phrase pairs by identifying nonterminals with aligned subphrases.

One important restriction in the formalism used by Chiang is that there is only
a single generic nonterminal type X , in contrast to externally motivated gram-
mars, which would have nonterminals such as noun phrase (NP), verb phrase (VP),
and so forth. Under this constraint, rules such as the above can be seen as direct
generalizations of standard biphrases, where the coupled Xs correspond to sub-

15. Another aspect that distinguishes systems is whether they are tree to string, string
to tree, or tree to tree, but this aspect is not as clear as the dimension involving reference
to external parsers; a system that only uses an external parser for the source can still
technically be tree to string or tree to tree, in the latter case through projecting trees from
the source side of the bilingual corpus over to the target side and using the structural
correspondences thus found; a similar remark is true of systems that only involve external
parsers on the target side.
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biphrases of these biphrases, which were themselves in translation correspondence
in the training corpus and have been “anonymized” into X .

Decoding is performed by parsing the source side with the synchronous grammar
and simultaneously producing a target parse. Competing derivations are scored
according to a log-linear model whose weights are learned based on a minimun-
error training procedure.

1.6.2 Parser on the Target

An early attempt to use syntax in SMT was presented by Yamada and Knight
(2001), who considered a model for translating from Japanese to English. They use
the Collins parser for English for building tree structures over the target side of
the bilingual corpus and then learn a mapping from an English tree to a Japanese
string through a sequence of transformations: first the nodes of the English tree are
locally reordered, then some Japanese words (typically function words) are inserted
in the reordered English tree, then the remaining English words are translated
into Japanese words, and finally a Japanese string is produced. At training time,
EM is used in order to learn the parameters of the different transformations that
maximize the likelihood of the training set, and the resulting set of probabilistic
transformations constitutes the “translation model” part of a noisy-channel model
(hence the model is indeed eventually used for translating from Japanese to English,
and not the reverse.) While the model is sometimes described as mapping Japanese
strings to English trees (hence as a string-to-tree model), from the description it
is clear that internally, Japanese trees are actually built; however, these Japanese
trees are not obtained by reference to an independent parser of Japanese, but rather
as a kind of projection of externally motivated English parses.

More recently, researchers from the same research group at the Information Sci-
ences Institute have applied powerful formalisms, known as tree-to-string trans-
ducers, to relate target trees with source strings. In Marcu et al. (2006), such a
model is used to translate from Chinese to English. When applied in reverse to
the source string (such formalisms can be used either in a forward or reverse di-
rection), the tree-to-string transducer behaves similarly to a context-free grammar
(meaning that chart-parsing techniques can be applied to factorize the derivations
above a given Chinese string) but each derivation can be seen as a recipe for gluing
together English tree “stumps” and producing a complex English parse tree; thus
the correspondence between derivations on the source side and trees on the target
side is not as direct as in synchronous tree grammars and allows more flexible cou-
plings. At decoding time the application of rules is under the control of a log-linear
model that combines features computed on derivations, and the model weights are
learnt by mininum error training. The system was claimed in 2006 to be the first
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to show BLEU improvements over phrase-based models on experiments conducted
over large-scale, open domain translation tasks.16

1.6.3 Parser on the Source

An instance of using an external parser on the source only is the work conducted at
Microsoft Research by Quirk et al. (2005), who use an in-house rule-based parser,
NLPWIN, that produces dependency structures for English. Given a bilingual
English-French training corpus, word aligned with GIZA++,17 the source depen-
dency trees are projected onto the French side of the corpus and from the aligned
sentence-level dependency structures obtained, a collection of aligned “treelets”
is extracted. These treelets are structural analogs to the biphrases extracted in
phrase-based SMT and are constrained to be connected subcomponents of the de-
pendency structure, but not necessarily to project onto contiguous subspans of the
word string. At decoding time, the source sentence is parsed, is decomposed into
treelets, and a target representation is constructed by gluing together the associ-
ated target treelets, under the control of log-linear features. An important aspect of
the model (permitted by the use of dependency structures) is that the target repre-
sentations thus obtained are underdetermined with regard to the relative order of
the dependents of a head. This order is determined by a separate model, which is
independently trained; this separation of work between treelet training and order
training gives flexibility to the model, as the extracted treelets themselves do not
need to encapsulate word-ordering considerations.

In chapter 7, Wellington, Turian, and Melamed present another instance where
an externally trained parser (Bikel’s parser, trained on the Penn treebank) is used
to parse the English source side of a bilingual English-French corpus and where
projection techniques are used to obtain parallel trees in the target language;
however the focus here is on a generic training technique for learning how to
transduce a source tree into a target tree and could probably be applied as well
to a situation where the target trees were obtained by an independent external
parser. Training works by attempting to reconstruct the corpus target trees from
the corpus source trees through a sequence of atomic decisions that incrementally
build nodes of the target tree, given both the context of the source and the context
of previous decisions. The training procedure interleaves feature selection actions
and parameter tuning actions, using a boosted ensemble of decision trees under an
l1 regularization regime that favors sparse features.

16. This claim was based on experiments for Chinese-English in the NIST-06 campaign,
and continued in NIST-08 for the same language pair. However in the case of Arabic-
English, phrase-based systems still win in the later campaign.
17. Even if not mentioned explicitly, the use of GIZA++ for word-aligning a bilingual
corpus is actually a shared prerequisite of most of the approaches described in this section.
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1.6.4 Parsers on the Source and Target

One approach in which structural a priori knowledge of both the source and the
target languages plays an important role was introduced by Cowan et al. (2006).
They consider translation from German to English, and use the Dubey parser for
German and a modification of the Collins parser for English in order to parse both
sides of a bilingual Europarl corpus. The English parser produces structures of
a specific form, aligned extended projections (AEPs), which are inspired by the
formalism of lexicalized tree adjoining grammar (Frank, 2002). The focus of the
paper is to learn the translation of German clauses into English clauses, as opposed
to full sentences, and the AEP of an English clause can be seen as a syntactic
template to which a sequence of elementary operations have been applied, such
as selecting active or passive voice, instantiating the subject slot, choosing the
inflection of the verb, etc. The order of such operations is linguistically motivated,
for instance the inflection of the verb may depend on the subject. After the bilingual
corpus has been parsed on both sides, aligned German clausal structures and
English clausal AEPs are extracted, and the goal of training is to learn a sequence
of decisions that will permit reconstruction of the English AEP from the German
structure. The first such decision is choosing the English syntactic template, then
the following decisions correspond to the elementary operations that determine the
AEP. Each decision is performed on the basis of features of the German structure
and of the previous decisions taken, and the training of the associated weights is
done through a structured perceptron procedure. At decoding time, a beam-search
procedure is applied, which attempts to find the sequence of decisions which has the
largest score according to these weights. In this approach we see a clear instance
where a careful linguistic design (nature and order of the elementary operations
leading to an AEP) is explicitly exploited for organizing the learning procedure.

1.7 Some Other Important Directions

Statistical machine translation is a very active field of research, and the chapters
in this book illustrate a range of promising directions. It would be impossible to
cover all ongoing efforts: in this section we briefly touch on some that we perceive
as particularly interesting.

1.7.1 Factored Models

The majority of published research on machine translation reports experiments on
language pairs having English as target. Translating into other languages requires
solving problems that are just negligible in English. Morphology, for instance,
is very simple in English compared to most other languages, where verbs can
have tens of alternative forms according to mood, tense, etc.; nouns can have
different forms for nominative, accusative, dative, and so on. Dictionaries for such
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languages tend to be much larger (empirical linguists speak of a lower token/type
ratio), and reliable statistics are harder to gather. Moreover, when translating from
a morphologically poor language (e.g., English) into a morphologically rich one
(e.g., Russian), purely word- or phrase-based models can have a hard time, since
generating the appropriate morphology might require rather sophisticated forms of
analysis on the source: n-gram-based language models can only go so far.

Koehn and Hoang (2007) introduced factored translation models, where source
words are enriched with linguistic annotation (e.g., lemmas, parts of speech, mor-
phological tags). Separate distributions model translation from source lemmas to
target lemmas and from source parts of speech and morphology to their target
equivalent. A deterministic morphological generator, finally, combines target lem-
mas and morphological information to reconstruct target surface forms (i.e., actual
words).

Factored language models, where words are represented as bundles of features and
the conditioning history can be composed of heterogeneous elements (e.g., a word
and a parts of speech), were introduced earlier (Bilmes and Kirchhoff (2003)). The
use of factored word-sequence kernels in discriminatively-trained language models
(chapter 6) falls in the same line of work.

1.7.2 Model Adaptation

The quality of translation and language models depends heavily on the amount of
training data. Training corpora of sufficient size for a given language pair, domain,
and genre might not be readily available: one is thus left with the uncomfortable
choice of either training on few data points coming from the distribution of
interest (on-topic corpora), or on many data points from a different distribution
(off-topic corpora). Language model adaptation has been extensively investigated,
especially in conjunction with speech recognition. The interest in translation model
adaptation, on the other hand, is more recent.

Hildebrand et al. (2005) proposed information retrieval techniques to select from
a training set sentence pairs whose source is similar to a given test set, and train
only on those. Munteanu et al. (2004) went further, and proposed a classifier for
identifying sentences which are a translation of one another in a comparable corpus
(i.e., a set of similar documents in two different languages).

More recently, Foster and Kuhn (2007) introduced a method based on mixture
models: the training data is divided into different components, models (both
translation and language) are trained separately on each component, and are
combined at translation time with weights which depend on the similarity of the
source document and the training data of each component.

Similarly, Xu et al. (2007) train separate language models on different domains,
and also use limited on-topic parallel data to re-estimate the weights of the features
of a log-linear model. When a new document needs translation, it is first categorized
into one domain and then translated using the adapted language model and feature
weights.
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1.7.3 System Combination

System combination techniques aim to exploit the diversity in translation outputs
from different MT systems in order to improve over the best single system. A
challenge in doing so is that alternate translations may have very different surface
properties such as lexical choice and word order, making it difficult to blend them
into a single reasonable output. Recently, Rosti et al. (2007b) proposed an effective
solution that consists in choosing one system’s hypothesis to establish the word
order of the output. The other hypotheses are aligned to this skeleton using edit
distance, resulting in a constrained word lattice known as a confusion network
from which the output is derived by searching with a language model and weighted
scores from the input systems. Chapter 13 by Matusov, Leusch and Neyin this book
extends this approach using IBM alignments rather than edit distance for aligning
hypotheses. System combination techniques have recently improved to the point
where they reliably give gains over the best single system, even when the other
participating systems are relatively weak.

1.7.4 Kernel Methods for Machine Translation

A rather radical departure from existing approaches to SMT is proposed by
Wang et al. (2007) (see also chapter 9). Using kernels on strings it is possible
to map separately sentences of the source and of the target language into distinct
vector spaces (or feature spaces). Conceptually the translation problem can thus be
decomposed into

1. mapping a source language sentence into a vector in the input feature space;

2. mapping this vector into a vector in the output feature space by means of an
appropriate function;

3. mapping a vector from the output feature space into a target language sentence.

The function in the second step can be learned from a training set using an
appropriate regression algorithm (such as ridge regression). In practice, the first
and the second steps are conflated in that a kernel is used to implicitly map source
sentences into the input feature space. The third step, the inverse image problem,
can be very hard, depending on the kernel used on the target side.

1.8 Machine Learning for SMT

The preceding sections suggest that training a statistical machine translation
system is very closely related to supervised learning. At the core of the statistical
approach to MT is the attempt to map some input source language sentences f to
some output e. There are, however, a number of idiosyncracies which preclude the
straightforward application of known machine learning techniques to SMT. In this
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final section, we will relate SMT to various standard machine learning frameworks,
and discuss the issue of learning with an uncertain loss, as well as the issue of
dividing the MT learning problem into smaller manageable problems, as opposed
to adopting an end-to-end approach.

1.8.1 Translation as a Learning Problem

In the context of translation, the output variable—a target language sentence—is
formally a discrete variable. In machine learning, predicting a discrete variable
usually leads to a classification framework. However, SMT clearly does not fit
comfortably in this context: the output space, although discrete, has too many
modalities and too much structure. The regression framework is not a much better
fit: the output space is not continuous and is very unsmooth, as sentences with
similar surface forms may have very different meanings (and therefore translations).
In fact, MT is closer to the relatively recent framework of learning with structured
output (Taskar, 2004; Tsochantaridis et al., 2005).

The work presented in chapter 9 in this book is a typical example of such an
approach. Input and output data are projected into two vector spaces using the
implicit mappings Φ(f) and Ψ(e) provided by a kernel operating on structured
data (in that case, sentences in the source and target languages). A multivariate
regression model Ψ(e) ≈ WΦ(f) may then be used to model the dependencies
between the projected input and output, even though the original data is highly
structured and does not live in vector spaces. One challenge of this approach is
the preimage problem: given an estimate Ψ̂ = ŴΦ(f) for a new source sentence f ,
which target sentence ê should be chosen, such that its image through the implicit
mapping, Ψ(ê), is “closest” to the regression estimate Ψ̂? This is a very difficult
problem for most kernels operating on structured data, and very closely corresponds
to the decoding step in the traditional SMT framework.

Further work will no doubt appear along those lines. In fact machine translation
is a natural field of application for machine learning techniques operating on
structured inputs and outputs, as large amounts of training data are available,
for a variety of language pairs (e.g., Koehn, 2005; Steinberger et al., 2006). In fact,
another important challenge for structured learning methods is to scale up to the
corpus sizes commonly used in statistical machine translation, where millions of
sentence pairs are not unusual (see, e.g., chapter 8).

It may also be interesting to draw a parallel with the ranking framework, which
has been addressed in machine learning in the context of information retrieval, col-
laborative filtering, extractive summarization, or multiclass categorization, among
others. Traditionally, machine translation has been defined as the problem of pro-
ducing one correct translation e for each source sentence f . However, an arguably
equally efficient alternative would be to seek an ordered list of target hypotheses
e(1), e(2), . . ., such that correct translations are placed above incorrect ones. This
may be relevant in two situations:
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1. When there are many correct translations of the source sentence, all of them,
not a single one, should be placed at the top of the list.

2. When the model is unable to generate any correct translation, it still makes
sense to try to rank nearly correct hypotheses at the top of the list.

In the traditional approach to SMT, such as described in section 1.5, ranking
is actually used in at least two ways. First, decoders based on log-linear models
usually output ordered n-best lists of translation hypotheses rather than a unique,
most probable translation. Second, an additional reranking step, using, for example,
more and more complicated feature functions, is used to improve the n-best list by
promoting “correct” hypotheses to the top of the list. In both situations, however,
ranking is typically based on the output of a model trained for discrimination,
not for ranking. Theoretical and empirical results in machine learning (e.g., Cortes
and Mohri, 2004) suggest that models trained to minimize an error rate may not
provide optimal ranking performance, especially for uneven distributions and high
error rates, which is precisely the situation of most MT systems. Placing MT in
the framework of a ranking problem and using techniques designed to optimize the
ranking performance therefore seems like an interesting direction of investigation.
This is in fact the appraoch presented by Shen et al. (2004) for the rescoring stage,
and they obtain encouraging results using perceptron-based ordinal regression.

1.8.2 Learning with an Inaccurate Loss

One aspect that crucially sets machine translation apart from most other appli-
cations of machine learning is the issue of evaluation. As explained in section 1.2,
even when reference translations are available, there is no exact way to calculate, or
even define, the cost associated with a new translation hypothesis. This is at odds
with most areas where machine learning has been applied. Indeed, most machine
learning techniques, at their core, attempt to minimize some loss or risk associated
with the prediction. What can be done when such a loss is not available? One typ-
ical strategy is to target a different, approximate loss, work on that instead, and
hope for the best.

Standard approaches to SMT such as word-based models (section 1.3) rely on
maximizing the likelihood on the training set. Within the state-of-the-art framework
of phrase-based SMT (section 1.5), phrase tables and language models are typically
estimated using word or phrase counts, which corresponds to maximum likelihood
estimates, possibly with the addition of some smoothing or regularization. However,
the likelihood is not necessarily a good indicator of translation quality. As the
unattainable reference of translation evaluation is human judgment, the reliability of
the various metrics described in sections 1.2 is usually assessed by their correlation
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with human evaluation. The need to optimize these metrics18 has led to minimum
error-rate training (section 1.5), where some model parameters are trained by
directly minimizing one metric. In the context of machine learning, gradient descent
has been used to optimize differentiable losses. More recent work has been targeted
to optimizing kernel machines on metrics such as the F-score used in information
retrieval or the area under the curve (AUC) used for ranking (Callut and Dupont,
2005; Joachims, 2005). A challenging avenue for future research would be to train
some of the newly proposed SMT techniques that depart from the log-linear models
by directly optimizing the MT metrics, instead of relying on the standard losses
such as the squared error.

An additional consideration is that automatic MT metrics focus on different as-
pects of the difference between the hypothesis and reference translations: n-gram
precision, recall, edit distance, bag-of-word similarity, etc. Arguably, none of these
is sufficient to fully account for the difference between two sentences. However, they
may conceivably account for some of the difference. It would therefore be interesting
to consider optimizing not just a single metric, but several of these metrics simul-
taneously. Techniques from multiobjective, or multicriteria, optimization (Steuer,
1986) may be relevant to that purpose. One of the simplest ways to do that is to
combine the multiple objective functions into a single aggregate objective function
(Giménez and Amigó, 2006). The system may then be optimized on the aggregate
measure, in order to increase reliability and robustness.

Finally, the situation of MT evaluation suggests a more speculative question.
Is it possible to set up a framework for learning with an imprecisely defined
loss? In machine translation, we have a number of approximate losses which have
measurable correlation with the “real,” unknown loss. By learning on those, we
surely learn something about the underlying task, provided the correlation is
positive. By contrast, overtraining on the approximate metric will likely degrade
the performance on the real loss. It seems to us that this is not a very commonly
studied setting in machine learning. However, advances in that direction would
certainly have the potential to benefit research in statistical machine translation.

1.8.3 End-to-End Learning for SMT

Current statistical translation systems involve a combination of several models
(translation, language model, log-linear model, rescoring; section 1.5). The parame-
ters associated with each of these are usually estimated more or less independently,
leading to a highly stratified parameter estimation: the parameters of the transla-
tion model are derived from the phrase table using essentially maximum likelihood
parameters; the language model parameters are obtained by smoothing the maxi-

18. Besides the quest for better translation quality, one additional motivation is that
international MT evaluations are usually carried out using automatic MT evaluation
metrics. Optimizing the right metric can have a direct impact on a system’s ranking.
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mum likelihood (or minimum perplexity) estimates; parameters of the phrase-based
translation model and rescoring model are usually estimated using minimum error-
rate training, etc. In addition, parts of the model, such as the distortion feature
function (section 1.5.2), are parameterless, but could conceivably be made more
flexible with the addition of a few parameters.

The obvious limitation of this approach is that the overall model is divided into
smaller parts, each optimized locally on a loss that may be only loosely related
to the overall translation goal. Instead, one would ideally like to optimize all
model parameters globally, on the overall loss. Note, however, that in the context
of machine translation, this means optimizing over millions of parameters of the
translation and language models, in addition to the log-linear parameters. Recent
advances in discriminative training of machine translation models have started
addressing this issue. This is the case for two approaches described at the end of
section 1.5.3. Tillmann and Zhang (2006) propose a new translation model and an
associated discriminative training technique that optimizes millions of parameters
using a global score (such as BLEU). Liang et al. (2006) also propose an end-to-end
approach relying on a perceptron trained on millions of features, but which also
includes translation and language model probabilities as features, thus retaining
part of the stratification in the model estimation. In both cases, the models differ
substantially from the current state of the art of phrase-based translation.

The issue of stratified vs. end-to-end parameter estimation therefore suggests (at
least) two directions for improving translation performance. One would be to limit
the stratification of current phrase-based models by estimating more parameters
globally. The second is obviously to improve recent end-to-end models, which are
currently competitive only with baseline versions of phrase-based models (usually
a fairly standard Pharaoh system), but not with the more evolved versions used,
for example, in international evaluations.

1.9 Conclusion

In this introduction, we have given an overview of current statistical machine
translation techniques. We also provide pointers to the literature for readers wishing
to acquire more information on specific topics. Our hope is that this chapter is self-
contained and broad enough for the reader not especially familiar with SMT to
now turn to and benefit from the more advanced topics addressed in the following
chapters of this book.

Appendix: On-line SMT Resources

Statistical machine translation resources (http://www.statmt.org/): includes
links to the yearly workshop on machine translation
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Moses (http://www.statmt.org/moses/): SMT system implementing phrase-
based translation and factored model, with beam-search decoder

Pharaoh (http://www.isi.edu/publications/licensed-sw/pharaoh/): freely
available decoder for phrase-based SMT

GIZA++ (www.fjoch.com/GIZA++.html): toolkit implementing the IBM models

SRILM (http://www.speech.sri.com/projects/srilm/): widely used SRI lan-
guage modelling toolkit

LDC (Linguistic Data Consortium, http://www.ldc.upenn.edu/): provider of
multilingual data

ELDA (Evaluations and Language Resources Distribution Agency, http://www.
elda.org/): operational body of the European Language Resources Association
and provider of multilingual data

Europarl (http://www.statmt.org/europarl/): parallel corpus including 11
European languages

NIST (http://www.nist.gov/speech/tests/mt): the annual MT evaluation
carried out by NIST
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2 Mining Patents for Parallel Corpora

Masao Utiyama
Hitoshi Isahara

Large-scale parallel corpora are indispensable language resources for machine trans-
lation. However, only a few large-scale parallel corpora are available to the public.
We found that a large amount of parallel texts can be obtained by mining compa-
rable patent corpora. This is because patents of the same subject matter are often
filed in multiple countries. Such patents are called “patent families.” We describe a
Japanese-English patent parallel corpus created from patent families filed in Japan
and the United States. The parallel corpus contains about 2 million sentence pairs
that were aligned automatically. This is the largest Japanese-English parallel cor-
pus and will be available to the public after the NTCIR-7 workshop meeting. We
estimated that about 97% of the sentence pairs were correct alignments and about
90% of the alignments were adequate translations whose English sentences reflected
almost perfectly the contents of the corresponding Japanese sentences.

2.1 Introduction

The rapid and steady progress in corpus-based machine translation (MT) (Nagao,
1981; Brown et al., 1993) has been supported by large parallel corpora, such
as the Arabic-English and Chinese-English parallel corpora distributed by the
Linguistic Data Consortium (Ma and Cieri, 2006), the Europarl corpus (Koehn,
2005) consisting of 11 European languages, and the JRC-Acquis corpus consisting
of more than 20 European languages (Steinberger et al., 2006). However, large
parallel corpora do not exist for many language pairs. For example, there are a
few publicly available Japanese-English parallel corpora as listed in the website of
the International Workshop on Spoken Language Translation (IWSLT-2007)1 and
these corpora are small compared to the above-mentioned corpora.

1. http://iwslt07.itc.it/menu/resources.html
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Much work has been undertaken to overcome this lack of parallel corpora. For
example, Resnik and Smith (2003) have proposed mining the web to collect parallel
corpora for low-density language pairs. Munteanu and Marcu (2005) have extracted
parallel sentences from large Chinese, Arabic, and English nonparallel newspaper
corpora. Utiyama and Isahara (2003) have extracted Japanese-English parallel
sentences from a noisy-parallel corpus.

In this chapter, we show that a large amount of parallel text can be obtained
by mining comparable patent corpora. This is because patents of the same subject
matter are often filed in multiple countries. Such patents are called patent families.
For example, we obtained over 80,000 patent families from patents submitted to
the Japan Patent Office (JPO) and the United States Patent and Trademark Office
(USPTO), as described in section 2.3. From these patent families, we extracted a
high-quality Japanese-English parallel corpus. This corpus and its extension will be
used in the NTCIR-7 patent MT task and made available to the public after the
NTCIR-7 workshop meeting, which will be held in December 2008.2 In addition,
we believe that multilingual parallel corpora for other languages could be obtained
by mining patent families because patents are filed in multiple countries.

Patent translations are required in the society. For example, the JPO provides
Japanese-English MT of Japanese patent applications. Consequently, it is important
to collect parallel texts in the patent domain to promote corpus-based MT on that
domain.

In section 2.2, we review the related work on comparable corpora. In section 2.3,
we describe the resources used to develop our patent parallel corpus. In sections
2.4, 2.5, and 2.6, we describe the alignment procedure, the basic statistics of the
patent parallel corpus, and the MT experiments conducted on the patent corpus.

2.2 Related Work

Comparable corpora have been important language resources for multilingual nat-
ural language processing. They have been used in mining bilingual lexicons (Fung
and Yee, 1998; Rapp, 1999; Higuchi et al., 2001), parallel sentences (Zhao and Vogel,
2002; Utiyama and Isahara, 2003; Munteanu and Marcu, 2005; Fung and Cheung,
2004a,b), and parallel subsentential fragments (Munteanu and Marcu, 2006; Quirk
et al., 2007).

Fung and Yee (1998) and Rapp (1999) have used newspaper corpora to extract
bilingual lexicons. Higuchi et al. (2001) have used patent families filed in both Japan
and the United States to extract bilingual lexicons. They used only the title and
abstract fields from a number of fields (e.g., titles, abstracts, claims, and so on) in
patent documents. This is because the title and abstract fields are often parallel in
Japanese and English patents, even though the structures of paired patents are not

2. http://research.nii.ac.jp/ntcir/
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always the same, e.g., the number of fields claimed in a single patent family often
varies depending on the language.

Higuchi et al. (2001) have shown that the title and abstract fields in patent
families are useful for mining bilingual lexicons. However, the number of sentences
contained in these two fields is small compared to the overall number of sentences
in the whole patents. Thus, using only these two fields does not provide enough
sentences for a parallel corpus. In this chapter, we show that a large amount of
parallel texts can be obtained by mining the “Detailed Description of the Preferred
Embodiments” part and the “Background of the Invention” part of patent families.3

Of the patent families examined, we found that these parts tend to be literal
translations of each other, even though they usually contain noisy alignments.

Traditional sentence alignment algorithms (Gale and Church, 1993; Utsuro et al.,
1994) are designed to align sentences in clean-parallel corpora and operate on the
assumption that there is little noise such as reorderings, insertions, and deletions
between the two renderings of a parallel document. However, this assumption
does not hold for comparable or noisy-parallel corpora. In our case, for example,
some information described in a Japanese patent may not be included when it is
submitted to the USPTO. As a result, the patent family consisting of the original
Japanese patent and the modified United States patent will contain missing text
when compared.

To tackle noise in comparable corpora, Zhao and Vogel (2002) and Utiyama and
Isahara (2003) first identify similar parallel texts from two corpora in different
languages. They then align sentences in each text pair. Finally, they extract high-
scoring sentence alignments assuming that these are cleaner than the other sentence
alignments.

Zhao and Vogel (2002) and Utiyama and Isahara (2003) assume that their
corpora are noisy-parallel. That is, they assume that document pairs identified
by their systems are rough translations of each other. In contrast, Fung and
Cheung (2004a,b) and Munteanu and Marcu (2005) do not assume document-level
translations. They judge each sentence pair in isolation to decide whether those
sentences are translations of each other. Consequently, they do not need document
pairs being translations of each other. Munteanu and Marcu (2006) and Quirk et al.
(2007) go even further. They do not assume sentence-level translations and try to
extract bilingual sentential fragments (e.g., phrases) from nonparallel corpora.

In this chapter, we use Utiyama and Isahara’s method (Utiyama and Isahara,
2003) to extract sentence alignments from patent families because we have found
that patent families are indeed rough translations of each other.

3. We will provide additional parallel texts obtained from other fields (e.g., claims and
abstracts) for the NTCIR-7 patent MT task.
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2.3 Resources

Our patent parallel corpus was constructed using patent data provided for the
NTCIR-6 patent retrieval task (Fujii et al., 2007). The patent data consists of

unexamined Japanese patent applications published from 1993 to 2002, and

USPTO patents published from 1993 to 2000.

The Japanese patent data consists of about 3.5 million documents, and the English
data consists of about 1.0 million documents.

We identified 84,677 USPTO patents that originated from Japanese patents. We
used the priority information described in the USPTO patents to obtain these
patent pairs (families). We examined these patent families and found that the
“Detailed Description of the Preferred Embodiments” part (embodiment part for
short) and the “Background of the Invention” part (background part for short) of
each application tend to be literal translations of each other. We thus decided to
use these parts to construct our patent parallel corpus.

We used simple pattern-matching programs to extract the embodiment and
background parts from the whole document pairs and obtained 77,014 embodiment
part pairs and 72,589 background part pairs. We then applied the alignment
procedure described in section 2.4 to these 149,603 pairs. We call these embodiment
and background parts documents.

2.4 Alignment Procedure

2.4.1 Score of Sentence Alignment

We used Utiyama and Isahara’s method (Utiyama and Isahara, 2003) to score sen-
tence alignments. We first aligned sentences4 in each document by using a standard
dynamic programming (DP) matching method (Gale and Church, 1993; Utsuro
et al., 1994). We allowed one-to-n, n-to-one (0 ≤ n ≤ 5), or two-to-two alignments
when aligning the sentences. A concise description of the algorithm used is given
elsewhere (Utsuro et al., 1994).5 Here, we only discuss the similarities between
Japanese and English sentences used to calculate scores of sentence alignments.

4. We split the Japanese documents into sentences by using simple heuristics and split the
English documents into sentences by using a maximum entropy sentence splitter available
at http://www2.nict.go.jp/x/x161/members/mutiyama/maxent-misc.html We manu-
ally prepared about 12,000 English patent sentences to train this sentence splitter. The
precision of the splitter was over 99% for our test set.
5. The sentence alignment program we used is available at http://www2.nict.go.jp/x/

x161/members/mutiyama/software.html
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Let Ji and Ei be the word tokens of the Japanese and English sentences for the
ith alignment. The similarity between Ji and Ei is6

SIM(Ji, Ei) =
2 ×

∑
j∈Ji

∑
e∈Ei

δ(j,e)
deg(j) deg(e)

|Ji| + |Ei|
, (2.1)

where j and e are word tokens and

|Ji| is the number of Japanese word tokens in the ith alignment
|Ei| is the number of English word tokens in the ith alignment
δ(j, e) = 1 if j and e can be a translation pair, 0 otherwise
deg(j) =

∑
e∈Ei

δ(j, e)
deg(e) =

∑
j∈Ji

δ(j, e)

Note that δ(j,e)
deg(j) deg(e) = 0 if δ(j, e) = deg(j) = deg(e) = 0.

Ji and Ei were obtained as follows: We used ChaSen7 to morphologically analyze
the Japanese sentences and extract content words, which consisted of Ji. We used a
maximum entropy tagger8 to part-of-speech tag the English sentences and extract
content words. We also used WordNet’s library9 to obtain lemmas of the words,
which consisted of Ei. To calculate δ(j, e), we looked up an English-Japanese dictio-
nary that was created by combining entries from the EDR Japanese-English bilin-
gual dictionary, the EDR English-Japanese bilingual dictionary, the EDR Japanese-
English bilingual dictionary of technical terms, and the EDR English-Japanese
bilingual dictionary of technical terms.10 The combined dictionary contained over
450,000 entries.

After obtaining the maximum similarity sentence alignments using DP matching,
we calculated the similarity between a Japanese document, J , and an English
document, E, (AVSIM(J, E)), as defined by Utiyama and Isahara (2003), using

AVSIM(J, E) =
∑m

i=1 SIM(Ji, Ei)
m

, (2.2)

where (J1, E1), (J2, E2), . . . (Jm, Em) are the sentence alignments obtained using
DP matching. A high AVSIM(J, E) value occurs when the sentence alignments in
J and E take high similarity values. Thus, AVSIM(J, E) measures the similarity
between J and E.

6. To penalize one-to-0 and 0-to-one alignments, we assigned SIM(Ji, Ei) = −1 to these
alignments instead of the similarity obtained by using Eq. (2.1).
7. http://chasen-legacy.sourceforge.jp/
8. http://www2.nict.go.jp/x/x161/members/mutiyama/maxent-misc.html
9. http://wordnet.princeton.edu/
10. http://www2.nict.go.jp/r/r312/EDR/
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We also calculated the ratio of the number of sentences between J and E

(R(J, E)) using

R(J, E) = min(
|J |
|E| ,

|E|
|J | ), (2.3)

where |J | is the number of sentences in J , and |E| is the number of sentences in E.
A high R(J, E)-value occurs when |J | ∼ |E|. Consequently, R(J, E) can be used to
measure the literalness of translation between J and E in terms of the ratio of the
number of sentences.

Finally, we defined the score of alignment Ji and Ei as

Score(Ji, Ei) = SIM(Ji, Ei) × AVSIM(J, E) × R(J, E). (2.4)

A high Score(Ji, Ei) value occurs when

sentences Ji and Ei are similar,

documents J and E are similar,

numbers of sentences |J | and |E| are similar.

Score(Ji, Ei) combines both sentence and document similarities to discriminate
between correct and incorrect alignments.

We use only high scoring sentence alignments to extract valid sentence align-
ments from noisy sentence alignments. We use Score in Eq. (2.4) as the score for a
sentence alignment as described above because a variant of Score has been shown
to be more appropriate than SIM for discriminating between correct and incorrect
alignments (Utiyama and Isahara, 2003). When we compare the validity of two sen-
tence alignments in the same document pair, the rank order of sentence alignments
obtained by applying Score is the same as that of SIM because these alignments
share common AVSIM and R. However, when we compare the validity of two sen-
tence alignments in different document pairs, Score prefers the sentence alignment
in the more similar (high AVSIM × R) document pair even if their SIM has the
same value, while SIM cannot discriminate between the validity of two sentence
alignments if their SIM has the same value. Therefore, Score is more appropriate
than SIM when comparing sentence alignments in different document pairs because,
in general, a sentence alignment in a similar document pair is more reliable than
one in a dissimilar document pair.11

11. However, as pointed out by a reviewer, a document J which is a subset of E (or vice
versa) could have a very low similarity score, AVSIM(J, E). As a result, Eq. (2.4) could
get a very low Score(Ji, Ei), even for a pair of sentences that represent a perfect reciprocal
translation. Therefore, if such cases exist in our patent corpus, many good sentence pairs
may be lost. We have not yet investigated the amount of such cases in our corpus. We
leave it for future work.
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2.4.2 Noise Reduction in Sentence Alignments

We used the following procedure to reduce noise in the sentence alignments obtained
by using the previously described aligning method on the 149,603 document pairs.

The number of sentence alignments obtained was about 7 million. From these
alignments, we extracted only one-to-one sentence alignments because this type
of alignment is the most important category for sentence alignment. As a result,
about 4.2 million one-to-one sentence alignments were extracted. We sorted these
alignments in decreasing order of scores and removed alignments whose Japanese
sentences did not end with periods to reduce alignment pairs considered as noise.
We also removed all but one of the identical alignments. Two individual alignments
were determined to be identical if they contained the same Japanese and English
sentences. Consequently, the number of alignments obtained was about 3.9 million.

We examined 20 sentence alignments ranked between 1,999,981 and 2,000,000
from the 3.9 million alignments to determine if they were accurate enough to be
included in a parallel corpus. We found that 17 of the 20 alignments were almost
literal translations of each other and 2 of the 20 alignments had more than 50%
overlap in their contents. We also examined 20 sentence alignments ranked between
2,499,981 and 2,500,000 and found that 13 of the 20 alignments were almost literal
translations of each other and 6 of the 20 alignments had more than 50% overlap.
Based on these observations, we decided to extract the top 2 million one-to-one
sentence alignments. Finally, we removed some sentence pairs from these top 2
million alignments that were too long (more than 100 words in either sentence) or
too imbalanced (when the length of the longer sentence is more than five times the
length of the shorter sentence). The number of sentence alignments thus obtained
was 1,988,732. We call these 1,988,732 sentence alignments the ALL data set (ALL
for short) in this chapter.

We also asked a translation agency to check the validity of 1000 sentence align-
ments randomly extracted from ALL. The agency conducted a two-step procedure
to verify the data. In the first step, they marked a sentence alignment as

A if the Japanese and English sentences matched as a whole,

B if these sentences had more than 50% overlap in their contents,

C otherwise,

to check if the alignment was correct. The number of alignments marked as A was
973, B was 24, and C was 3. In the second step, they marked an alignment as

A if the English sentence reflected almost perfectly the contents of the Japanese
sentence,

B if about 80% of the contents were shared,

C if less than 80% of the contents were shared,

X if they could not determine the alignment as A, B, or C,
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Figure 2.1 Distributions of scores and noisy alignments.

to check if the alignment was an adequate translation pair. The number of align-
ments marked as A was 899, B was 72, C was 26, and X was 3. Based on these
evaluations, we concluded that the sentence alignments in ALL are useful for train-
ing and testing MT systems.

Next, we used these 1000 sentence alignments to investigate the relationship
between the human judgments and Score given in Eq. (2.4). Figure 2.1 shows the
distributions of scores and noisy alignments (marked as B, C, or X in the second
step) against the ranks of sentence alignments ordered by using Score. The left
figure shows that scores initially decreased rapidly for higher-ranking alignments,
and then decreased gradually. The right figure shows the cumulative number of
noisy alignments. The solid line indicates that noisy alignments tend to have low
ranks. Note that if noisy alignments are spread uniformly among the ranks, then
the cumulative number of noisy alignments follows the diagonal line. Based on the
results shown in this figure, we concluded that Score ranked the sentence alignments
appropriately.

2.5 Statistics of the Patent Parallel Corpus

2.5.1 Comparison of ALL and Source Data Sets

We compared the statistics of ALL with those of the source patents and sentences
from which ALL was extracted to see how ALL represented the sources.

To achieve this, we used the primary international patent classification (IPC) code
assigned to each USPTO patent. The IPC is a hierarchical patent classification
system and consists of eight sections, ranging from A to H. We used sections G
(physics), H (electricity), and B (performing operations; transporting) because these
sections had larger numbers of patents than other sections. We categorized patents
as O (other) if they were not included in these three sections.

As described in section 2.3, 84,677 patent pairs were extracted from the original
patent data. These pairs were classified into G, H, B, or O, as listed in the Source
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Table 2.1 Number of patents

IPC ALL (%) Source (%)

G 19,340 (37.9) 28,849 (34.1)

H 16,145 (31.6) 24,270 (28.7)

B 7,287 (14.3) 13,418 (15.8)

O 8,287 (16.2) 18,140 (21.4)

Total 51,059 (100.0) 84,677 (100.0)

Table 2.2 Number of sentence alignments

IPC ALL (%) Source (%)

G 946,872 (47.6) 1,813,078 (43.4)

H 624,406 (31.4) 1,269,608 (30.4)

B 204,846 (10.3) 536,007 (12.8)

O 212,608 (10.7) 559,519 (13.4)

Total 1,988,732 (100.0) 4,178,212 (100.0)

column of table 2.1. We counted the number of patents included in each section of
ALL. We regarded a patent to be included in ALL when some sentence pairs in
that patent were included in ALL. The number of such patents are listed in the
ALL column of table 2.1. Table 2.1 shows that about 60% (100 × 51059/84677) of
the source patent pairs were included in ALL. It also shows that the distributions
of patents with respect to the IPC code were similar between ALL and Source.

Table 2.2 lists the number of one-to-one sentence alignments in ALL and
Source, where Source means the about 4.2 million one-to-one sentence align-
ments described in section 2.4.2. The results in this table show that about 47.6
% (100× 1988732/4178212) sentence alignments were included in ALL. The results
also show that the distribution of the sentence alignments are similar between ALL
and Source.

Based on these observations, we concluded that ALL represented Source well.
In the following, we use G, H, B, and O to denote the data in ALL whose IPCs

were G, H, B, and O.

2.5.2 Basic Statistics

We measured the basic statistics of G, H, B, O, and ALL.
We first randomly divided patents from each of G, H, B, and O into training

(TRAIN), development (DEV), development test (DEVTEST), and test (TEST)
data sets. One unit of sampling was a single patent. That is, G, H, B, and O
consisted of 19,340, 16,145, 7287, and 8287 patents (See table 2.1), respectively,
and the patents from each group were divided into TRAIN, DEV, DEVTEST, and
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Table 2.3 Number of patents

TRAIN DEV DEVTEST TEST Total

G 17,524 630 610 576 19,340

H 14,683 487 493 482 16,145

B 6,642 201 226 218 7,287

O 7,515 262 246 264 8,287

ALL 46,364 1,580 1,575 1,540 51,059

Table 2.4 Number of sentence alignments

TRAIN DEV DEVTEST TEST Total

G 854,136 33,133 27,505 32,098 946,872

H 566,458 20,125 19,784 18,039 624,406

B 185,778 6,239 6,865 5,964 204,846

O 193,320 6,232 6,437 6,619 212,608

ALL 1,799,692 65,729 6,0591 6,2720 1,988,732

TEST. We assigned 91% of the patents to TRAIN, and 3% of the patents to each
of DEV, DEVTEST, and TEST. We merged the TRAIN, DEV, DEVTEST, and
TEST of G, H, B, and O to create those of ALL. Table 2.3 lists the number of
patents in these data sets and table 2.4 lists the number of sentence alignments.

2.5.3 Statistics Pertaining to MT

We measured some statistics pertaining to MT. We first measured the distribution
of sentence length (in words) in ALL. The mode of the length (number of words)
was 23 for the English sentences and was 27 for the Japanese sentences. (We used
ChaSen to segment Japanese sentences into words.) Figure 2.2 shows the percentage
of sentences for English (en) and Japanese (ja) with respect to their lengths. This
figure shows that the peaks of the distributions were not sharp and that there
were many long sentences in ALL. This suggests that patents contain many long
sentences that are generally difficult to translate.

We then measured the vocabulary coverage. Table 2.5 lists the coverage for the
types (distinct words) and tokens (running words) in each TEST section using the
vocabulary in the corresponding TRAIN section for the English and Japanese data
sets. These tables show that the percentages of types in TEST covered by the
vocabulary in TRAIN were relatively low for both English and Japanese. However,
the coverage of tokens was quite high. This suggests that patents are not so difficult
to translate in terms of token coverage.
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Table 2.5 Percentage of words in test sentences covered by training vocabulary.

(a) Coverage for English

Type Token

G 84.37 99.40

H 86.63 99.37

B 90.28 99.38

O 89.19 99.31

ALL 83.36 99.55

(b) Coverage for Japanese

Type Token

G 90.27 99.69

H 91.97 99.67

B 94.12 99.65

O 92.50 99.48

ALL 89.85 99.77

2.6 MT Experiments

2.6.1 MT System

We used the baseline system for the shared task of the 2006 NAACL/HLT work-
shop on statistical machine translation (Koehn and Monz, 2006) to conduct MT
experiments on our patent corpus. The baseline system consisted of the Pharaoh
decoder (Koehn, 2004a), SRILM (Stolcke, 2002), GIZA++ (Och and Ney, 2003),
mkcls (Och, 1999), Carmel,12 and a phrase model training code.

We followed the instructions of the shared task baseline system to train our MT
systems.13 We used the phrase model training code of the baseline system to extract
phrases from TRAIN. We used the trigram language models made from TRAIN. To

12. http://www.isi.edu/licensed-sw/carmel/
13. The parameters for the Pharaoh decoder were “-b 0.00001 -s 100.” The maximum
phrase length was 7. The “grow-diag-final” method was used to extract phrases.
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Table 2.6 Comparing reordering limits. Each MT system was trained on each of the G,
H, B, O, and ALL TRAIN data sets, tuned for both reordering limits using each DEV data
set, and applied to 1000 randomly sampled sentences extracted from each DEVTEST data
set to calculate the %BLEU scores listed in these tables. The source and target languages
were English-Japanese for (a) and Japanese-English for (b).

(a) English-Japanese

no limit limit=4

G 23.56 22.55

H 24.62 24.14

B 22.62 20.88

O 23.87 21.84

ALL 24.98 23.37

(b) Japanese-English

no limit limit=4

G 21.82 21.6

H 23.87 22.62

B 21.95 20.79

O 23.41 22.53

ALL 23.15 21.55

tune our MT systems, we did minimum error-rate training14 (Och, 2003) on 1000
randomly extracted sentences from DEV using BLEU (Papineni et al., 2002) as
the objective function. Our evaluation metric was %BLEU scores.15 We tokenized
and lowercased the TRAIN, DEV, DEVTEST, and TEST data sets. We conducted
three MT experiments to investigate the characteristics of our patent corpus.

2.6.2 Comparing Reordering Limits

For the first experiment, we translated 1000 randomly sampled sentences in each
DEVTEST data set to compare different reordering limits,16 because Koehn et al.
(2005) have reported that large reordering limits provide better performance for
Japanese-English translations. We compared a reordering limit of 4 with no lim-
itation. The results of table 2.6 show that the %BLEU scores for no limitation
consistently outperformed those for limit=4. These results coincide with those of
Koehn et al. (2005). Based on this experiment, we used no reordering limit in the
following experiments.

2.6.3 Cross-Section MT Experiments

For the second experiment, we conducted cross-section MT experiments. The results
are shown in tables 2.7 and 2.8. For example, as listed in table 2.7, when we
used section G as TRAIN and used section H as TEST, we got a %BLEU score
of 23.51 for English-Japanese translations, whose relative %BLEU score was 0.87
(=23.51/26.88) of the largest %BLEU score obtained when using ALL as TRAIN.
In this case, we used all sentences in TRAIN of G to extract phrases and make

14. The minimum error-rate training code we used is available at http://www2.nict.go.
jp/x/x161/members/mutiyama/software.html
15. %BLEU score is defined as BLEU × 100.
16. The parameter “-dl” for the Pharaoh decoder.
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Table 2.7 %BLEU scores (relative %BLEU scores) for cross-section MT experiments
(English-Japanese)

TEST: G H B O ALL

TRAIN

G 25.89 (0.97) 23.51 (0.87) 20.19 (0.82) 18.96 (0.76) 23.93 (0.91)

H 22.19 (0.83) 25.81 (0.96) 19.16 (0.78) 18.68 (0.75) 22.57 (0.86)

B 18.17 (0.68) 18.92 (0.70) 22.54 (0.92) 19.25 (0.77) 18.97 (0.72)

O 16.93 (0.63) 18.45 (0.69) 18.22 (0.74) 24.15 (0.97) 18.32 (0.70)

ALL 26.67 (1.00) 26.88 (1.00) 24.56 (1.00) 24.98 (1.00) 26.34 (1.00)

Table 2.8 %BLEU scores (relative %BLEU scores) for cross-section MT experiments
(Japanese-English)

TEST: G H B O ALL

TRAIN

G 24.06 (0.98) 22.18 (0.90) 19.40 (0.85) 19.33 (0.80) 22.59(0.93)

H 20.91 (0.85) 23.74 (0.97) 18.11 (0.79) 18.60 (0.77) 21.28(0.88)

B 17.64 (0.72) 17.94 (0.73) 21.92 (0.96) 19.58 (0.81) 18.39(0.76)

O 17.50 (0.72) 18.43 (0.75) 18.57 (0.81) 24.27 (1.00) 18.67(0.77)

ALL 24.47 (1.00) 24.52 (1.00) 22.94 (1.00) 24.04 (0.99) 24.29(1.00)

a trigram language model. We used 1000 randomly sampled sentences in DEV of
section G to tune our MT system. We used all sentences in TEST of section H to
calculate %BLEU scores (see table 2.4 for the number of sentences in each section
of TRAIN and TEST).

The results in these tables show that MT systems performed the best when the
training and test sections were the same.17

These results suggest that patents in the same section are similar to each other,
while patents in different sections are dissimilar. Consequently, we need domain
adaptation when we apply our trained MT system to a section that is different
from that on which it has been trained. However, as shown in the ALL rows, when
we used all available training sentences, we obtained the highest %BLEU scores for
all but one case. This suggests that if we have enough data to cover all sections we
can achieve good performance for all sections.

Tables 2.7 and 2.8 show that both the domain and quantity of training data affect
the performance of MT systems. We conducted additional experiments to see the
relationship between these two factors. We trained a Japanese-English MT system

17. The results in these tables indicate that %BLEU scores for English-Japanese trans-
lations are higher than those for Japanese-English translations. This is because Japanese
words are generally shorter than English words. As described in section 2.5.3, the mode of
the length for English sentences was 23 and that for Japanese was 27. This suggests that
it is easier to reproduce Japanese n-grams, which leads to higher %BLEU scores.



54 Mining Patents for Parallel Corpora

Table 2.9 %BLEU scores for the additional experiments

B G H O

Same 21.92 24.06 23.74 24.27

ALL\B 20.72 24.39 24.47 23.69

ALL 22.94 24.47 24.52 24.04

on ALL excluding B (ALL\B). We reused the feature weights of the MT system
that was trained and tuned on ALL to save tuning time. We used the system to
translate the sentences in TEST of sections B, G, H, and O. The %BLEU scores are
shown in the ALL\B row of table 2.9. The figures listed in the row labelled Same
were the %BLEU scores obtained by applying MT systems trained on each section
to that section. The figures in the Same and ALL rows were taken from table 2.8.

Table 2.9 shows that the system trained on ALL outperformed the system
trained on ALL\B for all sections. This suggests that it is more important to
have more training data. Next, the system trained on O outperformed the systems
trained on ALL and ALL\B. In this case, adding data from other domains reduced
performance. The systems trained on G and H were outperformed by those trained
on ALL and ALL\B. Thus, additional data helped to improve performance in these
cases. Finally, the system trained on B outperformed the system trained on ALL\B
despite the fact that the number of sentences in ALL\B (1,613,914) was much larger
than that in B (185,778). This suggests that it is the domain that matters more
than the quantity of training data.

Table 2.10 lists 15 examples of translation obtained from the Japanese-English
MT system trained and tested on TRAIN and TEST of ALL. Reference translations
are denoted by an R, and MT outputs are denoted by an M. The vertical bars (|)
represent the phrase boundaries given by the Pharaoh decoder. These examples were
sampled as follows: We first randomly sampled 1000 sentences from TEST of ALL.
The correctness and adequacy of the alignment of these sentences were determined
by a translation agency, as described in section 2.4.2. We then selected 899 A
alignments whose English translation reflected almost perfectly the contents of the
corresponding Japanese sentences. Next, we selected short sentences containing less
than 21 words (including periods) because the MT outputs of long sentences are
generally difficult to interpret. In the end, we had 212 translations. We sorted these
212 translations in decreasing order of average n-gram precision18 and selected five
sentences from the top, middle, and bottom of these sorted sentences.19

Table 2.10 shows that top examples (1 to 5) were very good translations. These
MT translations consisted of long phrases that contributed to the fluency and

18. Average n-gram precision is defined as
P4

n=1
pn
4

where pn is the modified n-gram
precision as defined elsewhere (Papineni et al., 2002).
19. We skipped sentences whose MT outputs contained untranslated Japanese words when
selecting these 15 sentences.
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adequacy of translations. We think that the reason for these good translations
is partly due to the fact that patent documents generally contain many repeated
expressions. For example, example 2R is often used in patent documents. We also
noticed that lcd61 in example 5M was a very specific expression and was unlikely to
be repeated in different patent documents, even though it was successfully reused
in our MT system to produce 5M. We found a document that contained lcd61 in
TRAIN and found that it was written by the same company who wrote a patent
in TEST that contained example 5R, even though these two patents were different.
These examples show that even long and/or specific expressions are reused in patent
documents. We think that this characteristic of patents contributed to the good
translations.

The middle and bottom examples (6 to 15) were generally not good translations.
These examples adequately translated individual phrases. However, they failed to
adequately reorder phrases. This suggests that we need more accurate models for
reordering. Thus, our patent corpus will be a good corpus for comparing various
reordering models (Koehn et al., 2005; Nagata et al., 2006; Xiong et al., 2006).

2.6.4 Task-Based Evaluation of the Original Alignment Data

For the third experiment, we assessed the quality of the original alignment data
in a task-based setting. In section 2.4.2, we selected the first 2 million sentence
alignments based on our observations of the quality of the alignment data. In this
section, we increase the size of training data to see how MT performance evolves
using more data.

We used the 3.9 million one-to-one sentence alignments obtained in section 2.4.2
as our training data. From this data, we removed the alignments contained in the
patents in DEV, DEVTEST, or TEST of ALL. We also removed some sentence pairs
that were too long or too imbalanced, as discussed in section 2.4.2. We tokenized
and lowercased this data. As a result, we obtained 3,510,846 one-to-one sentence
alignments sorted by Score in Eq. (2.4).

We conducted controlled Japanese-English and English-Japanese MT experi-
ments using these 3.5 million sentence alignments. We used the common (a) word
alignment data, (b) language models, (c) feature weights, and (d) test data. We
changed the size of word alignment data when we built phrase tables in the follow-
ing experiments.

The common settings were obtained as follows. First, (a) we made word alignment
data from all sentence alignments using GIZA++. We randomly divided all the
sentence alignment data into two halves, applied GIZA++ separately to each half,
and combined them to obtain all word alignment data. (b) We made Japanese and
English trigram language models from the first 3.5 million sentence alignments. (c)
We reused the feature weights of the English-Japanese and Japanese-English MT
systems that were trained and tuned on ALL as described in section 2.6.3. (d) We
randomly sampled 2000 sentences from TEST of ALL as the test data.
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Figure 2.3 Relationship between the %BLEU scores and the number of sentence
alignments (in millions).

Finally, we used the first 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5 million sentence
alignments to make phrase tables. The %BLEU scores obtained with these phrase
tables in the common settings are shown in figure 2.3.

Figure 2.3 shows that the %BLEU scores for the English-Japanese MT exper-
iments reached a plateau around 2.5 million sentence alignments. The %BLEU
scores for the Japanese-English experiments increased up to 3.0 million sentence
alignments and then dropped when 3.5 million alignments were used as the train-
ing data.

These observations indicate that, up to certain points, the increase in the size
of the training data offsets the decrease in alignment quality. However, the perfor-
mance of the MT systems reached a plateau or even decreased after those points
due to noise in the alignment data. Therefore, based on the results from these
experiments and the results shown in figure 2.1, we conclude that Utiyama and
Isahara’s method effectively sorted the sentence alignments in decreasing order of
their quality.

2.7 Conclusion

Large-scale parallel corpora are indispensable language resources for MT. However,
there are only a few publicly available large-scale parallel corpora.

We have developed a Japanese-English patent parallel corpus created from
Japanese and U.S. patent data provided for the NTCIR-6 patent retrieval task. We
used Utiyama and Isahara’s method and extracted about 2 million clean sentence
alignments. This is the largest Japanese-English parallel corpus to date. Its size is
comparable to other large-scale parallel corpora. This corpus and its extension will
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be used in the NTCIR-7 patent MT task and made available to the public after the
7th NTCIR-7 workshop meeting.

We hope that the patent corpus described in this chapter will promote MT
research in general and the Japanese-English patent MT research in particular.
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Table 2.10 Examples of reference (R) and machine (M) translations

Top

1R the printer 200 will now be described .

1M next , the printer | 200 will now be described . |
2R preferred embodiments of the present invention will be described hereinbelow

with reference to the accompanying drawings .

2M hereinafter , | preferred embodiments of the | present invention | will be described

with reference | to the accompanying drawings | . |
3R more specifically , variable tr ( k ) is defined by the following equation .

3M namely , the variable | tr ( | k ) | is defined | by the following equation | . |
4R wd signal is further applied to a command decoder 24 and a data comparator 23 .

4M further , | signal | wd | is | also applied to a | command decoder 24 | and a data

comparator | 23 | . |
5R at this time , the selected page is displayed on the lcd 61 .

5M at this time , the | selected | page is | displayed on | the | lcd61 | . |
Middle

6R further , reference numbers 201-219 indicate newly-added circuit elements .

6M further , | reference numerals | 201 to 219 | is newly | added to | the circuit |
elements . |

7R for this purpose , a magnetic head 3 for recording is provided near the disk 1 .

7M therefore , the | recording | magnetic head | 3 is | provided adjacent to the |
disk 1 | . |

8R accordingly , the energy exerting an influence on the occupant can be reduced .

8M as a result , the | occupant | on | energy | can be reduced . |
9R note that nothing is connected to the 1-bit output terminals q0 , q1 of the

up-counter 131 .

9M the | output terminals q0 | , q1 | , the | number | of bits of the | up counter | 131 |
is also not connected . |

10R application program 20 is executed under support of operating system 18 .

10M an operating system | 20 | of the | support | 18 | under the | application program |
is executed . |

Bottom

11R numeral 14 denotes a suction surface non-separation streamline , which improves

the p-q characteristic and reduces noise .

11M the | back pressure | , and | no | peeling | surface | 14 | , and | noise | is reduced . |
improving characteristics of the | p or q | represents a | stream line |

12R the use of a robot for deburring work is a known prior art .

12M deburring | operation | using the | robot | is conventionally | known | technique . |
13R rdp indicates an address to which a cpu accesses presently .

13M the cpu | rdp | is currently | being accessed | address | is shown . |
14R the same is true with regard to the b signal independently of the r signal .

14M this is | regardless of signals | r | and b signals | similarly . |
15R the structure of the airbag device 1 will be explained hereinafter .

15M the air bag apparatus | 1 | are as follows . |



3 Automatic Construction of Multilingual

Name Dictionaries

Bruno Pouliquen
Ralf Steinberger

Machine translation and other natural language processing systems often experience
performance loss if they have to process texts with unknown words, such as proper
names. Proper name dictionaries are rare and can never be complete because new
names are being made up all the time. A solution to overcome this performance
loss could be to recognize and mark a named entity in text before translating it
and to carry over the named entity untranslated. This would also help avoid the
accidental translation of a name such as Bill Black, e.g., into French as “facture
noire”. An even better translation would be achieved if the target language spelling
of the name would be used, and this seems even crucial when translating from
languages with a different script, such as Chinese, Arabic, or Cyrillic. We will
show that multilingual name dictionaries are furthermore helpful for a number of
other text analysis applications, including information retrieval, topic detection and
tracking, relation and event extraction, and more. We then present a method and
a system to recognize named entities of the types “person” and – to some extent –
“organisation” in multilingual text collections and to automatically identify which
of the newly identified names are variants of a known name. By doing this for
currently 19 languages and in the course of years, a multilingual name dictionary
has been built up that contains to date over 630,000 names plus over 135,000 known
variants, with up to 170 multilingual variants for a single name. The automatically
generated name dictionary is used daily, for various purposes, in the publicly
accessible multilingual news aggregation and analysis system NewsExplorer.

3.1 Introduction and Motivation

There is an – often not explicitly mentioned – assumption that names do not need
translating. To some extent, this is true, at least for person names in related lan-
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guages such as those spoken in western European countries. The usefulness of name
translation is much more obvious for languages using different writing systems, such
as the Chinese, Arabic, and Cyrillic scripts, because it is not immediately obvious
to most readers that �or� V. Bux , Tζωρτζ Mπoυς , and D�ord� Uoker Bux
all refer to the same person, President George W. Bush. It is less widely known that
even among languages using the Roman script, names are sometimes transliterated.
The Latvian equivalence of the same name, for example, is Džordžs V. Bušs. We
argue that the usefulness of name dictionaries is not restricted to cases of cross-
script or intrascript transliteration, but that many more name variants occur within
closely related languages and even within the same language. While it may be ob-
vious to human readers that George W. Busch (found in German text), George
Walter Bushi (Estonian), and Georges Bush (French) refer to the same person,1

many automatic text analysis applications require an exact match of name variants,
meaning that they will benefit from a reference list of possible name variants.

3.1.1 Contents

The following subsections will serve as an introduction to the presented work on
automatically producing multilingual name variant dictionaries. They describe the
effect proper names have on machine translation (MT; section 3.1.2) and mention
some other text analysis applications that require name dictionaries (section 3.1.3).
Section 3.1.4 summarizes the various reasons why name variants exist. Current
efforts to produce name dictionaries, as well as some background information on
named entity recognition (NER) and name variant matching are summarized in
section 3.2 on related work.

The sections thereafter describe lightweight methods to recognize named entities
in many different languages (section 3.3) and to deal with highly inflected languages
such of those of the Balto-Slavonic language group (section 3.4), followed by a short
summary of named entity recognition evaluation results for the presented system
(section 3.5). Lightweight procedures are essential when aiming at gathering name
variants from a large variety of languages. We will then describe a method to identify
and merge name variants that does not rely on language pair–specific resources or
methods (section 3.6). The method, consisting of the steps transliteration, name
normalization, and approximate matching, can be applied to name variants of the
same language, of different languages using the same writing system, or to languages
using different scripts. The special feature of this approach is that – unlike state-of-
the-art approaches – it does not require any language pair–specific resources, which

1. See http://press.jrc.it/NewsExplorer/entities/en/1.html for a list of name vari-
ants for the president of the United States, as found in real-life news collections in the
course of several years of news analysis. The live entity page http://langtech.jrc.it/

entities/ listing the names identified only since midnight (Central European Time) shows
that the usage of name variants is the rule rather than an exception.
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makes it easy to add new languages. Section 3.7 concludes and points to future
work.

