
Lecture Notes in Artificial Intelligence

1735

Subseries of Lecture Notes in Computer Science

Edited by J. G. Carbonell and J. Siekmann

Lecture Notes in Computer Science

Edited by G. Goos, J. Hartmanis and J. van Leeuwen

3

Berlin
Heidelberg
New York
Barcelona
Hong Kong
London
Milan
Paris
Singapore
To k y o

Jan Willers Amtrup

Incremental
Speech Translation

I spring»

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA Jo¨rg

Siekmann, University of Saarland, Saarbru¨cken, Germany

Author

Jan Willers Amtrup
New Mexico State University, Computing Research Laboratory
P.O. Box 30001, Las Cruces, NM 88003, USA
E-mail: jamtrup@crl.nmsu.edu

Cataloging-in-Publication data applied for

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Amtrup, Jan:
Incremental speech translation / Jan Willers Amtrup. - Berlin ;

Heidelberg ; New York ; Barcelona ; Hong Kong ; London ; Milan ;

Paris ; Singapore ; Tokyo : Springer, 1999
(Lecture notes in computer science ; 1735 : Lecture notes in artificial
intelligence)
ISBN 3-540-66753-9

CR Subject Classification (1998): I.2.7, I.2, F.4.2-3

ISBN 3-540-66753-9 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned,
specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on

microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is

permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version,

and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution

under the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1999
Printed in Germany

Typesetting: Camera-ready by author
SPIN: 10750071 06/3142 – 5 4 3 2 1 0 Printed on acid-free paper

mailto:jamtrup@crl.nmsu.edu

Foreword

Human language capabilities are based on mental procedures that are closely linked

to the time domain. Listening, understanding, and reacting, on the one hand, as well

as planning, formulating, and speaking, on the other, are performed in a highly over-

lapping manner, thus allowing inter-human communication to proceed in a smooth

and fluent way.

Although it happens to be the natural mode of human language interaction, in-

cremental processing is still far from becoming a common feature of today’s lan-

guage technology. Instead, it will certainly remain one of the big challenges for

research activities in the years to come. Usually considered difficult to a degree that

renders it almost intractable for practical purposes, incremental language processing

has recently been attracting a steadily growing interest in the spoken language pro-

cessing community. Its notorious difficulty can be attributed mainly to two reasons:

• Due to the inaccessibility of the right context, global optimization criteria are no

longer available. This loss must be compensated for by communicating larger

search spaces between system components or by introducing appropriate repair

mechanisms. In any case, the complexity of the task can easily grow by an order

of magnitude or even more.

• Incrementality is an almost useless feature as long as it remains a local property

of individual system components. The advantages of incremental processing can

be effective only if all the components of a producer-consumer chain consistently

adhere to the same pattern of temporal behavior. Particularly for inherently com-

plex tasks like spoken language translation the issue of incremental processing

cannot be treated as a local phenomenon. Instead it turns out to be intrinsically

tied to fundamental questions of the overall system architecture, thus requiring a

global perspective and the ability to create and maintain a sufficiently ambitious

experimental environment.

If, despite these difficulties, a first prototypical solution for the incremental transla-

tion of spoken dialogues is presented here, two fundamental ideas have contributed

most to this remarkable success: the use of a chart as a uniform data structure

throughout the system and the rigorous application of results from graph theory

that eventually allowed the complexity of the task to be reduced to a manageable

degree.

This combination of contributions enables us for the first time to observe how

a machine translation of natural language utterances evolves over time as more and

more input becomes available. It certainly is much too early to risk a direct com-

parison with human interpretation capabilities, but certainly this book puts forward

a benchmark against which other solutions will have to be measured in the future.

October 1999 Wolfgang Menzel

Preface

Automatic speech recognition and processing has received a lot of attention during

the last decade. Prototypes for speech-to-speech translation are currently being de-

veloped that show first impressive results for this highly complex endeavor. They

demonstrate that machines can actually be helpful in communicating information

between persons speaking different languages. Simple tasks, e.g. the scheduling of

business appointments or the reservation of hotel rooms and air travel tickets, are

within reach.

Needless to say, the power of these prototypes is far from being equal to the

human abilities for speaking, hearing, understanding, and translating. Performing

the translation of speeches or free dialog at a high level is one of the most ambitious

goals of scientists in the natural language processing domain. Several major areas

of research have to be fruitfully combined to create even basic systems and demon-

strators. Progress is needed regarding each of the several steps that are performed

while creating a translation of an utterance spoken by a speaker, involving fields like

acoustics, speech recognition and synthesis, prosody, syntactic processing, semantic

representation, contrastive studies for translation, and many others.

This book starts from an outside view to speech translation, a view that does

not concentrate immediately on one of the tasks we mentioned. The main motiva-

tion for the research presented in this monograph is the fact that humans understand

and translate while they are still hearing. This incremental operation is in part re-

sponsible for the relative ease with which we handle certain tasks, like simultaneous

interpreting or simply following a conversation at a party with a high level of back-

ground noise.

The application of this paradigm to automatic speech processing systems seems

to be a natural thing to do, yet it has serious consequences for the implementation

of individual components and the system as a whole. The simple demand “Start

analyzing while the input is still incomplete” in some cases requires difficult modi-

fications to the algorithms employed for certain tasks.

We think that incremental, modular systems require careful attention as to how

they are composed from individual components. Interfaces and their use become

more crucial if a component is to deliver not only a small set of final results (in

many cases exactly one result), but a continuous stream of hypotheses. Thus, the

realization of incrementality also initiated the use of an integrated data structure (the

layered chart) and the use of a uniform formalism for all modules.

The first chapter introduces incrementality and provides a motivation for its use

in automatic speech translation. Chapters 2 and 3 give the necessary theoretical

foundation to describe the system presented here adequately. In particular, chapter

2 focuses on graph theory and its application to natural language processing. We

believe that a wide range of phenomena and algorithms for NLP can be most ade-

quately described (and most easily understood) in terms of a small subset of graph

theory. Chapter 3 presents the uniform formalism that is used throughout the sys-

tem: Typed Feature Structures.

VIII

Chapter 4 and 5 describe the system that provides the background for this book.

In our opinion, interesting architectural paradigms cannot be shown in isolation

from an actual system implementing these paradigms. The system MILC demon-

strates the feasibility of employing incrementality to a complete speech translation

system. We describe how the three architectonic principles incrementality, integrity,

and uniformity are used to compose a non-trivial system, and demonstrate its per-

formance using actual speech data. Finally, chapter 6 provides a conclusion.

The research described in this book was performed while the author was a re-

search scientist in the Natural Language Systems Group within the Computer Sci-

ence Department of the University of Hamburg, Germany. The German version of

this monograph was accepted as dissertation by its CS department.

I am indebted to the teachers that provided a major part of my education in

computer science. Walther von Hahn introduced me to Natural Language Process-

ing. Gu¨nther Go¨rz attracted me to syntactic parsing and the architecture aspects

of NLP systems. Finally, Wolfgang Menzel discussed large parts of my work and

contributed a lot as my primary thesis advisor.

The Natural Language Systems group in Hamburg provided an excellent re-

search environment, from which I benefited during the five years that I worked there.

I wish to thank all colleagues for their cooperation, especially Andreas Hauenstein,

Henrik Heine, Susanne Jekat, Uwe Jost, Martin Schro¨der, and Volker Weber.

While in Hamburg, I worked as a Verbmobil project member for more than three

years. This enabled me to have many fruitful discussions and to cooperate with

several people, especially Jan Alexandersson, Thomas Bub, Guido Drexel, Walter

Kasper, Marcus Kesseler, Hans-Ulrich Krieger, Joachim Quantz, Birte Schmitz,

Joachim Schwinn, Jo¨rg Spilker, and Hans Weber.

Some of the work presented here (including most of the experiments) was fin-

ished at the Computing Research Laboratory at New Mexico State University. Spe-

cial thanks to Karine Megerdoomian, Sergei Nirenburg, and Re´mi Zajac.

August 1999 Jan Willers Amtrup

List of Tables

3.1 The syntax for type lattices ...

80

3.2 The syntax of feature structures ...

82

3.3 Internal representation of a feature structure ...

83

4.1 Messages sent from the word recognizer to the successor components . . . 108

4.2 Results for standard and partial parsing of the dialog n002k

115

4.3 Sketch of the processing of “lassen Sie uns den na¨chsten Termin

ausmachen” (“let us schedule the next appointment”)

125

4.4 An example for the output of the generator ...

143

4.5 System size (in lines of code) ...

153

5.1 Properties of the dialogs used in the experiments

159

5.2 The utterances in dialog m123 ...

160

5.3 Results of analyzing five dialogs ..

162

5.4 Generator output for the utterance j534a005 ..

163

5.5 Evaluation of the translations ...

164

5.6 Comparison of runtime for incremental and non-incremental configurations

 ...

165

List of Algorithms

1 Computing the topological order of a DAG ... 36

2 Computation of the transcript independent density of a word graph 37

3 Calculation of the number of paths in a graph ... 38

4 Reducing a graph to unique label sequences .. 39

5 Merging of two vertices .. 41

6 Calculation of the number of derivation steps of a fictitious parser for a word

graph .. 43

7 Computing the rank of a path (part 1) .. 44

8 Computing the rank of a path (part 2) .. 46

9 Removing isolated silence edges ... 49

10 Removing consecutive silence ... 50

11 Removing all silence edges .. 51

12 Adding a word hypothesis e„ to a hypergraphG = (V, £, C, W) 58

13 SSSP forDAGs ..

 61 62

14 SSSP for incremental hypergraphs

List of Figures

1.1 The architecture of a functional unit within a modular system 4

1.2 The architectonic overview of MILC .. 17

1.3 Interlingua and transfer .. 19

1.4 Multi-level transfer .. 21

2.1 A chart for Der Peter singt mit Freude ... 29

2.2 The graph K(3>3) .. 29

2.3 Wordgraphfortheutterancen002k000 ... 33

2.4 Unique word graph for the utterance n002k000 ... 35

2.5 A difficult graph w.r.t the reduction to unique label sequences 40

2.6 Runtime for reducing graphs to unique label sequences............................ 42

2.7 A complex graph for rank computation .. 46

2.8 Merging of silence edges ... 49

2.9 Two families of edges in a word graph .. 52

2.10 An interval graph ... 53

2.11 Two families of word hypotheses as hyperedges 54

2.12 Adding a word hypothesis to a hyperedge ... 58

2.13 Creation of additional paths by using hypergraphs.................................... 60

3.1 Feature structure for a simple syntactic rule .. 68

3.2 A transfer rule in LFG style ... 74

3.3 A transfer rule in TFS style .. 75

3.4 A transfer rule by Beskow .. 75

3.5 A small part of a type lattice .. 79

3.6 One part of the structure of lexical items .. 79

3.7 Feature structure for a simple syntactic rule .. 81

3.8 Definition of vertices within feature structures ... 82

4.1 The Whiteboard-Architecture .. 89

4.2 The principle layout of a layered chart .. 91

4.3 Principle component layout ... 97

4.4 The configuration of split channels .. 99

4.5 An example of a configuration file for split channels 101

4.6 Time line of the initial configuration of channels with the ILS 103

4.7 XPVM snapshot of the initial synchronization ... 104

XII List of Figures

4.8 The architectonic overview of MILC ..

106

4.9 A word graph in Verbmobil syntax ..

107

4.10 Idiom definition for the partial utterance “tut mir leid” (“I am sorry”) . . . 109

4.11 A syntactic rule for verbs in last position with four complements

112

4.12 One of the lexical entries for “Arbeitstreffen” (“work meeting”)

116

4.13 A grammar rule for noun phrases with a determiner

118

4.14 A noun phrase from the partial parser ...

120

4.15 Island analysis: An example rule for nominal phrases

122

4.16 A rule for complements to the left of the verb ...

124

4.17 Lexicon entry for “ausmachen” (“schedule”) ..

126

4.18 A verbal phrase from the integrator ..

127

4.19 A transfer chart for structural translations ..

132

4.20 A transfer rule for verbal phrases ...

133

4.21 The transfer lexicon entry for “recht sein” (“suit”)

134

4.22 Topology of the fundamental rule for transfer ..

135

4.23 A subpart of the generation input for “lassen Sie uns das na¨chste

Arbeitstreffen vereinbaren” (“let us schedule the next work meeting”)
 ...

139

4.24 Generation rules for imperative verbs ...

140

4.25 Generation lexicon entry for “let” ..

142

4.26 A snapshot of the processing with MILC ..

145

5.1 Reduction of word edges by hypergraph conversion

156

5.2 Reduction of chart edges by hypergraph conversion

157

5.3 Reduction of analysis time by hypergraph conversion

158

5.4 Comparison of incremental and non-incremental processing

167

Contents

Overview ... 1

1. Introduction ... 3

1.1 Incremental Natural Language Processing .. 3

1.2 Incremental Speech Understanding ... 11

1.3 Incremental Architectures and the Architecture of MILC 15

1.4 Summary .. 24

2. Graph Theory and Natural Language Processing 25

2.1 General Definitions .. 25

2.2 The Use of Word Graphs for Natural Language Processing Systems 30

2.3 Evaluation of Word Graphs: Size and Quality Measures 34

2.4 Evaluation of Word Graphs: Quality Measures 44

2.5 Further Operations on Word Graphs .. 48

2.5.1 Removing Isolated Silence ... 48

2.5.2 Removing Consecutive Silence .. 49

2.5.3 Removing All Silence Edges ... 51

2.5.4 Merging Mutually Unreachable Vertices 51

2.6 Hypergraphs... 52

2.6.1 Formal Definition of Hypergraphs ... 54

2.6.2 Merging of Hyperedges ... 56

2.6.3 Combination of Hyperedges .. 59

2.7 Search in Graphs .. 60

2.8 Summary .. 62

3. Unification-Based Formalisms for Translation in Natural Language

Processing ... 65

3.1 Unification-Based Formalisms for Natural Language Processing ... 65

3.1.1 Definition of Typed Feature Structures with Appropriateness 68

3.1.2 Type Lattices .. 68

3.1.3 Feature Structures .. 69

3.1.4 Functions as Values of Features ... 73

3.2 Unification-Based Machine Translation .. 73

3.3 Architecture and Implementation of the Formalism 76

3.3.1 Definition and Implementation of Type Lattices 79

3.3.2 Definition and Implementation of Feature Structures 80

3.4 Summary .. 84

X CONTENTS

4. MILC: Structure and Implementation...

85

4.1 Layered Charts ...

86

4.2 Communication Within the Application ...

95

4.2.1 Communication Architecture of an Application.....................

96

4.2.2 Channel Models ...

98

4.2.3 Information Service and Synchronization 100

4.2.4 Termination ... 104

4.3 Overview of the Architecture of MILC .. 105

4.4 Word Recognition .. 106

4.5 Idiom Processing ... 108

4.6 Parsing ... 110

4.6.1 Derivation of Verbal Complexes .. Ill

4.6.2 Spontaneous Speech and Word Recognition 113

4.6.3 Structure and Processing Strategies.. 115

4.7 Utterance Integration ... 121

4.8 Transfer .. 128

4.8.1 Chart-Based Transfer ... 130

4.8.2 The Implementation of Transfer for MILC 132

4.9 Generation ... 137

4.10 Visualization .. 143

4.11 Extensions .. 145

4.11.1 Extension of the Architecture .. 147

4.11.2 Anytime Translation .. 149

4.12 System Size .. 152

4.13 Summary .. 152

5. Experiments and Results ... 155

5.1 Hypergraphs... 156

5.2 Translation ... 158

5.2.1 Data Material ... 158

5.2.2 Linguistic Knowledge Sources... 159

5.2.3 Experiments and System Parameters 161

5.2.4 Evaluation .. 162

5.2.5 Extensions ... 164

5.3 Comparison With Non-incremental Methods 165

5.4 Summary .. 167

6. Conclusion and Outlook.. 169

Bibliography ... 175

Glossary .. 193

Index ... 195

Chapter 1

Introduction

In this chapter, we will first provide a formal definition of incrementality. The
consequences that arise when using incremental mechanisms in natural language

processing systems are discussed. We will discuss the ability of humans to process
speech incrementally as a major motivation for our work. Ultimately, we present a

coarse sketch of the architecture of the system we develop here.

1.1 Incremental Natural Language
Processing
Three properties of natural language processing systems have gained increasing im-
portance over the last decade: Modularity, parallelism and incrementality. In the
NLP field as well as in any other, the application of techniques from software engi-
neering, like modularity, allows for the construction of large systems (Sommerville,
1996). Modularity promotes reusability, stability, and in the long run also the effi-
ciency of individual components. Furthermore, only modular research systems are
suitable for scaling up in the direction of commercially relevant applications (Zajac,
Casper and Sharples, 1997). The distribution of algorithms over several processors
by means of employing parallel procedures is, in our view, essential for construct-
ing large systems which show a sufficiently high performance. The incorporation
of parallel operation into modules for natural language processing has been a side
issue so far, although there are very interesting approaches, especially in the field of
massively parallel systems (Kitano, 1994).

The application of incremental methods on a large scale is still in its infancy,
despite considerable efforts. This is particularly true as far as the consequences for
the architecture of NLP systems are concerned.

In many cases, the definition of terms and their differentiation are a source of
misunderstanding when it comes to comparisons between systems. Especially if
different architectural facets are related to each other, it seems eminently impor-
tant to have a common set of concepts. In the following, we will give some basic
definitions to unambiguously describe the subject of this research. Naturally, the

J.W. Amtrup: Incremental Speech Translation, LNAI 1735, pp. 3-24, 1999.
 Springer-Verlag Berlin Heidelberg 1999

4 1. Introduction

Input set

I

Other system

Output set

O

Other system

Functional unit

F

Intermediate results

Z

Figure 1.1. The architecture of a functional unit within a modular system

definition of incrementality is the most important. We will present this concept in a
formal way.

First, one has to distinguish between amonolithical and amodular system.
Monolithical systems have no separable subparts according to functional or other
criteria. They seem to have no inner structure on a higher level than that of atomic
instructions. On the other hand, modular systems contain several functional units,
which are isolated from each other for the most part. Information is exchanged using
well-defined interfaces. Figure 1.1 shows the abstract schema of such a functional
unit, which we will use later to define incrementality formally. The composition of
such modules in a certain way comprises a complete system, which is modular in
nature. All systems that we use and refer to in this work are modular.

Modularity is a structural criterion for the classification of systems. The question
of how many input elements can be processed at a given point in time is a relevant
aspect for the system behavior. Asequentialsystem is able to process only one
piece of information at any point in time. On the other hand, aparallel system may
handle more than one input item. Consequently, there is at least one situation in
which two or more chunks of data are being processed. This simultaneous operation
may surface in anintra-modular parallelism. Using this paradigm, the functional
unit representing one module is divided into more than one processing block. These
blocks are able to work at least partially autonomously. In principle, it must be
distinguished between parallelism produced by algorithmic means and data-driven
parallelism. One example for algorithmic parallelism is the parallel unification of
feature structures (Hager and Moser, 1989). Data-driven parallelism is created by

1.1 Incremental Natural Language Processing 5

providing multiple processing units that operate on different subsets of input data
and intermediate results. Examples of this are the division of an input utterance
into smaller parts or the partitioning of a grammar (Amtrup, 1992).Memory-based
or example-basedalgorithms, which compare input elements to instances that have
previously been presented to them, could also fall into this class.

The counterpart to this kind of “internal” parallelism is given asinter-modular
parallelism. This type of parallel operation is given if two different functional units
or modules operate at the same time (e.g., if the syntactic and semantic analysis are
carried out in separate modules). To ensure this, there have to be input elements
for both modules at the same time. In general, this is only possible if incremental
processing is obeyed.

Simply stated,incrementalitymeans that input data is not considered in its en-
tirety, but in a piecemeal fashion. This means that processing starts with individual
parts of the input, before the input is completely known to the functional unit. The
kind of incrementality that is most important for our purposes is calledchronolog-
ical incrementality(or Left-Right (LR-) incrementality). LR-incremental systems
operate on data which extend in time, as given in natural language processing situa-
tions by the sequence of input words. For systems that analyze spoken language, the
chronological nature is given through the dependency of the input signal on time.
In principle, other forms of incrementality are plausible (e.g. according to structural
criteria), however, these types will play no further role in this investigation.1

The maxim of incremental language processing for analysis is to divide the input
data into segments of uniform or heterogeneous length. On the level of speech
signals, this segmentation is usually provided by the scan rate of preprocessing, in
most cases 10ms. On higher levels, there exists a non-uniform order in time which
is defined by the endpoints of word hypotheses or phrasal hypotheses.2 A system
becomes LR-incremental by observing the strict order in which input elements are
processed. Backtracking in time is either not allowed at all, or only for small time
frames.

For reasons of relevancy, we will now define incrementality and its subconcepts
of incremental input, incremental output and incrementality of a system in a formal
way. We take the architecture depicted in Figure 1.1 as a model for an incremental
device (cf. Amtrup, 1997c). LetF be a functional unit that produces some result
by applying operations to a given input. The input data toF is given as a setI of
input elementsAi; i 2 f1; : : : ; ng. TheAi each arrive inI according to some order
of arrival, i.e. there is a stream of input elements intoI . All Ai are independent of
each other in that their order of arrival is not predetermined by their content.3

1Incrementality is used in compiler construction to compile only those parts of programs
which actually changed during a modification (Marchetti-Spaccamela, Nanni and Rohn-
ert, 1992).

2In many cases, this implies also a structural incrementality given by the compositionality
of several language processing methods.

3There may exist an external dependency which is caused by the way in which previous
functional units work. However, these external reasons are irrelevant in this argument.

6 1. Introduction

The setO is made up of final results ofF and is constructed analogously toI .
O consists of output elementsBj ; j 2 f1; : : : ;mg. Intermediate resultsCk ; k 2

f1; : : : ; pg are stored in a setZ. We assume that no processing is done inI orO, so
that each operation inF either changes the content ofZ or produces a new output
element inO. A new intermediate result inZ is calculated by applying a function
f , while a different functiong handles the creation of output elements inO:

Ck := f(Dk); Dk 2 I� � Z� (1.1)

Bj := g(Dj); Dj 2 I� � Z� (1.2)

Typically,g is a simple selection function that licenses intermediate results from
Z as output and distributes them to the set of output elementsO.

The incremental arrival of input items is modeled with the assumption that the
elementsAi in Figure 1.1 are delivered in an arbitrary order and show up inI , i.e.
there is a stream of input elements filling upI . Each resultBj , which is produced
byF , is handed to the system attached to the output channel ofF , immediately after
it has enteredO. A LR-incremental mode of operation is ensured by the additional
property of the input stream to supply the hypotheses in chronological order.4

Now, we can define the state of the systemF by examining the contents of the
three setsI , O andZ:

At every timet with 0 � t <1 the state of processing inF

is given as the actual contents ofI(t), O(t) andZ(t). (1.3)

There are two extreme situationsF may be in. In the initial situation all three
sets are empty:

I(0) = ; ^O(0) = ; ^ Z(0) = ; (1.4)

On the other hand, processing is complete if no changes occur on these sets. All
input elements have been taken into consideration, all output elements have been
created:

tEnd := t : I(t) = fA1; : : : ; Ang ^

O(t) = fB1; : : : ; Bmg ^

Z(t) = fC1; : : : ; Cpg: (1.5)

We can distinguish among three different types of incrementality5:

4For example, the word hypotheses delivered by a speech recognizer are usually sorted
according to their end frames, providing a partial order among them.

5Cf. Kilger (1994) for an informal account of these types.

1.1 Incremental Natural Language Processing 7

� Incremental input. The systemF starts to work on input items without waiting
for all input elements being present:

9t : #(I(t)) 6= n ^ Z(t) 6= ; (1.6)

An example application might be a NLP system capable of answering Yes-No
questions that starts to process input as soon as it arrives. However, the actual
answer may depend on the last input element, thereby preventing the output of a
result before all input has been assessed.

� Incremental output. Some elements of the output are presented before all pro-
cessing is complete, i.e. beforeI andZ both reach their final content:

9t : #(I(t)) 6= n ^#(Z(t)) 6= p ^ O(t) 6= ; (1.7)

You will get an impression of incremental output by thinking of a system that
reads out sentences: It gets a whole sentence and reads it out while computing
speech signals step by step.

� Incremental system. An incremental system works on parts of the input and starts
to issue output elements before the input is complete:

9t : #(I(t)) 6= n ^O(t) 6= ;: (1.8)

An example for an incremental system could be a parser which reads the input
word for word. Each item is processed as it arrives and partial hypotheses about
growing portions of the input are delivered.6

It is obvious that incrementality means processing input data in small portions.
In the extreme case, the output produced by a system may actually overlap the input
at hand. A crucially important measure for the description of an incremental sys-
tem is theincrement size, i.e. the fraction of input data which is used as a portion
for processing. The size of increments may vary from very small (frames of 10ms
length) to relatively large (complete utterances in dialogs). The actual extension in
time may differ for individual increments, of course. Even if hypotheses are deliv-
ered in strict chronological order, there are cases where different hypotheses extend
over different intervals in time, e.g. in the case of constituents of variable length that
are delivered by a parser. In order for an incremental system to be successful, it
is essential to adjust the increment sizes of the various components in an adequate
way.

A simple method to assess the combination of components and increment sizes
is to measure the delay. Thedelaybetween two components is defined as the dif-
ference between the current points of processing of two modules, i.e. the difference
between the time-stamps of the input items which are processed at that time (Pyka,
1992c). In the ideal case, if a module is able to process each input element imme-
diately and quickly, the delay is determined by the increment size of the preceding
component. The overall delay of the system can be calculated as the sum of the

6Incremental input and incremental output can be combined without yielding an incre-
mental system. In such systems there is a timet such that#(I(t)) = n ^ #(Z(t)) 6=
p ^O(t) = ;, i.e. input and output do not overlap.

8 1. Introduction

individual delays of the components in this case.7 This ideal case cannot be found
in real systems, the calculation of the system delay can at best be used to get a
qualitative estimate (cf. Weber, Amtrup and Spilker, 1997). Usually, the time a
component spends for processing an input element (and even transmitting it) is not
negligible; instead, these times have a great impact on the behavior of an applica-
tion. Increment sizes which are chosen to be too small may lead to a processing
schema without enough context. This may jeopardize the success of the processing
in general, e.g. in the case of a word-to-word translation that is unaware of a broader
context. Moreover, components that invest a big amount of processing into each in-
put element can no longer react in adequate time because they become overloaded
with input. On the other hand, increments that are too big may lead to suboptimal
load balancing for modules in a distributed, parallel system. The choice of incre-
ments for the system presented here tries to use sizes as small as possible in order
to minimize delay, without affecting quality or performance adversely.

It is desirable to extend the concepts described above, which assumed that the
set of input elements is finite, to cover continuous systems, as we may formulate a
restricted analogy to the human speech understanding apparatus, which is in perma-
nent operation during the lifespan of a person. However, this extension is only valid
in narrow limits. First of all, it is to say that a continuously working system trivially
meets the colloquial definition of incrementality, “Produce output, while the input
is not yet complete”, simply because the input will never be complete.

A correct, useful handling thus requires the identification of interrelated ranges
of input and output. Considerations about the properties of a system are then re-
stricted to intervals within the input stream which constitute a range containing log-
ically dependent elements. Within these individual intervals, the aforementioned
definitions can be applied. To determine the borders of such ranges is usually a
matter of subjective judgment in each individual case. If formal systems are to be
investigated, the intervals may be constructed by calculating the symmetric closure
of f andg w.r.t. the input data and the set of intermediate results. An interval in
time is locally connected iff andg operate inside of the interval and if the interval
is minimal. Here the definitions stated earlier are applicable. If biological systems
are considered, e.g. in the investigation of the human natural language processor,
the formulation of interval borders becomes more difficult. Even obvious demar-
cations can be misleading. For example, sleep would be ordinarily seen as definite
borderline for intervals of operation of the human speech understanding. However,
this process is indeed dependent on experiences which extend much further into the
past, e.g. it depends on the frequency with which certain words have been heard
(Shillcock, 1990).

Thus, the restriction to specific intervals in time always entails an abstraction
regarding certain properties of the objects under investigation and the question of
granularity becomes more complex. In the case at hand, the upper bound is given

7We would like to reemphasize that we are only concerned with incrementality based on the
concept of time. Concepts like the delay of a component are useless for systems working
incrementally according to structural criteria.

1.1 Incremental Natural Language Processing 9

by individual utterances of a cooperative speaker within an appointment scheduling
dialog. All knowledge sources that would be able to describe broader contexts, e.g.
a dialog model, or a sophisticated world model, etc., are not considered, although
they clearly have an influence on the interpretation of a turn of a speaker.

The incremental design of a system exclusively yields disadvantages (Ausiello
et al., 1991). Apart from the fact that incremental algorithms are most often more
complex than their non-incremental counterparts8, there is no possibility of a global
optimization due to the lack of right context. In the case of the processing relevant
for this work — the linguistic understanding of word graphs (cf. Section 2.2) —
this surfaces as the fact that the acoustically best-rated path through a word graph is
not known. In the extreme case, it may even not be present.9

A further consequence of incrementality may be a drastic increase in the size
of search spaces of individual components and of the complete system. Again, this
can be shown using the production of word graphs in a speech recognizer and their
subsequent analysis, e.g. in a syntactic parser. If word graphs are constructed incre-
mentally, the elimination of dead ends becomes impossible.Dead endsare word hy-
potheses that cannot be extended by further hypotheses due to the lack of sufficiently
high-rated words. In conventional recognizers, these hypotheses are accounted for
in a backward search after recognizing the whole utterance. As a consequence of
the presence of dead ends, the subsequent parser is unable to decide whether a given
word hypothesis could ever be part of a complete analysis describing a path cover-
ing the whole input. Thus, the parser spends time and effort for the processing of
partial paths that probably will never lead to a global final state.

Viewed in isolation, incrementality is obviously disadvantageous. However, if
considered for the combination of modules within a system, the situation becomes
different. Incrementality has the potential of opening possibilities in architectonic
and algorithmic decisions, which will probably increase both quality and perfor-
mance of processing. Experiments we will describe later (see Section 5.3) show
that the exploration of techniques of this kind enables the incremental processing of
speech to be almost as efficient as conventional methods are nowadays.

A direct result of the incremental nature of modules in a system is the oppor-
tunity to introduce inter-modular parallelism, which can immediately be used to
increase performance. Only if one functional unit begins to produce output ele-
ments while the processing as a whole is not completed, and subsequent functional
units begin to work on these elements incrementally, there is the possibility of both
modules running in parallel.10

Of course, this does not mean that modular, incremental systems always work
in parallel. Neither does it mean that non-incremental systems always lack paral-

8At least it is usually not easy to formulate the necessary update procedures efficiently (cf.
Ramalingam and Reps, 1992).

9Unknown means that a prefix of the acoustically best path is present, but other prefixes
are better so far. Given the possibility of very long words, there may even be the situation
that the prefix has not been constructed to the current point in time. In this case, the prefix
is not even present.

10 1. Introduction

lelism. Intra-modular parallelism is always possible. In fact, almost all programs are
currently being executed in parallel on a very low level, that of processor-pipelining.

Interactivity is the second dimension of architectonic modifications that is
opened through the employment of incremental techniques. In addition to the main
data stream between modules, which flows in one direction (feed forward), inter-
active systems may be equipped with streams operating in the opposite direction.
The motivation for installing such a type of interaction is always to let one module
influence the mode of operation of another module participating in the computation
(top-down interaction). Naturally, the influence can only take place successfully if
the processing of input data in the target module has not yet been finished. The
choice of increment sizes is crucial here; even a system working on spoken dialogs
that operates on whole utterances at once can be said to be incremental on the turn
level, as long as e.g. the dialog management produces predictions about the struc-
ture or content of following turns. By establishing feedback mechanisms between
modules additional functionality can be gained, for example by rejecting hypotheses
or by generating predictions.11

If, for example, the architecture principle of interactivity is applied to incremen-
tal speech recognition with word graphs, this could lead to an interleaved schema of
recognition and syntactic parsing. The effect of this measure would be to reduce the
search space of the recognizer. A necessary prerequisite for interaction in this way
is the synchronization of recognizer and parser, which have to operate alternatingly
on the same set of hypotheses. The parser licenses partial paths in the word graph
by ensuring that there is the possibility that they may be further expanded. If for any
partial path no syntactically valid continuation remains present, the corresponding
branch of the search space within the recognizer may be cut off. This interaction
can be used to enhance the performance of a word recognition module (Hauenstein
and Weber, 1994; Fink, Kummert and Sagerer, 1994).

In general, the statement holds that only the early construction and verification
of hypotheses in components may have the effect of eliminating parts of search
spaces in preceding modules. Furthermore, only the interleaved mode of operation
utilizing a tight interaction pattern enables the evaluation of predictions. Predic-
tions generate more information than just a binary decision which might be used
to prevent further effort for the pursuit of a futile hypothesis. They are capable of
setting targets for other modules. This results in a modification of the structure of
the affected search space, which in turn could lead to a construction of results in
a different order. Related to the example at hand, a possible approach would be
to generate the set of syntactically valid continuation words at each point in time,
thereby providing the word recognizer with a dynamically created, restricted vocab-
ulary. The immediate consequence of this technique does more than simply prevent

10There is one exception from this general rule: A module may produce two identical copies
of its output that are distributed to two other modules that perform independent functions
on these data. These two modules can work in parallel.

11Feedback may also lead to oscillation and resonance — phenomena which might pose
serious problems.

1.2 Incremental Speech Understanding 11

certain branches of the search space from being explored. Rather, the shape of the
search space itself is changed (Weber, 1995, p. 64).

The system presented here does not use interaction in terms of the generation
of predictions. The possible influence that modules may inflict upon each other in
the incremental paradigm is demonstrated using the analysis and translation of id-
iomatic expressions. This task is performed separately using fast incremental graph
search algorithms. Identified idioms result in the modification of scores of word hy-
potheses and the phrasal constituents they support, changing the way in which they
are treated in the deep linguistic processing modules.