The methods presented here are being applied daily to tens of thousands of
news texts in many different languages. The results are publicly accessible in
the multilingual news aggregation and analysis system NewsExplorer, available at
http://press.jrc.it/NewsExplorer NewsExplorer clusters related news items
written in the same language on a daily basis and links each news cluster with
related news clusters from the previous days (topic detection and tracking) and
across languages (cross-lingual topic tracking). Finally, NewsExplorer cumulatively
collects information on name mentions, including name variants, co-occurrence
statistics with other names, name attributes mentioned across the many languages,
etc.

3.1.2 Proper Names and Machine Translation

Starting from the observation that “name translation has proven to be a challenge
for machine translation providers,” Hirschman et al. (2000) identified the following
three types of problems related to proper names:

1. Translation of proper names as if they were normal meaningful words (e.g.,
the name of the former German Chancellor Helmut Kohl translated as Helmut
Cabbage).

2. Idiomatic rather than literal translation of names; this mostly concerns organiza-
tion names (e.g., Escuela de Derecho de Harvard should not be backtransliterated
as Harvard School of the Right, but the original Harvard Law School should be
used).

3. Rendering of names in a format that is unusable by target language processing.
This is mainly an issue of transliteration, as foreign characters (such as those of the
Cyrillic alphabet) cannot be displayed or read in other languages.

We evaluated various Spanish-to-English MT systems with respect to proper
names and stated error rates of between 46% and 49% at token level and 31% to
35% at entity level. Based on these results, we recommend that named entities
should be identified in the source language before the MT process is started in
order to avoid translation errors, by simply copying over the names into the target
language.

Vilar et al. (2006) compared name translation errors to other types of MT errors,
based on their Chinese to English MT system trained on 200 million words. They
found that the relative frequency of errors related to proper names is 8.9% (5.4%
for person names). The biggest sources of errors in their study were incorrect words
(wrong lexical choice or incorrect morphological form), followed by missing words
(27.5%). It goes without saying that the relative impact of names on overall MT
performance evaluation depends heavily on the text type and thus the number of
(especially unknown) names in the text.
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3.1.3 Relevance of Multilingual Name Dictionaries to Other Text
Analysis Applications

Multilingual name dictionaries linking name variants to the same entity are useful
for a range of further applications. As part of the Topic Detection and Tracking
(TDT) competitions,2 Larkey et al. (2004) worked on cross-lingual topic tracking,
and specifically on identifying which Mandarin Chinese and Arabic language news
texts are related to English news texts about a chosen event. For that TDT exercise,
participants used either MT or bilingual dictionaries to map Chinese and Arabic
texts to the corresponding English texts. Larkey et al. observed that the results
for cross-lingual topic tracking suffer from poorly translated proper names or from
translated names being spelled differently than in the English news. They took
this observation to support their so-called native language hypothesis, which says
that it is better to process the documents monolingually (NER, topic tracking)
and to then only map the result with the English results, rather than translating
document by document and operating on the machine-translated texts. Hakkani-
Tür et al. (2007) came to the same conclusion regarding information retrieval.
This insight is not surprising as different news stories can be distinguished quite
accurately based on the persons, organizations, and locations involved. Steinberger
et al. (2004) therefore propose to use normalized named entities plus other features
as anchors to link related news across languages.

Friburger and Maurel (2002) showed that the identification and usage of proper
names, and especially of geographical references, significantly improves document
similarity calculation and clustering. Hyland et al. (1999) clustered news and
detected topics exploiting the unique combinations of various named entities to
link related documents. However, according to Friburger and Maurel (2002), the
usage of named entities alone is not sufficient.

Ignat et al. (2005) present two applications that rely on named entities to
provide cross-lingual information access. The first one is a cross-lingual glossing
application that identifies named entities in foreign language text, highlights them,
and displays the named entity in the language of the user. The idea is to help
users decide on the potential relevance of a foreign language text so that they can
decide whether or not to get the text translated. The second application gives an
overview of large multilingual thematically related news collections by using an
interactive geographical map showing which locations are being referred to how
often. In addition to the geographical map, the application also displays frequency
lists of named entities and of specialist terms. Each document collection can thus
be visualized in an intuitive manner and users can explore it via each of the three
entity types.

2. See http://www.nist.gov/speech/tests/tdt/index.htm for an introduction to the
TDT exercises.
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Pouliquen et al. (2007a) produce multilingual social networks based on the co-
occurrence of the same names in news texts written in 19 different languages. In
Pouliquen et al. (2007b), a multilingual quotation network is produced based on
who mentions whom in direct speech quotations (reported speech) in 11 different
languages. Tanev (2007) describes work that aims at learning to extract English
language patterns that describe specific relationships that hold between persons,
such as family, support, criticism relationship, and more.

Identifying name mentions and their variants in documents and storing the
extracted metainformation in a knowledge base has the benefit of providing users
with a powerful metasearch capacity. In NewsExplorer (Steinberger et al. (2005)),
for instance, users can search for news and historically collected name attribute
information. Due to the name dictionaries used, customers querying for a name
will find news articles independently of the spelling of the name.

Generally speaking, any work that aims at extracting information about entities,
their relations, the events in which they are involved, etc., will benefit from
multilingual name variant dictionaries because they will allow identification of a
coreference between entity mentions even if the names are spelled differently. Such
dictionaries will be particularly useful when the applications are multilingual or
cross-lingual. However, as the next subsection shows, even monolingual applications
will benefit from name dictionaries because the same entities are often referred to
with different surface strings.

3.1.4 Why do Name Variants Exist?

The same person can be referred to by different name variants. The main reasons
for these variations are listed below. Not all of the variant types should be included
in a name dictionary:

1. The reuse of name parts to avoid repetition (e.g., Condoleezza Rice, Ms. Rice,
and Secretary of State Rice).

2. Morphological variants such as added suffixes (e.g., in Polish, Tonym Blairem,
Toniego Blaira, Tony’ego Blaira may be found for the name Tony Blair).

3. Spelling mistakes (e.g., Condolleezzaa Rice, Condolizza Rice, Condoleezza Rica,
etc., all repeatedly found in real news texts).

4. Adaptation of names to local spelling rules (e.g., the Polish name Lech Wa�l ↪esa
is almost always found as Lech Walesa in other languages because the letters “�l”
and “ ↪e” are not part of their alphabet. Similarly, Émile Lahoud is often written
Emile Lahoud).

5. Transliteration differences due to different transliteration rules or different target
languages (e.g., the same Russian name Mihail Fradkov has been found to be
transliterated as Mikhail Fradkov in English, Michail Fradkow in German, Mikhäıl
Fradkov in French, and Mijáıl Fradkov in Spanish).
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Table 3.1 Most frequent name variants for the President of Sudan, Omar al-Bashir,
automatically extracted from news articles. The language of the text where the variant was
found is indicated in brackets. Names in languages other than the 19 active NewsExplorer
languages were automatically retrieved from Wikipedia. (See http://press.jrc.it/

NewsExplorer/entities/en/934.html)

6. In the specific case of Arabic, where short vowels are usually not written, vowels
need to be inserted during transliteration, which can cause large numbers of variants
(e.g., the Arabic name Mohammed consists of only the consonants Mhmd, which
explains the different Romanized variants Mohammed, Muhameed, Muhamad, etc.).

It is our experience that name variants are not only found in the news in different
languages but even within the English language news we find many variants.
Table 3.1 shows that many variants for the same name can be found within the
same language (33 variants in English alone). Our aim is to identify all variants as
belonging to the same person and name identifier, so that users can search and find
all documents mentioning a person, independently of the spelling.
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3.2 Related Work

In this section, we will mention existing efforts to build multilingual name dictionar-
ies (section 3.2.1) and will briefly report on related work concerning NER (section
3.2.2) and name variant matching (section 3.2.3).

3.2.1 Existing Name Dictionaries or Efforts to Build Such Lists

Bouchou et al. (2005) are working on compiling a multilingual name dictionary, Pro-
Lex, through a manual effort, including also historical name variants, geolocations,
and more.

Hassan et al. (2007) exploit both parallel and comparable corpora to compile
Arabic-English name dictionaries. They produce comparable corpora by translat-
ing an existing Arabic text into English, and by searching for real-life English
documents automatically by querying search engines with terms extracted from
the English MT result. As they will find various name candidates for each Arabic
name, they use the phonetic string-matching algorithm Editex (Zobel and Dart,
1996) and a filter based on the length of the names to identify the best English lan-
guage name candidate. Editex is similar to the more widely known edit distance.
However, Editex considers the phonetic similarity of letters or letter groups, stating
for instance that the distance between the letter “t” and its voiced counterpart “d”
is only half that of unrelated letters (e.g., “t” and “m”). For an overview of other
possible string distance metrics, see Cohen et al. (2003).

Klementiev and Roth (2006b) also exploit comparable corpora to compile a list
of Russian-English name pairs. They propose an iterative algorithm based on the
observation that named entities have a similar time distribution in news articles
(synchronicity of names).

In section 3.2.3, we will present some more work on compiling bilingual name
dictionaries by using transliteration rules, either machine-learned from bilingual
name example lists or based on phonetic observations.

3.2.2 Named Entity Recognition

NER is a known research area (e.g., MUC-6; Nadeau and Sekine, 2007). Work on
multilingual NER started much more recently (e.g., MLNER; Poibeau, 2003; Tjong
Kim Sang and De Meulder, 2003).

People’s names can be recognized in text through various methods:

1. through a lookup procedure if a list of known names exists;

2. by analyzing the local lexical context (e.g., “President” Name Surname);

3. because part of a sequence of candidate words is a known name component (e.g.,
“John” Surname), or
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4. because the sequence of surrounding parts-of-speech (or other) patterns indicates
to a tagger that a certain word group is likely to be a name.

It is rather common to use machine learning approaches to learn context patterns
that recognize names by looking at words or syntactic structures surrounding known
names. For the European languages, it is sufficient to consider only uppercase words
as name candidates, although common lowercase name parts need to be allowed
(e.g., Dutch van der, Arabic al and bin, French de la, etc.). Other languages, such
as Arabic, do not distinguish case. In the work presented here, we currently use
methods 1 to 3 above, but we do not use part-of-speech taggers, because we do
not have access to such software for all languages of interest. Until now, the focus
has been on people’s names, but we also recognize some organization names, using
mainly method 3 (i.e., because the candidate contains organization-specific name
parts such as International or Bank).

The Joint Research Centre (JRC)’s NER tools differ in some features from other
similar tools. These differences are due to the specific needs of the NewsExplorer
environment: First, we aim at covering many languages rather than at optimizing
the tools for a specific language, because NewsExplorer already now covers 19
languages and more languages are to come. Second, we aim at identifying each
name at least once per text or even per cluster of articles and we have no specific
interest in identifying every single occurrence of the name in a text. This is due
to the fact that users need to see the names mentioned in each cluster of related
news and that they should be able to find all clusters in which a certain name
was mentioned. The aim is thus to optimize the recall of the name recognition
system per cluster or per document, instead of per name instance. Third, we aim
at recognizing names with at least two name parts (typically first name and last
name, e.g., Angela Merkel) and ignore references to names consisting of only the
last name (e.g., Chancellor Merkel). The decision to ignore one-word name parts
is due to the facts that single words are more likely to be ambiguous and that it
is safer to use the combination of first and last names to match name variants (see
section 3.6.3). The name recognition recall is nevertheless very satisfying because
news articles usually mention the full name of a person at least once per article,
together with the title or function of the person. However, when applying the NER
tools to other text types, we had to relax and extend the patterns in order to allow
the recognition of last names only (e.g., Chancellor Merkel) and combinations of
first name initials and last names (e.g., A. Merkel).

3.2.3 Name Variant Matching

Most past work on detecting name variants in text focuses on coreference resolution
for partially overlapping strings (Condoleezza Rice vs. Ms. Rice, etc.) and on cate-
gorizing the named entities found (e.g., identifying whether Victoria is a person or
a city). Morphological variants of names are typically dealt with by using lemma-
tization or stemming software. For this purpose, morphological analyzers are used
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to identify variants and to return the normal form (usually the nominative). This
presumably is the best-performing approach (although names are often unknown
words so that morphological analysis errors are likely), but morphological tools are
not easily available for many languages, or they are costly. As an alternative, Kle-
mentiev and Roth (2006b) propose to simply map name variants by truncating all
letters after the first five letters and to map on the basis of the remaining “stem.”

Freeman et al. (2006) combine the Editex distance (Zobel and Dart, 1996) with
a large number of manually written language-specific normalization rules (both for
English and for Arabic) to create a name mapping system for Arabic and English.

To our knowledge, there are no NER systems that automatically match name
variants due to wrong spelling or varying transliteration, although approximate
matching tools exist for name variant matching inside databases. A number of
different techniques have been developed for this purpose, including edit distance
and letter n-gram overlap (Cohen et al., 2003).

For names written in different writing systems (e.g., Cyrillic or Arabic alpha-
bets; Chinese ideographs), transliteration rules are frequently used. These can be
handwritten (e.g., Freeman et al., 2006) or learned from large lists of bilingual
name equivalences (e.g., Knight and Graehl, 1997; Sherif and Kondrak, 2007). The
American automatic content extraction programme ACE-07 (2007) organized its
2007 benchmark test with the title entity translation. The aim of the competition
was the automatic extraction of named entities from Arabic and Chinese texts and
their representations in English. In such a bilingual context, pronunciation rules
can be used to infer possible target language spellings. Within the news domain
and the multilingual environment of the NewsExplorer, however, we cannot take a
certain pronunciation for granted. The French name Chirac found in Italian news,
for instance, must not be pronounced according to Italian phonetic rules as it would
otherwise end up as /kirak/. Conversely, the Italian name Vannino Chiti should –
even in French news – be pronounced according to Italian rules /Vanino Kiti/.

The fact that the national origin of names in news texts is not known and that
pronunciation rules cannot be taken for granted is often ignored and cannot be
stressed enough. Identifying the origin of a name and guessing its pronunciation
is often difficult. The name Arthur Japin, found in a Dutch newspaper, could be
pronounced according to the Flemish-Dutch rules(/artür yapin/), according to the
French rules (/artür japiñ/), in the English way (/arthur djapin/), or others (the
Dutch novelist actually uses the French pronunciation and should be transliterated
in Russian as Artur �apa and not Artur D�apin or Artur �pin). The origin
of a name cannot be accurately determined from the string alone. Konstantopoulos
(2007) reports an accuracy of 60% when automatically guessing the origin of names
relying only on the surface string. This is low, but the task clearly is difficult: the
comparative result for human guessing was even lower, namely 43%.

The approach described in the following sections differs from the state of the
art in that we use the same empirically determined spelling normalization rules
for all languages to produce a simplified, or “normalized” form that can be used to
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compare all variants found. For morphological variants, we use the language-specific
suffix stripping or suffix replacement rules described in section 3.4.1.

3.3 Multilingual Recognition of New Names

The following subsections will describe the lightweight process to identify new
named entities daily in multilingual news texts (section 3.3.2) and to mine
Wikipedia for further name variants in additional languages (section 3.3.3). The
algorithm described in sections 3.3.2 and 3.4 are applied daily on the multilingual
NewsExplorer news data, described in section 3.3.1.

3.3.1 Background: Multilingual News Data

NewsExplorer (Steinberger et al., 2005) is part of the Europe Media Monitor family
of applications (EMM) (Best et al., 2005). NewsExplorer receives from EMM an
average of 40,000 news articles in 35 languages, scraped from about 1400 news
portals in Europe and around the world. EMM converts all articles into a standard
UTF-8-encoded RSS format and classifies them into a given set of several hundred
categories. The articles received within the last few minutes and hours are displayed
on the live NewsBrief website (http://press.jrc.it/), which is updated every ten
minutes. For 19 of the 35 languages, NewsExplorer clusters related articles once per
day, separately for each language, in order to group news about the same event or
subject. From each of these clusters, person, organization and location names are
extracted. The information on the entities found in each cluster, combined with
the database information on names and name variants and further information, is
then used to link equivalent news clusters across the whole range of languages and
for all language pair combinations. A database keeps the information where and
when each name was found, which other names were found in the same cluster, and
which name attributes were found next to the name. This process is described in
Steinberger and Pouliquen (2007).

3.3.2 A Lightweight Recognition Process Allowing High Multilinguality

The rules to identify new names consist of lexical patterns which have mostly been
collected in a bootstrapping procedure: We first collected open source lists of titles
(Dr., Mr., President, etc.) and wrote simple local patterns in PERL to recognize
names in a collection of three months of English, French, and German news. We
then looked at the most frequent left- and right-hand side contexts of the resulting
list of known names and hand-selected the good candidates. For English alone, we
have collected about 3300 local patterns, consisting of titles (Dr., Mr, etc.), country
adjectives (such as Estonian), professions (actor, tennis player, etc.), and other
specific patterns, e.g., expressing age (e.g., [0-9]+ year-old), functions (ambassador
to [A-Z][a-z]+), or actions (e.g., in French a affirmé; in Portuguese explicou; in
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Spanish aprovechó). We refer to these local patterns as trigger words. Combinations
of the different types of trigger words are also recognized (e.g., Polish ambassador
to Iraq). Additionally, we check all groups of uppercase words found in text against
long lists of known first names in the 19 NewsExplorer languages. If one part of the
name candidate is a known first name, the group will also be marked as a named
entity.

To reduce the number of wrongly identified names in sequences of uppercase
words (e.g., in English language news heads, where content words are often spelled
in uppercase), we also make use of large numbers of name stop words. These name
stop words are lists of common words which, during the early development phases,
were frequently wrongly identified as name parts. When found in a name candidate
string, they are used as separators that will not be allowed as part of the name. In
English, for instance, the days of the week are on the name stop word list, because
they are spelled in uppercase and frequently lead to wrong names. For instance, in
phrases such as During the speech of Chancellor Angela Merkel Friday . . . , the name
stop word avoids identifying the whole string Angela Merkel Friday as a name.

The patterns additionally allow some common (uppercase or lowercase) name
parts such as Mc, de, bin, al-, van der, O’, M’ in order to recognize names like
Paul McCartney, Cécile de France, Osama bin Laden, Rafik al-Hariri, Rafael van
der Vaart, Martin O’Neill, and Mohamed M’Barek.

The mentioned patterns allow the program to recognize new names (e.g., in the
American doctor John Smith), but a stored list of such patterns is additionally
useful to give users supplementary information about persons. In the previous
example, for instance, the user will see that John Smith probably is an American
doctor. When a name is often used with the same trigger words, this information
can be used to qualify names automatically. In that way, George W. Bush will
be recognized as being the American president, Rafik Hariri as being a former
Lebanese prime minister, etc.

For each added language, native speakers translate the existing pattern lists and
use the same bootstrapping procedure to complete the patterns. As of September
2007, NewsExplorer performs named entity recognition in 19 languages. The stored
associated titles for 15 of the 19 languages are updated daily. This NER approach
has been designed with the requirement in mind that the development of resources
for new languages should be quick and easy. Steinberger et al. (Forthcoming)
describe how this can be achieved by using mostly language-independent rules
with language-specific resource files, and how the latter can be produced with
bootstrapping methods requiring minimal effort.
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3.3.3 Enriching the Name Database Using Wikipedia

For known names, the system periodically checks whether a corresponding entry
exists in the Wikipedia online encyclopedia.3 If it exists, the URL of the Wikipedia
page will be added to the NewsExplorer page to provide readers with more infor-
mation on the person, if required. Additionally, the system downloads the picture
for the person or organization and checks whether Wikipedia lists name variants
not yet known to the NewsExplorer database. Additional variants found are then
added to the knowledge base. This is particularly useful for name variants in foreign
scripts (Arabic, Russian, Chinese, etc.).

3.4 Lookup of Known Names and Their Morphological Variants

This section describes the method used to recognize known names (names already
in the database), their inflections, and common spelling variants in text.

3.4.1 Dealing with Inflection

Both the context rules to recognize new names (described in section 3.3) and the
lookup of known names (see section 3.4.2) rely on exact matches between the word
forms found in the text and those found in the name lists and in the rules. Inflected
names are thus a major problem for NER and must be dealt with one way or
another. For instance, in the Croatian text snippet predsjednika Stjepana Mesića,
the Croatian president’s name Stjepan Mesić would not be found even though his
name is in the NewsExplorer name database because the name lookup procedure
would fail. For more highly inflected languages such as those of the Balto-Slavonic
or Finno-Ugric families, a minimum of morphological treatment is thus required.
For an overview of morphological and other tricky phenomena for Balto-Slavonic
languages, see Przepiórkowski (2007). As it is both costly and difficult to get hold
of morphological tools for the range of NewsExplorer languages, we adopted a
simplistic, but relatively reliable solution that consists of pregenerating a large
number of possible inflected morphological variants for the frequent known names,
and for first names. If any of these pregenerated variants is then found in text, they
will be recognized and can be linked to the base form. For details, see Pouliquen
et al. (2005).

The name inflections can be generated by collecting the most common name
suffixes and suffix replacement rules and by then applying them to all known
names of the database. While coming up with accurate rules to produce the full
morphological paradigm for each name is a linguistically highly challenging task,
producing lists of the most common suffixes and suffix replacement rules is much

3. http://www.wikipedia.org/, last visited 3/28/2007.
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less difficult. The reasons are twofold: first, overgenerating inflection forms is not
a problem because the overgenerated nonexisting word forms would simply not
be found in text; second, the suffixes and rules can be collected empirically and
semiautomatically by searching text collections of the new language for (uppercase)
strings whose beginning is the same as the names in the name database.

The name inflection rules are encoded as a set of regular expressions generating
different endings. As it is not always possible to determine the gender of a person by
looking at the name (e.g., Andrea is a male first name in Italian but a female first
name in German), the rules always generate both masculine and feminine name
inflections. In Slovene, for example, we allow the following suffixes for each name:
-e, -a, -o, -u, -om, -em, -m, -ju, -jem, -ja. If the name already ends with “-a”,
“-e” or “-o”, the final vowel is optional (allowing the form Pierrom Gemayelom for
Pierre Gemayel). Even without knowing Slovene, it is possible to produce lists of
possible suffixes on the basis of these forms, but native speaker competence will,
of course, improve the results a lot. It goes without saying that there will always
be cases that cannot be dealt with by using this method. Cases of infix change or
vowel harmonization, for instance, will remain unsolved. Obviously, there is always
a small risk that an overgenerated form matches a real word of that language, but
we are not aware of any such cases having occurred.

While the empirical and admittedly crude method described here will not be
sufficient for many linguistic purposes, the performance is perfectly acceptable for
NewsExplorer’s lookup application, due to the inherent redundancy in the large
data volume of the news analysis system.

3.4.2 Lookup Procedure

The NewsExplorer database currently contains about 630,000 names plus about
135,000 name variants (status September 2007); however, less than a quarter of
these are found repeatedly. We feed a FLEX finite state automaton (Paxson, 1995)
with the 50,000 most frequent known names (found in at least five different news
clusters) and their additional 80,000 variants. Our lookup process allows the usage of
character-level regular expressions and it allows finding proper names in languages
that do not use spaces between words, like Chinese. Additionally, we generate
regular expressions so that frequent spelling variants will be recognized, as well.

These include:

1. Hyphen/space alternations: For hyphenated names such as Marie-Odile or Ah-
mad al-Fahd al-Sabah, we generate alternation patterns (Marie[\ \-]Odile).
2. Diacritic alternations: Words with diacritics are frequently also found without
their diacritics, e.g., Émile Lahoud may be found as Emile Lahoud ; we thus generate
the pattern (É|E)mile[\ ]Lahoud.

3. Declensions of names: We pregenerate morphological variants for all known
names in the languages that decline person names, as described in section 3.4.1. In
Slovene, for example, we can find the following declensions of the name Javier
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Solana: Javierja Solane, Javiera Solane, Javierom Solano, Javierjem Solano,
Javierja Solano.

In the Slovene automaton, the regular expression generated for the name José
Van-Dúnem is then
Jos(é|e)?(e|a|o|u|om|em|m|ju|jem|ja)?[\]
Van[\ \-]D(ú|u)nem(e|a|o|u|om|em|m|ju|jem|ja)?
The live webpage http://langtech.jrc.it/entities/ shows the most fre-

quently found names plus all their name variants successfully looked up since last
midnight CET. Figure 3.1 shows how large a variety of names and their declensions
can be found within a few hours.

3.5 Evaluation of Person Name Recognition

Most existing systems aim at optimizing NER for a given language, to recognize
every mention of the name, and to categorize the name into the given classes
person, organization, location, etc. The focus of our own work, however, is rather
different, as mentioned in section 3.2.2. In early 2005, we nevertheless carried out
a standard evaluation of the performance of our person name recognition tool
for various languages, which yielded the Precision, Recall, and F-measure results
shown in table 3.2. Each test set consisted of a random selection of about 100
newspaper articles, for which experts listed all person names that were present in
the text. For each article, we then compared if the automatically recognized person
names were also selected by the expert (to get Precision), and if all the manually
extracted names were also automatically found (to get Recall). These two values
were combined using the F1-measure.

The results are clearly less good than for the best monolingual NER systems
that use part-of-speech taggers. The Precision is nevertheless reasonably high. In
the NewsExplorer setting, where names need to be detected in redundant clusters
of news instead of in individual articles, the lower Recall is not a big issue because
names are usually found in at least one of the articles so that the person information
for the cluster is mostly complete.

The low Recall score could be due to the nature of our heterogeneous test set: The
set not only includes articles from many different domains (politics, sports results,
discussions of television programs, etc.) but also from international newspapers
from all over the world (this is particularly true for the English-language texts). The
system has to analyze articles containing text such as: Phe Naimahawan, of Chiang
Mai’s Mae Ai district, has been selected (. . . ) to represent Thailand in a swimming
event (. . . ). Phe is being helped by Wanthanee Rungruangspakul, a law lecturer.
Without part-of-speech tagging, it is difficult to guess that Phe Naimahawan is a
person name. However, in the same text, we were able to guess the name Wanthanee
Rungruangspakul thanks to the trigger word law lecturer.
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Figure 3.1 Screenshot from the publicly accessible live site http://langtech.jrc.it/

entities/ showing the person names and their variants plus the text snippets in which
the name was found since midnight CET. The example of Vladimir Putin shows that –
even in such a short time period – a large number of spelling variants and morphological
variants can be found. The screenshot shows text snippets with different orthographies in
French, Greek, Bulgarian, Polish, and Arabic.

Table 3.2 Evaluation of person name recognition in various languages. The number of
rules (i.e., trigger words) gives an idea of the expected coverage for this language. The third
and fourth columns show the size of the test set (number of texts, number of manually
identified person names).

Language #rules #texts #names Precision Recall F-measure

English 1100 100 405 92 84 88

French 1050 103 329 96 95 95

German 2400 100 327 90 96 93

Spanish 580 94 274 85 84 84

Italian 440 100 298 92 90 91

Russian 447 61 157 81 69 74

The lower Precision for German was predictable as in German every noun is
uppercased, which sometimes results in the system recognizing common nouns
as proper names. In the example: Die österreichische Eishockey National-
mannschaft bekommt während der Heim-WM noch Verstärkung, the word com-
bination Eishockey Nationalmannschaft (ice hockey national team) was wrongly
identified as being a person name due to the trigger word österreichische (Aus-
trian).

Errors in Spanish were due to various facts. One of them was that we did not
have any Basque first names in our name lists and that many Basque names were
found in the test set (e.g., Gorka Aztiria Echeverŕıa). Another reason was that
our system frequently only recognized part of the typically Spanish compound
names (e.g., Eĺıas Antonio Saca, where the process recognized only Antonio Saca).
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Finally, several organization names were wrongly classified by the algorithm as
person names.

The explanation for the Russian results mainly is that, at the time, our name
database contained only a dozen Russian names so that the system had to guess
most names, which is harder than looking up known names. Since the evaluation
was carried out, our NER system has been improved, but no formal evaluation has
been carried out since these changes have been made.

3.6 Identification and Merging of Name Variants

The name variants displayed on the person pages in NewsExplorer are not gener-
ated, but they were all collected from real live news texts. Once a day, NewsExplorer
compares each new name found to all the other names in the database. If the new
name is found to be a variant of an existing name, it is automatically merged with
the existing name. Otherwise, it is added to the database with a new numerical
identifier. This section explains how variants belonging to the same name are iden-
tified. More specifically, section 3.6.1 explains the transliteration step for names in
languages not written with the Roman script. Section 3.6.2 describes the language-
independent name normalization rules, and section 3.6.3 finally describes how we
identify which name variants should be merged to the same name.

3.6.1 Transliteration of Names Not Written with the Roman Alphabet

The common approach to identifying name equivalents across writing systems is to
transliterate letters or groups of letters from one writing system (e.g., Cyrillic)
into the other (e.g., Roman script), using either handwritten or automatically
learned equivalence rules (see also section 3.2.3) and to then compare the results. As
the phonetic systems of different languages differ and not every foreign language
sound can be represented accurately in the other language, transliteration and
backtransliteration frequently result in different spellings. For instance, the French
name Valery Giscard d’Estaing is transliterated into Russian as Valeri �iskar
d’�sten and the result of backtransliteration is Valeri Jiskar d’Esten. Klementiev
and Roth (2006b) report that Russian to English transliteration was successful in
only about 38% of cases, even though they had avoided the additional problem of
name inflections by stemming the names.

In our own approach, we combined standard, handwritten transliteration rules
with the subsequent normalization step described in section 3.6.2. In the case of
the former French president, this results in valeri giskar desten, which is rather
different from its original spelling (Valery Giscard d’Estaing), but similar enough
to the normalized form of the original name valeri giskard destaing for the fuzzy
matching techniques (see section 3.6.3) to be successful.

In the case of Arabic, an additional step needs to be carried out because in Arabic
short vowels are usually not written. For this reason, we also delete the vowels from
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Table 3.3 A selection of name normalization rules with examples

accented character
⇒ nonaccented equivalent

Éamon Ó Cúıv ⇒ Eamon O Cuiv

y ⇒ i Serguey Kislyak ⇒ Serguei Kisliak

double consonant
⇒ single consonant

Sybille Bammer ⇒ Sibile Bamer

ou ⇒ u Malik Saidoulaiev ⇒ Malik Saidulaiev

wl (beginning of name) ⇒ vl Wladimir Putin ⇒ Vladimir Putin

ow (end of name) ⇒ ov Michail Fradkow ⇒ Michail Fradkov

ck ⇒ k Franck Lampard ⇒ Frank Lampard

x ⇒ ks Alexei Kudrin ⇒ Aleksei Kudrin

al- ⇒ {empty} Rafik al-Hariri ⇒ Rafik Hariri

the name written in Roman script before applying the fuzzy matching techniques.
We refer to this normalized and vowelless name representation as the consonant
signature. The name Condoleezza Rice, normalized to kondoleza rice, will thus have
the consonant signature (kndlz rc), which is more similar to the Arabic consonant
signature (after transliteration and the removal of the remaining long vowels) kndlz
rs : the edit similarity between these two variants is 0.875 and thus rather high. For
an evaluation on small Arabic, Farsi, and Russian test sets, see Pouliquen et al.
(2005).

3.6.2 “Normalization” of Name Variants

Comparing each of the approximately 450 new names found every day with all
existing 630,000 names in the database (plus their 135,000 variants) would be com-
putationally rather heavy, independently of the approximate matching algorithm
used. When using edit distance, the overall process would have a complexity of
O(N · M · n · m · a), with N being the number of new names, M the number of
existing names in the database, n the average length of new names, m the average
length of existing names, and a the average number of aliases per name. Addition-
ally, certain regularities for at least some of the name variants can be observed. For
instance: the Russian name suffix “ov” (“ov”) is frequently transliterated either
as “ov” (e.g. in English or French) or as “ow” (in German); diacritics on names
are frequently omitted in English and other languages (François and Wa�l ↪esa are
often found as Francois and Walesa); the English letter combination “sh” and the
German “sch” are usually transliterated into Slovene as “š,” etc.

We exploit these empirically observed regularities by writing normalization rules
that merge the observed variants to the same normalized form (see table 3.3 for
rule examples). This normalized form does not claim to represent any linguistic
reality, but is purely motivated by pragmatic needs. We observed that most of
the variations concern vowels (especially when the name was transliterated from
Arabic). Therefore we also remove vowels from the normalized form in order to
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Table 3.4 Examples of normalized forms and consonant signatures

compute the consonant signature. For new names written with the Roman alphabet,
all names are first normalized, then reduced to consonants and then compared to
the prestored consonant signatures of the names in the database. Table 3.4 shows
examples for normalized forms and consonant signatures. This comparison is, of
course, rather fast and efficient.

3.6.3 Approximate Matching of (Normalized) Name Variants

We automatically compare each of the approximately 450 newly identified names
per day with all other known names from the database. Due to the large volume
of names, we apply fuzzy matching rules only to an automatic preselection of
new names. This preselection is done by comparing the consonant signature of
the new names with the pre-stored consonant signatures of all known names and
their variants. Only if there is an exact match, are the following fuzzy matching
rules applied. Otherwise, the new names are entered with a new identifier into the
database.

The similarity calculation between the preselected new name and the similar
known name(s) is based on edit distance (Zobel and Dart, 1995). This measure
is applied twice, each time to a different representation of the same name pair:
First it is applied to the normalized form (with vowels) and then to the lowercased
nonnormalized name, as it was found in the text (after transliteration, if applicable).
The first similarity has a relative weight of 0.8, the second of 0.2. If the combined
similarity value is above the threshold of 0.94, the candidates are automatically
merged. Otherwise the new name is entered into the name database with a new
identifier. Note that the newly identified name is merged with existing names if it
is similar enough to any of the stored name variants. The threshold of 0.94 was
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Table 3.5 Pairs of candidates for the automatic merging, and their combined fuzzy
matching similarity values. When the value is 0.94 or higher, the two variants are
automatically merged. The last column shows the human judgment on the merging
decision.

determined empirically by looking at large numbers of merger candidates. In this
test set, all name variant candidates with a similarity above 0.94 were indeed good
candidates (i.e., the precision was 100%). By lowering the threshold, some more
good candidates could have been found, but we would merge some name variants
that do not belong to the same person. The focus of the merging is thus on high
precision rather than on good recall. Table 3.5 shows a few name merger candidates
and their combined similarity values. The shown example set includes candidates
above the threshold (automatically merged) and below (kept separate).

In previous work (Pouliquen et al., 2005), we used the cosine vector space
similarity measure (representing proper names as vectors of bigrams and trigrams
of characters) but observed that edit distance is more suitable for proper name
comparison. Vector space-based similarity measures have the advantage that they
allow for an inversion of the sequence of characters, but have the disadvantage
that they give more vague results when names contain common substrings but at
different places. In our case, it is quite unlikely that two names have a completely
different order of characters. In newspaper articles, full names are almost always
written with the first name followed by the family name. Hungarian is a notable
exception, as it usually mentions the family name first for local names (Kálmán,
1978), while using the inverse order for foreign names. Specific rules will have to be
written to tackle this problem.



78 Automatic Construction of Multilingual Name Dictionaries

3.7 Conclusion and Future Work

In the past, dictionaries were developed for general or subject-specific vocabularies,
but not for proper names. However, name dictionaries, which may include cross-
lingual, cross-script, and also monolingual name variants, are a precious resource
that can help improve the output of many text analysis applications. These include
machine translation, information retrieval, topic tracking, relation and event ex-
traction, the automatic generation of social networks based on information found
in free text, and more. While work on automatically extracting information to feed
name dictionaries is still rather scarce, many scientists now work on automatically
learning transliteration rules and name equivalences from bilingual name lists, es-
pecially for Arabic and Russian.

We have presented work on recognizing new names in multilingual news collec-
tions in 19 languages and on an automatic procedure to determine whether any new
name is likely to be a variant of a known name or whether it is a name in its own
right. For that purpose, each name is normalized – using language pair-independent
rules – and then compared to each of the known names in the database using a com-
bination of two similarity measures. The language-independence of the rules is of
particular importance because names found in news texts can come from any coun-
try and could be pronounced according to the pronunciation rules of any language
on the globe.

The presented method is applied daily in the multilingual news aggregation and
analysis application NewsExplorer. It identifies an average of 400 new names and
of 50 new name variants per day.

Work we would like to carry out in the future is to exploit the multilingual name
database, which currently contains about 630,000 names plus an additional 135,000
name variants. Similarly to the work Mulloni (2007) carried out on predicting cog-
nate variants across languages, we would like to learn typical name transliteration
and equivalence rules. For instance, the database knowledge could be used to learn
Latvian transliteration rules (Džordžs V. Bušs is the Latvian equivalent to George
W. Bush) or typical patterns for the transliteration of a Russian name like Ustinov
to English Ustinov, French Oustinov, or German Ustinow.
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4 Named Entity Transliteration and

Discovery in Multilingual Corpora

Alexandre Klementiev
Dan Roth

Named entity recognition (NER) is an important part of many natural language
processing tasks. Current approaches often employ machine learning techniques
and require supervised data. However, many languages lack such resources. This
chapter1 presents an (almost) unsupervised learning algorithm for automatic dis-
covery of named entities (NEs) in a resource-free language, given bilingual corpora
in which it is weakly temporally aligned with a resource-rich language. NEs have
similar time distributions across such corpora, and often some of the tokens in a
multiword NE are transliterated. We develop an algorithm that exploits both ob-
servations iteratively. The algorithm makes use of a new, frequency-based, metric
for time distributions and a resource-free discriminative approach to translitera-
tion. Seeded with a small number of transliteration pairs, our algorithm discovers
multiword NEs, and takes advantage of a dictionary (if one exists) to account for
translated or partially translated NEs. We evaluate the algorithm on an English-
Russian corpus, and show a high level of NEs discovery in Russian.

4.1 Introduction

Named entity recognition has received significant attention in natural language pro-
cessing (NLP) research in recent years since it is regarded as a significant component
of higher-level NLP tasks such as information distillation and question answering.
Most modern approaches to NER employ machine learning techniques, which re-
quire supervised training data. However, for many languages, these resources do not
exist. Moreover, it is often difficult to find linguistic expertise either for annotating
data or specifying domain knowledge. On the other hand, comparable multilingual

1. This chapter unifies and extends work from Klementiev and Roth (2006a,b).
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Figure 4.1 Temporal histograms for Hussein (top), its Russian transliteration (middle),
and of the word Russia (bottom).

data (such as multilingual news streams) is becoming increasingly available (section
4.4). Unique properties of such corpora may allow us to transfer annotation across
to resource-poor domains, relieving the supervision bottleneck.

In this chapter, we make two independent observations about named entities
encountered in such corpora, and use them to develop an algorithm that extracts
pairs of NEs across languages. Specifically, given a bilingual corpus that is weakly
temporally aligned, and a capability to annotate the text in one of the languages
with NEs, our algorithm identifies the corresponding NEs in the second language
text, and annotates them with the appropriate type, as in the source text.

The first observation is that NEs in one language in such corpora tend to co-
occur with their counterparts in the other. E.g., figure 4.1 shows a histogram of
the number of occurrences of the word Hussein and its Russian transliteration in
our bilingual news corpus spanning the years 2001 through late 2005. One can see
several common peaks in the two histograms, the largest one being around the
time of the beginning of the war in Iraq. The word Russia, on the other hand, has a
distinctly different temporal signature. We can exploit such weak synchronicity of
NEs across languages to associate them. In order to score a pair of entities across
languages, we compute the similarity of their time distributions.

The second observation is that NEs often contain or are entirely made up of words
that are phonetically transliterated or have a common etymological origin across
languages (e.g., parliament in English and parlament, its Russian translation),
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Table 4.1 Examples of English NEs and their transliterated Russian counterparts.

English NE Russian NE

lilic liliq
fletcher fletqer
bradford br�dford
isabel izabel�
hoffmann gofman
kathmandu katmandu

and thus are phonetically similar. Table 4.1 shows an example list of NEs and their
possible Russian transliterations.

Approaches that attempt to use these two characteristics separately to identify
NEs across languages would have significant shortcomings. Transliteration-based
approaches require a good model, typically handcrafted or trained on a clean set of
transliteration pairs. On the other hand, time sequence similarity–based approaches
would incorrectly match words which happen to have similar time signatures (e.g.,
Taliban and Afghanistan in recent news).

We introduce an algorithm called co-ranking, which exploits these observations
simultaneously to match NEs on one side of the bilingual corpus to their counter-
parts on the other.

We first train a transliteration model on single-word NEs. During training,
for a given NE in one language, the current model chooses a list of top-ranked
transliteration candidates in another language. A metric based on the discrete
Fourier transform (Arfken, 1985) is then used (section 4.3.1) to rerank the list
and choose the candidate best temporally aligned with the given NE. Finally, pairs
of source language NEs and the top candidates from the reranked candidate lists
are used for the next iteration of the transliteration model training.

Once the model is trained, NE discovery proceeds as follows. For a given NE,
the transliteration model selects a candidate list for each constituent word. If a
dictionary is available, each such candidate list is augmented with translations (if
they exist). Translations will be the correct choice for some NE words (e.g., for queen
in Queen Victoria), and transliterations for others (e.g., Bush in Steven Bush). We
expect temporal sequence alignment to resolve many of such ambiguities. Temporal
alignment score is used to rerank translation/transliteration candidate lists for each
constituent word. The top candidates from each re-ranked list are then merged into
a possible target language NE. Finally, we verify that the candidate NE actually
occurs in the target corpus.

A major challenge inherent in discovering transliterated NEs is the fact that a
single entity may be represented by multiple transliteration strings. One reason is
language morphology. For example, in Russian, depending on the case being used,
the same noun may appear with various endings. Another reason is the lack of
transliteration standards. Again, in Russian, several possible transliterations of an
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English entity may be acceptable, as long as they are phonetically similar to the
source.

Thus, in order to rely on the time sequences we obtain, we need to be able
to group variants of the same NE into an equivalence class, and collect their
aggregate mention counts. We would then score time sequences of these equivalence
classes. For instance, we would like to count the aggregate number of occurrences
of {Herzegovina, Hercegovina} on the English side in order to map it accurately
to the equivalence class of that NE’s variants we may see on the Russian side of
our corpus (e.g., {Gercegovina, Gercegovinu, Gercegoviny, Gercegovino�}). In
the rest of the chapter, whenever we refer to a named entity or an NE constituent
word, we imply its equivalence class.

One of the objectives of this work was to use as little of the knowledge of both
languages as possible. In order to effectively rely on the quality of time sequence
scoring, we used a simple, knowledge-poor approach to group NE variants for the
languages of our corpus (section 4.3.1). Although we expect that better use of
language-specific knowledge would improve the results, it would defeat one of the
goals of this work.

A demo of this work, as well as the software and the data used in the experiments
is available at http://L2R.cs.uiuc.edu/~cogcomp/

4.2 Previous Work

There has been other work on discovering NEs automatically with minimal su-
pervision. Both Cucerzan and Yarowsky (1999), and Collins and Singer (1999)
present algorithms to obtain NEs from untagged corpora. However, they focus on
the classification stage of already segmented entities, and make use of contextual
and morphological clues that require knowledge of the language beyond the level
we want to assume with respect to the target language.

The use of similarity of time distributions for information extraction, in general,
and NE extraction, in particular, is not new. Hetland (2004) surveys recent methods
for scoring time sequences for similarity. Shinyama and Sekine (2004) used the
idea to discover NEs, but in a single language, English, across two news sources.
Moreover, we use a different temporal distribution similarity function and show it
to be better in section 4.4.3.

A large amount of previous work exists on transliteration models. Most are
generative and consider the task of producing an appropriate transliteration for a
given word, and thus require considerable knowledge of the languages. For example,
AbdulJaleel and Larkey (2003) and Jung et al. (2000) train English-Arabic and
English-Korean generative transliteration models, respectively. Knight and Graehl
(1997) build a generative model for backward transliteration from Japanese to
English. Sproat et al. (2006) produce transliterations by combining the scores of
temporal and phonetic transliteration models, whereas we also propose a method
to train a transliteration model with little supervision.



4.3 Co-Ranking: An Algorithm for NE Discovery 83

While generative models are often robust, they tend to make independence
assumptions that do not hold in data. The discriminative learning framework
advocated by Roth (1998, 1999) as an alternative to generative models is now
used widely in NLP, even in the context of word alignment (Taskar et al., 2006;
Moore, 2005). We make use of it here too, to learn a discriminative transliteration
model that requires little knowledge of the target language.

Bilingual lexicon extraction from non parallel corpora (e.g., Rapp, 1995; Koehn
and Knight, 2002; Déjean et al., 2002) is the line of research most related to our
work. Focusing on named entities, however, allows us to exploit properties specific to
them (transliteration and temporal alignment). Furthermore, NEs hold particular
significance for NLP tasks such as information extraction.

4.3 Co-Ranking : An Algorithm for NE Discovery

In essence, the algorithm we present (figure 4.2) uses temporal alignment as a su-
pervision signal to iteratively train a transliteration model M. On each iteration,
for each NE in the source language corpus S it selects a list of top-ranked transliter-
ation candidates from the target language corpus T according to the current model
(line 6). It then uses temporal alignment (with thresholding) to rerank the list and
select the best transliteration candidate for the next round of training (lines 8 and
10).

Similarly, in testing or discovery (figure 4.3), candidate lists are collected (line 6)
for each constituent word of each source NE using the trained model M. Optionally,
the lists NE i

T are augmented with the dictionary translations of the respective
source word (line 7). The lists are then reranked without thresholding (line 9), and
collected into a multiword target NE candidate ET . Finally, we discard ET which
do not actually occur (in any order of the constituent words) in target corpus T .

4.3.1 Time Sequence Generation and Matching

In order to generate a time sequence for a given word, we sort the set of (time-
stamped) documents of our corpus into a sequence of equally sized temporal bins.
We then count the number of occurrences of the word in each bin, and normalize
the sequence.

We use a method called the F-index (Hetland, 2004) to implement the score

similarity function (figure 4.2, line 8, and figure 4.3, line 9). We first run a discrete
Fourier transform (DFT) on a time sequence to extract its Fourier expansion
coefficients. The score of a pair of time sequences is then computed as a Euclidean
distance between their expansion coefficient vectors. We compare this approach to
two commonly used alternative metrics in section 4.4.3.

As we mentioned in the introduction, an NE may map to more than one
transliteration in another language. Identification of the entity’s equivalence class
of transliterations is important for accurately obtaining its time sequence.
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Algorithm Co-ranking [training]
Input: Bilingual corpus (S , T ), set of named entities NES from S , threshold θ
Output: Transliteration model M
1. Initialize M.
2. ∀E ∈ NES , collect time distribution QES .
3. repeat
4. D ← ∅.
5. for each ES ∈ NES
6. Use M to collect candidates NET ∈ T with high translit. scores.
7. Collect time distribution QET for each candidate in NET .
8. Select candidate ET ∈ NET with the best ω = score(QES ,QET ).
9. if ω > θ
10. D ←D

S
{(ES , ET )}.

11. Use D to train M
12. until Discovered training set D no longer changes between iterations.
13. return M.

Figure 4.2 Iterative transliteration model training with single-word NEs.

Algorithm Co-ranking [testing]
Input: Bilingual corpus (S , T ), set of named entities NES from S , transliteration model

M, dictionary dict (otional)
Output: Set of NE pairs D from S and T
1. D ← ∅.
2. for each ES ∈ NES
3. ET ← ().
4. for each constituent word E i

S in ES
5. Collect time distribution Qi

ES for E i
S .

6. Use M to collect candidates NEi
T ∈ T with high translit. scores.

7. (optional) NEi
T ←NE i

T
S

dict(E i
S).

8. Collect time distribution Qi
ET for each candidate in NEi

T .
9. Select candidate E i

T ∈ NEi
T with the best ω = score(Qi

ES ,Qi
ET ).

10. ET ←ET + E i
T .

11. if Occurs(ET )
12. D ←D

S
{(ES , ET )}.

13. return D.

Figure 4.3 Testing phase.

In order to keep to our objective of requiring as little language knowledge as
possible, we took a rather simplistic approach for both languages of our corpus. For
Russian, two words were considered variants of the same NE if they share a prefix
of size five or longer. Each unique word had its own equivalence class for the English
side of the corpus, although, in principle, more sophisticated approaches to group
entity mentions (such as in Li et al., 2004) could be incorporated. A cumulative
distribution was then collected for such equivalence classes.
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4.3.2 Transliteration Model

Unlike most of the previous work considering generative transliteration models,
we take the discriminative approach. Indeed, we do not need to generate translit-
erations for unseen named entities. Instead, we aim to match NEs in the source
language to their counterparts present in the target language side of our corpus in
order to transfer annotation.

We train a linear model to decide whether a word ET ∈ T is a transliteration of
an NE ES ∈ S. The words in the pair are partitioned into a set of substrings sS
and sT up to a particular length (including the empty string ). Couplings of the
substrings (sS , sT ) from both sets produce features we use for training. Note that
couplings with the empty string represent insertions/omissions.

Consider the following example: (ES , ET ) = (powell, pau�ll). We build a feature
vector from this example in the following manner:

1. We split both words into all possible substrings of up to size two:

ES → { , p, o, w, e, l, l, po, ow, we, el, ll}
ET → { ,p, a, u, �, l, l, pa, au, u�, �l, ll}

2. We then build a feature vector by coupling substrings from the two sets:

((p, ), (p, a), ...(w, u�), ...(el, �l), ...(ll, ll))

We use the observation that transliteration tends to preserve phonetic sequence
to limit the number of couplings. For example, we can disallow the coupling of
substrings whose starting positions are too far apart: thus, we might not consider
a pairing (po, u�) in the above example. In our experiments, we paired substrings if
their positions in their respective words differed by -1, 0, or 1.

We use the perceptron (Rosenblatt, 1958) algorithm to train the model. The
model activation provides the score we use to select best transliterations on line 6.
Our version of perceptron takes a variable number of features in its examples; each
example is a subset of all features seen so far that are active in the input. As the
iterative algorithm observes more data, it discovers and makes use of more features.
This model is called the infinite attribute model (Blum, 1992) and it follows the
perceptron version of SNoW (Carlson et al., 1999).

Positive examples used for iterative training are pairs of NEs and their best
temporally aligned transliteration candidates. Alignment score thresholding is used
to implement the tradeoff between the quality and the number of the positive
examples selected for the next round. Negative examples are English non-NEs
paired with random Russian words.
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4.4 Experimental Study

We ran experiments using a bilingual comparable English-Russian news corpus2

we built by crawling a Russian news website (www.lenta.ru). The site provides
loose translations of (and pointers to) the original English texts. We collected pairs
of articles spanning from 1/1/2001 through 10/05/2005. Each side of the corpus
consists of 2327 documents, with zero to eight documents per day; the total sizes of
the English and Russian sides are roughly 940K and 380K tokens respectively. The
English side was tagged with a publicly available NER system based on the SNoW
learning architecture (Carlson et al., 1999), that is available on the same site. This
set of English NEs was pruned by hand to remove incorrectly classified words to
obtain 978 single-word NEs.

Temporal distributions were collected with bin size of one day, as described in
section 4.3.1. In order to reduce running time, some limited preprocessing was done
on the Russian side. In particular, all equivalence classes, whose temporal distri-
butions were close to uniform (i.e., words with a similar likelihood of occurrence
throughout the corpus) were deemed common and not considered as NE candidates.
Unique words were thus grouped into 14,781 equivalence classes.

Unless mentioned otherwise, the transliteration model was initialized with a set
of 20 pairs of English NEs and their Russian transliterations. Negative examples
here and during the rest of the training were pairs of non-NE English and Russian
words selected uniformly randomly from the respective corpora.

As the transliteration model improves throughout training, new examples and
thus new features are discovered. All but the top 3000 features from positive and
3000 from negative examples were pruned based on the number of their occurrences
so far. Features remaining at the end of training were used for NE discovery.
Insertions/omissions features (section 4.3.2) were not used in the experiments as
they provided no tangible benefit for the languages of our corpus.

In each iteration, we used the current transliteration model to find a list of the
30 best transliteration equivalence classes for each NE. We then computed the
time sequence similarity score between an NE and each class from its list to find
the one with the best matching time sequence. If its similarity score surpassed a
set threshold, it was added to the list of positive examples for the next round of
training. Positive examples were constructed by pairing an NE with the common
stem of its transliteration equivalence class. We used the same number of positive
and negative examples.

We used the Mueller English-Russian dictionary to obtain translations in our
multiword NE experiments. Lists of transliteration candidates were augmented with
up to ten dictionary translations.

For evaluation, a random subset of 727 out of the total of 978 NEs were matched
to correct transliterations by a language expert (partly due to the fact that some of

2. The corpus, code, and demo are available at http://L2R.cs.uiuc.edu/~cogcomp/
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Figure 4.4 Proportion of correct NEs in the top-N discovered candidates vs. training
iteration (averaged over five runs initialized with different random sets of 20 examples).
The complete algorithm outperforms both the transliteration model and temporal se-
quence matching when used on their own.

the English NEs were not mentioned in the Russian side of the corpus). Accuracy
was computed as the percentage of NEs correctly identified by the algorithm. Note
that although multiple correct Russian transliterations are possible for a given
English NE, the evaluation set included only a single one (due to the prohibitive
amount of labor required of the language expert otherwise). Thus, evaluation results
tend to be conservative.

In the multiword NE experiment, 177 random multiword (two or more words)
NEs and their transliterations/translations discovered by the algorithm were veri-
fied by a language expert. Again, phrases which were incorrectly tagged as NEs by
the source language NE tagger were discarded.

4.4.1 NE Discovery

Single-Word NEs

Figure 4.4 shows the proportion of correctly discovered NE transliteration equiv-
alence classes throughout the training stage. The figure also shows the accuracy
if transliterations are selected according to the current transliteration model (top-
scoring candidate) and temporal sequence matching alone.

The complete algorithm experiments included counting if the correct translitera-
tion appeared as the top-scoring candidate (Top 1 ), was present in the top 5 (Top
5 ), top 10 (Top 10 ), or top 20 (Top 20 ) candidates chosen by the algorithm.
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Table 4.2 A sample of the features discovered by the algorithm during training

Feature Num. in neg. Num. in pos. Percent in pos.

(a, a) 1432 6820 82.65

(n, n) 1182 5517 82.36

(r, r) 1011 5278 83.92

(gh, g) 5 137 96.48

(hm, m) 0 100 100

(tz, c) 0 78 100

(j, h) 3 71 95.95

(j, d�) 0 198 100

(ic, iq) 11 403 97.34

(an, an) 22 1365 98.41

Both the transliteration model and the temporal alignment alone achieve the
accuracy of about 41%. The combined algorithm achieves about 63%, showing a
significant improvement over either of the two methods alone. Moreover, the correct
NEs appear among the top 5 candidates 72% of the time; among the top 10, 77%;
and among the top 20, 80%.

Discovered Features

Table 4.2 lists a few interesting features discovered by the algorithm during training.
As expected, single-letter pairs that have similar pronunciation in both languages
are highly indicative of a transliteration. English two-letter sequences gh and hm
correspond to a single-letter sequences in Russian, since h is often silent. The letter
j is pronounced differently in names of Hispanic origin and is thus mapped to
two distinct letter sequences in Russian. Some features are particularly useful for
the specific training corpus. For example, the news corpus often refers to Serbian
surnames ending in ic.

Intuition

In order to understand what happens to the transliteration model as the training
proceeds, let us consider the following example. Table 4.3 shows parts of candidate
transliteration lists3 for NE forsyth for two iterations of the algorithm. The weak
transliteration model selects the correct transliteration (italicized) as the 24th best
transliteration in the first iteration. Time sequence scoring function chooses it to
be one of the training examples for the next round of training of the model. By the
eighth iteration, the model has improved to select it as the best transliteration.

3. Each candidate is represented by an equivalence class: a common prefix and a set of
endings found in text.
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Table 4.3 Lists of Russian transliteration candidates for forsyth for two iterations of
the algorithm. As the transliteration model improves, the correct transliteration moves up
the list.

Iteration 0 Iteration 7
1 skore {-e, -ĭ, -ĭxego, -ĭxiĭ} 1 forsaĭt {-a, -, -u}
2 oform {-leno, -il, . . . } 2 oform {-leno, -il, -it�, . . . }
3 kokr�ĭn {-a, -} 3 prory {-vom, -va, -li, . . . }
4 flore {-ns, -nc, -, -ncii} 4 fross

5 fosset {-t, -ta, -tu, -a, -u}

24 forsaĭt {-a, -, -u}

Not all correct transliterations make it to the top of the candidates list (the
transliteration model by itself is never as accurate as the complete algorithm in
figure 4.4). That is not required, however, as the model only needs to be good
enough to place the correct transliteration anywhere in the candidate list.

Not surprisingly, some of the top transliteration candidates start sounding like
the NE itself, as training progresses. In table 4.3, candidates for forsyth on Iteration
7 include fross and fossett.

Multiword NEs

Once the transliteration model was trained, we ran the algorithm to discover multi-
word NEs, augmenting candidate sets of dictionary words with their translations as
described in section 4.3. Of all multiword named entity pairs discovered by the al-
gorithm, about 68% were matched correctly. The discovered Russian NEs included
entirely transliterated, partially translated, and entirely translated NEs. Some of
them are shown in table 4.4.

Table 4.4 Example of correct transliterations discovered by the algorithm.

English NE Russian NE equivalence class

carla del ponte karla{-, -�l} del� ponte
marc dutroux mark d�tru
pangbourne pangburn
supreme council verho{-vny�, ...} sovet{...}
congolese kongo{-, -lezsko�}
north carolina sever{...} karol{-ina, ...}
junichiro koizumi dz�nitiro koidzumi
rehman reman{-, -a}
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Figure 4.5 Proportion of correctly discovered NE pairs vs. the initial example set size
(averaged over three runs each). Decreasing the number of examples does not have an
impact on the performance of the later iterations.

4.4.2 Initial Example Set Size

We ran a series of experiments to see how the size of the initial training set affects the
accuracy of the model as training progresses (figure 4.5). Although the performance
of the early iterations is significantly affected by the size of the initial training
example set, the algorithm quickly improves its performance. As we decrease the
size from 80 to 20 and then to 5, the accuracy of the first iteration drops by over 15%
and 10% respectively. However, in about 50 iterations all three perform similarly.

The few examples in the initial training set produce features corresponding to
substring pairs characteristic of English-Russian transliterations. A model trained
on these (few) examples chooses other transliterations containing the same substring
pairs. In turn, the chosen positive examples contain other characteristic substring
pairs, which will be used by the model (via the infinite attribute domain; Blum,
1992) to select more positive examples on the next round, and so on. The smaller
the initial training set, the longer it takes to discover the characteristic features,
and the longer it takes for the algorithm to converge.

One would also expect the size of the training set necessary for the algorithm
to improve to depend on the level of temporal alignment of the two sides of the
corpus. Indeed, the weaker the temporal supervision, the more we need to endow
the model so that it can select cleaner candidates in the early iterations.
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Table 4.5 Proportion of correctly discovered NEs vs. corpus misalignment (k, left) and
vs. sliding window size (w, right) for each of the three measures. The DFT-based measure
provides significant advantages over commonly used metrics for weakly aligned corpora.

k=1 k=3 k=5

Cosine 41.3 5.8 1.7

Pearson 41.1 5.8 1.7

DFT 41.0 12.4 4.8

w=1 w=2 w=3

Cosine 5.8 13.5 18.4

Pearson 5.8 13.5 18.2

DFT 12.4 20.6 27.9

4.4.3 Comparison of Time Sequence Scoring Functions

We compared the DFT-based time sequence similarity scoring function we use
in this chapter to the commonly used cosine (Salton and McGill, 1986) and
Pearson’s correlation measures in order to assess its performance and robustness
to misalignment between two sides of the corpus.

We perturbed the Russian side of the corpus in the following way. Articles from
each day were randomly moved (with uniform probability) within a k-day window.
We ran single-word NE temporal sequence matching alone on the perturbed corpora
using each of the three measures (table 4.5, left).

Some accuracy drop due to misalignment could be accommodated for by using
a larger temporal bin for collecting occurrence counts. We tried various (sliding)
window sizes w for a perturbed corpus with k = 3 (table 4.5, right).

The DFT metric outperforms the other measures significantly in most cases. NEs
tend to have distributions with few pronounced peaks. If two such distributions are
not well aligned, we expect both Pearson and cosine measures to produce low scores,
whereas the DFT metric should catch their similarities in the frequency domain.

4.5 Conclusions

We have proposed a novel algorithm for cross-lingual multiword NE discovery in
a bilingual weakly temporally aligned corpus. We have demonstrated that using
two independent sources of information (transliteration and temporal similarity)
together to guide NE extraction gives better performance than using either of them
alone (figure 4.4).

The algorithm requires almost no supervision or linguistic knowledge. Indeed,
we used a very small bootstrapping training set and made a simple assumption in
order to group morphological variants of the same word into equivalence classes in
Russian.

We also developed a linear discriminative transliteration model, and presented a
method to automatically generate features. For time sequence matching, we used
a scoring metric novel in this domain and provided experimental evidence that it
outperforms two other metrics traditionally used.
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4.6 Future Work

The algorithm can be naturally extended to comparable corpora of more than two
languages. Pairwise time sequence scoring and transliteration models should give
better confidence in NE matches.

The ultimate goal of this work is to automatically tag NEs so that they can be
used for training of an NER system for a new language. To this end, we would like
to compare the performance of an NER system trained on a corpus tagged using
this approach to one trained on a handtagged corpus.
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Alignments Based on Multiple

Preprocessing Schemes
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Word alignments over parallel corpora have become an essential supporting tech-
nology to a variety of natural language processing applications. We present an ap-
proach to using multiple preprocessing (tokenization) schemes to improve statistical
word alignments. In this approach, the text to align is tokenized before statistical
alignment and is then remapped to its original form afterward. Multiple tokeniza-
tions yield multiple remappings (remapped alignments), which are then combined
using supervised machine learning. Our results show that the remapping strategy
improves alignment correctness by itself. We also show that the combination of
multiple remappings improves measurably over a commonly used state-of-the-art
baseline. We obtain a relative reduction of alignment error rate of about 38% on a
blind test set.

5.1 Introduction

Word alignments over parallel corpora have become an essential supporting technol-
ogy to a variety of natural language processing (NLP) applications, most prominent
among which is statistical machine translation (SMT). Although phrase-based ap-
proaches to SMT tend to be robust to word-alignment errors (Lopez and Resnik,
2006), improving word alignment is still meaningful for other NLP research that is
more sensitive to alignment quality, e.g., projection of information across parallel
corpora (Yarowsky et al., 2001).

In this chapter, we present a novel approach to using and combining multiple
preprocessing (tokenization) schemes to improve word alignment. In our approach,
the text to align is tokenized before statistical alignment and is then remapped
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to its original form afterward. Multiple tokenizations yield multiple remappings
(remapped alignments), which are then combined using supervised machine learn-
ing. The intuition here is similar to the combination of different preprocessing
schemes for a morphologically rich language as part of SMT (Sadat and Habash,
2006) except that the focus is on improving the alignment quality. The language
pair we work with is Arabic-English.

In the following two sections, we present related work and Arabic preprocessing
schemes. Sections 5.4 and 5.5 present our approach to alignment preprocessing and
combination, respectively. Alignment results are presented in section 5.6. We also
present some results and analysis on the contribution of improved alignments to
SMT in section 5.7.

5.2 Related Work

Recently, several successful attempts have been made at using supervised machine
learning for word alignment (Liu et al., 2005; Taskar et al., 2005; Moore, 2005;
Ittycheriah and Roukos, 2005; Fraser and Marcu, 2006; Cherry and Lin, 2006).
This approach often makes for faster alignment and is easier to add new features
to, compared to generative models. With the exception of Moore (2005) and Fraser
and Marcu (2006), the above-mentioned publications do not entirely discard the
generative models. Instead, they integrate IBM model predictions as features. We
extend this approach by including IBM alignment information based on multiple
preprocessing schemes in the alignment process.

In other related work, Tillmann et al. (1997a) use several preprocessing strategies
on both source and target language to make them more alike with regard to sentence
length and word order. Lee (2004) only changes the word segmentation of the
morphologically complex language (Arabic) to induce morphological and syntactic
symmetry between the parallel sentences.

We differ from previous work by including alignment information based on
multiple preprocessing schemes in the alignment process. We do not decide on a
certain scheme to make source and target sentences more symmetrical with regard
to the number of tokens and their content. Instead, it is left to the alignment
algorithm to decide under which circumstances to prefer alignment information
based on one preprocessing scheme over information based on another scheme.

The intuition behind using different preprocessing schemes for word alignment is
a simple extension of the same intuition for preprocessing parallel data for SMT:
namely, that reduction of word sparsity often improves translation quality (and in
our case alignment quality). This reduction can be achieved by increasing train-
ing data or via morphologically driven preprocessing (Goldwater and McClosky,
2005). Recent publications on the effect of morphology on SMT quality focused on
morphologically rich languages such as German (Nießen and Ney, 2004); Spanish,
Catalan, and Serbian (Popović and Ney, 2004); Czech (Goldwater and McClosky,
2005); and Arabic (Lee, 2004; Habash and Sadat, 2006). They all studied the effects
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Table 5.1 Arabic preprocessing scheme variants for � ������	�
�� “and he will write it!”

Preprocessing scheme Example

Name Definition Arabic script Transliteration

NONE natural text � ������	�
�� wsyktbhA!

AR simple tokenization ! ������	�
�� wsyktbhA !

D1 decliticize CONJ ! ������	�
� +� w+ syktbhA !

D2 decliticize CONJ, PART ! ������	
 +� +� w+ s+ yktbhA !

TB Arabic treebank tokenization ! ��+ �� ��	�
� +� w+ syktb +hA !

D3 decliticize all clitics ! ��+ �� ��	
 +� +� w+ s+ yktb +hA !

of various kinds of tokenization, lemmatization, and part-of-speech (POS) tagging
and show a positive effect on SMT quality. However, to our knowledge, no study
tried to tease out the effect of tokenization on word alignment. Sadat and Habash
(2006) investigated the effect of combining multiple preprocessing schemes on MT
quality in a phrase-based SMT system. In this chapter, we focus on alignment
improvement independent of SMT.

5.3 Arabic Preprocessing Schemes

Arabic is a morphologically complex language with a large set of morphological
features. As such, the set of possible preprocessing schemes is rather large (Habash
and Sadat, 2006). We follow the use of the terms preprocessing scheme and prepro-
cessing technique as used by Habash and Sadat (2006). We focus here on a subset
of schemes pertaining to Arabic attachable clitics. Arabic has a set of attachable
clitics to be distinguished from inflectional features such as gender, number, per-
son, and voice. These clitics are written attached to the word and thus increase
its ambiguity. We can classify three degrees of cliticization that are applicable in a
strict order to a word base:

[CONJ+

[PART+
[Al+ BASE +PRON]]]

At the deepest level, the BASE can have a definite article +� � (Al+1 “the”) or a
member of the class of pronominal clitics, +PRON, (e.g., ��+ +hA “her/it/its”).
Pronominal enclitics can attach to nouns (as possessives) or verbs and prepositions
(as objects). Next comes the class of particles (PART+), (e.g., +� l+ “to/for” or

1. All Arabic transliterations are provided in the Habash-Soudi-Buckwalter transliteration
scheme (Habash et al., 2007).
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+� s+ “will/future”). Most shallow is the class of conjunctions (CONJ+), (+� w+
“and” and + �� f+ “then”).

We use the following five schemes: AR, D1, D2, D3, and TB. Definitions and
contrastive examples of these schemes are presented in table 5.1. To create these
schemes, we use Mada (the morphological analysis and disambiguation for Arabic),
an off-the-shelf resource for Arabic morphological disambiguation (Habash and
Rambow, 2005), and Tokan, a general Arabic tokenizer (Habash, 2007).

5.4 Preprocessing Schemes for Alignment

5.4.1 Giza++ Alignments

The basic alignments used as baselines and by the combiner in this work are
created with the Giza++ statistical aligner (Och and Ney, 2003). Giza++ is an
implementation of the IBM models (Brown et al., 1993) with some extensions.
The IBM models 1 to 5 use increasingly sophisticated modeling to achieve better
alignments based on nonlinguistic, statistical information about word occurrences
in language-parallel sentences.

A limitation of the IBM models is that they create asymmetrical alignments,
i.e., they only allow one-to-many linking from source to target. In order to make
the alignments symmetrical, heuristics that combine two alignments trained in
opposite directions are often applied. By combining the one-to-many and many-
to-one alignments, it is possible to obtain a symmetrical many-to-many alignment.
For our baseline alignment, we chose the symmetrization heuristic “grow-diag-final”
(gdf ) commonly used in phrase-based SMT (Koehn et al., 2003). This heuristic adds
links to the intersection of two asymmetrical statistical alignments in an attempt
to assign every word a link.

5.4.2 Alignment Remapping

Using a preprocessing scheme for word alignment breaks the process of applying
Giza++ on some parallel text into three steps: preprocessing, word alignment, and
remapping. In preprocessing, the words to align are tokenized into smaller units.
Then they are passed along to Giza++ for alignment (default settings). Finally, the
Giza++ alignments are mapped back (remapped) to the original word form before
preprocessing. In this work, all words are AR tokens because our hand-aligned
training and test data are in this scheme (section 5.6.1). However, the alignment is
done using different schemes. For instance, take the first word in table 5.1, wsyktbhA;
if the D3 preprocessing scheme is applied to it before alignment, it is turned into
four tokens (w+ s+ yktb +hA). Giza++ will link these tokens to different words on
the English side (e.g., “and he will write it”). In the remapping step, the union of



5.5 Alignment Combination 97

· · · · · · · · �
· · · · · · · · �
· · · · · · · � ·
· · · · � � � · ·
· � � · · · · · ·
· · · � · · · · ·
� · · · · · · · ·

Figure 5.1 Word alignment illustrating the pruned search space for the combiner.

these links is assigned to the original word wsyktbhA. We refer to such alignments
as remappings.

5.5 Alignment Combination

After creating the multiple remappings, we pass them as features into an alignment
combiner. The combiner is also given a variety of additional features, which we
discuss later in this section. The combiner is a binary classifier that determines for
each source-target word pair whether they are linked or not. Given the large size of
the data used, we use a simplifying heuristic that allows us to minimize the number
of source-target pairs used in training. Only links evidenced by at least one of the
initial alignments and their immediate neighbors are included. This is exemplified
by the matrix in figure 5.1 which illustrates an alignment (the black squares) and
the search space (the gray area) attained by expanding to all immediate surrounding
neighbors of all links, i.e., all points bordering on the side or corner of a link. This
provides the bottom left link with only three neighbors, while a centered link has
eight neighbors. All other links (the white area) are considered nonexistent. This
choice removes a large portion of the search space, but at the expense of raising the
lower performance boundary for the system. On the development data set, 78.6%
of the search space is removed at the expense of removing 2.2% of the correct links.

The combiner we use here is implemented using a rule-based classifier, Ripper
(Cohen, 1996). The reasons we use Ripper as opposed to other machine learning
approaches are (a) Ripper produces human readable rules that allow better un-
derstanding of the kind of decisions being made; and (b) Ripper is relatively fast
compared to other machine learning approaches we examined given the very large
nature of the training data we use.2 The combiner is trained using supervised data
(human annotated alignments), which we discuss in section 5.6.1.

2. In a small pilot experiment, Ripper used four hours of training time, and TinySVM
used four days (http://chasen.org/~taku/software/TinySVM/).
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In the rest of this section we describe the different machine learning features given
to the combiner. We break the combination features into two types: word/sentence
features and remapping features.

Word/Sentence Features

Word form (WW): The source and target word forms.

POS (WP): The source and target part-of-speech tags. For Arabic, we use the
Bies POS tagset (Maamouri et al., 2004) as output by Mada. For English, we use
MXPOST (Ratnaparkhi, 1996) trained on the PennTreeBank (Marcus et al., 1993).

Location (WL): The source and target relative sentence position (the ratio of
absolute position to sentence length). We also include the difference between the
source and the target relative position.

Frequency (WF): The source and target word frequency computed as the number
of occurrences of the word form in training data. We also use the ratio of source to
target frequency.

Similarity (WS): This feature is motivated by the fact that proper nouns in
different languages often resemble each other, e.g., ���
�� ����, SdAm Hsyn, and
“saddam hussein”. We use the equivalence classes proposed by Freeman et al.
(2006) to normalize Arabic and English word forms (e.g., the former example
becomes “sdam hsyn” and “sadam husyn”). Then we employ the longest common
subsequence as a similarity measure. This produces the longest (not necessarily
contiguous) sequence that the two compared sequences have in common. The
similarity score is calculated as the intersection (i.e., the number of characters in
the longest common subsequence) over the union (i.e., intersection + nonmatching
characters) (the former example gets a similarity score of 8/(8+2) = 0.8).

Remapping Features

Link (RL): For each possible source-target link, we include (a) a binary value
indicating whether the link exists according to each remapping; (b) a cumulative
sum of the remappings supporting this link; and (c) co-occurrence information
for this link. This last value is calculated for each source-target word pair as
a weighted average of the product of the relative frequency of co-occurrence in
both directions for each remapping. The weight assigned to each remapping is
computed empirically.3 Only the binary link information provides a different value
for each remapping. The other two give one combined value based on all included
remappings.

3. We use the alignment error rate (AER) on the development data normalized so all
weights sum to one. See section 5.6.3.
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Neighbor (RN): The same information as Link, but for each of the (three to eight)
immediate neighbors of the current possible link individually. These features inform
the current possible link about whether its surrounding points are likely to be links.
This is motivated by the fact that alignments tend toward making up a diagonal
line of adjacent points in the alignment matrix.

Cross (RC): These include (a) the number of source words linked to the current
target word; (b) the number of target words linked to the current source word; (c)
the sum of all links to either the current source word or the current target word;
(d) the ratio of the co-occurrence mass between the current target word and the
current source word to the total mass between all target words and the current
source word; (e) the same ratio as in (d) but in the other direction; and (f) the
ratio of the total co-occurrence mass assigned to either the current source word or
the current target word to the co-occurrence mass between the current target word
and the current source word. With these features, we obtain a relation to the rest of
the sentence. This provides information on whether there are better ways of linking
the current source and target word respectively.

5.6 Evaluation

A basic assumption for our investigation is that statistical word alignments based
on different preprocessing schemes will lead to different systematically detectable
advantages. A machine learning algorithm should as a consequence profit from the
information made available by doing word alignment based on several different pre-
processing schemes as opposed to a single scheme. In order to test this hypothesis,
we conduct the following four experiments with the goal of assessing

1. the contribution of alignment remapping (section 5.6.2);

2. the contribution of combination features for a single alignment, i.e., independent
of the combination task (section 5.6.3);

3. the contribution of the individual features (section 5.6.4); and

4. the best-performing combination of alignment remappings (section 5.6.5).

All of these experiments are done using a development set. We then pick our best-
performing system and use it on a blind test set in section 5.6.6. We also present
an analysis of the rules we learn in section 5.6.7 and an error analysis of our best
development system in section 5.6.8. Next, we discuss the experimental setup and
metrics used in all of these experiments.
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5.6.1 Experimental Data and Metrics

Data Sets

The gold standard alignments we use here are part of the IBM Arabic-English
aligned corpus (IBMAC) (Ittycheriah and Roukos, 2005). Of its total 13.9K sentence
pairs, we only use 8.8K sentences because the rest of the corpus uses different
normalizations for numerals that make the two sets incompatible. We break this
data into 6.6K sentences for training and 2.2K sentences for development by letting
every fourth line go to the development set. As for test data, we use the IBMAC’s
test set (NIST MTEval 2003 — 663 sentences with four references, all Arabic-
English–aligned). Experiments in sections 5.6.3, 5.6.4, and 5.6.5 used only 2.2K of
the gold alignment training data (not the same as the development set) to minimize
computation time. As for our test experiment (section 5.6.6), we use our best system
with all of the available data (8.8K).

To get initial Giza++ alignments, we use an Arabic-English parallel corpus
of about 5 million words of newswire (LDC-NEWS) for training data together
with the annotated set. The parallel text includes Arabic News (LDC2004T17),
eTIRR (LDC2004E72), English translation of Arabic treebank (LDC2005E46), and
Ummah (LDC2004T18).4

Since the IBMAC and LDC-NEWS have much overlap, we take care to remove
duplications in LDC-NEWS to avoid biasing our experiments. The additional data
(LDC-NEWS minus IBMAC) was prepared to match the preprocessing scheme
used in IBMAC (AR with some additional character normalizations). We match
the preprocessing and normalizations on our additional data to that of IBMAC’s
Arabic and English preprocessing (Ittycheriah and Roukos, 2005).

Metrics

The standard evaluation metric within word alignment is the alignment error rate
(Och and Ney, 2000b), which requires gold alignments that are marked as “sure”
or “probable.” Since the IBMAC gold alignments we use are not marked as such,
AER reduces to 1 - F-score (Ittycheriah and Roukos, 2005):

Pr = |A∩S|
|A| Rc = |A∩S|

|S| AER = 1 − 2PrRc
Pr+Rc ,

where A links are proposed and S links are gold. Following common practice, NULL
links are not included in the evaluation (Ayan, 2005; Ittycheriah and Roukos, 2005).
In addition to AER, we also use precision (Pr) and recall (Rc) in some cases to
better compare different systems.

4. All of the training data we use is available from the Linguistic Data Consortium (LDC):
http://www.ldc.upenn.edu/
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Table 5.2 AER and word count for each alignment remapping in both directions and
combined using the GDF heuristic

Remapping Word count DIR INV GDF

AR 47721 24.67 31.68 24.77

D1 50584 23.07 28.16 22.90

D2 52900 22.17 25.29 21.63

TB 54507 21.50 23.93 21.04

D3 65787 20.76 22.35 20.45

The baseline we measure against in all of the experiments in this section is the
symmetrization algorithm “grow-diag-final” (gdf ) discussed earlier in section 5.4.
The AER of this baseline is 24.77 for the development set and 22.99 for the test
set.

5.6.2 The Contribution of Alignment Remapping

We experimented with five alignment remappings in two directions: dir (Ar-En) and
inv (En-Ar). Table 5.2 shows the AER associated with each of the ten alignment
remappings and the remapping of their corresponding gdf alignment. Table 5.2
also contains information on the word count of the schemes, which corresponds
to an English text with 58,201 word tokens. The more segmented a preprocessing
scheme (i.e., the greater the word count), the lower the AER for either direction
and for gdf of the corresponding remapping. The order of the schemes from worst
to best is AR, D1, D2, TB, and D3. INV alignments are always worse than DIR
alignments. This indicates the difference between Arabic and English morphology.
The more you split up the Arabic words, the easier it becomes to match them
to their English correspondences. Even when the Arabic word count exceeds the
English with more than 7500 tokens, we still get an improvement. The results reveal
that the remapping strategy in itself is an interesting approach to alignment. When
interested in word-aligned text in a specific preprocessing scheme, it might be worth
doing word alignment in a different scheme followed by a remapping step. The best
result we obtained through remapping is that of D3gdf which had a 20.45% AER
(17.4% relative decrease from the baseline).

5.6.3 The Contribution of Combination Features

This experiment is conducted to specify the order for combining the alignment
remappings when finding the overall best system (see section 5.6.5). For each of
the basic ten (non-gdf) alignment remappings, we trained a version of the combiner
that uses all the relevant features but has access to only one alignment at a time.

The results of evaluating on the development data are shown in table 5.3. We see
a substantial improvement resulting from applying the alignment combination as a
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Table 5.3 AER for the combination system when alignment remappings are varied

Alignment remapping AER

ARinv 20.79

D1inv 19.30

D2inv 17.77

ARdir 17.26

TBinv 16.77

D1dir 16.35

TBdir 16.14

D3inv 15.83

D2dir 15.56

D3dir 14.50

Table 5.4 The effect of varying feature clusters in the combination system

Feature cluster Remove Add cumulative

AC: Alignment cross link 16.32 19.97

AN: Alignment neighbor link 16.14 17.29

AL: Alignment basic link 16.02 17.07

WF: Word frequency 15.28 15.49

WP: Word position 15.01 14.82

WW: Word form 14.97 14.75

WL: Word location 14.78 14.77

WS: Word similarity 14.77 14.50

supervised alignment correction system. For the ten alignment remappings the AER
ranges from 14.5 to 20.79, giving an average relative improvement of 29.9% (down
from 20.76 to 31.68 in columns two and three in table 5.2). The relative order of all
alignments remains the same with this improvement except for TBdir which moves
from #2 to #4. In addition to determining the order of combination, the scores
in table 5.3 are also used to weigh the co-occurrence information supplied by each
alignment remapping as described in footnote 3 in section 5.5.

5.6.4 The Contribution of Individual Features

In order to validate the importance of each feature cluster to the alignment al-
gorithm, a two-step experiment is conducted. First, each feature cluster is re-
moved individually from the best-performing system from the previous experiment
(AER(D3dir) = 14.50). The increase in AER indicates the importance of this fea-
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Table 5.5 Determining the best combination of alignment remappings

Alignment remapping combination AER

D3dir 14.50

D3dirD2dir 14.12

D3dirD2dirD3inv 12.81

D3dirD2dirD3invTBdir 13.05

D3dirD2dirD3invD1dir 12.75

D3dirD2dirD3invD1dirTBinv 12.78

D3dirD2dirD3invD1dirARdir 12.84

D3dirD2dirD3invD1dirD2inv 12.76

D3dirD2dirD3invD1dirD1inv 12.93

D3dirD2dirD3invD1dirARinv 12.69

ture cluster. Second, the features are added cumulatively in the order of importance
to determine the best combination of features.

The results listed in table 5.4 show that all of the features help the alignment al-
gorithm, and the best combination of features includes all of them. Not surprisingly,
the alignment features are more important than the word features.

5.6.5 Alignment Combination Experiments

To determine the best subset of alignment remappings to combine, we ordered the
remappings given their AER performance when used individually in the combina-
tion system (section 5.6.3). This was done by forward selection. Starting with the
best performer (D3dir), we continue adding alignments in the order of their perfor-
mance so long the combination’s AER score is decreased. Our combination results
are listed in table 5.5. The best alignment combination used alignments from four
different schemes which confirms our intuition that such combination is useful.

We further trained our best combination on all of the training data (6.6K
sentences) as opposed to only 2.2K training sentences (see section 5.6.1). The best
combination performance improves slightly to 12.24 from 12.69.

5.6.6 Test Set Evaluation

We ran our best system trained on all of the IBMAC data (training and develop-
ment), on all of the unseen IBMAC test set. The results are shown in table 5.6
comparing training on all seen data (training and development) to just using the
training data. The development set shows a relative improvement of 50.6% (24.77
to 12.24). On the test data, we also achieve a substantial relative improvement of
38.3% when using all training data (22.99 to 14.19).
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Table 5.6 Development vs. test results: AER (precision / recall)

Data Development Test

Baseline 24.77 (76.45 / 74.04) 22.99 (72.39 / 82.25)

TRAIN (6.6K) 12.24 (88.43 / 87.11) 14.31 (80.17 / 92.02)

ALL (8.8K) — 14.19 (80.46 / 91.93)

On the test data, the initial search space reduction heuristic behaves much as
on the development and training data. The search space is reduced by around 80%
and in the processes only 1.4% of the correct links are removed. In other words, the
lower boundary for the system is an AER of 1.4.

The test baseline is lower than the development baseline, yet the best AER on
test is higher than development. The precision and recall measures give additional
insights into this issue. The test baseline is much higher in terms of its recall
compared to the development baseline; however its precision is lacking. This tradeoff
pattern is preserved in our best systems. This large difference between precision
and recall also corresponds to a disproportionate number of links in the test
baseline compared to the test reference: test alignment links are 14% more than
test reference, compared to development alignment links, which are 3% less than
their reference. One possible explanation of this difference between development and
test is that the test data in fact contains four replicas in the Arabic with different
English translations (see section 5.6.1). Since all of the initial alignments were done
jointly, the performance on this subset may be biased, especially in terms of recall.
Nonetheless, our approach improves both precision and recall for both development
and test. The last experiment, using all of the data for training, gives a small boost
to the test AER score, but the improvement seems to be specifically in terms of an
increase in precision matched with a tiny decrease in recall.

Ittycheriah and Roukos (2005) used only the top 50 sentences in IBMAC test
data. Our best AER result on their test set is 14.02 (baseline is 22.48) which
is higher than their reported result (12.2 with 20.5 baseline (Arabic-to-English
Giza++)). The two results are not strictly comparable because (a) Ittycheriah and
Roukos (2005) used additional gold-aligned data that was not released and (b) they
used an additional 500K sentences from the LDC UN corpus for Giza training that
was created by adapting to the source side of the test set – the details of such
adaptation were not provided and thus it was not clear how to replicate to compare
fairly. Clearly this additional data is helpful since even their baseline is higher than
ours.5

5. Abraham Ittycheriah, personal communication, 2006.
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5.6.7 Alignment Rule Analysis

The rules provided by Ripper have the advantage of giving us an insight into the
choices made by the classifier. In this section, we look closely at three rules selected
from our best-performing system.

First, the number 1 rule learned by Ripper is also the simplest and most
commonly applied. It has a precision of 97.0% and a recall of 67.3%. The rule
simply states that a link should be assigned if both D3dir and D3inv contain this
link. In other words, the backbone of the combination alignment is the intersection
of both directions of the D3 remappings.

Second, the number 2 rule learned by Ripper is more complex and thus less
general. It has a precision of 99.0% and a recall of 2.4% (of what is left after rule
number 1 applies). The rule contains the following conditions:

1. RC(a) D2dir = 1

2. RL(a) ARinv = 1

3. RC(f) >= 0.15

4. WS >= 0.44

The first condition states that according to the D2dir remapping, the Arabic
word should only link to this English word. In fact, due to the unidirectionality of
Giza++ alignments, this means that the two words should only align to each other
(in the D2dir remapping). The second condition says that the ARinv remapping
should contain the link. The third condition requires that this link carry at least
15% of the combined lexical probability of the source and target words being linked
to any word. Finally, the fourth condition states that the two word forms should, at
least to a certain degree, be similar. The majority of cases handled by this rule are
multiword expressions (in Arabic, English, or both) where the words being linked
by the rule are similar to some degree but the links were missed by D3dir or D3inv

(thus, rule number 1 did not apply).
The last rule we examine here applies as the 23rd rule of the set. It has a precision

of 89.8% and a recall of 0.9% (of remaining links). The rule contains the following
conditions:

1. WP(Arabic) = NN

2. WP(English) = DT

3. RN(right) D3dir = 1

4. WL(difference) <= 0.05

5. RC(c) <= 9

The first two conditions state that the Arabic word is a noun, and the English is
a determiner. The third states that the right neighbor should be linked according
to the D3dir remapping. In other words, this reveals that the Arabic word should
be linked to the following English word as well, according to D3dir. The difference
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Table 5.7 A categorization of alignment errors found in error analysis of baseline and
best-performing system.

Error Baseline Best system Error Best system

type frequency frequency reduction gold errors

Closed 236 (51%) 117 (54%) 50% 18 (15%)

Open 117 (25%) 33 (15%) 72% 0 (0%)

Comp. 89 (19%) 50 (23%) 44% 19 (38%)

Num. 13 (3%) 9 (4%) 31% 0 (0%)

Punc. 10 (2%) 9 (4%) 10% 2 (22%)

Total 465 218 53% 39 (18%)

in relative sentence position should be small, i.e., the words should appear in about
the same place in the sentence. And finally, the two words should not have a lot
of other linking options in the available remappings. In other words, an Arabic
noun should link to an English determiner if the Arabic noun is also linked to the
following English word (quite possibly a noun). This rule handles the fact that the
determiner is often a part of the Arabic word, which is not the case in English.
Only the D3 tokenization scheme separates the Al+ determiner in Arabic.

5.6.8 Error Analysis

We conducted a detailed error analysis on 50 sentences from our development set’s
baseline and best system. The sample included 1011 Arabic words and 1293 En-
glish words. We found 465 erroneous alignments (including null alignments) in the
baseline and 218 errors in our best system. We classified errors as follows. Closed-
class6 errors involve the misalignment of a closed-class word in Arabic or English.
Open-class errors involve open-class words such as nouns and verbs. Numeral and
punctuation errors involve numbers and punctuation misalignments, respectively.
Finally, compositional errors are complex errors involving noncompositional expres-
sions (as in the idiom half-brother mapping to the Arabic ���
�� �� ��
 ��  � Ax gyr šqyq,
lit. brother, not full brother) or compositional translation divergences (as in aggra-
vate mapping to the Arabic �!��� ��� "� �# zAd tfAqmA, lit. increase aggravation) (Dorr
et al., 2002). Open-class and closed-class errors are strictly defined here to not in-
volve compositional errors. We also computed gold errors in our best system; these
are cases inconsistent with the alignment guidelines as explained in Ittycheriah and
Roukos (2005).

6. As opposed to an open-class, a closed class is a relatively small group of words that is
usually not extended by new words. Determiners, prepositions, and pronouns are examples
of closed-class words.
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Table 5.7 presents the results of the error analysis. The first column lists the
different error classes. The second and third columns list the frequency of errors in
the baseline and best system, respectively. The percentages in parentheses indicate
the ratio of the error type in that column. The fourth column specifies the error
reduction in our best system from the baseline. Overall, we reduce the errors by over
50%. The largest reduction is in the open-class errors followed by closed-class errors.
The relative distribution of errors is similar in baseline and best system except that
open-class and compositional errors exchange ranks: open-class errors are second
in the baseline but third in our best system. The last column lists the frequency
of gold errors. The percentages in parentheses are ratios against the corresponding
best-system frequencies. The gold errors comprised 18% of all of the errors in our
best system. They are generally split between closed-class and compositional errors.

The errors in our best system are consistent with previous studies where a
majority of errors are associated with closed-class words (especially determiners
such as the). Closed-class errors can be attributed to their high frequency as opposed
to the open-class errors which are more a result of their low frequency or out-of-
vocabulary status. Compositionality errors are complex and seem to result from
there being no clear definition on what is compositional on one hand and from a lack
of a multiword alignment model in our system. The need for a way to enforce a well-
formed multiword alignment (or phrasal constructs in general) is also responsible
for many of the closed-class errors. Such a multiword alignment model would be an
interesting extension of this research since it explores the meaning of an alignment
token at different levels above and below the word. Perhaps, one could use a phrase
chunker or even a parser to add constraints on either alignment or combination
steps (Cherry and Lin, 2006).

Punctuation errors are perhaps a result of lower use of punctuation in Arabic as
opposed to English, thus, there is a lot of sparsity in the training data. Number
errors are a result of neutralizing all numerals in our system, i.e., merging them
all to a single number category. If the word form of the numbers had not been a
neutralized expression, the word similarity measure would probably have made the
system capable of handling numbers better.

5.7 Postface: Machine Translation and Alignment Improvements

In addition to evaluating the combined alignments against the gold standard
alignment, we evaluated their effect on machine translation (MT) using two different
statistical MT approaches: standard phrase-based MT (PHMT) implemented as
Pharaoh (Koehn, 2004a) and n-gram-based MT (NGMT) (Mariño et al., 2006).

Standard PHMT uses bilingual phrase tables as its translation model. In contrast,
the translation model employed in NGMT is expressed using bilingual units, termed
tuples, and is estimated as an n-gram language model (Mariño et al., 2006). Phrases
are extracted as multiple segmentations of each sentence pair, allowing for multiple
overlapping spans of translations. In contrast, tuples are extracted from a single
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segmentation of each sentence pair. The resulting sequences of tuples are used to
estimate a bilingual n-gram language model. Additionally, tuples are extracted with
reordered source words using the unfold method described in (Crego et al., 2005).
Unfold uses word alignments to rewrite the source sentence following the target
sentence word order. Our intuition for comparing these two approaches is that the
single segmentation employed to extract tuples and the reordering component of
the unfold extraction method make them more sensitive to alignment quality than
basic phrase extraction in PHMT.

5.7.1 Experimental Setup

For training, we used the same data described in section 5.6.1. All evaluated
systems use the same surface trigram language model, trained on approximately
340 million words of English newswire text from the English Gigaword corpus.7

English language model (LM) preprocessing simply included downcasing, separating
punctuation from words, and splitting off “’s.” The trigram language models were
implemented using the SRILM toolkit (Stolcke, 2002).

For testing, we used the standard NIST MTEval data sets for the years 2004
and 2005 (MT04 and MT05, respectively). Parameter tuning was done on the
NIST MTEval 2002 set.8 Both BLEU (Papineni et al., 2002) and NIST (Dod-
dington, 2002) metric scores are reported in addition to multireference word error
rate (mWER). All scores are computed against four references with n-grams of
maximum length 4. For PHMT, tuning was done with minimum error-rate train-
ing (MERT) (Och, 2003); however, tuning was done using the Simplex algorithm
(Nelder and Mead, 1965) for NGMT. Tuning is the only difference between the two
implementations we compare that is not a real difference in approach. The different
choices were determined by the available implementations.

5.7.2 Results

We compare the performance of the baseline alignment (ARgdf ) against our best
combined alignments system (COMBAL) in PHMT and NGMT. The results are
shown in the first four data rows in table 5.8. These results are consistent with
previously published work showing that alignment improvements (as measured by
AER) do not always map into MT improvements (as measured by BLEU, NIST, or
mWER). The PHMT and NGMT results are not much different either. None of the
differences are statistically significant. BLEU 95% confidence intervals are ±0.0232
and ±0.0133 respectively for MT04 and MT05.

In order to better understand the interaction between MT and alignments, we
did an NGMT-specific combination of the baseline and COMBAL alignments. In

7. Distributed by the Linguistic Data Consortium: http://www.ldc.upenn.edu
8. http://www.nist.gov/speech/tests/mt/
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Table 5.8 Evaluating the effect of improved alignments on MT.

MT04

MT approach Alignment AER BLEU NIST mWER

PHMT ARgdf 22.99 39.18 9.74 53.63

PHMT COMBAL 14.19 38.48 9.62 53.51

NGMT ARgdf 22.99 38.12 9.62 55.34

NGMT COMBAL 14.19 37.82 9.67 54.53

NGMT ARgdf+COMBAL 17.47 38.34 9.73 54.70

NGMT COMBAL+ARgdf 16.98 37.76 9.69 54.28

MT05

MT approach Alignment AER BLEU NIST mWER

PHMT ARgdf 22.99 41.97 9.96 51.38

PHMT COMBAL 14.19 40.93 9.85 51.99

NGMT ARgdf 22.99 40.23 9.60 54.24

NGMT COMBAL 14.19 39.28 9.54 54.08

NGMT ARgdf+COMBAL 17.47 40.85 9.74 52.67

NGMT COMBAL+ARgdf 16.98 41.05 9.81 52.23

this combination, we used the number of tuples produced by the unfold method on
every sentence in the training data to select the alignment from either baseline or
COMBAL. The alignment that produced the largest number of tuples was preferred,
as it contained tuples of a smaller size. Large tuples have important sparseness
problems, and are less reusable in test (Crego et al., 2005).

The baseline was preferred 35% of the time, the COMBAL 23% of the time, and
the rest was a tie. We produced two combined alignments based on the bias of the
tie (baseline or COMBAL). The results are shown in the last two data rows in ta-
ble 5.8. The order of the alignment name shows the tie-breaking bias (to first-named
alignment). The associated AER is computed over the same test set mentioned ear-
lier in section 5.6.6. A small but consistent improvement in MT BLEU and NIST
scores was achieved using the combination (with baseline bias) over either align-
ment. The AER associated with the combination is in between the two AER values
of baseline and COMBAL. This result suggests that alignment improvement for
MT should perhaps be optimized toward specific MT approaches/implementations
rather than generic gold alignments.

Although the results from MT performance are generally weak, we believe this is
a problem of either the gold standard used or the alignment error metric, or both.
We think our approach to alignment combination and using different tokenization
is generic enough that it can be used with other metrics and gold standards with
little modification.



110 Combination of Statistical Word Alignments Based on Multiple Preprocessing Schemes

5.8 Conclusion

We have presented an approach for using and combining multiple alignments cre-
ated using different preprocessing schemes. Our results show that the remapping
strategy improves alignment correctness by itself. We also show that the combina-
tion of multiple remappings improves word alignment measurably over a commonly
used state-of-the-art baseline. We obtain a relative reduction of alignment error
rate of about 38% on a blind test set.

We also confirmed previous findings about the robustness of SMT to word align-
ment. The gain from improving word-alignment quality does not transfer to trans-
lation quality. In this case, an improvement actually seems to hurt performance,
perhaps because the approach diverges from a purely statistical approach. The re-
sults indicate that AER is the wrong metric to optimize toward, when the purpose
of the word alignment is as an information source for machine translation.
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6 Linguistically Enriched Word-Sequence

Kernels for Discriminative Language

Modeling

Pierre Mahé
Nicola Cancedda

This chapter introduces a method for taking advantage of background linguistic
resources in statistical machine translation. Morphological, syntactic, and possibly
semantic properties of words are combined by means of an enriched word-sequence
kernel. In contrast to alternative formulations, linguistic resources are integrated in
such a way as to generate rich composite features defined across the various word
representations. Word-sequence kernels find natural applications in the context of
discriminative language modeling, where they can help correct specific problems of
the translation process. As a first step in this direction, experiments on an artificial
problem consisting in the detection of word misordering demonstrate the interest
of the proposed kernel construction.

6.1 Motivations

Language modeling consists in estimating a probability distribution over the sen-
tences (actually, sequences of words) of a language. This process is central to sta-
tistical machine translation (SMT), initially formulated following the noisy-channel
model (Brown et al., 1993), in which the probability p(t|s) of observing a sentence
t in the target language conditionally on a sentence s in the source language is
expressed as

p(t|s) ∝ p(s|t)p(t). (6.1)

This decouples the modeling problem into

1. estimating a translation model p(s|t) to quantify how well t conveys the infor-
mation contained in the source sentence s,
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2. estimating a (target) language model p(t) to assess the likelihood of t as a
sentence in the target language.

Modern SMT systems are based on a broader class of log-linear models (Och and
Ney, 2002) that considerably generalize the noisy-channel model1 by introducing
arbitrary real-valued feature functions hi(s, t):

p(t|s) ∝ exp
(∑

i

αihi(s, t)
)
. (6.2)

Nevertheless, language models remain central to such systems, where they invari-
ably appear as a feature function hlm(s, t) = log p(t).

In practice, the most widely used family of language models is the class of n-gram
models defined as

p(t) =
|t|∏

i=1

p(ti|ti−1, . . . , ti−N+1), (6.3)

where t is a sequence of |t| words in the target language, assumed to be “padded”
with N − 1 empty symbols so that this equation is well defined. These models ba-
sically make a Markov independence assumption between the words of a sentence,
and capture local regularities of the language. They are usually trained by max-
imizing the likelihood of a large set of sentences in the target language, specific
smoothing techniques being applied to cope with the high dimensionality of the
parameter space (Chen and Goodman, 1996).

Generative language models (LMs) such as these are fully justified in the noisy-
channel framework. Notice, however, that LMs are usually the primary instrument
for promoting translation fluency, based on the tacit assumption that likelihood
and fluency correlate well. In the context of SMT, an alternative —or at least
complementary— approach is to view language modeling as a discrimination prob-
lem: a classifier can be trained to distinguish between fluent and disfluent sentences,
and the underlying scoring function can subsequently be used as a feature of the
log-linear model (Eq. (6.2)). As a first step in this direction, we present in this chap-
ter a simple way to incorporate background linguistic resources in discriminative
language models. More precisely, we define linguistically enriched kernel functions
(Shawe-Taylor and Cristianini, 2004) where words are not only represented by their
surface forms but according to a set of linguistic features that, following the ter-
minology adopted in Bilmes and Kirchhoff (2003) and Koehn and Hoang (2007),
we call factors. Our main contribution is an extension of word-sequence kernels
(Cancedda et al., 2003) that makes effective use of the different factors through the
introduction of composite linguistic features.

The rest of the chapter is structured as follows. After a brief introduction to word-
sequence kernels, the next section describes the notion of factored representation

1. Note indeed that p(t|s) ∝ p(s|t)p(t) = exp
`
log p(s|t) + log p(t)

´
.
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and details our kernel formulation. Section 6.3 validates the kernel construction on
an artificial discrimination task reproducing some of the conditions encountered in
translation, and section 6.4 discusses related and future work.

6.2 Linguistically Enriched Word-Sequence Kernels

In this section, we give a brief and intuitive introduction to word-sequence ker-
nels, define the notion of factored representation derived from multiple linguistic
representations, and propose a novel way to integrate such factors into a global
word-sequence kernel.

6.2.1 Word-Sequence Kernels

Sequence kernels derive a measure of similarity between sequences by means of their
common subsequences. In this chapter, we focus on the gap-weighted subsequence
formulation of sequence kernels that was first introduced to compare sequences of
characters (Lodhi et al., 2002), and later extended to compare sequences of words
(Cancedda et al., 2003).

Letting |x| be the length of a sequence x, and x[i] be its restriction to the symbols
indexed by the vector i, the set of subsequences of size n associated with x can be
written formally as

Sn(x) =
{
x[i] ; i = [i1, . . . , in] ∈ {1, . . . , |x|}n, i1 < i2 < · · · < in

}
.

The indices i1, . . . , in that define a subsequence are solely constrained to be
(strictly) increasing. As a result, a subsequence can contain gaps : some positions
can be skipped while extracting the symbols of the subsequence. For example, in
the sequence x = “this” “is” “a” “sequence,” the vector of indices i = [1, 4] defines
the subsequence x[i] = “this” “sequence” that contains two gaps, corresponding to
the words “is” and “a.” We will denote by g(x[i]) this total number of gaps in the
following,2 which can be seen to be given by in − i1 + 1 − n.

Letting 1(.) be a generic indicator function being 1 iff its argument is true, we
can write the gap-weighted subsequence kernel as a standard inner product, defined
for the pair of sequences (x, y) drawn from an alphabet Σ as

kn(x, y) = 〈φ(x), φ(y)〉,

where φ(x) =
(
φu(x)

)
u∈Σn maps the sequence x into a feature space indexed by

Σn, the set of sequences of length n that can be drawn from the alphabet Σ;
and φu(x) =

∑
sx∈Sn(x) 1(sx = u)λg(sx) counts the number of times a particular

2. The function g is introduced for convenience in the notation. Strictly speaking, x[i]
does not contain enough internal structure to compute g(x[i]).
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sequence u is found within Sn(x), each occurrence being downweighted by the
number of gaps it contains, according to a parameter λ ∈ [0, 1].

The parameter λ is called the gap penalization factor. When it tends to zero,
any subsequence containing gaps gets so downweighted that the kernel boils down
to counting the number of contiguous subsequences. When λ increases, the penal-
ization of gaps decreases, and for λ = 1, every common subsequence contributes
equally to the kernel value, independently of its number of gaps. We refer the in-
terested reader to Shawe-Taylor and Cristianini (2004) for a thorough introduction
to sequence kernels.

The size of the feature space associated with this kernel is therefore |Σ|n, which
can be very large in practice, especially for word-sequence kernels where |Σ| typically
exceed 10, 000. Nevertheless, this kernel can be computed efficiently exploiting
properties common to all convolution kernels (Haussler, 1999). Indeed, it is easy to
see that the kernel can equivalently be written as

kn(x, y) =
∑

sx∈Sn(x)

∑
sy∈Sn(y)

1(sx = sy)λg(sx)λg(sy), (6.4)

meaning that it can be computed directly by comparing all pairs of subsequences
that can be extracted from x and y. For that purpose, Lodhi et al. (2002) introduce
a dynamic programming algorithm having a complexity of O(n|x||y|). Interestingly,
when computing the order-n kernel kn, this algorithm computes the kernels ki for
i < n as intermediaries, which offers the possibility to compute a “blended” or
“up to n” kernel k =

∑n
i=1 μiki at almost no extra cost, the parameters μi ≥ 0

controlling the relative contribution of the kernel computed at different orders.
We note finally that because the number of subsequences associated with a

sequence increases with its length, the value of the kernel is highly dependent
on the size of the sequences to be compared. In order to compensate for this
size effect, it is common to consider a normalized version of the kernel, defined
as k̃n(x, y) = kn(x, y)/

√
kn(x, x)kn(y, y).

6.2.2 Factored Representation and Kernel Combination

We now consider the case where words are not only characterized by their surface
forms but along several linguistic dimensions. This work focuses more precisely
on linguistic features associating a single and discrete tag to each word, which,
following the terminology of Bilmes and Kirchhoff (2003) and Koehn and Hoang
(2007), we refer to as factors in what follows. This situation occurs naturally for
common linguistic features such as word lemmas and parts of speech, upon which we
base our experimental study. The formalism we adopt is nevertheless very general,
and section 6.4 discusses the introduction of higher-level features.

Under this representation, a word u is formally defined as a set of p factors
{u(d)}d=1:p drawn from different alphabets Σd. A simple way to define a kernel on
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such multidimensional sequences is to resort to a linear combination of individual
kernels:

klin
n (x, y) =

p∑
d=1

wdkn(x(d), y(d)), (6.5)

where x(d) denotes the dth sequence of word factors associated with the sequence
x, kn is the kernel3 of Eq. (6.4), and the weights wd ≥ 0 control the relative
contributions of the different factors in the global kernel. Despite its simplicity,
this integration scheme is known to be effective in practice (Lanckriet et al., 2004),
and was recently pursued for word-sense disambiguation under the denomination
of syntagmatic kernels (Giuliano et al., 2006).

Because summing a set of inner products is equivalent to (i) concatenating the
corresponding feature vectors and (ii) computing a single inner product, this linear
combination has the effect of concatenating the feature spaces of the individual
kernels. In our case, the individual feature spaces are indexed by (Σd)n, and it
follows easily that the kernel in Eq. (6.5) can be written as a standard inner product:

klin
n (x, y) = 〈φ(x), φ(y)〉,

where φ(x) =
(
φu(x)

)
u∈Σ

is indexed by Σ =
p⋃

d=1

(Σd)n , the set of sequences

of length n that can be drawn separately from the different alphabets Σd; and
for a sequence u ∈ (Σd)n, φu(x) =

√
wd

∑
sx∈Sn(x(d))

1(sx = u)λg(sx) counts, in

the appropriate dimension x(d), the (gap-weighted) number of occurrences of u,
multiplied by the square root of the weight wd associated with the dth factor.

6.2.3 Factored Kernel

The above kernel definition has the limitation of leading to a disconnected integra-
tion of the linguistic resources, in the sense that each sequence indexing its feature
space involves symbols drawn from a single alphabet. It is often the case that lin-
guistic phenomena can be expressed at an abstract grammatical or morphological
level, and yet are lexicalized, that is, they depend on specific words (or lemmas).
For instance, we might want to be able to express the fact that the pattern “phone
PRON up” is fluent. This would generalize better than “phone her up,” “phone him

up,” “phone you up,” etc. separately, and would be more accurate than “VB PRON

PREP,” which would also promote “phone him out” as equally fluent. With this in
mind we now introduce an alternative definition of kernels for factored representa-
tions, which is able to combine the different alphabets into composite subsequences.

3. Note that for simplicity, we introduce a single kernel order n to compare the different
sequences, but one could use factor-specific orders n(d).
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Because a pair of sequences is identical if it is made of pairwise identical symbols,
the sequence kernel of Eq. (6.4) can equivalently be written as

kn(x, y) =
∑

sx∈Sn(x)

∑
sy∈Sn(y)

1(sx = sy)λg(sx)λg(sy)

=
∑

sx∈Sn(x)

∑
sy∈Sn(y)

λg(sx)+g(sy)
n∏

i=1

1(sx[i] = sy[i]).

This simple fact allows us to considerably enrich the kernel definition by turning
the binary function checking whether a pair of symbols is identical or not into a
flexible kernel function meant to quantify their similarity. This is know as the soft-
matching extension of sequence kernels (Shawe-Taylor and Cristianini, 2004), and
can formally be written as

ksoft
n (x, y) =

∑
sx∈Sn(x)

∑
sy∈Sn(y)

λg(sx)+g(sy)
n∏

i=1

kΣ(sx[i], sy[i]),

where kΣ : Σ × Σ → R is a kernel between symbols. Soft-matching kernels do
not have an explicit interpretation as inner products in general, but provided the
elementary kernel kΣ is a proper kernel function, this construction is known to
be valid by the closure properties of the class of kernel functions (Haussler, 1999;
Shawe-Taylor and Cristianini, 2004).

To accommodate factored representations, we propose to resort to this soft-
matching formulation. Different schemes can be considered to define a kernel kΣ

comparing vectors of symbols. In this work, we focus on the following definition:

kΣ(u, v) =
p∑

d=1

wdk
(d)(u(d), v(d)),

which provides a direct way to integrate multiple factors guaranteeing symmetry
and positive semidefiniteness. In this definition, the kernel k(d) compares the dth
word factors, and the weights wd ≥ 0 control the relative contribution of the
different word factors in the word similarity measure. When word factors consist
of exactly one tag, as it is assumed in this work, the kernels k(d) can naturally
be defined as binary functions checking whether the factors are identical or not.
Altogether, this leads to the following kernel definition:

kfact
n (x, y) =

∑
sx∈Sn(x)

∑
sy∈Sn(y)

λg(sx)+g(sy)
n∏

i=1

p∑
d=1

wd1(s(d)
x [i] = s(d)

y [i]), (6.6)

that we call the factored kernel.
As mentioned above, soft-matching sequence kernels do not have an explicit

interpretation as inner products in general. With this restricted definition, however,
we can provide such an interpretation, which allows relating the kernel construction
to other integration schemes. For that purpose we introduce a notion of composite
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sequences : sequences drawn from multiple alphabets. For example, a sequence
u ∈ Σ1 × Σ2 × Σ1 is a composite sequence of size 3: it corresponds to the
concatenation of three symbols, the first and third ones being drawn from a first
alphabet Σ1 and the second one being drawn from a second alphabet Σ2. The set
of composite subsequences of size n associated with a factored sequence x can be
defined as

S∗
n(x) =

{
x(d)[i] = x(d1)[ii] . . . x(dn)[in],

i ∈ {1, . . . , |x|}n,d ∈ {1, . . . , p}n, i1 < i2 < · · · < in
}
.

A composite subsequence x(d)[i] ∈ S∗
n(x) is defined by two n-tuples of indices:

a tuple of word indices i, as in the standard (unidimensional) case,

a tuple of factor indices d, defining the alphabets involved in the composition.

Based on these definitions, we can state the following proposition, whose proof is
postponed to the appendix.

Proposition 6.1 The factored kernel of Eq. (6.6) can be written as a standard
inner product:

kfact
n (x, y) = 〈φ(x), φ(y)〉,

where φ(x) =
(
φu(x)

)
u∈Σ

is indexed by Σ =
( p⋃

d=1

Σd

)n
, the set of composite

sequences of size n that can be drawn from the union of the different alphabets Σd;
and for the composite sequence u ∈ Σf1(u) × · · · × Σfn(u), where fi(u) ∈ {1, . . . , p}
indexes the alphabet from which the ith symbol of the sequence is drawn, we have

φu(x) = w(u)
∑

sx∈S∗
n(x)

1(sx = u)λg(sx), with w(u) =
n∏

i=1

√
wfi(u).

In comparison with the linear combination of kernels, the central point of this
factored integration is therefore the ability to detect composite subsequences in

which symbols are drawn from
p⋃

d=1

Σd, the union of the individual alphabets.

Intuitively, the factored kernel can be seen as (i) merging the individual alphabets
into a global alphabet, and (ii) counting the resulting composite subsequences in
the factored representation. On the other hand, linearly combining the kernels
corresponds to (i) counting subsequences in the different linguistic representations,
and (ii) merging the resulting feature vectors. The next section illustrates the
benefit of being able to consider composite subsequences. Moreover, the factored
integration can be seen to be slightly more efficient from the computational point of
view. Indeed, while the linear combination of kernel basically multiplies the initial
complexity by a factor p, leading to an overall complexity of O(np|x|y|), the soft-
matching extension has the same O(n|x|y|) complexity as the hard-matching one,
provided the word similarity measure is computed in advance. The complete kΣ
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Gram matrix would in our case be of size (|Σ1||Σ2| . . . |Σp|)2, and it would thus be
highly impractical to precompute it and store it in memory. In general, computing
on the fly only the entries of this matrix needed to compare x and y requires |x|×|y|
evaluations of the kernel kΣ. In our case, kΣ has a complexity of p, which leads to
an overall complexity of O

(
(n + p)|x||y|

)
to compare x and y.

6.2.4 Illustration

We now give an illustration of the different approaches introduced above on a
simple example: comparing the sentences He comes from London and She came

to Paris based on a factored representation defined from the surface forms of the
words, their lemmas, and their parts of speech (POS):

surface He comes from London She came to Paris

lemma he come from London she come to Paris

POS PRON VERB PREP PROPER PRON VERB PREP PROPER

These sentences clearly have a related meaning and a similar structure. An
occurrence of one as a positive example in the training set should therefore provide
evidence of the fluency of the other. However, since they don’t have a single
word in common, the original word-sequence kernel, which solely considers their
surface forms, is not able to detect this similarity at all. Integrating the different
linguistic dimensions proves to be useful in this respect. Restricting ourselves to the
detection of common subsequences of length 4, we first note a match along the POS
dimension through the sequence PRON-VERB-PREP-PROPER. The linearly combined
kernel (Eq. (6.5)) and the factored kernel (Eq. (6.6)) are both able to take into
account this match into the global similarity measure. The first important difference
between the two formulations is related to their parametrization. Indeed, they
respectively give a weight of wpos and w4

pos to this match in the global kernel. More
important, however, is the ability of the factored kernel to detect in addition the
composite match PRON-come-PREP-PROPER involving both word lemmas and POS.
On this particular example, this composite sequence bears a richer information with
respect to the semantic content shared by the sentences. Experiments in section 6.3
reveal that such composite subsequences are worth including in the kernel. As an
ending remark, we note that this composite subsequence is given a weight equal
to w3

pos × wlemma, inbetween the weights of w4
pos and w4

lemma given to sequences of
length 4 consisting exclusively of POS tags and word lemmas respectively.

6.2.5 Rational Kernel Interpretation

We conclude this section by an interpretation of the above definitions in the context
of rational kernels (Cortes et al., 2004), meant to provide an intuitive illustration
of the different kernel constructions. Loosely speaking, the framework of rational
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kernels offers the possibility to define kernels between finite-state automata by
means of a generic operation of transducers composition. Two key elements enter
this process: the pair of automata A and B to be compared, and a transducer
T in charge of their comparison. In some sense, the transducer T is designed to
extract patterns from automata through an operation of transducer composition,
denoted as A ◦ T when it is composed with the automaton A. At a further level
of composition, the operation (A ◦ T ) ◦ (B ◦ T )−1 = A ◦ (T ◦ T−1) ◦ B makes it
possible to extract simultaneously patterns from A and B, through the composed
transducer T ◦ T−1. Under general conditions on the transducer T and the input
automata A and B, positive definite kernels can be obtained from this construction.

As illustrated in figure 6.1 a sequence s = (s1, . . . , sn) corresponds to a trivial
automaton defined by n+1 states (e0, . . . , en) and n transitions between successive
states (ei, ei+1), corresponding to the emission of the n symbols of the sequence.
Under this representation, Cortes et al. (2004) show that the gap-weighted subse-
quence kernel of Eq. (6.4) can be computed by means of a simple transducer T .
Without going into details, composing the automaton A encoding a sequence and
this particular transducer T leads to a transducer A◦T such that there is a bijection
between its set of successful paths and the set of (noncontiguous) subsequences of
the sequence encoded by A. More details about this construction can be found in
Cortes et al. (2004). From the analysis of the previous sections, we note that both
the linear combination of individual kernels (Eq. (6.5)) and the factored kernel (Eq.
(6.6)) can be seen as rational kernels involving the same transducer T , but modified
input automata in which

in the linear combination of kernels, the internal states and the sequence and
transitions are duplicated in order to encode the separate emission of symbols drawn
from the different alphabets;

in the factored kernel, the transitions from the states i to the states i + 1 in
the automata are replaced by a set of d transitions encoding the emission of the
different word factors.

These representations are illustrated in figure 6.1.

6.3 Experimental Validation

In order to validate the proposed kernel construction, we consider an artificial
problem consisting of discriminating naturally occurring sentences from disrupted
sentences. For that purpose, a training and a test set of respectively 5000 and 2000
English sentences are extracted from the Europarl corpus.4 Within each set, half
of the sentences are kept as such, and we disrupt the sentences of the other half by
randomly permuting pairs of consecutive words with probability 0.16. Preliminary

4. http://www.statmt.org/europarl/
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Figure 6.1 Finite-state automaton interpretation of sentences in rational kernels. Top:
single-factor word-sequence kernel; middle: linear combination of kernels; bottom: factored
word-sequence kernel.

experiments5 revealed consistent results for values smaller and greater than 0.16,
so we decided to focus on this intermediate level of disruption. Note that the
perturbations are done iteratively, and as a result, a given word can be carried far
away from its original position by a series of swaps. Albeit artificial, this problem
is related to the translation task where such misorderings can seriously degrade
the fluency of the produced sentences. As illustrated in section 6.2.4, we consider a
tridimensional factored representation in which, besides its surface form, a word is
represented by its lemma and part of speech (POS). In these experiments, tagging
is done by the Xerox Incremental Parser (XIP) developed at Xerox Research Center
Europe (Aı̈t-Mokhtar et al., 2002), and is performed after perturbing the sentences,

The different kernels were implemented in C, following the dynamic programming
(DP) approach described in Lodhi et al. (2002). The only modification consists in
adding an extra step for computing the required kΣ values before running the
DP recursion, as mentioned at the end of section 6.2.3, and detailed in Shawe-
Taylor and Cristianini (2004). We used the python PyML package6 to perform
SVM classification. The “C” soft margin parameter of the SVM is systematically
optimized by cross-validation on the training set and we report classification
accuracy on the test set.

5. detailed in http://www.smart-project.eu/D31.pdf
6. http://pyml.sourceforge.net/
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6.3.1 Kernels on Individual Factors

We start by studying the behavior of the standard word-sequence kernel (6.4) when
it is based on a single factor, according to (i) the factor considered; (ii) the length
n of the subsequences, taken in {2, 3, 4}; and (iii) the gap penalization factor λ,
taken in {0.001, 0.1, 0.5, 1.0}. Results are presented in table 6.1 for the “only-n”
case, where the kernel is based exclusively on subsequences of size n, and table 6.2
for the “blended” or “up to n” case, where the kernel is defined as the sum of the
(normalized) kernels computed from subsequences of size 1 to n.

Several conclusions can be drawn from table 6.1. First, we note that, in general,
better results are obtained for small λ, or in other words, when we favor contiguous
subsequences. This observation makes sense considering the problem at hand.
Indeed, since negative examples are obtained by swapping pairs of consecutive
words, it is not surprising that gaps do not prove useful in this context. Second,
we obtain comparable results with surface forms and lemmas, and systematically
better results with POS. The first point can be explained by the fact that English
is a language of limited inflection, and as a result, the surface form of the words
and their lemmas often coincide. The fact that parts of speech give better results is
not so surprising either with respect to the problem considered: sequences of POS
tags intuitively constitute powerful features to detect word swapping. Finally, we
note that for each factor the classification performance decreases when n increases,
especially for surface forms and lemmas. This behavior is most likely due to the
fact that the feature space associated with the sequence kernel has a dimensionality
of |Σ|n , which increases exponentially with n. As a result, feature vectors get
sparser when n increases, which tends to render them orthogonal. This effect is
more severe for surface forms and lemmas than it is for parts of speech because their
alphabets, and as a result, their associated feature spaces, are significantly bigger
(tens of thousands vs. tens of symbols). This issue is well known when dealing with
sequence kernels, and although postprocessing the kernel matrix in order to reduce
its diagonal dominance can help compensate for this (Weston et al., 2003), we did
not further investigate this point.

Concerning table 6.2, we note that the behavior of the kernel with respect to
the considered factor and the value of λ is globally similar: better results are in
general obtained with small values of λ and POS outperform surface forms and
lemmas, which give comparable results. Concerning the integration of subsequences
of different lengths, we first note that integrating the unigram (n = 1) and the
bigram (n = 2) kernels seems to slightly improve the results obtained with bigrams
only for surface forms and lemmas. This result is quite surprising since unigrams
should not bring any information with respect to the problem considered. We don’t
have a precise explanation for that, and conjecture that there is some bias in the
distribution of words within the two classes of sentences. This seems to be confirmed
by the fact that unigram kernels computed from surface forms and lemmas give
results around 52%, where one would expect 50% of correct classification if words
were identically distributed within each class of sentences. Although POS results can
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Table 6.1 Test set accuracy obtained with the word-sequence kernel (Eq. (6.4)) com-
puted on isolated factors – “only-n” version

n = 2 n = 3 n = 4

λ 0.001 0.1 0.5 1.0 0.001 0.1 0.5 1.0 0.001 0.1 0.5 1.0

Surface 85.1 84.3 80.1 56.1 73.0 73.1 72.0 58.1 65.1 64.5 63.7 57.0

Lemma 85.6 85.0 79.3 56.3 73.9 73.6 73.0 58.5 65.1 64.7 64.7 57.6

POS 89.7 89.6 85.1 63.9 88.1 88.3 87.8 69.3 85.5 86.7 87.5 74.5

Table 6.2 Test set accuracy obtained with the word-sequence kernel (Eq. (6.4)) com-
puted on isolated factors – “up to n” version: k =

Pn
i=1 ki

n = 2 n = 3 n = 4

λ 0.001 0.1 0.5 1.0 0.001 0.1 0.5 1.0 0.001 0.1 0.5 1.0

Surface 85.8 85.3 79.3 54.9 85.6 85.0 80.2 55.9 84.6 84.8 79.3 55.8

Lemma 86.4 85.6 78.8 55.2 86.3 85.8 79.8 55.9 85.1 85.4 79.1 56.2

POS 89.5 89.5 85.3 66.2 89.7 90.0 87.8 70.9 89.2 89.3 86.9 74.4

be seen to slightly improve, further integrating trigrams (n = 3) globally leaves the
results unchanged. At order 4 however, results start decreasing, especially for surface
forms and lemmas, which might be related to the issue of diagonal dominance of
the kernel matrix at high orders. Finally, we note that while we decided to simply
consider the sum of the kernels computed at different orders in our experiments,
better results might be obtained using a general linear combination k =

∑
i μiki

with parameters μi tuned from the training set.