1.2 Incremental Speech Understanding
We have already mentioned that the research presented in this book is oriented to-
wards the goal of designing and implementing incremental algorithms for machine
translation of spoken language in analogy to mechanisms of human speech and lan-
guage understanding. Everyone can experience the effects incrementality has for
hearing and understanding speech by noticing how words are recognized even be-
fore they are completely spo. . .12

One theory that attempts to describe and explain this early phase of audi-
tive speech recognition is called thecohort model, proposed by Marslen-Wilson
(Marslen-Wilson and Welsh, 1978; Marslen-Wilson and Tyler, 1980). The underly-
ing hypothesis is that the recognition of a word is a competitive selection process
among a set of several candidates. The main criterion for selection is the incom-
ing speech signal. The first 150ms of signal already suffice to assemble the initial
cohort, a set of words which are compatible with the input signal at hand. During
further hearing members of the cohort are eliminated, as they no longer match the
acoustic input well enough. Finally, when only one member of the cohort remains,
the theory postulates that word to be the one spoken. Thelexical decisionis per-
formed, the word is recognized. This kind of competitive word recognition leads
to situations in which a word can be anticipated before the hearer has perceived the
complete input signal. This phenomenon can be measured easily incross-modal
priming experiments. In these experiments, stimuli (here: fragments of words) are
offered to a subject, and it is examined whether the presentation leads to a better
(i.e., in general: faster) recognition of selected target concepts. To prevent mutual
influences between stimulus and target concept, the latter is given using a different
modality (e.g. on a screen). If a target concept which is semantically close to a
stimulus is being recognized faster than a semantically unrelated concept, one can
conclude that the meaning of the stimulus was activated, that the word in total was
recognized. Zwitserlood (1989) uses fragments like [capt] and shows a better reac-
tion in subjects using the semantically related [ship]. This happens even though the
stimulus [captain] was not complete.

12Of course, we can only simulate the auditive channel using this medium.

12 1. Introduction

This early version of the cohort model is not free of problems, however. In
particular, two areas of the theory can be criticized. The importance of the word
initial cohort and the unconditional removal of candidates from the set of potentially
recognized words are the reasons for not accounting for certain effects. According
to the theory, a very early interval of the speech signal is used to create the initial
cohort during thelexical access phase. In principle, this implies that a segmentation
of the input into individual words has to be carried out before word recognition
starts. However, the division of the acoustic signal into distinct words is not a trivial
task, neither for artificial systems for word recognition, whose accuracy decreases
significantly as the input changes from isolated words with distinct pauses between
them to continuous speech, nor for humans, who sometimes misunderstand

It’s easy to recognize speech (1.1)

for

It’s easy to wreck a nice beach13 (1.2)

The assumption that segmentation happens prior to recognition is also not com-
patible with the recognition of sub-words in stimuli. This phenomenon occurs when
subjects hypothesize parts of a word as words in their own right. For example, if
the stimulus [trombone] is presented, subjects also recognize [bone], although it is
embedded in the original word and thus should not give rise to an initial cohort, if
one assumes a preceding segmentation. Moreover, a segmentation isolating [bone]
as a word is unlikely to succeed because the first segment [trom] is not a valid word.

The second problem refers to the next stage of the word recognition model. This
lexical selection phasereduces the size of the initial cohort according to acoustic ev-
idence (and other kinds of knowledge) in order to eventually be able to select the
intended word. According to Marslen-Wilson and Welsh (1978), this membership
decision is binary; candidates are removed from the cohort if their models in the
lexicon deviate from the actual acoustic realization. This mechanism entails that
perception errors should, in principle, lead to the failure of the recognition task.
Those errors could be caused by suboptimal articulation or the presence of back-
ground noise. In contrast to this model, thephoneme restoration effect(cf. Warren,
1970) demonstrates that incomplete words are being recognized without problems,
words in which parts of the acoustic stimulus were overlapped or even replaced by
noise. Even if the disturbed segment is positioned in the early part of a word —
prior to the decision point at which the size of the cohort could be reduced to one
— the recognition does not fail.

A modification of the cohort theory by Marslen-Wilson (1987) makes for a more
suitable description of the performance of humans in the early phases of word recog-
nition, lexical access and lexical selection. The competition for membership in a co-
hort is now described in terms of scores for word hypotheses which are not restricted
to being activated at the onset of a word. This enables a conclusive explanation of
why one correctly recognizes [cigarette], even if [shigarette] has been uttered.

13cf. Shillcock (1990).

1.2 Incremental Speech Understanding 13

The phoneme restoration effect also gives evidence for the fact that the percep-
tion of acoustic signals is strongly supported by lexical knowledge. The means to
demonstrate this aresignal detection tests. Here, stimuli are classified by subjects
based on whether or not a phoneme has been overlaid or replaced by noise. Through
special considerations of the experimental setting, post-perceptive processes are
suppressed. Thus, the influence of the lexicon in signal recognition can be deter-
mined. This influence manifests itself in a decreasing quality of the discrimination
of replacement and overlay when words are heard as opposed to the hearing of non-
words. Samuel (1990) concludes that either acoustic perception and lexicon are both
part of one and the same functional unit (they constitute a module), or that both are
modules on their own which interact heavily — they perform top-down interaction
in the terminology used here.

Higher levels of linguistic processing (syntax, semantics) in general have no in-
fluence on perception. This extends to the lexical access phase of the cohort model.
It can generally not be shown that syntactic restrictions play a role when inserting
a word into a cohort. The modularity hypothesis of Fodor (1983) seems to be valid
here. Consider the presentation of

They all rose (1.3)

Besides the verbal interpretation, the nominal reading is also activated, which
was shown by cross modal priming experiments (Tanenhaus, Leiman and Seiden-
berg, 1979, after Shillcock and Bard, 1993). However, this result holds only for
open-class words. If the current syntactic context permits us to hypothesize a closed-
class item, only the words belonging to the closed class are activated in the cohort
(Shillcock and Bard, 1993). Accordingly, the nominal reading of the homophones
would andwood is suppressed in contexts like

John said that he didn’t want to do the job, but his brother would
(1.4)

This phenomenon actually seems to be caused by the membership in a closed
or open word class. Ying (1996) shows that homophones are articulated differently
depending on the context, but Shillcock and Bard (1993) argue that the different re-
alizations could not be distinguished by phoneticians, and that they were articulated
identically.14

The lexical selection phase depends much more on evidence from other levels
than lexical access.15 During the selection process, a semantic influence that is
generated by the preceding context can be viewed as essential for the modification
of scores of different word hypotheses within a cohort. This is demonstrated using

14A stronger position would be possible if the realizations would have been interchanged in
the presentations.

15Classical theories like the cohort model or TRACE (McClelland and Elman, 1986) usu-
ally assume a division of the recognition knowledge into separate layers (phonological,
syntactic, semantic). Gaskell and Marslen-Wilson (1995) propose the incorporation of all
possible influences into a single, unified mechanism, a recurrent neural network.

14 1. Introduction

priming experiments. A word that is semantically supported by context is shown to
have a higher relative activation than non-supported words. Assume that the context

The men stood around the grave. They mourned at the loss of
their . . . (1.5)

is presented to subjects. The stimulus [cap] results in a priming of [captain] over
[capital], although both words share the same acoustic prefix (Zwitserlood, 1989).
Again, there exist differences in the processing of open- and closed-class items (cf.
Friederici, 1992).

The results of psycholinguistic research displayed so far exhibit an acceleration
of word recognition and a reduction of lexical ambiguity as a result of the incremen-
tality of human speech understanding. The effects of incremental processing also
extend into higher levels, however. There seem to be interactions between the pro-
cesses involved here that enable humans to cope with the extremely high degree of
ambiguity by excluding alternatives early, by courageously following analysis paths
and by making decisions without a complete knowledge of facts.16

To cite just one example: Niv (1993) argues that certain decisions about the
syntactic functions of constituents are drawn using information from a non-syntactic
domain. A principle which he uses to illustrate this effect is called:Avoid new
subjects. It covers the reasons for certain preferences of syntactically equivalent
embeddings. Consider

The maid disclosed the safe’s location
�

a) to the officer
b) had been changed

(1.6)

The variant b) not only requires the detection of a reduced relative clause, but
also the categorization ofthe safe’s location as a subject, whereas a) uses a direct
object reading. Experiments show that subjects prefer reading a), which leads Niv
(1993) to the conclusion that a subjective reading is avoided if the nominal phrase
in question has not yet been introduced into the discourse.

The importance of incremental processing for human communication behav-
ior becomes obvious when behavioral patterns in dialog situations are investigated.
Dialog partners interrupt each other quite often, if, e.g., the violation of a presuppo-
sition was recognized. This behavior is only possible through the incremental nature
of human language understanding. This becomes extremely clear considering the
task of simultaneous interpreting, e.g. at conferences (K¨unzli and Moser-Mercer,
1995). A conference interpreter cannot afford to wait for a speaker to complete his
or her utterance before the production of the translation starts, simply for reasons
of time and workload (Anderson, 1994; Klein, Jekat and Amtrup, 1996). Thus,

16There is a reason why humans have difficulty understandinggarden path sentenceslike
“The horse raced past the barn fell.”. The investigation of deterministic methods of
natural language understanding has thus been a prominent matter for a long time (Marcus,
1980). The understanding of syntactic ambiguities, for example, sometimes poses almost
unsolvable problems for the developer of a NLP system.

1.3 Incremental Architectures and the Architecture of MILC 15

interpreters not only carry out two tasks simultaneously, but both tasks are addi-
tionally strongly correlated. Chernov (1994) reports that interpreters hear and speak
simultaneously about 70% of the time. Theear-voice-span(EVS, the delay between
hearing and translating) is typically two to six seconds (Gerver, 1997). This delay is
supposedly made up from filling a kind of buffer with source language fragments,
while the language module is still occupied with other types of tasks (Anderson,
1994). Interpreters may apply different strategies for their task, depending on the
structural complexity of the source language and the text to be interpreted, and the
degree of structural deviation in the target language. Usually, an interpreter seems
to wait until the speaker has uttered a sentence-like fragment. Only then — e.g.
when a nominal phrase and a predicate are present — the translation process and
production of target language text starts (Goldman-Eisler, 1972). This amounts to a
delay until enough syntax and semantics are present to produce coherent text in the
target language.

This structure cannot be applicable if the structures of the source and target
language are very different. For example, given the translation task from a language
that is verb-final into a language that shows the verb in the second position, for
reasons of time, it is not feasible to wait for the predicate.17 Moreover, the pressure
on the interpreter increases, as he has to memorize more and more material from
the source language. In these cases, interpreters apply the strategy of open sentence
planning, which usually allows them to start the translation in a successful manner,
even if the association of complements to roles in the sub-categorization frame of
the predicate (or even the predicate itself) is not yet known. In order to leave the
functional structure of a sentence in the target language open as long as possible,
an interpreter may utter a copula; this fulfills the structural restrictions of the target
language. The translation of complements may follow this copula (cf. Kitano, 1994,
p. 97).

1.3 Incremental Architectures and the
Architecture of MILC
None of the systems for automatic interpreting existing today actually carry out si-
multaneous interpreting, few have this as an explicit goal.18 In fact, the vast majority

17Matsubara and Inagaki (1997b) present a translation system that translates incrementally
from English to Japanese. This system utilizes the fact that English is verb-second, and
Japanese on the other hand is verb-final. To account for the translation of complements of
English verbs, the system first translates a very short sentence into Japanese, solely con-
sisting of the subject and the verb. The complements still missing are presented in a second
translated sentence, which is concluded by a repetition of the verb. These sentences have
a medium-high stylistic quality, because the second sentence does not repeat the subject
(Japanese allows zero subjects) (Matsubara and Inagaki, 1997a; Mima, Iida and Furuse,
1998). This kind of processing is heavily dependent on the individual languages involved.
Given this schema, a reversal of the translation direction is not possible.

16 1. Introduction

of systems work non-incrementally.19 The system presented here does not interpret
simultaneously either. However, as incrementality is a fundamental property of hu-
man speech understanding and, in our view, is essential for successful, adequately
communicating technical systems for the processing of language, the concept of
incrementality is the starting point and motivation for the work presented here.

So far, interpreting systems with a broad coverage, e.g. Verbmobil (Wahlster,
1993) and Janus (Waibel, 1996), and other kinds of NLP systems have some archi-
tectonic principles in common:

� They are modular. Different software components are responsible for the pro-
cessing of input on different levels. The modularization that is most commonly
used is oriented towards the supposed levels of linguistic processing. In certain
cases the distribution of tasks over modules may vary, e.g. in the case of Verbmo-
bil, which contains several modules for translation depending on the translation
approach (cf. Section 4.8.1). Each module, however, has a monolithic structure
that accounts for the difficulty those systems pose for parallelization.

� They employ many different mechanisms to represent linguistic knowledge and
to store and transmit intermediate results. The consequence of this technique is
usually a very intensive use of resources (especially main memory) and a need
for several interfaces connecting the different components.

� They work non-incrementally. This means that the systems wait until the speaker
has finished his or her utterance before starting the actual computation.

Natural language processing systems have made a substantial step towards op-
erating on spontaneous speech in the last few years. Earlier, the predominant input
consisted of read or controlled speech (Waibelet al., 1991). As spontaneous speech
poses completely new problems on the levels of both speech and language, this tran-
sition has a severe influence on the structure and the content of knowledge sources
and the components which use them. In addition to the big influence of continuous
speech, which basically also shows up in read speech, spontaneous speech adds a
new dimension of complexity by introducing acoustic phenomena like hesitations,
cutoffs and pauses. In the domain of linguistic processing, fragmented utterances
surface frequently, yielding input which is agrammatic if a standard grammar is ap-
plied. The use of elliptic utterances increases. Additionally, almost all utterances are
embedded into a speaking situation, e.g. in a dialog. Ellipses, anaphoric references
and deictic expressions are perfectly understandable for human dialog partners, but
pose serious trouble for an artificial analysis (cf. Tropf, 1994).

The system we discuss here (MILC,MachineInterpreting withLayeredCharts)
is a prototypical implementation of a completely incremental system for the auto-
matic translation of spontaneously spoken speech. Assuming the principle of incre-

18An exception from this rule is�DMDIALOG (Kitano, 1990; Kitano, 1994), a highly par-
allel system which carries out example-based translations.

19Incrementality is integrated on different levels, rendering modules incremental, with-
out yielding a complete incremental system (Wir´en, 1992; Finkler and Schauder, 1992;
Schröder, 1993; Poller, 1994; Kilger, 1994; Milward, 1995; Hanrieder, 1996).

1.3 Incremental Architectures and the Architecture of MILC 17

Generation

Speech
Recognition

Idiom
Processing

Transfer

Partial
Parsing

Integration
Utterance

Figure 1.2. The architectonic overview of MILC

mentality, architectonic schemata can be defined that model the information flow
within systems grounding on that principle. A prominent representative of such a
model is thecognitively oriented architecture modelby Briscoe (1987), which has
been used as a guideline for the ASL-project (cf. G¨orz, 1993). This model is primar-
ily concerned with the modularization of components and the interactions that are
possible between components. Each module is autonomous according to theweak
modularity hypothesis. Connections between modules come in two flavors. The
first constitutes the main data path that follows the linguistic strata. Additionally,
there are interaction channels that are used to transmit restrictions for search spaces
and predictions to other components (Hahn, 1992; Pyka, 1992c). These additional
communication paths can also be used to initiate question-answer sequences, which
are useful for disambiguation.20

The design of MILC follows this idea of architecture by exhibiting a modular
system with dedicated information channels (Amtrup, 1994b; Amtrup and Benra,
1996)(cf. Figure 1.2).21 During the design and implementation of the system, the
principle ofintegrationwas strictly obeyed. By integration we mean that there is one
coherent data structure in the system used to store intermediate results. In the case
of MILC, we developed a new data structure for this purpose, calledlayered chart
(Amtrup, 1997b; Amtrup, 1997c). Using layered charts simplifies the distribution
of results produced by a module to a great extent, since references become valid

20Naturally, other architectonic schemata using different principles are conceivable. One
example is given by Levelt (1989), who constructs a model of speech production which
works almost completely without interaction.

21The current implementation does not utilize interaction channels.

18 1. Introduction

across module boundaries. The use of a layered chart is indicated in the center of
the components of Figure 1.2. Chapter 4 gives a detailed account of the modules of
MILC and the interactions among them. For now, we only want to mention that a
layered chart constitutes a graph structure that opens a direct way to inter-modular
parallelization. Moreover, at any given time, a consistent view of the system state is
possible by simply computing the union of the information present in all modules22,
without demanding that global structures exist (as is the case in the approach of
Boitet and Seligman (1994)).

In the framework of an incremental system, MILC not only employs integration,
but also the principle ofuniformity. This stands for the use of a homogeneous for-
malism, wherever this is reasonably possible (Kay, 1984; Weisweber, 1992). Strictly
speaking, this property is not decisive for the abilities and efficiency of any single
component. However, using a uniform formalism contributes to a better under-
standing, extensibility and ability to maintain a system, e.g. by avoiding complex
conversions associated with interfaces between modules. We developed a complex
typed feature structure formalism (cf. Carpenter, 1992) as it is used in the major-
ity of modern natural language processing systems. This formalism is used in all
modules to declaratively formulate and process linguistic knowledge (cf. Emeleet
al., 1991), ranging from the recognition of idioms to generation. The implementa-
tion is oriented on abstract machines that are shift invariant (cf. Carpenter and Qu,
1995; Wintner and Francez, 1995b; Wintner and Francez, 1995a and Section 3.3)
and contributes much to the simple fashion of distribution of the system, as well as
to the efficient use of inter-modular parallelism.

An important advantage that follows from observing integration and uniformity
lies in the possibility to explore the effects of complex interaction patterns between
different components. Consider the presence of different analysis paths in a system.
Usually, the only way to combine the work of two paths is to collect the final results
of both methods and to select the better one. Using an integrated, uniform way of
processing, intermediate results can be exchanged between the two lines of process-
ing, thereby facilitating a mutual influence. This type of interaction and influence is
demonstrated using the recognition and processing of idioms in MILC (cf. Section
4.5).

The predominant method used in this work to structure the system on all levels
is to use graphs as a medium for representation. First, a layered chart is a directed
acyclic graph with a distributed storage schema, the graph-theoretic properties of
which will be extensively discussed in Chapter 2. Second, the input to the system
consists of word graphs. We will define them and the algorithmic means for their
manipulation in Section 2.2. Third, the representation of all kinds of intermediate
results and also the final representation of the translation is performed using a graph
structure. To facilitate the final output, a linear form is generated incrementally from
the generation graph. Fourth, the linguistic description associated with each edge
is made from typed feature structures, which are directed, labeled, but potentially

22The global state of a distributed system is unknown by definition. The view taken here is
that there is always a reasonable combination of data items present in different modules.

1.3 Incremental Architectures and the Architecture of MILC 19

Interlingua

Transfer

Source language Target language

G
en

er
at

io
n

A
nalysis

Figure 1.3. Interlingua and transfer

cyclic, graphs. The underlying type lattice is a directed, connected, acyclic, rooted
graph (cf. Chapter 3).

Finally, on a higher level of abstraction, MILC itself is a graph of components,
the edges of which represent communication paths (cf. Section 4.2). The component
graph may be cyclic in order to introduce feedback loops. This property was not
used in the current implementation of MILC.

MILC is a translation system following the transfer paradigm. The fundamental
difference between transfer systems and their counterpart, interlingua-based sys-
tems, lies in the status of the information which is used to mediate between source
and target language (Hutchins, 1986). Interlingua systems (Nirenburg, 1987; Niren-
burg, 1992) use an internal representation of language expressions, which is inde-
pendent of the actual language used to express them (cf. Figure 1.3). This implies
that one needs2n components to construct a translation system betweenn lan-
guages: One analysis module and one generation module for each language.

Systems that use the transfer paradigm (see, e.g. Nagao and Tsujii, 1986; Luck-
hardt, 1987; Grabski, 1990) do not have such a united representation. Rather, there
is one specialized transfer component for each pair of languages (or, in the extreme,
for each translation direction). Although this requires3n(n� 1) components in the
worst case, transfer systems seem to be more and more accepted. The reason for
this is not only the philosophical discussion about the necessary power an interlin-
gua needs to express all subtleties of linguistic and cultural nature (Hutchins and
Somers, 1992; Nirenburg, 1993),23 but also the fact that it is unnecessary in many
cases to disambiguate extensively (Zajac, 1990; Somers, 1993).

Using transfer-oriented systems, it is possible to restrict the depth of analysis to a
degree sufficient for the translation between a specific pair of languages. In general,

23There are even approaches that use English or Esperanto as interlingua in machine trans-
lation systems (cf. Schubert, 1992).

20 1. Introduction

this means less effort, e.g. because the cultural relation between the languages in
question is known beforehand.

Independent of the type of analysis applied to a certain language, there will be
cases in which specific parts of an utterance are analyzed too deeply before trans-
fer tries to create a translation. For each level of linguistic abstraction, there are
phenomena the translation of which can only be performed if knowledge from this
specific level is used (Kinoshita, Phillips and Tsujii, 1992). To cite only a few:

� Idioms and routine formulae. The translation of these elements is best estab-
lished according to lexical information, because they most often show a non-
compositional semantics by being relatively firm structurally at the same time.

� Head switching. This is a frequently cited example for a structural transfer prob-
lem on a syntactic level.24 The phenomenon is the following: Adjuncts in the
source language have to be translated as heads in the target language realization
in some cases. Consider(1.7). The German adjunctgerne has to be translated as
head of the English phrase (likes).

Hans
John

schwimmt
swims

gerne
likingly

“John likes to swim.”
(1.7)

� Tenseandaspect. They can only be correctly translated on the basis of semantic
information. In many cases, even extralinguistic knowledge is necessary (Eberle,
Kasper and Rohrer, 1992).

Usually, transfer takes place after the syntactic/semantic analysis of input utter-
ances. Any information gathered along with the processing is accumulated mono-
tonically in linguistic objects, thereby allowing the transfer to use results from pre-
ceding stages, e.g. from prosody. Therefore, the treatment of the problems stated
earlier is possible. But most often there is no method for regulating the depth of
processing. Once the decision is made as to which level of representation is going
to be the foundation of transfer, it is generally accepted that every input utterance is
analyzed up to that level. However, this is not an imperative.

Experienced human interpreters, for example, translate some utterances almost
automatically (Hauenschild, 1985). An in-depth analysis of the material heard
seems to take place only when the material is linguistically complex or contains
ambiguities which are difficult to solve. Hauenschild and Prahl (1994) use this ob-
servation to propose the introduction of avariable transfer, which would account
for different demands during automatic translation (cf. Weisweber and Hauenschild,
1990).

The goal of a variable transfer would be to analyze utterances and their parts
only up to the depth which is needed for a successful transfer into the target lan-
guage. Multi-level transfer according to the principle of a variable depth of analysis
demands that there are as many levels of transfer as levels of linguistic processing;
consequently, transfer may start at several points during analysis (cf. Figure 1.4).

1.3 Incremental Architectures and the Architecture of MILC 21

Source language Target language

G
en

er
at

io
nA

nalysis

Figure 1.4. Multi-level transfer

The integration and uniformity of MILC provides an optimal architectonic basis
for the exploration of different types of transfer mechanisms. We show an example
of this by implementing the transfer of fixed idiomatic expressions, which are rec-
ognized by a specialized component. Their non-compositional analysis is directly
delivered to the transfer component. This schema does not only avoid redundancy,
but also adds efficiency, as the recognition of idioms is far less complex than a full-
fledged linguistic analysis.

Computing time plays a big, probably a decisive, role especially for applications
that use spoken language as input or output modality. The translation of a written
text can be performed during nighttime without severe negative consequences. The
threshold of tolerance while waiting for the response of an interactive system (in the
sense of a dialog system), on the other hand, is in the range of several seconds only.
For this reason, the development ofanytime algorithms(Russel and Zilberstein,
1991; Mouaddib and Zilberstein, 1995) for natural language processing systems has
been demanded quite early (Wahlster, 1993; Menzel, 1994). The ultimate goal is,
naturally, the construction of a system translating spoken language synchronously.
This is, of course, illusionary at present. However, the least one could demand
from a system could be some sort of awareness about the limited amount of time
that can be used for processing. Alternatively, one could demand that a system be
interruptable by a user.

MILC does not implement anytime algorithms. Later, we will discuss the inter-
relations between anytime algorithms, complex formalisms, modularity and incre-
mentality in detail (cf. Section 4.11.2); right now we only need to say that, again,
incremental behavior is a prerequisite for the application of anytime algorithms in
automatic interpreting systems.

The development of MILC can not be seen isolated from the presence of other
systems. During the past several years a number of highly interesting, advanced ap-
plications for the translation of written text or spoken language have been designed.

24Although Dorr (1993) treats suchmismatcheson a lexical level.

22 1. Introduction

We will only discuss four of them which are relevant for this work: SLT, Trains,
TDMT and Verbmobil.

The Spoken Language Translator(SLT) constitutes the research environment
for translation systems developed by SRI, Cambridge. The initial system used as a
starting point for further investigation was composed out of already available, indi-
vidual components and was used for translation of utterances in the ATIS-domain
(Air Travel Information System) (Agn¨aset al., 1994). The languages involved from
the beginning were Swedish and English; in the meantime SRI has added modules
for processing French. Moreover, the isolated character of single modules has been
turned into a more integrated system architecture.

The input to the system consists of a list of the five best recognition results, de-
livered from a word recognizer for each utterance. These five chains are transformed
into a small word graph. Two instances of thecore language engine, a unification-
based linguistic analyzer, are used for analysis and generation. The translation is
transfer-based and uses a deep linguistic analysis as well as a shallow representa-
tion which is oriented at the surface form (Rayner and Carter, 1997). Although the
SLT as a whole does not work incrementally, the best translation, resulting from a
combination of deep and shallow analysis, is permanently available.

One method to increase the quality of analysis and the efficiency of the over-
all processing is to specialize a fairly general grammar through domain-specific
knowledge. The ambiguity introduced by multiple lexical entries based on syn-
tactic categories can be greatly reduced by using a language model. A supervised
training algorithm further eliminates the ambiguity on the constituent level. To fa-
cilitate this, so-called discriminants are extracted from constituents, which contain
a short description of the constituents in question. These are again used to train a
language model that is used as an additional restriction during analysis. Moreover,
the SLT exploits the fact that the frequency of the use of certain grammar rules de-
pends on the domain. The general grammar is reduced to the set of rules relevant
for the current domain, which results in a significant increase in efficiency by only
mildly over-generating the possible analyses (Rayner and Carter, 1996). SLT thus
demonstrates a successful integration of symbolic and statistical methods for natural
language processing.

Trains(Allen et al., 1994) is not a translation system, but a dialog system capable
of performing simple route planning tasks. However, one aspect is interesting for the
work described here: The correction of speech recognition errors. Trains uses a best
chain recognizer and is thus prone to errors occurring during the initial recognition
phase. The solution applied consists of a postprocessing step to correct typical errors
that occur most often. The recognition output undergoes certain modifications, the
result of which is ranked according to a language model. The modifications consist,
in the most part, in the exchange of single words of the lexicon (Allenet al., 1996).

TDMT (Transfer-Driven Machine Translation, Furuse, 1994) uses the transfer
stage as the central part of processing. A transfer module that is oriented toward
previously seen translations receives the surface representation that flows into the
system. The transfer rules consist of patterns that relate frequent combinations of

1.3 Incremental Architectures and the Architecture of MILC 23

words and phrases (Sobashimaet al., 1994). The patterns are used as a trigger for
evaluation procedures that may integrate knowledge from several linguistic levels,
e.g. lexical knowledge to treat compositional lexical items or syntactic knowledge to
handle combinations on the phrasal level. The nature of the transfer knowledge table
makes TDMT well suited for parallel processing of translation by partitioning the
set of transfer rules into smaller pieces (Oiet al., 1994). By introducing boundary
markers it is even possible to introduce an incremental way of processing individual
utterances (Furuse and Iida, 1996). However, the setting of boundaries initially
relies on the annotation of input words with syntactic categories in instantiate the
pattern-based rules.

Verbmobil(Kay, Gawron and Norvig, 1991; Wahlster, 1993), finally, is a ma-
jor source of inspiration for the research described in this book. The author was
member of the project for several years. Verbmobil is an extremely large project
for the translation of spontaneously spoken dialogs in the domain of appointment
scheduling, consisting of a high number of different modules. It processes German,
English and Japanese, but relies on the fact that the dialog participants have at least
a passive knowledge of English. The input consists of word graphs which are ini-
tially augmented by prosodic information. The exploitation of such knowledge at
a large scale has been integrated successfully for the first time. The first phase of
the project (1993-1996) processed the word graphs using a deep linguistic analysis
and independently used two different types of shallow translation methods based on
surface representations and statistical information. Meanwhile, in the second phase,
the different approaches for analysis and transfer are combined in a holistic fashion
to be able to exchange useful information, even within an utterance (Worm, 1998).
The modeling of dialog knowledge and parts of the transfer mechanism are oriented
towards dialog acts (Jekatet al., 1995). Verbmobil reaches a performance of more
than 70% approximately correct translations (Wahlster, 1997).

Verbmobil as a whole does not realize an incremental system throughout (Hahn
and Amtrup, 1996), although some of the components and algorithms use incremen-
tal methods (e.g., Finkler, 1996). In particular, the input to the system consists of a
word graph which was constructed non-incrementally. Parts of the linguistic analy-
sis is based on a non-incremental A*-search (Caspari and Schmid, 1994). However,
the experimental translation systemINTARC(INTeractiveARChitecture), which has
been developed in the architecture subproject of Verbmobil, indeed realizes an in-
cremental approach to speech translation (G¨orzet al., 1996). There is one important
restriction for the amount of incrementality that can be experienced in the system:
The translation can only be performed for sentence-like constituents that start at the
onset of an utterance. An analysis of fragments has not been integrated. The main
properties of INTARC are:

� Word graphs are produced incrementally (Huebener, Jost and Heine, 1996). They
are processed strictly from left to right.

� Unlike many other approaches, the recognition of prosodic information happens
without recourse to the prior presence of recognized words (Strom and Widera,
1996).

24 1. Introduction

� The syntactic-semantic analysis is divided into an incremental search for utter-
ance hypotheses based on the type skeleton of a complex feature structure gram-
mar and the following verification based on the full unification grammar (Kasper
et al., 1996).

� The main stream of translation uses a dialog-act based mode of operation. In
case of a failure of the deep linguistic analysis there is a fall-back which uses
information about focused words in the input utterance and their associated dialog
acts for a rudimentary translation (Elsner and Klein, 1996).

� It has been used to investigate interaction between modules for linguistic analysis
and speech recognition (Hauenstein and Weber, 1994).

1.4 Summary
Using incrementality within natural language processing systems seems to be the
next logical step in the development of large, naturally operating systems. The
MILC system, which is described in this book, is an implementation of an incre-
mental system for the translation of spontaneously spoken language. Incrementality
can be paraphrased as “processing in a piece-meal fashion”, which e.g. renders the
effect that a system is able to react to the user’s input, even before that input has been
completed. Such an operation is oriented towards the properties of human language
understanding. It opens the way for new methods to reduce ambiguity (thereby in-
creasing the efficiency) by using interaction between modules and the exploitation
of inter-modular parallelism. Incremental strategies are used by simultaneous in-
terpreters, among other methods, to reduce the burden of processing with an open
sentence planning.

MILC is a modular system. The components are interconnected using a com-
munication system that operates with channels. The components form an integrated
architecture by using a new data structure, the layered chart, to store results and
intermediate partial analyses. A complex typed feature structure formalism is used
to represent linguistic knowledge on all levels. It is implemented using abstract au-
tomata techniques and guarantees a simple, efficient exchange of feature structures
among modules. The mode of operation has been demonstrated using five dialogs in
the domain of appointment scheduling, which were translated approximately correct
to 60.4%.

Chapter 2

Graph Theory and Natural
Language Processing

Graph theory is one of the central foundations for this work. All relevant data
structures and mechanisms can be traced back to operations over graphs.

Therefore, this chapter will present some concepts from graph theory, which are
important for the definition and discussion of algorithms for speech processing. We

begin with general definitions used throughout this monograph and finish with
incremental graph search algorithms.

Graphs are fundamental to natural language processing. Within the framework
of the research reported in this book, at least four aspects have to be considered:
First, all algorithms used for the linguistic treatment of an input utterance are based
on the notion of a chart, which is a special type of graph. Second, the input used
for our system consists of word graphs produced by a speech recognizer. Third,
annotations on edges are feature structures, which are graph-shaped. And finally,
the application itself is graph-structured with vertices made from components and
edges made from communication paths.

2.1 General Definitions
We begin by defining the general notion of agraphand its components,verticesand
edges. More thorough introductions to graph theory can be found in Chen (1971) or
Harary (1974); here we concentrate on the concepts relevant for our purpose.

Definition 2.1.1 (Graph).
A graphG is a pairG(V ; E), which consists of a finite setV of vertices (nodes) and
a finite setE of unordered pairs(v; v0), v; v0 2 V , which are called edges.

The graphG(;; ;) is calledempty graph. The edges in this definition have no
direction, the endpointsv andv0 of an edge(v; v0) have equal status. Loops, i.e.
edges of the form(v; v), which build connections between one and the same vertex,
are explicitly allowed.