6.3.2 Integration of Factors

We now turn to the central part of the study: the integration of the different
factors. According to the above analysis, we systematically set the value of the gap
penalization factor λ to 0.001. To evaluate the influence of the individual factors, we
consider different vectors of weights, summarized in the following table for kernels
of order n:

combined factored

surface lemma POS surface lemma POS

w1 1 1 1 1 1 1

w2 1 1 2 1 1 n
√

2

w3 1 1 5 1 1 n
√

5

w4 1 1 10 1 1 n
√

10

w5 1 2 5 1 n
√

2 n
√

5
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In the first four weight vectors, the contribution of the POS factor, which gives
individually the best results, is gradually increased. The last weight vector further
increases lemmas over surface forms. The weights used in the factored kernel of
order n are set to the nth root of the weights used in the linear combination of
kernels in order to make a direct comparison between the two approaches. Indeed,
recall from section 6.2 that a subsequence drawn from the dth factor is given a
weight of

√
wd in the linearly combined kernel (see section 6.2.2) and a weight of∏n

i=1

√
wd in the factored formulation (see section 6.2.3). Setting the weight used

in the factored kernel to the nth root of the corresponding weight involved in the
linear combination of kernels gives the same weight to the set of subsequences that
appear in both formulations. The composite features that are additionally included
in the factored kernel are given weights inbetween the weights given to sequences
involving a single factor, as illustrated in section 6.2.4.7

Figure 6.2 shows the results obtained with the linear combination of individual
kernels and the factored kernel, for n taken in {2, 3}, in the “only n” case (left)
and the “up to n” case (right). The main conclusion that can be drawn from
this figure is that factored kernels (dark bars) systematically outperform linear
combinations of kernels (light bars), which indicates that introducing composite
subsequences in the model is indeed beneficial. We also note, in comparison with
tables 6.1 and 6.2, that integrating the different factors is always beneficial: both
the linearly combined and factored kernels systematically outperform identically
parameterized kernels computed on individual factors. Concerning the contribution
of the individual factors, we note quite surprisingly that the influence of the weight
vector is marginal, although increasing the influence of POS over other factors
seems to help a little (especially in the ”only n” case). Finally, we note a drop in
performance for the “only n” case when the order of the kernel is increased from 2 to
3, while results stay globally similar in the “up to n” case, which is consistent with
observations made from individual factors (tables 6.1 and 6.2). Altogether, optimal
results are obtained by the factored kernel taken “up to n = 3,” showing a 2%
absolute improvement over the POS baseline, and 1% over the linear combination
of kernels.

6.3.3 Comparison to N-Gram Models

In order to provide baseline results, we turn standard n-gram language models (6.3)
into binary classification algorithms according to the following procedure. First, we
train an n-gram language model on the regular (that is, the nondisrupted) version
of the training set used to learn the SVM models in the previous experiments.

7. The equality between weights associated with the features common to both formulations
only holds in the “only-n” case. Indeed, in the “up to 2” case, for instance, unigrams and
bigrams drawn from the dth factor are given the same weight (equal to

√
wd) in the linearly

combined kernel, which is not the case in the factored kernel (bigrams have a weight of√
wd and unigrams a weight of (

√
wd)

1/2).
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Figure 6.2 Test set classification accuracy obtained by the linear combination of kernels
and the factored kernel, for different vectors of weights (defined in the text) and λ = 0.001.
Left : “only n” version; right : “up to n” version.

Training was done using the SRI language modeling toolkit8 with Kneser-Ney as
smoothing method. This language model is then used to compute the (per word)
perplexity of the sentences of the (disrupted) test set. Finally, we make predictions
by thresholding these perplexity values: sentences having a perplexity lower than
the threshold are classified as positive, and sentences with greater perplexity are
classified as negative. While this threshold could be automatically selected, using
cross-validation techniques for instance, in these experiments we simply pick the
threshold maximizing the accuracy on the test set. The same procedure was applied
to learn a POS language model, where words are represented by their parts of speech
instead of their surface forms. Results are presented in table 6.3 for language models
based on n-grams of order 2 to 6. Note that since the decision threshold is optimized
on the test set, these results constitute an upper bound of the classification accuracy
one could obtain with such a procedure.

We can note from this table that optimal results are obtained for n = 2 when
the model is based on surface forms, and for n = 4 when it is based on POS. This
is most likely due to the fact that POS-based n-gram models have many fewer
parameters than standard language models, and can consequently be estimated
more accurately from a limited amount of training data. As opposed to the SVM
models involved in previous experiments, n-gram models are trained generically,
that is, not specifically for this particular discrimination task. Nevertheless, this
approach leads to comparable (for POS), and even better results (for surface
forms) when words are represented according to a single factor. The results are still
outperformed by kernels on factored representations, as well as linear combinations
of individual kernels.

Finally, table 6.4 shows the results obtained when the (surface form) language
model is learned from the whole Europarl corpus with the exception of the test set.

8. http://www.speech.sri.com/projects/srilm/
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Table 6.3 N-gram baseline – Test set classification accuracy using n-gram models trained
on the nondisrupted training set of 5000 sentences

n 2 3 4 5 6

Surface forms 87.5 87.0 87.1 87.0 87.0

Parts of speech 87.6 89.2 90.1 89.8 89.2

Table 6.4 N-gram baseline – Test set classification accuracy using n-gram models trained
on the whole Europarl corpus but the test set

n 2 3 4 5 6

Surface forms 94.7 95.2 95.5 95.4 95.6

This raises the size of the training set of the language model from 5000 to around
1.4 million sentences. In comparison with table 6.3, we note that considerably better
results can be obtained by simply increasing the size of the training set. Moreover,
we note that optimal results are now obtained with n-grams of order 3 and greater,
which reflects the fact that larger data sets allow the estimation of models of a
higher complexity. With an accuracy of 95.6% this approach greatly outperforms the
results we obtained with kernel-based approaches, which suggests that important
gains could be obtained by applying the kernel-based approach to larger data sets.

6.4 Conclusion and Future Work

In this chapter we have considered different approaches to define kernels between
linguistically enriched representation of sentences. In particular, we have introduced
a global way to integrate multiple linguistic resources. On an artificial problem
meant to reproduce a typical issue of SMT, namely word misordering, the proposed
construction was shown to outperform a standard alternative formulation.

Our future work will be mainly dedicated to the actual integration of these
techniques in SMT systems. A rapid way to assess their impact, which does not
require applying complex modifications to the decoder, is to adopt a reranking
approach. Reranking casts translation into a two-step process. To translate a given
sentence, the first step is to produce an “n-best list” of candidate translations by
the decoder: these are the n top-ranked translations according to the log-linear
model (Eq. (6.2)). In a second step, this list of candidates is reranked to find a
better candidate than the one returned by default by the decoder (that is, the
first one in the n-best list). When informative features not directly accessible by
the decoder are used for reranking, this approach can improve the fluency of the
produced sentences, and is now a standard component of SMT systems (see, for
instance, Och et al. (2004) and Shen et al. (2004)). The mainstream approach to
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learn reranking models is to use perceptron algorithms trained from a development
set, kept aside from training, according to automatic criteria such as the BLEU or
the NIST scores. There are at least two simple ways to integrate kernels in such
models:

Perceptrons being straightforward to “kernelize,” a first approach would be to
integrate directly the kernels in their scoring functions. This would be very similar
to the approach presented in Roark et al. (2004) based on n-gram features, which
proved effective in the context of speech recognition.

An alternative approach, in the direct continuity of this work, would be to first
train an SVM model to distinguish between fluent and disfluent sentences, and
to use the resulting scoring function as a single additional feature to learn the
reranking model.

On the practical side, the large-scale experiments carried out with the whole
Europarl corpus and standard n-gram models revealed the necessity to be able
to consider large data sets. In this respect the quadratic complexity of the gap-
weighted subsequence kernel constitutes a major obstacle. However, we note that
this quadratic complexity is due to the initial requirement that the kernel handles
gaps, which did not prove to be useful in our experiments. Focusing on contiguous
subsequences paves the way to computationally cheaper algorithms based, for
instance, on trie-trees or suffix trees, that reduce the complexity from quadratic
to linear (Shawe-Taylor and Cristianini, 2004; Vishwanathan and Smola, 2004).
These algorithms can be further extended to accommodate for a restricted number
of gaps and mismatches within the subsequences (Leslie and Kuang, 2004), but to
the best of our knowledge, they are not compatible with the soft-matching extension
of sequence kernels in the general case. For the restricted formulation considered in
this chapter, however, generalizations of these algorithms may be designed because
of the possibility to explicit the feature space of the kernel.

Another direction that we want to explore is the introduction of additional
linguistic features related to the morphology and the semantic content of the
words. Coming back to the illustration of section 6.2.4, semantic features could help
detect that Paris and London both refer to cities, and morphological features could
indicate that the two pronouns he and she are singular, and third person. However,
the introduction of such features raises new questions because they typically do not
consist of a single and discrete tag, which was the basic assumption of this work.
Indeed, the morphological description of a word usually comes as a set of tags whose
number and type can vary according to its part of speech. For instance, nouns and
adjectives are typically characterized by CASE, NUMBER, and GENDER tags, verbs
usually have additional TENSE and MOOD tags, and adverbs have no morphological
variations.9 Similarly, a semantic representation of words can, for instance, be based

9. Note that this type of morphological information is highly language-dependent.
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on WordNet10 synsets, on automatically derived word classes (Brown et al., 1992),
or on their projection onto a latent semantic space (Landauer et al., 1998; Bengio
et al., 2003). It should be clear that although this chapter focused on linguistic
factors assigning a single and discrete tag to words, any source of information can be
considered provided an appropriate kernel kΣ is available. Different alternatives are
considered in Costa et al. (2006) and Giuliano et al. (2006) to define kernels between
sets of WordNet synsets for instance. Although this is most likely incompatible with
the use of the above-mentioned linear complexity algorithms, factored kernels offer
a natural and sound formalism to integrate such higher-level word representations.
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Appendix: Proof of Proposition 6.1

We detail the feature space interpretation of the factored kernel (Eq. (6.6)):

kfact
n (x, y) =

∑
sx∈Sn(x)

∑
sy∈Sn(y)

λg(sx)+g(sy)
n∏

i=1

p∑
d=1

wd1(s(d)
x [i] = s(d)

y [i]).

First, by a simple distributivity argument, we remove the summation over word
factors (indexed by d) from the product over subsequences indices (indexed by i)
and replace it by an exhaustive summation according to a vector of factor indices
d = [d1, . . . , dn] ∈ {1, p}n:

kfact
n (x, y) =

∑
sx∈Sn(x)

∑
sy∈Sn(y)

λg(sx)+g(sy)
∑
d

n∏
i=1

wdi1(s(di)
x [i] = s(di)

y [i]).

Then, using the converse operation to that invoked at the very beginning of section
6.2.3 in the derivation of the soft-matching kernel, we replace the product of binary
functions checking whether the n pairs of word factors (s(di)

x [i], s(di)
y [i]) are identical

10. http://wordnet.princeton.edu/
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by a binary function checking whether the two sequences of word factors are globally
identical:

kfact
n (x, y) =

∑
sx∈Sn(x)

∑
sy∈Sn(y)

λg(sx)+g(sy)
∑
d

w(d)1(s(d)
x = s(d)

y ),

with w(d) =
n∏

d=1

wdi .

Using the definition of composite subsequences of length n associated with the
sequence x introduced in section 6.2.3:

S∗
n(x) =

{
x(d)[i] = x(d1)[ii] . . . x(dn)[in],

i ∈ {1, . . . , |x|}n,d ∈ {1, . . . , p}n, i1 < i2 < · · · < in
}
,

we can include the summation over the vector d of word factors within the
summation over subsequences themselves:

kfact
n (x, y) =

∑
sx∈S∗

n(x)

∑
sy∈S∗

n(y)

λg(sx)+g(sy)w(sx)1(sx = sy),

where for sx = x(d)[i] ∈ S∗
n(x) and sy = y(d′)[i′] ∈ S∗

n(y),

1(sx = sy) =

{
1 if d = d′ and x(dk)[ik] = y(dk)[i′k] for k=1,. . . ,n

0 otherwise,

and for sx = x(d)[i], w(sx) =
n∏

i=1

wdi .

Finally, because 1(sx = sy) = 1 implies w(sx) = w(sy) for the pair of composite
subsequences (sx, sy), we can write the above equation as

kfact
n (x, y) =

∑
sx∈S∗

n(x)

∑
sy∈S∗

n(y)

λg(sx)+g(sy)
√

w(sx)
√

w(sy)1(sx = sy),

which leads to an expression similar to that of Eq. (6.4). The kernel can consequently
be written as a standard inner product kfact

n (x, y) = 〈φ(x), φ(y)〉, where

φ(x) = (φu(x))u∈Σ with Σ =

(
p⋃

d=1

Σd

)n

is the set of all possible composite

sequences of length n,

φu(x) =
∑

sx∈S∗
n(x)

1(sx = u)λg(sx)
√

w(sx).

The proof is concluded by noting that for u ∈
∏n

i=1 Σfi(u) and sx = x(d)[i],
the equality 1(sx = u) = 1 implies di = fi(u) for i = 1, . . . , n, and therefore
w(sx) =

∏n
i=1 wdi =

∏n
i=1 wfi(u).
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7 Toward Purely Discriminative Training

for Tree-Structured Translation Models

Benjamin Wellington
Joseph Turian
I. Dan Melamed

7.1 Introduction

Discriminative training methods have recently led to significant advances in the
state of the art of machine translation (MT). Another promising trend is the
incorporation of syntactic information into MT systems. Combining these trends
is difficult for reasons of system complexity and computational complexity. This
study makes progress toward a syntax-aware MT system whose every component
is trained discriminatively. Our main innovation is an approach to discriminative
learning that is computationally efficient enough for large statistical MT systems,
yet whose accuracy on translation subtasks is near the state of the art.

Our approach to predicting a translation string is to predict its parse tree, and
then read the string off the tree. Predicting a target tree given a source tree is equiv-
alent to predicting a synchronous tree (bitree) that is consistent with the source tree.
Our method for training tree transducers was to train an inference engine to predict
bitrees. The inference engine employs the traditional AI technique of predicting a
structure by searching over possible sequences of inferences, where each inference
predicts a part of the eventual structure. Thus, to train a model for predicting bi-
trees, it is sufficient to train it to predict correct inferences. However, unlike most
approaches employed in natural language processing (NLP), the proposed method
makes no independence assumptions: the function that evaluates each inference
can use arbitrary information not only from the input but also from all previous
inferences.

Let us define some terms to help explain how our algorithm predicts a tree. An
item is a node in the tree. Every state in the search space consists of a set of items,
representing nodes that have been inferred since the algorithm started. States whose
items form a complete tree are final states. An inference is a (state, item) pair, i.e.,
a state and an item to be added to it. Each inference represents a transition from
one state to another. A state is correct if it is possible to infer zero or more items
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to obtain the final state that corresponds to the training data tree. Similarly, an
inference is correct if it leads to a correct state.

Given input s, the inference engine searches the possible complete trees T (s) for
the tree t̂ ∈ T (s) that has minimum cost CΘ(t) under model Θ:

t̂ = argmin
t∈T (s)

CΘ(t) = arg min
t∈T (s)

⎛⎝ |t|∑
j=1

cΘ(ij)

⎞⎠ . (7.1)

The ij are the inferences involved in constructing tree t. cΘ(i) is the cost of
an individual inference i. The number of states in the search space is typically
exponential in the size of the input. The freedom to compute cΘ(i) using arbitrary
nonlocal information from anywhere in inference i’s state precludes exact solutions
by ordinary dynamic programming. We know of two effective ways to approach
such large search problems. The first is to restrict the order in which items can be
inferred, for example, bottom-up. The second is to make the simplifying assumption
that the cost of adding a given item to a state is the same for all states. Under
this assumption, the fraction of any state’s cost due to a particular item can be
computed just once per item, instead of once per state. However, in contrast to
traditional context-free parsing algorithms, that computation can involve context-
sensitive features.

7.2 Related Work

A probabilistic treatment of Eq. (7.1) uses CΘ(t) = Pr(t|s), the probability that a
text s in a source language will translate into a text t in the target language. Brown
et al. (1993) used Bayes’s rule to decompose this posterior into a language model
Pr(t) and a translation model Pr(s|t):

Pr(t|s) =
Pr(t) Pr(s|t)∑
t Pr(t) Pr(s|t) ∝ Pr(t) Pr(s|t). (7.2)

The problem with this model is that finding the maximum probability tree is
difficult. Foster (2000) instead directly modeled the posterior Pr(t|s) using a chain-
rule expansion:

Pr(t|s) =
|t|∏

i=1

Pr(ti|ti−1, . . . , t1, s), (7.3)

which is a special case of Eq. (7.1). In Foster (2000), each inference ti adds the ith
token in t. Hence, the translation text was predicted one word at a time, where each
prior word in the translation text was known at the point of guessing the next. Foster
was the first to build a large-scale log-linear translation model. More specifically,
Foster modeled the probability of individual decisions Pr(ti|ti−1, . . . , t1, s) using an
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unregularized locally normalized log-linear model (Berger et al., 1996). There are
several differences between our approach and Foster’s:

His learning method was unregularized. Unregularized models tend to overfit,
especially in the presence of useful features that always occur with a certain target
output. Our learning approach uses �1-regularization.

To reduce overfitting, Foster performed automatic feature selection as a separate
step before training. This approach can inadvertently remove important features.
In contrast, our learning method does automatic feature selection during training.

Foster’s model is induced over just the atomic features he defined. Our approach
achieves more powerful modeling by combining atomic features in useful ways.

Foster’s model was locally normalized, i.e., there was conservation of mass among
the candidate inferences at each state. Local normalization can cause label bias
(Lafferty et al., 2001). Our models are unnormalized, which avoids label bias
(Turian, 2007, sections 4.1 and 7.1).

The inference process of Foster is to infer tokens in the target string, one by one.
Our inference process is to build a target-side syntax tree bottom-up, one node at
a time, which can be viewed as translation by parsing (Melamed, 2004).

Och and Ney (2002) described a generalization of the approach of Brown et al.
(1993), which allowed different information sources in the form of features. Och
and Ney’s approach was to perform minimum error-rate training (MERT), using
the loss function of one’s choice. One such approach was that of Koehn et al.
(2003), who built a phrase-based statistical MT system that worked by calculating
the probability that one phrase would translate to another and compiling those
probabilities into a phrase table. In their model, discriminative methods were
used to tune a handful of metaparameters, namely the parameters of (1) the
log probability of the output sentence t under a language model, (2) the score
of translating a source phrase into a target phrase based on the phrase table
just described, (3) a distortion score, and (4) a length penalty. Several authors
have even applied this method to syntax-aware systems (Chiang, 2005; Quirk
et al., 2005). However, while MERT was a significant step forward in applying
discriminative training to statistical MT, it can be performed reliably on only a
small number of parameters. For this reason, it cannot be used with approaches
like that of Foster (2000), in which there are tens of thousands of features, let alone
approaches like ours involving millions of features. Another limitation of MERT is
that the submodels may or may not be optimized for the same objective as the
metaparameters. On a task like machine translation between common languages,
where training data is abundant, a more elegant and more accurate system might
be obtained by training all parts of the system with a single regularized objective.

More recent attempts to take full advantage of discriminative methods are the
perceptron-based approaches of Tillmann and Zhang (2005) and Cowan et al.
(2006), and the perceptron-like approach of Liang et al. (2006). All of these took
advantage of discriminative methods to learn parameters for models with millions
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of features. All of them were limited by the instability of the perceptron algorithm.
Tillmann and Zhang (2006) used a more principled approach, involving stochastic
gradient descent over a regularized loss function in a reranking framework. From
a machine-learning point of view, this latter work was perhaps the most advanced
(Bottou and Bousquet, 2008). However, all of these recent efforts were applied only
to finite-state translation models.

Our work is the first, to our knowledge, to apply principled discriminative learning
directly to the millions of parameters of a tree-structured translation model.

7.3 Learning Method

The goal of learning is to induce cΘ, which is the cost function for individual
inferences. cΘ is used in Eq. (7.1) to find the minimum cost output structure. An
important design decision in learning the inference cost function cΘ is the choice
of feature set. Given the typically large number of possible features, the learning
method must satisfy two criteria. First, it must be able to learn effectively even if
the number of irrelevant features is exponential in the number of examples. It is
too time-consuming to manually figure out the right feature set for such problems.
Second, the learned function must be sparse. Otherwise, it would be too large for
the memory of an ordinary computer, and therefore impractical. In this section, we
describe how cΘ is induced.

7.3.1 Problem Representation

The training data used for translation initially comes in the form of bitrees. These
gold-standard trees are used to generate training examples, each of which is a
candidate inference: starting at the initial state, we randomly choose a sequence of
correct inferences that lead to the (gold-standard) final state.1 All the candidate
inferences that can possibly follow each state in this sequence become part of the
training set. The vast majority of these inferences will lead to incorrect states,
which makes them negative examples. More specifically, the training set I consists
of candidate inferences. Each inference i in the training set I can be expanded
to a tuple 〈X(i), y(i)〉. X(i) is a feature vector describing i, with each element in
{0, 1}. We will use Xf (i) to refer to the element of X(i) that pertains to feature f.

y(i) = +1 if i is correct, and is y(i) = −1 if not.
An advantage of this method of generating training examples is that it does

not require a working inference engine and can be run prior to any training. A

1. The order of inferences is nondeterministic, so there may be many paths to the gold-
standard final state. Although the monolingual experiments of Turian (2007, section 6.4)
indicate that having a deterministic inference logic is preferable, for the task of tree
transduction it is not clear if there is a sensible canonical ordering.
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disadvantage of this approach is that it does not teach the model to recover from
mistakes. This is because example generation does not use the model in any way.
Our training set is identical to the inferences that would be scored during search
using an oracle cost function. The oracle cost function ĉ(i) is ∞ if y(i) = −1 and
0 if y(i) = +1. If we wanted to improve accuracy by teaching the inference engine
to recover from its mistakes, we could use inference during example generation
and iterate training. With a deterministic logic, using the oracle cost function to
generate training examples is similar to the first iteration of SEARN (Daumé et al.,
2005, 2006).

7.3.2 Objective Function

The training method induces a real-valued inference evaluation function hΘ(i). We
will describe how to transform hΘ(i) to cΘ(i) in Eq. (7.5). In this chapter, hΘ is
a linear model parameterized by a real vector Θ, which has one entry for each
feature f : hΘ(i) = Θ · X(i) =

∑
f Θf · Xf (i). The sign of hΘ(i) predicts the y-

value of i and the magnitude gives the confidence in this prediction. The training
procedure adjusts Θ to minimize the expected risk RΘ over training set I. RΘ is the
objective or risk function, which is the sum of loss function LΘ and regularization
term ΩΘ. The loss measures the extent to which the model underfits the training
data. The regularization term is a measure of model complexity, and is used to
avoid overfitting the training data. We use the log-loss and �1-regularization, so we
have

RΘ(I) = LΘ(I) + ΩΘ =

[∑
i∈I

lΘ(i)

]
+ ΩΘ

=

[∑
i∈I

[ln(1 + exp(−μΘ(i)))]

]
+

⎡⎣λ ·
∑

f

|Θf |

⎤⎦ . (7.4)

λ is a parameter that controls the strength of the regularizer and μΘ(i) = y(i)·hΘ(i)
is the margin of example i. The tree cost CΘ (Eq. (7.1)) is obtained by computing
the objective function with y(i) = +1 for every inference in the tree, and treating
the penalty term ΩΘ as constant:

cΘ(i) = lΘ(〈X(i), y = +1〉) = ln(1 + exp(−hΘ(i))). (7.5)

The experiments in section 7.4.2 motivate the use of �1 regularization instead of �2

regularization.

7.3.3 Minimizing the Risk

We minimize the risk RΘ using a form of forward stagewise additive modeling,
a procedure Guyon and Elisseeff (2003) refer to as embedded feature selection. At
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each iteration in training, we pick one or more parameters of the model to adjust
(feature selection), then adjust these parameters (model update).

Feature Selection

We want to choose parameters that allow us to decrease the risk quickly. We define
the gain of a feature f as

GΘ(I; f) = max(decrease in risk as we increase f ’s parameter value,

decrease in risk as we decrease f ’s parameter value,

decrease in risk if we leave f ’s parameter value unchanged).
(7.6)

More specifically, we pick the features with the steepest gradients (Mason et al.,
1999, 2000; Perkins et al., 2003):

GΘ(I; f) = max
(

lim
ε→0+

∂ −RΘ

∂Θf
(Θf + ε) , lim

ε→0−

∂ −RΘ

∂ −Θf
(Θf + ε) , 0

)
. (7.7)

The limits are taken from above and below, respectively. This analysis technique
allows us to determine the gain for any continuous function, regardless of whether
it is continuously differentiable or not. To determine the gain function in Eq. (7.7)
for a particular risk, we consider two cases:

If we are using the �1 penalty (ΩΘ =
∑

f∈F |Θf |) and Θf = 0, then we are at the
gradient discontinuity and we have

GΘ(I; f) = max
(∣∣∣∣∂LΘ

∂Θf

∣∣∣∣− λ, 0
)

. (7.8)

Observe that unless the magnitude of the gradient of the empirical loss |∂LΘ(I)/∂Θf |
exceeds the penalty term λ, the gain is zero and the risk increases as we adjust
parameter Θf away from zero in either direction. In other words, the parameter
value is trapped in a “corner” of the risk. In this manner the polyhedral structure of
the �1 norm tends to keep the model sparse (Riezler and Vasserman, 2004). Dud́ık
et al. (2007) offer another perspective, pointing out that �1 regularization is “truly
sparse”: if some feature’s parameter value is zero when the risk is minimized, then
the optimal parameter value will remain at zero even under slight perturbations of
the feature’s expected value and of the regularization penalty. However, if the gain
is nonzero, GΘ(I; f) is the magnitude of the gradient of the risk as we adjust Θf

in the direction that reduces RΘ.

If we are using the �2 penalty (ΩΘ =
∑

f∈F Θf
2), then we have

GΘ(I; f) =
∣∣∣∣∂LΘ

∂Θf
+ λ · 2 · Θf

∣∣∣∣ . (7.9)
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The �2-regularization term disappears when Θf = 0, and so—for unused features—
�2-regularized feature selection is indistinguishable from unregularized feature se-
lection. The only difference is that the �2-penalty term reduces the magnitude of the
optimal parameter setting for each feature. This is why �2-regularization typically
leads to models where many features are active (nonzero).

Let us define the weight of an example i under the current model as the rate at
which loss decreases as the margin of i increases:

wΘ(i) = − ∂lΘ(i)
∂μΘ(i)

=
1

1 + exp(μΘ(i))
. (7.10)

To determine ∂LΘ
∂Θf

, the gradient of the unpenalized loss LΘ with respect to the
parameter Θf of feature f , which is used in Eq. (7.8) and (7.9), we have

∂LΘ(I)
∂Θf

=
∑
i∈I

∂lΘ(i)
∂Θf

=
∑
i∈I

∂lΘ(i)
∂μΘ(i)

· ∂μΘ(i)
∂Θf

= −
∑
i∈I

wΘ(i) · [y(i) · Xf (i)] = −
∑
i∈I:

Xf (i)=1

wΘ(i) · y(i).
(7.11)

Turian (2007, section 4.2) contains detailed derivations of the gain functions in this
section, as well as more discussion and comparison to related learning approaches.

Compound Feature Selection

Although hΘ is just a linear discriminant, it can nonetheless learn effectively
if feature space F is high-dimensional. Features encode information about the
inference in question. A priori, we define only a set A of simple atomic features
(sometimes also called attributes or primitive features).

Feature construction or induction methods are learning methods in which we
induce a more powerful machine than a linear discriminant over just the attributes,
and the power of the machine can be data-dependent.

Our learner induces compound features, each of which is a conjunction of pos-
sibly negated atomic features. Each atomic feature can have one of three values
(yes/no/don’t care), so the compound feature space F has size 3|A|, exponential
in the number of atomic features. Each feature selection iteration selects a set of
domain-partitioning features. Domain-partitioning features F̃ cover the domain and
are nonoverlapping for every possible inference i in the space of inferences:

cover : ∃f ∈ F̃ s.t. Xf(i) = 1.

nonoverlapping : ∀f, f ′ ∈ F̃ , if Xf (i) = 1 and Xf ′(i) = 1 then f = f ′.

In other words, F̃ partitions the inference space if for any i, there is a unique feature
f in the partition F̃ such that Xf (i) = 1, and Xf ′(i) = 0 for all other features.

One way to choose a set of domain-partitioning compound features is through
greedy splitting of the inference space. This is the approach taken by decision trees,
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for some particular splitting criterion. Since we wish to pick splits that allow us to
reduce risk, our splitting criterion uses the gain function. In particular, assume that
we have two different two-feature partitions of some subspace of the inference space.
The features f1 and f2 are one partition, and f1

′ and f2
′ are the other. We treat

the gain of each partition as GΘ(f1)+GΘ(f2) and GΘ(f1
′)+GΘ(f2

′), respectively,
and prefer the partition with higher gain. The work of Mason et al. (1999, 2000),
who studied a related problem, motivate this choice theoretically using a first-order
Taylor expansion.

Model Update

After we have selected one or more high-gain features, we update the model.
Parallel update methods can adjust the parameter values of overlapping features
to minimize the risk. Stagewise or sequential update methods adjust the parameter
values of nonoverlapping features to minimize the risk, each of which can be
optimized independently, e.g., using line search. Since domain-partitioning features
are nonoverlapping, we use sequential updates to choose parameter values.

Boosting Regularized Decision Trees

To summarize, our approach to minimizing the risk is divided into feature selection
and model update. Feature selection is performed using gradient descent in the
compound feature space through a greedy splitting procedure to partition the
inference space. Model update is performed using a sequential update method.

Our specific implementation of this risk minimization approach is to boost an
ensemble of confidence-rated decision trees. This boosted ensemble of confidence-
rated decision trees represents Θ. We write ΔΘ(t) to represent the parameter values
chosen by tree t, and for ensemble T we have Θ =

∑
t∈T ΔΘ(t). Each internal node

is split on an atomic feature. The path from the root to each node n in a decision
tree corresponds to a compound feature f, in which case we write ϕ(n) = f. An
example i percolates down to node n iff Xϕ(n) = 1. Each leaf node n keeps track of
delta-parameter value ΔΘϕ(n)(t). To score an example i using a decision tree, we
percolate the example down to a leaf n and return confidence ΔΘϕ(n)(t). The score
hΘ(i) given to an example i by the whole ensemble is the sum of the confidences
returned by all trees in the ensemble.

Figure 7.1 presents our training algorithm. At the beginning of training, the
ensemble is empty, Θ = 0, and λ is set to ∞. We grow the ensemble until the
risk cannot be further reduced for the current choice of λ. So for some choice of
penalty factor λ′, our model is the ensemble up until when λ was decayed below
λ′. We then relax the regularizer by decreasing λ and continue training. We use the
decay factor η = 0.9 as our learning rate. In this way, instead of choosing the best
λ heuristically, we can optimize it during a single training run. This approach of
progressively relaxing the regularizer during a single training run finds the entire
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Algorithm 7.1 Outline of the training algorithm.
procedure Train(I)

ensemble ← ∅
regularization parameter λ ← ∞
while not converged do

g ← maxa∈A(|∂LΘ/∂Θ∅|, |∂LΘ/∂Θa|, |∂LΘ/∂Θ¬a|) � Find the best
� unpenalized gain of any root split

λ ← min(λ, η · g) � Maybe decay the penalty parameter
� so that training can progress

ΔΘ(t) ← BuildTreeΘ(λ, I)
if RΘ+ΔΘ(t) < RΘ + ε then � If we have reduced loss by some threshold

Θ ← Θ + ΔΘ(t) � Then keep the tree and update the model
else � Otherwise, we have converged for this choice of λ

λ ← η · λ � Decay the penalty parameter

procedure BuildTreeΘ(λ, I)
t ← root node only
while some leaf in t can be split do � See Eq. (7.13)

split the leaf to maximize gain � See Eq. (7.12)
percolate every i ∈ I to a leaf node
for each leaf n in t do

ΔΘϕ(n)(t) ← arg minΔΘϕ(n)(t)
(RΘ+ΔΘϕ(n)(t)

(Iϕ(n))) � Choose ΔΘϕ(n)(t) to

� minimize R using a line search
return ΔΘ(t)

regularization path (e.g., Hastie et al., 2004) and is a form of continuation method
for global optimization (e.g., Chapelle et al., 2006).

Each invocation of BuildTree has several steps. First, we choose some com-
pound features that will allow us to decrease the risk function. We do this by build-
ing a decision tree whose leaf node paths represent the chosen compound features.
Second, we confidence-rate each leaf to minimize the risk over the examples that
percolate down to that leaf. Finally, we return the decision tree. Train appends
it to the ensemble and update parameter vector Θ accordingly. In this manner,
compound feature selection is performed incrementally during training, as opposed
to a priori.

The construction of each decision tree begins with a sole leaf node, the root node,
which corresponds to a dummy “always true” feature ∅. By “always true”, we mean
that X∅(i) = 1 for any example i. We recursively split leaf nodes by choosing the
best atomic splitting feature that will allow us to increase the gain. Specifically, we
consider splitting each leaf node n using atomic feature â, where f = ϕ(n) and

â = argmax
a∈A

[GΘ(I; f ∧ a) + GΘ(I; f ∧ ¬a)] . (7.12)

(We use f to mean an actual feature, not a feature index.) Splitting using â would
create children nodes n1 and n2, with ϕ(n1) = f ∧ â and ϕ(n2) = f ∧ ¬â. We split
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Table 7.1 Data sizes in 000’s

sent. English words French words

pairs types tokens types tokens

training1 10 11 210 14 232

training2 100 29 2100 38 2300

tuning 1 3.5 21 4.2 23

devel 1 3.5 21 4.1 23

test 1 3.5 21 4.1 23

node n using â only if the total gain of these two children exceeds the gain of the
unsplit node, i.e., if

GΘ(I; f ∧ â) + GΘ(I; f ∧ ¬â) > GΘ(I; f). (7.13)

Otherwise, n remains a leaf node of the decision tree, and Θϕ(n) becomes one of
the values to be optimized during the parameter update step.

Parameter update is done sequentially on only the most recently added compound
features, which correspond to the leaves of the new decision tree. After the entire
tree is built, we percolate each example down to its appropriate leaf node. As indi-
cated earlier, a convenient property of decision trees is that the leaves’ compound
features are mutually exclusive, so their parameters can be directly optimized in-
dependently of each other. We use a line search to choose for each leaf node n the
parameter Θϕ(n) that minimizes the risk over the examples in n.

7.4 Experiments

7.4.1 Data

The data for our experiments came from the English and French components
of the EuroParl corpus (Koehn, 2005). From this corpus, we extracted sentence
pairs where both sentences had between 5 and 40 words, and where the ratio of
their lengths was no more than 2:1. We then extracted disjoint training, tuning,
development, and test sets. The tuning, development, and test sets were 1000
sentence pairs each. For some experiments we used 10,000 sentence pairs of training
data; for others we used 100,000. Descriptive statistics for these corpora are in
table 7.1.

We parsed the English half of the training, tuning, development, and test bitexts
using Dan Bikel’s parser (Bikel, 2004), which was trained on the Penn treebank
(Marcus et al., 1993). On each of our two training sets, we induced word alignments
using the default configuration of GIZA++ (Och and Ney, 2003). The training set
word alignments and English parse trees were fed into the default French-English
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hierarchical alignment algorithm distributed with the GenPar system (Burbank
et al., 2005), to produce binarized tree alignments.

7.4.2 Word Transduction

Our first set of experiments evaluated our approach on the task of translating
individual words from English to French. The input was a single English word,
which we’ll call the “focus” word, along with a vector of features (described below).
The output was a single French word, possibly NULL. The proposed translation
was compared to a gold-standard translation.

The gold-standard word pairs that we used for this task were extracted from
the tree alignments described above. Thus, the gold standard was a set of GIZA++
Viterbi word alignments filtered by a tree cohesion constraint. Regardless of whether
they are created manually or automatically, word alignments are known to be highly
unreliable. This property of the data imposed a very low artificial ceiling on all of our
results, but it did not significantly interfere with our goal of controlled experiments
to compare learning methods. To keep our measurements consistent across different
training data sizes, the word alignments used for testing were the ones induced by
GIZA++ when trained on the larger training set. The number of trials was equal
to the number of source words for which GIZA++ predicts an alignment.

In contrast to Vickrey et al. (2005), we did not allow multiword “phrases” as
possible translations. Our hypothesis, based on some evidence in section 7.4.3 and
in Quirk and Menezes (2006), is that the best MT systems of the future will
not need to deal in such objects. In our study, phrases might have raised our
absolute scores, but they would have confounded our understanding of the results.
Our experiment design also differs from Vickrey et al. (2005) in that we trained
classifiers for all words in the training data.2 There were 161K word predictions in
the smaller (10,000 sentence pairs) training set, 1866K in the larger training set,
17.8K predictions in the tuning set, 14.2K predictions in the development set, and
17.5K predictions in the test set.

Using the smaller training set and guessing the most frequent translation of each
source word achieves a baseline accuracy of 47.54% on the development set. With
this baseline, we compared three methods for training word transducers on the
word alignments described above. The first was the method described in section 7.3
for inducing �1-regularized log-linear models over the compound feature space. The
second method was similar to Vickrey et al. (2005): induce �2-regularized log-linear
models over the atomic feature space.3 The third method was LaSVM (Bordes
et al., 2005), an online SVM algorithm designed for large data sets.

2. David Vickrey (personal communication) informed us that Vickrey et al. (2005) omitted
punctuation and function words, which are the most difficult in this task.
3. We do not induce 	2-regularized log-linear models over the compound feature space
because Turian (2007, section 6.4) found that these models were too large even for
monolingual parsing experiments. To induce 	2-regularized log-linear models over the
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Table 7.2 Percent accuracy on the development set and sizes of word-to-word clas-
sifiers trained on 10K or 100K sentence pairs. The feature sets used were (W)indow,
(D)ependency, and (C)o-occurrence. 	1 size is the number of compound feature types.

W W+D W+C W+D+C

10,000 training sentences — baseline = 47.54

	2 54.09 54.33 52.36 52.88

	1 53.96 54.13 53.29 53.75

LaSVM 53.38 51.93 49.13 50.71

pruned 	2 47.37 46.01 46.68 45.01

	1 size 54.1K 41.7K 37.8K 38.7K

	2 size 1.67M 2.51M 5.63M 6.47M

pruned 	2 size 54.1K 41.7K 37.8K 38.7K

100,000 training sentences — baseline = 51.94

	1 62.00 62.42 61.98 62.40

	1 size 736K 703K 316K 322K

For each training method, we experimented with several kinds of features, which
we call “window,” “co-occurrence,” and “dependency.” Window features included
source words and part-of-speech (POS) tags within a two-word window around
the focus word, along with their relative positions (from −2 to +2). Co-occurrence
features included all words and POS tags from the whole source sentence, without
position information. Dependency features were compiled from the automatically
generated English parse trees. The dependency features of each focus word were
• the label of its maximal projection (i.e., the highest node that has the focus word
as its lexical head, which might be a leaf, in which case that label is a POS tag);
• the label and lexical head of the parent of the maximal projection;
• the label and lexical head of all dependents of the maximal projection;
• all the labels of all head-children (recursively) of the maximal projection.
The window features were present in all experimental conditions. The pres-
ence/absence of co-occurrence and dependency features yielded four “configura-
tions.”

Using each of these configurations, each training method produced a confidence-
rating binary classifier for each translation of each English word seen in the training
data. In all cases, the test procedure was to choose the French word predicted with
the highest confidence. All methods, including the baseline, predicted NULL for
source words that were not seen in training data.

Table 7.2 shows the size and accuracy of all three methods on the development
set, after training on 10,000 sentence pairs, for each of the four configurations. The
best configurations of the two logistic regression methods far exceed the baseline,

atomic feature space, we used MegaM by Hal Daumé, available at http://www.cs.utah.

edu/~hal/megam/
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but otherwise they were statistically indistinguishable. The accuracy of LaSVM was
similar to the regression methods when using only the window features, but it was
significantly worse with the larger feature sets.

More interesting were the differences in model sizes. The �2-regularized models
were bigger than the �1-regularized models by two orders of magnitude. The �2-
regularized models grew in size to accommodate each new feature type. In contrast,
the �1-regularized models decreased in size when given more useful features, without
significantly losing accuracy. This trend was even stronger on the larger training
set, where more of the features were more reliable.

The size of models produced by LaSVM grew linearly with the number of
examples, because for source words like “the,” about 90% of the examples became
support vectors. This behavior makes it infeasible to scale up LaSVM to significantly
larger data sets, because it would need to compare each new example to all support
vectors, resulting in near-quadratic runtime complexity.

To scale up to 100,000 sentence pairs of training data with just the window
features, the �2 classifiers would need about 25 billion parameters, which could not
fit in the memory of our computers. To make them fit, we could set all but the
largest feature parameters to zero. We tried this on 10,000 training sentence pairs.
The number of features allowed to remain active in each �2 classifier was the number
of active features in the �1 classifier. Table 7.2 shows the accuracy of these “pruned”
�2-regularized classifiers on the development set, when trained on 10,000 sentence
pairs. With the playing field leveled, the �1 classifiers were far more effective.

In preliminary experiments, we also tried perceptron-style updates, as suggested
by Tillmann and Zhang (2005). However, for reasons given by Tewari and Bartlett
(2005), the high-entropy decisions involved in our structured prediction setting often
prevented convergence to useful classifiers. Likewise, Christoph Tillmann informed
us (personal communication) that, to ensure convergence, he had to choose features
very carefully, even for his finite-state MT system.

Regularization schemes that don’t produce sparse representations seem unsuit-
able for problems on the scale of machine translation. For this reason, we used only
�1-regularized log-loss for the rest of our experiments. Table 7.2 shows the accuracy
and model size of the �1-regularized classifier on the development set, when trained
on 100,000 sentence pairs, using each of the four configurations. Our classifier far
exceeded the baseline. The test set results for the best models (window + depen-
dency features) were quite close to those on the development set: 54.64% with the
smaller training set, and 62.88% with the larger.

7.4.3 Bag Transduction

The word-to-word translation task is a good starting point, but any conclusions
that we might draw from it are inherently biased by the algorithm used to map
source words to target words in the test data. Our next set of experiments was on
a task with more external validity – predict a translation for each source word in
the test data, regardless of whether GIZA++ predicted an alignment for it. The
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difficulty with this task, of course, is that we have no deterministic word alignment
to use as a gold standard. Our solution was to pool the word translations in each
source sentence and compare them to the bag of words in the target sentence. We
still predicted exactly one translation per source word, and that translation could
be NULL. Thus, the number of target words predicted for each source sentence was
less than or equal to the number of words in that source sentence. The evaluation
measures for this experiment were precision, recall, and F-measure, with respect to
the bag of words in the test target sentence.

We compared the four configurations of our �1-regularized classifiers on this task
to the most-frequent-translation baseline. We also evaluated a mixture model, where
a classifier for each source word was chosen from the best one of the four configu-
rations, based on that configuration’s accuracy on that source word in the tuning
data. As an additional gauge of external validity, we performed the same task using
the best publicly available machine translation system (Koehn et al., 2003). This
comparison was enlightening but necessarily unfair. As mentioned above, our long-
term goal is to build a system whose every component is discriminatively trained
to optimize the objective function. We did not want to confound our study with
techniques such as “phrase” induction, word-class induction, nondiscriminatively
trained target language models, etc. On the other hand, modern MT systems are
designed for use with such information sources, and cannot be fairly evaluated
without them. So, we ran Pharaoh in two configurations. The first used the default
system configuration, with a target language model trained on the target half of
the training data. The second allowed Pharaoh to use its phrase tables but with-
out a target language model. This second configuration allowed us to compare the
accuracy of our classifiers to Pharaoh specifically on the subtask of MT for which
they were designed.

The results are shown in table 7.3. The table shows that our method far exceeds
the baseline. Since we predict only one French target word per English source word,
the recall of our bag transducer was severely handicapped by the tendency of French
sentences to be longer than their English equivalents. This handicap is reflected in
the one-to-one upper bound shown in the table. With a language model, Pharaoh’s
recall exceeded that of our best model by slightly less than this 13.7% handicap.
However, we were surprised to discover that the bag transducer’s precision was much
higher than Pharaoh’s when they compete on a more level playing field (without
a language model), and higher even when Pharaoh was given a language model.
Table 7.4 shows the accuracy of the best models on the test set. These results closely
follow those on the development set.

This result suggests that it might not be necessary to induce “phrases” on the
source side. Quirk and Menezes (2006) offer additional evidence for this hypothesis.
After all, the main benefits of phrases on the source side are in capturing lexical
context and local word reordering patterns. Our bag transducers capture lexical
context in their feature vectors. Word order is irrelevant for bag transduction.

The main advantage of phrase-based models on this task is in proposing more
words on the target side, which eliminates the one-to-one upper bound on recall.
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Table 7.3 (P)recision, (R)ecall, and (F)-measure for bag transduction of the develop-
ment set. The discriminative transducers were trained with 	1 regularization.

P R F

training on 10,000 sentence pairs

baseline 48.09 41.26 44.42

window only 53.93 42.81 47.73

dependency 53.97 42.72 47.69

co-occurrence 53.31 42.45 47.26

co-oc. + dep. 53.58 42.67 47.50

mixture model 54.05 42.95 47.87

training on 100,000 sentence pairs

baseline 51.91 40.79 45.68

window only 58.79 44.26 50.50

dependency 59.12 44.57 50.82

co-occurrence 59.06 44.36 50.67

co-oc. + dep. 59.19 44.60 50.87

mixture model 59.03 44.55 50.78

Pharaoh w/o LM 32.20 54.62 40.51

Pharaoh with LM 56.20 57.49 56.84

1-to-1 upper bound 100.00 86.31 92.65

Table 7.4 (P)recision, (R)ecall, and (F)-measure of bag transducers on the test set

P R F

training on 10,000 sentence pairs

dependency 54.36 42.75 47.86

mixture model 54.27 42.81 47.86

training on 100,000 sentence pairs

co-oc. + dep. 59.49 44.19 50.71

mixture model 59.62 44.38 50.88

Pharaoh w/o LM 32.55 54.62 40.80

Pharaoh with LM 57.01 57.84 57.45

Another advantage is that phrase-based models require no parsing, and thus require
no hand-annotated treebank to be available for training a parser for the source
language. Note, however, that when training on 100,000 sentences, our best model
not relying on parse tree information (the co-oc. model) was only a tiny bit less
accurate than the best model overall (the co-oc. + dep. model).

7.4.4 Tree Transduction

We experimented with a simplistic tree transducer, which involves only two types
of inference. The first type transduces leaves; the second type transduces internal
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nodes. The transduction of leaves is exactly the word-to-word translation task
described in section 7.4.2. Leaves that are transduced to NULL are deterministically
erased. Internal nodes are transduced merely by permuting the order of their
children, where one of the possible permutations it to retain the original order. This
transducer is grossly inadequate for modeling real bitext (Galley et al., 2004): it
cannot account for many kinds of noise and for many real translingual phenomena,
such as head-switching and discontinuous constituents, which are important for
accurate MT. It cannot even capture common phrasal translations such as there is
/ il y a. However, it is sufficient for controlled comparison of learning methods. The
learning method will be the same when we use more sophisticated tree transducers.
Another advantage of this experimental design is that it uses minimal linguistic
cleverness and is likely to apply to many language pairs, in contrast to other
studies of constituent/dependent reordering that are more language-specific (Xia
and McCord, 2004; Collins et al., 2005).

To reduce data sparseness, each internal node with more than two children was
binarized, so that the multiclass permutation classification for the original node
was reduced to a sequence of binary classifications. This reduction is different from
the usual multiclass reduction to binary: in addition to making the classifier binary
instead of multiclass, the reduction decomposes the label so that some parts of it
can be predicted before others. For example, without this reduction, a node with
children 〈A, B, C〉 can be transduced to any of six possible permutations, requiring
a six-class classifier. After binarization, the same six possible permutations can
be obtained by first permuting 〈A, B〉, and then permuting the result with C, or
by first permuting 〈B, C〉 and then permuting the result with A. This reduction
eliminates some of the possible permutations for nodes with four or more children
(Wu, 1997).

Our monolingual parser indicated which node is the head-child of each internal
node. Some additional permutations were filtered out using this information: two
sibling nodes that were not the head-children of their parent were not allowed to
participate in a permutation until one of them was permuted with the head-child
sibling. Thus, if C was the head-child in the previous example, then 〈A, B〉 could
not be permuted first; 〈B, C〉 had to be permuted first, before permuting with A.

We search for the tree with minimum total cost, as specified in Eq. (7.1). We
compared two models of inference cost—one generative and one discriminative.

The generative model was based on a top-down tree transducer (Comon et al.,
2002) that stochastically generates the target tree given the source tree. The
generative process starts by generating the target root given the source root. It
then proceeds top-down, generating every target node conditioned on its parent
and on the corresponding node in the source tree. Let π be the function that maps
every node to its parent, and let η be the function that maps every target node to
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Table 7.5 (P)recision, (R)ecall, and (F)-measure of transducers using 100,000 sentence
pairs of training data

Source Transduction Exponent 1 Exponent 2

parser model P R F P R F

generative generative 51.29 38.30 43.85 22.62 16.90 19.35

generative discriminative 59.89 39.53 47.62 26.94 17.78 21.42

discriminative generative 50.51 37.76 43.21 22.04 16.47 18.85

discriminative discriminative 62.36 39.06 48.04 28.02 17.55 21.59

Pharaoh (w/o LM) 32.19 54.62 40.51 12.37 20.99 15.57

its corresponding source. If we view the target tree as consisting of nodes n with
n0 being the root node, then the probability of the target tree t is

Pr(t) = Pr(n0|η(n0)) ·
∏

n�=n0∈t

Pr(n|π(n), η(n)). (7.14)

For the generative model, the cost of an inference i is the negative logarithm of
the probability of the node n(i) that it infers: l(i) = − log Pr[n(i)|π(n(i)), η(n(i))].
We estimated the parameters of this transducer using the Viterbi approximation
of the inside-outside algorithm described by Graehl and Knight (2004). Following
Zhang and Gildea (2005), we lexicalized the nodes so that their probabilities capture
bilexical dependencies.

The discriminative model was trained using the method in section 7.3, with the
inference cost computed as described in Eq. (7.5). A separate classifier was in-
duced for each possible translation of each source word seen in training data, to
evaluate candidate transductions of leaf nodes. Additional classifiers were induced
to confidence-rate candidate permutations of sibling nodes. Recall that each per-
mutation involved a head-child node and one of its siblings. Since our input trees
were lexicalized, it was easy to determine the lexical head of both the head-child
and the other node participating in each permutation. Features were then compiled
separately for each of these words according to the “window” and “dependency”
feature types described in section 7.4.2. Since the tree was transduced bottom-up,
the word-to-word translation of the lexical head of any node was already known
by the time it participated in a permutation. So, in addition to dependents on the
source side, there were also features to encode their translations. The final kind of
feature used to predict permutations was whole synchronous context-free produc-
tion rules, in bilexical, monolexical, and unlexicalized forms. We cannot imagine a
generative process that could explain the data using this combination of features.
Our hypothesis was that the discriminative approach would be more accurate, be-
cause its evaluation of each inference could take into account a great variety of
information in the tree, including its entire yield (string), not just the information
in nearby nodes.

For both models, the search for the optimal tree was organized by an agenda, as
is typically done for tree inference algorithms. For efficiency, we used a chart, and
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pruned items whose score was less than 10−3 times the score of the best item in the
same chart cell. We also pruned items from cells whenever the number of items in
the same cell exceeded 40. Our entire tree transduction algorithm can be viewed as
translation by parsing (Melamed, 2004) where the source side of the output bitree
was constrained by the input (source) tree.

We compared the generative and discriminative models by reading out the
string encoded in their predicted trees, and comparing that string to the target
sentence in the test corpus. In pilot experiments we used the BLEU measure
commonly used for such comparisons (Papineni et al., 2002). To our surprise, BLEU
reported unbelievably high accuracy for our discriminative transducer, exceeding
the accuracy of Pharaoh even with a language model. Subsequently, we discovered
that BLEU was incorrectly inflating our scores by internally retokenizing our French
output. This behavior, together with the growing evidence against using BLEU
for syntax-aware MT (Callison-Burch et al., 2006), convinced us to use the more
transparent precision, recall, and F-measure, as computed by GTM (Turian et al.,
2003). With the exponent set to 1.0, the F-measure is essentially the unigram
overlap ratio, except it avoids double-counting. With a higher exponent, the F-
measure accounts for overlap of all n-grams (i.e., for all values of n), again without
double-counting.

During testing, we compared two kinds of input parse trees for each kind of tree
transducer. The first kind was generated by the parser of Bikel (2004). The second
kind was generated by the parser of Turian and Melamed (2006), which was trained
in a purely discriminative manner. Table 7.5 shows the results. The discriminatively
trained transducer far outperformed the generatively trained transducer on all
measures, at a statistical significance level of 0.001 using the Wilcoxon signed ranks
test. In addition, the discriminatively trained transducer performed better when it
started with parse trees from a purely discriminative parser.

7.5 Conclusion

We have presented a method for training all the parameters of a syntax-aware
statistical machine translation system in a discriminative manner. The system
outperforms a generative syntax-aware baseline. We have not yet added all the
standard information sources that are necessary for a state-of-the-art MT system,
but the scalability of our system suggests that we have overcome the main obstacle
to doing so.

Our next step will be to generalize the tree transducer into a bitree transducer,
so that it can modify the target side of the bitree after it is inferred from the source
side. In particular, we shall add a new type of inference to predict additional words
on the target side, starting from words that are already there, and from all the
information available on the source side (cf. Toutanova and Suzuki, 2007). This
kind of inference will enable the transducer to translate strings with fewer words
into strings with more words. Item costs assigned by a target language model will
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likely be an important source of information for this kind of inference, just as it is
in most other kinds of MT systems.
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8 Reranking for Large-Scale Statistical

Machine Translation

Kenji Yamada
Ion Muslea

Statistical machine translation systems conduct a nonexhaustive search of the
(extremely large) space of all possible translations by keeping a list of the current
n-best candidates. In practice, it was observed that the ranking of the candidates
within the n-best list can be fairly poor, which means that the system is unable to
return the best of the available N translations. In this chapter we propose a novel
algorithm for reranking these n-best candidates. Our approach was successfully
applied to large-scale, state-of-the-art commercial systems that are trained on up
to three orders of magnitude more data than previously reported in reranking
studies. In order to reach this goal, we create an ensemble of rerankers that are
trained in parallel, each of them using just a fraction of the available data. Our
empirical evaluation on two mature language pairs, Chinese-English and French-
English, shows improvements of around 0.5 and 0.2 BLEU on corpora of 80 million
and 1.1 billion words, respectively.

8.1 Introduction

Statistical machine translation (SMT) systems, which are trained on parallel cor-
pora of bilingual text (e.g., French and English), typically work as follows: for each
sentence to be translated, they generate a plethora of possible translations, from
which they keep a smaller n-best list of the most likely translations. Even though
the typical n-best list contains mostly high-quality candidates, the actual ranking
is far from accurate: as shown in Och et al. (2004), the n-best list usually contains
many translations that are of higher quality than the top-ranked candidate.

In order to deal with this problem, researchers have proposed a variety of
reranking approaches. Previous work (Liang et al., 2006; Shen and Joshi, 2005;
Roark et al., 2004) shows that machine learning can be successfully used for this
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task. However, as the existing experiments were conducted on small corpora (the
rerankers were trained on less than 1 million words), it is unclear how the results
scale to real-world applications, in which one has to deal with several orders of
magnitude more data.

We present here an efficient approach for building reranking systems for commer-
cial, large-scale SMT systems. In this chapter, we make two main contributions.
First, we introduce a novel reranking algorithm that can be trained efficiently on
more than a billion words. In order to speed up its training process, we learn in par-
allel an ensemble of rerankers, each of which is using only a fraction of the training
data. Second, we show that such rerankers can improve the performance of state-
of-the-art SMT systems; more precisely, we used our novel approach for two mature
language pairs, Chinese-English and French-English, which were trained on 80 mil-
lion and 1.1 billion words, respectively. Our empirical results show that reranking
has improved the quality of the translation for both systems by approximately 0.5
and 0.2 BLEU points (Papineni et al., 2002), respectively.

8.2 Background

Our reranking algorithm is designed to improve the performance of a baseline SMT
system similar to the one described in Och et al. (2004). In keeping with the typical
SMT methodology, such systems are trained on a large training set, tuned on a
small development set, and then evaluated on a blind test set. In the remainder of
this section we explain how the various data sets are used to build the system.

In order to build an SMT system that translates from the source to the target
language (say, French into English), one starts with a large training corpus (i.e.,
parallel text) that is used to learn the system’s translation and language models.
The former consists of phrase pairs that are likely translations of each other,
while the latter consists of the probabilities of the various phrases in the target
language. For example, the translation model may learn that, according to the
(imperfect) training data, it is highly likely that J’ai faim should be translated
into I’m hungry, even though it may be sometimes be translated—less accurately—
into I’m so hungry! In contrast, the language model contains the probabilities of
encountering various English phrases in a large English corpus; e.g., it may be
significantly more likely to encounter the phrase I’m hungry than I’m so hungry!

In practice, a typical training set is a large corpus (e.g., billions of words) that is
obtained by concatenating documents from a plethora of genres that were translated
with various levels of accuracy. Consequently, in order to optimize the system’s
performance, researchers perform an additional tuning step in which they use a
development set; this development set is fairly small in size (typically around 1000
sentences), but contains high-quality translations of genres similar to the ones in
the blind test set.

During this tuning phase, for each source sentence in the development set,
the system adjusts the weights of a log-linear model to favor the most accurate
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among the n-best translations (i.e., the one that is most similar to the reference
translation). This log-linear model combines a variety of features such as the
probabilities obtained from the language and translation models, the length (in
words) of the translated sentence, etc. The ranking within each n-best list output
by the SMT system is based on the so-called decoder cost (Och et al., 2004), which
consists of the weighted combination of all the features according to the log-linear
model.

In this chapter, we introduce a reranking algorithm that takes as input the ranked
n-best lists for all sentences in both the training and development sets. Besides
the decoder cost described above, we also use as features the phrases from the
translation model that were used to generate the translations in the n-best list. We
will show that our reranker improves the performance of the baseline system, and
that it can be efficiently trained on n-best lists from tens of millions of sentences
to find the most salient among the millions of available features.

8.3 Related Work

In recent years, ranking has been an active area of research in a variety of com-
munities, from machine learning (Crammer and Singer, 2002; Bordes et al., 2007;
Busse et al., 2007; Cao et al., 2007; Xu and Fern, 2007) to information retrieval
(Brin and Page, 1998; Joachims et al., 2007) to natural language processing (Rat-
naparkhi, 1997; Charniak, 2000; Ji et al., 2006). Intuitively, ranking can be defined
as ordering a finite number of items according to a criterion such as their relevance
to a given query or the preferences of a particular consumer. In contrast, reranking,
which is used in natural language parsing (Collins and Koo, 2005; Collins and Duffy,
2002b; Shen and Joshi, 2003) and statistical machine translation (Shen and Joshi,
2005; Liang et al., 2006; Hasan et al., 2006), typically refers to the task of improving
an existing ranking that was created based solely on local features available to an
underlying generative model.

There are several reasons why general-purpose ranking algorithms are not ap-
propriate for our task of reranking the n-best translations produced by an SMT
system:

Ranking algorithms are traditionally applied to collections of items that are
directly comparable to each other (e.g., I prefer this book to that book). In contrast,
when performing reranking for SMT, the only meaningful comparisons are among
the various translations of the same sentence (i.e., translations coming from the
same n-best list). From a reranking perspective, it does not make sense to compare
- say - the translation T 91 of sentence S2 with the translation T 13 of sentence S12.