In this work we will almost exclusively use graphs within which the direction
of an edge is as important as the identity of the vertices that are connected by an
edge. The main reason for this lies in the fact that linearity is one of the character-
istic properties of language. The lowest level of description for input utterances is

J.W. Amtrup: Incremental Speech Translation, LNAI 1735, pp. 25-63, 1999.
 Springer-Verlag Berlin Heidelberg 1999

26 2. Graph Theory and Natural Language Processing

given by chronologically continuous sets of word hypotheses. Linguistic descrip-
tions always range over intervals in time of an utterance. Additionally, the formal
description of linguistic knowledge (see Chapter 3) is built on graphs with directed
edges in order to represent hierarchical contexts. Thus, in the following we will
always deal withdirected graphsand call them graphs for brevity.

Definition 2.1.2 (Directed graph, associated graph).
A directed graphG is a pairG(V ; E), which consists of a finite setV of vertices and
a finite setE � V � V of pairs of vertices, which are called directed edges (written
(v; v0) or vv0). The undirected graph, which results from neglecting the direction of
edges, is called the graph associated toG.

In contrast to undirected graphs,8v;v0 : vv0 2 G =) v0v 2 G does not hold
in general for directed graphs. Often, it is useful to allow more than one edge
between two vertices. In the field of natural language processing, this can be used
e.g. to represent ambiguity or knowledge of different origins for a portion of the
input. Consequently, we introduce an indexing of edges in order to make different
edges that connect identical pairs of vertices distinguishable. However, we want
to represent more information about an edge than a simple natural number. Thus,
we useedge labels, which can be arbitrary objects. In particular, we use words
which represent parts of the input utterance, and feature structures, which represent
linguistic hypotheses about segments of the input.

Definition 2.1.3 (Labeled graph).
A labeled graphG is a tripleG(V ; E ;L), which consists of a finite setV of vertices,
a setL of labels, and a finite setE � V � V � L of edges, each of which carries a
label.

Additionally, we can associate each edge with aweight, for example the acoustic
score as a measure of how well an interval of the signal matches with the model
of a word in the recognizer dictionary. Edge weights, in particular, are useful to
rank the relevancy an edge can possibly have for the course of processing. Using
this information, the order in which certain processing steps are carried out can be
determined.

Definition 2.1.4 (Weighted graph).
A weighted graphG is a tripleG(V ; E ;W), consisting of a finite setV of vertices,
a setW of possible weights and a finite setE � V � V � W of weighted edges.
Usually, weights are taken fromIR.

In order to access the components of a graph and its individual parts, we intro-
duce some utility functions:

Definition 2.1.5 (Access functions for graphs).
LetG(V ; E ;W ;L) be a directed graph with edge labels and edge weights. Lete be
an edge of this graph withe = (v; v0; w; l). We define

2.1 General Definitions 27

� � as access function to the start vertex of an edge

� : E �! V ; �(e) := v (2.1)

� � as access function to the end vertex of an edge

� : E �! V ; �(e) := v0 (2.2)

� l as access function to the label of an edge

l : E �! L; l(e) := l (2.3)

� w as access function to the weight of an edge

w : E �! W ; w(e) := w (2.4)

Complete linguistic analyses always describe a traversal of the graph represent-
ing the input. Thus, we need a notion of apath through a graph or parts of it.
Additionally, we introduce the concept ofreachability, which states whether there
is a way to reach one vertex from another one by following a sequence of edges.

Definition 2.1.6 (Adjacency, Reachability).
Two verticesv andv0 of a graphG(V ; E) are called adjacent (v ! v0), if vv0 2 E :

8v; v0
2 V : v ! v0

() 9e 2 E : �(e) = v ^ �(e) = v0 (2.5)

The transitive hull of the adjacency relation! is called reachability relation,
written

�
!.

Similarly, we call two edgese, e0 of that graph adjacent, writtene ! e0, iff the
end vertex ofe is the start vertex ofe0:

8e; e0 2 E : e! e0 () �(e) = �(e0) (2.6)

Definition 2.1.7 (Edge sequence, Edge train, Path, Cycle).
LetG(V ; E) be a graph,e[1;n] a finite series of edges of the graph with the lengthn.

We writee(i)
[1;n]

to denote thei-th component of this series,i 2 f1 : : : ng.
The series is called edge sequence, iff all neighboring edges are adjacent, i.e.

iff:

8i=1:::n�1�(e
(i)

[1;n]
) = �(e

(i+1)

[1;n]
) (2.7)

An edge sequence is called closed, if�(e
(1)

[1;n]
) = �(e

(n)

[1;n]
), else it is called open.

An edge sequence is an edge train if the edges of the sequence are pairwise different,
so that

8i;j2f1:::nge
(i)

[1;n]
= e

(j)

[1;n]
=) i = j (2.8)

An open edge sequence is called path if no vertex occurs twice in the sequence,
i.e.

8i;j2f1:::ng�(e
(i)

[1;n]
) = �(e

(j)

[1;n]
) =) j = i+ 1 (2.9)

A closed edge sequence is a cycle, if no vertex except�(e
(1)

[1;n]
) = �(e

(n)

[1;n]
)

occurs more than once.

28 2. Graph Theory and Natural Language Processing

Definition 2.1.8 (Length of an edge sequence, Distance).
The length of an edge sequence is defined as the number of edges in it. The distance
Æ(v; v0) of two vertices is defined as the length of the shortest path between them. If
there is no such path, we setÆ(v; v0) =1.

Two other fundamental concepts of graph theory,connectivityandplanarity, are
only of minor interest for this monograph. We will implicitly request graphs to be
connected in later definitions, hence unconnected graphs do not arise. Also, the
graphs used in our research are usually so dense that they are not planar.

Definition 2.1.9 (Connectivity).
A graph is connected if any two vertices are reachable by following a path through
the graph. A directed graph is called strongly connected if any vertex is reachable
from any other vertex by a path. It is called half connected if there is a path between
any two vertices. The graph is called loosely connected if the associated undirected
graph is connected.

Definition 2.1.10 (Planarity).
A graph is planar if it can be drawn on a surface without crossing edges.

Charts, which are used for natural language processing, are in general not planar.
Let us assume a German sentence as an example:

Der
The

Peter
Peter

singt
sings

mit
with

Freude.
joy.

Peter sings happily.
(2.1)

The syntactic analysis using usual methods creates a chart similar to that in
Figure 2.1. It contains at least pre-terminal edges resulting from lexical access, and
some inactive edges representing different sentential hypotheses and the complete
verbal phrase. This chart is isomorphic to the graphK(3;3) in Figure 2.2. This is a
complete bipartite graph with six vertices, which are partitioned in two sets of three
vertices each. Following the theorem of Kuratowski (Aigner, 1984, S. 74), the graph
K(3;3), and consequently the chart shown here, are not planar.

Usually, the proof of non-planarity can be made easier by using a theorem about
the restriction on the linearity of the number of edges in a graph (cf. McHugh, 1990,
S. 38), which goes back to Euler’s formula. Using this theorem, it is especially easy
to show the non-planarity of word graphs.

The notion of a chart1, used for a data structure which stores complete and in-
complete hypotheses over a certain extract from the input, has consequences for the
shape and properties of the graph representing it. However, this depends on the
application in which the chart is used. If written input is considered, the vertices

1We will define a chart more formally in Definition 4.1.1.

2.1 General Definitions 29

Peter singt mit FreudeDer

S

S

S VP

Figure 2.1. A chart forDer Peter singt mit Freude
Figure 2.2. The graphK(3;3)

of the graph represent the gaps between words.2 Each two neighboring vertices
are connected by (at least) one edge, which denotes the current input word. Thus,
the graph is half connected, the distance between two arbitrary vertices is finite
(8v;v02V : Æ(v; v0) 6= 1). The reachability relation is a total ordering on the ver-
tices of the graph.

If a chart is used to represent structures that allow alternatives on the lowest
level (in general words), this is no longer the case. The output of a word recognizer
could consist of a word graph containing multiple alternative paths. This means that
vertices are constructed that are no longer connected by a path whose distance is
thus1. The reachability relation is only a half ordering. All paths from the start
vertex of the graph to the end vertex of the graph are half connected graphs, they
represent alternative utterance hypotheses.3

The following definition of adirected, acyclic graphis important for our pur-
pose, because almost all graphs used in computational linguistics have this property.
Charts and word graphs are directed, yet they have an additional property, namely
having a linear character: They do not contain edges that reach backwards in time.
They are even acyclic.4

Definition 2.1.11 (Directed, acyclic graph (DAG)).
A directed, acyclic graph (DAG) is a directed graph which does not contain directed
cycles.

2Boitet and Seligman (1994) use the name chart exclusively for this case. We use a more
general definition (see Section 4.1).

3Later (cf. Section 2.6) we will introduce a natural total ordering on vertices, which rests
on the projection onto the time axis.

4The syntactic analysis using a chart sometimes utilizes empty active edges, which do not
lead backwards in time, but nevertheless introduce cycles. We abandon these by using a
left-corner analysis following Kilbury (1985) (cf. Chapter 4).

30 2. Graph Theory and Natural Language Processing

2.2 The Use of Word Graphs for Natural
Language Processing Systems
Systems using written language as input are well served by having no doubts about
the identity of the input.5 If, however, the input consists of spoken language, a
whole new set of problems arises, which on one hand results from the properties
inherent to speech, and on the other hand is caused by the methods available for
speech recognition.

� Recording conditions. The most prevalent source of a suboptimal acoustics is the
presence of disturbing sound like background noise, etc. As long as the noise
is more or less static, it can be removed fairly easily. Non-stationary noise like
door slamming, radio broadcasts, telephones ringing, etc. are harder to detect and
suppress.

� Incomplete recognition. In certain cases there is no guarantee that the input level
is constant over time. This may be caused by movements of the speaker in relation
to the microphone. Suitable recognition situations (e.g. wearing head sets) can
help minimize these problems.

� Speaker variation. Aside form the almost classical difference in recognition qual-
ity between voices of men and women, dialect and variation of speaking speed
may affect the recognition considerably.

� Connectivity. The lack of clearly defined and distinguishable word separations
during the recognition of continuous speech leads to an explosion of the size of
the search space which has to be traversed by the recognizer. However, using a
single-word recognizer, which shows much higher accuracy, is out of the question
for the research presented here.

� Performance phenomena. Break offs, hesitations and speaker noise are the most
common performance phenomena. They occur extremely frequently in sponta-
neous speech, but are rare in e.g. read speech.

� Mathematical foundations. Modern speech recognizers are almost always based
on stochastics and HMMs6. HMMs are finite state transducers, where transitions
and emissions are modeled using distributions. These distributions are learned on
the basis of a large set of training data. The selection and coverage of the training
data determines to a large degree the performance of the recognition step when
processing previously unseen input.

Roughly said, you can never be sure that a recognizer does recognize what has
been said. The form of the word recognition output reflects this situation. In princi-
ple, three interfaces are used to connect a recognizer with linguistic modules:

The simplest interface is to use thebest chain. In this case, the recognizer de-
livers a sequence of words which was attributed with the highest available acoustic

5But cf. Wirén (1992) for an account on the modeling of undoing words by correction of
typos.

6HiddenMarkovModel, cf. e.g. Woodlandet al. (1995).

2.2 The Use of Word Graphs for Natural Language Processing Systems 31

score.7 The main advantage of this approach lies in the fact that modules capable
of processing written input can be used without modification to accept spoken lan-
guage as input. Moreover, current recognizers are able to deliver word recognition
rates of 90% and more if the lexicon is small enough. The two main disadvantages
are the poor scalability to large vocabularies and the low sentence recognition rate:
Although nearly all words are recognized correctly, almost no sentence is recog-
nized completely.

An easy modification consists of recognizing many instead of just one sentence
hypothesis (n-best hypotheses) (cf. e.g. Tran, Seide and Steinbiss, 1996). The
hope is that the probability of finding the right utterance is higher if ten or twenty
candidates are available. While this is certainly true, it presents only a marginal aug-
mentation, since the number of potential utterance hypotheses that are stored inside
the recognizer is larger by orders of magnitude than the bestn chains. Moreover,
the isolated processing of a number of hypotheses which most often differ in only
one word seems hardly adequate.

Word graphs (Oerder and Ney, 1993; Aubert and Ney, 1995) are the mode of
representing word recognition results, which have been used more and more during
the past years. Word graphs are directed, acyclic graphs, whose edge labels denote
words in orthographic transcription. Additionally, edge weights represent acoustic
scores8 for word hypotheses.9 The graph contains unique start and end vertices
which represent the boundaries of the input utterance. Each path from the start
vertex to the final vertex describes a possible utterance hypothesis. Each vertex
within the graph denotes a point in time during the speaking time.

In order to formally define word graphs, we need the notion of the degree of a
vertex:

Definition 2.2.1 (Incidence, Degree of a vertex).
Let G(V ; E) be a graph. An edgevv0 2 E is called incident fromv and incident
to v0. For a vertexv of the graphG, the in-degree is defined as number of edges
incident tov:

#in() : V �! IN;#in(v) := #fe 2 Ej�(e) = vg (2.10)

The out-degree of a vertexv is defined as the number of edges incident fromv:

#out() : V �! IN;#out(v) := #fe 2 Ej�(e) = vg (2.11)

7I.e., the sequence of words that belongs to the set of training data which best fits the actual
input.

8Usually, scores are taken as negative logarithms of densities. Thus, the lower the weight,
the more confident the recognizer has been about the presence of a word in the input
signal.

9In order to improve the recognition rate almost all word recognizers utilize statistical
language models, which consist of transition probabilities between words. Using these
figures, the number of words which may follow a certain word is reduced. It is not possible
to represent these transition probabilities in the resulting word graph, although they are
used for pruning in the recognizer. However, modules for linguistic analysis may again
use language model probabilities for their own purposes.

32 2. Graph Theory and Natural Language Processing

Definition 2.2.2 (Word graph).
A word graph is a directed, acyclic graphG(V ; E ;L;W) with edge labels and edge
weights, if the following holds:

� The graph contains an unique start vertex. This vertex represents the start point
of the utterance.

9v(r)
2 V : #in(v

(r)) = 0 ^ 8v 2 V : #in(v) = 0 =) v = v(r) (2.12)

From the acyclicity and the existence ofv(r) it already follows that the graph is
loosely connected.

� The graph contains an unique end vertex. This vertex represents the endpoint of
the utterance.

9v(f)
2 V : #out(v

(f)) = 0 ^ 8v 2 V : #out(v) = 0 =) v = v(f) (2.13)

Additionally, each vertex is labeled with a point in time, which can be used to impose
an order among the vertices (the linear order in time). Time is discretely represented
in intervals of 10ms, the so-called frames.10 To do this, we define a function that
maps vertices to frame numbers:

t : V �! IN (2.14)

t is not injective, because we cannot guarantee the existence of a vertex for every
frame. Neither ist surjective, since there may be several vertices for a given point
in time, depending on the circumstances.

Edge labels denote words, edge weights denote acoustic scores.

An example for a typical word graph is shown in Figure 2.3. The reader should
note, however, that this graph was constructed non-incrementally. This is easy to
see: An incrementally produced word graph would contain many “dead ends” which
are constructed if a path cannot be further pursued from a certain point, because no
additional word hypotheses with a sufficiently high confidence could be found.11

To describe incremental graphs correctly, proposition (2.13) has to be modified.
There may be arbitrary many end vertices (vertices with out-degree zero). After
processing, only those paths through the graph which start at the start vertex and
end at the rightmost end vertex represent complete utterance analyses.

This property is captured in the following definition which describes incremen-
tally produced word graphs (called left-connected word graphs in Weber, 1995).

10This notion stems from speech signal processing. During a preprocessing step, the in-
tensity values are mapped to feature vectors. This method uses windows over the input
signal, which are moved in 10ms steps.

11The visualization of incremental word graphs is useless for the most part. The fan out is
normally too high, producing only a wide, blackened area on a printout (but cf. Section
4.10).

2.2 The Use of Word Graphs for Natural Language Processing Systems 33

1

2

<sil>

3

<sil>

4

<sil>

5

<sil>

6

<sil>

7

<sil>

8

<sil>

9

<sil>

10

<sil>

<sil>

<sil>

<sil>

<sil>

13

dritter k"onnen k"onntek"onnten keine klar

Herr h"atte

11

Herr

<sil>

<sil>

sch"on

sch"onschon

12

sch"on schon

<sil>

<sil>

den

denwenn

wenn

14

vor

mir

wir

15

Maimein mir neun

16

meinneun

17

mein meine neun

18

mein meine neun

19

mein meinemeinen neun

20

meinmeine meinen neun

21

mein meine meinen neun

22

mein meine neun

23

mein meine neun

24

Montag mein meine neun

25

Montag mein meine neun

26

Montag mein

27

Montag meinen neunten

28

Montag neunten

leidnur

leid nur

leid nur

leid

leid

leid

nach

nach

Uhr wir

Uhrwir

Uhr wir

Uhrwir

Uhr wir

Uhrwir

Uhr wir

Uhrleider wir

Uhrlassen leider

Uhr lassenleider

da"s doch

da"s doch

danke

da

da

Tag da

Tag

Tag Woche haben

haben

ab

ab

ab ach auf

ab ach acht auf

April ab ach acht achte achten ersten

April achte achtenersten

ah

ah

ah

oder

oder

oder<sil> <sil> <sil>

<sil> <sil><sil>

<sil><sil> <sil>

da in

in

30

sehr

Sie29

Sie

31

Sie

40

zu

41

Zeit zu

wir

32

es

33

es

34

es

35

es

36

es

uns

uns

uns

uns

uns

au"seruns

au"ser uns

37

uns

38

uns

39

uns

so

so

so

so

42

sehr

dadoch

dadoch wann was

war

wir

noch wir

wir

nur

Uhr ab achah auch

Uhr ab ach acht ah

Uhrah

Uhr achalso

doch

so

auchauf

<sil> <sil><sil>

auch

<sil> <sil> <sil>

<sil> <sil> <sil>

<sil> <sil><sil>

43

keinvor

freuenneun

ein

44

Termin

45

ausmachen

46

ausmachen

47

ausmachen

48

ausmachen

49

ausmachen

50

ausmachen

51

ausmachen

<sil><sil> <sil>

<sil><sil> <sil>

<sil> <sil> <sil>

<sil> <sil> <sil>

<sil> <sil><sil>

<sil> <sil><sil>

52

kein

53

kein

54

kein

55

k"onnen k"onnte keine

56

k"onnte keine

meinmeine wann wenn

mein meine wannwenn

mein meinewann wenn

mein meinemeinen wann

meine wann

57

meine

58

M"arz

wir

wir

wir

mir

mir

mir w"are

da"s

das

es

Sie

59

Ihnen

60

Ihnen

61

Ihnen

62

Ihnen

63

Ihnen

64

Ihnen

den dennin

dennin

denn in

dennin

eine

Ende eine

eineeinen

eineeinen

66

recht

67

recht

68

recht

69

recht

70

recht

71

recht

72

recht

73

recht

74

recht

75

recht

76

recht

77

recht

78

recht

79

recht

80

recht

81

recht

82

recht

83

recht

84

recht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

nicht

65

nicht <sil> <sil> <sil>

mich

mich

mich

mich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

ich

<sil> <sil> <sil>

<sil> <sil> <sil>

<sil> <sil> <sil>

<sil> <sil> <sil>

<sil> <sil> <sil>

<sil> <sil><sil>

<sil><sil> <sil>

<sil> <sil><sil>

<sil> <sil> <sil>

<sil> <sil><sil>

<sil> <sil><sil>

<sil> <sil> <sil>

<sil> <sil> <sil>

<sil> <sil><sil>

<sil> <sil> <sil>

<sil> <sil><sil>

<sil><sil> <sil>

<sil> <sil> <sil>

85

<sil> <sil><sil>

<sil> <sil> <sil>

Figure 2.3. Word graph for the utterance n002k000: “schön hervorragend dann lassen
Sie uns doch noch einen Termin ausmachen wann wäre es Ihnen denn recht”. This
graph shows the non-incremental output of a word recognizer.

34 2. Graph Theory and Natural Language Processing

Definition 2.2.3 (Left-connected (incremental) word graph).
A left-connected word graph is a directed, acyclic graph with edge labels and edge
weights, which contains an unique start vertex.

Sharing partial paths in a word graph (by having identical prefixes or postfixes)
leads to a highly compact representation of a very large number of alternative utter-
ance hypotheses. For example, the graph for the turn n002k000 presented in Fig-
ure 2.3 contains only 461 edges, but describes1; 2 �1023 different paths. However,
even word graphs contain many redundancies by having several different paths la-
beled with identical word sequences. This may happen by having two edges emerg-
ing from the same vertex and describing the same word that end in different vertices
(e.g., at different points in time). The aforementioned word graph only contains
8; 6 �108 distinct word sequences. The graph of these sequences is shown in Fig-
ure 2.412.

An important property is the possibility to impose a topological ordering on the
set of vertices.

Definition 2.2.4 (Topological order of a DAG).
The topological order of a directed, acyclic graphG(V ; E) is a mapping
� : V �! IN with

8e 2 E : �(�(e)) < �(�(e)) (2.15)

The topological order of a DAG can be computed inO(jVj + jEj) time as de-
scribed by Algorithm 1. The algorithm presented here is a little bit simpler than in
the general case (cf. Cormen, Leiserson and Rivest, 1990, p. 486), because word
graphs are loosely connected. The topological order of nodes is used to reduce the
time complexity for a number of algorithms shown later.

The next sections are concerned with general properties of word graphs and
methods for the reduction of their size. For this purpose, we will not use left-
connected graphs, which will be the topic of later sections.

2.3 Evaluation of Word Graphs: Size and
Quality Measures
The introduction of word graphs into natural language processing opened up new ar-
eas of research topics, especially concerning the evaluation of different methods and
systems. Specifically in the field of speech recognition, quantitative evaluation plays
an eminent role, as a high recognition rate usually points to a good system. Calcu-
lating this measure is relatively simple if the output of a recognizer simply consists

12The algorithm to reduce word graphs is described below.

2.3 Evaluation of Word Graphs: Size and Quality Measures 35

1

2

Herr den sch"on schon wenn

3

den sch"on schon wenn

4

dritter h"atte k"onnen k"onnte k"onnten keine klar sch"on Herr

mir

wir

5

vor

6

Mai mein mir neun

7

mein neun

8

mein meine neun

9

mein meine neun

10

mein meine meinen neun

11

mein meine meinen neun

12

mein meine meinen neun

13

mein meineneun

14

Montag mein meine neun

15

Montagmeinen neunten

16

Montag neunten

leidnur

leid

leid

nach

Uhr wir

Uhr wir

Uhrwir

Uhr wir

Uhr leiderwir

Uhr lassenleider

Uhr lassen leider

da"s doch

dankeTag da

Tag Woche haben

haben

ab ach acht auf

April ab ach achtachte achten ersten

achte achten ersten April

ah

oder

da in

in

18

sehr

Sie17

Sie

19

Sie

27

Zeitzu

wir

20

es

21

es

22

es

23

es

24

es

26

es

uns

uns

uns

uns

uns

uns

au"ser uns

25

uns

so

28

sehrda dochwann was

warnoch wir

nurUhr abach acht ah

Uhr achalso

auch

doch so vor

29

freuen kein neun

auf

auch

ein

30

Termin

31

ausmachen

32

kein mein meinewann wenn

33

kein mein meine wann wenn

34

kein mein meine wannwenn

35

k"onnen k"onnte keine mein meine meinen wann

36

k"onnte keinemeine wann

37

meine

38

M"arz

wir

wir

wir

mir

mir

mirw"are

da"s

das

es

Sie

39

Ihnen

40

Ihnen

41

Ihnen

42

Ihnen

43

Ihnen

44

Ihnen

den denn in

dennin

denn in

denn in

eine

Ende eine

eine einen

eine einen

45

recht

nicht

mich

ich

Figure 2.4. Word graph for the utterance n002k000. This graph only contains unique label
sequences.

36 2. Graph Theory and Natural Language Processing

begin
[1] Stack s;

Initialization
[2] for each vertexv 2 V(G), do
[3] inEv := #in(v)

[4] s.Push(v(r))
[5] order nil

Simplified Depth First Search
[6] while v s.Pop()do
[7] order order.v
[8] for each edgee = (v; v0) starting inv do
[9] inE

v
0 inE

v
0 � 1

[10] if inE
v
0 == 0 then

[11] s.Push(v0)

[12] return order
end

Algorithm 1. Computing the topological order of a DAG

of a sequence of words. However, if word graphs are considered, their topology
cannot be neglected completely. For instance, if the two graphs from Figures 2.3
and 2.4 are considered, it can be noted that the “complexity” is not distributed iso-
morphically over the whole graph. Rather, there seem to be areas in the graph which
obviously contain a high degree of ambiguity, while other areas are relatively simply
structured. Especially the “slim” regions where almost all paths collapse to a small
number of edges are relevant. In this section, we will review size measures for word
graphs and propose a new measure which is independent from transcriptions and,
in our view, better takes into account the embedding of a speech recognition sys-
tem into a larger speech understanding system. In addition, we will briefly discuss
quality measures, portraying several different alternatives.

According to the type and form of word graphs, we can state different demands,
which unfortunately almost exclude each other:

� The word graph should be small, enabling a linguistic analysis to deliver results
in short amounts of time. In the extreme case, this corresponds to using a best
chain representation, as has been done for a long time.

� The word graph should be large, thereby containing the actual utterance with a
sufficiently high probability. For statistical reasons alone, a higher number of
utterance hypotheses results in a higher word recognition rate.

Until now, size measures for word graphs are usually related to the number of
edges, for example the density which is defined as number of edges per word in a

2.3 Evaluation of Word Graphs: Size and Quality Measures 37

begin
Initialization

[1] dens 0
[2] totalDens 0

Consider each vertex
[3] for each vertexv 2 V, taken in topological order,do
[4] totalDens totalDens + dens
[5] dens dens -#in(v) + #out(v)

[6] return totalDens /(jVj � 1)
end

Algorithm 2. Computation of the transcript independent density of a word graph

reference transcription. Let us first additionally define a density which is indepen-
dent from a transcript:

Definition 2.3.1 (Density, Transcript-independent density).
The (transcript dependent) density of a word graph is the quotient of the number of
word hypotheses in it and the number of words present in a reference transcription.

The transcript independent density of a word graphG = (V ; E ;W ;L) is the
mean number of edges spanning a certain point in time.

This density can be computed using Algorithm 2 inO(jVj) time, presumed that
the vertices of the graph are ordered topologically.

The most widely used quality measure for word recognition results isword ac-
curacy.

Definition 2.3.2 (Word accuracy).
Consider a sequence of words delivered by a word recognizer and a reference tran-
scription of the utterance spoken. The error measure of word accuracy is computed
as follows:

Word accuracy = 100� 100�
#Errors

#Reference words
(2.16)

In this equation, replacements, insertions and deletions are considered to be
errors:

#Errors = #Replacements+#Insertions+#Deletions (2.17)

To transfer the word accuracy from the evaluation of word sequences to the
measuring of recognition results on graphs is problematic at best. Usually, the result
would be the maximum of the word accuracies computed from all paths in the word

38 2. Graph Theory and Natural Language Processing

begin
Handle each vertex

[1] for each vertexv 2 V(G), taken in topological order,do

Compute the number of paths ending atv

p(v) :=
P

p(w) : wv 2 E
[2] p[v] � 0
[3] for each edgee = wv ending inv do
[4] p[v] � p[v] + p[w]

The number of paths in the graph is the
number of paths up to the final vertex

p(G)
 � p(v

(f))

[5] return p(G)

end

Algorithm 3. Calculation of the number of paths in a graph

graph. This is done by applying a dynamic programming method, searching for
the path through the graph which results in the least number of errors. In order to
account for different sizes of word graphs, the accuracy is charted as a function of
the (transcript-dependent) density.

For the most part, this procedure neglects the fact that recognition with word
graphs per se is only meaningful in connection with a linguistic analysis which fol-
lows the recognition phase. This restriction is not necessarily valid with best chain
recognizers, e.g. in the case of dictation applications, whose processing stops after
recognition. However, for recognition with graphs we feel that an isolated evalu-
ation is only of a lesser importance (cf. Amtrup, Heine and Jost (1996); Amtrup,
Heine and Jost (1997)).

A more realistic evaluation takes into account the behavior of modules carrying
out a linguistic analysis of word graphs. The first step in establishing a realistic
measure for word graph size is to use the number of paths in a graph as this measure.
This is based on the assumption that a linguistic analysis (in the following we will
always assume a hypothetical parser) might process every path that is contained in
the graph.

The number of paths of a word graph grows exponentially with the number of
vertices in it (Oerder and Ney, 1993); if the edges are evenly distributed, a graph
contains(jEj

jVj
)jVj�1 paths. Algorithm 3 computes the number of paths in an actual

graph,p(G). The complexity of the algorithm isO(jEj + jVj), presuming the graph
is sorted topologically. Although it uses two loops for the computation, the outer
loop (line [1]) only determines the order in which edges are considered. No edge is
processed twice.

2.3 Evaluation of Word Graphs: Size and Quality Measures 39

begin
[1] for each vertexv 2 V(G), taken in topological order,do
[2] for each pair of identically labeled edgese1, e2 do

Perform edge merging and create new vertex
[3] Create a new vertexv having

t(v) := min(t(�(e1)); t(�(e2))),
insertingv into the topological order
Copy all edges incident from�(e1) to v

[4] for each edgee = (�(e1); w; s; y) do
[5] Create a new edgee0

:= (v; w; s; y)
Copy all edges incident from�(e2) to v

[6] for each edgee = (�(e2); w; s; y) do
[7] Create a new edgee0

:= (v; w; s; y)
Deletee1, e2

end

Algorithm 4. Reducing a graph to unique label sequences

The next step in finding a relevant measure of graph size rests on the observation
that many different paths through a word graph produce exactly the same word
sequence. Consequently, a further restriction would be to count only the number of
distinct paths. In order to achieve this, the graph undergoes a transformation which
changes the topology of the graph. However, this is not overly critical, since two
identically labeled yet different paths may only differ in two aspects:

� The set of vertices which are visited by the paths. This information is usually
irrelevant for a parser, since the exact mapping from words into the time space is
normally of little importance. Yet, one has to notice that the integration of other
knowledge sources, which may deliver information with tight time bounds — e.g.
prosodic information about word or phrase boundaries or accents or information
provided in different modalities, like deictic gestures, lip movements etc. —
requires a strict invariance w.r.t. time.

� The acoustic scores which are annotated to word hypotheses. In the ideal case,
an algorithm reducing a word graph to unique label sequences should preserve
the relative scores of all paths through the graph. If that is not possible, as in our
case, the score of a path should at least not get worse.

Algorithm 4 describes the process for reducing a word graph to unique label
sequences. The algorithm ensures that no vertex is left by two edges having the
same label. This local condition guarantees that, from a global perspective, there
may not be two different paths describing the same sequence of word hypotheses.
The method described here is similar to the algorithm (Hopcroft and Ullman, 1979)
for converting a non-deterministic finite state automaton into a deterministic one
(also cf. Seligman, Boitet and Hamrouni, 1998).

40 2. Graph Theory and Natural Language Processing

a

a

b

b

c

c

d

d

SIL

Figure 2.5. A difficult graph w.r.t the reduction to unique label sequences

The complexity of this algorithm is exponential in the worst case. Figure 2.5
shows a graph which clarifies this point. Each vertex, except the last two vertices,
is the starting point of two identically labeled edges, one of which extends to the
next vertex, and the other to the second next vertex. For each of these pairs, the
algorithm has to create a new vertex, which has twice as many outgoing edges as
the original vertex. If we, for the more general case, assume that each vertex hasd

pairwise identically labeled edges leaving it, the graph contains2 jVj � 1 edges.
The processing of the first vertex requires the construction ofd

2
new vertices,

each of which is equipped with2 d outgoing edges. If one of these new vertices is
considered, againd

2
new vertices arise, this time with4 d outgoing edges each. This

cycle can be repeatedjVj
2
� 1 times, since we advance two vertices with every step.

Throughout the course of considering vertices, we construct

jVj

2
�1X

i=1

2i d (2.18)

new edges, which all have to be processed by the algorithm. This results in at least

d(2
jVj

2 � 2) (2.19)

operations, the time complexity of the algorithm is thus�(
p
2jVj).

The algorithm proposed here has not been applied to real word graphs, the com-
plexity being too high. A modified version, which we will present in the following,
belongs to the same complexity class, but some optimizations we carried out lead to
acceptable runtimes. That way, we could carry out evaluations for word graphs.

Merging vertices has the most positive effect on runtime in this case. The merg-
ing of vertices described in Algorithm 5 copies edges from one vertex to another
and carries out a redundancy test while doing so. Duplicate edges are not copied,
only the acoustic score is modified if necessary. In order to keep the integrity of the
word graph, only vertices not mutually reachable may be merged.

Merging of vertices may take place under different circumstances:

2.3 Evaluation of Word Graphs: Size and Quality Measures 41

procedure Merge(v, w)
Merge two verticesv andw
First, copyw’s ingoing edges

[1] for each edgee = (x;w; s; l), do
[2] if 9e0

= (x; v; s
0
; l), then

[3] s
0
 � min(s; s

0
)

[4] else
[5] Create a new edgee00

= (x; v; s; l)

Now, copyw’s outgoing edges
[6] for each edgee = (w; x; s; l), do
[7] if 9e0

= (v; x; s
0
; l), then

[8] s
0
 � min(s; s

0
)

[9] else
[10] Create a new edgee00

= (v; x; s; l)

end

Algorithm 5. Merging of two vertices

� Two vertices are merged if they have identical sets of edges incident to them and
incident from them. However, this may lead to a slight increase in the number
of paths since new partial paths of length two may be introduced by the merge
operation.

� Two vertices are merged if they have identical sets of vertices incident from them.
� Two vertices are merged if they belong to the same point in time. This situation

may arise as new vertices are created during the execution of the algorithm.

The merging of vertices is carried out whenever a new vertex is considered.
In addition, merging may be executed if all the edges leaving a vertex have been
processed. The vertices created during this part of the algorithm have identical sets
of vertices incident to them (namely, the vertex just processed) and thus are potential
candidates for merging.

By applying such modifications to the original algorithm, the runtime could be
reduced to acceptable ranges; however, now scores of paths through the graph may
be changed (the scores only get better), and even new paths may be introduced.
Figure 2.6 shows a runtime overview for reducing graphs from the 1996 Verbmobil
acoustic evaluation (Reinecke, 1996).13

So far, we have looked at the number of paths in a graph in order to approach
a more realistic measure for word graph size than provided by the density. How-
ever, one has to observe that no linguistic system (e.g., a parser) would enumerate

13These are 305 utterances without spelling units from dialogs taken from Verbmobil CD
14.

42 2. Graph Theory and Natural Language Processing

100 200 300
0

1000

2000

3000

Figure 2.6. Runtime for reducing graphs to unique label sequences (x-Axis: log(Number of
paths), y-Axis: Runtime in seconds)

all paths. Consequently, the last extension which we will pursue here targets the
behavior of a reasonable, complex parser.

The fictitious parser, which we will view as the consumer of word graphs pro-
duced by a recognizer, shall use a unification-based feature structure formalism.
This property prevents a cubic time complexity of the parser, as we are able to con-
struct different sets of features for every pair of edges combined by a rule of the
grammar (e.g. by concatenating the associated word hypotheses) (cf. Weber (1995)
regarding the complexity of context-free word graph parsing, which isO(jVj3)). We
restrict ourselves to grammars having a context-free backbone and feature structure
annotations to rule elements, and additionally demand that grammars have Chom-
sky normal form, i.e. each rule has at most two nonterminals on the right side.14

Other than that, we do not restrict the behavior of the parser, e.g. w.r.t its search
methods.

2.3 Evaluation of Word Graphs: Size and Quality Measures 43

begin
Initialization

[1] totalderiv � 0

Handle each vertex
[2] for each vertexv 2 V(G), taken in topological order,do

Adjust the number of rule applications for this vertex
and the total number of derivations so far.

[3] derivv[1] � #in(v)
[4] for all i 2 f2; : : : ; jVjg do
[5] for each edgee = (w; v; x; y) ending inv do
[6] derivv[i] � derivv[i] + derivw[i� 1]

[7] totalderiv � totalderiv+ derivv[i]

totalderiv holds the number of derivations
[8] return totalderiv
end

Algorithm 6. Calculation of the number of derivation steps of a fictitious parser for a word
graph

As a measure of how much effort a parser has to invest in order to consume a
graph, we take the number of elementary processing steps used for the complete
analysis of the graph. If we look at the number of operationsd(p) needed for the
analysis of an utterance hypothesisp, then the following holds:

d(p) =

n3
� n

6

(2.20)

wheren is the length of the hypothesis in words. This number corresponds to the
number of steps needed for filling the derivation matrix in the CKY-algorithm (cf.
Mayer, 1986, p. 107).

If we assume that all paths within a graph are independent from each other, then
the number of processing steps needed to analyze all paths in the graph is

d(G)
=

X

p2G

d(p) (2.21)

This result suggests a linear dependency between the number of paths and the
number of operations needed to process it. However, a fundamental property of

14As a grammar may encode ambiguity, the combination of two edges may render more than
one result. We abstract away from this fact, as well as from the fact that due to restrictions
formulated in the grammar not every combination of two edges may be valid.

44 2. Graph Theory and Natural Language Processing

begin
Compute minimum and maximum prefix scores

[1] for each vertexv 2 V(G), taken in topological order,do
[2] sv;min �1

[3] sv;max � 0

[4] for each edgee = (w; v; se; y) ending inv do
[5] sv;min � min(sw;min + se; sv;min)

[6] sv;max � max(sw;max + se; sv;max)

Compute rank of path with scoresref recursively, starting at the final vertex
[7] r �ComputeRank (vf ; sref)

r is the rank of a path with scoresref through the graph
[8] return r
end

Algorithm 7. Computing the rank of a path (part 1)

word graphs is the sharing of sub-paths, thus (2.21) is only an upper bound. In order
to account for shared subgraphs, Algorithm 6 has to be applied.

Aside from the assumptions we have made about the properties of the grammar
(lack of ambiguity and no restrictions about the applicability of rules), we further
assume that the parser is free to derive an unlimited number of partial analyses at
a vertex. A “reasonable” parser for spoken language would not do that, instead it
would apply restriction mechanisms to keep the number of active hypotheses within
a tractable range (pruning).

The complexity of Algorithm 6 isO(jEjjVj). The outer loop (line [2]) and the
innermost loop (line [5]) guarantee that all edges are considered and impose an order
on their processing. The loop in line [4] increases the number of derivations up to
the current vertex. All shorter analyses constructed so far are used. These sequences
have a maximum length ofjVj, thus leading to the complexity figure we gave.

2.4 Evaluation of Word Graphs: Quality
Measures
In the preceding section, we discussed several different size measures for word
graphs; we presented an important modification which influences the size of a word
graph to a great degree. We only implicitly mentioned quality measures, though.
In this section, we will introduce different quality measures, all of which are based
on the word accuracy in that they refer to the “best chain” through the graph and

2.4 Evaluation of Word Graphs: Quality Measures 45

assess some property of that chain. Restricting oneself to word accuracy alone can
be dangerous, as this neglects the shape of the underlying word graph (just as all
edge-based size measures do). In principle, other integrated measures are possible,
which take into account the topology of the word graph. The quality of a word graph
with respect to the reference utterance could be computed as follows:

� The difference in acoustic scores between the chain with the best acoustic score
and the “correct” chain15.

� The probability of the correct chain w.r.t. the input graph.
� The number of derivation steps an ideal parser would need in order to find the

correct chain.
� The rank of the correct chain if only acoustic scores are taken into account.

The motivation to use the rank of the correct chain in the list of all paths through
the graph ordered by overall acoustic score is again driven by the assumption that
a subsequent parser considers all paths in the worst case, until the correct one is
found. Of course, this assumption does not take into account that a parser could
well find a different path with a higher acoustic score, for which it could assign a
syntactic analysis. The method to compute the rank of a path within a word graph
is described in Algorithm 7. More precisely, the algorithm computes the rank of a
chain with a given overall acoustic score w.r.t. the scores of all other paths through
the graph. Thus, the input parameter for the algorithm consists of a word graph and
a reference scoresref , the output is the rank of a path with that score.

A naive search enumerates all paths in the order of decreasing acoustic score
until one is found that carries the score which is sought. The algorithm described
here is founded on eliminating edges at the end of a path and to compare minimal
and maximal scores on the way. Thereby, in some situations, numerous paths can
be handled in one single step; this should lead to a more efficient solution for many
cases compared to a simple best-first search based on acoustic scores.

However, in the worst case the algorithm still shows a complexity which is ex-
ponential in the number of vertices in a graph. The reason for this property is that
— given a disadvantageous distribution of scores — the complete graph still has to
be considered. Let us assume a graph withjVj vertices andn(jVj�1) edges for any
oddn. Figure 2.7 shows such a graph with four vertices andn = 5.

The edges are distributed evenly between the vertices of the graph, withn edges
between two neighboring vertices. Let the vertices have numbers1 throughjVj ac-
cording to their topological ordering. Let the weights (scores) of the edges between
the vertexi and the vertexi+ 1 be as follows:

� The edge belonging to the reference path bears the average weight, for instance,
0.

� Half of the remaining edges bear the weight1

2i
.

� All remaining edges bear the weight� 1

2i
.

15By “correct” chain we mean the path through the graph which gives the highest word
accuracy w.r.t the reference transliteration.

46 2. Graph Theory and Natural Language Processing

0.0 0.0

0.5

0.5

0.25

0.25

0.125

0.125

0.0

-0.125

-0.5

-0.5

-0.25

-0.25

-0.125

Figure 2.7. A complex graph for rank computation

function ComputeRank (v, sref)
If the reference score is lower than or equal to the minimum score, all
paths to the left are worse and need not be considered

[1] if sref � sv;min

[2] return 0

If the reference score is greater than or equal to the maximum score, all
paths to the left are better and need not be considered

[3] if sref � sv;max

[4] return p
(v)

Now comes the hard part. Recursively consider all vertices incident tov

[5] rtmp � 0

[5] for each edgee = (w; v; se; y) ending inv do
[6] rtmp � rtmp+ComputeRank (w; sref � se)
[7] return rtmp

end

Algorithm 8. Computing the rank of a path (part 2)

2.4 Evaluation of Word Graphs: Quality Measures 47

The lines [1] to [6] of Algorithm 7 determine the lower and upper bounds of
scores of possible paths from the root of the graph to the current vertex. Then, the
functionComputeRank(), which is shown as Algorithm 8, forms the core of the
computation of the rank of a chain. If the score sought is smaller than the minimal
score or greater than the maximal score up to the current vertex, then all vertices
to the left of the current vertex do not need to be considered. The solution (how
many paths to the left are better or worse than the reference) can be determined
from sv;max or sv;min. If, however, the score falls in the interval]sv;min; sv;max[,
then a recursive operation is needed.

Applied to the example graph, the function is called first at the end vertex with a
reference score of0. As this score is neither smaller than the lowest nor greater than
the biggest score,n subsequent calls toComputeRank() result from this. As no
partial path from any internal vertex to the end vertex of the graph can have a cumu-
lative score with an absolute value greater than any edge ending at the start vertex
of the partial path, it follows that at each vertexn new calls toComputeRank()are
generated.

It follows that in total
jVj�1Y

i=1

n = njVj�1 (2.22)

calls are executed, thus the complexity in the worst case is�(njVj).
All quality measures we mentioned are derived from word accuracy. Here, we

only described the last possibility, but for evaluation of word graphs we will exclu-
sively use word accuracy from now on. The reasons for this lie, on one hand, in the
desired comparability to best-chain recognizers, and on the other hand, the inherent
problems with graph evaluation.

All alternative evaluation measures introduced in this section try to give some
significance to how difficult it is to actually find the correct result. However, this
measure alone is not sufficient, as it leads to the same value for all best-chain recog-
nizers. Thus, an evaluation has to deliver at least a pair of results: A quality measure
(like the word accuracy) and an effort measure (like the rank of the correct chain).

But even this does not necessarily give a precise picture of how much effort a
system will actually spend for processing a word graph. Depending on the kind of
modules or the strictness of grammars applied by those modules, a system will not
explore the complete search space up to the chain referenced by the effort measure.
Modern systems are often constructed with extremely general knowledge sources
which assign analyses to a broad range of input utterances. In the extreme case, this
may lead to a syntactic analysis for the chain with the best overall acoustic score,
even if the word accuracy for that chain is much lower than theoretically possible.

On the other hand, a word accuracy rate is a flat measure. It gives no details
about which words were actually recognized and what kind of errors occurred. In
the worst case, this may lead to a recognition result that misses all the important
content words and where only irrelevant parts of the utterance are recognized cor-
rectly.

48 2. Graph Theory and Natural Language Processing

To obtain an integrated measure of word graph quality, which correctly estimates
“success chances” for linguistic analysis and gives a good figure of how much effort
is needed to obtain the analysis, is nearly impossible in our view. The consequence
we draw from this is to continue to use the word accuracy as a quality measure and
to only favor a change in size measures for word graphs.

2.5 Further Operations on Word Graphs
Edges annotated with silence (!SIL) are worth separate consideration. The reason
is that it is almost always assumed that they carry no meaning and can be ignored
within modules for linguistic processing. For instance, the insertion of silence edges
in word graphs is not regarded as an error during evaluation.16 Following this in-
sight, one possible way to augment the results of a speech recognizer would be to
remove as many silence edges from a word graph as possible. This does not change
the word accuracy, but it reduces the density of the graph (by removing edges) and
thus increases the accuracy of the recognizer in relation to the graph size. We will
present three different methods for dealing with silence. Afterwards, we present an
algorithm which increases the accuracy of a recognizer by employing the current
evaluation metrics in an unorthodox way.

2.5.1 Removing Isolated Silence

The first algorithm we present here is the removal of single silence edges connecting
two vertices of a word graph. It assumes that the silence edge is the only edge
connecting the vertices. Usually, this happens only at the start and at the end of a
word graph, which by definition carry silence edges. The number of cases where
this algorithm is applicable rises, however, if the word graph is modified by other
means described earlier.

The main idea of Algorithm 9 is to merge two vertices if they are exclusively
connected by a silence edge. Naturally, the affected vertices must not be reachable
from one another by other edges, in order to keep the integrity of the graph. One
of the versions of this algorithm introduced an additional constraint which kept the
vertices in chronological order. The merging of vertices would not have been carried
out if this would have resulted in edges that point backwards in time. However, this
restriction is not essential for Algorithm 9, and was left out. In any case, the copied
edges have to be rescored in order to account for the acoustic scores of the removed
silence edge; the overall scores for paths should not change.

16From a linguistic point of view, pauses can be highly relevant. For example, they may be
used to trigger the application of specific syntactic rules in grammars that describe turns
with several partial utterances (Kasper and Krieger, 1996). In those cases, a specialized
recognizer for prosodic events should be used (Strom and Widera, 1996).

2.5 Further Operations on Word Graphs 49

begin
[1] for each vertexv 2 V, taken in topological order,do

Search for silences leavingv
[2] for each edgee = (v; w; s; !SIL) do
[3] if v 6

�

! w, disregardinge, then
Adjust scores

[4] for each edgee0 = (v; w
0

; s
0

; l
0

); e 6= e, do
[5] s

0

 � s
0 + s

Merge verticesv andw

[6] Merge(v, w)
[7] Deletew
end

Algorithm 9. Removing isolated silence edges

!SIL !SIL

!SIL

a: Exclusively silence

!SIL
!SIL

a

b

c d

e

f

g

h

b

a

!SIL

d

g

h
e f

1 2
3

c

b: Silence and other edges

Figure 2.8. Merging of silence edges

2.5.2 Removing Consecutive Silence

The only type of word hypothesis whose repetition is meaningless is silence. If two
silence edges appear in a row, they can be merged. The simplest situation is the
one shown in Figure 2.8 a). Both edges can be replaced by a single edge and the
intervening vertex can be removed. However, this case is relatively rare and surfaces
only when word hypotheses have been removed from the intervening vertex.

The more interesting situation is shown in Figure 2.8 b). Edges that begin or
end at the intervening vertex have to be treated specially in order to prevent major
modifications within the graph. We restrict ourselves to cases that do not have edges
lying in the time interval spanned by the outer vertices, thereby preventing cycles.
There are several possibilities for treating the edges adjacent to the intervening ver-

50 2. Graph Theory and Natural Language Processing

begin
[1] for each vertexv 2 V, taken in topological order,do

Search for two silences
[2] if 9e1 = (v1; v; s; !SIL); e2 = (v; v2; s

0
; !SIL) 2 E , then

Check applicability
[3] for each edgee = (w; v; x; y) 2 E , do
[4] if e falls into the range[t(v1); t(v2)], then
[5] continuewith loop in line[2]

Move edges incident tov along
[6] for each edgee = (v

0
; v; x; y) 2 E ; e 6= e1, do

[7] if v0
= v1, then

[8] Create new edgee0 = (v1; v2; x+ s
0
; y)

[9] else
[10] Create new edgee0

= (v
0
; v1; x� s; y)

Move edges incident fromv along
[11] for each edgee = (v; v

0
; x; y) 2 E ; e 6= e1, do

[12] if v0 = v2, then
[13] Create new edgee0

= (v1; v2; x+ s; y)

[14] else
[15] Create new edgee0

= (v2; v
0
; x� s

0
; y)

[16] Deletev and all incident edges
end

Algorithm 10. Removing consecutive silence

tex. The state of affairs in Figure 2.8 b) is such that edges incident to vertex 2 are
moved into vertex 1, while edges incident from vertex 2 are moved into vertex 3.
By doing that, new partial paths may be introduced into the graph (here: the edge
sequencec� e� d). If, on the other hand,d is bound to vertex 1 andc to vertex 3
and paths may vanish from the graph.17

By moving edges to the border vertices, the number of edges incident to or from
them increases. This, in turn, increases the probability of reducing the number of
paths simply by removing identical word hypotheses. This usually leads to good
results. The mechanism to remove consecutive silence is given in Algorithm 10.

17We do not discuss the two remaining possibilities here.

2.5 Further Operations on Word Graphs 51

begin
[1] for each vertexv 2 V, taken in topological order,do
[2] for each edgee = (v; w; s; !SIL), do

Copy edges from the endvertex
[3] for each edgee0

= (w; x; t; l), do
[4] if 9e00

= (v; x; t
0
; l), then

[5] t
0
 � min(t+ s; t

0
)

[6] else
[7] Create a new edgee00

= (v; x; t+ s; l)

[8] Deletee
end

Algorithm 11. Removing all silence edges

2.5.3 Removing All Silence Edges
The most radical treatment of silence edges is to remove them altogether from a
word graph. Algorithm 11 describes the method. All edges which start at the end
vertex of a silence edge are copied into the start vertex of the silence edge, and their
scores are modified accordingly. However, this must not happen at the end of the
word graph, in order to prevent multiple end vertices for a graph.

The copying of edges clearly increases the number of edges in a graph. How-
ever, the number of paths can be reduced by removing identical copies of edges.
Moreover, the application of other methods, like the reduction to identical label
sequences, now has a high probability of decreasing the number of paths.

2.5.4 Merging Mutually Unreachable Vertices
The choice of evaluation criteria for word recognizers sometimes leads to interesting
methods for their augmentation. In the course of the recognizer evaluation for the
Verbmobil project in 1996 the measure for the size of word graphs was the density,
i.e. the number of edges per word in the reference transliteration. Within some
classes defined as density intervals, the word accuracy was selected as a quality
measure.

Consequently, the goal of the graph modification efforts was to combine a high
number of paths through the graph with a low number of edges. One possible ap-
proach is to merge vertices whenever possible. The merging decreases the number
of edges (e.g., if edges occur that carry the same label), but the main effect is gained
by increasing the number of paths. For statistical reasons alone, the word accuracy
increases. Besides the algorithms we mentioned before, which remove vertices by
considering silence edges, the most radical approach would be to merge vertices
which are mutually not reachable. The topology of the graph is not disturbed (in

52 2. Graph Theory and Natural Language Processing

10ms

dann (then)und (and)

und (and) dann (then)

dann (then)

Figure 2.9. Two families of edges in a word graph

particular, no cycles are introduced), the number of edges decreases and the num-
ber of paths increases drastically. During the evaluation we mentioned, using this
method the word accuracy could be increased by ca. 1.5%. Of course, graphs that
undergo such a modification would be essentially useless for any kind of linguistic
analysis. Vertices belonging to completely different intervals of the input signals
could be merged; the word sequences are rendered meaningless.

2.6 Hypergraphs
The biggest problem in processing word graphs within natural language processing
systems is, of course, their size (regardless of the actual choice of a size measure,
word graphs — in particular incremental word graphs —are extremely big and
accordingly difficult to process). One of the main reasons for this is the occurrence
of several almost identical word hypotheses. By “almost identical”, we mean that
two edges bear the same word hypotheses, but with slightly different start and end
vertices. Figure 2.9 shows a small fictitious part of a word graph, which contains
many hypotheses representing the wordsund anddann. The start and end vertices
differ only by a few hundredths of a second.

The existence of suchfamiliesof edges (Weber, 1995) stems from at least two
distinct reasons:

� Word recognizers using hidden markov models — like the Hamburg word rec-
ognizer (Huebener, Jost and Heine, 1996) used to create the graphs investigated
in this work — attempt to start and end word models for each time frame. As
the chronological resolution is quite high (usually, frames with a length of 10ms
are used), this results in multiple identical hypotheses in a number of consecutive
vertices.

2.6 Hypergraphs 53

und (and)

dann (then)

Figure 2.10.An interval graph

� Spoken language tends to blur word boundaries. This effect is partly responsible
for the drastic decrease in word accuracy that can be experienced when moving
from controlled speech with accentuated pauses to continuous speech. This is
particularly true for spontaneous speech. Figure 2.9 demonstrates this uncertainty
by having several connecting vertices between the hypothesesund anddann.

Thus, a speech recognizer usually issues bundles of word hypotheses with con-
nections in several vertices. Both properties pose a great burden on linguistic pro-
cessing. A high number of initial word hypotheses results in a high number of
lexical access steps and basic operations, e.g. the proposal of syntactic categories
during a bottom-up parsing. Many connecting vertices lead to a high number of
complex operations, for instance unifications combining the linguistic descriptions
of edges.

There are a number of possibilities to tackle this problem:

1. An obvious solution would be to reduce the resolution of the recognizer within
linguistic processing (cf. Weber, 1992). Whenever a module for linguistic pro-
cessing receives a word hypothesis, the start and end times are mapped into a
coarser resolution; a redundancy test is used to avoid the introduction of multi-
ple identical hypotheses. This approach is simple, yet it leads to the introduc-
tion of spurious paths by artificially creating connecting vertices for edges that
would otherwise not have been connected. Moreover, the correct choice of a
resolution is difficult, as the length of the necessary intervals at word onsets and
offsets are different for different words.

2. A direct and more consistent choice is to use interval graphs as a representation
means for word hypotheses. Edges no longer connect two distinct vertices, but
we could use intervals to represent the start and end times. Figure 2.10 shows
such a graph. The main problem with this kind of representation lies in the
complexity of edge access. However, some of the properties shown later can be
proven easier and without loss of generality using interval graphs.

3. The method which seems to us to be the most appropriate and that we conse-
quently use throughout this work uses hypergraphs to represent word graphs
and interpretation graphs.18 The treatment is founded on the maxim that opera-

54 2. Graph Theory and Natural Language Processing

10ms

und (and)

dann (then)

Figure 2.11.Two families of word hypotheses as hyperedges

tions should be carried out once. If almost identical edges are encountered, this
should be simply annotated to the edge, which then has several start and end
vertices. Weber (1995) introduces the notion of afamily of edgesfor a set of
edges bearing the same label and having the same start vertex, but different end
vertices. In the framework presented here, we extended his findings to edges
with different start vertices as well, which led to an additional edge reduction
of 6% (Amtrup and Weber, 1998). Figure 2.11 shows the familiar graph as a
hypergraph. In order to process such graphs, we adapt the method of Weber
(1995) of modifying the acoustic scores of edges.

2.6.1 Formal Definition of Hypergraphs

Hypergraphs (cf. Gondran and Minoux, 1984, p. 30ff) are constructed from undi-
rected graphs by viewing sets of vertices as edges. In the following, we always use
directed hypergraphs (Gondran and Minoux, 1984, p. 33), and call them hyper-
graphs for brevity. First, we are going to describe hypergraphs as an extension of
word graphs; however, the hypergraph property can be easily extended to capture
incremental word graphs as well.

Definition 2.6.1. Hypergraph
A hypergraph is a quadrupleG = (V ; E ;L;W) with

� a setV of vertices as defined in Definition 2.2.2,
� a setL of edge labels as defined in Definition 2.2.2,
� a setW of edge weights as defined in Definition 2.2.2,
� and a setE of hyperedges with

E � V�n; � V�n; �W �L (2.23)

18The formalization and algorithmic treatment of hypergraphs were developed in coopera-
tion with Volker Weber, cf. Weber (Forthcoming).

2.6 Hypergraphs 55

Some of the notations and functions we defined for word graphs have to be adapted
in order to be used for hypergraphs. For the following, lete = (V; V 0; w; l) be a
hyperedge.

� The access functions for start and end vertices of hyperedges return sets of ver-
tices:

� : E �! V
�; �(e) := V (2.24)

� : E �! V
�; �(e) := V 0 (2.25)

� Two hyperedgese ande0 are adjacent if they share at least one vertex, i.e. iff:

�(e) \ �(e0) 6= ; (2.26)

� The reachability relation is now

8v; w 2 V : v ! w () 9e 2 E : v 2 �(e) ^ w 2 �(e) (2.27)

Additionally, we define access functions for the extreme start and end vertices,
as well as for the intervals which are covered by start and end vertices:19

�< : E �! V ; �<(e) := arg minft(v)jv 2 V g (2.28)

�> : E �! V ; �>(e) := arg maxft(v)jv 2 V g (2.29)

�< : E �! V ; �<(e) := arg minft(v)jv 2 V 0
g (2.30)

�> : E �! V ; �>(e) := arg maxft(v)jv 2 V 0
g (2.31)

�[](e) := [t(�<(e)); t(�>(e))] (2.32)

�[](e) := [t(�<(e)); t(�>(e))] (2.33)

The definitions given above assume that each vertex is associated with a certain
point in time. Although it is in principle not necessary to introduce a total ordering
on the set of vertices, this is implicitly done by the definition of hypergraphs. How-
ever, since speech is by nature uttered linearly in time, we do not feel that this is too
strong of a restriction.

It is helpful to define the hyperedge belonging to a word edgee = (v; v0; w; l).
We writeHe and setHe = (fvg; fv0g; w; l).

In contrast to interval graphs, we do not demand that the set of start and end
vertices be compact, i.e. neither do we demand

8e 2 E ; v 2 V : �<(e) � t(v) � �>(e) =) v 2 �(e) , nor (2.34)

8e 2 E ; v 2 V : �<(e) � t(v) � �>(e) =) v 2 �(e) (2.35)

If the individual vertices from�(e) or �(e) are irrelevant in a description, we
implicitly use interval graphs for the sake of simplicity of an argument.

Hypergraphs should be acyclic just like word graphs in order to be easy to pro-
cess. Thus, at least the following should hold:

19The function arg min returns the argument that belongs to the minimum value, not the
value itself. For instance, arg minfx2jx 2 f2; 3; 5gg returns2, and not4.

56 2. Graph Theory and Natural Language Processing

8v
�

! w : v 6= w (2.36)

Moreover, we demand that

8e : t(�>(e)) < t(�<(e)) (2.37)

The second requirement is more strict than 2.36, but can be motivated from the
linear ordering of speech in time, and it prevents a hyperedge from being directed
backwards in time.

2.6.2 Merging of Hyperedges

Adding a simple word hypothesis to a hypergraph is a special case of merging two
hyperedges, as we can view each word hypothesis as a hyperedge with exactly one
start and one end vertex. We will discuss the general case first. In order to merge
two hyperedges without loss of linguistic information, three conditions must hold:

� The lexical entries belonging to the hyperedges must be identical,
� the edge weights (e.g. acoustic scores) must be combined in an appropriate man-

ner, and
� the sets of start and end vertices must be compatible and must be combined with-

out the introduction of cycles.

Definition 2.6.2. Merging of hyperedges
Lete1; e2 2 E be two hyperedges of a hypergraphG with e1 = (V1; V

0

1
; w1; l1) and

e2 = (V2; V
0

2
; w2; l2). These hyperedges may be combined, iff

l(e1) = l(e2) (2.38)

min(t(�<(e1)); t(�<(e2))) > max(t(�>(e1)); t(�>(e2))) (2.39)

The combination results in a new hyperedgee3 = (V3; V
0

3
; w3; l3) with the new

components

l3 = l1 (= l2) (2.40)

w3 = scorejoin(e1; e2) (see below) (2.41)

V3 = V1 [V2 (2.42)

V 0

3
= V 0

1
[V 0

2
(2.43)

e1 ande2 are removed fromG, e3 is inserted.

The two conditions mentioned are sufficient to guarantee a consistent merging
of hyperedges. Condition (2.38) avoids the merging of hyperedges belonging to
different word hypotheses, and condition (2.39) states which hyperedges may be
combined and prevents cycles. A short analysis of the cases that may arise shows
this. Without loss of generality, we assume thatt(�>(e1)) � t(�>(e2)), i.e.e2 ends
behinde1.

2.6 Hypergraphs 57

� �[](e1) \ �[](e2) 6= ; _ �[](e2) \ �[](e1) 6= ;

The start vertices of one edge overlap with the end vertices of the other. A com-
bination of both edges would result in an edgee3 with t(�>(e3)) � t(�<(e3)).
As this would introduce cycles in the graph, the condition (2.39) prevents this
situation.

� �[](e1) \ �[](e2) = ; ^ �[](e2) \ �[](e1) = ;

This is the inverse case.
– t(�<(e2)) � t(�>(e1))

This is the case where all vertices of hyperedgee1 occur before all vertices of
hyperedgee2. In other words, this represents the case where two individual
independent word hypotheses with the same label occur in the word graph,
for instance because the speaker uttered the same word twice. This case must
also not result in an edge merge since�[](e1) � [t(�<(e1)); t(�>(e2))] in the
merged edge. This merge is prohibited by condition (2.39) since all vertices of
�(e1) have to be smaller than all vertices of�(e2).

– t(�<(e2)) < t(�>(e1))
This is the inverse case.
� t(�<(e1)) � t(�>(e2))

This case does not arise due to the consistency of the edges and the additional
assumption thatt(�>(e1)) � t(�>(e2)), i.e.e2 contains the last end vertex.

� t(�<(e1)) < t(�>(e2))
This is the inverse case. The hyperedges are arranged such thatt(�>(e1)) <
t(�<(e2)) and t(�>(e2)) < t(�<(e1)) hold. Thus,8t� 2 �[](e1) [
�[](e2); t� 2 �[](e1) [�[](e2) : t� < t� . This is exactly the condition
stated in (2.39), both edges may be merged.

The question of how to combine the weights of two hyperedges while merging
them can only be answered on an application-dependent basis. If we assume that
we only need to consider word graphs and similar constructions, as is reasonable
here, then we can define the function scorejoin() as follows. The result is to use the
score that represents the best (smallest) value per frame. The score of an edge is
normalized from the earliest start vertex to the latest end vertex.

scorejoin(e1; e2) := min

�
w1

t(�>(e1))�t(�<(e1))
;

w2

t(�>(e2))�t(�<(e2))

�
�

�(t(�>(en))� t(�<(en))) (2.44)

As already mentioned, the insertion of word hypotheses into a hypergraph is a
special case of the situation just described. The task is to merge a word hypoth-
esis with a preexisting hyperedge. The relevant relative positions are pictured in
Figure 2.12.

The already existing hyperedge is calledeg, e1 to e5 are candidates that could
probably be merged into the hyperedge.e1 ande2 cannot be merged, since this
would introduce cycles in the graph. The results of insertinge3 to e5 are shown in
the figure. The mechanism of adding edges is described in Algorithm 12.

Each hyperedge is assigned a single weight. Starting from the acoustic scores of
the original word hypotheses, the relative acoustic score per frame of 10ms seems

58 2. Graph Theory and Natural Language Processing

e2

e1

e3

e4

e5

eg

eg +e3

eg +e4

eg +e5

Figure 2.12.Adding a word hypothesis to a hyperedge

begin
[1] if 9ek 2 E with l(ek) = l(en) ^ t(�<(ek)) > t(�(en)) then

Modify edgeek
[2] e0

k
:= (�(ek) [f�(en)g; �(ek) [f�(en)g; scorejoin(w(ek); w(Hen)); l(ek))

[3] return G0 := (V [f�(en); �(en)g; Enek [fe
0

k
g;Wnw(ek) [fw(e0

k
)g;L)

[4] else
Add edgeHen

[5] return G0 := (V [f�(en); �(en)g; E [fHeng;W [fw(en)g;L [fl(en)g)
end

Algorithm 12. Adding a word hypothesisen to a hypergraphG = (V; E ;L;W)

2.6 Hypergraphs 59

to be a suitable choice (cf. Weber, 1995). We use the minimal score per frame as the
weight of the hyperedge.20 By doing this, paths through the hypergraph can only
be assigned better scores than the corresponding paths through the original word
graph.

2.6.3 Combination of Hyperedges

The combination of hyperedges in a graph, e.g. during syntactic analysis, is com-
pletely analogous to the corresponding operations on word graphs. Two hyperedges
e1 ande2 may be combined if they are adjacent, i.e. if the following holds:

�(e1) \ �(e2) 6= ; (2.45)

The symmetric case (�(e2) \ �(e1) 6= ;) is treated accordingly. Usually, there
have to be additional well-formedness criteria, which are imposed by the knowledge
sources being applied (grammars, etc.). From both hyperedges, we construct a new
hyperedgeen, which inherits the start vertices of one edge and the end vertices of
the other:

�(en) := �(e1) (2.46)

�(en) := �(e2) (2.47)

Due to the consistency of the originating edges and the non-empty intersection of
start and end vertices, the new edge is consistent as well. We either use generic
names as labels for new edges, or the labels are derived from the involved knowledge
sources.

For the calculation of the weight of the new edgeen — in our case primarily
the acoustic score — we again use the smallest possible score value in analogy to
the merging of two hyperedges. Since�(e2) \ �(e1) may contain several vertices
that correspond to different points in time, we have to search for the minimum of
the combined scores ofw(e1) andw(e2):

w(en) = min
w(e1) � (t(v)� t(�<(e1))) + w(e2) � (t(�>(e2))� t(v))

t(�>(e2))� t(�<(e1))
;

8v 2 �(e2) \ �(e1) (2.48)

w(en) denotes the acoustic score in casee1 ande2 occur one after another in
the input. Due to inheritance mechanisms, the weight ofen has to be modified if
one of the scores of the originating edges is changed or if one of the vertex sets of
the edges changes. The type of calculation we described here does not yet include
additional evidence, for instance by probabilistic grammars, language models etc.;
however, the adaptation of such cases can be done without any problem.

The method we described in this section for combining hyperedges seems rea-
sonable, since the number of edges in a graph can be drastically reduced. However,

20As scores are represented by negative logarithms of densities, a smaller value reflects a
higher probability.

60 2. Graph Theory and Natural Language Processing

a

b

c

c

d

e

Figure 2.13.Creation of additional paths by using hypergraphs

by using hypergraphs the combination of edges may result in additional, spurious
paths in a graph. Figure 2.13 shows that situation. If the graph shown here is treated
as an ordinary word graph, it contains two label sequences, namelya-c-d andb-
c-e. Inducing a hypergraph with these data creates a hyperedge with the labelc,
which has two start vertices and two end vertices. By doing so, we introduce two
new paths, namelya-c-e andb-c-d. Thus, the transition to hypergraphs is not in-
formation preserving in a strong sense of the word. However, this does not play
an important role in practical applications, since the situations in which new paths
could be introduced are extremely rare. We have not experienced any problems dur-
ing our experiments. By conversion to hypergraphs, only 0.2% additional analyses
have been introduced (cf. Section 5.1).