In contrast to traditional ranking, reranking does not attempt to rank all n-best
candidates, but rather to find the best of them (or, at the very least, one that is
superior to the top-ranked one in the original ranking).
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Most of the existing ranking approaches were applied to a relatively small number
of possible ranks; for example, the algorithms proposed in Herbrich et al. (2000),
Crammer and Singer (2002), and Harrington (2003) were used in domains that had
fewer than ten possible ranks.

Last but not least, when dealing with large corpora, there are serious scalability
issues. For example, our French-English training corpus consists of 91 million
parallel sentences, each of which has a 200-best list of possible translations. Even
after exploiting the locality of the reranking, one cannot hope to efficiently train
a system on all O(200 × 199 × 91, 000, 000) possible candidate pairs that exist in
our corpus (i.e., the 200 × 199 possible pairs for each of the 91 million training
sentences).

Our approach is most similar in spirit to the fast perceptron training algorithm
proposed in Shen and Joshi (2005). In their experiments, they trained using only
the n-best lists for the 1000 sentences in the development set; furthermore, they
used as features only the 20 best individual features from Och et al. (2004). Even
though this approach showed promising results, it has the drawback of ignoring
the data from the significantly larger training set and many potentially informative
features.

In contrast to Shen and Joshi (2005), we train the reranker on the entire corpus
and investigate the use of millions of lexical features from the translation model.
Given the size of our data set, training a single perceptron on the entire corpus
would be extremely inefficient. Instead, we create an ensemble of perceptrons that
is trained in parallel on a fraction of the data. This approach is similar to bagging
(Breiman, 1996), except that we use arbitrary splits of 5000 sentences (given that
each split consist of 0.1% of the corpus, it does not make sense to use sampling
with replacement). After the perceptrons are trained, the ensemble selects the best
of the N candidates by averaging the predictions of all perceptrons.

Our approach also has similarities to the one presented in Liang et al. (2006):
both algorithms are based on perceptron-style training and use a large number of
features. Liang et al. (2006) have also tried to use the translation model features
discussed here, supplemented by additional language model and part-of-speech
features. However, their approach focuses on improving the tuning algorithm, rather
than reranking. Furthermore, our reranker is capable of exploiting three orders of
magnitude more training data, and we manage to improve a far more performant
baseline system (BLEU 57.33 vs. 29.8).

8.4 Our Approach

In this section we describe the main idea behind our approach to reranking. The
next two sections discuss in detail the way in which we applied this method to two
different commercial SMT systems.
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Algorithm 8.1 Perceptron training algorithm.

Initialize w0

For each epoch t
For each sentence

For each nonoracle hypothesis xi in the n-best
if wt·xi < wt · xoracle then

// misclassification
wt+1 = wt + (xi − xoracle) × α
where α = BP1(xoracle) − BP1(xi)

else wt+1 = wt

t = t + 1
Output: either wt or

P
i wi/t

As we already mentioned, the goal of reranking is to find, for each of the n-
best lists, the most accurate translation according to the reference translation. We
refer to these translations as oracles, and we use them to learn a reranker that
discriminates between oracles and nonoracles. In order to identify the oracles in the
n-best lists used for training, we use a floored version of the BLEU metric called
BLEU+1 (BP1).1

Intuitively, our reranking algorithm can be seen as a perceptron that repeatedly
visits all the n-best lists provided for training. For each n-best list, it compares
the oracle against each nonoracle translation. If the reranker makes a mistake on a
particular comparison (i.e., it predicts that the nonoracle is a better translation than
the oracle), the perceptron’s weights are updated proportionally to the difference
between the oracle and the nonoracle translation.

Figure 8.1 provides a formal description of our perceptron training algorithm. The
weights w0 are initialized so that they reproduce the original ranking produced
by the baseline system (i.e., they are sorted based on the decoder cost); more
precisely, the weight of the decoder cost is set to one, while all other weights are
set to zero. As mentioned above, the weights are updated only when a nonoracle
translation outperforms the corresponding oracle. After the predefined number of
epochs, the final reranker can either use the last set of weights or can opt for the
weights

∑
i wi/t, which correspond to the averaged perceptron algorithm (Freund

and Shapire, 1999).
We experiment here with two variations of the traditional perceptron algorithm:

the averaged perceptron (Freund and Shapire, 1999) and the dev-interleaved per-
ceptron. The former is an extremely simple and efficient approximation of the tra-
ditional maximal-margin classifiers. The latter is introduced in this chapter and is

1. As described in Papineni et al. (2001), the BLEU metric is a geometric average of the n-
gram precision in a translation, and it is meant to measure the document-level translation
quality, not at the sentence level. At the sentence level, especially for short sentences,
BLEU can be extremely inaccurate and is commonly replaced by BP1 (Och et al., 2004).
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inspired by the common practice within the SMT community of repeatedly replicat-
ing the development corpus until the amount of the development data is comparable
to the one of the training corpus (Yamada et al., 2007). This is motivated by two
considerations: (1) the amount of training data is orders of magnitude larger than
the amount of development data, and (2) the statistical distribution within the
training corpus is typically different from that of the test set. In order to maintain
a balance between the weights’ updates caused by the training and development
sentences, we have decided to interleave two corpora (e.g., the first sentence comes
from the training corpus, the second one from the development one, etc.), thus the
name of dev-interleaved for the new algorithm. Interleaving, rather than concate-
nating, is necessary because the perceptron algorithm can update the weight vector
by each training sentence.

Last but not least, in order to deal with the large amount of training data,
we do not train a single perceptron, but rather we create an ensemble of up to
1000 perceptrons. Each individual perceptron is trained based on the algorithm in
figure 8.1, and it uses only a small fraction of the training data; as the perceptrons
can be trained independently of each other, this represents a highly parallelizable
process. After training all individual perceptrons, the final weights are obtained by
averaging the weights from each individual perceptron. It is possible to apply a
sophisticated averaging scheme such as weighted average, but we only do a simple
averaging with no normalization.

8.5 Experiment 1: Reranking for the Chinese-to-English System

In order to build the baseline Chinese-to-English system, we used a setup similar
to the one described in Och et al. (2004). The training corpus contains 4.76
million sentences (approximately 80 million words on the English side), while the
development and the blind test set consist of 993 and 919 sentences, respectively.
Each Chinese sentence from the training set has just a single translation (of
unknown quality), while the ones from the development and test set have four
high-quality human translations each. Based on the training corpus, the baseline
system has learned a translation model that consists of approximately 19 million
phrase pairs and a trigram language model for the 80 million English words. An
additional trigram language model was learned from a 200 million word monolingual
English corpus. The baseline system used a tuning algorithm (Och, 2003) with the
development corpus.

8.5.1 Training the Reranker

In order to create the training set for our reranker, we first used the baseline system
to generate the 200 best translations for each Chinese sentence in the training and
development corpus; then we used the BLEU+1 metric to find the oracle within
each 200-best list (i.e., the most accurate of the 200 translations).
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As discussed earlier, the features used to describe each of the n-best translations
are the decoder score, together with the most informative of the 19 million phrase
pairs that were used to generate that particular translation. More precisely, we
pruned out all the phrase pairs that occurred extremely frequently or infrequently
in the training corpus (i.e., more than 100,000 times or only once, respectively).
After this pruning step, we were left with about 4 million phrase pairs to be used
as features (the value of such a feature indicates how many times the phrase pair
was used to generate that particular translation).

In order to ensure that each perceptron in the ensemble was learned as quickly
as possible, we decided to train each individual perceptron on 5000 sentences,
thus creating an ensemble of 953 perceptrons. For each of the 5000 sentences
we had a 200-best list, and the perceptron compared each of the 5000 oracles
against the corresponding other 199 translations; consequently, during an epoch of
perceptron training, the training algorithm performed almost 1 million comparisons
(199 × 5000).

After the last training epoch, we created our reranker by averaging the weights
learned for the 953 individual perceptrons (i.e., the reranker was a perceptron
that used the same features as the ensemble). We used this newly constructed
perceptron to rerank the 200 best translations for each sentence in the test set. The
performance of our algorithm was evaluated by computing the BLEU score of the
one-best translation according to the reranker. (We also measured the performance
with other metrics: see appendix.)

8.5.2 The Results

Figure 8.1 shows our main results for the Chinese-to-English experiment. The x-axis
shows the number of training epochs, while the y-axis shows the BLEU score of the
translations selected by the reranker. We use the normal perceptron as baseline,
and we compare its performance against that of three other types of perceptrons:
averaged, dev-interleaved, and averaged, dev-interleaved.

The baseline system (at epoch 0) yields a BLEU score of 31.19, while the
best BLEU score reached by any of the four systems is 31.77 (the averaged,
dev-interleaved perceptron after epoch 4). This improvement of 0.58 BLEU is
statistically significant at p < .001 (Riezler and Maxwell, 2005).

Figures 8.2, 8.3, and 8.4 show the results obtained when varying the size of the
training data used for each individual perceptron in the ensemble: 50,000, 500,000,
and 4.76 million sentences, respectively (which lead to ensembles of sizes 96, 10,
and 1). The first two scenarios lead to results similar to those obtained by the
953-perceptron ensemble, while the last one shows a less stable behavior.

Finally, figures 8.5 and 8.6 show the performance in terms of the number of
classification errors. Similar to the previous figures, the x-axis shows the number
of epochs, but the y-axis shows the number of misclassification errors that occur
during the ensemble training. The misclassification error rate was measured against
the training data and the test data, respectively. For the training corpus, the
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Figure 8.1 Chinese-to-English experiment: 953-split.
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Figure 8.2 Chinese-to-English experiment: 96-split.
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Figure 8.3 Chinese-to-English experiment: 10-split.
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Figure 8.4 Chinese-to-English experiment: no split.
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Figure 8.5 Chinese-to-English experiment: train-loss.
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Figure 8.6 Chinese-to-English experiment: test-loss.
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misclassification rate in the baseline system is 0.326 (epoch 0 in figure 8.5), which
means that 32.6% of the nonoracle translations were wrongly classified as better
translations than the oracle one. In other words, the oracle translation was ranked,
on average, around 32.6% from the top in the n-best output.

8.6 Experiment 2: Reranking for the French-to-English System

The approach used to apply reranking to our French-to-English system is extremely
similar to the one presented in the previous section. The few differences come from
the fact that the baseline French-to-English system was trained from more than
an order of magnitude more data. More precisely, the training corpus consists of
91 million sentences (1.1 billion words on the English side), from which 79 million
phrase pairs were extracted. The development and the test corpus consist of 1013
and 1020 sentences, respectively. Even without using an additional language model,
the baseline system yields a BLEU score of 57.33.

The feature selection was similar to that of Chinese-to-English, except we changed
the values of the pruning thresholds due to the larger amount of data (i.e., 1 million
for the frequent and 5 million for the infrequent phrase pairs). After pruning, we
were left with about 23 million phrase pairs.

In order to avoid creating an extremely large ensemble of perceptrons that would
take too long to train, we used only the 200-best lists from every tenth sentence in
the corpus, for a total of more than 9.1 million sentences. Each individual perceptron
was trained on 5000 sentences, which led to an ensemble of 1828 perceptrons. In
keeping with the setup from the Chinese-to-English experiments, we also used again
the normal, the averaged, the dev-interleaved, and the averaged, dev-interleaved
perceptrons.

8.6.1 The Results

As seen in figure 8.7, the best BLEU score (57.61) was obtained after epoch 2 of the
averaged, dev-interleaved perceptron. The improvement from the baseline is 0.28,
which is statistically significant at p < .005.

Similarly to the Chinese-to-English experiments, we also tried splitting into
different numbers of training sentences for each perceptron; besides the default
value of 5000 sentences, we also tried 50,000, 500,000, and 9.1 million sentences,
leading to ensembles of 186, 19, and a single perceptron (see figures 8.8, 8.9, and
8.10, respectively). Finally, figures 8.11 and 8.12 show the misclassification rate of
the 1828-perceptron ensemble for the training data and the test data, respectively.
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8.7 Discussion

Our experimental results show that the reranking algorithm improves the BLEU
score by around 0.5 and 0.2 for the Chinese-to-English and French-to-English
systems, respectively. We think that the smaller improvement for the second system
is due to the fact that it is significantly more difficult to improve the BLEU score
of an excellent system (i.e., BLEU of 55) than one of lesser quality (BLEU of just
31).

The explanation above is also supported by the following observation: for both the
training and the test corpora, the initial training error is higher for the Chinese-to-
English system (0.326 and 0.526 in figures 8.5 and 8.6) than the French-to-English
system (0.275 and 0.329 in figures 8.11 and 8.12).

This large gap between the training and the test error rates of both systems
(0.526 − 0.326 = 0.2 and 0.329 − 0.275 = 0.054) also reflects the discrepancy
between the distributions of training and test data. Our dev-interleaved perceptron
represents an effective solution to this problem, especially for the Chinese-to-English
system. In contrast, the averaged perceptron leads to smaller improvements, but
behaves in a more stable manner. By combining the two methods within the
averaged, dev-interleaved perceptron, we obtain the best of both worlds.

The idea of training an ensemble of perceptrons was also extremely successful.
For both the Chinese and French systems, the larger the size of the ensemble, the
more stable the behavior in terms of the BLEU score. This approach also has the
advantage of being highly parallelizable: by training a perceptron per CPU, we
managed to train the reranker in several hours rather than a few weeks.

In most experiments, the best BLEU score is obtained after two to four training
epochs: more epochs further reduce the classification error, but the BLEU improve-
ment is extremely small. Ideally, an additional development corpus should be used
to determine the exact number of training epochs.

In the French-to-English experiment, the nonaveraged, dev-interleaved percep-
tron exhibits relatively large oscillations of the BLEU from epoch to epoch (see
figures 8.7, 8.11, and 8.12). We think that this is due to the fact that the phrase
pair features do not take into account the larger context (i.e., the relative position
of the phrase in the translation, together with the phrases preceding or following
it); consequently, the same phrase pair may be extremely useful for some sentences,
but inappropriate in other contexts.

8.8 Conclusion

In this chapter we have introduced a novel approach to reranking the n-best list
produced by a statistical machine translation system. We have used an ensemble
of perceptrons that are trained in parallel, each of them on just a fraction of the
available data. We performed experiments on two large-scale commercial systems:
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a Chinese-to-English system trained on 80 million words and a French-to-English
system trained on 1.1 billion words. Our reranker obtained statistically significant
improvements of about 0.5 and 0.2 BLEU points on the Chinese-to-English and the
French-to-English system, respectively. In future work, we are primarily interested
in exploiting additional features that could further improve the reranking (e.g.,
language model (Roark et al., 2004) or syntactic features (Hasan et al., 2006)).

Appendix

We also measured the performance of our reranker with metrics other than BLEU:
the NIST score (Doddington, 2002), the word error rate (WER), and the position-
independent error rate (PER) (Tillmann et al., 1997b). The NIST score is similar
to BLEU, but it is weighted by the n-gram frequencies. WER is the edit distance
between the SMT output and the reference translations (i.e, the number of words
that must be inserted, deleted, or substituted), divided by the length of the reference
sentence. Finally, PER is similar to WER, but it ignores the word order.

We took the experimental results from figures 8.1 and 8.7 and measured the
improvements with NIST, WER, and PER (i.e., the selected translations by the
reranker are the same). They are shown in figures 8.13 and 8.14. Each figure shows
one experiment with the four metrics. The upper-left panel in each figure shows the
results with the BLEU metric, and it is identical to the corresponding figure in the
previous section.

Note that the training behavior of the reranker looks similar, independently
of the metrics used: the best results are seen in training epochs 2 to 4, and the
averaged, dev-interleaved perceptron outperforms the other three approaches. The
only peculiar result is the one using per for the French-to-English system; we do
not currently have an explanation for this behavior.
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Figure 8.13 Chinese-to-English results with different evaluation metrics.
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9 Kernel-Based Machine Translation

Zhuoran Wang
John Shawe-Taylor

In this chapter, we introduce a novel machine translation framework based on kernel
regression techniques. In our model, the translation task is viewed as a string-to-
string mapping, for which ridge regression is employed with both source and target
sentences embedded into their respective kernel-induced feature spaces. Not only
does it suggest a more straightforward and flexible way to model the translational
equivalence problem, compared to previous probabilistic models that usually require
strong assumptions of conditional independences, this method can also be expected
to capture much higher-dimensional correspondences between inputs and outputs.
We propose scalable training for it based on the blockwise matrix inversion formula,
as well as sparse approximations via retrieval-based subset selection techniques.
However, because of the complexities of kernel methods, the contribution of this
work is still mainly conceptual. We report experimental results on a small-scale
reduced-domain corpus, to demonstrate the potential advantages of our method
when compared with an existing phrase-based log-linear model.1

9.1 Introduction

Many problems in text processing and related fields, e.g., part-of-speech tagging
and optical character recognition, can be regarded as string-to-string mappings.
Cortes et al. (2005) presented a novel regression framework for the learning of this
kind of transduction problem, in which both the input and the output strings were
embedded into their respective reproducing kernel Hilbert spaces (RKHS), usually
known as feature spaces, and then ridge regression was applied to learn the mapping
from the input feature space to the output one. In addition, Cortes et al. (2005)
also proposed a solution to seek a preimage, i.e., predicted output string, from an

1. Parts of this work have appeared in Wang et al. (2007).
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Figure 9.1 From phrase alignment to linear mapping: a simple demonstration.

n-gram string kernel (Cortes et al., 2004) induced output feature space, which can
be summarized as finding a Eulerian circuit of a De Bruijn graph associated with
the predicted n-gram counts.

In this chapter, we follow the work of Cortes et al. (2005), and apply the kernel
regression technique to the particular task of statistical machine translation (SMT),
which is viewed as a mapping from word strings (sentences) in the source language
to word strings in the target language. Concretely, if we define the feature space
Hx of our source language X as all its possible informative word chunks (word
substrings), and define the mapping Φ : X → Hx, then a sentence x ∈ X can be
expressed by its feature vector Φ(x) ∈ Hx. Each component of Φ(x) is indexed
by a word chunk with the value being the frequency of it in x. The definition of
the feature space Hy of our target language Y can be made in a similar way, with
corresponding mapping Ψ : Y → Hy. Now in the machine translation task, we are
trying to seek W, a matrix-represented linear operator, such that

Ψ(y) = WΦ(x) (9.1)

to predict the translation y for an arbitrary source sentence x. We argue that the
linear regression view of SMT is natural, as from phrase alignment diagrams widely
used in the training of existing phrase-based SMT models we are able to explicitly
write out many possible projection matrices W, for which a simple example is
demonstrated in figure 9.1.

Thus, the motivation of this work is to investigate an algorithm to learn the W
that captures potentially very high-dimensional correspondences among the source
and target features on a given training set, and generalizes well for unseen examples.
First, the ridge regression formulation of the learning problem, the kernel function
selected to induce the implicit feature spaces, and related scalable training and
sparse approximation issues are introduced in detail in section 9.2. Since in the
SMT case the vocabulary is so large that the word chunk counts in our prediction
will be too noisy to construct a good enough De Bruijn graph to yield a meaningful
output sentence, the preimage solution will be a further challenge. In section 9.3
we explore the decoding algorithm for this particular task, which follows the beam
search procedure, parses the word lattice generated based on a lexicon, and seeks
the candidate translation whose feature vector is closest to our prediction measured
by Euclidean distance. Then, in section 9.4, experimental results are reported,
where our method is compared to a typical existing phrase-based log-linear model,
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and achieves higher performance. We give further discussions on the integration of
additional language models and the utilization of richer linguistic knowledge in our
framework in section 9.5, and conclude in section 9.6.

9.2 Regression Modeling for SMT

9.2.1 Kernel Ridge Regression

Given a set of training samples, i.e., bilingual sentence pairs S = {(xi,yi) : xi ∈
X ,yi ∈ Y, i = 1, . . . , m.}, least squares regression learns the linear operator W in
Eq. (9.1) by seeking the one minimizing the squared loss in Hy on S, as

min ‖WMΦ − MΨ‖2
F , (9.2)

where MΦ = [Φ(x1), ...,Φ(xm)], MΨ = [Ψ(y1), ...,Ψ(ym)], and ‖ · ‖F denotes the
Frobenius norm, which is a matrix norm defined as the square root of the sum of
the absolute squares of the elements in that matrix. However, if there are some
duplicated or very similar samples in the training set, MΦ will be ill-conditioned or
singular, yielding a large number of solutions. A well-known improvement to this
problem is ridge regression (Hoerl and Kennard, 1970), which gives preference to the
solution with a smaller norm by adding a regularization term to the minimization
as

min ‖WMΦ − MΨ‖2
F + ν‖W‖2

F , (9.3)

where ν is a coefficient adjusting the effect of the regularization. This regularization
improves the conditioning of the problem, thus enabling a numerical solution.

The explicit solution of the ridge regression problem can be computed as follows.
Differentiating the expression and setting it to zero gives

W = AM	
Φ ,

where

A = −1
ν

(WMΦ − MΨ).

Substituting the expression for W in the equation for A gives

A(KΦ + νI) = MΨ,

implying

W = MΨ(KΦ + νI)−1M	
Φ , (9.4)
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where I is the identity matrix, and KΦ = M	
ΦMΦ = (κΦ(xi,xj)1≤i,j≤m). Note

here, we use the kernel function

κΦ(xi,xj) = 〈Φ(xi), Φ(xj)〉 = Φ(xi)	Φ(xj) (9.5)

to denote the inner product between two feature vectors. If the feature spaces are
properly defined, the “kernel trick” will allow us to avoid dealing with the very
high-dimensional feature vectors explicitly (Shawe-Taylor and Cristianini, 2004).
A detailed explanation of these issues in our case will be left to section 9.2.2.
In addition, we will denote by κΨ(·, ·) the kernel with respect to Ψ(·) in future
discussions.

Inserting Eq. (9.4) into Eq. (9.1), we obtain our prediction as

Ψ(y) = MΨ(KΦ + νI)−1kΦ(x), (9.6)

where kΦ(x) = (κΦ(x,xi)1≤i≤m) is an m × 1 column matrix.

9.2.2 N-Gram String Kernel

In the practical learning (the matrix inversion in Eq. (9.4)) and prediction (see
section 9.3.1, Eq. (9.14)) processes, only the inner products of feature vectors
are required, which can be computed with the kernel function implicitly without
evaluating the explicit coordinates of points in the feature spaces. In the SMT case,
the n-gram string kernel (Cortes et al., 2004) that compares two strings by counting
how many contiguous substrings of length n they have in common is a good choice
to implicitly induce our Hx and Hy.

We denote by xi:j a substring of sentence x starting with the ith word and ending
with the jth. Then for two sentences x and z, the n-gram string kernel is computed
as

κn(x, z) =
|x|−n+1∑

i=1

|z|−n+1∑
j=1

[[xi:i+n−1 = zj:j+n−1]]. (9.7)

Here, | · | denotes the length of the sentence, and [[·]] is the indicator function for
the predicate.

As the length of informative word chunks varies, we use a blended n-gram string
kernel to count the substrings of length from 1 to n simultaneously. That is,

κ(x, z) =
n∑

p=1

κp(x, z). (9.8)

Note here, instead of explicitly defining the informative work chunks, with this
kernel actually all the potential word n-grams are used as our features.
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9.2.3 Large-Scale Training

As a kernel method, this model suffers from the major drawback of high compu-
tational complexities. The matrix inversion operation in Eq. (9.4) requires O(m3)
time and O(m2) space. On the other hand, for SMT usually the training set is
so huge that loading the m × m kernel matrix into memory at one time is infea-
sible. Moreover, our preliminary experiments show that the translation quality is
very sensitive to the accuracy of the inverse, and therefore, sparse greedy matrix
approximation approaches (Smola and Schölkopf, 2000; Bach and Jordan, 2002;
Vincent and Bengio, 2002) will not help in this case. Thus, to make the application
of this model practical, we need some tricks in the implementation.

Fortunately, we can split the matrix (KΦ + νI) into blocks, as

(KΦ + νI) =

[
A B

B	 C

]
.

The blockwise matrix inversion formula (Golub and Van Loan, 1996) gives[
A B

B	 C

]−1

=

[
A−1 + A−1BS−1

A B	A−1 −A−1BS−1
A

−(A−1BS−1
A )	 S−1

A

]
, (9.9)

where SA = C − B	A−1B is called the Schur complement of A. This blockwise
calculation provides a memory-efficient solution for large-scale training problems.
The inverse matrix now can be computed in smaller blocks, with only one or two
blocks loaded into memory at a time. In addition, the blocks can be processed in
parallel, which speeds up the computing time to some extent.

9.2.4 Retrieval-Based Sparse Approximation

In the RKHS defined above, we will be able to obtain a good translation as long as
we find a hyperplane passing through, or close enough to, the test data point. So we
do not necessarily need all the training samples, but only those covering the features
of the test point well, in other words, relevant to the test point. Since to translate
a sentence the source of it is given in advance, we can retrieve a set of training
sentence pairs whose source is close to it, and train a regression model only on
this small relevant set to predict the translation. Similar strategies have been used
in the earlier research in domain adaptation for SMT systems, which are usually
found to help significantly. Representative works include, for example, Eck et al.
(2004) and Zhao et al. (2004) where online language models have been trained for
their SMT systems on the retrieved documents or sentences, and Hildebrand et al.
(2005) who proposed the method to train translation models only on the sentence
pairs retrieved from the training set, whose source is similar to a given test set.
A recent work (Foster and Kuhn, 2007) has further extended these techniques in
that it splits the training set into different components (domains) and weights the
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Figure 9.2 Retrieval-based sparse approximation.

models trained separately on those component corpora according to their degrees
of relevance to the test domain. While in our case not only does this method adapt
the translation model to the test domain, it also achieves a sparse approximation
to the original regression hyperplane, which makes this expensive kernel method
possible to be applied to large-scale data sets.

This sparse approximation process is demonstrated in figure 9.2 with different
metrics to measure how “close” two sentences are. If (Φ(x), Ψ(y)) is a test point in
the joint feature spaces Hx ×Hy and figure 9.2(a) represents the original regression
hyperplane learned on the whole training set, the particular methods we use to
retrieve the relevant set are described as follows:

Euclidean distance: As shown in figure 9.2(b), the training samples are subselected
by picking out those whose source feature vectors have smallest Euclidean distances
to Φ(x) in Hx, where the Euclidean distance between two vectors Φ(x) and Φ(z)
is computed as

D(x, z) = ‖Φ(x) − Φ(z)‖ =
√

κΦ(x,x) − 2κΦ(x, z) + κΦ(z, z). (9.10)

Cosine angle distance: Figure 9.2(c) shows the metric to select the training
samples by cosine angle distance in Hx, where the smaller the angle between
two vectors is, the closer they are regarded. The angle between Φ(x) and Φ(z)
is calculated as

D(x, z) = arccos
〈Φ(x), Φ(z)〉
‖Φ(x)‖‖Φ(z)‖ = arccos

κΦ(x, z)√
κΦ(x,x)κΦ(z, z)

. (9.11)

tf-idf metric: Of course it is not necessary to retrieve the data based on the
measurements only in Hx. We can map the source part of the training and test
data into some other space, and measure the relevance there, as illustrated in
figure 9.2(d). One of the methods is the tf-idf (term frequency – inverse document
frequency) metric from information retrieval (IR). In the tf-idf metric, a document
(sentence in our case) is viewed as a bag of words. Each word is weighted by the



9.3 Decoding 175

product of its tf-score and idf-score. The tf-score of a word wi in a sentence x is its
frequency in that sentence normalized by the sentence length, as

tf(wi,x) =
C(wi,x)

|x| , (9.12)

where C(·, ·) represents the counts, and its idf-score is computed as the logarithm
of the quotient of the total number of sentences in the training set and the number
of the sentences containing it:

idf(wi) = log
|SX |

|{z|z ∈ SX , wi ∈ z}| , (9.13)

where we use SX to denote the source portion of the training set. Finally, the cosine
angle distance is used to measure the similarity of two sentences in this weighted
bag-of-words feature space.

Edit distance: Besides the tf-idf metric that captures the key words in the
sentences, we try the edit distance measure as well, with the expectation to extract
the training samples which have similar sentence patterns to the test sentence. The
edit distance here refers to the Levenshtein distance, which is given by the minimum
number of operations needed to transform one sentence into the other, where an
operation is an insertion, deletion, or substitution of a single word.

9.3 Decoding

9.3.1 Preimage Problem

The preimage problem is to find the target sentence y from the feature vector Ψ(y)
predicted in Eq. (9.1). However, in this very high-dimensional case, the predicted
Ψ(y) will be very noisy. If we simply round its components to obtain integer counts
as in Cortes et al. (2005), some n-grams may be missing, which fails to construct
a connected De Bruijn graph, while we will also get many single isolated noisy
nodes. Thus, the preimage solution here is achieved by seeking the ŷ that has the
minimum loss between its feature vector Ψ(ŷ) and our prediction Ψ(y), as

ŷ = arg miny∈Y(x) ‖WΦ(x) − Ψ(y)‖2

= arg miny∈Y(x) κΨ(y,y) − 2kΨ(y)(KΦ + νI)−1kΦ(x),
(9.14)

where Y(x) ⊂ Y denotes a finite set covering all potential translations for the given
source sentence x, and kΨ(y) = (κΨ(y,yi)1≤i≤m). A proper Y(x) can be generated
according to a lexicon that contains possible translations for every component (word
or phrase) in x. But the size of it will grow exponentially with the length of x, which
poses an implementation problem for a search algorithm.
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Figure 9.3 Search states with restricted distortion: (a) appending a translated phrase
directly; (b) two adjacent phrases exchanging their positions.

9.3.2 Beam Search

In earlier systems, several heuristic search methods have been developed, of which
a typical one is introduced in Koehn (2004a) for phrase-based models. Koehn’s
(2004a) beam search decoder generates the target sentence from left to right in the
form of hypotheses (search states). The search process starts from an initial (empty)
hypothesis. At each time, it expands a hypothesis by extending the output with a
translation of a phrase not yet translated in the source sentence to create a new
hypothesis. It estimates a current score and a future score for the new hypothesis,
inserts it into a stack indexed by the number of the source words translated, and
reranks and prunes the hypotheses in the stack at the same time according to their
scores. When all the words in the source sentence are covered, the search reaches
final states, among which the highest-scored one is selected as the best translation.

In previous models, the scores for a hypothesis are usually computed incremen-
tally by the sum of a serial of log-probabilities, each of which depends on the features
in a local area only, e.g., a phrase pair for a translation model, a word n-gram for
a language model, etc. This is very convenient as the scores can be accumulated
phrase by phrase during the expansion of hypotheses. However, in our case, because
of the κΨ(y,y) item in Eq. (9.14) the expression cannot be decomposed into a sum
of subfunctions each involving feature components in a local area only. It means
we will not be able to estimate exactly how well a part of the source sentence is
translated until we obtain a translation for the entire sentence, which prevents us
doing a straightforward beam search similar to Koehn (2004a). Note here, at the
same time κΨ(y,y) has the effect of penalizing the bias of the second item in Eq.
(9.14) on longer sentences, and therefore it controls the length of the prediction.

To simplify the situation, we restrict the reordering (distortion) of phrases
that yield the output sentences by only allowing adjacent phrases to exchange
their positions. Now, if we go back to the implementation of a beam search, the
current distortion restriction guarantees that in each expansion of the search states
(hypotheses) we have x1:lx translated to a y1:ly , either like state (a) or like state
(b) in figure 9.3, where lx is the number of words translated in the source sentence,
and ly is the number of words obtained in the translation.

We assume that if y is a good translation of x, then y1:ly is a good translation
of x1:lx as well. So we can expect that the squared loss ‖WΦ(x1:lx)−Ψ(y1:ly)‖2 is
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small for the hypothesis yielding a good translation. Accordingly, the hypotheses
in the search stacks can thus be reranked with the following score function:

Score(x1:lx ,y1:ly ) = κΨ(y1:ly ,y1:ly )− 2kΨ(y1:ly )(KΦ + νI)−1kΦ(x1:lx). (9.15)

Therefore, to solve the preimage problem, we just employ the same beam search
algorithm as Koehn (2004a), except we limit the derivation of new hypotheses with
the distortion restriction mentioned above.

9.3.3 Complexity Analysis

Inevitably, this score function brings more runtime complexities when compared
with traditional probabilistic methods. The time complexity of a naive implementa-
tion of the blended n-gram string kernel between two sentences x and z is O(n|x||z|).
So if based on the training set S defined at the beginning of section 9.2.1, the
score function in Eq. (9.15) results in a runtime complexity of O (nly

∑m
i=1 |yi|).

Note here that (KΦ + νI)−1kΦ(x1:lx) can be precomputed for lx from 1 to |x| be-
fore the beam search, which calls for O(m|x|) space and O

(
n|x|2

∑m
i=1 |xi| + m2

)
time. A trie-based computation of the string kernel (Shawe-Taylor and Cristianini,
2004, chapter 11), can improve the time complexity to O(n(|x| + |z|)). In addi-
tion, further efficiency can be achieved by this approach to compute the whole
column (κ(x,xi)0≤i≤m) instead of evaluating each entry independently, which is
O (n (|x| +

∑m
i=1 |xi|)). Finally, we can improve the complexities of our decoder to

O (n (ly +
∑m

i=1 |yi|)) for scoring and O
(
n
(
|x|2 +

∑m
i=1 |xi|

)
+ m2

)
for precomput-

ing.

9.4 Experiments

9.4.1 Corpora

Considering the complexities of our model, we choose a small-scale reduced-domain
corpus to conceptually demonstrate its effectiveness. The corpus used in the follow-
ing experiments is the technical manuals of Xerox Corporation in three language
pairs, including French-English, German-English, and Spanish-English. In each of
them, there are 25 documents which are mostly user guides, operator’s guides, or
system administration guides, provided with various types of hardware (copiers,
printers, multifunction devices, etc.). For each language pair, three documents are
taken as our test sets (Test), another two are reserved as a developing set (Dev)
for the tuning of the parameters of our systems, and all the remaining 20 docu-
ments are used as the training set (Train). Some characteristics of the corpora are
summarized in table 9.1.
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Table 9.1 Statistics of corpora

French English German English Spanish English

Train Sentences 56,999 50,122 58,982

Tokens 678,832 618,409 533,174 583,473 721,440 639,817

Vocabulary 13,813 11,545 23,757 11,237 15,104 11,727

Dev Sentences 1758 1721 1838

Tokens 22,682 21,005 17,474 20,407 24,449 21,661

OOV words 194 170 467 168 142 168

LM perplexity – 46.72 – 47.39 – 44.99

Test Sentences 2198 1788 2285

Tokens 24,426 22,589 19,333 21,863 26,326 23,779

OOV words 156 113 536 104 187 103

LM perplexity – 33.39 – 34.91 – 33.36

OOV: out-of-vocabulary; LM: language model.

9.4.2 System Settings

To compare with previous work, we take Pharaoh (Koehn, 2004a), a phrase-based
log-linear model, as our baseline system. We set Pharaoh’s beam size to 100 and
the maximum number of translations per source phrase to 20. The distortion limit
of Pharaoh is set to 7, which equals the maximum phrase length. Note here, in this
preliminary work this setting reduces Pharaoh’s advantages on word reordering, so
makes it commensurable to the restricted distortion (allowing swapping for adjacent
phrases only) in our regression model.

In addition, there are two parameters to be set for our kernel ridge regression
model: the maximum n-gram length n used in the string kernel, and the regulariza-
tion coefficient ν. As in this case it will be too expensive to do cross-validation we
test different values and observe the performance. Preliminary experiments show
that translation qualities are insensitive to ν and 0.01 would be a proper value for
it. Then, models with n increasing from 2 to 7 are trained on a smaller portion of
the training set in each language pair, and evaluated on the respective developing
set. As a result, we find that the blended trigram kernel always gives the best per-
formance. This may be due to the distributions of longer word n-grams being too
sparse to learn reliable correspondences from resulting in overfitting. Therefore we
fix this setting (n = 3 and ν = 0.01) in the following experiments.

9.4.3 Ridge Regression Experiments

We train Pharaoh and our blended trigram kernel regression model on the three
training sets respectively, and compare their performance on the test sets. In
addition, Kneser-Ney smoothed trigram language models are trained for Pharaoh
with the SRILM toolkit (Stolcke, 2002) on the English portions of the training sets.
Its log-linear parameters are tuned on the development sets based on the minimum-
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Table 9.2 Pharaoh vs. kernel ridge regression (KRR). All values are in percentage,
except NIST scores.

BLEU NIST METEOR TER WER PER

French–English Pharaoh 48.38 7.98 66.77 38.26 31.71 23.95

KRR 49.01 8.49 66.43 34.78 29.12 21.50

German–English Pharaoh 37.95 7.04 58.80 47.53 41.86 29.80

KRR 37.64 7.03 58.58 43.98 38.37 28.34

Spanish–English Pharaoh 55.17 9.08 73.87 28.88 25.70 16.63

KRR 56.40 9.45 73.89 26.27 23.15 15.14

error-rate training (MERT) method (Och, 2003). To facilitate comparison, we use
the same phrase translation table as Pharaoh’s to decode our regression model,
where the beam size is initially set to 100. (Further experiments on decoding search
error rates can be found in section 9.4.5.)

The translation qualities are evaluated by different metrics, including BLEU
(Papineni et al., 2002), NIST (Doddington, 2002), METEOR (Banerjee and Lavie,
2005), translation edit rate (TER) (Snover et al., 2006), word error rate (WER),
and position-independent word error rate (PER), as shown in table 9.2. In the
evaluations only one single reference translation is provided for each sentence. The
results are statistically significant with p < .001 based on the bootstrap test (Koehn,
2004b).

It can be found that the kernel ridge regression model outperforms Pharaoh in
most of the tasks, especially with significant advantages in TER, WER, and PER.
But there is a uniform slight decline of our method on BLEU, NIST, and METEOR
in the German-English task. A main reason for this could be that German is a
morphologically rich language. Accordingly, the evidence for the high-dimensional
correspondences among the n-gram features would be too sparse. More detailed
analysis can be gained by looking into some sample translation results in table 9.3.
If sufficient translation examples can be found in the training set, the kernel ridge
regression model will generate very well-structured outputs, such as the first French-
English sample and the second Spanish-English sample. But its drawback is that
as the n-gram features connecting the phrases are actually functioning similar to a
language model, if some of them are weighted too low in the prediction (because
of the lack of support of training examples), the output sentence may become
broken, e.g., as in the second French-English sample and the two German-English
samples. Additional language models will undoubtedly be helpful, of which further
discussions are left to section 9.5.

9.4.4 Sparse Approximation Experiments

We test the sparse approximation methods proposed in section 9.2.4 on the French-
English portion of the corpus. For each test sentence, a set of relevant training
samples are extracted according to the measure of cosine angle distance, Euclidean
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Table 9.3 Example translation results

French-English

Src: créez un compte utilisateur sur le serveur de numérisation à utiliser comme
compte utilisateur du serveur de distribution .

Ref: create a user account on the scan server , to be used as the distribution
server user account .

KRR: create an user account on the scan server , to be used as the distribution
server account .

Pha: create a user account on the scan server to use as a user account on the
distribution server .

Src: reportez-vous maintenant à la carte d’ installation et de configuration
correspondant à votre système d’ exploitation .

Ref: refer now to the installation and setup reference card for your operating
system .

KRR: refer to now card installation and configuration for your operating system
.

Pha: now refer to the card installation and configuration for your operating
system .

German-English

Src: als scan-server kann eines der folgenden systeme benutzt werden :

Ref: any of the following to function as the scan server :

KRR: the scan server be of the following used systems :

Pha: scan server one of the following systems can be used :

Src: das gerät wird neu gestartet und gibt einen konfigurationsbericht aus .
dieser vorgang dauert etwa drei minuten .

Ref: the device will reboot and print a configuration sheet in approximately 3
minutes .

KRR: the device will reboot and this a configuration report off the process takes
approximately three minutes .

Pha: the device will reboot and provides a configuration report off . this process
takes approximately three minutes .

Spanish-English

Src: haga clic en śı en el cuadro de diálogo modificar la carpeta inicio si desea
an̈adir un icono de exploración a la barra de tareas de windows .

Ref: click yes on the modify startup folder dialog if you wish to add a desktop
scanning icon to the windows taskbar .

KRR: click yes dialog the modify startup folder if to add a scanning icon in the
windows taskbar .

Pha: click yes in the dialog the modify startup folder if you want to add a
scanning icon to the windows taskbar .

Src: asegúrese de que la conexión eléctrica de su máuina satisfaga estos requi-
sitos .

Ref: ensure that the power connection for your machine satisfies these require-
ments .

KRR: ensure that the power connection for your machine meets these require-
ments .

Pha: ensure that the attachment electrical machine meets your requirements .
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Figure 9.4 Retrieval-based sparse approximation: BLEU score vs. relevant set size.

distance, tf-idf metric, and edit distance, respectively. The BLEU score performance
curves of different metrics over relevant set size are illustrated in figure 9.4, with the
comparison to Pharaoh and kernel ridge regression trained on the entire training
set.

It is shown that the cosine angle distance and the tf-idf metric work almost
equally well in this task, and their BLEU score performance is roughly linear to the
extracted subset set size in log-domain. When the relevant set size reaches 1000,
they outperform Pharaoh by around 0.5% BLEU score, which approaches the result
of the regression model trained on the entire training set. The trend suggests that
we might be able to gain higher BLEU scores if more relevant training samples are
extracted for each test sentence. However, preliminary experiments show that on
this data set a relevant set larger than 1000 does not help. This could be because in
this closed set, after the retrieved subset reaches a certain size, the rear sentences
will be of little relevance to the test point and therefore would correspond to adding
noise. Nevertheless, it can be expected that this trend would hold if we were able
to retrieve adequate relevant training sentence pairs from an open domain.

9.4.5 Search Errors

Finally, we consider the search errors of our beam search decoding algorithm. We
pick out 1000 sentences of length between 5 and 20 words from each test set. All the
candidate translations of each test sentence are generated based on the restricted
word distortion, which are then reranked by the kernel ridge regression model.
Comparing the results to the outputs of our beam search decoder with different
beam size, we give a view of the search error rates in table 9.4. An error occurs if
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Table 9.4 Search error rate vs. beam size

Beam Size 10 20 50 100 200 500 1000

French–English 4.0% 1.9% 1.3% 1.1% 0.9% 0.8% 0.6%

German–English 6.8% 5.0% 4.1% 2.1% 2.1% 2.1% 2.1%

Spanish–English 3.3% 1.7% 1.1% 1.0% 1.0% 1.0% 0.9%

the decoder failed to find the best ranked sentence. Although we have no effective
way to evaluate the decoding quality for long sentences (more than 20 words), the
overall performance shows that this decoding strategy is acceptable.

9.5 Further Discussions

At this stage, the superiority of our regression model is limited, but there is ample
room for improvement. In this section, we will focus the discussion on the following
two aspects: language modeling and linguistic knowledge.

9.5.1 Language Modeling

Language models have proved to be very helpful for SMT, but they are not used in
our current system, which potentially is a major drawback. The most straightfor-
ward solution will be to add a weight to adjust the strength of the regression-based
translation scores and the language model score during the decoding procedure. It
can be further extended to using the regression-based translation model just as one
of the components in the log-linear framework. Moveover, our regression framework
also has the capability to embed a language model into the regression itself. As lan-
guage models are typically n-gram-based, they match the definition of our feature
space. For instance, if we take a trigram model as an example:

P (y) =
n∏

i=1

P (yi|yi−2yi−1),

where y = y1y2 . . . yn is a sentence of length n, and yi denotes the ith word in it,
we can express the logarithm of it as

log P (y) = V	Ψ(y),

where V is a vector with components Vy′′y′y = log P (y|y′′y′), and y, y′ and y′′ are
arbitrary words. Note here, in order to match our blended trigram indexed feature
vector Ψ(y), we can make V of the same dimension as it, with the components
corresponding to unigrams and bigrams set to 0 or possibly encoding lower-order
language models. Furthermore, in the general case V is not necessarily based on log-
probability, but can be any form of weight vector scoring a sentence y based on its
n-gram features. Accordingly, given source sentence x, our prediction can be scored
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directly by the language model V as V	WΦ(x). We add this language model score
as an additional loss to the objective function of the kernel ridge regression, as

min ‖WMΦ − MΨ‖2
F + ν1‖W‖2

F − ν2V	WMΦ1 , (9.16)

where ν2 is a coefficient to adjust the effect of the language model loss, and 1
denotes a vector with components 1. The point is that now we are seeking the
matrix W which balances between the prediction being close to the target feature
vector (measured by Euclidean distance) and being a fluent target sentence. By
differentiating the expression with respect to W and setting the result to zero, we
can obtain the explicit solution as

W = (MΨ + ν2V1	)(KΦ + ν1I)−1M	
Φ . (9.17)

9.5.2 Linguistic Knowledge

Besides plain text, our kernel regression method offers a flexible framework for the
incorporation of various types of features. Higher-level linguistic knowledge can
be utilized easily by selecting corresponding kernels, e.g., string kernels for part-
of-speech tag sequences or convolution kernels for parse trees (Collins and Duffy,
2002a), though new decoding problems might arise in some cases. In addition, soft-
matching string kernels (Shawe-Taylor and Cristianini, 2004, chapter 11) can be
applied to morphologically rich languages to relieve the data sparseness problem. A
recent state-of-the-art approach to SMT, the factored translation model introduced
by Koehn and Hoang (2007), has also enabled the integration of linguistic annota-
tions into phrase-based translation models. Compared to their method, where the
factors can only be self-influential, our model allows interactions among different
linguistic features, which could be a potential advantage.

9.6 Conclusion

In this chapter, we present a novel framework for machine translation based on
kernel ridge regression, by which comparable performance to previous work has
been achieved. Although at this stage the main contribution is still conceptual, its
feasibility in an application to the SMT field is demonstrated. As a kernel method,
this framework has the advantage of capturing the correspondences among the
features of inputs and outputs in a very high-dimensional space. But the drawback
is that its computational complexities are much higher than probabilistic models.
A solution is sparse approximation as proposed above, which poses the problem of
extracting a sufficient amount of relevant bilingual training samples for a given
input. Other essential improvements to this model could be the integration of
additional language models and the utilization of linguistic knowledge. These issues
are left open here, but will be explored in our future work.
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Machine translation of a source language sentence involves selecting appropriate
target language words and ordering the selected words to produce a well-formed
target language sentence. Most of the previous work on statistical machine transla-
tion relies on (local) associations of target words/phrases with source words/phrases
for lexical selection. In contrast, in this chapter, we present a novel approach to lex-
ical selection where the target words are associated with the entire source sentence
(global) without the need to compute local associations. Further, we present a tech-
nique for reconstructing the target language sentence from the selected words. We
compare the results of this approach against those obtained from a finite-state based
statistical machine translation system which relies on local lexical associations.

10.1 Introduction

The problem of machine translation can be viewed as consisting of two subprob-
lems: (a) lexical selection, where appropriate target language lexical items are cho-
sen for each source language lexical item and (b) lexical reordering, where the
chosen target language lexical items are rearranged to produce a meaningful target
language string. Most of the previous work on statistical machine translation, as
exemplified in Brown et al. (1993), employs a word-alignment algorithm (such as
GIZA++ (Och and Ney, 2003)) that provides local associations between source
words and target words. The source-to-target word alignments are sometimes aug-
mented with target-to-source word alignments in order to improve the precision of
these local associations. Further, the word-level alignments are extended to phrase-
level alignments in order to increase the extent of local associations. The phrasal
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Figure 10.1 Training phases for our system.

associations compile some amount of (local) lexical reordering of the target words
– those permitted by the size of the phrase. Most of the state-of-the-art machine
translation systems use these phrase-level associations in conjunction with a tar-
get language model to produce the target sentence. Some of these systems also
include a model for global reordering that takes the form of a distortion model
based on string transductions (Kanthak et al., 2005; Tillmann and Zhang, 2006;
Nagata et al., 2006; Xiong et al., 2006) or use hierarchical transduction models
motivated by syntax (Wu, 1997; Alshawi et al., 1998; Yamada and Knight, 2001;
Chiang, 2005).

In this chapter, we present an alternate approach to lexical selection and lexical
reordering. For lexical selection, in contrast to the local approaches of associating
target words to source words, we associate the target words to the entire source
sentence. The intuition is that there may be lexicosyntactic features of the source
sentence (not necessarily a single source word) that might trigger the presence
of a target word in the target sentence. Furthermore, it might be difficult to
exactly associate a target word to a source word in many situations: (a) when
the translations are not exact but paraphrases, and (b) when the target language
does not have one lexical item to express the same concept that is expressed by a
source word. The extensions of word alignments to phrasal alignments attempt to
address some of these situations in addition to alleviating the noise in word-level
alignments.

As a consequence of the global lexical selection approach, we no longer have
a tight association between source language words/phrases and target language
words/phrases. The result of lexical selection is simply a bag of words(phrases)
in the target language and the target sentence has to be reconstructed using this
bag of words. The target words in the bag, however, might be enhanced with rich
syntactic information that could aid in the reconstruction of the target sentence.
This approach to lexical selection and sentence reconstruction has the potential
to circumvent the limitations of methods based on word alignment for translation
between languages with significantly different word order (English-Japanese, for
example).
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In this chapter, we present the details of training a global lexical selection
model using classification techniques and sentence reconstruction models using
permutation automata. We also present a stochastic finite-state transducer (SFST)
as an example of an approach that relies on local associations and use it to compare
and contrast our approach.

The outline of the chapter is as follows. In section 10.2, we describe in detail the
different stages used to train an SFST translation model and discuss the steps in
decoding a source input using the trained SFST model. In section 10.3, we present
the global lexical selection and the sentence reconstruction models. In section 10.4,
we discuss our rationale for choosing the classifer to train the global lexical selection
model. In section 10.5, we report the results of the two translation models on a few
data sets and contrast the strengths and limitations of the two approaches.

10.2 SFST Training and Decoding

In this section, we describe each of the components of our SFST system shown in
figure 10.1 in detail. The SFST approach described here is similar to the approach
described in Bangalore and Riccardi (2000) which has subsequently been adopted
by Banchs et al. (2005), and Kumar et al. (2006).

10.2.1 Word Alignment

The first stage in the process of training a lexical selection model is obtaining an
alignment relation (f) that given a pair of source (S = s1s2 . . . s|S|) and target
(T = t1t2 . . . t|T |) language sentences, maps source language words into target
language word subsequences, as shown below. For each of the source words (at
position i), there is at least one target word (at position j) that the source word is
related to or it is unmapped (mapped to ε). Also, for the target language sentence,
each target word is related to some source word or may be unmapped.
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English: I need to make a collect call

Japanese:

Alignment: 1 5 0 3 0 2 4

Figure 10.3 Example of a bilingual text with alignment information.

I: need: to;make: a;collect: call:

Figure 10.4 Bilanguage strings resulting from alignments shown in figure 10.3.

(∀i (∃j (si, tj) ∈ f) ∨ (si, ε) ∈ f) ∧ (∀j (∃i (si, tj) ∈ f) ∨ (ε, tj) ∈ f). (10.1)

For the work reported in this chapter, we have used the GIZA++ tool (Och and
Ney, 2003) which implements a string-alignment algorithm.1 GIZA++ alignment,
however, is asymmetric in that the word mappings are different depending on the
direction of alignment – source-to-target or target-to-source. Hence, in addition to
the alignment relation f as shown in Eq. (10.1), we train another alignment relation
g as shown in Eq. (10.2).

(∀j (∃i (tj , si) ∈ g) ∨ (tj , ε) ∈ g) ∧ (∀i (∃j (tj , si) ∈ g) ∨ (ε, si) ∈ g). (10.2)

10.2.2 Bilanguage Representation

From the alignment information (see figure 10.3), we construct a bilanguage rep-
resentation of each sentence (Bf ) in the bilingual corpus. The bilanguage string
consists of a sequence of source-target symbol pairs (si, f(si))2 as shown in Eq.
(10.3). When the source word (si−1) is not aligned to any word of the target string,
then the symbol pair in the bilanguage is represented as (si−1; si, f(si)) (see to;make
and a;collect in figure 10.4).3 Note that the tokens of a bilanguage could be either
ordered according to the word order of the source language or ordered according to
the word order of the target language. Here we use source word-ordered bilanguage
strings as shown in figure 10.4 corresponding to the alignment shown in figure 10.3.

1. We use the default parameters that come with the GIZA++ installation.
2. If si is related to more than one target word, then we create a phrase by concatenating
those target words with “;” as a delimiter between them.
3. Note that we could have concatenated the unmapped source word to the previous source
word (si−2).
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Table 10.1 Examples of acquired phrases

A T and T

to my home phone

I need to make a collect call

how may I help you

yes could you

Bf = bf
1 bf

2 . . . bf
M (10.3)

bf
i = (si−1; si, f(si)) if f(si−1) = ε

= (si, f(si−1); f(si)) if si−1 = ε

= (si, f(si)) otherwise.

We also construct a source word-ordered bilanguage using the alignment relation
g similar to the bilanguage using the alignment relation f as shown in Eq. (10.3).

Thus, the bilanguage corpus obtained by combining the two alignment relations
is B = Bf ∪ Bg.

10.2.3 Bilingual Phrase Acquisition and Local Reordering

While word-to-word translation is only approximating the lexical selection process,
phrase-to-phrase mapping can greatly improve the translation of collocations,
recurrent strings, etc. Also, the use of phrases allows for reordering of words in
the phrase to be in correct target language order, thus solving part of the lexical
reordering problem. Moreover, SFSTs built on a phrase-segmented corpus could
take advantage of the larger lexical contexts provided by phrases to improve the
computation of the probability P (WS , WT ).

The bilanguage representation could result in multiple words of the source
sentence to be mapped to multiple words of the target sentence as a consequence of
some words being aligned to ε. In addition to these phrases, we compute substrings
up to a given length k on the bilanguage string and for each bilanguage substring we
reorder its target words to be in the same order as they are in the target language
sentence corresponding to that bilanguage string. In Eq. (10.5), we show that tpi+k

i

is a substring of the target string and is a permutation of the target words that
are related to the source words. For large values of k, we could have entire sentence
pairs as entries in the dictionary. A sample of the resulting phrase dictionary is
shown in table 10.1.

Using these phrases, we retokenize the bilanguage (Bphr) into tokens of source-
target word or phrase pairs (Eq.( 10.4)). We formulate this process below where
spi+k

i = sisi+1 . . . si+k represents a phrase created by concatenating the tokens
si . . . si+k.
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Bphr = B1 ∪ B2 . . . Bk (10.4)

Bk = bk
1 bk

2 . . . bk
p

bk
i = (spi+k

i , tpi+k
i )

tpi+k
i ∈ perm(f(si)f(si+1) . . . f(si+k)) ∧ ∃l tpi+k

i = tltl+1 . . . tl+k (10.5)

10.2.4 SFST Model

From the bilanguage corpus Bphr, we train an n-gram language model using lan-
guage modeling tools (Goffin et al., 2005; Stolcke, 2002), in order to approximate
the joint probability P (S, T ) as

∏
P (si, ti|si−1, ti−1 . . . si−n−1, ti−n−1). The re-

sulting language model is represented as a quasi-deterministic weighted finite-state
acceptor(S × T → [0, 1]) (Allauzen et al., 2004). The weights are the negative
logarithm of the n-gram probability estimates. The symbols on the arcs of this
automaton are the pairs of the bilanguage strings treated as a single token (si ti).
These symbols can be interpreted as input and output symbols (si:ti) of a weighted
finite-state transducer. Thus the resulting weighted finite-state transducer (Trans-
FST) can be used to compute the most likely target T ∗ for a given input source
sentence S. This resulting transducer is in most cases no longer deterministic on
the input side.

10.2.5 Decoding

In this section, we describe the decoding process and the global reordering process
in detail. During decoding, we are interested in searching for the most likely T ∗ for a
given input source sentence S as shown in Eq.( 10.6) and an n-gram approximation
model in Eq.( 10.7).

T ∗ = arg min
T

log(P (S, T )) (10.6)

= arg min
T

M∑
i=1

log(P (si, ti|si−1, ti−1 . . . si−n−1, ti−n−1)) (10.7)

Since we represent the translation model as a weighted finite-state transducer
(TransFST ), the decoding process of translating a source input sentence (Is)
amounts to a transducer composition (◦) and search for the best probability path
(BestPath) and projecting the target sequence (π1) as shown in Eq.( 10.8). Here Is

is a finite-state automaton representing the input sentence. However, this method
of decoding allows for the input to be more general finite-state automata (e.g., word
graphs or weighted lattices) such as those that are output from a speech recognizer.
This decoder can also be composed with a speech recognition model represented as
a finite-state transducer for a uniform speech-to-text translation model.
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T ∗ = π1(BestPath(Is ◦ TransFST )). (10.8)

However, we have noticed that on the development corpus, the resulting target
sentences are typically shorter than the intended target sentences. This mismatch
may be due to the over/underestimation of probability for backoff and unseen events
during the n-gram language model training. In order to alleviate this mismatch, we
introduce a negative word insertion penalty model as a mechanism to produce more
words in the target sentences.

10.2.6 Word Insertion Model

The word insertion model (WIP ) is also encoded as a weighted finite-state au-
tomaton and is included in the decoding sequence as shown in Eq. (10.9). The
word insertion FST has one state and |

∑
T | number of arcs each weighted with a λ

weight representing the word insertion cost. The weight is currently uniform for all
target words, but could be selectively set differently for different word classes de-
pending on their impact on the translation quality (for example, verbs have lower
weight than determiners). On composition, as shown in Eq. (10.9), the word in-
sertion model penalizes or rewards paths which have more words depending on
whether λ is greater than or less than zero.

T
    / 

Figure 10.5 Word insertion model, with cost λ on |
P

T | arcs.

T ∗ = π1(BestPath(Is ◦ TransFST ◦ WIP )). (10.9)

10.2.7 Global Reordering

Local reordering, as described in section 10.2.3, accounts only for word-order
variations within phrases and is restricted by the window size k used for phrase
extraction. In order to account for word reordering beyond this window size, we need
to permute the words/phrases and select the most likely sentence resulting from
the permutation of these phrases. Although the FST approach produces a lattice
of locally reordered translations that could be permuted, due to the complexity
of such a permutation we limit ourselves to permuting the words/phrases of the
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Figure 10.6 Locally constraint permutation automaton for a sentence with 4 positions
and a window size of 2.

best translation (T ′). In order to compute the likelihood of a string resulting from
a permutation, we use an n-gram language model (LMt) trained on the target
language corpus (see also figure 10.2). The search for the most likely target language
string can be the computed as shown in Eq. (10.10).

T ∗ = BestPath(perm(T ′) ◦ LMt). (10.10)

Unfortunately, the number of states of the minimal permutation automaton of
even a linear automaton (finite-state machine representation of a string) grows
exponentially with the number of words of the string. So, instead of creating a
full permutation automaton, we choose to constrain permutations to be within a
local window of adjustable size (also see Kanthak et al. (2005)). The alternative
is to use heuristic forward pruning to limit the explosion of the state space to be
searched. Figure 10.6 shows the resulting minimal permutation automaton for an
input sequence of 4 words and a window size of 2.

We describe the construction of the constrained permutation automaton shown
in figure 10.6. Each state of the automaton is indexed by a bit vector of size equal
to the number of words/phrases of the target sentence. Each bit of the bit vector
is set to 1 if the word/phrase in that bit position is used on any path from the
initial to the current state. The next word for permutation from a given state is
restricted by the window size (2 in our case) positions counting from the first yet
uncovered position in that state. For example, the state indexed with vector “1000”
represents the fact that the word/phrase at position 1 has been used. The next two
(window=2) positions are the possible outgoing arcs from this state with labels 2
and 3 connecting to states “1100” and “1010” respectively. The bit vectors of two
states connected by an arc differ only by a single bit. Note that bit vectors elegantly
solve the problem of recombining paths in the automaton, as states with the same
bit vectors can be merged. As a result, a fully minimized permutation automaton
has only a single initial and final state.

While the SFST decoding applies naturally to lattices output by a speech rec-
ognizer, as discussed in section 10.2.5, global reordering as presented here requires
us to first extract n-best lists from lattices. Decoding using global reordering is
performed for each entry of the n-best list separately and the best decoded target
sentence is picked from the union of the n globally reordered results. An alternative
approach, which we have not explored in this chapter, is to transform a speech
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recognizer lattice into a word confusion network (Mangu et al., 2000) and permute
the arcs of a word confusion network in a manner similar to permuting the words
of a string.

10.3 Discriminant Models for Lexical Selection

The approach presented in the previous section is a generative model for statisti-
cal machine translation relying on local (phrasal) associations between the source
and target sentences. In this section, we present our approach for a global lexical
selection model which is based on discriminatively trained classification techniques.
Discriminant modeling techniques have become the dominant method for resolving
ambiguity in speech and natural language processing tasks, outperforming genera-
tive models for the same task. Discriminative training for machine translation has
been typically restricted to setting a few parameters (such as distortion weights,
language model weight, translation model weight) using a minimum-error train-
ing method (Och and Ney, 2002). With the exception of Wellington et al. (2006)
and Tillmann and Zhang (2006), discriminative training has not been used to di-
rectly train the parameters of lexical translation tables. We expect the discrimi-
natively trained global lexical selection models to outperform generatively trained
local lexical selection models, as well as provide a framework for incorporating rich
morphosyntactic information.