2.7 Search in Graphs
The goal of processing an input during any kind of natural language processing is
usually to find an interpretation which is optimal according to some success crite-
ria chosen. In the application to the data structures used in this work, this means
finding a path through a word graph whose weight sum is optimal. Usually there
are algorithms for finding shortest paths (cf., e.g. Brandst¨adt, 1994). On the level of
acoustic scores this corresponds to the commonly used representation by negative
logarithms of densities.

The question at hand is the following: Which is the shortest path from the start
vertex of a graph to its end vertex, and what is its weight? It has been shown that
the computation does not become more difficult if the more general problem of
the single source shortest path is solved. SSSP assigns a weight to each vertex,
which is the weight of the shortest path from some special start vertex. The general
case can be computed by the algorithm of Bellman-Ford (Cormen, Leiserson and

2.7 Search in Graphs 61

begin
Initialize shortest path estimate and minimal weight

[1] for each vertexv 2 V (G) do
[2] d[v] �1
[3] �[v] � NIL
[4] d[s] � 0

Construct shortest paths
[5] for each vertexu 2 V (G), taken in topological orderdo
[6] for each vertexv 2 Adj(u) do

Relax the edge
[7] if d[v] > d[u] + w(u; v) then
[8] d[v] � d[u] + w(u; v)
[9] �[v] � u
end

Algorithm 13. SSSP for DAGs

Rivest, 1990, p. 532). If we restrict ourselves to positive edge weights — which
is possible given the acoustic scores we use —, the better algorithm of Dijkstra
(Cormen, Leiserson and Rivest, 1990, p. 527) may be used, which has a complexity
of O(jV j log jV j + jEj) after some suitable modifications.

As the graphs we consider here are acyclic, we can use the even better linear
(O(jV j + jEj)) algorithm of Lawler (Cormen, Leiserson and Rivest, 1990, p. 536).
We show that method as Algorithm 13.

In the framework of this volume, the search for best paths through a graph takes
place in the generation of natural language expressions. The generation (cf. Section
4.9) produces English surface representations for successfully transferred semantic
descriptions. The primary result is a hypergraph of edges annotated with English
utterance fragments. Within this graph we have to constantly and incrementally
maintain the best path, in order to be able to output the correct combination at any
point in time. Algorithm 14 shows the necessary operations. We don’t need to
apply the full power of incremental algorithms (Cheston, 1976) as we can induce a
topological order on the graph. In particular, our case does not allow the deletion of
edges, which would have to be handled using additional precautions (Ramalingam
and Reps, 1992). The algorithm we present here is called once for each edge that
is introduced into the graph. It maintains two values per vertex: The weight of
the best path so far (bv) and the edge that led to the vertex on the best path (rv).
We only consider vertices to the right of the inserted edge, and only carry out a
re-computation if the weight for the best path was actually changed by the new
edge. The generator described in Section 4.9, in fact, uses a modified version of this
algorithm, as it also models the bridging of gaps in the graph. Conceptually, this is

62 2. Graph Theory and Natural Language Processing

Update single source shortest information
procedure UpdateSSSP(G;e)

Topological ordero
Initialization (done only once)

[1] for eachv 2 V, do
[2] bv �1
[3] b

v(r)
 � 0

Update immediate end vertices ofe

[4] for eachv 2 �<(e), do
[5] for eachw 2 �>(e), do
[6] if bv + w(e) < bw, then
[7] bw � bv +w(e)

[8] rw � e

[9] Insertw into o

Update vertices if necessary
[10] while o 6= ;, do
[11] v � o:F irst()

[12] for eache having v 2 �<(e), do
[13] for eachw 2 �>(e), do
[14] if bv + w(e) < bw, then
[15] bw � bv + w(e)

[16] rw � e

[17] Insertw into o

end

Algorithm 14. SSSP for incremental hypergraphs

done by adding virtual edges between each pair of neighboring vertices, which are
annotated with a transition penalty as weight.

2.8 Summary
Word graphs are the most advanced interface between a speech recognizer and the
subsequent linguistic processing. Compared to the representation of recognition
results by individual word sequences, they have the advantage of being able to rep-
resent huge numbers of utterance hypotheses (> 10

30) in a very compact way. How-
ever, they are not completely free of redundancy: Identical relevant word sequences
may be generated by following different paths through a graph. This offers sev-
eral possibilities for reducing the size of word graphs (e.g. by reducing the graph to
unique label sequences), which could in principle be applied during the computation
even for incremental word graphs. However, these methods can be expensive.

2.8 Summary 63

An extraordinarily efficient method of reducing the effort of processing a word
graph is the transition to hypergraphs, where edges carry sets of start and end ver-
tices.

Finally, the measures used for word graph size and word graph quality are im-
portant for the comparison of different speech processing systems. We think that
instead of using the density of graphs, which depends on the transliteration of the
input and does not take into account the topology of a graph, a more application rel-
evant measure for word graph size should be used: The number of operations that
an ideal, fictitious parser would need to process a graph. Moreover, there may be
alternatives to the usually used quality measure of word accuracy; however, we feel
that using the deviation from a reference will be valid for a long time.

Chapter 3

Unification-Based Formalisms
for Translation in Natural
Language Processing

The formalism used for the description of linguistic knowledge is a central part of
every natural language processing system. After a short introduction into

unification, this chapter will provide a brief presentation of unification-based
formalisms and methods that have been employed within transfer-oriented machine

translation systems. Finally, we describe the formalism we used in the present
system and give some details about its implementation.

3.1 Unification-Based Formalisms for
Natural Language Processing
Unification-based formalisms allow for the declarative formulation of grammatical
knowledge. They use a concise, generalizing representation and can cope well with
partial information. The development of such formalisms has several advantages
over automata-oriented approaches or methods not primarily targeted at automatic
processing (for instance in the framework of generative grammar, see Chomsky,
1995).

To use automata to represent knowledge about natural languages stems from
work done in the field of compiling programs written in formal programming lan-
guages — where the use of automata has been very successful. Applied to natural
languages, ATNs (Augmented Transition Networks) have been the primary means
used (Woods, 1973). ATNs are recursive transition networks whose edges can be
annotated by conditions; moreover, registers are introduced that can store arbitrarily
long values (they can even be assigned to default values). Using these augmen-
tations, ATNs have the power of recognizing type-0 languages (Chomsky, 1959).
Although some large systems have been built using ATN grammars (Kaplan, 1973),
the register mechanism makes it difficult to understand the functioning of an actual
network. Due to the non-monotonicity of registers, the process of an analysis can

J.W. Amtrup: Incremental Speech Translation, LNAI 1735, pp. 65-84, 1999.
 Springer-Verlag Berlin Heidelberg 1999

66 3. Unification-Based Formalisms for Translation in Natural Language Processing

not be determined from a given result. Additionally, the character of ATNs seems
to be too procedural, the level of abstraction too low.

A method of description that is declarative and much more easy to follow is
the use of phrase structure grammars. Early on, context-free grammars (CFGs) —
equivalent to simple recursive transition networks1 — have been used for syntac-
tic representation of natural languages. Several classic reports on efficient parsing
use context-free grammars (e.g., Earley, 1970). However, it has been argued that
context-free grammars are insufficient for representing natural language adequately
(cf. Sampson, 1983, or Shieber, 1985). Nevertheless, a major portion of natural
language sentences can be modeled context-free, thus the existence of problematic
cases alone does not seem sufficient reason for abandoning context-free grammars
completely (Gazdar, 1983). A slight extension to the context-free paradigm, for
example, is enough to handle classic non context-free phenomena like cross-serial
dependencies in Dutch(3.1) (Vogel, Hahn and Branigan, 1996). The extension is
necessary because in principle there might be an unlimited number of pairs of con-
stituents that belong to each other. They are crossed and show agreement.

. . . mer em Hans es huus hälfed aastriiche

. . . we Hans-DAT the house-ACC helped paint

. . . we helped Hans paint thehouse.

(3.1)

Thus, the reason for the widespread use of unification-based formalisms and
their application to the modeling of syntactic structures cannot be sought solely
in their theoretical necessity. Rather, using unification renders important advan-
tages when constructing grammars with a large coverage. Especially in comparison
to context-free grammars, unification grammars allow us to write concise, general
rules. For instance, the subject-verb agreement in German requires only one rule de-
manding that certain features of the description of both be unifiable; a context-free
grammar would need one rule for each combination of possible feature values.

Moreover, feature structures are able to represent partial information, which is
difficult to do in the context-free case. Again, this could be valuable for describing
agreement, for example if the morphological gender marking is ambiguous.

Several unification-based formalisms allow the representation of constraints
over feature structures, which guarantee the consistency of descriptions of linguistic
objects during the course of a computation. This constraint-based approach is ex-
tremely powerful and in the extreme case leads to a very small set of principles and
general schemata (e.g. in the case of HPSG, cf. Pollard and Sag, 1987; Pollard and
Sag, 1994).

The work presented here uses a formalism which assigns a type to every feature
structure. Thus, the space of potential descriptions can be further structured. The
set of types gets more compact by introducing inheritance over types, which leads

1I.e., there is a recursive transition network for every CFG accepting the same language.

3.1 Unification-Based Formalisms for Natural Language Processing 67

to a lattice-based representation of types and feature structures. Moreover, the uni-
fication of feature structures becomes more efficient as only feature structures with
“compatible” types can be unified. The unification of types is extremely efficient
using a suitable representation of the type lattice.

The origins of unification lie with Herbrand; the modern view begins with Guard
(1964) and Robinson (1965). The unification algorithm by Robinson (1965) has an
exponential complexity and solves the problem of unifying two terms of first order
predicate logic. The result is a substitution of variables such that the two terms be-
come identical after replacing variables with their values. Knight (1989) presents
the advantages of turning to graph unification which gives up fixed arity of terms and
anonymity of substructures, replacing them with named features and a coreference
mechanism. The most widespread unification algorithm is by Huet (cf. Knight,
1989, p. 98), which is almost linear2. There are linear algorithms (Paterson and
Wegman, 1978), but the constant factors of these are high, rendering them inferior
to other algorithms for practical purposes (cf. Amtrup, 1992, p. 67). Interesting
with regard to the work presented here are parallel implementations of unification
algorithms like Vitter and Simons (1986) or Hager and Moser (1989). However,
according to Knight (1989), unification is a highly sequential process that can only
be noticeably speeded up by employing considerable resources. The process of uni-
fication becomes complicated if disjunctive terms are introduced (Eisele and D¨orre,
1988). The problem is that disjunctions may interact with coreferences, which are
not restricted to the disjunctive terms (Kaplan and Maxwell, 1989). One solution
uses named disjunctions which always refer to the originally used terms during uni-
fication (Backofen, Euler and G¨orz, 1991).

Kay (1979) was the first one to use unification-based formalisms in natural lan-
guage processing. Since then, several highly specialized theories for the represen-
tation of linguistic facts have emerged, e.g.Lexical Functional Grammar(LFG,
Bresnan, 1982) andHead Driven Phrase Structure Grammar(HPSG, Pollard and
Sag, 1987; Pollard and Sag, 1994). Additionally, there are more system-oriented
formalisms and tools, likeDefinite Clause Grammarsin Prolog (DCG, Pereira and
Shieber, 1984), PATR II (Shieber, 1984) orUnification Tree Adjoining Grammars
(UTAG, Joshi, 1985; Harbusch, 1990).

The formalisms mentioned so far are declarative in two respects: First, they de-
scribe linguistic facts without dealing with mechanisms for the solution of a specific
task. Second, feature structures themselves are treated as data objects, the process-
ing of which is externally defined. Carpenter and Qu (1995) argue, however, that
feature structures can be implemented as an abstract machine. A first complete im-
plementation of a formalism following these guidelines is given by Wintner and
Francez (1995a) and Wintner (1997). The realization described here is strongly
oriented towards this view.

2The time complexity isO(n ��(n)), �() being the reciprocal of the Ackermann function.

68 3. Unification-Based Formalisms for Translation in Natural Language Processing

rule
np

!append(1= *top* , 2= *top*)phon

det
1phon

noun
2phon

rule

nprulename

Figure 3.1. Feature structure for a simple syntactic rule

3.1.1 Definition of Typed Feature Structures with
Appropriateness

In this section, the feature structures used in this monograph are defined. These
definitions form the basis for the implementation of the feature structure formal-
ism presented in Section 3.3. The goal here is to describe feature structures as in
Figure 3.13 formally. We use a formalization following Carpenter (1992).

3.1.2 Type Lattices

Every feature structure is assigned a type. Thus, the space of feature structures is
divided into desired classes. The set of types is ordered in a hierarchical way in
order to further augment the representation. This augmentation is done by induc-
ing additional structure through ordering and by using an inheritance mechanism.
By adding a most general typetop (>)4 and an inconsistent typebottom(?) the
hierarchy becomes a lattice of types.

The partial order for the lattice is calledsubsumption. A type� subsumes an-
other type� (written � w �), if � is more general than� , i.e. it is closer to>.
The greatest lower bound of a set of types w.r.t. the subsumption is the result of
unification of types.

3Italic namesdenote types (*top* denotes>, see below),sans serif names denote feature
names,bold sans serif denote strings.

4In this work, we use a model-theoretic view.> is the most general type since it contains
all extensions.

3.1 Unification-Based Formalisms for Natural Language Processing 69

Definition 3.1.1 (Type lattice).
Let D = (T;w) be a partial order,T being a set of type symbols. Letw be the

partial order relation overT , i.e.w is reflexive, antisymmetric and transitive.
LetD � T be a subset of types. An elements 2 T is called least upper bound

(supremum) ofD, writtentD, if:

8
x 2 D

s w x (3.1)

8
s0 2 T

(8x 2 D : s0 w x) =) s0 = s (3.2)

An elementi 2 T is called greatest lower bound (infimum) ofD, writtenuD, if:

8
x 2 D

x w i (3.3)

8
i0 2 T

(8x 2 D : x w i0) =) i0 = i (3.4)

The extensionD0 = (T [f> := tT;? := u;g;w) forms a lattice, thetype
lattice of types fromT . w is calledsubsumption relation, the operation of finding
the infimumuD of a subset of types is calledtype unification.

3.1.3 Feature Structures

We can now define feature structures as directed graphs with edge and vertex labels
and a designated root. The nodes of a feature structure graph are annotated with
types, the edges bear feature names as labels. Cycles are explicitly allowed and
denote coreferences.

Definition 3.1.2 (Feature structures, Paths).
LetD = (T;w) be a type lattice,Feat a finite set of feature names,Feat 6= ;.

A feature structureF is a quadrupleF = hQ; q; �; Æi, iff the following holds:

� Q is a finite set of vertices,Q 6= ;.
� q 2 Q is the root of the feature structure.
� � : Q �! T is a total function, mapping vertices to types.
� Æ : Q� Feat �! Q is a partial function, which determines feature values.

The definition ofÆ is extended by allowing the traversal of more than one feature
at a time. LetPath := Feat� be the set of paths over feature names, let� be the
empty path without any feature names. We define additionally

Æ(q; �) := q, and (3.5)

Æ(q; f�) := Æ(Æ(q; f); �);whereq 2 Q; f 2 Feat; � 2 Path (3.6)

70 3. Unification-Based Formalisms for Translation in Natural Language Processing

The functionÆ constitutes the edges of the graph representing the feature struc-
ture. The vertices inQ have to be reachable fromq by repeatedly applyingÆ, i.e.
the root of the graph is unique.

It may be the case thatÆ is not injective, i.e. a vertex of the graph represent-
ing a feature structure may have two edges incident to it (9q1; q2 2 Q9f1; f2 2

Feat : (q1; f1) 6= (q2; f2) ^ Æ(q1; f1) = Æ(q2; f2)). In this case, we say that two
feature values are coreferent, depicting this fact visually by co-indexed boxes (cf.
Figure 3.1). This corresponds to the use of identical variables in logic programming
languages. There are cycles in a feature structure if one of the coreferring vertices
can be reached from the other (9� 2 Path : Æ(q1; �) = q2).

In analogy to type subsumption, we can now define subsumption over feature
structures. A feature structureF subsumes another feature structureF 0 if F is more
general thanF 0, thereby preserving all structural properties ofF in F 0. This defini-
tion allows us to estimate which of two feature structures contains more information,
in case partial information is represented.

Definition 3.1.3 (Subsumption of feature structures).
LetF = hQ; q; �; Æi andF 0 = hQ0; q0; �0; Æ0i be two feature structures over the type
latticeD = (T;w) and the set of feature namesFeat. We say thatF subsumesthe
feature structureF 0, writtenF w F 0, iff there is a mappingh : Q �! Q0, which
fulfills the following conditions:

� The root ofF is mapped to the root ofF 0:

h(q) = q0 (3.7)

� The type of each vertex inF subsumes the type of the corresponding vertex inF 0:

8
q 2 Q

�(q) w �0(h(q)) (3.8)

� The edges inF are also present inF 0:5

8
q 2 Q

8
f 2 F

Æ(q; f)def: =) h(Æ(q; f)) = Æ0(h(q); f) (3.9)

The unification of feature structures is now also defined in analogy to the uni-
fication of types. The unification of two feature structures is the smallest feature
structure that is subsumed by the argument structures. This view is made possible
by having the subsumption relation as partial order over feature structures. The pro-
cess of unification begins with the root vertices of the two operand feature structures.
The root vertex of the result is assigned to the type unification of the two originating
vertices. Following that, vertices that are reachable by following edges bearing the
same feature name are identified, which leads to the construction of a result vertex,
the type of which is again the result of the type unification of the operand vertices.

5We abbreviateR(x; y)def:, isR(x; y) is defined.

3.1 Unification-Based Formalisms for Natural Language Processing 71

The unification ends if all vertices have been considered, and fails if the unification
of types fails at any given point (i.e. gives?). Formally, the definition in Carpenter
(1992) uses equivalence classes.

Definition 3.1.4 (Equivalence class, Quotient set).
Let� be an equivalence relation, i.e. a transitive, reflexive, symmetric relation over
a setX . Then,

[x]� = fy 2 X j y � xg (3.10)

is called the equivalence class ofx over�.
The set

X=� = f[x]� j x 2 Xg (3.11)

is called quotient set ofX over�.

The definition of the unification of two feature structures defines an equivalence
relation that exactly fulfills the requirements stated above.

Definition 3.1.5 (Unification of feature structures).
LetF = hQ; q; �; Æi andF 0 = hQ0; q0; �0; Æ0i be two feature structures over the type
latticeD = (T;w) and the set of feature namesFeat. Also, letQ \ Q0 = ;.6 Let
the equivalence relation./ be the smallest equivalence relation, such that

q ./ q0, and (3.12)

Æ(q; f) ./ Æ0(q0; f), if both are defined, andq ./ q0 (3.13)

The Unification ofF andF 0 is then defined as

F u F 0 = h(Q [Q0)=./; [q0]./; �
./; Æ./i; (3.14)

where

�./([q]./) = uf(� [�0)(q0) j q0 ./ qg (3.15)

and

Æ./([q]./; f) =

�
[(Æ [Æ0)(q; f)]./ , iff (Æ [Æ0)(q; f)is defined
undefined , else

(3.16)

if all type unifications in�./ exists. Else,F u F 0 is undefined.

The unification of two feature structures is again a feature structure if the uni-
fication is defined (cf. Carpenter, 1992, p. 47). In particular, it can be shown that
the unification conjunctively assembles information from both argument structures.
Features that are only present in one of the arguments are transferred into the result
by virtue of./ being reflexive.

6The unification constructs the new feature structure by a set union of the original vertex
sets under certain circumstances. Thus, we demand an empty intersection that can always
be reached by using alphabetic variants (cf. Carpenter, 1992, p. 43).

72 3. Unification-Based Formalisms for Translation in Natural Language Processing

Appropriateness. The definition of feature structures as it is now uses the type hier-
archy during unification; however, it does not restrict the use of features at vertices
of given types. But this is exactly one property demanded in several formalisms
(e.g. HPSG, cf. Pollard and Sag, 1987) in order to distinguish invalid features from
features that happen to have no value. Moreover, the restriction of admissible fea-
tures for types allows a representation of feature structure nodes having a fixed size.
This property will turn out to be relevant for the implementation of the formalism
described below.

Carpenter (1992) defines anappropriateness functionas a partial function which
states which features are admissible for a specific type and what types the values of
those features must have.

Definition 3.1.6 (Appropriateness).
LetD = (T;w) be a type lattice andFeat a finite, nonempty set of feature names.
A partial functionApprop : T � Feat �! T is called appropriateness function, if
the following properties hold:

� Each feature name is introduced at exactly one position in the lattice:
For each feature namef 2 Feat there is a most general typeIntro(f) 2 T ,
such that
Approp(Intro(f); f) is defined.

� The appropriateness is downward closed:
If Approp(�; f) is defined and� w � , thenApprop(�; f) is also defined and
Approp(�; f) w Approp(�; f).

In the application of a formalism with appropriateness only those feature struc-
tures are considered that are well-formed according to the requirements of appro-
priateness. This is done by restriction to well-typed feature structures.

Definition 3.1.7 (Well-typed feature structures).
A feature structureF = hQ; q; �; Æi is called well-typed iff

8
q 2 Q

8
f 2 Feat

Æ(q; f)def: �! Approp(�(q); f)def: ^

Approp(�(q); f) w �(Æ(q; f)): (3.17)

In this work, we only use well-typed feature structures. However, the restric-
tions defined by the appropriateness functions are weaker than stated by Definition
3.1.6. We do not demand that there be a unique introducing typeIntro(f) for each
feature name. This inhibits the use oftype inferenceand thereby makes classifica-
tion of feature structures according to the type lattice impossible, but we will not
need those operations. A further property of well-formedness is given by the no-
tion of completely well-typed feature structures. Along with being well-typed, it is
additionally demanded that each admissible feature also have a value.

3.2 Unification-Based Machine Translation 73

Definition 3.1.8 (Completely well-type feature structures).
A feature structureF = hQ; q; �; Æi is calledcompletely well-typediff F is well-
typed and

8
q 2 Q

8
f 2 Feat

Approp(q; f)def: �! Æ(q; f)def: (3.18)

3.1.4 Functions as Values of Features

Some feature structure formalisms allow the formulation of functions and relations
over feature values. For instance, Emele and Zajac (1990) use the annotation of
conditions for type definitions to introduce recursive functions. HPSG (Pollard and
Sag, 1994) defines relations within feature structures that are always kept. In that
case, they are used (among others) to introduce list operations (e.g. for phonological
representations or operations over subcategorization information).

In the present implementation, we do not use complete relations of conditions
for feature structures. In particular, the annotation of conditions inhibits a fine-
grained control over the process of unification, as the checking of constraints may
introduce subsequent unifications. However, we define functions on feature struc-
tures, which can be evaluated independently of the unification as such. These func-
tion calls have a more procedural character (cf. Section 3.3.2).

3.2 Unification-Based Machine Translation
Almost immediately after Kay (1979) introduced unification-based formalisms into
the processing of natural languages, their appropriateness and value for the transfer
phase in machine translation became obvious. Kay (1984) proposes the modeling
of transfer knowledge within theFunctional Unification Grammar(FUG), other au-
thors use similar methods. It turns out that one needs two notions of equivalence
between feature structures, one of which is the identity defined in terms of corefer-
ence. The other one represents the application of subordinate transfer rules, thereby
modeling compositional transfer. In many approaches this is done by providing a
specific form of transfer rules, together with a processing mechanism taking care of
these rules.

Kaplanet al. (1989) use the correspondences already provided in the framework
of LFG. Correspondences model relations between different levels of the linguistic
representation of an utterance. There are already two correspondences in the origi-
nal theory:� mediates between the constituent structure (c-structure) and the level
of syntactic functions (f-structure), the relation� describes the additional mapping
to the level of semantic representations (cf. Kaplan and Bresnan, 1982).

In order to be able to use LFG for transfer problems, Kaplanet al. (1989)
introduce an additional relation,� , that describes relationships between source and

74 3. Unification-Based Formalisms for Translation in Natural Language Processing

beantworten V
(" PRED) = ’beantwortenh (" SUBJ) (" OBJ)i’
(� " PRED FN) = repondre
(� " SUBJ) =� (" SUBJ)
(� " AOBJ OBJ) =� (" OBJ)

Figure 3.2. A transfer rule in LFG style

target language. By using a functional composition of the three relations�, � and
� , transfer rules on different levels of abstraction can be formulated.7 In the rule
depicted in Figure 3.2 there are compositions of"8 and� in distinct order. The order
of application defines whether elements of a relation are searched for on the source
language side of an utterance or the target language side. In the present example,
the translation of the verb “beantworten” (answer) into French requires the insertion
of the preposition “`a” in front of the object. This is ensured by the additional path
AOBJ in the rule.

Der
Le

Student
étudiant

beantwortet
répond

die
la

Frage.
question.

“L’ étudiant répondà la question.”
(3.2)

A number of approaches use different paths within feature structures to sepa-
rate information belonging to different languages. These approaches include Noord
(1990), Carlson and Vilkuna (1990) and Morimotoet al. (1992). Zajac (1992), for
example, uses a typed feature structure formalism, which leads to a reduction of the
number of transfer rules if inheritance within the type lattice is used. Zajac uses two
features, ENG and FR, to represent structures in English and French. Coreferences
across the language border are allowed.

Recursive transfer is expressed by conditions internal to the formalism (TFS,
cf. Emele and Zajac, 1990), thus no further external mechanisms to handle this are
necessary. A simple translation

A
Un

student
étudiant

falls.
tombe.

(3.3)

7However, this elegant solution cannot cope with embeddings (cf. Sadler and Thompson,
1991).

8" is an abbreviation for the immediate dominance.

3.2 Unification-Based Machine Translation 75

tau-lex-fall

ENG

PRED fall
SUBJ e-subj

TENSE e-tense

FR

PRED tomber
SUBJ f-subj

TENSE f-tense

:-
tau-lex
ENG e-subj

FR f-subj

,
tau-tense
ENG e-tense

FR f-tense

Figure 3.3. A transfer rule in TFS style

Label
NP-def

Source
<* cat> = NP
<* def> = DEF
<* num> = ?Num
<* head> = ?head1

Target
<* cat> = NP
<* def> = DEF
<* num> = ?Num
<* det lex> = ’the’
<* head> = ?head2

Transfer
?head1 <=> ?head2

Figure 3.4. A transfer rule by Beskow

may be achieved by applying the transfer rule in Figure 3.3. Note thattau w

tau-lex w tau-lex-fall holds.
The different aspects a transfer rule shows are made explicit in the approach of

Beskow (1993) by dividing the knowledge within a rule into four different domains.
Consider the rule in Figure 3.4 as an example, which translates definite noun phrases
from Swedish to English.

The four parts of a rule are:

� A unique name for the rule (Label).
� A source language structure that checks the applicability of a rule (Source). A

transfer rule is suitable for the translation of an utterance fragment if the structural
description can be unified with theSource part of the rule. The star symbol (‘* ’)
denotes the root of the graph, coreference is expressed by variable binding (names
of variables begin with ‘?’).

76 3. Unification-Based Formalisms for Translation in Natural Language Processing

� A target language structure (Target) that can be used either for the verification
or the construction of a translation (the model can be applied to both cases).

� A list of embedded transfer equations (Transfer), that describe recursive trans-
fer. The individual equations are iteratively accounted for to achieve the transla-
tion of a complex structure.

Most of the aforementioned systems separate the control part of transfer from the
declarative description of contrastive knowledge about the languages in question. It
should be noted that in addition to the identity provided by coreferences — part
of the standard repertoire of most feature structure formalisms — the relation of
subsequent, recursive transfer has to be expressed. This is mostly done by special
feature names within feature structures that are evaluated by the transfer mechanism.
Only formalisms capable of annotating conditions to feature structures are able to
carry out a sub-aspect (the automatic evaluation of recursive transfer) internal to the
formalism (Zajac, 1992). However, one loses the possibility to establish specific
control strategies that rule over the applicability of subsequent transfer equations.

3.3 Architecture and Implementation of the
Formalism
We developed a feature structure formalism with types and appropriateness used in
the processing mechanisms and system modules of the speech interpreting applica-
tion described in this monograph. The implementation realizes the objects described
in the preceding sections, as well as the operations defined on them; thus, it strongly
resembles parts of ALE (Carpenter and Penn, 1998), subject to the restrictions al-
ready mentioned, e.g. related to the introduction of types.

The current implementation follows partly the work of Carpenter and Qu (1995)
and Wintner and Francez (1995a), who propose an interpretation of feature struc-
tures as abstract machines, similar to theWarren abstract machinefor Prolog (War-
ren, 1983). A first complete implementation of such a machine is given by Wintner
(1997). We follow this machine-oriented view only to the extent of using con-
secutive memory locations for the representation of feature structures, as was al-
ready done in Amtrup (1992) for untyped feature structures. The motivation for this
model, which is in contrast to usual interpretations using a distributed representation
schema with heavy pointer support, is to implement a formalism suitable for use in
different parallel machine environments. The underlying assumption is that — given
a sufficiently fine-grained system — the fraction of feature structures that have to
be communicated between different components of a distributed system is high. If
one uses a conventional implementation of a feature structure formalism, this means
that highly discontinuous representations have to linearized before this linear form
is communicated. In most cases, the representation transmitted is a character string
without any internal structure.9 On the receiving end of the communication link, the

3.3 Architecture and Implementation of the Formalism 77

character string is parsed in order to again create an internal representation of the
desired feature structure that can be used further.

In contrast to this schema, the feature structures defined with the formalism used
here are invariant to memory location changes, and invariant to interpretation in a
different address space on a different machine. This makes the communication of
feature structures much simpler, as the communication of a feature structure only
involves communicating a consecutive range of memory locations, without the need
of the pre- and postprocessing just mentioned. The disadvantage, however, lies
in the fact that unification routines have to take the special kind of encoding into
account. This involves tracking some bookkeeping information and inhibits the
sharing of partial structures across feature structures (Billot and Lang, 1989). But
in spite of these drawbacks, efficient algorithms and representation mechanisms can
still be used.

The formalism described here — in contrast to ALE, TFS (Zajac, 1991) and
CUF (Dorna, 1992) — is not realized as an extension to Prolog, but is implemented
as a separate module in C++. This is due to the fact that we required the possibility
of employing the formalism on parallel architectures. The use of C++ guarantees
an easy way of porting the module to several existing multiprocessor architectures,
since C++ is provided there without exception, while typical AI-languages such as
Lisp or Prolog are not widely available in the parallel computer community.10 It
follows that the MILC system, developed within the scope of this work, is not only
suitable for inter-modular parallelism, but also for intra-modular parallelism.

The formalism should be just powerful enough to model all desirable properties,
without introducing too much overhead for rarely used parts. Hence, this implemen-
tation does without negation and complex disjunction11 and without the annotation
of constraints on feature structures in the style of TFS. Disjunction is only defined
for atomic types. We use it mainly to describe alternatives on the atomic level that
are not captured by the type lattice (e.g. to represent sets of different semantic con-
cepts).

The control over the processing of different objects of the formalism is left
exclusively to the user. This gives the developer of modules the largest possible
freedom about the choice and implementation of control strategies, which are com-

9In rare cases, there are communication systems capable of handling certain complex data
types. For example, the communication system ICE (Amtrup, 1994a; Amtrup, 1995b;
Amtrup and Benra, 1996), which has also been used in the work presented here, is able
to transmit the semantic structures used in the Verbmobil project (Verbmobil Interface
Terms, VITs). They are used to represent flat semantic structures. But even in this case,
an analysis of the data objects being transmitted is necessary, the only difference being
that this mechanism is handled transparently.

10There are exceptions to this rule, the most prominent being theConnection Machine
(Hillis, 1985), which supports a vector-parallel List (Steele and Hillis, 1986), as well
as some implementations for Transputer systems (cf. Kesseler, 1990).

11In the framework of MILC, we express complex disjunction by using different alternative
feature structures. This enables a fine-grained control of the evaluation that would not be
possible if disjunction was formulated within the formalism.

78 3. Unification-Based Formalisms for Translation in Natural Language Processing

pletely immanent to the formalism in other systems, rendering them almost unac-
cessible from outside. The control mechanism for the current formalism not only
gives control over the execution of unification of different feature structures, but
additionally, the evaluation of parts of the unification mechanism (the evaluation of
function calls) can be separately activated.12

The current implementation distinguishes three different sets of functions that
successively offer an extended functionality, but also demand successively higher
memory usage. The motive for this tripartite implementation is again to provide a
system suitable for employment on a parallel machine. To achieve this, it is rea-
sonable to keep the runtime memory resources needed as small as possible, since
parallel machines usually have restricted resources per processing node. The re-
strictions concern two areas:

� The accessibility of names. While compiling feature structures from an external,
readable format to an internal representation that is oriented towards efficiency of
algorithms, names are converted to unique numeric identifiers. After this conver-
sion is done, it is no longer necessary to store all possibly used names in memory.

� The direct accessibility to the type lattice. The elements of the type system are
internally represented as bit vectors. The data structures and program routines
used for this compilation step are irrelevant for the application of a system. Thus,
they can be excluded from a runtime version without any loss of functionality.

By successively excluding the properties just mentioned, three different levels
of the feature structure machine emerge:

� Restricted feature structures. This module only contains input/output func-
tions for feature structures that are already represented in the internal format.
Additionally, all necessary unification routines are provided. Names of types,
features and values can not be printed in a readable format. The foremost area
of use of this variety is for processing modules within a parallel machine im-
plementation. The extensive output of feature structures is usually not needed,
since almost none of the processing nodes have a direct communication link to
the outer world. Instead, typically there is a dedicated module functioning as
an interface between the parallel system and the user. Only in that module does
the user need input/output functions to communicate with the system. All other
means of communication should happen using the internal format.

� Standard feature structures. Apart from the functionality provided by restricted
feature structures, this module offers functions for input and output of feature
structures in human-readable form. This requires functions for compiling external
feature structures into the internally used format, as well as printing routines. If
components that use other formalisms are integrated, this set of functions should
also be used.

� Extended feature structures. In addition to the functions already mentioned,
this library contains compilation functions allowing the reconstruction of type

12TheTDL system (Krieger, 1995), a very extensive system for the description of constraint-
based grammars, allows for individual calls of type expansion.

3.3 Architecture and Implementation of the Formalism 79

>

index content sign syn sem

adj-cont lsign adj-syn adj-sem

adj

?

Figure 3.5. A small part of a type lattice

type sign isa *top* intro phon:*top* syn:syn sem:sem.
type lsign isa sign.
type syn isa *top*.
type sem isa *top* intro cont:content.
type content isa *top*.
type adj isa lsign intro sem:adj-sem syn:adj-syn.
type adj-sem isa sem intro cont:adj-cont.
type adj-cont isa content intro index:index cond:*top*.
type adj-syn isa syn.
type index isa *top*.

Figure 3.6. One part of the structure of lexical items

lattices. This requires an extended representation of the name space in the system
and several other procedures for the compilation of lattices and the analysis of
lattice definitions.

3.3.1 Definition and Implementation of Type Lattices

The formalism at hand uses typed feature structures. Figure 3.5 shows a small
excerpt of the type definitions for lexical entities as an example of a type lattice.
The definitions leading to that structure are presented as Figure 3.6. This example
clearly shows how certain features are introduced into the hierarchy at an early
point. Each lexical sign contains features defining the phonological representation
(phon), the syntactic features (syn), as well as semantic properties (sem). Types
at lower levels of the hierarchy further specialize the values of certain features. For
instance, the semantic content of adjectives (semjcont) is required to be of typeadj-
cont. Restrictions of this type can be accompanied by the introduction of additional
features.

Such a definition of a hierarchy of types results in a lattice (cf. Definition 3.1.1).
We always implicitly define a type*top* (>), which is the root of the lattice.

80 3. Unification-Based Formalisms for Translation in Natural Language Processing

Table 3.1.The syntax for type lattices

Typelattice ::= Entry+

Entry ::= Typedefinitionj Subtypedefinition.
Typedefinition ::= type Typename[Supertype] [Appropriateness]
Supertype ::= isa Typename+

Appropriateness ::= intro Approp-Feature+

Approp-Feature ::= Featurename: Typename
Subtypedefinition ::= types Typename’are’ Typename+

Typename ::= Symbol
Symbol ::= Character+

Character ::= all printable characters except[t.:()[] h i$,!]

Further types are defined as subtypes of already existing types. For each type, ad-
missible features can be introduced, the definition of the appropriateness is carried
out in parallel to the construction of the type lattice. The syntax used to formulate
type lattices is described in Table 3.1. In order to allow for a simpler method of
creating the necessary relations, an alternative syntax was introduced, defining the
subtypes of a super-type.

Note that we do not demand that a feature is introduced at a unique position
within the lattice (see above).

The internal representation of types uses bit vectors. This corresponds to the
compact encoding for type lattices given in Aït-Kaci et al. (1989). Storing types as
bit vectors has several advantages, among them:

� The representation of types within a hierarchy is very compact. The type lattice
used in this work contains 345 types, yet uses only nine integer values (288 bits)
to store a type. An explicit representation of the partial order over types is not
needed. Feature structures use references to the lattice and do not store the actual
bit vectors.

� The operations on types can be implemented very efficiently, the effort for com-
puting the unification of two types becomes almost constant. Checking the sub-
sumption relation between two types and the unification of types can be reduced
to the calculation of a bitwiseAND between bit vector representations.

3.3.2 Definition and Implementation of Feature
Structures
The feature structures that can be used by the formalism of the current system are
typed feature structures with appropriateness. Figure 3.1, which we repeat here as
Figure 3.7, shows an example of such a feature structure.

The implementation of feature structures shows some special properties:

3.3 Architecture and Implementation of the Formalism 81

rule
np

!append(1= *top* , 2= *top*)phon

det
1phon

noun
2phon

rule

nprulename

Figure 3.7. Feature structure for a simple syntactic rule

� The availability of expressing atomic disjunction.
This is possible without referring to the type lattice, thus the user may specify
disjunctions of atomic types which have no common super-type except*top*.

� The direct representation of lists.
Usually, lists of feature structures are built by recurring to the type lattice. The
type list is partitioned into two subtypes: the empty list (elist) and the non-empty
list (nelist). The non-empty list has two appropriate features,head andtail. The
head is appropriate for type*top* , the tail element of the list is appropriate for
list. Using recursion over the rest of a list, arbitrary long lists can be constructed.
Implementing lists directly as objects of the formalism — the choice we took here
— gives the advantage that unification routines know about the structure of lists
and can use that knowledge to increase efficiency. Moreover, this strategy makes
it easier to implement polymorphic lists, which can define constraints over the
type of their elements (this is a property we do not yet use).

� The introduction of function calls.
Instead of having a feature structure as a value for a feature, that value can be
assigned as the result of a function evaluation. In the current system, this possi-
bility outside the scope of a conservative formalism is mainly used to concatenate
different phonological values.
This extension is destructive in the sense that we do not define relations that are
constantly checked during the construction of feature structures, like HPSG does.
Rather, the unification of two feature structures is carried out in two phases: First,
function calls are neglected and a conventional unification is computed. After
that has been done, the user may decide to evaluate function calls within feature
structures. A function application that fails is treated as a failure in unification. If,
however, the function returns successfully, the return value is inserted replacing

82 3. Unification-Based Formalisms for Translation in Natural Language Processing

Table 3.2.The syntax of feature structures

TFS ::= [Typename] FS j List j OpenListj Pair j Coref j CorefDefj Nil
j Atom j Setj Stringj Function

FS ::= [(FeatureName TFS)�]
List ::= h FS� i
OpenList ::= h FS� ... i
Pair ::= h FS. FSi
Coref ::= %Name
CorefDef ::= %Name= FS
Nil ::= nil
Atom ::= TypeName
Set ::= (TypeName�)
String ::= ” CharacterSequence”
Function ::= !FunctionName(Argument�)
Typename ::= Symbol
Symbol ::= Character+

Character ::= all printable characters except[t.:()[] h i$,!]

typedef struct FNode {
int sort; // Sort of node (Atom, Conj, ...)
int value; // Value of this node (Type, ...)

} FNode;

Figure 3.8. Definition of vertices within feature structures

the function call. Once all function calls have been evaluated, the result is a
feature structure free of side effects.

All feature structures comply with the syntax given in Table 3.2. It is redundant
to provide the type of a feature structure as long as it can be derived from the ap-
propriateness definition in the current context. A classification of feature structures
cannot be computed, however, since we do not demand a unique introductory type
for each feature, and we only model well-typed feature structures (see Definition
3.1.7), and not totally well-typed feature structures (see Definition 3.1.8). Features
required by the appropriateness definition may be empty.

The internal format of feature structures in memory consists of an array of pairs,
which represent vertices of the feature structures. Each pair consists of asort ,
which defines the semantics of the immediately followingvalue field (cf. Fig-
ure 3.8). References within a feature structure are implemented as pointers relative
to the beginning of a feature structure. Thus, we guarantee a consecutive represen-
tation which enables an efficient communication of feature structures, as already
mentioned.

3.3 Architecture and Implementation of the Formalism 83

Table 3.3. Internal representation of a feature structure

Node Node Node Description
No. Sort Value

0 0 12 Pointer to function definitions
1 FST TYPE rule Topmost node in the feature structure
2 FST FEAT 6 Pointer to the featurerule
3 FST FEAT 4 Pointer to the featurerulename
4 FST STRING 3 String of length 3
5 1852833792 0 String representation
6 FST LIST 0 The featurerule is a list
7 FST FIRST 9 Pointer to the head of the list
8 FST REST 20 Pointer to the rest of the list
9 FST TYPE np Left side of the rule

10 FST FEAT 11 Pointer to the featurephon
11 FST EMPTY 0 phon will be filled by a function call
12 FST LIST 0 Function definitions begin here
13 FST FIRST 15 Pointer to the first function
14 FST REST 19 Pointer to further functions
15 FST FUNC 1 Functionappend()
16 FST ARG 11 Pointer to the result
17 FST ARG 25 Pointer to the first argument
18 FST ARG 31 Pointer to the second argument
19 FST EMPTY 0 No more function definitions
20 FST LIST 0 Continuation of the rule definition
21 FST FIRST 23 Pointer to the second element of the rule
22 FST REST 26 . . . and further elements
23 FST TYPE det Definition of the determiner
24 FST FEAT 25 Pointer to the featurephon
25 FST TYPE *top* Empty feature structure
26 FST LIST 0 Continuation of the rule definition
27 FST FIRST 28 Pointer to the third element of the rule
28 FST REST 32
29 FST TYPE noun Definition of the noun
30 FST FEAT 31 Pointer to the featurephon
31 FST TYPE *top* Empty feature structure
32 FST NIL 0 End of the list of rule elements

Table 3.3 shows a feature structure in internal format. It corresponds to the
rule shown in Figure 3.7. During the execution of the unification algorithm further
properties have to be stored, e.g. to handle information for the union-find algorithm
used in the unification algorithm by Huet (cf. Knight, 1989, p. 98).

84 3. Unification-Based Formalisms for Translation in Natural Language Processing

3.4 Summary
Using a unification-based formalism within a system for processing natural lan-
guage renders considerable advantages. The declarative method of describing lin-
guistic knowledge is far better than other approaches. Moreover, there are now
efficient algorithms to compute the unification of feature structures, which are also
available as an abstract machine implementation.

Such formalisms are suitable for the transfer stage within a machine transla-
tion system, as several examples and case studies show. In this chapter, we have
shown the concept and implementation of the feature structure formalism used in
this monograph. It realizes complex typed feature structures with appropriateness.
The representation of feature structures in internal format is very compact and well
suited for the application in distributed systems due to the position-invariant encod-
ing.

Chapter 4

MILC: Structure and
Implementation

This chapter describes the architecture and implementation of the MILC system
(Machine Interpretation with Layered Charts).

MILC is an incremental translation system for spoken language which takes
into account the principles of integration and uniformity. The motives and essential
features have been described at length in Chapter 1, and thus will only be briefly
reviewed here:

� The main motivation and the predominant property of MILC is the incremental
operation that is realized throughout all components. An important goal of the
implementation is to provide an experimental platform for further research and
studies in architectonic properties of NLP systems.

� The distribution of components over different processes or computers prevents
the existence of a global system state. However, the union of information present
in all components is consistent at every point in time and shows an almost current
state of the system1; the implementation using layered charts that is described
below facilitates this.

� The introduction of layered charts establishes an integrated way of processing
simultaneously. Each component is in principle able to communicate with any
other component. There is no need to design and implement special interfaces
for the exchange of data. This is due to the fact that all information present in the
system is coded as edges of the layered chart with all its components.

� The use of a uniform formalism in as many components as possible further sim-
plifies the communication among components. The complex feature formalism
described in Chapter 3 is the basis for processing in all the components that have
been implemented in the framework of MILC.

In this chapter, we will first introduce and describe the notion of a layered chart
and compare it to other approaches. Then, the communication infrastructure is pre-
sented which guarantees the successful operation of MILC within a distributed en-
vironment. After a short overview of the system architecture of MILC we will shed

1There is no global state in a distributed system that could be known to any single compo-
nent. What is meant here is that the component computing the union receives information
from the recent history of components.

J.W. Amtrup: Incremental Speech Translation, LNAI 1735, pp. 85-154, 1999.
 Springer-Verlag Berlin Heidelberg 1999

86 4. MILC: Structure and Implementation

light on the role and properties of the individual modules present in the system. The
chapter closes with a description of further possible extensions and modifications.

4.1 Layered Charts
Time is the most important structural criterion for characterizing language. Lan-
guage is linear in time. In the case of written language the ordering is given by the
position of words and the spatial relationship between words. The strict linear order
can be diminished by the author (by applying a higher-level order using paragraphs
or other structural properties) who is able to introduce additional meaning into a
text by using stylistic means. The reader, on the other hand, is able to restructure
the text by browsing back and forth through a text or by not completely reading it,
but scanning through it. However, if we assume spoken language as is done in this
work, the linearity is almost completely valid.2

The underlying reason for this is, of course, that speech is produced as sound
pressure that changes over time. The first stage of word recognition systems takes
this into account by computing spectral parameters within time windows that are
shifted throughout a complete utterance. The parameters are converted into fea-
ture vectors that encode relevant properties of the speech signal within the current
window. These vectors are usually used in automata-based algorithms to search for
words. Words are defined by models that consist of sequences of feature vectors
representing the individual words, and words are recognized by measuring the dis-
tance between the model vectors and the actual vectors present in the input signal.
Nowadays, HMM-based methods seem to be the most widely used (cf. Hauenstein,
1996). We will not delve into this early stage of machine recognition of spoken
language, but it seems important to point to the shape that the input has in the di-
mension of time as early as possible.

Within the framework of speech processing presented here it is also evident that
there is the possibility of connections between models for speech recognition and
language processing that extend over the mere delivery of word hypotheses from
a word recognizer to the linguistic modules. A tighter integration of speech and
language processing is desirable, which would accomplish an augmentation of word
recognition on the basis of linguistic facts. The extension in time of the input (in
form of feature vectors on the lowest level) is essential for such an integration. We
will come back to this viewpoint in Section 4.11.

The initial input to the MILC system is given by the result of an automatic word
recognition process. The result consists of a set of word hypotheses, which denote
words possibly spoken during a certain interval in time. We construct a word graph
from these results as defined in Definition 2.2.2; more precisely, a hypergraph of
word hypotheses is created. For the time being, the exact shape of the graph is
irrelevant. If this graph is not viewed asword graph, but asinterpretationgraph

2We abstract away from technical means, e.g. by fast forwarding a tape.

4.1 Layered Charts 87

that allows for a compact representation of possibly competing interpretations of
intervals of the underlying speech signal, then it is possible to view each word hy-
pothesis as an explanation of certain features of the input during a specific interval.
On such a low level this is trivial, a word graph being specifically designed to enable
that view. A more abstract level allows the syntactic analyses, semantic descriptions
and even surface hypotheses in a different language to be taken as hypotheses over
certain linguistic properties of parts of the input signal.

This abstract view is the first step towards the construction of layered charts. It
allows the introduction of a graph structure for the representation of results.

The simplest approach to storing the results obtained during the course of pro-
cessing would be to assume a monotonic augmentation of information, which rests
on a uniform representation of these results. Using this method, the annotations
on edges of the chart always contain all the necessary information that could be
used during further processing. Moreover, it is possible to use a uniform processing
mechanism for information structures, like it was done in KIT-FAST (Weisweber,
1992; Weisweber, 1994). However, this processing schema requires that all in-
formation present within an annotation to be taken into account, even if it is not
completely used in a specific module; at least, irrelevant parts of the data have to be
actively ignored. All information must be transmitted along information paths that
are usually equipped with only a restricted bandwidth.

The goal of an efficient method of representation and storage is, consequently,
to make only the necessary parts of information available for each individual com-
ponent; only those parts which are essential for its computation. This type ofin-
formation hidingleads to a much simpler structure of components. Additionally,
the efficiency of computations may grow. Systems grounded in the notion of a
blackboard(Hayes-Roth, 1995; Engelmore and Morgan, 1988) implement such an
approach to information control, cf. e.g. Hearsay II (Ermanet al., 1980). All results
are typed and stored centrally. Thus, a component only receives information that is
relevant for the processing at hand, without being able to recognize the structure of
the blackboard in its entirety or to know what data is contained in the blackboard. As
far as the implementation of a single component is concerned, this type of storage
of information is ideal. However, one has to notice that the employment of a black-
board to store data centrally always implies the use of a centralized control strategy.
On one hand, this is positive, since the process controlling the blackboard is able
to monitor the order in which data elements are processed; it can even establish a
preference order to handle more promising results first (Carver and Lesser, 1994).
Only the central process managing the blackboard is able to employ such a strategy,
while individual components solely rely on the information available locally. On the
other hand, this central storage and control schema presents a considerable architec-
tonic burden, since the possibilities for introducing parallel processing as a means
to improve the efficiency of a system are greatly reduced (cf. Kesseler, 1994):

� The concurrent access to the blackboard by multiple processes (which are as-
sumed to realize one component each) may lead to a situation in which the band-
width of the memory bus may not be big enough to handle all requests instantly.

88 4. MILC: Structure and Implementation

The bus interface has to delay accesses which reduces the theoretically possible
throughput.

� Even if the restricted bandwidth of the bus is neglected, access to the blackboard
has to be partially serialized, because only one process may write on the black-
board at a time. In the worst case, this may lead to a complete serialization of
write accesses to the blackboard.

A partial solution to this problem is given by distributed blackboards (Jagan-
nathan, Dodhiawala and Baum (eds.), 1989, Part II). By using a distributed black-
board the first effect mentioned before, the serialization because of a restricted band-
width of memory buses, can be avoided. But even using a distributed implementa-
tion of a blackboard, the requirement of serialization of write accesses to the central
storage remains. Denecke (1997) proposes a distributed blackboard system, which
uses a set of expert-system type rules to control the order of component commu-
nication. These rules describe when and under what circumstances a component
receives information from the blackboard and is thus able to process data. Ulti-
mately, this does not change the role of the central control component, here called
discourse blackboard. All actions of components are serialized.

Boitet and Seligman (1994) propose an approach they callwhiteboardwhich is
of some importance for the work described here. Starting from the classic black-
board approach and its sub-optimality they construct an architecture schema that
promises to solve some of the problems. They characterize two main obstacles that
result from the use of a conventional sequential system: information loss and lack
of robustness. To demonstrate both problems they point to an earlier system,Asura
(Morimoto et al., 1993). In that system, a component does not transmit all infor-
mation that was processed to its successors. In many cases, this leads to a partial
reanalysis of the input. Moreover, partial analyses of the input are not delivered,
because they do not represent complete descriptions of all the input (e.g. syntactical
analyses that are well-formed but do not cover the whole input). In some cases,
this lets the whole system fail, although at least partial translations would have been
possible.3

Following Boitet and Seligman (1994), the application of a blackboard archi-
tecture solves the problem of information loss, but does not contribute to a higher
degree of robustness in a system. Additionally, other complications arise, mainly
because of the concurrency of components accessing the blackboard. Examples of
these are lack of efficiency and complex localization of errors.

The whiteboard approach contributes to the solution of these difficulties, say
Boitet and Seligman (1994). The architecture schema is shown in Figure 4.1. A
central data structure is managed by a process called coordinator. This coordinator
receives results from components and sends data to modules. All information gath-
ered by the coordinator is stored, together with some kind of reason maintenance
(Doyle, 1979), which relies on the path a data element has taken through the appli-
cation. The type of data structure is irrelevant in principle, but the use of a lattice

3INTARC (cf. Section 1.3) shows a similar behavior.

4.1 Layered Charts 89

Coordinator

Whiteboard

Manager

Manager

Manager

Component

Component

Component

1 1

2 2

3 3

In

Out

Figure 4.1. TheWhiteboard-Architecture (from Boitet and Seligman, 1994)

structure which is claimed to be appropriate for the processing of spoken language
is proposed. The internal structure of individual components is not important either,
because each component is encapsulated by a so-called manager. These managers
maintain queues of incoming and outgoing messages and operate on them period-
ically. This also makes the data format of messages irrelevant for the most part,
because managers may initiate conversion processes to adapt message formats to
what components expect. This makes the reuse of existing components easier.

Besides the storage of data, the coordinator may also execute functions which
resemble the control processes of a blackboard. This means that the coordinator
realizes the central control and may influence the processing of components by se-
lecting which messages to deliver first.

Boitet and Seligman (1994) claim that the incremental behavior of an applica-
tion can be simulated using a whiteboard. Within the prototype system KASUGA,
which uses a whiteboard, this has been demonstrated. KASUGA is a system com-
prised exclusively from non-incremental components. Incrementality is simulated
by holding back the results of a component in the manager and by distributing them
in a piecemeal fashion to the coordinator. KASUGA consists of:

� A phoneme recognizer that constructs a graph for the input utterance by comput-
ing the three best phoneme candidates for a segment,4

4This means, obviously, that the recognizer creates a phoneme graph with a transcript-
independent density of three.

90 4. MILC: Structure and Implementation

� A syntactic parser that constructs words from phonemes using a context-free
grammar, and

� A bilingual lexicon (Japanese-English) that facilitates a word-for-word transla-
tion. The system is able to translate 40 elementary phrases (bunsetsu).

The concept of a whiteboard represents a considerable step forward when com-
pared to sequential systems. However, a careful analysis shows that whiteboards do
not represent an architecture schema that can fulfill all the requirements stated in the
introduction. Even if the components defining a system have no knowledge about
each other and the processing strategies involved, there is still a central instance,
the coordinator, which not only stores all results, but moreover is able to control the
execution of an application. This means that there will be unnecessary serialization
of actions, even when using a whiteboard.

The most important feature we demanded in the introduction, the use of in-
crementality, can only be simulated in the approach discussed here. The smallest
consequence of simulating incrementality is a loss of efficiency, because the delay
of a component is equal to its overall processing time. The method for withholding
information in managers and distributing it piece by piece only simulates an incre-
mental output. There is no information on whether a component may be able to
handle incremental input. More important, however, is the lack of interaction be-
tween modules. Interaction is not possible because the module which would be the
receiver of control information from another component has completed its process-
ing before the information can be received. Thus, KASUGA can at best be seen as
an early demonstration system, as far as incrementality is concerned.

The statements made so far lead to certain minimum requirements for a data
structure that we see fit to be used for the processing of spontaneous speech. Such a
data structure should at least have the following properties:

� The schema to store results is distributed and does not rely on a central place for
storing information. Thus, bottlenecks that do not stem from the intrinsic function
of a system can be avoided.

� Data can be viewed on several levels of abstraction, in order to simplify the se-
lection and monitoring of information.

� The data structure can be equipped with efficient means of communication be-
tween modules in order to exchange data objects. These communication means
do not create a considerable overhead for communication.

� The data structure should be accessible from all components in a uniform way.
Thus, the exchange of linguistic objects is simple and efficient and does not lead
to a loss of meaning of the data objects.

� A uniform formalism to store linguistic objects should be employed. The reasons,
again, are transparency and efficiency.

Layered charts as a data structure realize these concepts to a great degree. The
underlying principle is illustrated in Figure 4.2. Each intermediate and final result
that is created by a component denotes a hypothesis over a certain interval of the
input speech signal. Thus, the hypergraph resulting from word recognition forms the

4.1 Layered Charts 91

Edge

A

Chart Structure

B

Figure 4.2. The principle layout of a layered chart

lowest level of the layered cart. Building upon that level, other components create
additional hypotheses that cover a single word hypothesis to start with. During the
course of computation in an application, edges may be combined, e.g. as described
in Section 2.6.3. At any give point in time, the distributed layered chart forms an
interpretation graph of hypotheses describing the input. The main components of
an edge within the chart are:

� Identification : A global, system-wide valid identification of an edge is essential
for maintaining references that refer to entities outside the local address space of
a component.

� Domain: The part of the input utterance described by an edge is in practice given
through the sets of start and end vertices of that edge. Naturally, the restrictions
for hypergraphs have to be maintained.

� Description: This is the representation of the linguistic object that is covered by
the edge. We use complex, typed feature structures encoded using the formalism
described in Chapter 3. The only exception is the initial hypergraph construction
by the word recognition component. In that case, orthographic labels representing
words suffice.

� Score: Each edge is annotated with a score that in principle may have been calcu-
lated using several different knowledge sources and evidence. The current version
of MILC uses acoustic scores derived from the word recognizer, as well as bigram
scores calculated by a stochastic language model.

� Predecessors: Each edge is equipped with information regarding reason mainte-
nance. This means that it carries information about which edges have been used

92 4. MILC: Structure and Implementation

to create it. Word edges generated by the speech recognizer do not have prede-
cessors. Any other edge may have exactly one predecessor, e.g. in the case of
lexical access within syntactic processing. Two preceding edges are also pos-
sible. This happens when the fundamental rule is applied in one of its variants
(see below). As the fundamental rule combines exactly two edges to form a new
edge, there are never more than two predecessors to an edge. The complementary
relation, the successor information, is also stored for each edge. This simplifies
inheritance operations tremendously. Inheritance of information takes place if
the word recognition integrates a basic word edge into an already existing hy-
peredge. In this case, the information about the modified sets of start and end
vertices, as well as the possibly augmented acoustic score, have to be transmitted
to other components to enable them to update their local information accordingly.
If the modified hyperedge has already been used to construct other edges by some
linguistic operation, these have to be updated, too.

� Bookkeeping: In addition to the fields described so far, an edge carries with it a
whole set of administrative information, which either can be computed from the
information already described5 or is not linguistically relevant (e.g. configuration
options about how to print an edge etc.).

Layered charts are an extension of charts, as they have been originally pro-
posed by Kay (1973) for the structural analysis of natural language. The originating
thought was the following: Several partial analyses can be used many times dur-
ing an analysis, so it might be helpful to store intermediate results in a so-called
well-formed substring table. This table may be extended by additionally storing
incomplete analyses. This (little) modification renders far-reaching consequences
for the complexity of algorithms for natural language processing. In the case of
syntactic parsing with context-free grammars, the complexity can be reduced from
exponential complexity toO(n3) (Sheil, 1976).

At the time when charts were introduced, incomplete analyses were always con-
nected to phrase structure rules whose right sides have not yet been fully consumed.
Such edges are calledactive in order to hint at the fact that they are still looking
for further material before the analysis is complete.Inactive edges, on the other
hand, represent analyses that have completely carried out and can either be printed
as result or wait for the incorporation into a bigger structure.

Definition 4.1.1 (Chart).
A chart is an acyclic, directed, left-connected graph with edge labels. The set of
edges is partitioned into two disjunct subsets:

� Active edges represent incomplete analyses.
� Inactive edges represent complete analyses.

Additionally, a function is defined that decides if an inactive edge should be
considered a result and be printed or not.

5This information may be stored redundantly for efficiency reasons.

4.1 Layered Charts 93

In order to carry out an analysis with the aid of a chart, usually three central
procedures are defined: The insertion of edges into the chart (INSERT), the intro-
duction of new hypotheses on the basis of completed analyses (PROPOSE), and the
fundamental rule (COMBINE). Here, we will only delve into some aspects of the
fundamental rule and point to the standard literature for other aspects of chart pro-
cessing (Winograd, 1983; Thompson and Ritchie, 1984; Allen, 1987; G¨orz, 1988).

The fundamental rule combines two edges and constructs a new edge in case of
a success. Usually (e.g. in a conventional system for structural parsing), an active
edge is combined with an inactive edge. The end vertex of the active edge has to
coincide with the start vertex of the inactive edge. The result of the combination
is an edge that spans over the two arguments used. However, other combinations
are possible as well, e.g. cases in which the inactive edge is on the left side (so-
called island analysis, cf. Section 4.7), or combinations of two active edges (this
strategy is not used within MILC). It may be reasonable not to make the decision
about the combination of two edges based on a common vertex. For example, in the
case of a transfer based on semantic descriptions of intervals of an incoming speech
signal, the surface order in which the constituents in question appear is not relevant.
More important is that all parts of the semantic content of an edge are explained
by corresponding partial analyses. This requires that an active transfer edge may
incorporate inactive edges that are covered by it, regardless of their exact position.6

Another domain in which the combination of edges is not strictly bound to
adjacency in time is generation. Kay (1996) describes the surface generation of
sentences from shallow semantic descriptions that resemble the minimal recursive
terms used in Verbmobil (Copestakeet al., 1995; Dorna and Emele, 1996). The goal
of generation is to explain the sequence of singular terms with a surface representa-
tion. The domain of each edge is the subset of indices into the sequence of semantic
terms that have been used for its construction. Thus, two edges may only be com-
bined if the intersection of both domains is empty; the domain of the combination
result is the union of both source domains.

To have the data structure of a chart and the three procedures briefly mentioned
is not enough to specify an actual component that could fulfill any reasonable lin-
guistic task. To achieve this, two further ingredients have to be defined: Anagenda
and aprocessing strategy.

In this context, an agenda is always a place in memory where tasks are stored
until they are carried out. Each of the tasks describes the execution of one of the
chart procedures with a specific set of elements. Kay (1980) calls thisalgorithm
schema, which guarantees that finally all necessary operations will have been carried
out, all tasks will have been executed. However, the schema leaves open the exact
order in which tasks are chosen. Only by specifying the exact order of application
does the algorithm schema become an algorithm, which defines the exact sequence
of analysis. We will describe some possible strategies in Section 4.6. The layered

6An earlier version of the approach discussed here (Amtrup, 1994b) was grounded on
structural transfer based on syntactic criteria; in that case, a surface-oriented method that
pays close attention to the structure of the underlying graph is applicable.

94 4. MILC: Structure and Implementation

chart provides a global algorithm schema. Each of the components has to specify
certain functions defining the exact model for the chart, depending on the actual
needs of the analysis.

In MILC, each module has its own agenda. The agenda is created global to
the module and is consulted in short intervals. The length of the intervals depends
on the respective processing strategy. Usually, each time a new vertex is inserted
into the chart, a processing cycle is initiated for the agenda. This corresponds to an
incremental strategy that attempts to completely finish the processing of an interval
in time before new input for later intervals is considered. That means that all tasks
pertaining to earlier points in time should be carried out before any task for a later
point in time is processed. However, this rigid schema can be partially broken due
to information from the reason maintenance for edges.

The reason for this behavior is that components within MILC always use a beam
search (Steinbiß, Tran and Ney, 1994) to process an agenda. This entails that usually
not all tasks contained in the agenda are carried out in one processing cycle. Instead,
the component defines a boundary score for tasks, which is taken to be the criterion
for deciding whether a task is “important” enough to be carried out or not. All
tasks above that threshold are considered, all tasks below it are not initially. Several
systems get rid of the tasks below the threshold altogether. This is not possible in
MILC, as the score of edges (and consequently, of tasks) may be changed. To enable
this, the tasks within a component are not only globally stored, but for each edge
there is a local agenda that stores the tasks relevant for each edge.

The rescoring of a task is necessary if the acoustic score of an edge changes
due to the insertion of new word hypotheses into the hypergraph. The modified
acoustic score is given by the word recognizer. We already mentioned that reason
maintenance information is part of the data kept for each edge. If the score of a
word edge changes, then the modified score has to be inherited from all edges that
have been constructed using the word edge. This may have the effect that a task
that affects a modified edge and has not been carried out is now just above the
threshold that would have justified a processing. All components track this type
of situation and initiate the processing of a task, even if the interval in time that is
affected by the task has already been completed. Thus, the strict incrementality of
the aforementioned agenda strategy may be changed under certain circumstances.

Not only the acoustic score changes a basic word edge and leads to the inher-
itance of information to other edges; the modification of the set of start and end
vertices also gives rise to this schema. However, in this case the agenda mechanism
does not have to retract in time.

There is one further important property of a layered chart that has not been men-
tioned yet: The graph structure, which is the basis of the processing of speech using
word graphs, may be kept active for the major part of the application. All implemen-
tations of NLP systems that we know of abandon the graph structure at some point
during processing. At a certain point, the system makes a decision for a specific
reading of the input and usually does not use a graph-like representation afterwards.
The prototypes of Verbmobil (Bub, Wahlster and Waibel, 1997) have placed this

4.2 Communication Within the Application 95

border rather early, namely just behind the syntactic parsing stage (Block, 1997).
The architecture prototype INTARC (G¨orz et al., 1996) moved this line in front of
transfer. With the aid of layered charts, MILC is able to keep the graph structure
alive into the surface generation. As a consequence of this, sequences of surface
constructs can be presented as output. The user notices this mechanism only by ac-
knowledging that the generation process is incremental in itself and displays utter-
ance parts that change with time. A similar strategy is proposed by Finkler (1996),
whose generator processes the semantic representations of the content to be uttered
incrementally. He observes repair phenomena and restarts.

The explanations so far finally let us define a layered chart somewhat formally.
However, we neglect all information needed to carry out an analysis.

Definition 4.1.2 (Layered Chart).
A layered chart is a directed, acyclic, left-connected hypergraph7 with vertex and
edge labels. Each edge contains the following information:

� A system-wide unique identification taht is generated as a pair of the creating
component and a locally unique identification,

� a set of start vertices (resulting from the hypergraph property),
� a set of end vertices,
� a description (in our case usually a typed complex feature structure),
� a score, that may contain several components (e.g. an acoustic score and a lan-

guage model score),
� the identities of the two hyperedges which were used for the construction of this

edge, and
� a local agenda that is used to store tasks that could not be carried out due to the

beam search used in the component.

4.2 Communication Within the Application
Layered charts represent a reasonable and very useful data structure in the frame-
work of incremental natural language processing. In order to successfully distribute
such a complex structure on multiple processes or machines, efficient communica-
tion mechanisms are needed, which are implemented according to the immediate
needs of the task. On one hand, the infra-structural level should be specified in a
sufficiently abstract manner so that the communication primitives that realize the
transmission on a low level need not be taken into consideration. On the other hand,
it should be simultaneously possible to control options of the communication be-
havior.

The realization of the infrastructure should be grounded on a solid theoretical
foundation, but it should also be as independent as possible of the actual imple-
mentation of a module. Under no circumstances is it reasonable to decide anew

7Note that this leads to an association between nodes and points in time. Later (See Section
4.8) this will become important.