Statistical machine translation can be formulated as a search for the best target
sequence that maximizes P (T |S), where S is the source sentence and T is the target
sentence. Ideally, P (T |S) should be estimated directly to maximize the conditional
likelihood on the training data (discriminant model). However, T corresponds to a
sequence with an exponentially large combination of possible labels, and traditional
classification approaches cannot be used directly. Although conditional random
fields (CRFs) (Lafferty et al., 2001) train an exponential model at the sequence
level, in translation tasks such as ours the computational requirements of training
such models are prohibitively expensive.

We investigate two approaches to approximating the string level global classifica-
tion problem, using different independence assumptions. A comparison of the two
approaches is summarized in table 10.2.

10.3.1 Sequential Lexical Choice Model

This approach is similar to the SFST approach in that it relies on local associations
between the source and target words(phrases). As in the SFST approach, the first
step is to construct a bilanguage representation based on a word alignment. We
then formulate the translation problem as a sequential local classification problem
as shown in Eq. (10.11). We can use a conditional model (instead of a joint model
as in SFST) and the parameters are determined using discriminant training, which
allows for a richer conditioning context. For the purpose of this chapter, we use
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Table 10.2 A comparison of the sequential and bag-of-words lexical choice models

Sequential lexical model Bag-of-words lexical model

Output Target word(s) for each bilanguage Target word given

target position i a source sentence

Input BOgram(S, i − d, i + d) : bag of BOgram(S, 0, |S|): bag of

features n-grams in source side n-grams in source

of the bilanguage

in the interval [i − d, i + d] sentence

Probabilities P (ti|BOgram(S, i − d, i + d)) P (BOW (T )|BOgram(S,0, |S|))
Independence assumption

between the labels

Number of One per target word or phrase

classes

Training One per bilanguage token One per sentence

samples

Preprocessing Source/target word Source/target sentence

alignment alignment

unigrams, bigrams, and trigrams constructed from a window of d tokens around
the ith bilanguage token as features (Φ(S, i), shortened as Φ in the rest of the
section) to estimate the probability in Eq. (10.11). Note that although there are |S|
number of tokens in the resulting translation (phrT), the number of words in the
target string (T) could be more or less than |S| since some of the tokens (phrti)
may be multiword phrases or may even be the empty word (ε).

P (phrT |S) =
|S|∏
i=1

P (phrti|Φ(S, i − d, i + d)). (10.11)

10.3.2 Bag-of-Words Lexical Choice Model

The sequential lexical choice model described in the previous section treats the
selection of a lexical choice for a source word in the local lexical context as a
classification task. The data for training such models is derived from the word-
alignment corpus obtained from alignment algorithms such as GIZA++. The
decoded target lexical items have to be further reordered, but for closely related
languages the reordering could be incorporated into correctly ordered target phrases
as discussed previously.

For pairs of languages with radically different word order (e.g., English-Japanese),
there needs to be a global reordering of words similar to the case in the SFST-based
translation system. Also, for such differing language pairs, the alignment algorithms
such as GIZA++ perform poorly.
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These observations prompted us to formulate the lexical choice problem without
the need for word alignment information. We require a sentence-aligned corpus as
before, but we treat the target sentence as a bag of words, or BOW, assigned to
the source sentence. Given a source sentence, the goal is to estimate the probability
of the presence of a given target word in the target sentence. This is why, instead
of producing a target sentence, what we initially obtain is a target bag of words.
Each word in the target vocabulary is detected independently, so we have here a
very simple use of binary static classifiers. Training sentence pairs are considered
as positive examples when the word appears in the target, and negative otherwise.
Thus, the number of training examples equals the number of sentence pairs, in
contrast to the sequential lexical choice model which has one training example for
each token in the bilingual training corpus. The classifier is trained with n-gram
features (BOgrams(S, 0, |S|)) from the source sentence. During decoding the words
with conditional probability greater than a threshold θ are considered as the result
of lexical choice decoding.

BOW ∗
T = {t | P (t|BOgrams(S, 0, |S|)) > θ}. (10.12)

In order to reconstruct the proper order of words in the target sentence we
consider all permutations of words in BOW ∗

T and weight them by a target language
model. This step is similar to the one described in section 10.2.7 and we indeed use
the same implementation here.

The bag-of-words approach can also be modified to allow for length adjustments
of target sentences, if we add optional deletions in the final step of permutation
decoding. The parameter θ and an additional word deletion penalty can then be
used to adjust the length of translated outputs.

In section 10.6, we discuss several issues regarding this model.

10.4 Choosing the Classifier

This section addresses the choice of the classification technique, and argues that
one technique that yields excellent performance while scaling well is binary Maxent
with L1-regularization.

10.4.1 Multiclass vs. Binary Classification

The sequential and BOW models represent two different classification problems. In
the sequential model, we have a multiclass problem where each class ti is exclusive;
therefore, all the classifier outputs P (ti|Φ) must be jointly optimized such that∑

i P (ti|Φ) = 1. This can be problematic: with one classifier per word in the
vocabulary, even allocating the memory during training may exceed the memory
capacity of current computers.
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On the other hand, in the BOW model, each class can be detected independently,
and two different classes can be detected at the same time. This is known as the
one-vs.-other scheme: each class is trained with a separate binary classifier where
the positive examples belong to the class, and all the other examples are considered
as negative. The key advantage over the multiclass scheme is that not all classifiers
have to reside in the memory at the same time during training. This also allows for
parallelization. Fortunately for the sequential model, we can decompose a multiclass
classification problem into separate one-vs.-other problems.

Despite the approximation, the one-vs.-other scheme has been shown to perform
as well as the multiclass scheme (Rifkin and Klautau, 2004). As a consequence, we
use the same type of binary classifier for the sequential and the BOW models.

The excellent results recently obtained with the SEARN algorithm (Daumé et al.,
2006) also suggest that binary classifiers, when properly trained and combined, seem
to be capable of matching more complex structured output approaches.

10.4.2 Geometric vs. Probabilistic Interpretation

We separate the most popular classification techniques into two broad categories:

Geometric approaches maximize the width of a separation margin between the
classes. The most popular method is the support vector machine (SVM) (Vapnik,
1998).

Probabilistic approaches maximize the conditional likelihood of the output class
given the input features. This logistic regression is also called Maxent as it finds
the distribution with maximum entropy that properly estimates the average of each
feature over the training data (Berger et al., 1996).

In a systematic study on n-gram-based sentence classification (Haffner, 2005), we
found that the best accuracy is achieved with nonlinear (or kernel) SVMs, at
the expense of a high test time complexity, which is unacceptable for machine
translation. On the other hand, linear SVMs and regularized Maxent yield similar
performance. In theory, Maxent training, which scales linearly with the number
of examples, is faster than SVM training, which scales quadratically with the
number of examples. Note that with recent SVM training algorithms that are
linear (Joachims, 2006) or optimized for sparse data (Haffner, 2006), SVM training
time may no longer be a major issue, even with millions of examples. In our
first experiments with lexical choice models, we observed that Maxent slightly
outperformed SVMs. Using a single threshold with SVMs, some classes of words
were overdetected. This suggests that, as theory predicts, SVMs do not properly
approximate the posterior probability. We therefore chose to use Maxent as the
best probability approximator.
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10.4.3 L1 vs. L2 Regularization

Traditionally, Maxent is regularized by imposing a Gaussian prior on each weight:
this L2 regularization finds the solution with the smallest possible weights. However,
on tasks like machine translation with a very large number of input features, a
Laplacian L1 regularization is highly desirable, as the l1-norm encourages sparse
solutions where a large number of weights are zero.

A new L1-regularized Maxent algorithm was proposed for density estima-
tion (Dudik et al., 2004) and we adapted it to classification. We found this al-
gorithm to converge faster than the most commonly used algorithm in Maxent
training, which is L2-regularized L-BFGS (Malouf, 2002). The only type of algo-
rithms with a better training time are based on stochastic gradient descent 4 and
critically depend on the use of an L2-regularizer. In the final model, we found the
number of parameters using an L1 regularizer to be at least one order of magnitude
smaller than the number of parameters using an L2 regularizer.

A detailed derivation of the algorithm is beyond the scope of this chapter, and
can be found in Haffner et al. (2005). The most interesting characteristic of this
algorithm is that it is entirely featurecentric, which is very desirable for lexical
selection, as the learning process can be described as the selection of the few source
features (among hundreds of thousands) that have an impact on the target word.

While the Maxent framework starts with a featurecentric description, its most
common implementations encourage a nonsparse solution with a large number of
features, not only because of the L2-regularizer but also because the weight vector
is updated with a gradient descent procedure that will modify a large proportion
of the weights at each iteration. In our case, both the definition of the regularizer
in our loss function, and the greedy optimization technique we use are entirely
featurecentric and encourage sparsity.

Our regularizer is the weighted l1-norm of the weight vector R =
∑

k βk|wk|. This
formula can be derived through convex duality from a slack added to each feature
and comes with a principled method (Dudik et al., 2004) to estimate the regular-
ization metaparameters βk for each feature, so that no cross-validation is needed.
This is in contrast with other Lasso-like sparse logistic regression algorithms, which
have a single constant regularization metaparameter for all features (Krishnapuram
et al., 2005).

Our optimization algorithm only modifies one weight at each iteration. The greedy
procedure, inspired by Adaboost (Freund and Schapire, 1996), selects the weight wj

whose modification causes the largest drop in the loss function. For a hypothetical
new weight such that w′

j = wj + δ and w′
k = wk for k �= j, this requires computing

the variation of the loss function L(w′) − L(w) as a function of δ, such that the
value of δ minimizing this function can be obtained. In Haffner et al. (2005), we

4. Code available in http://leon.bottou.org/projects/sgd
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Table 10.3 Statistics about the training and development data 05 and 06.

Training Dev 2005 Dev 2006

Chinese English Chinese English Chinese English

Sentences 46,311 506 489

Running words 351,060 376,615 3826 3897 5214 6362∗

Vocabulary 11,178 11,232 931 898 1136 1134∗

Singletons 4348 4866 600 538 619 574∗

OOVs [%] - - 0.6 0.3 0.9 1.0

ASR WER [%] - - - - 25.2 -

Perplexity - - 33 - 86 -

# references - - 16 7
∗ First of multiple reference translations only.

show that, in the case of conditional Maxent, one can only minimize a bound on
this loss variation.
We also face a search over all features j which can be costly, as we compute the
optimal δ for each j. We restrict this search to a subset updated at each iteration by
discarding the features with no impact on the loss, and adding the features which
have not been examined for the longest time.

10.5 Data and Experiments

We have performed experiments on the IWSLT06 Chinese-English training and de-
velopment sets from 2005 and 2006 (Paul, 2006). The data are traveler task expres-
sions such as seeking directions, expressions in restaurants, and travel reservations.
Table 10.3 presents some statistics on the data sets. It must be noted that while
the 2005 development set matches the training data closely, the 2006 development
set has been collected separately and shows slightly different statistics for average
sentence length, vocabulary size, and out-of-vocabulary words. Also, the 2006 de-
velopment set contains no punctuation marks in Chinese, but the corresponding
English translations have punctuation marks. We also evaluated our models on the
speech recognition output and we report results on the 1-best output of the speech
recognizer. The 1-best Chinese speech recognition word error rate is 25.2%.

For the experiments, we tokenized the Chinese sentences into character strings
and trained the models discussed in the previous sections. Also, we trained a
punctuation prediction model using the Maxent framework on the Chinese character
strings in order to insert punctuation marks into the 2006 development data set.
The resulting character string with punctuation marks is used as input to the
translation decoder. For the 2005 development set, punctuation insertion was not
needed since the Chinese sentences already had the true punctuation marks.



10.5 Data and Experiments 199

Table 10.4 Results (BLEU) scores for the three different models on the transcriptions
for development sets 2005 and 2006 and ASR 1-best for development set 2006

Dev 2005 Dev 2006

Text Text ASR 1-best

SFST 51.8 19.5 16.5

SeqMaxEnt 53.5 19.4 16.3

BOWMaxEnt 59.9 19.3 16.6

In table 10.4 we present the results of the three different translation models
– SFST, sequential Maxent and bag-of-words Maxent – on the data described
above using the BLEU metric (Papineni et al., 2002). The test set has multiple
reference translations as indicated in table 10.3 and the BLEU metric takes this
into account. There are a few interesting observations that can be made based on
these results. First, on the 2005 development set, the sequential Maxent model
outperforms the SFST model, even though the two models were trained starting
from the same GIZA++ alignment. The difference, however, is due to the fact that
Maxent models can cope with increased lexical context5 and the parameters of the
model are discriminatively trained. The more surprising result is that the bag-of-
words Maxent model significantly outperforms the sequence Maxent model. The
reason is that the sequence Maxent model relies on the word alignment, which,
if erroneous, results in incorrect predictions by the sequential Maxent model. The
bag-of-words model, on the other hand does not rely on the word-level alignment
and can be interpreted as a discriminatively trained model of dictionary lookup for
a target word in the context of a source sentence.

The second set of observations relates to the difference in performance between
the 2005 development set and the 2006 development set. As indicated in the data
release document, the 2006 set was collected in a very different manner compared
to the 2005 set. As a consequence, the mismatch between the training set and
the 2006 development set in terms of lexical and syntactic difference can be seen
precipitating the lower performance. Due to this mismatch, the performance of the
Maxent models is not very different from that of the SFST model, indicating the lack
of good generalization across different genres. However, we believe that the Maxent
framework allows for incorporation of linguistic features such as morphological and
syntactic information that could potentially help in generalization across genres.
For translation of ASR 1-best, we see a systematic degradation of about 3% in
BLEU score compared to translating the transcription.

In order to compensate for this mismatch between the 2005 and 2006 data sets, we
computed a ten-fold average BLEU score by including 90% of the 2006 development
set into the training set and using 10% of the 2006 development set for testing,

5. We use six words to the left and right of a source word for sequential Maxent, but only
two words preceding source and target words for the SFST approach.
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Figure 10.7 Improvement in BLEU score with the increase in size of the permutation
window.

each time. The average BLEU score across these ten runs increased to 22.8 for the
BOWMaxEnt model.

In figure 10.7, we show the improvement of the BLEU score with the increase
in the permutation window sizes. We had to limit ourselves to a permute window
size of 10 due to memory limitations, even though the curve has not plateaued.
We anticipate using pruning techniques so that we can increase the window size
further.

10.5.1 UN and Hansard Corpora

In order to test the scalability of the global lexical selection approach, we also
performed lexical selection experiments on the United Nations (Arabic-English)
corpus and the Hansard (French-English) corpus using the SFST-based model and
the BOW Maxent model. We used one million training sentence pairs and tested
on 994 test sentences for the UN corpus. We used the same training and test split
for the Hansard corpus as in Zens and Ney (2004) (1.4 million training sentence
pairs and 5432 test sentences). The vocabulary sizes for the two corpora are shown
in table 10.5. Also in table 10.5 are the results in terms of F-measure between
the words in the reference sentence and the decoded sentences. We can see that the
BOW model outperforms the SFST-MT model on both corpora significantly. This is
due to a systematic 10% relative improvement for open-class words, as they benefit
from a much wider context. BOW performance on closed-class words is higher for
the UN corpus but lower for the Hansard corpus.

However, the BLEU scores for the BOW models after permutation is far lower
than those for the SFST-based model for both the corpora. The reason for the poor
performance is that the search space of strings created by a permutation window of
10 is woefully inadequate given that the average lengths of the sentences in the UN
and Hansard corpora are 26.8 and 16.0 words respectively. In the case of the IWSLT
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Table 10.5 Lexical selection results (F-measure) and BLEU scores on the Arabic-
English UN corpus and the French-English Hansard corpus. In parenthesis are the F-
measures for open-class and closed-class lexical items.

Corpus Vocabulary SFST-MT BOW

Source Target F-measure BLEU score F-measure BLEU score

UN 252,571 53,005 64.6 30.9 69.5 15.6

(60.5/69.1) (66.2/72.6)

Hansard 100,270 78,333 57.4 27.0 60.8 14.6

(50.6/67.7) (56.5/63.4)

data, the permutation window is sufficient to create a full search space given that
the average length of the sentences is less than ten words.

One can imagine segmenting the target language sentences into smaller units
(of less than ten words) such as clauses, and reconstructing the sentences by
restricting permutations to within clauses. However, this approach would entail
aligning the target language clauses with the source language clauses which in turn
requires a consistent syntactic parse of the source and target sentences. Training
of robust syntactic parsers relies on large parse-annotated sentence corpora which
are typically insufficient or absent for many languages. Hence, in this chapter, we
explore the limits of techniques that do not rely on syntactic information. However,
we believe that judicious use of syntactic information in our models should further
improve overall performance.

10.6 Discussion

The bag-of-words approach is very promising because it performs reasonably well
despite considerable and easy-to-identify losses in the transfer of information be-
tween the source and the target. The first and most obvious loss is about word
position. The only information we currently use to restore the target word position
is the target language model. The information about the grammatical role of a
word in the source sentence is completely lost. The language model might fortu-
itously recover this information if the sentence with the correct grammatical role
for the word happens to be the maximum likelihood sentence in the permutation
automaton.

We are currently working toward incorporating syntactic information on the
target words so as to be able to recover some of the grammatical role information
lost in the classification process. In preliminary experiments, we have associated
the target lexical items with supertag information (Bangalore and Joshi, 1999).
Supertags are labels that provide linear ordering constraints as well as grammatical
relation information. Although associating supertags to target words increases the
class set for the classifier, we have noticed that the degradation in the F-score is
on the order of 3% across different corpora. The supertag information can then be
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exploited in the sentence construction process. The use of supertags in phrase-based
SMT systems has been shown to improve results (Hassan et al., 2006).

A less obvious loss is the number of times a word or concept appears in the
target sentence. Function words like “the” and “of” can appear many times in an
English sentence. In the model discussed in this chapter, we index each occurrence
of the function word with a counter. In order to improve this method, we are
currently exploring a technique where the function words serve as attributes (e.g.,
definiteness, tense, case) on the contentful lexical items, thus enriching the lexical
item with morphosyntactic information.

A third issue concerning the bag-of-words model is the problem of synonyms –
target words which translate the same source word. Suppose that in the training
data, target words t1 and t2 are, with equal probability, translations of the same
source word. Then, in the presence of this source word, the probability of detecting
the corresponding target word, which is normally 0.8 (we assume some noise), will
be, because of discriminant learning, split equally between t1 and t2, that is, 0.4
and 0.4. Because of this synonym problem, we immediately see that the threshold
has to be set lower than 0.5, which is observed experimentally. However, if we set
the threshold to 0.3, both t1 and t2 will be detected in the target sentence, and we
found this to be a major source of undesirable insertions.

The BOW approach is different from the parsing-based approaches (Melamed,
2004; Zhang and Gildea, 2005; Cowan et al., 2006) where the translation model
tightly couples the syntactic and lexical items of the two languages. The decoupling
of the two steps in our model has the potential to generate paraphrased sentences
not necessarily isomorphic to the structure of the source sentence.

Our approach is also different from Carpuat and Wu (2007b), where lexical
choice is modeled as a word-sense disambiguation problem. Their approach relies on
local associations being computed by first using an alignment step and then using
position-specific, syntactic, and collocational features for disambiguating the word
(or phrase) senses. Their approach is similar to the sequential lexical choice model
presented in this chapter. The results of the word-sense disambiguation model are
then incorporated into the decoder of a phrase-based machine translation model
during the translation of a sentence.

10.7 Conclusions

We view machine translation as consisting of lexical selection and lexical reorder-
ing steps. These two steps need not necessarily be sequential and could be tightly
integrated. We have presented the weighted finite-state transducer model of ma-
chine translation where lexical choice and a limited amount of lexical reordering are
tightly integrated into a single transduction. We have also presented a novel ap-
proach to translation where these two steps are loosely coupled and the parameters
of the lexical choice model are discriminatively trained using a maximum entropy
model. The lexical reordering model in this approach is achieved using a permu-
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tation automaton. We have evaluated these two approaches on the 2005 and 2006
IWSLT development sets and shown that the techniques scale well to the Hansard
and UN corpora.





11 Discriminative Phrase Selection for SMT

Jesús Giménez
Llúıs Màrquez

This chapter explores the application of discriminative learning to the problem of
phrase selection in statistical machine translation. Instead of relying on maximum
likelihood estimates for the construction of translation models, we suggest using
local classifiers which are able to take further advantage of contextual information.
Local predictions are softly integrated into a factored phrase-based statistical
machine translation (MT) system leading to a significantly improved lexical choice,
according to a heterogeneous set of metrics operating at different linguistic levels.
However, automatic evaluation has also revealed that improvements in lexical
selection do not necessarily imply an improved sentence grammaticality. This fact
evinces that the integration of dedicated discriminative phrase translation models
into the statistical framework requires further study. Besides, the lack of agreement
between metrics based on different similarity assumptions indicates that more
attention should be paid to the role of automatic evaluation in the context of MT
system development.

11.1 Introduction

Traditional statistical machine translation (SMT) architectures, like the one imple-
mented in this chapter, address the translation task as a search problem (Brown
et al., 1990). Given an input string in the source language, the goal is to find the
output string in the target language which maximizes the product of a series of
probability models over the search space defined by all possible partitions of the
source string and all possible reorderings of the translated units. This search process
implicitly decomposes the translation problem into two separate but interrelated
subproblems:

Word selection, also referred to as lexical choice, is the problem of deciding,
given a word (or phrase) f in the source sentence, which word (or phrase) e in
the target language is the most appropriate translation. This problem is mainly
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addressed by translation models, which serve as probabilistic bilingual dictionaries,
typically accounting for P (f |e), P (e|f) of P (e, f). Translation models provide, for
each word (or phrase) in the source vocabulary, a list of translation candidates with
associated translation probabilities. During the search there is another component
which addresses word selection, the language model. This component helps the
decoder to move toward translations which are more appropriate, in terms of
grammaticality, in the context of what is known so far about the target sentence
being generated.

Word ordering refers to the problem of deciding which position the translation
candidate e must occupy in the target sentence. This problem is mainly addressed
by the reordering model which allows for certain word movement inside the sen-
tence. Again, the language model helps the decoder, in this case, to move toward
translations which preserve a better word ordering according to the rules of the
target language.

In standard phrase-based SMT systems, like that described by Koehn et al.
(2003), the estimation of these models is fairly simple. For instance, translation
models are built on the basis of relative frequency counts, i.e., maximum likelihood
estimates (MLEs). Thus, all the occurrences of the same source phrase are assigned,
no matter what the context is, the same set of translation probabilities. For that
reason, recently, there is a growing interest in the application of discriminative
learning, both for word ordering (Chang and Toutanova, 2007; Cowan et al., 2006)
and, especially, for word selection (Bangalore et al., 2007; Carpuat and Wu, 2007b;
Giménez and Màrquez, 2007a; Stroppa et al., 2007; Vickrey et al., 2005).

Interest in discriminative word selection has also been motivated by recent results
in word sense disambiguation (WSD). The reason is that SMT systems perform
an implicit kind of WSD, except that instead of working with word senses, SMT
systems operate directly on their potential translations. Indeed, recent semantic
evaluation campaigns have treated word selection as a separate task, under the name
of multilingual lexical sample (Chklovski et al., 2004; Jin et al., 2007). Therefore,
the same discriminative approaches that have been successfully applied to WSD
should be also applicable to SMT. In that spirit, instead of relying on MLE for the
construction of the translation models, approaches to discriminative word selection
suggest building dedicated discriminative translation models which are able to take
a wider feature context into account. Lexical selection is, therefore, addressed as a
classification task. For each possible source word (or phrase) according to a given
bilingual lexical inventory (e.g., the translation model), a distinct classifier is trained
to predict lexical correspondences based on local context. Thus, during decoding, for
every distinct instance of every source phrase, a distinct context-aware translation
probability distribution is potentially available.

In this chapter, we extend the work presented in Giménez and Màrquez (2007a).
First, in section 11.2, we describe previous and current approaches to dedicated
word selection. Then, in section 11.3, our approach to discriminative phrase trans-
lation (DPT) is fully described. We present experimental results on the application
of DPT models to the Spanish-to-English translation of European Parliament pro-
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ceedings. In section 11.4, prior to considering the full translation task, we measure
the local accuracy of DPT classifiers at the isolated phrase translation task in which
the goal is not to translate the whole sentence but only individual phrases with-
out having to integrate their translations in the context of the target sentence. We
present a comparative study on the performance of four different classification set-
tings based on two different learning paradigms, namely support vector machines
and maximum entropy models.

In section 11.5, we tackle the full translation task. We have built a state-of-the-
art factored phrase-based SMT system based on linguistic data views at the level of
shallow parsing (Giménez and Màrquez, 2005, 2006). We compare the performance
of DPT- and MLE-based translation models built on the same parallel corpus
and phrase alignments. DPT predictions are integrated into the SMT system in
a soft manner, by making them available to the decoder as an additional log-linear
feature so they can fully interact with other models (e.g., language, distortion, word
penalty, and additional translation models) during the search. We separately study
the effects of using DPT predictions for all phrases as compared to focusing on a
small set of very frequent phrases.

This chapter has also served to study the problem of machine translation evalu-
ation. We have applied a novel methodology for heterogeneous automatic MT eval-
uation which allows for separately analyzing quality aspects at different linguistic
levels, e.g., lexical, syntactic, and semantic (Giménez and Màrquez, 2007b). This
methodology also offers a robust mechanism to combine different similarity metrics
into a single measure of quality based on human likeness (Giménez and Màrquez,
2008). We have complemented automatic evaluation results through error analy-
sis and by conducting a number of manual evaluations. Our main conclusions are
summarized in section 11.6.

11.2 Approaches to Dedicated Word Selection

Brown et al. (1991a,b) were the first to suggest using dedicated WSD models in
SMT. In a pilot experiment, they integrated a WSD system based on mutual
information into their French-to-English word-based SMT system. Results were
limited to the case of binary disambiguation, i.e., deciding between only two
possible translation candidates, and to a reduced set of very common words. A
significantly improved translation quality was reported according to a process of
manual evaluation. However, apparently, they abandoned this line of research.

Some years passed until these ideas were recovered by Carpuat and Wu (2005b),
who suggested integrating WSD predictions into a phrase-based SMT system. In a
first approach, they did so in a hard manner, either for decoding, by constraining
the set of acceptable word translation candidates, or for postprocessing the SMT
system output, by directly replacing the translation of each selected word with the
WSD system prediction. However, they did not manage to improve MT quality.
They encountered several problems inherent in the SMT architecture. In particular,
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they described what they called the language model effect in SMT: “The lexical
choices are made in a way that heavily prefers phrasal cohesion in the output target
sentence, as scored by the language model.” This problem is a direct consequence
of the hard interaction between their WSD and SMT systems. WSD predictions
cannot adapt to the surrounding target context. In a later work, Carpuat and Wu
(2005a) analyzed the converse question, i.e., they measured the WSD performance
of SMT systems. They showed that dedicated WSD models significantly outperform
the WSD ability of current state-of-the-art SMT models. Consequently, SMT should
benefit from WSD predictions.

Simultaneously, Vickrey et al. (2005) studied the application of context-aware
discriminative word selection models based on WSD to SMT. Similarly to Brown
et al. (1991b), they worked with translation candidates instead of word senses,
although their models were based on maximum entropy and dealt with a larger set
of source words and higher levels of ambiguity. However, they did not approach the
full translation task but limited themselves to the blank-filling task, a simplified
version of the translation task, in which the target context surrounding the word
translation is available. They did not encounter the language model effect because
(i) the target context was fixed a priori, and (ii) they approached the task in a
soft way, i.e., allowing WSD-based models to interact with other models during
decoding.

Following similar approaches to that of Vickrey et al. (2005), Cabezas and Resnik
(2005) and Carpuat et al. (2006) used WSD-based models in the context of the
full translation task to aid a phrase-based SMT system. They reported a small
improvement in terms of BLEU score, possibly because they did not work with
phrases but limited their work to single words. Besides, they did not allow WSD-
based predictions to interact with other translation probabilities. More recently, a
number of authors, including us, have extended these works by moving from words
to phrases and allowing discriminative models to fully cooperate with other phrase
translation models. Moderately improved MT quality results have been obtained
(Bangalore et al., 2007; Carpuat and Wu, 2007a,b; Giménez and Màrquez, 2007a;
Stroppa et al., 2007; Venkatapathy and Bangalore, 2007). All these works were
being elaborated at the same time, and were presented in very near dates with very
similar conclusions. We further discuss the differences between them in section 11.6.

In a different approach, Chan et al. (2007) used a WSD system to provide
additional features for the hierarchical phrase-based SMT system based on bilingual
parsing developed by Chiang (2005, 2007). These features were intended to give a
bigger weight to the application of rules that are consistent with WSD predictions.
A moderate but significant improvement in terms of BLEU was reported.

As another alternative direction, Specia et al. (2007) has suggested applying
inductive logic programming techniques to the problem of word selection. They have
presented very promising results on a small set of words from different grammatical
categories. They have not yet approached the full translation task.
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Overall, apart from evincing that this is a very active research topic, some of
the works listed in this section show clear evidence that dedicated word selection
models might be useful for the purpose of MT.

11.3 Discriminative Phrase Translation

Instead of relying on MLE estimation to score the phrase pairs (fi, ej) in the
translation table, DPT models deal with the translation of every source phrase
fi as a multiclass classification problem, in which every possible translation of fi

is a class. As an illustration, in figure 11.1 we show a real example of Spanish-
to-English phrase translation, in which the source phrase “creo que,” in this case
translated as “I believe that,” has several possible candidate translations.

11.3.1 Problem Setting

Training examples are extracted from the same training data as in the case of
conventional MLE-based models, i.e., a phrase-aligned parallel corpus (see sec-
tion 11.5.1). We use each occurrence of each source phrase fi to generate a positive
training example for the class corresponding to the actual translation ej of fi in
the given sentence, according to the automatic phrase alignment. Let us note that
phrase translation is indeed a multilabel problem. Since word alignments allow
words both in the source and the target sentence to remain unaligned, the phrase
extraction algorithm employed allows each source phrase to be aligned with more
than one target phrase, and vice versa, with the particularity that all possible

Figure 11.1 An example of phrase translation.
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phrase translations are embedded or overlap. However, since the final goal of DPT
classifiers is not to perform local classification but to provide a larger system with
translation probabilities, in our current approach no special treatment of multilabel
cases has been performed.

11.3.2 Learning

There exist a wide variety of learning algorithms which can be applied to the
multiclass classification scenario defined. In this work we have focused on two
families, namely support vector machines (SVMs)1 (Vapnik, 1995; Cristianini and
Shawe-Taylor, 2000), and maximum entropy (ME)2 (Jaynes, 1957; Berger et al.,
1996). We have tried four different learning settings based, respectively, on linear
binary SVMs (SVMlinear), degree-2 polynomial binary SVMs (SVMpoly2), linear
multiclass SVMs (SVMmc), and multiclass ME models (MaxEnt).

Binary vs. Multiclass Classification

While approaches 3 and 4 implement by definition a multiclass classification scheme,
approaches 1 and 2 are based on binary classifiers, and, therefore, the multiclass
problem must be binarized. We have applied one-vs.-all binarization, i.e., a binary
classifier is learned for every possible translation candidate ej in order to distin-
guish between examples of this class and all the rest. Each occurrence of each source
phrase fi is used to generate a positive example for the actual class (or classes) cor-
responding to the aligned target phrase (or phrases), and a negative example for the
classes corresponding to the other possible translations of fi. At classification time,
given a source phrase fi, SVMs associated to each possible candidate translation ej

of fi will be applied, and the most confident candidate translation will be selected
as the phrase translation.

Support Vector Machines vs. Maximum Entropy

The SVM and ME algorithms are based on different principles. While the SVM
algorithm is a linear separator which relies on margin maximization, i.e., on finding
the hyperplane which is more distant to the closest positive and negative exam-
ples, ME is a probabilistic method aiming at finding the least biased probability
distribution that encodes certain given information by maximizing its entropy. An
additional interest in comparing the behavior of SVM and ME classifiers is moti-
vated by the nature of the global MT system architecture. While the outcomes of
ME classifiers are probabilities which can be easily integrated into the SMT frame-

1. SVMs have been learned using the SVMlight and SVMstruct packages by Thorsten
Joachims, which are freely available at http://svmlight.joachims.org (Joachims, 1999).
2. ME models have been learned using the MaxEnt package by Zhang Le, which is freely
available at http://homepages.inf.ed.ac.uk/s0450736/maxent_toolkit.html.
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work, SVM predictions are unbounded real numbers. This issue will be further
discussed in section 11.5.2.

Linear vs. Polynomial Kernels

Although SVMs allow for a great variety of kernel functions (e.g., polynomial,
Gaussian, sigmoid, etc.), in this work, based on results published in recent WSD
literature (Lee and Ng, 2002; Màrquez et al., 2006), we have focused on linear and
polynomial kernels of degree 2 (see section 11.4). The main advantage of using
linear kernels, over other kernel types, is that this allows for working in the primal
formulation of the SVM algorithm and, thus, to take advantage of the extreme
sparsity of example feature vectors. This is a key factor, in terms of efficiency, since
it permits a considerable speedup of both the training and classification processes
(Giménez and Màrquez, 2004a). The use of linear kernels requires, however, the
definition of a rich feature set.

11.3.3 Feature Engineering

We have built a feature set which considers different kinds of information, always
from the source sentence. Each example has been encoded on the basis of the local
context of the phrase to be disambiguated and the global context represented by the
whole source sentence.

As for the local context, we use n-grams (n ∈ {1, 2, 3}) of word forms, parts of
speech (POS), lemmas, and base phrase chunking IOB labels3 in a window of five
tokens to the left and to the right of the phrase to disambiguate. We also exploit
parts of speech, lemmas, and chunk information inside the source phrase, because,
in contrast to word forms, these may vary and thus report very useful information.
The text has been automatically annotated using the following tools: SVMTool for
POS tagging (Giménez and Màrquez, 2004b), Freeling for lemmatization (Carreras
et al., 2004), and Phreco for base phrase chunking (Carreras et al., 2005). These
tools have been trained on the WSJ Penn Treebank (Marcus et al., 1993) for the
case of English, and on the 3LB Treebank (Navarro et al., 2003) for Spanish, and,
therefore, rely on their tag sets. However, in the case of parts of speech, because tag
sets take into account fine morphological distinctions, we have additionally defined
several coarser classes grouping morphological variations of nouns, verbs, adjectives,
adverbs, pronouns, prepositions, conjunctions, determiners, and punctuation marks.

As for the global context, we collect topical information by considering content
words (i.e., nouns, verbs, adjectives, and adverbs) in the source sentence as a bag of
lemmas. We distinguish between lemmas at the left and right of the source phrase
being disambiguated.

3. IOB labels are used to denote the position (inside, outside, or beginning of a chunk)
and, if applicable, the type of chunk.
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Table 11.1 An example of phrase translation features

Source Sentence creo[creer:VMI:B−VP] que[que:CS:B−CONJP] pronto[pronto,AQ,O]

podremos[podremos,VMS,B−VP] felicitarle[felicitarle,VMN,I−VP]

por[por,SP,B−PP] su[su,DP,B−NP] éxito[exito,NC,I−NP]

poĺıtico[politico,AQ,I−NP] .[.,Fp,O]

Source phrase features

Lemma n-grams (creer)1, (que)2, (creer,que)1

POS n-grams (VMI)1, (CS)2, (VMI,CS)1

Coarse POS n-grams (V)1, (C)2, (V,C)1

Chunk n-grams (B-VP)1, (B-CONJP)2, (B-VP,B-CONJP)1

Source sentence features

Word n-grams (pronto)1, (podremos)2, (felicitarle)3, (por)4, (su)5, ( ,pronto)−1,

(pronto,podremos)1, (podremos,felicitarle)2, (felicitarle,por)3, (por,su)4,

( , ,pronto)−2, ( ,pronto,podremos)−1, (pronto,podremos,felicitarle)1,

(podremos,felicitarle,por)2, (felicitarle,por,su)3

Lemma n-grams (pronto)1, (poder)2, (felicitar)3, (por)4, (su)5, ( ,pronto)−1,

(pronto,poder)1, (poder,felicitar)2, (felicitar,por)3, (por,su)4,

( , ,pronto)−2, ( ,pronto,poder)−1, (pronto,poder,felicitar)1,

(poder,felicitar,por)2, (felicitar,por,su)3

POS n-grams (AQ)1, (VMS)2, (VMN)3, (SP)4, (DP)5, ( ,AQ)−1, (AQ,VMS)1,

(VMS,VMN)2, (VMN,SP)3, (SP,DP)4, ( , ,AQ)−2, ( ,AQ,VMS)−1,

(AQ,VMS,VMN)1, (VMS,VMN,SP)2, (VMN,SP,DP)3

Coarse POS n-grams (A)1, (V)2, (V)3, (S)4, (D)5
( ,A)−1, (A,V)1, (V,V)2, (V,S)3, (S,D)4
( ,A,V)−1, ( , ,A)−2, (A,V,V)1, (V,V,S)2, (V,S,D)3

Chunk n-grams (O)1, (B-VP)2, (I-VP)3, (B-PP)4, (B-NP)5, ( ,O)−1,

(O,B-VP)1, (B-VP,I-VP)2, (I-VP,B-PP)3, (B-PP,B-NP)4, ( , ,O)−2,

( ,O,B-VP)−1, (O,B-VP,I-VP)1, (B-VP,I-VP,B-PP)2, (I-VP,B-PP,B-NP)3

Bag-of-lemmas left = ∅
right = { pronto, poder, felicitar, éxito, poĺıtico }

As an illustration, table 11.1 shows the feature representation for the example
depicted in figure 11.1. At the top, the reader may find the sentence annotated at the
level of shallow syntax (following a “word[lemma:PoS:IOB]” format). The corresponding
source phrase and source sentence features are shown below. We have not extracted
any feature from the target phrase, nor the target sentence, nor the correspondence
(i.e., word alignments) between source and target phrases. The reason is that, in
this work, the final purpose of DPT models is to aid an existing SMT system to
make better lexical choices during decoding, and using these types of features would
have forced us to build a more complex decoder.

11.4 Local Phrase Translation

Analogously to the word translation task definition by Vickrey et al. (2005), rather
than predicting the sense of a word according to a given sense inventory, in phrase
translation the goal is to predict the correct translation of a phrase, for a given
target language, in the context of a sentence. This task is simpler than the full
translation task in that phrase translations of different source phrases do not have
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Table 11.2 Numerical description of the set of “all” phrases

Phrase Phrase

#occurrences #phrases length #phrases entropy #phrases

(100, 500] 23,578 1 7004 [0, 1) 6154

(500, 1000] 3340 2 12,976 [1, 2) 11,648

(1000, 5000] 2997 3 7314 [2, 3) 8615

(5000, 10,000] 417 4 2556 [3, 4) 3557

(10,000, 100,000] 295 5 799 [4, 5) 657

> 100,000 22 [5, 6) 18

to interact in the context of the target sentence. However, it provides an insight
into the gain potential.

11.4.1 Data Sets and Settings

We have used the data from the Openlab 2006 Initiative4 promoted by the TC-
STAR Consortium.5 This test suite is entirely based on European Parliament pro-
ceedings6 covering April 1996 to May 2005. We have focused on the Spanish-to-
English task. The training set consists of 1,281,427 parallel sentences. After per-
forming phrase extraction over the training data (see details in section 11.5.1), also
discarding source phrases occurring only once (around 90%), translation candidates
for 1,729,191 source phrases were obtained. In principle, we could have built clas-
sifiers for all these source phrases. However, in many cases learning could be either
unfruitful or not necessary at all. For instance, 27% of these phrases are not am-
biguous (i.e., have only one associated possible translation), and most phrases count
on few training examples. Based on these facts, we decided to build classifiers only
for those source phrases with more than one possible translation and 100 or more
occurrences. Besides, due to the fact that phrase alignments have been obtained
automatically and, therefore, include many errors, source phrases may have a large
number of associated phrase translations. Most are wrong and occur very few times.
We have discarded many of them by considering only as possible phrase translations
those which are selected more than 0.5% of the time as the actual translation.7 The
resulting training set consists of 30,649 Spanish source phrases. Table 11.2 presents
a brief numerical description of the phrase set. For instance, it can be observed that
most phrases are trained on less than 5000 examples. Most of them are length-2
phrases and most have an entropy lower than 3.

4. http://tc-star.itc.it/openlab2006/
5. http://www.tc-star.org/
6. http://www.europarl.eu.int/
7. This value was empirically selected so as to maximize the local accuracy of classifiers
on a small set of phrases of a varying number of examples.
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Table 11.3 Evaluation scheme for the local phrase translation task

Evaluation scheme

#examples Development and test Test only

2–9 leave-one-out

10–99 10-fold cross-validation

100–499 5-fold cross-validation

500–999 3-fold cross-validation

1000–4999 train(80%)–dev(10%)–test(10%) train(90%)–test(10%)

5000–9999 train(70%)–dev(15%)–test(15%) train(80%)–test(20%)

> 10,000 train(60%)–dev(20%)–test(20%) train(75%)–test(25%)

As to feature selection, we discarded features occurring only once in the training
data, and constrained the maximum number of dimensions of the feature space to
100,000, by discarding the less frequent features.

11.4.2 Evaluation

Local DPT classifiers are evaluated in terms of accuracy against automatic phrase
alignments, which are used as the gold standard. Let us note that, in the case
of multilabel examples, we count the prediction by the classifier as a hit if it
matches any of the classes in the solution. Moreover, in order to maintain the
evaluation feasible, a heterogeneous evaluation scheme has been applied (see table
11.3). Basically, when there are few examples available we apply cross-validation,
and the more examples available, the fewer folds are used. Besides, because cross-
validation is costly, when there are more than 1000 examples available we simply
split them into training, development, and test sets, keeping most of the examples
for training and a similar proportion of examples for development and test. Also, as
the number of examples increases, the smaller proportion is used for training and
the bigger proportion is held out for development and test. In all cases, we have
preserved, when possible, the proportion of samples of each phrase translation so
folders do not get biased.

11.4.3 Adjustment of Parameters

Supervised learning algorithms are potentially prone to overfit training data. There
are, however, several alternatives to fight this problem. In the case of the SVM
algorithm, the contribution of training errors to the objective function of margin
maximization is balanced through the C regularization parameter of the soft margin
approach (Cortes and Vapnik, 1995). In the case of the ME algorithm, the most
popular method is based on the use of a Gaussian prior on the parameters of the
model, whose variance, σ2, may be balanced (Chen and Rosenfeld, 1999). Learning
parameters are typically adjusted so as to maximize the accuracy of local classifiers
over held-out data. In our case, a greedy iterative strategy has been followed. In the
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Table 11.4 Numerical description of the representative set of 1000 phrases selected

Phrase Phrase

#occurrences #phrases length #phrases entropy #phrases

(100, 500] 790 1 213 [1, 2) 467

(500, 1000] 100 2 447 [2, 3) 362

(1000, 5000] 92 3 240 [3, 4) 139

(5000, 10,000] 11 4 78 [4, 5) 31

(10,000, 50,000] 7 5 22 [5, 6) 1

first iteration several values are tried. In each following iteration, n values around
the top scoring value of the previous iteration are explored at a resolution of 1/n

times the resolution of the previous iteration, and so on, until a maximum number
of iterations I is reached.8

11.4.4 Comparative Performance

We present a comparative study of the four learning schemes described in sec-
tion 11.3.2. The C and σ2 parameters have been adjusted. However, because pa-
rameter optimization is costly, taking into account the large number of classifiers
involved, we have focused on a randomly selected set of 1000 representative source
phrases with a number of examples in the [100, 50,000] interval. Phrases with a
translation entropy lower than 1 have also been discarded. A brief numerical de-
scription of this set is available in table 11.4.

Table 11.5 shows comparative results, in terms of accuracy. The local accuracy for
each source phrase is evaluated according to the number of examples available, as
described in table 11.3. DPT classifiers are also compared to the most frequent trans-
lation baseline (MFT), which is equivalent to selecting the translation candidate
with highest probability according to MLE. The macro column shows macroav-
eraged results over all phrases, i.e., the accuracy for each phrase counts equally
toward the average. The micro column shows microaveraged accuracy, where each
test example counts equally.9 The Optimal columns correspond to the accuracy
computed on optimal parameter values, whereas the Default columns correspond
to the accuracy computed on default C and σ2 parameter values. In the case of
SVMs, we have used the SVMlight default value for the C Parameter.10 In the case

8. In our case, n = 2 and I = 3. In the case of the C parameter of SVMs, first iteration
values are set to 10i (for i ∈ [−4, +4]), while for the σ2 of ME prior Gaussians, values are
{0, 1, 2, 3, 4, 5}.
9. The contribution of each phrase to microaveraged accuracy has been conveniently
weighted so as to avoid the extra weight conferred to phrases evaluated via cross-validation.

10. The C parameter for each binary classifier is set to
P

( �xi �xi)
−1

N
, where �xi is a sample

vector and N corresponds to the number of samples. In the case of multiclass SVMs, the
default value is 0.01.
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Table 11.5 Phrase translation accuracy over a selected set of 1000 phrases based on
different learning types vs. the MFT baseline

Optimal Default

Model macro (%) micro (%) macro (%) micro (%)

MFT 64.72 67.63 64.72 67.63

SVMlinear 70.59 74.12 69.31 73.51

SVMpoly2 71.10 74.70 69.79 73.86

SVMmc 69.93 73.39 57.56 63.15

MaxEnt 71.08 74.34 67.38 70.69

of ME, we have set σ2 to 1 for all classifiers. The reason is that this was the most
common return value, with a frequency over 50% of the cases of the parameter
tuning process on the selected set of 1000 phrases.

When the C and σ2 are properly optimized, all learning schemes, except linear
multiclass SVMs, exhibit a similar performance, with a slight advantage in favor of
polynomial SVMs. The increase with respect to the MFT baseline is comparable to
that described by Vickrey et al. (2005). These results are, taking into account the
differences between both tasks, also coherent with results attained in WSD (Agirre
et al., 2007). However, when default values are used, ME models suffer a significant
decrease, and multiclass SVMs fall even below the MFT baseline. Therefore, in
these cases, a different parameter adjustment process for every phrase is required.

11.4.5 Overall Performance

The aim of this subsection is to analyze which factors have a bigger impact on the
performance of DPT classifiers applied to the set of all phrases. In this scenario,
no matter how greedy the process is, the adjustment of the C and σ2 becomes
impractical. For that reason we have used fixed default values. In the case of SVMs,
for the sake of efficiency, we have limited our study to the use of linear kernels.

Phrase translation results are shown in table 11.6. Again, phrases are evaluated
according to the number of examples available, as described in table 11.3. We
distinguish between the case of using all the 30,649 phrases counting on 100 or more
examples (columns 1 and 2), and the case of considering only a small subset of 317
very frequent phrases occurring more than 10,000 times (columns 3 and 4). The
first observation is that both DPT learning schemes outperform the MFT baseline
when default learning parameters are used, linear SVMs clearly being the best.
The second observation is that the difference, in terms of microaveraged accuracy
gain with respect to the MFT baseline, between using all phrases and focusing on
a set of very frequent ones is very small. The reason is that the set of frequent
phrases dominates the evaluation with 51.65% of the total number of test cases.
In contrast, macroaveraged results confer a significantly wider advantage to DPT
models applied to the set of frequent phrases, especially in the case of linear SVMs.
This result is significant, taking into account the high results of the MFT baseline
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Table 11.6 Overall phrase translation accuracy

All Frequent

Model macro (%) micro (%) macro (%) micro (%)

MFT 70.51 80.49 79.77 86.12

SVMlinear 74.52 85.48 86.32 91.33

MaxEnt 72.73 82.53 82.31 87.94
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Figure 11.2 Analysis of phrase translation results

on this set. A third, marginal, observation is that frequent phrases are easier to
disambiguate, presumably because of their lower entropy (see MFT performance).

In figure 11.2 we analyze several factors which have a direct influence on the
behavior of DPT classifiers. All plots correspond to the case of linear SVMs. For
instance, the top-left plot shows the relationship between the local accuracy gain
and the number of training examples for all source phrases. As expected, DPT
classifiers trained on fewer examples exhibit the most unstable behavior, yielding
a maximum accuracy gain of 0.65 and a maximum decrease of 0.30. However,
in general, with a sufficient number of examples (over 10,000), DPT classifiers
outperform the MFT baseline. It can also be observed that for most of the phrases
trained on more than around 200,000 examples, the accuracy gain is very low. The
reason, however, is in the fact that these are phrases with very low translation
entropy, mostly stop words, such as punctuation marks (“.”, “,”), determiners (el,
la, los, las, un, una), or conjunctions and prepositions (y, de, en, a). There is a very
interesting positive case, that of que, which acts mostly as a conjunction or relative
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pronoun, and that most often gets translated into “that” or “which.” This phrase,
which appears more than 600,000 times in the data with a translation entropy of
1.68, attains an accuracy gain of 0.16.

The top-right plot shows the relationship between microaveraged accuracy and
source phrase length. There is improvement across all phrase lengths, but, in gen-
eral, the shorter the phrase, the larger the improvement. This plot also indicates
that phrases up to length 3 are on average harder to disambiguate than longer
phrases. Thus, there seems to be a tradeoff between phrase length, level of ambigu-
ity (i.e., translation entropy), and number of examples. Shorter phrases are harder
because they exhibit higher ambiguity. DPT is a better model for these phrases
because it is able to properly take advantage of the large number of training exam-
ples. Longer phrases are easier to model because they present a lower ambiguity.
Midlength phrases are hardest because they present a high ambiguity and not many
examples.

We further investigate this issue in the two bottom plots. The bottom-left plot
shows the relationship between the local accuracy gain and translation entropy for
all source phrases. It can be observed that for phrases with entropy lower than
1 the gain is very small, while for higher entropy levels the behavior varies. In
order to clarify this scenario, we analyze the relationship between microaveraged
accuracy and phrase translation entropy at different intervals (bottom-right plot).
As expected, the lower the entropy, the higher the accuracy. Interestingly, it can
also be observed that as the entropy increases, the accuracy gain in favor of DPT
models increases as well.

11.5 Exploiting Local DPT Models for the Global Task

In this section, we analyze the impact of DPT models when the goal is to translate
the whole sentence. First, we describe our phrase-based SMT baseline system and
how DPT models are integrated into the system. Then, some aspects of evaluation
are discussed, with special focus on the adjustment of the parameters governing the
search process. Finally, MT results are evaluated and analyzed, and several concrete
cases are commented on.

11.5.1 Baseline System

Our system follows a standard phrase-based SMT architecture. This involves three
main components:

Translation model. For translation modeling, we follow the approach by Koehn
et al. (2003), in which phrase pairs are automatically induced from word alignments.
In our case, however, we have built richer word alignments by working with linguistic
data views up to the level of shallow syntax, as described in Giménez and Màrquez
(2005, 2006). This can be seen as a particular case of the recently emerged factored



11.5 Exploiting Local DPT Models for the Global Task 219

MT models (Koehn and Hoang, 2007). Phrase alignments are extracted from a
word-aligned parallel corpus linguistically enriched with part-of-speech information,
lemmas, and base phrase chunk labels. Text has been automatically annotated using
the tools described in section 11.3.3. We have used the GIZA++ SMT Toolkit11

to generate word, POS, lemma, and chunk label alignments (Och and Ney, 2003).
We have followed the global phrase extraction strategy described in Giménez and
Màrquez (2005), i.e., a single translation table is built on the union of alignments
corresponding to different linguistic data views. Phrase extraction is performed
following the phrase-extract algorithm described by Och (2002). This algorithm
takes as input a word-aligned parallel corpus and returns, for each sentence, a set
of phrase pairs that are consistent with word alignments. A phrase pair is said to
be consistent with the word alignment if all the words within the source phrase
are only aligned with words within the target phrase, and vice versa. We have
worked with the union of source-to-target and target-to-source alignments, with no
heuristic refinement. Only phrases up to length 5 are considered. Also, phrase pairs
appearing only once are discarded, and phrase pairs in which the source/target
phrase is more than three times longer than the target/source phrase are ignored.
Phrase pairs are scored on the basis of relative frequency (i.e., maximum likelihood
estimates, MLEs).

Language model. We use the SRI language modeling toolkit (Stolcke, 2002).
Language models are based on word trigrams. Linear interpolation and Kneser-
Ney discounting have been applied for smoothing.

Search algorithm. We use the Pharaoh stack-based beam search decoder (Koehn,
2004a), which naturally fits with the previous tools. Keeping with usual practice,
in order to speed up the translation process, we have fixed several of the decoder
parameters. In particular, we have limited the number of candidate translations to
30, the maximum beam size (i.e., stack size) to 100, and used a beam threshold of
10−5 for pruning the search space. We have also set a distortion limit of 4 positions.

This architecture was extended by Och and Ney (2002) for considering additional
feature functions further than the language and translation probability models.
Formally:

ê = argmax
e

{log P (e|f)} ≈ argmax
e

{
M∑

m=1

λmhm(e, f)

}
.

The integration of DPT predictions into this scheme is straightforward. Models
are combined in a log-linear fashion:

11. http://www.fjoch.com/GIZA++.html
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log P (e|f) ≈ λlm log P (e) + λg log PMLE(f |e) + λd log PMLE(e|f)

+ λDPT log PDPT(e|f) + λd log Pd(e, f) + λw log w(e).

P (e) stands for the language model probability. PMLE(f |e) corresponds to the
MLE-based generative translation model, whereas PMLE(e|f) corresponds to the
analogous discriminative model. PDPT(e|f) corresponds to the DPT model which
uses DPT predictions in a wider feature context. Finally, Pd(e, f) and w(e) corre-
spond to the distortion and word penalty models.12 The λ parameters controlling
the relative importance of each model during the search must be adjusted. We
further discuss this issue in subsection 11.5.5.

11.5.2 Soft Integration of DPT Predictions

We consider every instance of fi as a separate classification problem. In each case,
we collect the classifier outcome for all possible phrase translations ej of fi. In the
case of ME classifiers, outcomes are directly probabilities. However, in the case of
SVMs, outcomes are unbounded real numbers. We transform them into probabilities
by applying the softmax function described by Bishop (1995):

P (ej |fi) =
eγ scoreij∑K

k=1 eγ scoreik

,

where K denotes the number of possible target phrase translations for a given
source phrase fi, and scoreij denotes the outcome for target phrase ej according to
the SVM classifier trained for fi. In order to verify the suitability of this procedure,
we computed rejection curves for the estimated output probabilities with respect
to classification accuracy. For that purpose, we have used the representative set of
1000 phrases from subsection 11.4.4. This set offers almost 300,000 predictions. In
order to calculate rejection curves, the probability estimates for these predictions
are sorted in decreasing order. At a certain level of rejection (n%), the curve plots
the classifier accuracy when the lowest scoring n% subset is rejected. We have
collected values for 100 rejection levels at a resolution of 1%. We tested different
values for the γ parameter of the softmax function. The selected final value is γ = 1.
In figure 11.3 (left plot) we plot the rejection curve for linear SVMs. For the sake
of comparison, the rejection curve for ME classifiers is also provided (right plot). It
can be observed that both rejection curves are increasing and smooth, indicating a
good correlation between probability estimates and classification accuracy.13

12. We have used default Pharaoh’s word penalty and distortion models.
13. Other transformation techniques can be found in the recent literature. For instance,
Platt (2000) suggested using a sigmoid function.
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Figure 11.3 Rejection curves. Linear SVMs + softmax (left) vs. ME (right).

At translation time, we do not constrain the decoder to use the translation ej with
highest probability. Instead, we make all predictions available and let the decoder
choose. We have precomputed all DPT predictions for all possible translations of all
source phrases appearing in the test set. The input text is conveniently transformed
into a sequence of identifiers,14 which allows us to uniquely refer to every distinct
instance of every distinct word and phrase in the test set. Translation tables are
accordingly modified so that each distinct occurrence of every single source phrase
has a distinct list of phrase translation candidates with their corresponding DPT
predictions. Let us note that, as described in section 11.4.1, for each source phrase,
not all associated target translations which have an MLE-based prediction also have
a DPT prediction, but only those with a sufficient number of training examples.
In order to provide equal opportunities for both models, we have incorporated
translation probabilities for these phrases into the DPT model by applying linear
discounting.

As an illustration, table 11.7 shows a fragment of the translation table corre-
sponding to the phrase creo que in the running example. Notice how this con-
crete instance has been properly identified by indexing the words inside the phrase
(creo que → creo14 que441). We show MLE-based and DPT predictions (columns
3 and 4, respectively) for several phrase candidate translations sorted in decreas-
ing MLE probability order. The first observation is that both methods agree on
the top-scoring candidate translation, “I believe that.” However, the distribution of
the probability mass is significantly different. While in the case of the MLE-based
model, there are three candidate translations clearly outscoring the rest, concen-
trating more than 70% of the probability mass, in the case of the DPT model
predictions give a clear advantage to the top-scoring candidate although with less
probability, and the rest of the candidate translations obtain a very similar score.

14. In our case a sequence of wi tokens, where w is a word and i corresponds to the number
of occurrences of word w seen in the test set before the current occurrence number. For
instance, the source sentence in the example depicted in figure 11.1 is transformed into
creo14 que441 pronto0 podremos0 felicitarle0 por109 su0 éxito3 poĺıtico4 .366.
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Table 11.7 An example of a translation table

fi ej PM LE(e|f) PDP T (e|f)

...

creo14 que441 i believe that 0.3624 0.2405

creo14 que441 i think that 0.1975 0.0506

creo14 que441 i think 0.1540 0.0475

creo14 que441 i feel that 0.0336 0.0511

creo14 que441 i think it 0.0287 0.0584

creo14 que441 i believe that it 0.0191 0.0487

creo14 que441 i think that it 0.0114 0.0498

creo14 que441 believe that 0.0108 0.0438

creo14 que441 i believe that this 0.0077 0.0482

creo14 que441 i believe it 0.0060 0.0439

...

Using this technique for integrating DPT predictions into the system, we have
avoided having to implement a new decoder. However, because translation tables
may become very large, it involves a severe extra cost in terms of memory and disk
consumption. Besides, it imposes a serious limitation on the kind of features the
DPT system may use. In particular, features from the target sentence under con-
struction and from the correspondence between source and target (i.e., alignments)
cannot be used.

11.5.3 Settings

We use the data sets described in section 11.4.1. Besides, for evaluation purposes,
we count on a separate set of 1008 sentences. Three human references per sentence
are available. We have randomly split this set into two halves, which are respectively
used for development and test.

11.5.4 Evaluation

Evaluating the effects of using DPT predictions in the full translation task presents
two serious difficulties. In the first place, the actual room for improvement caused by
better translation modeling is smaller than estimated in section 11.4. This is mainly
due to the SMT architecture itself which relies on a search over a probability space
in which several models cooperate. For instance, in many cases errors caused by
a poor translation modeling may be corrected by the language model. In a recent
study over the same data set (Spanish-to-English translation of the Openlab 2006
corpus), Vilar et al. (2006) found that only around 28% of the errors committed by
their SMT system were related to word selection. In half of these cases errors are
caused by a wrong word-sense disambiguation, and in the other half the word sense
is correct but the lexical choice is wrong. In the second place, most conventional
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automatic evaluation metrics have not been designed for this purpose and may,
therefore, not be able to reflect possible improvements attained due to a better word
selection. For instance, n-gram-based metrics such as BLEU (Papineni et al., 2002)
tend to favor longer string matchings, and are, thus, biased toward word ordering.
In order to cope with evaluation difficulties we have applied several complementary
actions, which are described below.

Heterogeneous Automatic MT Evaluation

Most existing metrics limit their scope to the lexical dimension. However, recently,
there have been several attempts to take into account deeper linguistic levels.
For instance, ROUGE (Lin and Och, 2004a) and METEOR (Banerjee and Lavie,
2005) may consider stemming. Additionally, METEOR may perform a lookup for
synonymy in WordNet (Fellbaum, 1998). We may find as well several syntax-based
metrics (Liu and Gildea, 2005; Amigó et al., 2006; Owczarzak et al., 2007; Mehay
and Brew, 2007), and even metrics operating at the level of shallow semantics
(Giménez and Màrquez, 2007b) and semantics (Giménez, 2007). For the purpose
of performing heterogeneous automatic MT evaluations, we use the IQMT package
(Giménez and Amigó, 2006), which provides a rich set of more than 500 metrics at
different linguistic levels.15 For our experiments, we have selected a representative
set of around 50 metrics, based on different similarity criteria:

Lexical similarity

BLEU-n | BLEUi-n: Accumulated and individual BLEU scores for several
n-gram levels (n = 1...4) (Papineni et al., 2002).

NIST-n | NISTi-n: Accumulated and individual NIST scores for several
n-gram levels (n = 1...5) (Doddington, 2002).

GTM-e: General text matching F-measure, for several values of the e

parameter controlling the reward for longer matchings (e = 1...3) (Melamed
et al., 2003).

METEOR: F-measure based on unigram alignment (Banerjee and Lavie,
2005):

∗ METEORexact: only “exact” module.

∗ METEORporter: “exact” and porter stem”.

∗ METEORwnstm: “exact”, “porter stem” and “wn stem”.

∗ METEORwnsyn: “exact”, “porter stem”, “wn stem” and “wn synonymy”.

ROUGE: Recall-oriented measure (Lin and Och, 2004a):

∗ ROUGEn: for several n-grams (n = 1...4).

∗ ROUGEL: longest common subsequence.

15. The IQMT software is available at http://www.lsi.upc.edu/~nlp/IQMT
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∗ ROUGEw 1.2: weighted longest common subsequence (w = 1.2).

∗ ROUGES∗: skip bigrams with no max-gap-length.

∗ ROUGESU∗: skip bigrams with no max-gap-length, including uni-
grams.

WER: Word error rate (Nießen et al., 2000). We use 1-WER.

PER: Position-independent word error rate (Tillmann et al., 1997b). We use
1-PER.

TER: Translation edit rate (Snover et al., 2006). We use 1-TER.

Shallow syntactic similarity (SP)

SP-Op-� Average lexical overlapping over parts-of-speech.

SP-Oc-� Average lexical overlapping over base phrase chunk types.

At a more abstract level, we use the NIST metric to compute accumulated/individual
scores over sequences of:

SP-NISTl Lemmas.

SP-NISTp Parts of speech.

SP-NISTc Base phrase chunks.

SP-NISTiob Chunk IOB labels.

Syntactic similarity

On dependency parsing (DP)

∗ DP-HWC These metrics correspond to variants of the headword chain
matching (HWCM) metric presented by Liu and Gildea (2005), slightly
modified so as to consider different headword chain types:

· DP-HWCw words.

· DP-HWCc grammatical categories.

· DP-HWCr grammatical relations.

In all cases only chains up to length 4 are considered.

∗ DP-Ol|Oc|Or These metrics correspond exactly to the LEVEL,
GRAM, and TREE metrics introduced by Amigó et al. (2006):

· DP-Ol-� Average overlapping among words according to the level
of the dependency tree they hang at.

· DP-Oc-� Average overlapping among words directly hanging from
terminal nodes (i.e., grammatical categories) of the same type.

· DP-Or-� Average overlapping among words ruled by nonterminal
nodes (i.e., grammatical relationships) of the same type.

On constituency parsing (CP)

∗ CP-STM These metrics correspond to a variant of the syntactic tree
matching (STM) metric presented by Liu and Gildea (2005), which con-
siders subtrees up to length 9.
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∗ CP-Op-� Similarly to “SP-Op-�”, this metric computes average lexical
overlapping over parts-of-speech, which are now consistent with the full
parsing.

∗ CP-Oc-� Analogously, this metric computes average lexical overlapping
over base phrase chunk types.

Shallow-semantic similarity

On named entities (NEs)

∗ NE-Oe-� Average lexical overlapping among NEs of the same type.
This metric includes the NE type “O” (i.e., not-an-NE). We introduce
another variant, “NE-Oe-��”, which considers only actual NEs.

∗ NE-Me-� Average lexical matching among NEs of the same type.

On semantic roles (SR)

∗ SR-Or-� Average lexical overlapping among SRs of the same type.

∗ SR-Mr-� Average lexical matching among SRs of the same type.

∗ SR-Or This metric reflects “ role overlapping ”, i.e., overlapping among
semantic roles independently of their lexical realization.

Semantic similarity

On discourse representations (DRs)

∗ DR-STM This metric is similar to the CP-STM variant referred to
above, in this case applied to discourse representation structures, i.e.,
discourse referents and discourse conditions (Kamp, 1981), instead of
constituent trees.

∗ DR-Or-� Average lexical overlapping among discourse representation
structures of the same type.

∗ DR-Orp-� Average morphosyntactic overlapping (i.e., among gram-
matical categories –parts-of-speech– associated to lexical items) among
discourse representation structures of the same type.

A detailed description of these metrics can be found in the IQMT technical manual
(Giménez, 2007). Let us only explicitly note that most of these metrics rely on
automatic linguistic processors, which are not equally available for all languages,
and which exhibit different levels of performance (i.e., effectiveness and efficiency).
This implies several important limitations on their applicability.

MT Evaluation Based on Human Likeness

Heterogeneous MT evaluations might be very informative. However, a new question
arises. Since metrics are based on different similarity criteria, and, therefore,
biased toward different aspects of quality, scores conferred by different metrics
may be controversial. Thus, as system developers we require an additional tool,
a metaevaluation criterion, which allows us to select the most appropriate metric
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or set of metrics for the task at hand. Most often, metrics are evaluated on the
basis of human acceptability, i.e., according to their ability to capture the degree
of acceptability to humans of automatic translations, usually measured in terms
of correlation with human assessments. However, because human assessments are
expensive to acquire, a prominent alternative metaevaluation criterion, referred to
as human likeness, has been recently suggested. Metrics are evaluated according
to their ability to capture the features that distinguish human translations from
automatic ones. This can be measured in terms of discriminative power (Corston-
Oliver et al., 2001; Lin and Och, 2004b; Kulesza and Shieber, 2004; Amigó et al.,
2005; Gamon et al., 2005). The underlying assumption is that, given that human
translations are the gold standard, a good metric should never rank automatic
translations higher than human translations. Then, when a system receives a high
score according to such a metric, we can ensure that the system is able to emulate
the behavior of human translators.

We follow the approach suggested by Amigó et al. (2005) in QARLA, a prob-
abilistic framework originally designed for the case of automatic summarization,
but adapted by Giménez and Amigó (2006) to the MT scenario. Following their
methodology, we use QARLA in two complementary steps. First, we determine the
set of metrics with highest discriminative power by maximizing over the KING
measure. Second, we use QUEEN to measure overall MT quality according to the
optimal metric set.16 Given a set of test cases A, a set of similarity metrics X , and
sets of human references R:

QUEENX,R(A) operates under the unanimity principle, i.e., the assumption
that a ”good” translation must be similar to all human references according to all
metrics. QUEEN is defined as the probability, over R×R×R, that, for every metric
in X , the automatic translation a is more similar to a human reference r than two
other references, r′ and r′′, to each other. Formally:

QUEENX,R(a) = Prob(∀x ∈ X : x(a, r) ≥ x(r′, r′′)).

where x(a, r) stands for the similarity between a ∈ A and r ∈ R according to the
metric x ∈ X . Thus, QUEEN is able to capture the features that are common to
all human references, and accordingly reward those automatic translations which
share them, and penalize those which do not. Besides, QUEEN exhibits several
properties which make it really practical for the purpose of our task. First, since
QUEEN focuses on unanimously supported quality distinctions, it is is a measure
of high precision. Second, QUEEN provides a robust means of combining several
metrics into a single measure of quality; it is robust against metric redundancy, i.e.,
metrics devoted to very similar quality aspects, and with respect to metric scale
properties.

16. The KING and QUEEN measures are available inside IQMT.
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KINGA,R(X) represents the probability that, for a given set of human references
R, and a set of metrics X , the QUEEN quality of a human reference is not lower
than the QUEEN quality of any automatic translation in A. Formally:

KINGA,R(X) = Prob(∀a ∈ A : QUEENX,R−{r}(r) ≥ QUEENX,R−{r}(a)).

Thus, KING accounts for the proportion of cases in which a set of metrics has been
able to fully distinguish between automatic and manual translations.

MT evaluation based on human likeness has been successfully applied to the
optimization of SMT system parameters (Lambert et al., 2006). Besides, it has been
shown to be a robust means of integrating different linguistic quality dimensions
(Giménez and Màrquez, 2008).

A Measure of Phrase Translation Accuracy

For the purpose of evaluating the changes related only to a specific set of phrases
(e.g., “all” vs. “frequent” sets), we introduce a new measure, Apt , which computes
phrase translation accuracy for a given list of source phrases. For every test
case, Apt counts the proportion of phrases from the list appearing in the source
sentence which have a valid17 translation both in the target sentence and in at
least one reference translation. Cases in which no valid translation is available
in any reference translation are not taken into account. Moreover, in order to
avoid using the same target phrase more than once for the same translation case,
when a phrase translation is used, source and target phrases are discarded. In fact,
because in general source-to-target alignments are either unknown or automatically
acquired, Apt calculates an approximate solution. Current Apt implementation
inspects phrases from left to right in decreasing length order.

11.5.5 Adjustment of Parameters

As we have seen in section 11.4, DPT models provide translation candidates only
for specific subsets of phrases. Therefore, in order to translate the whole test set,
alternative translation probabilities for all the source phrases in the vocabulary
which do not have a DPT prediction must be provided. We have used MLE-
based predictions to complete DPT tables. However, interaction between DPT and
MLE models is problematic. Problems arise when, for a given source phrase, fi,
DPT predictions must compete with MLE predictions for larger source phrases fj

overlapping with or containing fi (see section 11.5.6). We have alleviated these
problems by splitting DPT tables into three subtables: (1) phrases with DPT

17. Valid translations are provided by the translation table.
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prediction, (2) phrases with DPT prediction only for subphrases of it, and (3)
phrases with no DPT prediction for any subphrase. Formally:

PDPT’(e|f) =

8><
>:

λ′
dPDPT(e|f) if ∃ PDPT(e|f)

λoPMLE(e|f) if (¬∃ PDPT(e|f)) ∧ (∃ PDPT(e′|f ′) ∧ (f ′ ∩ f �= ∅))
λ¬PMLE(e|f) otherwise

.

In order to perform fair comparisons, all λ parameters governing the search must
be adjusted. We have simultaneously adjusted these parameters following a greedy
iterative strategy similar to that applied for the optimization of the C and σ2

parameters of local DPT classifiers (see subsection 11.4.3).18 The parameter con-
figuration yielding the highest score, according to a given automatic evaluation
measure x, over the translation of the development set will be used to translate
the test set. Let us remark that, since metrics are based on different similarity as-
sumptions, optimal parameter configurations may vary very significantly depending
on the metric used to guide the optimization process. Most commonly, the BLEU
metric, widely accepted as a de facto standard, is selected. However, in this work,
we additionally study the system behavior when λ parameters are optimized on
the basis of human likeness, i.e, by maximizing translation quality according to the
QUEEN measure over the metric combination X+ of highest discriminative power
according to KING. This type of tuning has proved to lead to more robust system
configurations than tuning processes based on BLEU alone (Lambert et al., 2006).

For the sake of efficiency, we have limited our study to the set of lexical metrics
provided by IQMT. Metrics at deeper linguistic levels have not been used because
their computation is currently too slow to allow for massive evaluation processes as
it is the case of parameter adjustment. Moreover, due to the fact that exploring all
possible metric combinations was not viable, for the KING optimization we have
followed a simple algorithm which performs an approximate suboptimal search. The
algorithm proceeds as follows. First, individual metrics are ranked according to
their KING quality.19 Then, following that order, metrics are individually added
to the set of optimal metrics only if the global KING increases.

The resulting optimal set is: X+ = { METEORwnsyn, ROUGEw 1.2 }, which
includes variants of METEOR and ROUGE, metrics which, interestingly, share
a common ability to capture lexical and morphological variations (use of stemming,
and dictionary lookup).

18. In order to keep the optimization process feasible in terms of time, the search space
is pruned as described in section 11.5.1.
19. KING has been computed over a representative set of baseline systems based on
different nonoptimized parameter configurations.
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11.5.6 Results

We compare the performance of DPT- and MLE-based models in the full translation
task. Since the adjustment of internal parameters (C and σ2) is impractical, based
on the results from section 11.4, we have limited our study to test the behavior of
binary SVMs. Also, for the sake of efficiency, we have limited our study to linear
kernels.

We have used a system which relies on MLE for the estimation of translation
models (MLE) as a baseline. We separately study the case of (i) using DPT for
the set of all phrases and that of (ii) using DPT predictions for the reduced set
of frequent phrases. This latter set exhibits a higher local accuracy. However, most
phrases in this set are single words.20 Thus, it constitutes an excellent material to
analyze the interaction between DPT- and MLE-based probabilities in the context
of the global task. Besides, this set covers 67% of the words in the test, whereas
the “all” set covers up to 95% of the words. In both cases, DPT predictions for
uncovered words are provided by the MLE model.

Table 11.8 shows automatic evaluation results according to different metrics,
including BLEU and QUEEN. For the sake of informativeness, METEORwnsyn

and ROUGEw 1.2 scores used in QUEEN computations are provided as well. Phrase
translation accuracy is evaluated by means of the Apt measure, both over the set
of “all” and “frequent” phrases. We have separately studied the cases of parameter
optimizations based on BLEU (rows 1 to 3) and QUEEN (rows 4 to 6). The
first observation is that in the two cases DPT models yield an improved lexical
choice according to the respective evaluation metric guiding the adjustment of
parameters. However, for the rest of metrics there is not necessarily improvement.
Interestingly, in the case of BLEU-based optimizations, DPT predictions as an
additional feature report a significant BLEU improvement over the MLE baseline
only when all phrases are used (see rows 2 and 3). In contrast, in the case of
QUEEN-based optimizations, improvements take place in both cases, although with
less significance. It is also interesting to note that the significant increase in phrase
translation accuracy (Apt) only reports a very modest improvement in the rest
of the metrics (see rows 5 and 6). This could be actually revealing a problem of
interaction between DPT predictions and other models.

BLEU vs QUEEN

Table 11.8 illustrates the enormous influence of the metric selected to guide the
optimization process. A system adjusted so as to maximize the score of a specific
metric does not necessarily maximize the scores conferred by other metrics. In that
respect, BLEU and QUEEN exhibit completely opposite behaviors. Improvements

20. The “frequent” set consists of 240 length-1 phrases, 64 length-2 phrases, 12 length-3
phrases, and 1 length-4 phrase.
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Table 11.8 Automatic evaluation of MT results (DPT predictions as an additional
feature)

System QUEEN METEOR ROUGE Apt Apt

Config. (lexical) (wnsyn) (w 1.2) (all) (frq) BLEU

BLEU-based optimization

MLE 0.4826 0.7894 0.4385 0.7099 0.7915 0.6331

DPTall 0.4717 0.7841 0.4383 0.7055 0.7823 0.6429

DPTfrq 0.4809 0.7863 0.4386 0.7102 0.7941 0.6338

QUEEN-based optimization

MLE 0.4872 0.7924 0.4384 0.7158 0.8097 0.6149

DPTall 0.4907 0.7949 0.4391 0.7229 0.8115 0.6048

DPTfrq 0.4913 0.7934 0.4404 0.7245 0.8251 0.6038

in BLEU do not necessarily imply improvements in QUEEN, and vice versa.
We have further analyzed this controversial relationship by comparing optimal
parameter configurations, and observed that λs are in a very similar range, except
for the weight of the word penalty model (λw), close to 0 in the case of BLEU,
whereas in the case of QUEEN, it takes negative values around -1, thus favoring
longer translations. This seems to indicate that the heuristically motivated brevity
penalty factor of BLEU could be responsible for the BLEU vs. QUEEN puzzle
observed. We have verified this hypothesis by inspecting BLEU values before
applying the penalty factor. These are on average 0.02 BLEU points higher (0.605
→ 0.625), which explains part of the puzzle. The other part must be found in
the fact that, while BLEU is based on n-gram precision, QUEEN is a metametric
which combines different quality aspects, in this case borrowed from ROUGE and
METEOR.

Beyond Lexical Similarity

In order to analyze other quality aspects beyond the lexical dimension, in table
11.9 we provide automatic evaluation results according to several metric repre-
sentatives from different linguistic levels. Metrics are grouped according to the
level at which they operate (i.e., lexical, shallow-syntactic, syntactic, shallow-
semantic, and semantic). We have also computed two different QUEEN values,
namely QUEEN(X+) and QUEEN(X+

LF ). The first value corresponds to the ap-
plication of QUEEN to the optimal metric combination based on lexical features
only, whereas the second value corresponds to QUEEN applied to the optimal metric
combination considering linguistic features at different levels. In this latter case, the
optimal metric combination, obtained following the procedure described in subsec-
tion 11.5.5, is X+

LF = { METEORwnsyn, SP-NISTp, SR-Mr- }, which includes metrics
at the lexical, morphosyntactic, and shallow-semantic levels, respectively, based on



11.5 Exploiting Local DPT Models for the Global Task 231

Table 11.9 Automatic evaluation of MT results. Linguistic features and metaevaluation

BLEU-based optim. QUEEN-based optim.

Metric KING MLE DPTall DPTfrq MLE DPTall DPTfrq

1-WER 0.1521 0.6798 0.6908 0.6842 0.6652 0.6504 0.6542

1-PER 0.1422 0.7679 0.7764 0.7701 0.7571 0.7397 0.7481

1-TER 0.1508 0.7031 0.7135 0.7062 0.6882 0.6737 0.6777

BLEU 0.1164 0.6331 0.6429 0.6338 0.6149 0.6048 0.6038

NIST 0.1488 11.2205 11.3403 11.2398 10.9525 10.7508 10.8012

GTM.e1 0.1151 0.8971 0.8954 0.8977 0.8988 0.8948 0.9013

GTM.e2 0.1257 0.4364 0.4391 0.4348 0.4321 0.4296 0.4259

ROUGEL 0.1270 0.6958 0.6984 0.6962 0.6914 0.6887 0.6907

ROUGEW 0.1594 0.4385 0.4383 0.4386 0.4384 0.4391 0.4404

MTRexact 0.1601 0.7324 0.7278 0.7306 0.7332 0.7376 0.7381

MTRwnsyn 0.1786 0.7894 0.7841 0.7863 0.7924 0.7949 0.7934

QUEEN(X+) 0.1806 0.4826 0.4717 0.4809 0.4872 0.4907 0.4913

SP-Op-� 0.1217 0.6915 0.6904 0.6914 0.6901 0.6834 0.6868

SP-Oc-� 0.1263 0.6878 0.6895 0.6883 0.6884 0.6855 0.6857

SP-NISTl 0.1455 11.3156 11.4405 11.3335 11.0455 10.8469 10.9004

SP-NISTp 0.1865 9.9739 10.0359 9.9399 9.7361 9.5766 9.5174

SP-NISTiob 0.1772 7.6315 7.6583 7.6174 7.4876 7.3850 7.3525

SP-NISTc 0.1680 6.9357 7.0100 6.9507 6.8205 6.6931 6.7000

DP-HWCw 0.1071 0.2755 0.2823 0.2712 0.2778 0.2742 0.2743

DP-HWCc 0.1475 0.5048 0.4980 0.4994 0.5051 0.4848 0.5014

DP-HWCr 0.1481 0.4491 0.4443 0.4433 0.4492 0.4292 0.4435

DP-Ol-� 0.1382 0.5100 0.5089 0.5073 0.5149 0.5034 0.5063

DP-Oc-� 0.1561 0.6078 0.6032 0.6034 0.6043 0.6053 0.6039

DP-Or -� 0.1693 0.4672 0.4642 0.4627 0.4653 0.4597 0.4610

CP-Op-� 0.1217 0.6883 0.6893 0.6886 0.6872 0.6807 0.6839

CP-Oc-� 0.1349 0.6530 0.6559 0.6541 0.6520 0.6444 0.6485

CP-STM 0.1224 0.4723 0.4686 0.4674 0.4712 0.4606 0.4573

NE-Oe-�� 0.1131 0.7067 0.7100 0.7073 0.7046 0.6954 0.7020

NE-Oe-� 0.0079 0.2049 0.2047 0.2069 0.2017 0.2004 0.2042

NE-Me-� 0.0079 0.2001 0.1991 0.2021 0.1964 0.1984 0.1994

SR-Or -� 0.1138 0.4347 0.4361 0.4400 0.4324 0.4158 0.4234

SR-Mr -� 0.1323 0.2892 0.2861 0.2892 0.2901 0.2895 0.2846

SR-Or 0.1230 0.6359 0.6416 0.6482 0.6378 0.6219 0.6329

DR-Or -� 0.1369 0.4766 0.4788 0.4758 0.4813 0.4819 0.4781

DR-Orp-� 0.1501 0.5840 0.5847 0.5814 0.5877 0.5923 0.5825

DR-STM 0.0688 0.3526 0.3510 0.3539 0.3633 0.3570 0.3543

QUEEN(X
+
LF ) 0.2011 0.3018 0.2989 0.3058 0.3008 0.2937 0.3005
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unigram alignment precision, part-of-speech n-gram matching, and average lexical
matching over semantic roles.

First of all, metrics are evaluated according to their ability to distinguish between
manual and automatic translations, as computed by KING. Broadly speaking,
KING is a measure of discriminative power. For instance, if a metric obtains a
KING of 0.5, it means that in 50% of the test cases, it is able to explain by itself
the differences in quality between manual and automatic translations. Thus, KING
serves as an estimate of the impact of specific quality aspects on the overall system
performance. In that respect, it can be observed that highest KING values are
obtained by metrics based on lexical, shallow-syntactic, and syntactic similarities.

As to system evaluation, quality aspects are diverse, and thus, it is not always
the case that all aspects improve together. For instance, at the lexical and shallow-
syntactic levels, most metrics prefer the DPTall system optimized over BLEU.
Only some ROUGE and METEOR variants prefer the DPT systems optimized
over QUEEN. After all, the X+ set, used in the QUEEN computation, consists of
these metrics, so this result was expected. In any case, the fact that all metrics
based on lexical similarities consistently prefer DPT over MLE confirms that DPT
predictions yield an improved lexical choice.

At the syntactic level, however, most metrics prefer the MLE systems. Only
the shallowest metrics, e.g., DP-HWCw (i.e., lexical headword matching over depen-
dency trees), CP-Op- and CP-Oc- (i.e., lexical overlapping over parts of speech and
phrase constituents) seem to prefer DPT systems, always optimized over BLEU.
This is a very interesting result since it reveals that an improved lexical similarity
does not necessarily lead to an improved syntactic structure.

At the shallow-semantic level, while NE metrics are not very informative,21

SR metrics seem to prefer the DPTfrq system optimized over BLEU, whereas at
the properly semantic level, metrics based on discourse representations prefer the
DPTall and MLE systems optimized over QUEEN. Therefore, no clear conclusions
can be made as to which model or optimization strategy leads to a better semantic
structure.

Finally, combining metrics from all linguistic levels on the basis of human likeness,
i.e., QUEEN(X+

LF ), the best system is DPTfrq optimized over BLEU. This would
indicate that focusing on a set of frequent phrases is more productive in terms of
overall quality.

Several conclusions must be drawn from these results. First, the fact that an
improved lexical and semantic similarity does not necessarily lead to an improved
sentence grammaticality might be revealing problems of interaction between DPT
predictions and the other models in the SMT system. We have verified this hy-
pothesis through a number of manual evaluations. These have revealed that gains
are mainly related to the adequacy dimension, whereas for fluency there is no sig-

21. Observe the low KING values attained, close to zero, except for the case of the ‘NE-Oe-
’ metric, which also considers overlapping among tokens which are not named entities.
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Table 11.10 Case of analysis #1. DPT models help

Source yo quisiera que el incumplimiento institucional del consejo fuera sancionado

Ref 1 i would like the council ’s institutional infringement to be penalised

Ref 2 i would like the council ’s institutional non-fulfilment of its obligations to be

sanctioned

Ref 3 i would like to see the institutional non-compliance of the council punished

BLEU-based optimizations

MLE i would like to see the failure to comply with institutional outside of the

council sanctioned

DPTall i would like to see the institutional breach of the council was sanctioned

DPTfrq i would like to see the institutional breach of the council outside sanctioned

QUEEN-based optimizations

MLE i would like to see the failure to comply with the institutional councils outside

sanctioned

DPTall i would like to see the failure to comply with the institutions of the council

were to be sanctioned

DPTfrq i would like to see the failure to comply with the institutional councils outside

sanctioned

nificant improvement. See, for instance, manual evaluations reported in Giménez
and Màrquez (2007a). These correspond to the case of pairwise system compar-
isons. Two different judges evaluated a subset of translation test cases in terms of
adequacy and fluency. Results reported an adequacy improvement in 39% of the
cases, while in 17% there was a decrement. In the case of fluency, results reported
improvement in 30% of the cases, while in 37% there was a decrement.

Second, the lack of consensus between metrics based on different similarity criteria
reinforces the need for evaluation methodologies which allow system developers to
take into account a heterogeneous set of quality aspects.

Error Analysis

Tables 11.10, 11.11, and 11.12 show three sentence fragments illustrating the
different behavior of the system configurations evaluated. We start, in table 11.10,
by showing a positive case in which the DPT predictions help the system to find a
better translation for fuera sancionado. Observe how baseline SMT systems, whose
translation models are based on MLE, all wrongfully translate fuera as “outside”
instead of as an auxiliary verb form (e.g., “was” or “were”) or past form of the
accompanying verb sancionado (e.g., “sanctioned” or “penalised”) . In contrast,
DPTall systems are able to provide more appropriate translations for this phrase,
regardless of the metric guiding the parameter optimization process. Observe also,
how DPTfrq systems, which, unfortunately, do not count on DPT predictions
for this not-frequent-enough phrase, commit all the same mistakes as MLE-based
systems.

Tables 11.11 and 11.12 present two cases in which the metric guiding the
optimizations has a stronger influence. In table 11.11, all MLE baseline systems
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Table 11.11 Case of analysis #2. DPT models may help

Source aquel diputado cuyo nombre no conozco

Ref 1 the member whose name i do not know

Ref 2 the honourable member , whose name i can not recall

Ref 3 that member whose name i ignore

BLEU-based optimizations

MLE that member whose behalf i do not know

DPTall that member whose name i do not know

DPTfrq that member whose behalf i do not know

QUEEN-based optimizations

MLE that member on whose behalf i am not familiar with

DPTall that member on whose behalf i am not familiar with

DPTfrq that mep whose behalf i am not familiar with

Table 11.12 Case of analysis #3. DPT models may not help

Source poco más del 40 % de los fondos van a parar a esos páıses .

Ref 1 only slightly more than 40 % of the money ends up in those countries .

Ref 2 little more than 40 % of these funds end up in these countries .

Ref 3 little more than 40 % of the funds are going to those countries .

BLEU-based optimizations

MLE little more than 40 % of the funds go to them .

DPTall little more than 40 % of the funds will stop to these countries .

DPTfrq little more than 40 % of the funds go to these countries .

QUEEN-based optimizations

MLE just a little more than 40 % of the money goes to those countries .

DPTall little more than 40 % of the funds are going to stop to these countries .

DPTfrq little more than 40 % of the funds are going to stop to these countries .

wrongfully translate cuyo nombre into “whose behalf”. Only the ‘DPTall’ system
optimized over BLEU is able to find a correct translation, “whose name”. In table
11.12, while MLE-based systems provide all fairly correct translations of van a parar
a into “go to”, DPT predictions may cause the system to wrongfully translate van a
parar a into “are going to stop to”. Only the DPTfrq system optimized over BLEU
is able to find a correct translation. The underlying cause behind these two cases
is that there is no DPT prediction for cuyo nombre and van a parar a, two phrases
of very high cohesion, but only for subphrases of it (e.g., cuyo, nombre, van, a,
parar, van a , a parar). DPT predictions for these subphrases must compete with
MLE-based predictions for larger phrases, which may cause problems of interaction.

11.6 Conclusions

In this chapter, we have shown that discriminative phrase translation may be
successfully applied to SMT. Despite the fact that measuring improvements in word
selection is a very delicate issue, experimental results, according to several well-
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known metrics based on lexical similarity, show that dedicated DPT models yield a
significantly improved lexical choice over traditional MLE-based ones. However, by
evaluating linguistic aspects of quality beyond the lexical level (e.g., syntactic, and
semantic), we have found that an improved lexical choice and semantic structure
does not necessarily lead to improved grammaticality. This result has been verified
through a number of manual evaluations, which have revealed that gains are mainly
related to the adequacy dimension, whereas for fluency there is no significant
improvement.

As we have seen in section 11.2, other authors have recently conducted simi-
lar experiments. Although closely related, there exist several important differences
between the work of Carpuat and Wu (2007b), Bangalore et al. (2007), Stroppa
et al. (2007), and ours. Some are related to the context of the translation task,
i.e., language-pair and task domain. For instance, while we work in the Spanish-to-
English translation of European Parliament proceedings, Carpuat and Wu (2007b)
and Bangalore et al. (2007) work on the Chinese-to-English translation of basic
travel expressions and newswire articles, and Stroppa et al. (2007) work on the
Chinese-to-English and Italian-to-English translation of basic travel expressions.
Additionally, Bangalore et al. (2007) present results on Arabic-to-English transla-
tion of proceedings of the United Nations and on French-to-English translation of
proceedings of the Canadian Parliament.

Other differences are related to the disambiguation system itself. While we rely
on SVM predictions, Carpuat and Wu (2007b) use an ensemble of four combined
models (näıve Bayes, maximum entropy, boosting, and kernel PCA-based models),
Stroppa et al. (2007) rely on memory-based learning, and Bangalore et al. (2007)
use maximum entropy. Besides, Bangalore et al. (2007) employ a slightly different
SMT architecture based on stochastic finite-state transducers which addresses the
translation task as two separate processes: (i) global lexical selection, i.e., dedicated
word selection; and (ii) sentence reconstruction. Moreover, their translation models
are indeed bilingual language models. They also deal with reordering in a different
manner. Prior to translation, the source sentence is reordered so as to approximate
the right order of the target language. This allows them to perform a monotonic
decoding.

There are also significant differences in the evaluation process. Bangalore et al.
(2007) rely on BLEU as the only measure of evaluation, Stroppa et al. (2007)
additionally rely on NIST, and Carpuat and Wu (2007b) show results according to
eight different standard evaluation metrics based on lexical similarity, including
BLEU and NIST. In contrast, in this study, we have used a set of evaluation
metrics operating at deeper linguistic levels. We have also relied on the QUEEN
measure, which allows for nonparametric combinations of different metrics into a
single measure of quality.

Besides, this study has also served to start a discussion on the role of automatic
metrics in the development cycle of MT systems and the importance of metaevalu-
ation. We have shown that basing evaluations and parameter optimizations on dif-
ferent metrics may lead to very different system behaviors. For system comparison,
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this may be solved by conducting manual evaluations. However, this is impractical
for the adjustment of parameters, where hundreds of different configurations are
tried. Thus, we argue that more attention should be paid to the metaevaluation
process. In our case, metrics have been evaluated on the basis of human likeness.
Other solutions exist. The main point, in our opinion, is that system development
is metricwise. In other words, for the sake of robustness, it is crucial that the metric
(or set of metrics) guiding the development process be able to capture the possible
quality variations induced by system modifications. This is especially important
given the fact that, most often, system improvements focus on partial aspects of
quality, such as word selection or word ordering, which can not always be expected
to improve together.

Finally, the fact that improvements in adequacy do not lead to an improved
fluency evinces that the integration of local DPT probabilities into the statistical
framework requires further study. We believe that if DPT models considered
features from the target side under generation and from the correspondence between
source and target, phrase translation accuracy would improve and cooperation with
the decoder would be even softer. Nevertheless, predictions based on local training
may not always be well suited for being integrated in the target translation. Thus,
we also argue that if phrase translation classifiers were trained in the context of the
global task, their integration would be more robust and translation quality could
further improve. The possibility of moving toward a new global DPT architecture
in the fashion, for instance, of those suggested by Tillmann and Zhang (2006) or
Liang et al. (2006) should be considered.
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Statistical machine translation systems are usually trained on large amounts of
bilingual text, used to learn a translation model, and also on large amounts of
monolingual text in the target language, used to train a language model. In this
chapter we explore the use of semisupervised methods for the effective use of
monolingual data from the source language in order to improve translation quality.
In particular, we use monolingual source language data from the same domain as the
test set (without directly using the test set itself) and use semisupervised methods
for model adaptation to the test set domain. We propose several algorithms with
this aim, and present the strengths and weaknesses of each one. We present detailed
experimental evaluations using French–English and Chinese–English data and show
that under some settings translation quality can be improved.

12.1 Introduction

In statistical machine translation (SMT), translation is modeled as a decision
process. The goal is to find the translation t of source sentence s which maximizes
the posterior probability:

argmax
t

p(t | s) = arg max
t

p(s | t) · p(t). (12.1)

This decomposition of the probability yields two different statistical models which
can be trained independently of each other: the translation model p(s | t) and the
target language model p(t).

State-of-the-art SMT systems are trained on large collections of text which
consist of bilingual corpora (to learn the parameters of the translation model),
and of monolingual target language corpora (for the target language model). It
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has been shown, e.g., in Brants et al. (2007), that adding large amounts of target
language text improves translation quality considerably, as improved language
model estimates about potential output translations can be used by the decoder
in order to improve translation quality. However, the availability of monolingual
corpora in the source language has not been shown to help improve the system’s
performance. We will show how such corpora can be used to achieve higher
translation quality.

Even if large amounts of bilingual text are given, the training of the statistical
models usually suffers from sparse data. The number of possible events, i.e., phrase
pairs in the two languages, is too big to reliably estimate a probability distribution
over such pairs. Another problem is that for many language pairs the amount of
available bilingual text is very limited. In this chapter, we address this problem and
propose a general framework to solve it. Our hypothesis is that adding information
from source language text can also provide improvements. Unlike adding target
language text, this hypothesis is a natural semisupervised learning problem.

To tackle this problem, we propose algorithms for semisupervised learning. We
translate sentences from the source language and use them to retrain the SMT
system with the hope of getting a better translation system. The evaluation is
done just once at the end of the learning process. Note the difference between
this approach and the transductive approach in Ueffing et al. (2007a), where the
latter treats the test set as the additional monolingual source data. In the work
presented here, the additional monolingual source data is drawn from the same
domain as the test set. In particular, we filter the monolingual source language
sentences based on their similarity to the development set, as explained in section
12.3.3. Semisupervised learning can be seen as a means to adapt the SMT system
to a new domain or style that is different from the bilingual training data. For
instance, a system trained on newswire could be used to translate weblog texts.
The method proposed here adapts the trained models to the style and domain of
the new domain without requiring bilingual data from this domain.

We present detailed experimental evaluations using French–English and Chinese–
English data. In the French–English translation task we use bilingual data from the
Europarl corpus, and use monolingual data from the same domain as our test set
which is drawn from the Canadian Hansard corpus. In the Chinese–English task we
use bilingual data from the NIST large-data track and use monolingual data from
the Chinese Gigaword corpus.

12.2 Baseline MT System

The SMT system we applied in our experiments is PORTAGE. This is a state-of-
the-art phrase-based translation system developed at the National Research Council
Canada which has been made available to Canadian universities for research and
education purposes. We provide a basic description here; for a detailed description,
see Ueffing et al. (2007b).
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The PORTAGE system determines the translation of a given source sentence s
by maximizing the posterior probability over all possible translations t as shown in
Eq. (12.1). This posterior probability is approximated by the log-linear combination
of models gi(s, t), i = 1, . . . , I, taking both languages into account (such as the
translation model in Eq. (12.1)), and target-language-based models hj(t), j =
1, . . . , J (such as the language model in Eq. (12.1)). The decoder solves the following
equation:

arg max
t

p(t, s) = argmax
t

I∏
i=1

gi(s, t)αi ·
J∏

j=1

hj(t)βj . (12.2)

The models (or features) which are employed by the decoder are

one or several phrase table(s), which model the translation direction p(s | t); they
are smoothed using the methods described in Foster et al. (2006);

one or several n-gram language model(s) trained with the SRILM toolkit de-
scribed in Stolcke (2002); in the experiments reported here, we used several 4-gram
models on the Chinese–English data, and a trigram model on French-English;

a distortion model which assigns a penalty based on the number of source words
which are skipped when generating a new target phrase;

a word penalty assigning constant cost to each generated target word. This
constitutes a way to control the length of the generated translation.

These different models are combined log-linearly as shown in Eq. (12.2). Their
weights αi, i = 1, . . . , I, βj , j = 1, . . . , J are optimized with respect to BLEU
score (Papineni et al. (2002)) using the algorithm described in Och (2003). This
optimization is done on a development corpus.

The search algorithm implemented in the decoder is a dynamic-programming
beam-search algorithm. After the main decoding step, rescoring with additional
models is performed. The system generates a 5000-best list of alternative transla-
tions for each source sentence. These lists are rescored with the following models:

The different models used in the decoder which are described above.

Two different features based on IBM Model 1 from Brown et al. (1993): a Model 1
probability calculated over the whole sentence, and a feature estimating the number
of source words which have a reliable translation. Both features are determined for
both translation directions.

Several higher-order n-gram language models.

Posterior probabilities for words, phrases, n-grams, and sentence length (Zens and
Ney, 2006; Ueffing and Ney, 2007). All of these posterior probabilities are calculated
over the n-best list and using the sentence probabilities which the baseline system
assigns to the translation hypotheses. More details on the calculation of posterior
probabilities will be given in section 12.3.5.
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Algorithm 12.1 Bootstrapping algorithm: classifier version
1: Input : each example x is either labeled L(x) in some annotated data, or unlabeled as

U0(x) := ⊥.
2: t := 0
3: repeat
4: for each example x do
5: Training step: Estimate θ for Pr(j | x, θ) using L and U t(x)

6: Labeling step: U t+1(x) =

8<
:

arg max
j∈L

Pr(j | x, θ) if Pr(j | x, θ) > threshold ζ

⊥ otherwise
7: t := t + 1
8: until for all x: U t+1(x) = U t(x)

The weights of these additional models and of the decoder models are again
optimized to maximize BLEU score. This is performed on a second development
corpus.

12.3 The Framework

12.3.1 The Yarowsky Algorithm

The original Yarowsky algorithm (Yarowsky (1995)) was proposed in the context
of a word-sense disambiguation task. The model was a simple decision list classifier
Pr(j | x, θ) where the class label j ∈ L is predicted based on the single most likely
feature extracted from the input x. The pseudocode for this algorithm is shown in
algorithm 12.1. The key idea is to use an initial classifier which was built from the
seed data in such a way so as to have high precision but low recall on the unlabeled
set since it could not predict any label for most examples. This is because if a
feature extracted from input x has not been observed with any class label, this
event is not assigned a smoothed probability estimate (unlike the common strategy
in supervised learning). Hence, for examples where all the features are events of
this type, the classifier labels it as ⊥. However, even if a single feature extracted
from x is observed with a class label in the labeling step, this information can be
used to make a prediction for future examples by the decision list classifier (which
only uses the single most likely feature to predict the class label). This classifier
was then used to label the unlabeled data and those examples labeled with high
confidence (above a threshold) were used along with the labeled data to train a new
classifier. This process was repeated iteratively until no new labels could be found
for the unlabeled data set. Each iteration could be seen as improving the recall of
the classifier at the expense of its precision. In each iteration the classifier is able
to provide labels for larger and larger subsets of the unlabeled data.

There are several different types of iterative self-training semisupervised algo-
rithms that have been proposed in the literature. Haffari and Sarkar (2007) and
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Algorithm 12.2 Semisupervised learning algorithm for statistical machine trans-
lation
1: Input : training set L of parallel sentence pairs. � Bilingual training data.
2: Input : unlabeled set U of source text. � Monolingual source language data.
3: Input : dev corpus C.
4: Input : number of iterations R, and size of n-best list N .
5: T−1 := {}. � Additional bilingual training data.
6: i := 0. � Iteration counter.
7: repeat
8: Training step: π(i) := Estimate(L, Ti−1).
9: Xi := {}. � The set of generated translations for this iteration.
10: Ui := Filter(U,C, i) � The ith chunk of unlabeled sentences.
11: for sentence s ∈ Ui do
12: Labeling step: Decode s using π(i) to obtain N best sentence pairs with their

scores
13: Xi := Xi ∪ {(tn, s, π(i)(tn | s))N

n=1}
14: Scoring step: Si := Score(Xi) � Assign a score to sentence pairs (t, s) from Xi.
15: Selection step: Ti := Ti ∪ Select(Xi, Si) � Choose a subset of good sentence

pairs (t, s) from Xi.
16: i := i + 1.
17: until i > R

Abney (2004) provide a more detailed discussion on the relationship between these
algorithms and the Yarowsky algorithm.

12.3.2 Semisupervised Learning Algorithm for SMT

Our semisupervised learning algorithm, algorithm 12.2, is inspired by the Yarowsky
algorithm described in section 12.3.1. We will describe it here for (re-)training of
the translation model. However, the same algorithm can be used to (re-)train other
SMT models, such as the language model, as investigated in Ueffing et al. (2008).

The algorithm works as follows: First, the translation model is estimated based
on the sentence pairs in the bilingual training data L. The set of source language
sentences, U , is sorted according to the relevance with respect to the development
corpus C, and a chunk of sentences, Ui, is filtered. These sentences are then
translated based on the current model. The SMT system generates an n-best list of
translation alternatives for each source sentence. This set Xi of translations is then
scored, and a subset of good translations and their sources, Ti, is selected from Xi in
each iteration and added to the training data. The process of generating sentence
pairs, scoring them, selecting a subset of good sentence pairs, and updating the
model is continued until a stopping condition is met. In the experiments presented
here, this stopping criterion is either a fixed number of iterations, or we run for a
fixed number of iterations on a development set, and pick the translation model
based on the iteration that provides the highest improvement on the development
set. Note that here we use the first for the French–English experiments and both
for the Chinese–English experiments.
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Note that algorithm 12.2 is a variation of the original Yarowsky algorithm in
which the same unlabeled data is used in each iteration.

It has been shown by Abney (2004) that algorithm 12.2 minimizes the entropy
of the probability distribution p(t | s) over translations of the unlabeled data set U .
However, this is true only when the functions Estimate, Score, and Select have very
prescribed definitions. Rather than analyzing the convergence of algorithm 12.2, we
will use definitions for Estimate, Score, and Select that have been experimentally
shown to improve MT performance. Following Ueffing et al. (2007a), these are
different versions of the algorithm for the two different translation tasks we work
on. We will present the different variants of the functions Filter, Estimate, Score,
and Select in the following subsections. The exact experimental settings for the two
translation tasks will be described in section 12.4.1.

In Ueffing et al. (2007a), a transductive variant of algorithm 12.2 was introduced
which uses the development or test corpus as unlabeled data U . That is, this
corpus is translated and reliable translations are selected and used in (re-)training
to improve the performance of the SMT system. This approach generates a very
small amount of new bilingual data of high relevance. Unlike the approach described
in Ueffing et al. (2007a), we explore much larger amounts of monolingual source-
language data. In order to identify the relevant parts of the data, we filter as
explained in the following.

12.3.3 The Filter Function

In general, having more training data improves the quality of the trained models.
However, when it comes to the translation of a particular test set, the question is
whether all of the available training data is relevant to the translation task or not.
Moreover, working with large amounts of training data requires more computational
power. So if we can identify a subset of training data which is relevant to the current
task and use only this to (re-)train the models, we can reduce the computational
complexity significantly.

We propose to filter the additional monolingual source data to identify the parts
which are relevant with respect to the development set. This filtering is based on n-
gram coverage. For a source sentence s in the monolingual data, its n-gram coverage
over the sentences in the development set is computed. The average over several
n-gram lengths is used as a measure of relevance of this training sentence with
respect to the development corpus. In the experiments presented here, this is the
average over 1- to 6-gram coverage. We sort the source sentences by their coverage
and successively add them as unlabeled data Ui in algorithm 12.2.

12.3.4 The Estimate Function

The Estimate function estimates a phrase translation model from the sets of
bilingual data, L and Ti−1. Out of the three different versions of this function
presented in Ueffing et al. (2007a), we use the one which performed best for
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our experiments here: training an additional phrase translation model on the new
bilingual data Ti−1. That is, the phrase translation model learned on the original
bilingual data L is kept fixed, and a new model is learned on Ti−1 only and then
added as a new component in the log-linear SMT model presented in Eq. (12.2).
This additional model is relatively small and specific to the test corpus C. We have
to learn a weight for this new phrase translation model. To this end, the weight
optimization is carried out again on the development set. After the first iteration,
we reoptimize the decoder and rescoring weights for all original models and this
new phrase translation model. These weights are then kept fixed throughout the
following iterations. This reoptimization process is computationally expensive, so
we carry it out only once.

12.3.5 The Scoring Function

In algorithm 12.2, the Score function assigns a score to each translation hypothesis
t. We used the following scoring functions in our experiments:
Length-normalized score: Each translated sentence pair (t, s) is scored according
to the model probability p(t | s) (assigned by the SMT system) normalized by the
length |t| of the target sentence:

Score(t, s) = p(t | s)
1
|t| . (12.3)

Confidence estimation: The goal of confidence estimation is to estimate how
reliable a translation t is, given the corresponding source sentence s. The confidence
estimation which we implemented follows the approaches suggested in Blatz et al.
(2003) and Ueffing and Ney (2007): The confidence score of a target sentence
t is calculated as a log-linear combination of several different sentence scores.
These scores are Levenshtein-based word posterior probabilities, phrase posterior
probabilities, and a target language model score. The posterior probabilities are
determined over the n-best list generated by the SMT system.

The word posterior probabilities are calculated on basis of the Levenshtein
alignment between the hypothesis under consideration and all other translations
contained in the n-best list. The Levenshtein alignment is performed between a
given hypothesis t and every sentence tn contained in the n-best list individually.
To calculate the posterior probability of target word t occurring in position i of
the translation, the probabilities of all sentences containing t in position i or in a
position Levenshtein-aligned to i is summed up. Let L(t, tn) be the Levenshtein
alignment between sentences t and tn, and Li(t, tn) that of word t in position i in
t. Consider the following example: Calculating the Levenshtein alignment between
the sentences t =“A B C D E” and tn =“B C G E F” yields

L(t, tn) = “– B C G E”,
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where “–” represents insertion of the word A into t and in the above alignment F is
deleted from tn. Using this representation, the word posterior probability of word
t occurring in a position Levenshtein-aligned to i is given by

plev(t | s, t,L) =

N∑
n=1

δ(t,Li(t, tn)) · p(s, tn)

N∑
n=1

p(s, tn)
. (12.4)

The sum is normalized by the total probability mass of the n-best list. To obtain
a score for the whole target sentence, the posterior probabilities of all target words
are multiplied. The sentence probability is approximated by the probability p(s, tn)
which the SMT system assigns to the sentence pair. More details on computing word
posterior probabilities are available in Ueffing and Ney (2007).

The phrase posterior probabilities are determined in a similar manner by sum-
ming the sentence probabilities of all translation hypotheses in the n-best list which
contain this phrase pair. The segmentation of the sentence into phrases is provided
by the SMT system. Again, the single values are multiplied to obtain a score for
the whole sentence.

The language model score is determined using a 5-gram model trained on the
English Gigaword corpus for Chinese–English. On French–English, we used the
trigram model which was provided for the NAACL 2006 shared task.

The log-linear combination of the different sentence scores into one confidence
score is optimized with respect to sentence classification error rate (CER) on
the development corpus. The weights in this combination are optimized using
the Downhill Simplex algorithm (Press et al., 2002). In order to carry out the
optimization, reference classes are needed which label a given translation as either
correct or incorrect. These are created by calculating the word error rate (WER)
of each translation and labeling the sentence as incorrect if the WER exceeds a
certain value, and correct otherwise. Then the confidence score c(t) of translation
t is computed, and the sentence is classified as correct or incorrect by comparing
its confidence to a threshold τ :

c(t)

{
> τ ⇒ t correct

≤ τ ⇒ t incorrect.

The threshold τ is optimized to minimize CER. We then compare the assigned
classes to the reference classes, determine the CER, and update the weights ac-
cordingly. This process is iterated until the CER converges.

12.3.6 The Selection Function

The Select function in algorithm 12.2 is used to create the additional training data
Ti which will be used in the next iteration i + 1 by Estimate to augment the
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information from the original bilingual training data. It has been shown in Ueffing
et al. (2007a) that this selection is an important step in the algorithm and that
simply keeping all generated translations yields worse results. We use the following
selection functions:
Importance sampling: For each sentence s in the set of unlabeled sentences Ui,
the Labeling step in algorithm 12.2 generates an n-best list of translations, and
the subsequent Scoring step assigns a score to each translation t in this list.
The set of generated translations for all sentences in Ui is the event space and
the scores are used to put a probability distribution over this space, simply by
renormalizing the scores described in section 12.3.5. We use importance sampling
to select K translations from this distribution. Sampling is done with replacement,
which means that the same translation may be chosen several times. Furthermore,
several different translations of the same source sentence can be sampled from the
n-best list. The K sampled translations and their associated source sentences make
up the additional training data Ti.
Selection using a threshold: This method compares the score of each single-best
translation to a threshold. The translation is considered reliable and added to the
set Ti if its score exceeds the threshold. Otherwise it is discarded and not used
in the additional training data. The threshold is optimized on the development
beforehand. Since the scores of the translations change in each iteration, the size
of Ti also changes.
Top K: This method simply keeps those translations from Ti which receive the
highest scores in the scoring step.

12.4 Experimental Results

12.4.1 Setting

We ran experiments on two different corpora: one is the French–English translation
task from the Europarl and Hansard corpus, and the other one is Chinese–English
translation as performed in the NIST MT evaluation.1

The variants of algorithm 12.2 which we applied in the experiments are the
ones which yielded the best results in Ueffing et al. (2007a). On the French–
English task, we experimented with various settings which are described in detail
in section 12.4.3. For the Chinese–English task, the application of threshold-based
selection in combination with confidence scores is applied.
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Table 12.1 French–English corpora

corpus use sentences

Europarl-training phrase table + language model 688K

Europarl-test2006 in-domain dev1 500

Europarl-test2006 out-of-domain dev2 500

Europarl-devtest2006 dev3 2000

Hansard-training monolingual source data 1130K

Europarl-test2006 in-domain test 1500

Europarl-test2006 out-of domain test 500

Europarl French–English

For the French–English translation task, we used the Europarl corpus as distributed
for the shared task in the NAACL 2006 workshop on statistical machine translation
(WMT),2 and the Hansard corpus as distributed by ISI.3 The corpus statistics
are shown in table 12.1. The bilingual training data from the Europarl corpus is
used to train translation and language models. The development sets dev1 and
dev2 are used to optimize the model weights in the decoders for the baseline SMT
system and the SMT system with an additional phrase table respectively. The
evaluations are done on the test set provided for the NAACL 2006 French-English
translation shared task, which contains 2000 in-domain sentences and 1064 out-of-
domain sentences collected from news commentary. We will carry out evaluations
separately for these two domains to investigate the adaptation capabilities of our
methods.

Chinese–English

For the Chinese–English translation task, we used the corpora distributed for
the large-data track in the 2006 NIST evaluation (see table 12.2). We used the
Linguistic Data Consortium (LDC) segmenter for Chinese. A subset of the English
Gigaword corpus was used as additional language model (LM) training material.
Data from the Chinese Gigaword was filtered and used as additional monolingual
source-language data for semisupervised learning. The multiple translation corpora
multi-p3 and multi-p4 were used as development corpora. Evaluation was performed
on the 2004 and 2006 test sets. The 2006 test set consists of two sections: the NIST
section which was created for the NIST machine translation evaluation in 2006 and
which is provided with four English references, and the GALE section which was
created in the DARPA project GALE and comes with one English reference.

1. www.nist.gov/speech/tests/mt
2. www.statmt.org/wmt06/shared-task/
3. www.isi.edu/natural-language/download/hansard/
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Table 12.2 Chinese–English corpora.

Corpus Use Sentences Domains

non-UN phrase table +
language model

3.2M news, magazines, laws,

UN phrase table +
language model

5.0M UN bulletin

English Giga-
word

language model 11.7M news

Chinese Giga-
word

additional source
data

50K news

multi-p3 optimize decoder 935 news

multi-p4 optimize rescoring 919 news

eval-04 test 1788 newswire, editorials, political
speeches

eval-06 GALE test 2276 broadcast conversations, broad-
cast news, newsgroups, newswire

eval-06 NIST test 1664 broadcast news, newsgroups,
newswire

Note that the training data consists mainly of written text, whereas the test sets
comprise three and four different genres: editorials, newswire, and political speeches
in the 2004 test set, and broadcast conversations, broadcast news, newsgroups, and
newswire in the 2006 test set. Most of these domains have characteristics which
are different from those of the training data, e.g., broadcast conversations have
characteristics of spontaneous speech, and the newsgroup data is comparatively
unstructured.

Evaluation Metrics

We evaluated the generated translations using three different automatic evaluation
metrics. They all compare the generated translation to one or more given reference
translations. The following criteria are used:

BLEU (bil ingual evaluation understudy)(Papineni et al., 2002): The BLEU score
is based on the notion of modified n-gram precision, for which all candidate n-gram
counts in the translation are collected and clipped against their corresponding max-
imum reference counts. These clipped candidate counts are summed and normalized
by the total number of candidate n-grams.

WER (word error rate): The word error rate is based on the Levenshtein distance.
It is computed as the minimum number of substitution, insertion, and deletion
operations that have to be performed to convert the generated translation into the
reference translation. In the case where several reference translations are provided
for a source sentence, we calculate the minimal distance to this set of references as
proposed in Nießen et al. (2000).
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PER (position-independent word error rate) (Tillmann et al., 1997b): A short-
coming of the WER is the fact that it requires a perfect word order. In order to
overcome this problem, the position-independent word can be used, comparing the
words in the two sentences without taking the word order into account. Words that
have no matching counterparts are counted as substitution errors, missing words
are deletions, and additional words are insertion errors. The PER is a lower bound
for the WER.

Note that BLEU score measures translation quality, whereas WER and PER
measure translation errors.

We will present 95% confidence intervals for the baseline system which are
calculated using bootstrap resampling. The metrics are calculated with respect to
one or four English references: the French–English data comes with one reference,
the Chinese–English NIST 2004 evaluation set and the NIST section of the 2006
evaluation set are provided with four references each, and the GALE section of
the 2006 evaluation set comes with one reference only. This results in much lower
BLEU scores and higher error rates for the translations of the GALE set (see
section 12.4.2). Note that these values do not indicate lower translation quality,
but are simply a result of using only one reference.

12.4.2 Chinese-English Results

On the Chinese–English translation task, we used additional source language data
from the Chinese Gigaword corpus comprising newswire text for our semisupervised
learning algorithm. The Chinese Gigaword sentences are sorted according to their
n-gram overlap with the development corpus (see section 12.3.3). It is assumed
that the test set is unknown at this point. The Chinese sentences are then divided
into chunks of 5000 sentences. One of these chunks is added in each iteration as
described in algorithm 12.2.

Figure 12.1 shows the BLEU score on the development set over the iterations. As
is to be expected, the biggest jump occurs after the first iteration when the decoder
weights are reoptimized. Up to iteration 4, which is equivalent to the use of 20,000
additional Chinese sentences in semisupervised learning, the BLEU score increases.
But after that, it drops and levels off at a point which is above the baseline, but
does not significantly differ from it anymore. So it seems that if the semisupervised
training runs too long, it adds noise into the model rather than improving it. The
overlap between the additional data and the development corpus decreases over the
iterations, so that the added data might be less relevant and thus actually hurt
translation quality rather than improving it.

After analyzing the results obtained on the development corpus, we evaluated
three different systems on the test corpora: the system after the first iteration,
which used 5000 additional Chinese sentences in semisupervised training and for
which the weight optimization was carried out; the system after iteration 4 which
performed best on the development set; and the system after the last iteration which
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Figure 12.1 Translation quality using an additional phrase table trained on monolingual
Chinese news data. Chinese–English development set.

had the highest number of additional Chinese sentences, namely 50,000, available
for semisupervised learning. The last setup was tested only for comparison, as the
results presented in figure 12.1 indicate already that this system might perform
worse than the other two. Table 12.3 shows the translation quality achieved on the
Chinese–English test sets with these three systems. The best system is clearly the
one obtained after the first iteration. The translation quality is significantly better
than the baseline in most cases. The system from iteration 4 (which performs best
on the development set) shows a very similar performance in terms of translation
quality as the first one. The error rates it achieves are slightly higher than those
of the first system, but still significantly better than those of the baseline system.
The third system, however, does not outperform the baseline system. As mentioned
above, this was to be expected.

Table 12.4 analyzes the translation results achieved on the eval-04 test corpus
separately for each genre: editorials, newswire, and political speeches. The most
significant improvement in translation quality is achieved on the newswire section
of the test corpus. Interestingly, all three semisupervised systems perform very
similarly on this genre, whereas performance decreases on the other two genres
as the number of iterations increases. This difference among the genres can be
explained by the fact that the additional data is drawn from the Chinese Gigaword
corpus which contains newswire data.

In Ueffing et al. (2007a), the transductive approach was evaluated on the same
Chinese–English test sets. The translation quality achieved by this approach is
higher than that of the method presented here (yielding a BLEU score which is
0.5 to 1.1 points higher). We see two reasons for this difference: First, transductive
learning on the development or test corpus yields a model which is more focused
on this corpus. It adapts the system directly to the domain and style by creating
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Table 12.3 Translation quality using an additional phrase table trained on monolingual
Chinese news data. Chinese–English test sets. Bold: best result; italic: significantly better
than baseline.

System BLEU[%] WER[%] PER[%]

eval-04 (4 refs.)

baseline 31.8±0.7 66.8±0.7 41.5±0.5

add Chinese data iteration 1 32.8 65.7 40.9

iteration 4 32.6 65.8 40.9

iteration 10 32.5 66.1 41.2

eval-06 GALE (1 ref.)

baseline 12.7±0.5 75.8±0.6 54.6±0.6

add Chinese data iteration 1 13.1 73.9 53.5

iteration 4 13.0 75.0 53.9

iteration 10 12.7 75.4 54.9

eval-06 NIST (4 refs.)

baseline 27.9±0.7 67.2±0.6 44.0±0.5

add Chinese data iteration 1 28.1 65.8 43.2

iteration 4 28.2 65.9 43.4

iteration 10 27.7 66.4 43.8

an additional phrase table which is specific to the development or test corpus and
matches it very well. Second, the transductive approach adapts the SMT system to
each of the genres. In the work presented here, the additional Chinese data came
from the newswire domain only, and this yields a higher boost in translation quality
for this genre than for the other ones. It would be interesting to see how the system
performs if data from all domains in the test corpus is available for semisupervised
learning. We also investigated a combination of the two self-training methods:
using additional source language data as well as the development or test corpus
for transductive learning. Unfortunately, the gains achieved by the two methods do
not add up, and this system does not outperform the transductively trained one.

Table 12.5 shows how many translations were identified as confident by the
scoring and selection algorithm and used to extend the additional phrase table.
In the first iteration, this is approximately two thirds of the data added in the
iteration. But as the semisupervised training proceeds, the number of confident
sentences decreases. After ten iterations of the algorithm, less than half of the
translations are kept. This confirms our assumption that noise is introduced into
the procedure by running the algorithm for too long.

12.4.3 French–English Results

We ran our experiments on the French–English task to explore the behavior
of the semisupervised learning algorithm with respect to the different sentence
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Table 12.4 Translation quality on Chinese–English eval-04 test set, by genre. Same
experimental setup as table 12.3.

System BLEU[%] WER[%] PER[%]

editorials baseline 30.7±1.2 67.0±1.1 42.3±0.9

iteration 1 31.3 65.9 41.8

iteration 4 30.9 66.2 42.0

iteration 10 30.8 66.6 42.3

newswire baseline 30.0±0.9 69.1±0.8 42.7±0.8

iteration 1 31.1 68.1 42.0

iteration 4 31.1 67.9 42.0

iteration 10 31.3 68.1 42.1

speeches baseline 36.1±1.4 62.5±1.2 38.6±0.9

iteration 1 37.3 61.3 38.0

iteration 4 36.8 61.5 38.0

iteration 10 36.3 61.8 38.4

Table 12.5 Number of sentences added in each iteration. Chinese–English.

iteration 1 2 3 4 5

# confident sentences 3141 3196 3017 2889 2981

iteration 6 7 8 9 10

# confident sentences 2890 2520 2423 2324 2427

selection methods on in-domain and out-of-domain test sentences. We used 688K
parallel sentence pairs from the Europarl corpus as the bilingual training data, and
partitioned the NAACL 2006 WMT shared task’s test set into two sets (Sin and
Sout) to separate in-domain and out-of-domain test sentences. Sin includes the first
2000 sentences and Sout includes the last 1000 sentences of this test set. Then we
used the first 500 sentences in Sin and Sout as the development sets dev1 and dev2,
and used the rest as the test sets. As the additional monolingual source sentences,
we used the French sentences in the training set of the Canadian Hansard corpus
as provided by ISI.