96 4. MILC: Structure and Implementation

about the optimal type of implementation for each interface that is developed. To
the contrary, the framework of communication must be designed ahead of the im-
plementation of an application. This is the case for every non-trivial AI application,
in particular for MILC, since it is a highly complex, distributed system with several
components and connections among them. The communication system ICE (Intarc
CommunicationEnvironment, Amtrup, 1994a), which was developed in the frame-
work described here, is an example of such an acceptable subsystem. ICE has been
integrated successfully into several projects for natural language processing, among
them all prototypes of the Verbmobil system (Amtrup and Benra, 1996), and the ar-
chitectonic prototype INTARC (Amtrup, 1997a). The use within Viena (Wachsmuth
and Cao, 1995) is an example for the integration into a system outside the narrow
range of speech translation. Viena is a multi-modal system that enables intelligent
communication with a system for virtual reality.

The channel model CSP (CommunicatingSequentialProcesses) forms the the-
oretical foundation for ICE. CSP (Hoare, 1978) defines the construction and seman-
tics of point to point connections between processes. A successful implementation
of the CSP model has been reached with the transputer (Graham and King, 1990)
hardware and the corresponding programming language developed for it, Occam
(Burns, 1988). Channels are bidirectional connections between Occam processes
that can be used to exchange messages. Such a message-oriented kind of connec-
tion is best suited for the type of application we are interested in. Using shared
memory is not possible for reasons already stated above (bus contention, serializa-
tion of write accesses). The other main communication paradigm currently avail-
able, remote procedure calls (RPC), seems to be disadvantageous, too. RPC uses a
rendez-voussynchronization schema that may show unacceptably high connection
times due to network latencies. This has also been the reason for modifying the
original model of Hoare (1978) for use in ICE. CSP uses arendez-voussynchro-
nization prior to the actual exchange of messages. The communication model used
for ICE employs asynchronous message passing, which does not suffer from net-
work latencies at all. The second major divergence from CSP is concerned with the
configuration of channels, which results in different kinds of channels.

4.2.1 Communication Architecture of an Application
The facet of the overall architecture of an application that covers communication
aspects is shown in Figure 4.3. An application may consist of any number of com-
ponents. These components could be implemented in one of several programming
languages. The languages currently supported are C, C++, Lisp (Allegro, Lucid,
CLISP, Harlequin), Prolog (Quintus, Sicstus), Java and Tcl/Tk.8 MILC, however,
does not actively use the possibility of heterogeneity; it is completely implemented
using C++.9

8The interfaces for CLISP and Java have been implemented by Volker Weber.
9The only exception from this rule is the visualization component, cf. Section 4.10. How-
ever, even there the communication mechanism is implemented in an underlying C-layer.

4.2 Communication Within the Application 97

Component

ICE

PVM

IDLcomponent
A

component
B

ILS

Attachment

Information Atta
ch

men
t

In
fo

rm
ati

on

base channel

additional channels

Figure 4.3. Principle component layout

One possible extension of the architectural view on communication could have
been to adopt the notion of agents cooperating to a certain degree while carrying
out a certain task cooperatively, but this would have meant to mix up different con-
ceptual levels of a system: The communication facilities we are describing here
establish the means by which pieces of software may communicate with each other.
They do not prescribe the engineering approaches used to implement the individual
software components themselves. We do not state that agent architectures (e.g. Co-
henet al., 1994) cannot be realized with our mechanism10, but the range of cases
where ICE can be applied is broader than this.

All communication within the systems is carried out via channels, i.e. bidirec-
tional, asynchronous point-to-point connections. We refrained from implementing
the underlying primitives from scratch. Instead, we used PVM (Parallel Virtual
Machine, Geistet al., 1994), a message passing software whose usage is extremely
widespread nowadays. PVM is able to let a heterogeneous network of workstations
act as if it were one single large virtual parallel machine. The immediate conse-
quence of adopting this approach for the implementation of ICE is the fact that
applications using ICE can be distributed over heterogeneous systems as well. In
practice, we have distributed systems on machines from Sun (Solaris), HP (HPUX),
IBM (AIX), SGI (Irix) and on standard PCs (Linux). The most important benefit
of using a preexisting software layer for the very basic issues is the amount of de-
bugging that has been invested into that layer. Earlier, disillusive experiences with
a predecessor system (Pyka, 1992a) made it very clear that a extremely stable basic
communication software is essential.

10Indeed, distributed blackboards as used in (Cohenet al., 1994) can easily be modeled
using a channel-based approach.

98 4. MILC: Structure and Implementation

On top of the PVM layer the core level of the communication software is situ-
ated (ICE in Figure 4.3). This level contains the functions needed for attachment
and detachment of components, sending and receiving of messages, and a number of
administrative functions governing the general behavior of components in a system.
Moreover, this level contains the interfaces to the different programming languages
that can be used in an application. The topmost, optional, layer of functions (IDL,
IntarcDataLayer) handles the communication of complex data types. As we al-
ready mentioned, user-defined data objects can be transmitted transparently using
ICE. In order to do this, the only code that has to be supplied are encoding and
decoding routines for the desired data type. After registering the data type within
ICE there is no difference between exchanging basic data types and complex ones.11

The primary use of this layer of ICE contains the definition of chart edges that are
exchanged within the application.

ICE defines one specialized component, the ILS (IntarcLicenseServer) that op-
erates as configuration center for an application. Each component that takes part in
a system attaches to the application using the ILS; detachment is handled similarly.
Additionally, the ILS keeps track of the configuration of all channels being used
during the runtime of a system. However, the ILS does not constitute a central data
storage and does not have central control rights. After the establishment of a channel
between two components, the communication is carried out strictly between those
components; it is therefore strongly decentralized.

4.2.2 Channel Models

The interchange of messages among components takes place using channels. We
distinguish two different types of channels:Base channelsandadditional channels.
Base channels are the primary facilities for communication. They are configured
to guarantee that each component is able to interact with any other component it
wishes to, regardless of programming languages, hardware architectures, or system
software being used. This is achieved by using the standard communication mode
of PVM, which supports XDR12. Message passing is done asynchronously. There
is no need for a configuration negotiation or localization of modules. Additional
channels, on the other hand, can be configured in various ways, e.g. not to use the
hardware-independent encoding schema XDR in order to improve communication
performance. Moreover, using additional channels, the data stream between two
components can be separated conceptually, e.g. to divide data and control streams.

11Originally, the design and implementation of an abstract language had been planned defin-
ing a common set of primitive data types which would have been accessible from all pro-
gramming languages (Pyka, 1992b). Departing from that language, the implementation
of compilers was planned that would have generated the necessary functions in different
programming languages. However, this approach turned out to be too restrictive, the only
interfaces fully implemented being the ones for C and C++.

12eXternal DataRepresentation, see Corbin (1990), an encoding schema for data objects
independent of the current programming environment.

4.2 Communication Within the Application 99

CompoCompo

A B

UI_A UI_B

C

Figure 4.4. The configuration ofsplit channels

Both types of channels are prepared to transmit both basic and user-defined data
types. This property is similar to Occam channels, which can also be equipped with
a channel protocol. Interestingly, the definition of this kind of data types (records)
has not been carried over into the language definition. The effect is that complex
structures may be transmitted, but they cannot be used in the receiving process with-
out some difficulty and programming effort.

To allow for further flexibility in system design, both base and additional chan-
nels can be configured in a way that modifies the topology of the application. That
way, they do not only work as data pipelines between exactly two components.
Instead, the application can define a number of components as listeners on certain
channels. In the same way it is possible to define multiple potential message sources
for a channel. The motives for the definition ofsplit channelsis mainly twofold:

� The realization of visualization components for data that are sent along a channel.
That way, not only the search for programming bugs can be simplified consider-
ably, but moreover there is the possibility of displaying partial results to the user
in an easy way.

� The adaptation of different data formats between two components. Inserting an
additional module that is designed to modify data is especially helpful if version

100 4. MILC: Structure and Implementation

changes for parts of the application lead to changes in the interface definition
between components.13

Consider Figure 4.4 as an example for a configuration using split channels. Two
components,A andB, are connected using a channel that is depicted by a dashed
line. The channel endpoints (grey boxes in the figure) are split up to allow visual-
ization of message data sent by either component. The visualization is performed
by two additional components labeledUI A andUI B. Furthermore, the data sent
by componentA must undergo some modification while being transported to com-
ponentB. Thus, another componentC has been configured that is capable of trans-
forming the data. It is spliced into the data path betweenA andB. Note that data
sent by componentB arrives atA unaffected from modification by componentC.

The configuration of split channels is completely transparent for the components
involved. The behavior of an application thus does not change simply by the topo-
logical change resulting from the configuration of a split channel. Of course, the
components affected by the splitting can alter the behavior of the system. Using this
kind of configuration, the breadboard architecture of components for Verbmobil has
been developed (Bub, Wahlster and Waibel, 1997).

4.2.3 Information Service and Synchronization

The ILS takes care of three functions highly relevant for the execution of a dis-
tributed application:

� The storage and administration of names of components within a system,
� the configuration of the overall application, and
� the initial settings for broadcasting messages to all other components in a system.

Usually, only the ILS has a complete picture of the structure of an application,
while individual components only have knowledge of the part important to them. In
order to do so, the ILS stores a table of names and locations of modules.

As a consequence, registration at the ILS is one essential part of the initial
startup sequence of a module. The attachment is stored in the ILS and the iden-
tity of the new component is handed to other modules that notified the ILS earlier
of a need to communicate with that component. The amount of synchronization
necessary for this startup has been kept as low as possible (see below). Similarly,
a component should detach from the application prior to termination. But even if
a component terminates due to a program or system failure, the ILS is notified of
this event (via PVM). Thus, components may react to the detachment of another
module; they are given a notice by the ILS.

The second main function the ILS performs is the management of the channel
configuration. It reads a configuration file on startup that describes the layout of
split channels. For each channel, a list of real connections is defined. Each real

13Within MILC, there was no need for such a component due to the integration of the sys-
tem. However, this facility has been beneficial in other contexts.

4.2 Communication Within the Application 101

A B BASE
UIG_A BASE -1 1 0
C BASE -1 1 0
B BASE -1 0 1

B A BASE
UIG_B BASE -1 1 0
A BASE -1 1 0
C BASE -1 0 1

Figure 4.5. An example of a configuration file for split channels

connection is given a direction. The syntax for channel configuration files is defined
in Amtrup (1995b). The configuration file necessary to result in the behavior shown
in the example earlier given is outlined in Figure 4.5.

During the execution of an application, usually more channels are created by
request from components. The only restriction on this is that split channels cannot
be dynamically administrated. The configuration for split channels is read once
during system initialization.

The third function of the ILS is to provide initial information about the compo-
nents enrolled in an application to a module that wants to broadcast a message to all
other components. During conventional execution of an application, each module
only has knowledge about components it directly interacts with. Thus, there might
be components unknown to a specific module. However, information about all mod-
ules participating in a system is necessary if a message has to be distributed to all
components. A centralized approach (resembling a blackboard model) would re-
quire sending a broadcast message to a central component (here: the ILS) that takes
care of the distribution to all other components. Deviating from this, ICE uses the
connection to the ILS only to initialize the broadcasting function for the first time.
Again, this results in a low synchronization overhead and prevents a communication
bottleneck at the ILS.

The distribution of broadcast messages is done in three steps:

� If a component wants to send a broadcast message for the first time during the
runtime of a system, it sends a request to the ILS in order to get information about
the identity of all other components. The ILS uses its configuration record about
the application and sends the appropriate answers to the inquiring component.

� After the broadcasting component has received the configuration information
about all components, the message can be sent on the individual channels to the
receivers.

� In the future, the ILS expects the component that issued one broadcast message to
do the same again. Therefore, each time a new component enrolls into the system,

102 4. MILC: Structure and Implementation

the information about that component is given to the broadcaster, regardless of
whether or not the request for opening a channel between the two modules was
issued. Thus, the communication between a broadcaster and the ILS to receive
the configuration information about all components has to be carried out only
once.

This kind of configuration is completely transparent for the broadcasting com-
ponent. Usually, it does not even know how many components exist in a system.
All this information is hidden in the ICE layer and thus does not pose a burden for
the application developer.

The most interesting part of the communication between components and the
ILS is, without doubt, the initial synchronization phase that defines the identity of
modules and all necessary channels. One of the design goals for the implementation
of ICE was to minimize the synchronization overhead here as well. The reasons for
this were first of all to prevent the presence of a communication bottleneck. Second,
a single process may contain any number of components, and a lengthy initialization
with the ILS may lead to severe performance degradation.

Consequently, a component should only request information about another com-
ponent if absolutely necessary, i.e. if a message shall be sent to this other component.
ICE implements an information profile that is able to handle under-specified compo-
nent and configuration data. Figure 4.6 depicts the sequence of actions taking place
from the attachment of a component up to the first exchange of a message between
two components. The outer left and right parts of the figure show the components
participating in the application, the center reflects events within the ILS.

Initially, componentA registers with the ILS and announces its identity. To
achieve that, the component calls the functionICE Attach() (or one of the vari-
ants in one of the supported programming languages), thereby sending a message
with the tagILS ADD to the ILS.14 However,A does not wait for an acknowledg-
ment, but continues its operation.

After the attachment has been accomplished,A requests the establishment of
a channel by callingIce AddChan() . A corresponding message with the tag
ILS CHC is sent to the ILS, which answers by sending the required configuration
data. These answers contain the real channels used for sending messages with the
tagILS CHS.15 In this case, there are two instances of real channels on which data
is sent. Configuration messages with the tagILS CHR define real channels used

14Besides being typed, messages are also equipped with a tag in order to signal the purpose
of a message. The receiving functions of ICE can be parameterized to only look for mes-
sages with certain tags.ILS ADD is a predefined tag reserved for system configuration
purposes. The exchange of such system messages is done in a way that is transparent to
components. During the call of ICE functions, system messages are always received with
high priority.

15In the case of the configuration of split channels, this may be more than one channel. We
use the termreal channelto hint at the fact that messages are actually sent along these
channels, while the notion ofchannelis a mere suitable abstraction.

4.2 Communication Within the Application 103

tim
e

Component A ILS Component B

Ice Attach()
ILS ADD

Ice AddChan()
ILS CHC

ILS CHS

ILS CHS

ILS
CHR

ILS
CHE

Ice Send()
b
lo

ck
e
d

ILS WHO

Ice Attach()

ILS ADD

Ice Receive()
ILS CHCILS CHSILS CHRILS

CHEMessage

Figure 4.6. Time line of the initial configuration of channels with the ILS

to receive data items. Finally, the completion of the configuration is signaled by
sending a message with the tagILS CHE.

After this configuration has happened,A tries to send a message toB using the
recently established channel. Since the target componentB is not yet enrolled in
the application, the function call is blocked.16 After some time, the componentB
registers with the ILS. As soon as the ILS possesses this knowledge, it informs the
componentA of the attachment of the target component. Thus,A is able to send
the message and continues with its operation. Meanwhile, the ILS sends config-
uration information about the channel toB, even thoughB has not requested the
establishment of that channel. As soon asB calls a receiving function of ICE (in
this caseIce Receive()), the configuration data is processed first. The message
has meanwhile arrived atB and can be processed in a normal way.17

16This behavior can be changed. The sending component may decide not to wait if one of
the target components is not present. Instead, the function call may return and raise an
error situation.

17The message fromA could in theory arrive atB before the configuration message is
present. In this case, it will be buffered, untilB is completely configured.

104 4. MILC: Structure and Implementation

Figure 4.7. XPVM snapshot of the initial synchronization

Figure 4.7 shows a section of the actual communication during initialization of
a system. The snapshot was captured using XPVM, a graphical tool for PVM. The
upper bar shows the activity of the ILS, the bar in the middle representsA in our
example, and the lower bar depictsB. The message marked by an arrow is the one
notifying A thatB arrived.

4.2.4 Termination

The termination of an application is not in itself part of the definition of ICE. How-
ever, since the communication status is closely related to termination, we will dis-
cuss termination in MILC briefly in this section. MILC is not designed to be a
continuously running system, but terminates after having processed one utterance
(but cf. Section 4.11). Therefore, it needs to recognize this point in time.18 Due
to possible feedback loops in the topology of an application, it is not possible to
assume a unidirectional information flow that would enable a termination schema

18This is a necessity even for continuously running systems. The only difference is that in
that case the application is not terminated and only a few data structures have to be reset.

4.3 Overview of the Architecture of MILC 105

that simply terminates components as they have consumed their primary input. In
this case, only the first component (the word recognizer) would have to receive a
signal that marks the end of the input (in our application this signal is given directly
by the structure of the input, cf. Section 4.4). In the current version, the graph of
components is in fact acyclic (cf. the following section). However, in our view the
current functionality should only be viewed as a starting point for further research
and experimentation into the architecture of natural language systems. Thus, we
implemented a distributed termination for MILC.

The termination protocol (cf. Mattern, 1987; Peres and Rozoy, 1991) uses mes-
sage counters. These counters record how many messages have been exchanged
between any two components. Consequently, each component keeps two counters
per connection. The system may terminate if the components pairwise agree about
the number of messages sent and received, i.e. if every message that has been sent
was also received by the addressee. This consistence condition could be checked
periodically. In the case of MILC, however, it is reasonable to initiate the examina-
tion of the termination condition only in case the word recognizer, which is the root
of the application graph, has finished its processing.

4.3 Overview of the Architecture of MILC
Following the introduction into the concepts behind layered charts and the descrip-
tion of the software layer responsible for communication between components, we
can now start to give details on the application architecture of MILC (Amtrup,
1998). MILC is the first instance of a system based on layered charts. Some in-
teresting aspects of architecture have so far been neglected in the current design;
however, the architectural framework allows the integration of new methods and the
addition of other components without any major problems. A rough architecture
sketch of MILC is given in Figure 1.2, which we repeat here as Figure 4.8.

As previously said, the graph-like structure in the middle of the figure symbol-
izes the use of a layered chart by the modules of the system. This means that there
is always a consistent overall state of the system, which can be retrieved by taking
the union of all edges present in the system. In order to facilitate debugging of the
application, and for demonstration purposes, we developed a visualization compo-
nent that is able to graphically display the edges present in a layered chart. This
visualization is described in Section 4.10, but is omitted in Figure 4.8. The arrows
symbolize ICE channels, the heads point in the direction of the information flow.

The root component of the application is given by theword recognition. We
use word graphs that have been created incrementally by the Hamburg speech rec-
ognizer (Huebener, Jost and Heine, 1996), thus the graphs are left-connected. The
actual recognition process has not been integrated into the runtime system of MILC,
as the recognition in itself is a highly time-consuming task. In that sense, the name
“word recognizer” is not completely accurate. The function that the component
carries out is to read a word graph and to convert it incrementally into a hypergraph.

106 4. MILC: Structure and Implementation

Generation

Speech
Recognition

Idiom
Processing

Transfer

Partial
Parsing

Integration
Utterance

Figure 4.8. The architectonic overview of MILC

Three components are present for the syntactic-semantic analysis of input ut-
terances:Idiom recognition, partial parsing andutterance integration. We will
describe them in detail in the following sections.

The transfer component maps the semantic descriptions of German utterances
into corresponding English semantic representations. Even this phase is chart-
driven, however, it is not grounded on syntactic criteria as a preceding study
(Amtrup, 1995a) did.

Finally, the English semantic representation is subject to asurface generation
process, the output of which consists of a sequence of potential English utterance
fragments that represent the current best path through the generation graph.

4.4 Word Recognition
The component responsible for word recognition takes as input a left-connected
word graph and uses it to incrementally create a left-connected hypergraph of word
hypotheses. The hyperedges are incrementally delivered to the idiom recognition
and the partial parsing components.

4.4 Word Recognition 107

%TURN: n002k000
BEGIN_LATTICE
...
1 38 <sil> -2239.464600 1 38
1 42 <sil> -2570.498779 1 42
1 46 <sil> -2914.757568 1 46
1 52 <sil> -3504.763428 1 52
38 52 okay -1290.138916 38 52
42 52 sch"on -988.619324 42 52
38 53 okay -1354.200317 38 53
42 53 sch"on -1059.124756 42 53
46 53 wir -718.457947 46 53
38 54 okay -1430.380493 38 54
42 54 sch"on -1127.405151 42 54
46 54 wir -791.802673 46 54
40 54 Herr -1312.388672 40 54
38 55 okay -1516.757080 38 55
42 55 sch"on -1181.626709 42 55
46 55 wir -874.704224 46 55
42 55 schon -1215.008667 42 55
...
END_LATTICE

Figure 4.9. A word graph in Verbmobil syntax

Let us take the word graph in Figure 4.9 as an example graph and an illustration
of the data format used. Each word hypothesis consists of abstract start and end
vertices, the orthographic transcription of the word that has been recognized, an
acoustic score (the logarithm of a density that gives a measure of how well the model
for that particular word matches with the actual input signal; a small absolute value
of the score is considered a good match), and information about the time interval
spanned by the hypothesis (start and end point measured in frames of 10ms). Word
hypotheses are sorted according to their end vertex and their start vertex.

The task of the word recognizer for MILC is to read that kind of graph and to
create from it the lowest level of a layered chart. The algorithm used for this pur-
pose has already been defined as Algorithm 12 in Section 2.6.2. The recognizer
starts with an initially empty word hypergraph and successively adds word hypothe-
ses from the input graph. There are two points during the insertion which require
communication with the idiom recognition and the partial parser:

� Every time a new hyperedge is created (line [5] in Algorithm 12), this fact is
communicated.

� Every time the representation of a hyperedge changes (line [2] in Algorithm 12),
these changes are also sent to the receiving components. The possible changes

108 4. MILC: Structure and Implementation

Table 4.1.Messages sent from the word recognizer to the successor components

No. Type Content Affected hyperedge
...
1 New hyperedge H1:<1–38(sil),2239>19

H1
2 New end vertex 42 H1
3 New end vertex 46 H1
4 New end vertex 52 H1
5 New hyperedge H2:<38–52(okay),1290> H2
6 New hyperedge H3:<42–52(sch¨on),988> H3
7 New end vertex 53 H2

New acoustic score 1354 H2
8 New end vertex 53 H3

New acoustic score 1059 H3
...

are the addition of a vertex to the set of start or end vertices of an edge, and the
modification (i.e. augmentation) of the acoustic score of a hyperedge (cf. Weber,
1995, p. 78).

Consequently, the processing of the graph shown in Figure 4.9 results in a stream
of messages. These messages are schematically depicted in Table 4.1.

4.5 Idiom Processing
Idiomatic constructions like“tut mir leid” (“I am sorry”) are usually hard to an-
alyze compositionally.20 Therefore, the goal is to treat those almost lexically and
provide an analysis for the complete phrase. The approaches conventionally used
are either to allow lexical entries that contain more than one word as citation form,
or to formulate syntactic rules that have specialized subcategorization frames for an
idiomatic phrase. The main drawback of both methods is that the method for ana-
lyzing idioms is not specialized, i.e. fixed phrases are treated in the same manner as
other syntactic constructions. In particular, there are no means for preventing a com-
ponent from attempting to integrate the individual parts of an idiom into an analysis,

19The acoustic score given here (2239) reflects the total score for the interval in time covered
by the edge. The criterion for comparison of scores, however, is a measure normalized
per frame.

20See Sch¨ollhammer (1997) and the literature cited therein for a classification of phraseo-
logical terms.

4.5 Idiom Processing 109

vp
tut mir leidphon

v−sem
relations

nilagent
np−sem

speakerconcept
index

genusgen
sgnum
1pers

index

exp

leid−tun−relname
nilsubtype
niltheme

relation
sem

vp−syn
nildtrs
indmood
nilsubcat
vfirstvorder
finitevtype

syn

Figure 4.10. Idiom definition for the partial utterance“tut mir leid” (“I am sorry”)

even though the character of idioms is inherently non-compositional. Thus, the solu-
tion we take for MILC is to implement a specialized component for the recognition
and processing of idioms, which aids in reducing the overhead just described.

Idioms seem to play an important role for the domain of appointment schedul-
ing. Their frequency is quite high (Sch¨ollhammer (1997) reports that more than 30%
of all utterances contain idioms) and they strongly support the realization of com-
municative goals by constituting dialog acts (cf. Jekatet al. (1995) for an account
of dialog acts).

By treating idioms separately from other linguistic phenomena, a fast incremen-
tal search can be implemented that only uses the orthographic surface form of words
and does not carry out any complex linguistic operations. In order to achieve this,
a graph of recognized prefixes of potential idioms is created in parallel to the hy-
pergraph of word hypotheses. In practice, this is done by initially reading a set of
idiom definitions of the kind shown in Figure 4.10. The value of thephon feature
consists of a list of words that define the idiom. According to these words, a search
tree is constructed with edges that are labeled with words being part of idioms. The
nodes of the tree are annotated with feature structures if a path from the root of the
tree to the node constitutes an idiom.

110 4. MILC: Structure and Implementation

During the operation of the idiom processing module, the system constantly tries
to compute an intersection between the definition tree and partial graphs from the
word recognition. In order to do this, tokens are placed on vertices of the hypergraph
that mark if and which part of an idiom ends at that vertex. Using this information,
it is possible to decide whether an idiomatic phrase has been completed, in which
case a corresponding message is distributed to the successor components.

The information about an idiom consists of two parts. First, the feature struc-
ture representing the idiom has to be delivered to partial parsing and transfer, of
course. This enables these components to incorporate the idiom correctly into their
analyses. Second, and equally important, the idiom recognizer distributes inhibition
messages. This is done in order to prevent the conventional, compositional analysis
of the parts of the idiom by reducing their probability. The background assumption
justifying this measure is that most probably the word hypotheses being part of the
idiom only have a very limited value for a standard analysis.

However, it is important to notice that the affected word hypotheses are not
simply deleted and removed from the hypergraph. This procedure could indeed lead
to errors, e.g. in the case where the sequence of word hypotheses mistakenly taken
to be an idiom contains words from two correct constituents within a deep analysis.
Therefore, only the score of words that are part of an idiom are modified. They
receive a penalty which affects the probability of being integrated into a different
syntactic context. The method by which inhibition messages are distributed and
inherited has already been described.

4.6 Parsing
Usually, most modern systems for natural language processing carry out a complete
syntactic-semantic analysis in order to process input utterances. Approaches that
use partial parsing21 are found almost exclusively in the framework of information
extraction, e.g. in the MUC-systems (Message Understanding Conference). More-
over, the second phase of the Verbmobil project promises to use the partial parsing
paradigm to a greater degree (Light, 1996; Worm and Rupp, 1998; Worm, 1998).
Partial parsing is also used to reevaluate recognition scores with the aid of licens-
ing analyses of a chunk parser (Zechner and Waibel, 1998). We will also divide the
monolithic task of constructing a grammatical structure for input utterances. During
the first phase of the analysis, a set of partial analyses shall be found, guided by a
grammar mostly incorporating syntactic knowledge, e.g. data for nominal phrases,
prepositional phrases, adverbial phrases, etc. Left out will be the construction of
subcategorization frames that are common in the description of verbs. Also, we

21By partial parsing we mean that an input utterance at hand is not incorporated into one
single complete analysis. Instead, a set of analyses is constructed, the elements of which
each describe a specific interval in time of the input. This approach is sometimes also
calledchunk parsing(Abney, 1991; Abney, 1996).

4.6 Parsing 111

will not resolve attachment problems that result e.g. from the ambiguity in the at-
tachment of prepositional phrases. Those derivation steps are taken care of in the
second phase of the analysis, which works with the results of the first step. This fol-
lowing phase uses more detailed information in order to be able to model complex
verb phrases.

The motivation to use such a two-stage method stems mostly from experiences
that we gathered during an experiment with a spontaneously spoken dialog (Dialog
N002K from the Verbmobil corpus). We constructed the necessary linguistic knowl-
edge sources required for a conventional analysis based on sentence constituents.
Using the already described formalism, we created a type hierarchy with 345 types
that, for the most part, described syntactic phenomena. The semantic parts of the
hierarchy were restricted to the attribution of concepts in order to decide selectional
restrictions in certain cases. The lexicon contained 413 readings for word forms, the
grammar had 80 rules. One part of the grammar was tailored to cover date and time
expressions that arise frequently in appointment scheduling dialogs.

The knowledge sources just mentioned have been created using the translitera-
tions of the dialog N002K as guideline. However, with the exception of the lexicon
which only covers the words occurring in the dialog, the knowledge sources are
more general. After the development of the grammars was completed, we carried
out experiments using incrementally constructed word graphs, using the standard
configuration of the parser. Of course, this specific experimental setting does not
allow us to draw general conclusions, because the material used in the experiments
had also been used for developing the grammars and for training the recognizer.
Nevertheless, we can show that an approach using complete parsing of utterances is
not adequate for the analysis of spontaneously spoken language under the conditions
we have described.

There are principle arguments that favor a cascaded, partial approach against the
complete analysis of utterances. The following two sections discuss the unnecessary
construction of verbal complexes, and some properties of spoken language and word
graphs that let the approach taken here seem reasonable.

4.6.1 Derivation of Verbal Complexes

The conventional style of generating verb phrases based on the subcategorization
information of the verb usually fails in incremental speech parsers. This “conven-
tional” style is to equip each verb with a list of sub-categorized constituents (the
complements) and to provide syntactic rules that saturate one complement after the
other. This works well as long as verb-first or -second positions are encountered. If
a verb-last position, like in German subordinate sentences, is processed, the diffi-
culty arises that the subcategorization information arrives after the sub-categorized
elements. Apart from the construction of the sub-categorized constituents, the inte-
gration into the subcategorization frame has to take place from the right. This can be
accomplished using two mechanisms: Either the parser constructs clusters of possi-
ble complements that are unified with the subcategorization list in a single analysis

112 4. MILC: Structure and Implementation

rule
sinfin

!append(2= *top* , 4= *top* , 6= *top* , 8= *top* , 9= *top*)phon

10= v−semsem

sinfinsyn
vlastorder
nilsubcat

syn

1= psign
2phon

3= psign
4phon

5= psign
6phon

7= psign
8phon

v−expr
9phon

10sem

vp−syn
1

3

5

7

subcat
syn

rule

svlast−4complrulename

Figure 4.11.A syntactic rule for verbs in last position with four complements

step, or the component provides special algorithms to unify with thesubcat list
from the right.

The simplest possibility is to provide rules for each possible number of comple-
ments that define how to bind the complements for a verb. However, this approach
yields a tremendous increase in processing effort. During an experiment, we ana-
lyzed a word graph using a preexisting grammar. There were 11 analyses for the
turn N002K000.22 The processing resulted in a chart with 1,362 edges (totaling 4.8
MB) and took 7.07 seconds. Adding one single rule to describe verb phrases with
four complements using verb last position (Figure 4.11), the memory consumption
raised by a factor of 3.5 (4,655 edges, 19 MB), and the time for completion was 5
times longer (35.9 seconds).

The main factor for this degradation of performance is the construction of clus-
ters of potential complements wherever this is possible. This approach may be
acceptable when analyzing written input, but if spoken input is considered, the pro-
cessing load grows to such an extent that this method is no longer reasonable.

4.6 Parsing 113

A possible solution for this kind of problem would be to deviate from the strict
left-to-right paradigm of analysis. Each grammar rule could be equipped with the
information about the “head” of the rule23, which could trigger the introduction of
new edges in the bottom-up step of analysis. The parsing algorithm waits until
a matching head is found before applying a grammar rule. After the application,
missing elements to the left and right of the head are looked for. This type of head-
driven island parsing avoids the unnecessary creation of structures. However, we
favor an approach that completely neglects the construction of complement com-
plexes in the first analysis step. The binding with subcategorization lists is left to a
successor component, the integrator (see Section 4.7).

4.6.2 Spontaneous Speech and Word Recognition
We have already mentioned elsewhere that spoken language, and spontaneously spo-
ken language in particular, often crosses the border of what would be called a stan-
dard grammar for written language (Batliner, Burger and Kiessling, 1994). Frequent
phenomena include break-offs of sentences and new starts, but also unusual com-
binations of syntactic structures. The design of a knowledge source for syntactic
analysis must be chosen so as not to reject those structures, but to incorporate even
malformed (malformed in the sense of a standard grammar) utterances. If a holis-
tic approach is used for this purpose, an approach that uses a single grammar to
model the structure of an utterance, then the combinatorial explosion of the possible
analyses may seriously affect the performance of the system. Therefore, cascaded
systems are often used for this kind of processing. One example for a cascaded
syntactic analysis is given by INTARC (cf. Weber, Amtrup and Spilker, 1997) that
extracts the context-free backbone from a large unification-based grammar for a fast
stochastic search for possible well-formed candidates (Diagne, Kasper and Krieger,
1995; Kasperet al., 1996).

Besides such a horizontal division of knowledge sources, one could also come
up with a vertical division that employs several components for certain parts of
an utterance. For instance, Light (1996) presents a system of cascaded finite state
automata that try to combine utterance fragments into ever-growing parts. MILC
combines both approaches. A vertical division is achieved in which only subunits
of the input are processed by the first parsing stage. A horizontal division is carried
out by concentrating on syntactic criteria during the first stage of syntactic analysis,
while the construction of functor-argument structures, which describe an utterance
semantically, is left to the utterance integration.

Another aspect of spoken language, which is reflected in the structure of a word
graph, is the occurrence of hesitations and pauses within a continuous utterance.

22N002K000 is a turn with multiple segments:Schön hervorragend dann lassen Sie
uns doch noch einen Termin ausmachen wann wäre es Ihnen denn recht. (Fine
okay then let us schedule another appointment when would it suit you.). One
analysis described the first part, 10 the second part.

23Not meant exclusively in the linguistic sense of the word.

114 4. MILC: Structure and Implementation

These phenomena surface in discontinuous chains of word hypotheses, which are
difficult to explain and describe with an integrated syntax-semantic approach. At
least three remedies are possible, the last two of which we find favorable:

� To formulate rules that allow for hesitations in all possible places,
� to specify that specific syntactic categories may be skipped during an analysis,

and
� to modify the parsing algorithms in order to allow gaps between word hypotheses,

thereby giving up the strong adjacency demand.