The monolingual French sentences were sorted according to their n-gram overlap
(see section 12.3.3) with the development corpora dev1 and dev2 for in-domain and
out-of-domain experiments, and 5000 French sentences were added in each iteration
of the semisupervised algorithm. The scoring and selection of the translations (see
algorithm 12.2) were performed using the following methods:

1. a confidence score with importance sampling,

2. a length-normalized translation score with importance sampling,

3. a confidence score with a threshold, and
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Figure 12.2 Translation quality using an additional phrase table trained on monolingual
French data. The plot shows the performance of the different sentence selection and scoring
schemes on in-domain and out-of-domain corpora.

4. keeping the top-K sentence pairs having the highest length-normalized transla-
tion scores.

We learn an additional phrase table on these data (and leave the original phrase
tables unmodified) which is added as a new component in the log-linear model. The
weight of this new component is optimized based on dev1 and dev2 for in-domain
and out-of-domain experiments. Moreover, we use the development set dev3 for
estimating the parameters of the confidence estimation model and the threshold in
method 3.
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The results of the four sentence selection methods can be seen in figure 12.2. The
semisupervised algorithm deteriorates the performance of the initial SMT system for
all cases except sampling with normalized translation scores. This method, however,
yields an improvement on the out-of-domain data, so the system seems to adapt to
this new domain. This observation is confirmed by the translation examples which
will be presented in section 12.4.4. Note that the performance of top-K sentence
pair selection based on the normalized scores is encouraging for both in-domain and
out-of-domain experiments. It is probable that by choosing K in a more elaborate
way, this method outperforms the baseline and other methods. Note that it just
uses the normalized translation scores which are already generated by the decoder.
Using dev1 and dev2 to train the confidence estimation models for in-domain and
out-of-domain experiments may help the methods which use the confidence to boost
their performance.

12.4.4 Translation Examples

Table 12.6 presents some French-English translation examples taken from out-of-
domain sentences in the test set of the NAACL 2006 WMT shared task. These
examples show the effect of semisupervised learning for model adaptation to a
novel domain.

Table 12.7 presents some Chinese-English translation examples of the baseline
and the semisupervised system using a phrase table learned on 5000 additional
Chinese sentences. All examples are taken from the NIST portion of the 2006 test
corpus. Except for the last example, which is taken from newswire, they come from
newsgroup posts. The examples show that the semisupervised system outperforms
the baseline system in terms of both adequacy and fluency.

12.5 Previous Work

Semisupervised learning has been previously applied to improve word alignments. In
Callison-Burch et al. (2004), a generative model for word alignment is trained using
unsupervised learning on parallel text. In addition, another model is trained on a
small amount of hand-annotated word-alignment data. A mixture model provides
a probability for word alignment. Experiments showed that putting a large weight
on the model trained on labeled data performs best.

Along similar lines, Fraser and Marcu (2006) combine a generative model of word
alignment with a log-linear discriminative model trained on a small set of hand-
aligned sentences. The word alignments are used to train a standard phrase-based
SMT system, resulting in increased translation quality .

In Callison-Burch (2002), co-training is applied to MT. This approach requires
several source languages which are sentence-aligned with each other and all translate
into the same target language. One language pair creates data for another language
pair and can be naturally used in a Blum and Mitchell (1998)-style co-training
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Table 12.6 Translations from the out-of-domain sentences in the NAACL 2006 French–
English test corpus. The semisupervised examples are taken from sampling-based sentence
selection with normalized scores. Lowercased output, punctuation marks tokenized.

baseline the so-called ’ grandfather bulldozer become the most of the israelis
and the final asset of western diplomacy and for the americans ,
surprisingly , for europeans too .

semisupervised ’bulldozer’ became the grandfather of most of the israelis and the
final asset of western diplomacy and for the americans , surprisingly
, for europeans too .

reference the ” bulldozer ” had become the grandfather of most israelis and
the last card of western diplomacy , for americans and , surprisingly
, for europeans , too .

baseline these are not all their exceptional periods which create bonaparte
, which is probably better because leaders exceptional can provide
the illusion that all problems have their solution , which is far from
true .

semisupervised these are not all periods which create their exceptional bonaparte
, which is probably better because leaders exceptional can provide
the illusion that all problems have their solution which is far from
being true .

reference not all exceptional periods create their bonapartes , and this is
probably a good thing , for exceptional leaders may give the illusion
that all problems have solutions , which is far from true .

baseline in both cases , must be anchored in good faith moving from one to
another .

semisupervised in both cases , it must be established for faith moving from one to
another .

reference in both cases , it takes a lot of blind faith to go from one to the
other .

baseline given an initial period to experiment with growth and innovation
on these fronts may prove strong paying subsequently .

semisupervised enjoy an initial period of growth and innovation to experiment with
on these fronts may prove heavily paying subsequently .

reference using an initial period of growth to experiment and innovate on
these fronts can pay high dividends later on .

algorithm. Experiments on the Europarl corpus show a decrease in WER. However,
the selection algorithm applied there is actually supervised because it takes the
reference translation into account.

Self-training for SMT was proposed in Ueffing et al. (2007a) where the test
data was repeatedly translated and phrase pairs from the translated test set
were used to improve overall translation quality. In the work presented here, the
additional monolingual source data is drawn from the same domain as the test set.
In particular, we filter the monolingual source language sentences based on their
similarity to the development set as explained in section 12.3.3.
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Table 12.7 Translation examples from the Chinese–English eval-06 corpus, NIST sec-
tion. Lowercased output, punctuation marks tokenized.

baseline you will continue to be arrested and beaten by villagers .

semisupervised you continue to arrest , beat villagers ,

reference you have continued to arrest and beat villagers .

baseline after all , family planning is a problem for chinese characteristics .

semisupervised after all , family planning is a difficult problem with chinese char-
acteristics .

reference after all , family planning is a difficult topic with chinese character-
istics .

baseline i am very disappointed in recognition of the chinese people do not
deserve to enjoy democracy ! ! !

semisupervised i am very disappointed to admit that the chinese nation do not
deserve democracy ! ! !

reference i am very disappointed to admit that the chinese people do not
deserve democracy !

baseline china has refused to talk to both sides to comment .

semisupervised the chinese side refused to comment on both sides of the talks .

reference china has refused to comment on the talks between the two sides .

baseline reports said that there has been speculation that might trigger a
computer in possession by the former metropolitan police chief steve
vincent jazz yangguang survey of confidential information .

semisupervised reports said that the theft triggered speculation that the computer
may be in the possession of the metropolitan police chief stevenson
jazz led investigation of confidential information .

reference the report pointed out that the theft triggered speculation that the
computers may contain confidential information of the probe led by
former metropolitan police commissioner lord stevens .

12.6 Conclusion and Outlook

We presented a semisupervised learning algorithm for SMT which makes use of
monolingual source-language data. The relevant parts of this data are identified,
and then the SMT system is used to generate translations of those. The reliable
translations are automatically determined and used to retrain and adapt the SMT
system to a domain or style. It is not intuitively clear why the SMT system can learn
something from its own output and is improved through semisupervised learning.
There are two main reasons for this improvement:

First, the selection step provides important feedback for the system. The confi-
dence estimation, for example, discards translations with low language model scores
or posterior probabilities. The selection step discards bad machine translations and
reinforces phrases of high quality. As a result, the probabilities of low-quality phrase
pairs, such as noise in the table or overly confident singletons, degrade. The selec-
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tion methods investigated here have been shown to be well suited to boost the
performance of semisupervised learning for SMT.

Second, our algorithm constitutes a way of adapting the SMT system to a new
domain or style without requiring bilingual training or development data. Those
phrases in the existing phrase tables which are relevant for translating the new data
are reinforced. The probability distribution over the phrase pairs thus gets more
focused on the (reliable) parts which are relevant for the test data.

One of the key components in our approach is that translations need to be
proposed for sentences in the unlabeled set (which is from the same domain as
the test set), and from those translations we would like to select the ones that are
useful in improving our performance in this domain. For this problem, in future
work we plan to explore some alternatives in addition to the methods presented
here: in translating a source sentence f, the difficulty in assessing the quality of a
translation into the target language e’ comes from the fact that we do not have
any reference translation e. However, if e’ is a good translation, then we should
probably be able to reconstruct the input sentence f from it. So we can judge the
quality of e’ based on its translation f ’ (we can compute the BLEU score in this
case since we do have access to f), and for this translation direction we already
have the translation probability tables. This approach is an attractive alternative
to the problem of selecting good translations in our algorithm.

In addition to this, it would be interesting to study the proposed methods further,
using more refined filter functions, e.g., methods applied in information retrieval.
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13 Learning to Combine Machine Translation

Systems

Evgeny Matusov
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Hermann Ney

This chapter describes how translations produced by multiple machine translation
(MT) systems can be combined. We present an approach that computes a con-
sensus translation from the outputs of several MT systems for the same sentence.
Similarly to the well-established ROVER approach of Fiscus (1997) for combining
speech recognition hypotheses, the consensus translation is computed by weighted
majority voting on a confusion network. Faced with the problem of differences in
word order between the system translations, we propose an alignment procedure
that learns nonmonotone word correspondences between the individual translations
using statistical modeling. The context of a whole corpus rather than a single sen-
tence is taken into account in order to achieve high alignment quality. The confusion
networks which are created from this alignment are rescored with probabilistic fea-
tures such as system confidence measures and a language model. The consensus
translation is extracted as the best path from the rescored lattice.

The proposed system combination approach was evaluated on well-established
Chinese-to-English and Arabic-to-English large-vocabulary translation tasks. In our
experiments, we combined the outputs of five state-of-the-art MT systems. Signif-
icant improvements in translation quality in comparison with the best individual
MT system have been gained.

13.1 Introduction

In this chapter we will describe a method for combining the outputs of multiple ma-
chine translation systems that results in improved quality of automatic translation.
We will present an algorithm that computes a consensus translation.
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Currently, there exist a number of commercial and research MT systems, which
are developed under different paradigms (rule-based, example-based, statistical
machine translation), trained using different algorithms (e.g., hierarchical phrase-
based statistical MT, syntax-augmented statistical MT) and different types and
amounts of training data. When applied to the same test data, they usually exhibit
different strengths and weaknesses on different sentences or sentence parts. The goal
of a system combination algorithm is to produce a translation that combines the
strengths of these systems (i.e., the good-quality partial translations), but leaves
out the parts translated poorly by the minority of the MT engines. In this chapter,
we will describe a system combination method that uses a weighted majority voting
scheme coupled with a sophisticated alignment and word reordering algorithm.

In automatic speech recognition (ASR), voting schemes like the ROVER approach
of Fiscus (1997) have been used widely and successfully. For ASR, the algorithm is
quite straightforward, since the alignment of the hypotheses for a spoken utterance
is monotone. The alignment of the recognized word sequences can be determined
using the edit distance algorithm in combination with the word boundary time
markers. Based on the alignment, the consensus recognition hypothesis is generated
by weighted majority voting.

The same strategy is applicable to system combination in machine translation.
However, the complication here is that different translation hypotheses from dif-
ferent systems may have different word order or sentence structure. This means
that some hypotheses have to be reordered so that corresponding words can be
aligned with each other. In order to perform word reordering, we have to determine
a non-monotone word alignment between the hypotheses. We will show how this
alignment can be effectively learned with statistical methods.

Multiengine machine translation has been studied by several research groups in
recent years. Faced with the problem of word reordering, the first approaches tried
to avoid it by working on the sentence level: they concentrated only on finding
a way to select “the best” of the provided hypotheses for each sentence. Thus,
the resulting translation comes from a set of already produced translations. The
hypothesis selection is performed based on the scores assigned by different statistical
models. The models used are n-gram language models (as in Callison-Burch and
Flournoy (2001) and Nomoto (2004)), but also translation models and other features
(see Paul et al., 2005). The potential of such approaches is limited, since in many
cases these models come from the same family as the (weak) models used to generate
the translations by one of the individual MT systems. Moreover, such approaches
do not take advantage of the fact that, e.g., a part of the same sentence is translated
well by the first MT system, and another part by the second MT system, etc.

The more sophisticated approaches of Bangalore et al. (2001); Jayaraman and
Lavie (2005) and Rosti et al. (2007a) work on the word level. The system combina-
tion translation is created from subsentence parts (words or phrases) of the original
translations. The advantage of these approaches is that a possibly new translation
can be generated that includes “good” partial translations from each of the in-
volved systems. The majority of these approaches, including the one described in
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Figure 13.1 The system combination architecture.

this chapter, follow the same basic strategy for computing the system combination
translation. Here is a summary of this strategy.

1. Among the individual MT system hypotheses, select the primary (or “skeleton”)
hypothesis which is assumed to have the correct word order.

2. Compute the word alignment between the primary hypothesis and each of the
remaining (secondary) hypotheses. Generally, this alignment is nonmonotone.

3. Reorder the words in the secondary hypotheses to make the alignment with the
primary translation monotone.

4. Create the confusion network1 (CN) of translation alternatives to each word in
the primary hypothesis, including also word insertions and deletions.

5. Score the arcs in the confusion network with different types of statistical models
and select the best word sequence using weighted majority voting (i.e., as the best
path in the CN).

Figure 13.1 gives an overview of this system combination architecture.
In this chapter, we will concentrate on the two most important steps in the

system combination procedure: learning the word alignment and estimating the
weights for scoring the confusion network. We will present the enhanced alignment
algorithm of Matusov et al. (2006) and discuss its advantages in comparison with
the alternative alignment approaches used in related research. We will also show
which probabilistic models can improve the voting procedure.

This chapter is organized as follows. In section 13.2, we will describe the proposed
word alignment approach in detail and review the related work on this subject.
Section 13.3 will present the different features we used in computing the consensus
translation. The experimental results, including the comparison to alternative
approaches, will be presented in section 13.4. We will conclude with a summary
in section 13.5.

1. A confusion network is a weighted directed acyclic graph, in which each path from the
start node to the end node goes through the same sequence of all other nodes. A matrix
representation of a confusion network is shown in figure 13.4.
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13.2 Word Alignment

In this section we present the details of the word-alignment algorithm used in our
system combination method. First, we introduce the notation in section 13.2.1. In
section 13.2.2, this notation is utilized to describe the machine learning method that
is used to determine the word alignment. In section 13.2.3, we show how the word
order of the secondary hypotheses is changed to make the alignment monotone. We
discuss alternative alignment strategies in section 13.2.4.

13.2.1 Notation

Given a single source sentence F in the test corpus, we combine M translations
of this sentence E1, . . . , Em, . . . , EM coming from M MT engines. Each hypothesis
Em (m = 1, ..., M) consists of Im target language words:

Em := em,1, em,2, . . . , em,i, . . . , em,Im .

An alignment between two hypotheses En and Em translating the same source
sentence (m, n ∈ {1, ..., M}; m �= n) is generally defined as a relation A ⊆ In × Im

between the word positions in each of the two hypotheses. For system combination,
we will consider alignments which are functions of the words in Em, i. e. A :
{1, . . . , Im} → {1, . . . , In}.

13.2.2 Estimating Word Alignment

In this section we will explain the details of the enhanced alignment approach first
presented in Matusov et al. (2006). This algorithm has the following properties:

The alignment is determined using the same machine learning methods as in
statistical MT. It is an unsupervised, iterative procedure that aims at finding
correspondences between words. The well-established IBM Model 1 and hidden
Markov model (HMM) for alignment are trained to estimate the alignment.

The alignment algorithm makes its decisions based on statistics learned from a
whole corpus of parallel multiple translations. Thus, a correspondence between
words which are not graphemically related can be learned based on their co-
occurrence in the corpus. This means that, e.g., synonyms, paraphrases, and
different auxiliary verbs can be matched to each other.

The alignment algorithm takes advantage of the fact that the sentences to
be aligned are in the same language. This will be done by bootstrapping the
“translation” probabilities of identical and related words.

The produced alignment is nonmonotone, which means that it can cope with
translations that have significantly different syntactic structure.
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The alignment is determined using a flexible cost matrix representation. This
representation allows for various extensions of the alignment which can have a
positive effect on, e.g., subsequent word reordering.

Here are the details of the algorithm. For each source sentence F in the test
corpus, we select one of its translations En, n = 1, . . . , M as the primary hypothesis.
Then we align the secondary hypotheses Em(m = 1, ..., M ; n �= m) with En to

match the word order in En. Since it is not clear which hypothesis should be
primary, i. e., has the “best” word order, we let every hypothesis play the role of
the primary translation, and align all pairs of hypotheses (En, Em); n �= m.

The word alignment is trained in analogy to the alignment training procedure
in statistical MT, using a parallel corpus created from the multiple individual
system translations for the test corpus2 or, in addition, for any other corpus for
which such translations are available. The difference is that each two sentences
in the corpus that have to be aligned are in the same language. To formalize the
statistical alignment training, we consider the conditional probability p(Em|En) of
the event that, given En, another hypothesis Em is generated from the En. Then,
the alignment between the two hypotheses is introduced as a hidden variable A:

p(Em|En) =
∑
A

p(Em,A|En). (13.1)

This probability is then decomposed into the alignment probability p(A|En) and
the lexicon probability p(Em|A, En):

p(Em,A|En) = p(A|En) · p(Em|A, En). (13.2)

As in statistical machine translation, we make modeling assumptions. The align-
ment model is estimated using the IBM Model 1 (Brown et al., 1993) and the hidden
Markov model (Vogel et al., 1996). The latter model predicts the next alignment
position in dependency on the alignment of the preceding word. The lexicon proba-
bility of a sentence pair is modeled as a product of single-word–based probabilities
of the aligned words:

p(Em|A, En) =
Im∏
j=1

p(em,j|en,aj ). (13.3)

Here, the alignment a is a function of the words in the secondary translation Em,
so that each word em,j in Em is aligned to the word en,i in En on position i = aj .

The alignment training corpus is created from a test corpus of N sentences (e. g.,
a few hundred) translated by the involved MT engines. However, the effective size
of the training corpus is M · (M −1) ·N , since all pairs of different hypotheses have
to be aligned.

2. A test corpus can be used directly because the alignment training is unsupervised and
only automatically produced translations are considered.
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Figure 13.2 A graphical representation of an alignment cost matrix for a pair of
sentences. The primary hypothesis is shown on the left, the secondary hypothesis is at the
bottom. The gray color intensity of each square is inversely proportional to the alignment
costs of the corresponding word pair.

The single-word–based lexicon probabilities p(e|e′) used in Eq.( 13.3) are initial-
ized with normalized lexicon counts collected over the sentence pairs (Em, En) on
this corpus. Making use of the fact that the parallel sentences are in the same lan-
guage, we count co-occurring identical words, i. e., if em,j is the same word as en,i

for some i and j. In addition, we add a fraction of a count for words with identical
prefixes. We perform this initialization to “guide” the alignment algorithm so that
it would always align to each other identical English words and words with the
same stem, but different word form.

The model parameters – the lexicon model p(e|e′) and the alignment model – are
trained iteratively with the EM algorithm using the GIZA++ toolkit of Och and Ney
(2003). The training is performed in the directions Em → En and En → Em. The
updated lexicon tables from the two directions are interpolated after each iteration.
We perform four iterations of the IBM Model 1 and five iterations of the HMM
training.

The final alignments are determined using a cost matrix C for each sentence pair
(Em, En). The elements of this matrix are the local costs C(i, j) of aligning a word
em,j from Em to a word en,i from En. Following Matusov et al. (2004), we compute
these local costs by interpolating state occupation probabilities from the “source-
to-target” and “target-to-source” training of the HMM model. These are marginal
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probabilities of the form pj(i, Em|En) =
∑

a:aj=i

Pr(Em,A|En) normalized over

target positions i. The costs C(i, j) are obtained by taking the negated logarithm
of these probabilities. An example of a cost matrix for a sentence pair is given in
figure 13.2.

For a given alignment A ⊂ In × Im, we define the costs of this alignment C(A) as
the sum of the local costs of all aligned word pairs. The goal is to find a minimum
cost alignment fulfilling certain constraints. Two different alignments are computed
using the cost matrix C: the alignment ã used to reorder the words in each secondary
translation Em, and the alignment ā used to build the confusion network.

13.2.3 Word Reordering

The alignment ã between Em and the primary hypothesis En used for reordering
is determined under the constraint that it must be a function of the words in the
secondary translation Em with minimal costs. It can be easily computed from the
cost matrix C as

ãj = argmin
i

C(i, j). (13.4)

The word order of the secondary hypothesis Em is changed. The words em,j in Em

are sorted by the indices i = ãj of the words in En to which they are aligned. If
two or more words in Em are aligned to the same word in En, they are kept in the
original order.

After reordering each secondary hypothesis Em and the columns of the corre-
sponding alignment cost matrix according to the permutation given by the align-
ment ã, we determine M − 1 monotone one-to-one alignments between En as the
primary translation and Em, m = 1, . . . , M ; m �= n. This type of alignment will
allow a straightforward construction of the confusion network in the next step of
the algorithm. In case of many-to-one connections in ã of words in Em to a single
word from En, we only keep the connection with the lowest alignment costs. This
means that for each position i in En the unique alignment connection with a word
in Em is found with the following equation:

āi = argmin
j: eaj=i

C(i, j). (13.5)

The use of the one-to-one alignment ā implies that some words in the secondary
translation will not have a correspondence in the primary translation and vice versa.
We consider these words to have a null alignment with the empty word ε. In the
corresponding CN, the empty word will be transformed to an ε-arc.

By using the cost matrix representation to compute the alignment (instead of
the standard GIZA++ alignments) we can introduce flexibility into the alignment
decisions. An extension that is effectively used in our experiments is to constrain
ã with regard to the alignment of identical words in the secondary hypothesis Em.
According to the reordering procedure, if two such words (e.g., the two words “of”
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from the secondary hypothesis in the example in figure 13.2) are aligned to the
same word in the primary hypothesis, they will be placed next to each other after
reordering. Such word repetitions are in most cases undesirable. To avoid them, we
extend the algorithm for computing the alignment ã in Eq.( 13.4) by introducing
an additional constraint that identical words em,j = em,j′ in Em cannot be all
aligned to the same word en,i in En. If two such connections are found, the one
with the higher costs in the alignment cost matrix C is discarded (e. g., for em,j′)
and another alignment point is determined. This is the point with the lowest costs
in the same column of the matrix:

ã(j′) = argmin
i′:i′ �=i

C(i′, j′). (13.6)

With this extension, the alignment of the phrase deprived of most of the
powers from figure 13.2 with parts of the reordered secondary hypothesis improves
from:

deprived $ $ $ of most $ of $ the powers

eliminate greater part the $ $ of of the the authorities

to the more appropriate

deprived $ $ $ of most of the powers

eliminate greater part the of the of the authorities

13.2.4 Alternative Alignment Strategies in Related Work

Some alternative alignment procedures for MT system combination can be found
in the literature. We will shortly present them here and discuss their qualities.

Sentence level combination: In the simplest case, we can consider full alignment
of all words in one hypothesis with all words of the other hypothesis. In this case, the
hypotheses are combined at the sentence level, as already mentioned in section 13.1.
No majority voting can be performed at the word level anymore, but other statistical
models and features described in section 13.3 can be applied to select the best
translation from the given ones. In our experiments, we will compare this baseline
approach with the enhanced alignment algorithm described above.

Monotone alignment based on the edit distance: Another approach, which may
be suitable for translation between languages with similar sentence structure, is to
ignore the reordering problem and determine a monotone alignment only. Bangalore
et al. (2001) use the edit distance alignment extended to multiple sequences to
construct a confusion network from several translation hypotheses. This approach
would fail to align well the translation hypotheses with significantly different word
order.

Local nonmonotone alignments: Recently, some researchers suggested computing
nonmonotone alignments between the multiple translation hypotheses. However,
the key difference from the word alignment presented in this chapter is that the
proposed alignment procedures are local, i.e. they consider only the words in the
translations for a particular sentence in order to create the alignment for this
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TER alignment HMM alignment

I think that you know # you will be aware , I believe

$ $ I think that you know I think that you $ $ know
will be aware , I you believe I believe , you will be aware

a huge fall in average prices # a decline strong in the prices means

a huge fall in average prices $ a huge fall in $ average prices
a decline strong in the prices means a strong decline in the means prices

Figure 13.3 Examples of the TER-based alignment in comparison with the alignment
produced by the enhanced alignment and reordering algorithm of Matusov et al. (2006)
(HMM alignment). In each example, the second translation is reordered to match the word
order of the first one, given the alignment. The $ symbol denotes deletions/insertions in
the alignment.

sentence. They do not take into account the co-occurrences of these words in
the multiple translations of other sentences. Thus, the alignment is not learned
statistically. In contrast, the enhanced hidden Markov model alignment algorithm
presented in Matusov et al. (2006) and explained in detail in this chapter makes the
alignment decisions depend on probabilities iteratively trained on a whole corpus
translated by the participating MT systems. Thus, the alignment of synonyms
and other related words can be learned automatically. Also, since a test corpus
often contains whole documents relating to a certain topic, the word alignment can
be implicitly adapted to the differences in word/phrase usage within a particular
document.

Jayaraman and Lavie (2005) were the first to introduce a method that allows
for local nonmonotone alignments of words in different translation hypotheses
for the same sentence. Their approach uses many heuristics and is based on the
alignment that is performed to calculate a specific MT error measure; performance
improvements have been reported only in terms of this measure.

Rosti et al. (2007a) suggested using alignment based on the translation error rate
(TER) (Snover et al., 2006). This alignment procedure computes the edit distance
extended by shifts of word blocks. Only exactly matching phrases can be shifted, and
the shifts are selected greedily. The costs of aligning synonyms to each other are the
same as those of aligning completely unrelated words. As a result, the synonyms
often will not be matched to each other, but will be considered as insertions or
deletions in their original positions. This is suboptimal for CN voting, for which it is
important to align as many corresponding words as possible, considering reasonable
reorderings of words and phrases. Examples in figure 13.3 indicate that the TER-
based alignments and word reordering used by Rosti et al. (2007a) are inferior to
those computed with the machine learning technique described in section 13.2.2.
Experimental results in section 13.4 support this observation.

Alignment with the source sentence: Finally, a few other system combination
approaches do not perform the alignment between the hypotheses directly, but
rather rely on the alignment with the source sentence. In one of the first publications
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0.25 would your like coffee or tea
System 0.35 have you tea or coffee
hyps 0.10 would like your coffee or

0.30 I have some coffee tea would you like

Alignment have|would you|your $|like coffee|coffee or|or tea|tea
and would|would your|your like|like coffee|coffee or|or $|tea
reordering I|$ would|would you|your like|like have|$ some|$ coffee|coffee $|or tea|tea

$ would your like $ $ coffee or tea
Confusion $ have you $ $ $ coffee or tea
network $ would your like $ $ coffee or $

I would you like have some coffee $ tea

Voting $ would you $ $ $ coffee or tea
0.7 0.65 0.65 0.35 0.7 0.7 1.0 0.7 0.9

I have your like have some $ $
0.3 0.35 0.35 0.65 0.3 0.3 0.3 0.1

Consensus

translation would you like coffee or tea

Figure 13.4 Example of creating a confusion network from monotone one-to-one word
alignments (denoted with symbol |). The words of the primary hypothesis are printed in
bold. The symbol $ denotes a null alignment or an ε-arc in the corresponding part of the
CN.

on system combination in MT, Nirenburg and Frederking (1994) created a chart
structure where target language phrases from each system are placed according
to their corresponding source phrases, together with their confidence scores. A
chart-walk algorithm is used to select the best translation from the chart. More
recently, Huang and Papineni (2007) and Rosti et al. (2007a) show that a system
combination translation can be produced by performing a new search with one
of the involved phrase-based MT systems, but using only the phrases from the
translation hypotheses provided by the participating systems together with their
alignment with the source sentence phrases. The advantage of this method is that
good phrasal translations can be preserved. However, the sentence structure of the
system combination translation is limited to the structure of the source sentence
or to the word order that the new search can produce. In the second case, this
introduces a bias toward the particular MT system which implements this search.
This means that a good sentence structure produced by one of the other MT systems
cannot be followed. Also, all of the systems either have to provide phrasal alignments
with word sequences in the source sentence (they may not be available for rule-based
systems), or this alignment has to be determined with an automatic algorithm that
can introduce additional errors.

13.3 Confusion Network Generation and Scoring

In this section, we first show how a confusion network can be created from the word
alignments learned as described in section 13.2. Then we explain how we estimate
and use different probabilistic features in order to select the best translation from
the CN as the system combination translation.
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Figure 13.5 Union of several confusion networks, including the one shown in figure 13.4.

13.3.1 Building Confusion Networks

With the M − 1 monotone one-to-one alignments with the primary hypothesis
which are obtained after reordering of the words in the secondary hypotheses (see
section 13.2.3), we can follow the approach of Bangalore et al. (2001) with some
extensions to construct the CN. The method is best explained by the example
in figure 13.4. Here, the original M = 4 hypotheses are shown, followed by the
alignment of the reordered secondary hypotheses 2 to 4 to the primary hypothesis 1
(shown in bold). The alignment is shown with the | symbol, where the words of the
primary hypothesis are to the right of this symbol. The symbol $ denotes a null
alignment or an ε-arc in the corresponding part of the CN.

Starting from an initial state s0, the primary hypothesis En is processed from left
to right and a new state is produced for each word en,i in En. Then an arc is created
from the previous state to this state, for en,i and for all words (or the null word)
aligned to en,i. If there are insertions following en,i (for example, “have some” in
figure 13.4), the states and arcs for the inserted words are also created. When several
word sequences from different secondary translations are to be inserted between two
consecutive primary words en,i and en,i+1, we compute the edit distance alignment
between all the insertions to make sure that identical words are aligned to each
other.

For each sentence, we obtain M CNs of the type shown in figure 13.4 by letting
each individual translation hypothesis play the role of the primary hypothesis. The
consensus translation can be extracted only from one of these confusion networks,
i. e., from the one in which the primary hypothesis was produced by a generally
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better-performing MT system. However, the word order of the resulting consensus
translation will follow the word order of the primary translation, which may still
be erroneous for some sentences. Because of that, a better strategy is to consider
multiple primary hypotheses at once. Our experiments show that it is advantageous
to unite the M CNs in a single lattice as shown in figure 13.5. Then the consensus
translation can be chosen from different alignment and reordering paths in this
lattice.

13.3.2 Probability Estimation

To extract a good consensus translation from the lattice shown in figure 13.5, we
have to estimate the probabilities of its arcs, i.e., have to specify the weights of the
words produced by each individual MT system involved in system combination.
First, we will show how to estimate the weights for a single confusion network
created based on the primary hypothesis En from the MT system n. We refer to
K = K(n) as the length of a path in the confusion network that was created from the
alignment of the secondary hypotheses Em with En. For each state sk, k = 0, . . . , K

in the CN, we denote by emk the word or the empty word which is produced at
position k by MT system m, m = 1, . . . , M (i.e., an arc labeled with this word exists
between the states sk−1 and sk). The probability pk(e|F, En) of each unique word
or the empty word e at position k that is used in “voting” is obtained by summing
the system-specific weights over all systems m, m = 1, . . . , M which have the word
e at this position:

pk(e|F, En) =

M∑
m=1

δ(emk, e) · (γm + β · δ(m, n))

∑̃
e

M∑
m=1

δ(emk, ẽ) · (γm + β · δ(m, n))
. (13.7)

Here, γm are global weights that are independent of a particular word e, but give
an a priori estimation of the translation quality of the MT system m. The value
β is added to the system weight only when the word at the concerned arc belongs
to the primary hypothesis with index n. The parameter β is used to control the
deviation from the original sentence structure and is appropriate for the case of M

CNs. By increasing β, we favor the words (and thus the word order) of the original
hypotheses. For very large values of β, one of the original word sequences will always
outweigh the alternatives at each word position, so that the system combination
approach is reduced to selection on the sentence level, as described in section 13.1.
A simplified voting procedure is depicted in the lower part of figure 13.4.

The set of parameters {γ1, . . . , γM , β} is adjusted based on the performance of
the involved MT systems on a development set in terms of an automatic MT
evaluation measure (see section 13.3.7). Generally, a better consensus translation
can be produced if the words hypothesized by a better-performing system get a
higher probability.
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13.3.3 Combining R-Best Translations from Each MT System

In a recent extension of the presented system (see also Mauser et al. (2007)), we
make use of the fact that many MT systems can produce not only the single best
translation but a list of R top-ranked translations for each sentence (e.g., R = 10).
From each of the involved systems we take these R translations to better estimate
the weight of each word in the confusion network.

To keep the computational costs of the algorithm low, we continue to consider
only the M single best translations from the M systems as the primary hypotheses.
To each primary hypothesis, we align the remaining R − 1 hypotheses from the
“primary” system as well as the (M − 1) · R hypotheses from the other systems.
The alignment is performed iteratively as described in section 13.2.2. The CN is
created in analogy to the procedure described in section 13.3.1, but at each state
in the CN we insert M ·R arcs to the next state. To perform the weighted majority
voting on this CN, we define em,r,k as the word (or the empty word) at position
k coming from the translation with rank3 r of the MT system with index m. The
probability for a distinct word e is then computed by summing system-specific
weights over all systems and over all hypotheses of each individual system. This is
formalized with the following equation, which extends Eq.( 13.7).

pk(e|F, En) =

M∑
m=1

R∑
r=1

r−1δ(em,r,k, e) · (γm + β · δ(m, n))

∑̃
e

M∑
m=1

R∑
r=1

r−1δ(em,r,k, ẽ) · (γm + β · δ(m, n))
. (13.8)

Thus, if, e.g., a word appears in the tenth best hypothesis of a single system, it has
a ten times smaller weight than a word appearing in the single best hypothesis of
the same system.

The idea behind using R-best lists from each system is first and foremost to
improve the weight estimation. Words appearing in the majority of the R-best
translations are considered more probable than those appearing in one or two
translations only. By using multiple translations from each of the MT systems
we also introduce additional translation alternatives at the word level, but their
number is usually limited, since the R-best translations of the same MT system are
often quite similar to each other.

A similar way of using R-best lists as input for MT system combination is
proposed by Rosti et al. (2007b).

13.3.4 Extracting Consensus Translation

In the basic voting procedure (figure 13.4), the consensus translation is extracted as
the best path from a single CN. The position-dependent probabilities pk(e|F, En) as

3. Rank r is the position of the translation in the list of R-best translations of a single
MT system. The single best translation has the rank r = 1.
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given by Eq.( 13.7) or Eq.(13.8) are used to score each path. We define the consensus
translation extracted from the CN with the primary translation of MT system n

as the sequence êK
1 (n) := ên,1, . . . , ên,k, . . . , ên,K(n) where, at each position k in the

CN, the best word êk is selected by the following equation4:

êk = arg max
e

{pk(e|F, En)} . (13.9)

The ε-arcs have to be removed from êK
1 to obtain a translation with proper words

only. Note that the extracted consensus translation can be different from each of
the original M (or R · M) translations.

Due to the presence of ε-arcs in the CN, it may contain multiple identical word
sequences. The number of identical sequences will increase if we extract the globally
best translation from the lattice which is a union of M CNs, as described in
section 13.3.1. To improve the estimation of the score for the best hypothesis, we
deviate from Eq.( 13.9) and sum the probabilities of identical partial paths. This is
done through determinization of the lattice in the log semiring. This approach also
allows us to extract n-best hypotheses without duplicates. In a subsequent step,
these n-best lists could be rescored with additional statistical models just like any
n-best lists from a single MT system (see, e.g., Mauser et al. (2006)).

13.3.5 Language Model Rescoring

Experimental results show that the consensus translation computed by weighted
majority voting often exhibits significantly better word choice than any of the
individual system translations. However, the freedom to choose any word or the
empty word at each position in the CN, as well as the reordering of the secondary
hypotheses, often leads to insufficient fluency of the system combination translation.
To improve its word order, we employ an n-gram language model (LM). The lattice
representing a union of several CNs can be directly rescored using a language
model. For the LM rescoring, a transformation of the lattice is required, since
the LM history has to be memorized. The ε-arcs are removed as a result of
this transformation. This affects the probabilities pk(e|F, En), k = 1, . . . , k, . . . , K

from Eq.( 13.7) or Eq.( 13.8) which are redefined in terms of proper words only.
For a single full path e1, . . . , ei, . . . , eI of length I in the transformed lattice,
these probabilities can be expressed with p(ei|F ), i = 1, . . . , i, . . . , I. The language
model probability can then be included in the decision criterion using log-linear
interpolation. In case of a trigram language model, the modified decision criterion
is described with the following equation:

(Î , êÎ
1) = arg max

I,eI
1

{
I∑

i=1

(log p(ei|F ) + λ · log p(ei|ei−1, ei−2) + α)}. (13.10)

4. Index n is omitted here for better readability.
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Here, the maximization is performed over all of the paths in the LM-rescored
lattice. λ is the LM scaling factor, and α is a word penalty that is used to avoid
the bias toward short sentences. Note again that Eq.( 13.10) is an approximation,
since in practice the probabilities are summed over identical partial paths when the
rescored lattice is determinized.

Whereas a general target LM can be successfully used for rescoring, as shown
by Rosti et al. (2007b), in our experiments the translation fluency improves
significantly by using an adapted LM learned from the outputs of the MT systems
for the test corpus on which the system combination translation is to be determined.
We attribute this to the fact that the systems we combine are all phrase-based
systems. Using this special LM for lattice rescoring gives a bonus to n-grams from
the original system hypotheses, in most cases from the original phrases. Presumably,
many of these phrases have a correct word order, since they were extracted from the
training data. Moreover, these phrases were selected as the best ones in translation,
which means that a general LM has already given them high probability.

13.3.6 Preserving Word Case Information

Some MT systems produce English words with their true case (e.g., starting names
with a capital letter), while others only produce lowercase translations. Whereas
it is of advantage to convert all words to lowercase in order to better estimate the
word alignment, it is a good idea to preserve the case information when extracting
the system combination translation from the confusion network or lattice. However,
we have to make sure that if a certain word wins the weighted majority when the
case information is ignored, the same word should have this majority when the
case information is considered, i.e., if two versions of the same word produced by
different MT systems are aligned to each other. To achieve this, we perform the
summation in Eq.( 13.7) or Eq.( 13.8) over the lowercase versions of each unique
word e (i.e., we add together the probability of a lowercased and truecased version
of e), but keep a separate arc in the lattice for each version of e, and assign this sum
to it as its probability. In the subsequent lattice rescoring, the adapted language
model will have the key role in deciding what version of the word is appropriate at
this particular position.

13.3.7 Optimization of System Combination Parameters

An optimal parameter set {γ1, . . . , γM , β, α, λ} – the global system probabilities,
the bonus for the primary system, the LM factor, and the word penalty – can be
learned automatically using a development corpus, with the goal of improving an
automatic evaluation measure.

To perform the optimization, we utilized the CONDOR optimization tool of Van-
den Berghen and Bersini (2005). The optimization algorithm allows us to specify
upper and lower bounds for each weight. In particular, we constrain the system
probabilities γm to sum to 1. For the optimization, the confusion networks can be
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Table 13.1 Corpus statistics for the development and test data. The Chinese word
segmentation was performed using the Linguistic Data Consortium (LDC) segmentation
tool.

Chinese → English Arabic → English

DEV TEST DEV TEST

Sentences 554 1082 533 1056

Running source words 17,767 32,611 18,053 31,375

Avg. running target words (references) 21,437 34,567 21,931 35,648

Avg. running target words (MT hyps) 21,116 36,808 21,659 35,963

Vocabulary size (all MT hyps) 6677 8296 6128 7430

kept fixed, since the parameters involved do not affect the alignment. In each step
of the optimization algorithm, the CNs for the development set are scored using a
set of parameters mentioned above, and the consensus translation is extracted by
finding the best path through the rescored lattice. Then, the system weights, the
scaling factor for the LM, and the word penalty are updated. In our experiments,
100 to 150 iterations are necessary for convergence.

13.4 Experiments

In this section, we describe the experimental results for the presented system combi-
nation algorithm. We quantify the importance of individual algorithm features such
as the enhanced word alignment and show significant improvements in translation
quality in comparison with the best of the individual MT systems involved.

13.4.1 Translation Task and Conditions

Significant improvements with the presented approach were achieved on many tasks
and conditions; see Matusov et al. (2006). The approach was successfully used
in evaluations within important MT projects like TC-STAR (2007) and GALE
(2007). Here, we will present the results for the Chinese-to-English and Arabic-to-
English translation tasks. The individual MT systems which we combine are all large
vocabulary systems trained on large amounts of bilingual data for the GALE 2007
Go/NoGo MT evaluation. As the development data, we used the newswire portion
of the official 2007 development set. As the evaluation data, we consider the test set
of the NIST 2005 machine translation evaluation (see Doddington (2002)), which
also consists of newswire documents. The corpus statistics for the development and
test data are presented in table 13.1.

The five MT systems used in system combination experiments were all statistical
machine translation systems. Whereas four out of five Arabic-to-English systems
employed phrase-based search with a distance-based reordering model in the style
of Zens and Ney (2004) and Koehn (2004a), one of the systems was a hierarchical
phrase translation system. For Chinese-to-English translation, two out of five sys-
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Table 13.2 Effect of the alignment and cost estimation techniques (case-insensitive error
measures in %, NIST 2005 Chinese-to-English evaluation data)

System BLEU TER WER PER

Worst system (BLEU) 29.2 65.8 73.1 45.8

Best system (BLEU) 33.8 61.9 69.2 43.5

Selection 34.1 58.4 65.1 41.4

HMM alignment (single CN) 36.3 56.3 63.1 39.7

TER alignment (5 CNs) 36.2 55.3 62.1 39.5

HMM alignment (5 CNs) 36.8 55.7 62.9 39.0

+ 10-best translations as input 37.1 56.1 63.6 38.5

tems were purely phrase-based, one system used hierarchical phrases, and another
one augmented the phrase-based translation with reordering of the source sentences
based on syntactic chunks. The fifth system was a hybrid system combining a rule-
based and a statistical translation system.

13.4.2 Evaluation Criteria

To assess the translation quality and compare the systems, we use the following
well-established automatic evaluation measures: the BLEU score as in Papineni
et al. (2002), the translation error rate (Snover et al., 2006), the word error rate
(WER), and the position-independent word error rate (PER) (Tillmann et al.,
1997b). These error measures were computed using a single reference translation for
the development data and four reference translations for the test data. Punctuation
marks were included in the evaluation as separate tokens.

13.4.3 Comparative Experiments

Table 13.2 presents the results of several comparative experiments performed
on the Chinese-to-English task. For each experiment, the system weights and
other parameters like the scaling factor for the language model were optimized
automatically as described in section 13.3.7 on the development set. The results are
reported on the evaluation set. As the objective function for optimization, we tested
BLEU and TER, as well as the combination of both measures: TER+(1.0−BLEU).
Using the combination of BLEU and TER was more stable in terms of generalization
from the development to the evaluation data. In addition, the resulting hypotheses
had a more reasonable average sentence length than when a single evaluation
measure had been used.

As the baseline experiment, we performed the selection of one of the individual
system translations for each sentence. For this purpose, we created a word lattice
with only five paths representing the original system translations and scored this
lattice with system weights, the adapted LM, and the word penalty. The result
in table 13.2 shows that this approach improves the overall translation quality in



274 Learning to Combine Machine Translation Systems

Table 13.3 Case-insensitive/case-sensitive evaluation of the case preservation compo-
nent (NIST 2005 Chinese-to-English MT evaluation data, error measures in %)

System BLEU TER WER PER

Best single system 33.8/31.0 61.9/65.3 69.2/72.2 43.5/47.3

Lowercase system combination 36.6/34.0 56.8/59.2 64.0/65.9 39.6/42.6

Truecase system combination 36.8/34.0 55.7/59.4 62.9/66.0 39.0/42.9

comparison with the best single system. However, the improvement is not significant
in terms of BLEU and the approach is inferior to all variants of the presented
algorithm in which a consensus translation is computed. This is an expected result,
since the selection approach is not able to generate output that is different from
the individual system translations.

In the next experiment, we determined a genuine consensus translation, but
based only on one confusion network. As the primary hypothesis for this CN
we took the translations of the system that performed best in terms of BLEU.5

The improvements in BLEU, TER, and other measures with this simplified system
combination are already significant at the 95% confidence level, as computed using
bootstrap estimation. However, the translation quality can be improved even further
if we unite the five CNs in a single lattice and extract the best translation from this
lattice.

We also have compared the enhanced HMM algorithm presented in this work with
the TER-based alignment algorithm as used by Rosti et al. (2007a). The TER-based
alignment improves the TER by 0.4% absolute w.r.t. the HMM alignment. This is
not surprising, since TER (and also WER, which is similar to TER) uses the same
type of alignment to compute the error measure as the tested alignment algorithm.
However, using the HMM alignment to create the CN improves the BLEU score
and position-independent error rate.

Using 10-best translations from each system also improves BLEU and PER. This
means that the system combination algorithm can make a better word choice due
to better estimation of weights in the voting procedure. However, this seems to
happen at the expense of the translation fluency. We plan to continue research on
how to use multiple translations from each system in a more effective way.

In order to test the usefulness of the system feature that allows preservation of
word case information, we performed system combination using lowercase transla-
tions only and compared the results with the truecased consensus translation using
both case-insensitive and case-sensitive evaluation. For the latter type of evalua-
tion, we had to use the disambig truecasing tool from the SRI LM toolkit of Stolcke
(2002) to restore the case of the words in the lowercase consensus translation. Ta-
ble 13.3 shows the error measures for this experiment. Interestingly, the truecase
system combination performs slightly better when evaluated without considering

5. A more sophisticated strategy is followed by Sim et al. (2007), who take the minimum
Bayes risk hypothesis as the primary one.
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Table 13.4 Error measures (in %) for the NIST 2005 Chinese-to-English MT evaluation
data

System BLEU TER WER PER

A 31.0 65.3 72.2 47.3

B 30.8 63.1 70.6 44.6

C 30.2 63.8 70.7 45.4

D 30.1 61.9 68.4 44.6

E 26.7 68.9 75.8 49.4

System combination 34.1 59.3 66.3 42.2

Table 13.5 Error measures (in %) for the NIST 2005 Arabic-to-English MT evaluation
data

System BLEU TER WER PER

A 53.2 41.3 43.8 31.1

B 51.4 42.1 44.8 31.6

C 47.6 45.1 48.2 33.9

D 42.9 46.3 48.9 35.9

E 41.5 50.2 53.2 37.0

System combination 55.0 39.3 41.6 30.2

the case. This means that the probabilistic dependencies (including the language
model) help to make better word choice when we differentiate between lowercase
and uppercase words. On the other hand, when we perform case-sensitive evalua-
tion, the two methods have very similar error rates. The results therefore indicate
that preserving case information during system combination is a good tradeoff be-
tween the actual translation quality regarding lexical choice and the case restoration
quality.

13.4.4 Final Results

In tables 13.4 and 13.5, we present the final case-sensitive results of our experi-
ments with the best system settings (HMM alignment, five CNs combined, 10-best
translations as input). These settings were used also in the GALE 2007 evaluation
with the same participating systems.

The system combination is able to achieve large and significant improvements
on both translation tasks. For instance, for Chinese-to-English translation BLEU
improves by 3.1% absolute (w.r.t. the best system A) and TER by 2.6% absolute
(w.r.t. the best system D). For Arabic-to-English, BLEU improves by 1.8% absolute
and TER by 2.0% absolute (w.r.t. the best system A). Note that the relative
improvement in, e.g., TER and BLEU score in comparison with the best single
system is larger for Chinese. For Chinese, we combined structurally different systems
(i.e., systems producing quite different translations) which nevertheless were of
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similar quality in terms of automatic error measures like the BLEU score. As already
observed in our previous experiments and in the work of Macherey and Och (2007),
this is the ideal condition for achieving good-quality translations with a consensus-
based system combination method like the one presented in this chapter.

13.5 Conclusion

In this chapter, we showed how multiple MT systems can be combined with the
goal of improving translation quality. We presented a method that computes a
consensus translation from the aligned MT hypotheses. The method utilizes the
enhanced alignment procedure of Matusov et al. (2006), as well as its extensions.

In contrast to previous approaches to system combination in MT, the method
presented here includes a machine learning component. The word alignment be-
tween the translation hypotheses is a statistical, iterative procedure. The decision
on how to align two translations of a sentence takes the context of a whole corpus
of automatic translations into account. This high-quality nonmonotone alignment
is used for finding corresponding words and subsequent word reordering when con-
fusion networks with translation alternatives are created. Several CNs represent-
ing alternative sentence structures are combined in a single lattice. The consensus
translation is extracted from this lattice using various probabilistic features which
estimate the weight of each candidate word. This translation often has a signifi-
cantly better quality than the original translations and may be different from each
of them. In this chapter, we have formally described the alignment algorithm, as
well as the weight estimation techniques.

The quality of the produced consensus translations was evaluated on the NIST
2005 Chinese-to-English and Arabic-to-English test data, which is widely used in
research. For each task, we combined the outputs of five different MT systems. Our
experiments have shown that a significant improvement in all automatic evaluation
measures is achieved for both translation directions. We have also shown that our
approach compares favorably with alternative system combination strategies.

In the future, we would like to improve word confidence estimation for the voting
procedure. We would also like to consider phrases and other syntactic and semantic
structures explicitly in the alignment and rescoring steps of the system combination
algorithm.
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Antoine Bordes, Léon Bottou, Patrick Gallinari, and Jason Weston. Solving
multiclass support vector machines with LaRank. In Proceedings of the 24th
International Conference on Machine Learning (ICML-07), pages 89–96. New
York, ACM, 2007.

Antoine Bordes, Seyda Ertekin, Jason Weston, and Léon Bottou. Fast kernel
classifiers with online and active learning. Journal of Machine Learning Research,
6:1579–1619, September 2005.
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Béatrice Bouchou, Mickael Tran, and Denis Maurel. Towards an XML representa-
tion of proper names and their relationships. In Proceedings of the 10th Interna-
tional Conference on Applications of Natural Language to Information Systems
(NLDB 2005), pages 44–55. Alicante, Spain, June 2005.

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J. Och, and Jeffrey Dean. Large
language models in machine translation. In Proceedings of the Joint Conference
on Empirical Methods in Natural Language Processing and Conference on Natural
Language Learning (EMNLP-CoNLL), June 2007.

Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.

Sergey Brin and Lawrence Page. The anatomy of a large-scale hypertextual web
search engine. In Proceedings of the 7th International Conference on World Wide
Web (WWW7), pages 107–117. Amsterdam, Elsevier, 1998.

Peter Brown, Stephen Della-Pietra, Vincent Della-Pietra, and Robert Mercer.
The mathematics of machine translation: Parameter estimation. Computational
Linguistics, 19(2):263–311, 1993.



280 References

Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,
Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A
statistical approach to machine translation. Computational Linguistics, 16(2):
79–85, 1990.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. A statistical approach to sense disambiguation in machine translation.
In Proceedings of the HLT’91 Workshop on Speech and Natural Language, pages
146–151. Association for Computational Linguistics, 1991a.

Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della Pietra, and Robert L.
Mercer. Word-sense disambiguation using statistical methods. In Proceedings of
the 29th Annual Meeting of the Association for Computational Linguistics, pages
264–270, 1991b.

Peter F. Brown, P. V. deSouza, Robert L. Mercer, Vincent J. Della Pietra, and J. C.
Lai. Class-based n-gram models of natural language. Computational Linguistics,
18(4):467–479, 1992.

Andrea Burbank, Marine Carpuat, Stephen Clark, Markus Dreyer, Pamela Fox,
Declan Groves, Keith Hall, Mary Hearne, I. Dan Melamed, Yihai Shen, Andy
Way, Ben Wellington, and Dekai Wu. Statistical machine translation by pars-
ing. Final report, Johns Hopkins University Center for Speech and Language
Processing Summer Workshop, Baltimore, 2005.

Ludwig M. Busse, Peter Orbanz, and Joachim M. Buhmann. Cluster analysis of
heterogeneous rank data. In Proceedings of the 24th International Conference on
Machine Learning (ICML-07), pages 113–120. New York, ACM, 2007.

Clara Cabezas and Philip Resnik. Using WSD techniques for lexical selection
in statistical machine translation. Technical report CS-TR-4736/LAMP-TR-
124/UMIACS-TR-2005-42, University of Maryland, College Park, 2005.

Chris Callison-Burch. Co-training for statistical machine translation. Master’s
thesis, School of Informatics, University of Edinburgh, 2002.

Chris Callison-Burch and Raymond Flournoy. A program for automatically se-
lecting the best output from multiple machine translation engines. In Machine
Translation Summit VIII, pages 63–66, September 2001.

Chris Callison-Burch, Miles Osborne, and Philipp Koehn. Re-evaluating the role
of Bleu in machine translation research. In Proceedings of the 11th European
Chapter of the Association for Computational Linguistics (EACL), April 2006.

Chris Callison-Burch, David Talbot, and Miles Osborne. Statistical machine trans-
lation with word and sentence-aligned parallel corpora. In Proceedings of the
42nd Annual Meeting of the Association for Computational Linguistics, 2004.
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Hal Daumé III, John Langford, and Daniel Marcu. Search-based structured pre-
diction. Machine Learning, 2006. Submitted.
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Hervé Déjean, Éric Gaussier, and Fatia Sadat. An approach based on multilingual
thesauri and model combination for bilingual lexicon extraction. In Proceedings of
the 19th International Conference on Computational Linguistics (COLING-02),
2002.

John DeNero, Dan Gillick, James Zhang, and Dan Klein. Why generative phrase
models underperform surface heuristics. In Proceedings of the NAACL Workshop
on Statistical Machine Translation (WMT’06), June 2006.

George Doddington. Automatic evaluation of machine translation quality using n-
gram co-occurrence statistics. In Proceedings of the 2nd International Conference
on Human Language Technology Research (HLT-02), pages 138–145, 2002.

Bonnie J. Dorr, Lisa Pearl, Rebecca Hwa, and Nizar Habash. DUSTer: A method
for unraveling cross-language divergences for statistical word-level alignment.
In Stephen D. Richardson, editor, Machine Translation: From Research to Real
Users, 5th Conference of the Association for Machine Translation in the Amer-
icas (AMTA-02), volume 2499 of Lecture Notes in Computer Science. Berlin,
Springer-Verlag, 2002.

Miroslav Dudik, Steven Phillips, and Robert E. Schapire. Performance guarantees
for regularized maximum entropy density estimation. In Proceedings of the
Annual ACM Workshop on Computational Learning Theory (COLT). Berlin,
Springer-Verlag, 2004.

Miroslav Dud́ık, Steven J. Phillips, and Robert E. Schapire. Maximum entropy
density estimation with generalized regularization and an application to species
distribution modeling. Journal of Machine Learning Research, 8:1217–1260, June
2007.

Matthias Eck, Stephan Vogel, and Alex Waibel. Language model adaptation for
statistical machine translation based on information retrieval. In Proceedings of



References 285

the 4th Language Resources and Evaluation Conference (LREC), pages 327–330,
May 2004.
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Jesús Giménez and Enrique Amigó. IQMT: A framework for automatic machine
translation evaluation. In Proceedings of the 5th Language Resources and Evalu-
ation Conference (LREC), pages 685–690, 2006.
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Jesús Giménez and Llúıs Màrquez. Linguistic features for automatic evaluation of
heterogeneous MT systems. In Proceedings of the 2nd Workshop on Statistical
Machine Translation (WMT’07), pages 256–264, 2007b.
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adapted LM, see language model
additional data selection, 244
adequacy, 4
AER, see alignment error rate
aggregate objective function, 35
alignment, 9

remapping, 96
alignment error rate, 21, 98
attributes, 137

bag-of-words lexical choice, 194
beam search, 24, 176
bilanguage representation, 188
BLANC, 7
BLEU, 6, 108, 155, 223, 247
bootstrap resampling, 248
bootstrapping algorithm, 240

Chinese Gigaword corpus, 248
classification error rate, 244
clitics, 95
comparable corpus, 42, 80
confidence estimation, 243
confidence score, 244
confusion network, 259
consensus translation, 269
co-ranking, 81, 83
cosine angle distance, 174
cube pruning, 25

decoding, 8
dedicated word selection, 207
deficient model, 10
dictionaries

proper names, 59
direct translation, 2
discriminative training, 112, 209

distortion, 10, 19

edit distance, 65, 76, 175
Levenshtein, 175

EMM, see Europe Media Monitor
English-Japanese parallel corpus, 41
Euclidean distance, 174
Europarl corpus, 246
Europe Media Monitor, 68
evaluation

Apt measure, 227
KING measure, 226
QUEEN measure, 226
heterogeneous automatic, 223
human acceptability, 225
human likeness, 225

factored representation, 114
feature

compound features, 137
construction, 137
domain-partitioning feature, 137
gain, 136
induction, 137
primitive feature, 137
selection, 136

feature space, 169
feature vector, 170
fertility, 10
fluency, 4
Frobenius norm, 171
fundamental equation of statistical

MT, 8
future score, 24

general text matcher, 7, 223
Giza++, 96
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global reordering, 191
GTM, see general text matcher

Hansard corpus, 246
hidden Markov model, 9
HMM, see hidden Markov model
HTER, see human-targeted transla-

tion edit rate
human-targeted translation edit rate,

6
hypothesis

primary, 259, 261
secondary, 259, 261

IBM models, 8
importance sampling, 245
interlingua, 2

Japanese-English parallel corpus, 41

kernel, 113, 172
blended kernel, 114
blended n-gram string kernel,

172
combination, 114
factored kernel, 115
n-gram string kernel, 172
rational kernel, 118
soft-matching kernel, 116
word-sequence kernel, 113

L1 regularization
vs. L2 regularization, 197

language model, 3
adapted, 271
effect, 208
n-gram, 112, 123

learning rate, 138
least squares regression, 171
length-normalized score, 243
Levenshtein alignment, 243
lexical choice, 205
lexical translation parameters, 9
local reordering, 189
log-linear model, 3, 239

longest common subsequence, 98

machine translation
kernel-based, 169
n-gram-based, 107
phrase-based, 3, 107
semisupervised, 237
statistical, 205, 218
word-based, 3

Mada, 96
maximum entropy, 14, 209

history-based model, 15
whole sentence model, 15

METEOR, 7, 223
model update, 136
monolingual source language data,

237
MT, see machine translation
MXPOST, 98

name variants, 66
named entity

discovery, 81
multilingual, 59
recognition, 79
temporal alignment, 80, 83
transliteration, 80

n-best list, 21, 125, 151
NER, see named entity, recognition
NewsExplorer, 68
n-gram-based MT, see machine trans-

lation
NIST, 6, 108, 223
noisy-channel model, see source-channel

model

oracle, 155
ORANGE, 8

parallel corpus, 41
parallel training, 154
patent

corpus, 41
family, 41
parallel corpus, 41
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parallel corpus statistics, 48
PER, see position-independent word

error rate
perceptron, 154, 155

averaged, 155
dev-interleaved, 155
ensemble, 156

perplexity, 11
phrase-based model, 3, 19
phrase-based MT, see machine trans-

lation
phrase posterior probabilities, 243
phrase table, 20
PORTAGE SMT system, 238
position-independent word error rate,

5, 224, 248
posterior probabilities, 243
preimage, 169, 175
preimage problem, 33
preprocessing schemes, 95
pruning, 24

QARLA, 8

rank (of translation), 269
recombination, 23
regularization, 171
remapped alignment, 96
reordering, see distortion
reordering limit, 52
reproducing kernel Hilbert space, 169
reranking, 125, 151
rescoring, 18, 25
ridge regression, 171
Ripper, 97
ROUGE, 7, 223
ROVER, 258

Schur complement, 173
segmentation, 19
selection using a threshold, 245
self-training, 240
semisupervised learning, 237

for SMT, 241
sentence alignment, 44

quality, 47
sentence-level combination, 264
sequential lexical choice, 193
SFST, see Stochastic Finite State

Transducers
shallow syntactic similarity, 224
smoothing

Jelinek-Mercer, 12
Katz backoff, 13
Kneser-Ney backoff, 13

source-channel model, 8
source data filtering, 242
source language, 2
stack search, 24
statistical machine translation

adjustment of parameters, 227
large-scale, 151

Stochastic Finite State Transducers
decoding, 190
training, 187

support vector machine, 209
outcomes into probabilities, 220

symmetrization, 20
system combination, 257

target language, 2
TDT, see topic detection and track-

ing
TER, see translation edit rate
tf-idf, 174
time sequence

matching, 83
scoring functions, 91

Tokan, 96
top-K selection, 245
topic detection and tracking, 62
training data

domain and size, 52
size and noise, 55

transductive learning, 242
transfer, 2
translation

examples, 54
hypothesis scoring, 243
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translation edit rate, 6, 224
transliteration, 61

model, 85
rules, 67

update
parallel, 138
sequential, 138
stagewise, 138

Utiyama and Isahara’s method, 44

weighted majority voting, 259
WER, see word error rate
word alignment, 260
word-based model, 3
word error rate, 5, 224, 247

multireference, 108
word insertion model, 191
word ordering, 206
word posterior probabilities, 243
word selection, 205
word sense disambiguation, 206, 207
WSD, see word sense disambiguation

Yarowsky algorithm, 240