The possibility to ignore edges marked with specific categories is extremely
promising. It not only allows a general statement about hesitations or pauses, but
can also be used to skip certain words, depending on the context, that might not
carry a relevant amount of semantic content. It may be favorable for both methods
to divide the modules for syntactic/semantic analysis according to the degree of
granularity, either to skip different categories each time, or to treat gaps in the word
graph differently depending on the size of the partial analysis. In the framework of
MILC, we experimented with the set of categories to be ignored, particularly to be
able to ignore certain pertinent particles like in example 4.6.2.24

Wir
We

können
can

uns
us

ja
yes

vielleicht
maybe

im
in

März
March

treffen
meet

“We could meet in March, probably.”
(4.1)

The impact of introducing a partial parsing schema becomes apparent if the
processing effort in measures of time and space is evaluated. Table 4.2 presents
some numbers on different parameters for the approaches already mentioned. The
methods are the complete analysis of transcripts (T), word graphs (NIG) and left-
connected word graphs (IG), and the partial analysis of left-connected word graphs
(PP). We used the knowledge sources mentioned above, which for example did not
include the modeling of discontinuous constituents.

The transition from transcripts to word graphs results in a runtime that is one or-
der of magnitude larger using the same grammar. Using left-connected word graphs
further degrades performance. Performing a partial analysis, however, reduced the
runtime again to a moderate level. In order to do this, the grammar was stripped of
all rules that create complement complexes for verbal phrases and the rules respon-
sible for the attachment of prepositional phrases.

24It is at least questionable, though, whether such particles can be ignored or not. In part,
they have a great influence on the semantic and pragmatic content of utterances, especially
in combination with prosodic phenomena, cf. Niemannet al. (1997).

25The perplexity of a graph is defined asp = 2

P
(log2(#out

(v)))

jVj .

4.6 Parsing 115

Table 4.2.Results for standard and partial parsing of the dialog n002k

Parameter Measure T NIG IG PP
Density (s. Definition 2.3.1) 1 22 181 181
Perplexity25 1 3,4 9,7 9,7
Agenda tasks # 2063 16238 86922 8591
Chart vertices # 8 50 484 484
Chart edges # 654 2418 4982 909
Analyses # 4 4 371 160
Unifications # 831 3713 13848 1143
Runtime s 9.37 94.94 113.64 8.56

4.6.3 Structure and Processing Strategies

The input for the module for partial parsing consists of word hypotheses, which are
delivered by the word recognizer, and information about idiomatic expressions from
the idiom processor. The following types of messages have to be treated:

� Hyperedges, which represent sets of word hypotheses of the original recognizer
output. They are represented by hyperedges within the layered chart that carry or-
thographic word forms as labels. The parser carries out a lexical access that may
result in several preterminal edges. For each individual lexical reading one hyper-
edge is created, the structure of which is identical to the originating word edge.
The edge label, however, from now on consists of a feature structure that was
extracted from the lexicon. For each such preterminal edge, a task is generated to
insert the edge into the chart.

� Modifications of hyperedges, which happen to surface because of the incremen-
tal property of the hypergraph conversion algorithm. We have to distinguish two
cases: If the modification is to announce a new start or end vertex to the hyper-
edge, it has to be examined if new partial paths through the chart are created.
In order to do this, the fundamental rule is carried out at the new vertex for all
possible combinations of edges. This procedure is only necessary if the affected
edge has already been inserted into the chart. If this has not yet happened, the
new vertex is processed together with all other vertices. If the modification is to
announce the modification (i.e. augmentation) of the acoustic score of an edge,
the system has to find out if tasks that have not been considered earlier, because
of the threshold during beam search, are now above the threshold. All these tasks
are activated.
In any event, the new information about the edge is inherited by all the other
edges that have been created using the modified edge. Also, if necessary, this
information is related to other components.

116 4. MILC: Structure and Implementation

noun
Arbeitstreffenphon

n−sem
work−meetingconcept
index

neutgen
sgnum
3pers

index

nilmods

sem

n−syn
agree

neutgen
sgnum
3pers

agr

nom−dat−acccas

syn

Figure 4.12.One of the lexical entries for“Arbeitstreffen” (“work meeting”)

� Idiom definitions, which are treated in much the same way as word hypotheses.
The only difference is the lack of a lexicon access, because the idiom recognizer
already delivers a feature structure that describes all properties of the idiom.

� Inhibitions , which affect word hypotheses that were integrated into an idiom.
The processing involved here is to attach an additional negative score to the edge,
in order to render combinations with other edges less likely. Analyses that have
already been created using the now inhibited edge are not revoked, but their score
is updated as well. Like the modification of acoustic scores, the presence of
inhibition scores is inherited by other edges that have been created using this
edge.

Figure 4.12 shows an example of a lexicon entry for the German noun“Arbeit-
streffen” (“work meeting”). The entry contains syntactic properties (agreement
etc.), as well as semantic information. The semantic concepts are hierarchically
organized by specifying them as types in the formalism. The super-types of“work-
meeting”are“meeting”, “termin” , “n-abstracts” and“n-concepts”. This organi-
zation makes it possible to formulate selectional restrictions within the integrator
depending on more general types without being forced to specify either a complete
list of all ground types or to introduce artificial features that describe certain com-
mon properties of ground types.

The source representation of a lexicon consists of a list of surface representa-
tions and the corresponding feature structures. The syntax of the feature structures
is described in Table 3.2 in Section 3.3.2. Additionally, we implemented parame-

4.6 Parsing 117

terized macros that allow for a flexible form of text replacement. Macros can be
recursively embedded. This surface representation of a lexicon is compiled into an
internal form that additionally allows a fast retrieval of lexical entries using an index
realized using red-black trees (cf. Cormen, Leiserson and Rivest, 1990). One of the
main properties of the knowledge sources used in MILC is the use of one single
type lattice for all purposes. This renders a compatibility of the feature structures in
the system, regardless of which component created it.

The direction of processing within the module for partial parsing is strictly from
left to right. This entails that a cycle of agenda execution is carried out each time
a new input fragment reaches the module that covers a vertex being farther right
in time than the currently active vertex. This cycle first evaluates the scores of
all tasks on the global agenda and carries out a beam search by selecting all tasks
above the current threshold. Depending on the configuration of the parser the width
of the beam can be regulated. Besides exactly specifying the width, two additional
methods of selecting a width are provided: The user may choose to execute a certain
percentage of the tasks in the agenda (e.g. 60% of the tasks), or he could specify a
certain maximum number of tasks that should be carried out in each cycle (a typical
value would be 200, allowing at most 200 tasks per chart vertex). After setting the
threshold, the remaining tasks are considered one after the other.

Each task consists of the execution of one of the basic functions of chart analysis.
The two important operations we use are the proposal of new categories using rules
from the grammar, and the combination of an active and an inactive edge.

The rules of the grammar are formulated as feature structures of the typerule.
The featurerule constitutes a list of embedded feature structures, the first of which
is the left hand side of the rule. The remaining feature structures in that list form
the right-hand side of the rule. Thus, the analysis uses a schema oriented at phrase
structure rules, in contrast to methods that opt for a principle-based account of syn-
tax (cf. e.g. Konieczny, 1996). In fact, the grammars within MILC loosely resemble
those of PATR II (Shieber, 1984) by mostly providing a context-free skeleton (given
by the types of the feature structures of a rule) and annotations to each element in
the rule. Figure 4.13 depicts what a syntactic rule for partial parsing in MILC looks
like.

This grammar rule licenses nominal phrases that are built from a determiner
(a feature structure with the typedet) and further nominal parts (typen2, in the
simplest case a noun). The syntactic and semantic structure is percolated up from
the noun to the NP, which corresponds to theHead Feature Principleof the HPSG.
Inheritance is specified by coreferences between the subordinated elements on the
right-hand side of a rule and the feature structure representing the left hand side. The
determiner in front of the NP decides about the definiteness of the NP. Additionally,
agreement with other parts of the NP is demanded.

The grammar is always consulted when an inactive edge is inserted into the
chart. It is examined if the feature structure annotated at the inactive edge is unifi-
able with the first substructure on the right-hand side of any rule. For each such
rule, a new edge is created that takes the result of the unification as a label. The

118 4. MILC: Structure and Implementation

rule
np

!append(6= *top* , 7= *top*)phon

4= np−sem
5= n−definitenessdef

sem

1= np−syn
2= agreeagr

3= casecas

syn

det
6phon

d−sem
5def

sem

d−syn
2agr

3cas

syn

n2
7phon

4sem

1syn

rule

np−det−rulerulename

Figure 4.13.A grammar rule for noun phrases with a determiner

4.6 Parsing 119

new edge is active if further constituents are required on the right-hand side of the
rule. If, however, the rule has been consumed completely (under the circumstances
described here this would have been a chaining rule with only one element on the
right-hand side), an inactive edge is created. A new task to insert the edge into the
chart is generated and put on the global agenda.

The mode in which the grammar is used in the proposal of new edges shows
that MILC uses a bottom-up strategy for partial parsing, or more exactly, a strategy
described by Kilbury (1985) (bottom-up left-corner parsing) that avoids the inser-
tion of empty active edges, thereby ensuring that the chart does not contain trivial
cycles. Common processing strategies can be divided into top-down and bottom-
up strategies. An overview of several different approaches and their properties is
e.g. given by Wirén (1988), who points to relations between parsing strategies and
reason maintenance systems in the framework of incremental processing of written
language in his dissertation (Wir´en, 1992).

The second main operation we want to discuss here is the combination of two
edges of the chart. The combination is carried out if an active and an inactive edge
have a common vertex. In the framework of parsing this means that the intersection
of the end vertices of the active edge and the start vertices of the inactive edge is not
empty. If this is the case, then the system tries to unify the label of the inactive edge
with the substructure of the active edge that specifies the next symbol within the
active grammar rule. If this succeeds, a new edge can be created. Depending on the
position of the active substructures within the rule, the newly created edge is either
active or inactive. If it is inactive, the left-hand side of the rule has to be extracted
to function as label of the new edge. Consequently, the grammar is searched for
matching rules which could be used in the bottom-up step described above.

As previously mentioned, the partial parsing stage is strictly incremental and
works from left to right. Thus, the condition stated here is the only one which may
lead to the combination of edges.

The score for the new edge is computed from the scores of the originating edges.
The acoustic score is calculated as length-normalized optimal mean of the acous-
tic scores of the combined edges (see Section 2.6.3). Additionally, we calculate a
modifying score based on a stochastic language model. This model predicts the
probability of a sequence of words with regard to their adjacency. The source we
use for this computation is the model most often used in Verbmobil, capable of cal-
culating bigram probabilities. The language model score is normalized according to
the number of words in a sequence.

The output of the partial parsing component finally consists mainly of inactive
edges which have goal status according to the type hierarchy. The user defines
one type of the lattice to be the goal type; all edges annotated with a feature struc-
ture having a type that is subsumed by that goal type are delivered to the integra-
tor and the transfer modules. Figure 4.14 shows an example for such a result. It
demonstrates the feature structure transmitted as the partial parsing result of the
noun phrase“das nächste Arbeitstreffen” (“the next work meeting”). In ad-

120 4. MILC: Structure and Implementation

np
das n"achste Arbeitstreffenphon

np−sem
work−meetingconcept
defdef
1= index

neutgen
sgnum
3pers

index

adjp
adjp−sem

pred−nextconcept
pred−nextcond

1index

sem
mods

sem

np−syn
agree

neutgen
sgnum
3pers

agr

nom−acccas

syn

Figure 4.14.A noun phrase from the partial parser

4.7 Utterance Integration 121

dition, inheritance information with regard to basic word hyperedges and already
recognized idioms are sent out, together with inhibitions that belong to idioms.

4.7 Utterance Integration
The task of the utterance integration component of MILC is to create, from the par-
tial analyses that were given to it by preceding modules, semantic descriptions that
are preferably complete and span larger subparts of an input. This includes in partic-
ular the construction of verbal phrases, but also the attachment of adjuncts to noun
phrases, e.g. of prepositional phrases. Thus, the syntactic-semantic analysis, which
has been started by the partial parser, is completed by the utterance integration.

The input data that have to be handled by the integrator include:

� Inactive hyperedges from the parserthat have been assigned goal status. Noun
phrases, prepositional phrases, adverbial phrases, etc. have goal status. Addition-
ally, this includes verbs for which only a lexical access has been carried out and
which are handled solely by the integrator. These edges are inserted into the chart
and will be combined using the algorithm described below.

� Modifications of hyperedgesthat are treated analogously as explained for the
partial parser. Modifications may occur in the form of additions to vertex sets,
the augmentation of acoustic scores or the inhibition of word edges due to in-
corporation into an idiom. All three types of modifications are inherited within
the component of the integrator. Moreover, if needed, they are passed on to the
transfer component.

The main knowledge source used by the integrator is its grammar, which tries to
combine partial analyses delivered by the parser to bigger, longer descriptions. In
contrast to the parser, however, the integrator is capable of carrying out its task using
island analysis (cf. Steel and Roeck, 1987; Stock, Falcone and Insinnamo, 1988).
This algorithm does not assume that rules of a grammar have to be worked on strictly
from left to right. This means that during an island analysis, the first element on the
right-hand side of a rule is not always consumed first. The mechanism to control
the application of grammar rules is done by the definition of islands within rules.
In each rule one symbol (in our case always a feature structure) is defined to be the
islandof that rule. This element is always treated first. After finding a derivation for
the island symbol other symbols to the left or right of the island may be analyzed.
For instance, the rule in Figure 4.1526 describes a nominal phrase, consisting of
a determiner, an adjective and a noun. The main restriction that is formulated by
this rule for analysis purposes is that the adjective is consumed first. After that, the
order is not specified, depending on the processing strategy the determiner or the
noun may be the next elements to be integrated into an analysis.

26This rule is for illustration purposes only. Within MILC, adjectival complexes are not
constructed by the integrator; instead, they are handled during partial parsing.

122 4. MILC: Structure and Implementation

island−rule
2= adj

3= *top*phon
island

np
!append(1= *top* , 3 , 4= *top*)phon

det
1phon

2

noun
4phon

rule

simple−island−rulerulename

Figure 4.15. Island analysis: An example rule for nominal phrases

The motivation for such an approach to the structural analysis of utterance is at
least twofold:

� Parsing of input data should start using partial descriptions that render the most
extensive restrictions possible concerning the combination of elements of the in-
put. This helps reduce the analysis effort and thereby increases efficiency. This
motive dominates the approaches for bidirectional chart analysis of written input,
cf., e.g., Satta and Stock (1989) or Satta and Stock (1994). In particular, the intro-
duction of a head-driven analysis strategy is feasible in an elegant way (Nederhof
and Satta, 1994). However, using an island parser will still deliver the same re-
sults as a conventional modeling. Only the search for results will be done in a
different, better way (Stock, 1989).

� Parsing of input should start using partial descriptions that are the most promis-
ing to deliver results. This argument has been applied mainly for the analysis of
spoken language. Word hypotheses are promising if they carry a good acoustic
score, i.e. those that have been recognized with a relatively high degree of relia-
bility. The primary idea is to pick out these “secure islands” and, starting from
them, to extend to the left and right, picking words that are compatible with the
already analyzed words and to integrate them into a common context (cf. Briet-
zmann, 1992). As the parsing of spoken language usually tries to gain efficiency
by cutting off parts of the search space, the use of an island analysis schema may
result in pruning different parts of the search space rather than in the conven-
tional analysis. Therefore, the results delivered by an island analysis may not be
equivalent to the results of a conventional analysis.

4.7 Utterance Integration 123

At first glance, it seems to be counter-productive to use a bidirectional parsing
schema given the framework in which the parsing will happen, namely the incre-
mental (time-synchronous) analysis of spoken language. However, to use such an
argument in a dogmatic fashion would neglect some important aspects. The main
motivation for introducing an island approach for utterance integration has already
been stated: To prevent the construction of unnecessary complement complexes.
Moreover, it does not seem reasonable to hypothesize the occurrence of optional
elements of constituents (be they optional complements or adjuncts) regardless of
their factual appearance. In this respect, island operations help by doing not more
than is actually needed.

All these measures target an augmentation of the efficiency of the parsing pro-
cess and thus ultimately an augmentation of the accuracy, as fewer unnecessary
tasks will be created within the current search beam. Acoustically worse, but struc-
turally better, tasks can be regarded during the processing of an agenda. In principle,
however, the question would be how compatible the island analysis is with an in-
cremental paradigm, or how much of the incrementality is lost using it. What needs
to be considered here is the delay in time that results from using an island parser in
contrast to using a strict left-to-right approach. The delay in question is mainly due
to the fact that the module waits until a verb is present before it begins to construct
complement complexes. This delay is surprisingly small, only a few tasks. These
tasks have to be carried out after inserting the verb into the chart and consist of the
saturation of the subcategorization list of the verbs using complements that appear
to the left of the verb. In the case of German matrix sentences, there is only the
sentence subject, which makes a combination of edges necessary. The extreme case
is given with German subordinate sentences with a final verb position. In this case
the attachment of all complements of the verb has to be carried out, which results
in one additional task per complement. The rule describing this phase of the anal-
ysis is shown in Figure 4.16. Additionally, a chaining rule has to be used to insert
the completed verb phrase into the chart. The additional effort for using an island
approach thus consists of one to approximately five tasks.

Using a bidirectional approach renders one more consequence: The agenda is no
longer bound to a specific point in time. In the case of partial parsing a processing
cycle of the agenda is initiated for each step in time. Tasks that work on earlier points
in time only surface if the acoustic score of an edge is modified and there is a prior
task that reaches above the beam threshold after this modification. In the integrator,
the association of a task with some point in time is practically meaningless. Even
here, the agenda is evaluated and tasks are carried out whenever a new vertex for
the analysis is created. However, the tasks themselves might relate to arbitrarily
different points in time.

In order to make the proceeds of the analysis more clear, we will now give a
short description of the analysis of“lassen Sie uns den nächsten Termin aus-
machen” (“let us schedule the next appointment”). The more interesting mes-
sages that reach the integrator, coming from the partial parser, are shown in Table
4.3 on page 125.

124 4. MILC: Structure and Implementation

island−rule
4= v−expr

5= *top*phon

11= v−semsem

vp−syn
dtrs

10= *top*comp−dtrs

9= signhead−dtr

dtrs

8= moodsmood

2= psign
3= *top*phon

.
1= *top*

subcat

7= vlastvorder

6= infinitevtype

syn

island

v−expr
!append(3 , 5)phon

11sem

vp−syn
truec1done
dtrs

!append(2 , 10)comp−dtrs

9head−dtr

dtrs

8mood

1subcat

7vorder

6vtype

syn

2

4

rule

vp−lastrulename

Figure 4.16.A rule for complements to the left of the verb

4.7 Utterance Integration 125

Table 4.3.Sketch of the processing of“lassen Sie uns den nächsten Termin ausmachen”
(“let us schedule the next appointment”)

Nr. Content Translation Comment
1 lassen let Verbs are passed on to

the integrator from the
parser

2 Sie you NP
3 uns us NP
4 Termin appointment NP
5 nächsten Termin next appointment NP
6 den nächsten Termin the next appointment NP
7 ausmachen schedule Verb

First, the imperative reading of“lassen” is inserted into the chart (we neglect
the other possible readings). It subcategorizes for three complements, namely the
subject, a direct object and a subordinate verbal phrase using an infinitive in final
position. After inserting the imperative, a grammar rule demanding the initial posi-
tion for those can be applied. The result is an active edge with the typev-exprthat
spans the verb and has a second element on the right-hand side of the rule. This
stems from the fact that we saturate the complements in a subcategorization list one
after the other. The two following edges arriving at the integrator (“Sie” and“uns”)
are inserted into the chart and bind the first two complements. The longest active
edge is now a description of“lassen Sie uns” which waits for a verbal phrase.

The next three edges“Termin”, “nächsten Termin” and“den nächsten Ter-
min” are of no immediate importance for the outstanding analysis, they are only
introduced into the chart. The last message arriving at the integrator is the descrip-
tion of “ausmachen”. The corresponding feature structure is shown in Figure 4.17.

The grammar rule shown in Figure 4.16 on page 124 takes the verb and produces
a verbal expression that only contains the object in its subcategorization list. The
insertion into the chart thus results in an active edge. The annotated feature structure
has the typerule, because the corresponding grammar rule has not been completed
yet.27 The right side of the rule contains structures of the typesnp andv-island
(v-islandis a subtype ofv-expr). The edge carries a notice that the first element has
not yet been consumed.

This schema results in a situation in which the system has to look for matching
inactive edges to theleft of an active edge just inserted. In this case, the module
finds three possible candidates: The nominal phrases just mentioned. Consequently,
three inactive edges can be created. However, only one of them, the longest one, is

27The annotations of active edges are subsumed by the rule that has been applied. Inactive
edges only receive the left side of a rule as annotations.

126 4. MILC: Structure and Implementation

v−island
1= vereinbarenphon
v−sem

ausmachen−relconcept
nilmods
indmood
relations

semagent
nilexp
ausmachen−relname
nilsubtype
2= np−sem

n−abstractsconcept
theme

relation

sem

vp−syn
falsec1done
dtrs

nilcomp−dtrs
v

1phon

v−syn
3= indmood

nilsubcat
infinitevtype

syn

head−dtr

dtrs

3mood

np
2sem

np−syn
agree

genusgen
numnum
perspers

agr

acccas

syn

subcat

infinitevtype

syn

Figure 4.17.Lexicon entry for“ausmachen” (“schedule”)

4.7 Utterance Integration 127

vp
1= lassen 2= Sie 3= uns 4= das 5= n"achste 6= Arbeitstreffen 7= ausmachenphon

v−sem
let−relconcept
nilmods
8= impmood

nilqtype
relations

9= np−sem
hearerconcept
defdef
index

masc−femgen
plnum
3pers

index

nilmods

agent

10= np−sem
usconcept
defdef
index

masc−femgen
plnum
1pers

index

nilmods

exp

let−relname
nilsubtype
11= v−sem

ausmachen−relconcept
nilmods
indmood
relations

9agent

nilexp
ausmachen−relname
nilsubtype
12= np−sem

work−meetingconcept
defdef
13= index

neutgen
sgnum
3pers

index

adjp
adjp−sem

pred−nextconcept
pred−nextcond

13index

sem
mods

theme

relation

theme

relation

sem

vp−syn
falsec1done
dtrs

np
2phon

9sem

np−syn
agree

masc−femgen
plnum
3pers

agr

nomcas

syn

np
3phon

10sem

np−syn
agree

masc−femgen
plnum
1pers

agr

acccas

syn

v−expr
4 5 6 7phon

11sem

vp−syn
truec1done
dtrs

np
4 5 6phon

12sem

np−syn
agree

neutgen
sgnum
3pers

agr

acccas

syn

comp−dtrs

v
7phon

v−syn
14= indmood

nilsubcat
infinitevtype

syn

head−dtr

dtrs

14mood

nilsubcat
vlastvorder
infinitevtype

syn

comp−dtrs

v
1phon

v−syn
8mood

nilsubcat
finitevtype

syn

head−dtr

dtrs

8mood

nilsubcat
vfirstvorder
finitevtype

syn

Figure 4.18.A verbal phrase from the integrator

128 4. MILC: Structure and Implementation

adjacent to an active edge with which it could be combined. After this is done, the
inactive edge depicted in Figure 4.18 on page 127 can finally be created, spanning
the whole relevant input.

If this edge has goal status, which again is examined using subsumption with
a predefined type, it is sent to transfer. Besides the delivery of these completed
analyses, the utterance integration also passes along inheritance information.

4.8 Transfer
In principle, the task taken over by transfer in a machine translation system is to
link linguistic descriptions for different languages. As already mentioned in the in-
troduction, to use transfer as opposed to interlingua-based approaches has become
more and more popular. This is particularly true if a system is not going to be used
for utterances in small, technical domains, but if it has to process common speech,
which is much harder to grasp for interlingual applications (Hutchins, 1994). More-
over, a transfer-based translation method must be preferred if spoken language has
to be processed. Additionally, transfer may be characterized as a process model, as
opposed to the static description of linguistic knowledge using an interlingua. How-
ever, we have to note that in most systems the transfer stage is still mostly a recipient
of information without having major influence on the production of that information
by the preceding components in a system. In principle, a transfer model is imag-
inable that represents the central component of a MT system. Beginning on a high
abstract level, that module could issue requests to other knowledge sources. These
requests are iteratively decomposed into more simple requests that finally lead to
expectations that are evaluated e.g. in the speech recognition module.28

This seems not to be plausible from a psycholinguistic viewpoint and can prob-
ably not be implemented successfully. In any case, transfer may add to the dis-
ambiguation of the input. It should be possible to prevent further processing on
hypotheses that have been classified as not transferable, and it should even be pos-
sible to incorporate predictions that have been generated by a transfer component.
In addition to this, a transfer component could initiate further steps of evaluation by
other components if this seems necessary because of lack of sufficient information
or a translation quality that is too low. For instance, such an approach is promising
if the time systems in two languages diverge (Eberle, Kasper and Rohrer, 1992), or
it could be used for ambiguous deictic references:“Geht es da bei Ihnen” may be
interpreted as a temporal reference (“Is that possible for you”) or as a local refer-
ence (“Would it be okay at your place”) (Alexandersson, Reithinger and Maier,
1997).

28A system emphasizing the role of transfer is TDMT (Sobashimaet al., 1994). TDMT pro-
duces translations on the basis of previously seen examples. The most important knowl-
edge source is a table of transfer entries that are compared to the surface representation
of the actual input. If necessary, further evaluation processes, lexical or syntactic, are
initiated. Moreover, cf. Kay, Gawron and Norvig (1991, S. 89ff).

4.8 Transfer 129

Such additional evaluations are already put to work in today’s machine trans-
lation systems, e.g. to treat lexical mismatches (Dorr, 1993) in the case of over-
generalizing word correspondences or to guarantee a correct translation of tense
and aspect in certain cases (Buschbeck-Wolf, 1995). The organization of requests
for additional information and the handling of the replies to such requests can easily
be achieved using a layered chart, because it offers the exchange of consistent in-
formation using edge references and thus does not need a complex question-answer
protocol with advanced delay mechanisms.

The situation in which transfer is applied in common translation systems today is
the following: A source language input utterance is present in a completely analyzed
form. The result of the analysis is a structure containing a description of the input
on a syntactic or semantic level. Usually the systems request the description to
be unique; multiple analyses that cover different structural or content structures
are treated by applying the transfer apparatus iteratively. The input structure is
traversed top-down, a target language specification is constructed beginning with
the top node. Within the search space of transfer, a breadth-first search is carried
out; the next level of the input representation is only used after all higher levels have
been completely analyzed. In order to analyze written input, such a conservative
mechanism might be enough to succeed; however, the incremental processing of
spoken language demands a more elaborate procedure. This is already clear from
the fact that a complete view on the input is only possible relatively late during
the processing. Each component has to begin before that point in order to produce
partial results.

Regarding the architecture of transfer, the first thing we have to note is that the
introduction of a separate component seems to be adequate. Even if the principle
argument stemming from the weak modularity hypothesis and global insights from
software management in Chapter 1 is not taken to be reason enough, there are still
linguistic motives for such a modularization:

� Natural language processing systems are in many cases oriented towards the clas-
sical linguistic levels of description, morphology, syntax, semantics and pragmat-
ics. Thus, for each level there is one module in a system. The annotation of rules
of one of these components with information about how to carry out transfer
is possible. But to tie transfer knowledge to any of the other levels contradicts
the intuition of different processing steps that seem at least to be partially evi-
dent, cf. Chapter 1. Moreover, language understanding and translation are sep-
arated within human information processing, although both processes may over-
lap. Also, the concept of a variable depth of analysis suggests not to bind transfer
rules to rules of any other level: For instance, the annotation of transfer knowl-
edge to syntactic rules can neither cope with lexicalized translations (idioms) nor
with the semantic problems requiring a deep analysis (Prahlet al., 1995).

� The correspondence between transfer rules on one hand and rules of any other
module on the other hand is not symmetric. Let us again take syntactic analysis
as an example. It seems to be clear that not every structure-building rule in a
syntactic grammar corresponds to a rule that would be able to translate the struc-

130 4. MILC: Structure and Implementation

ture thus created.29 For instance, an English prepositional phrase like the one
embedded in“Mounting of the drill” might be translated into German again as
a PP“Montage von dem Bohrer” or, stylistically better, as a genitive attribute
“Montage des Bohrers”.30 There is no reason to already include both transfer
possibilities at the time of constructing the prepositional phrase within a parser,
as the genitival translation is a special case. Additionally, the creation of syntac-
tic structure and transfer do not work synchronously. During the processing of
“the big dog”, the syntactic structure can be built gradually, going from left to
right. The translation, however, must be delayed until the head of the phrase is
known to the system; for one in order to get the correct gender of the noun phrase
and to produce an adequate determiner, but also in order to translate the adjective
correctly (“big” having the meaning tall in stature vs. being important).

4.8.1 Chart-Based Transfer
Until now, charts have been used for analysis and generation for the most part. It
turns out, however, that this kind of data structure — and, thus, simultaneously the
advantageous division between algorithm schema and search strategy — can also
be used for transfer. There are many analogies between the transfer in a mainly
symbolic approach to translation based on feature structures and a syntactic struc-
tural analysis. Partial translations of a structural description of some input can be
potentially useful for several of the steps during transfer. Therefore, it is reasonable
to store these in some kind of well-formed substring table. The extension of this
concept in the direction of a chart is possible without any problems: Inactive trans-
fer edges describe complete translations of input constituents, while active transfer
edges belong to partial translations.

Of course, there are other approaches to the translation of natural languages,
besides methods oriented at such a strong symbolic paradigm. The most prominent
member of these is the statistical translation (Brownet al., 1990). The approach
is to try to derive probabilities of correspondences between sections of texts in two
languages by comparing several examples of bilingual texts. The most probable
correspondence of a source language text, given a model for mapping from one
language to another, is presented as its translation. The biggest problem in this do-
main is to map words and phrases correctly to each other during the training phase
(cf. e.g. Gale and Church, 1991; Fung and Church, 1994). A high degree of com-
plexity is given by lexemes consisting of multiple words that may be represented
discontinually in some target language. Moreover, the mapping has to account for
differences in phrase length in different languages (Wu, 1995a). Melamed (1998)
thus completely neglects any supra-lexeme correspondences and assumes that usu-
ally one word in one language is translated as exactly one word in another language.

29Despite these observations, there are approaches that annotate syntactic rules with trans-
lations (Katoh and Aizawa, 1994). However, the grammar is partitioned in order to equip,
for example, fixed expressions directly with a translation.

30This example was adapted from Beskow (1993).

4.8 Transfer 131

Errors, which occur inevitably, are smoothed using a noise model. Moreover, he
uses knowledge of word classes (open class vs. closed class) in order to augment
the precision of translations. He reaches success rates of more than 90% for trans-
lations of extracts from online Bible texts.

The work of Melamed (1998) exemplifies the trend of not completely relying
on a statistical modeling of text equivalence on the basis of surface representations.
This trend is also explored in other projects. The degree to which conventional lan-
guage knowledge is employed in a system ranges from using a grammar to augment
the statistical component (Wu, 1995b) over the use of knowledge from both do-
mains to similar degrees (Knightet al., 1994; Rayner and Carter, 1997), to the use
of a statistical language model to augment the output quality of a symbolic machine
translation system (Brown and Frederking, 1995). For some time now, there have
also been attempts to use statistical approaches for the translation of spoken lan-
guage (e.g. Vogel, Hahn and Branigan, 1996; Niessenet al., 1998), or to experiment
with connectionist methods (e.g. Wang and Waibel, 1995).

A different corpus-based approach uses knowledge about translations already
carried out to simplify future processing (so calledmemory-or example-basedtrans-
lations) (Sato and Nagao, 1990). The main knowledge source for such systems is
a large database of translations that can be acquired beforehand from bilingual cor-
pora. In contrast to purely statistical models, example-driven models seem much
more flexible. For one, new translation pairs can be easily added without having to
reestimate transfer probabilities. Second, memory-based models can be extended
in a more abstract way by not only having pairs of surface representations as a ba-
sis for translation, but also for instance allowing patterns with variables that would
represent trivial, non-recursive transfer rules (Juola, 1994). Moreover, an integra-
tion with other levels of linguistic descriptions is possible this way (Furuse and Iida,
1992).

In our view, hybrid paradigms for translation of spoken language are the most
promising. Having a symbolic component, they guarantee that previously unseen
input can be processed. At the same time, they treat frequent contrastive collocations
in an efficient way. However, in the framework presented here, we will restrict
ourselves to a purely symbolic approach.

A preliminary investigation (Amtrup, 1995a) models the structural transfer us-
ing syntactic descriptions. The transfer chart used there is an extension of the chart
used for parsing (see Figure 4.19). Each inactive analysis edge that contains a com-
plete syntactic description of an input constituent is taken to be the root of a tree
of transfer edges. The first level of nodes in such a tree is solely created by apply-
ing transfer rules representing contrastive grammatical knowledge. Further levels
are constructed by incorporating already existing partial translations. This process
is initiated by the existence of subordinate transfer equations. This incorporation
constitutes the fundamental rule of transfer, i.e. the creation of a new edge from
an active edge (which still contains unsolved requests for recursive transfer) and an
inactive edge (which represents the complete translation of a constituent).

132 4. MILC: Structure and Implementation

T
im

e

Equations

Generation

Transfer

Analysis

Figure 4.19.A transfer chart for structural translations

Thus, such a transfer chart realizes a two-dimensional structure. One dimen-
sion describes the extension of the underlying input in time, the other dimension
represents the number of unsolved transfer equations.

4.8.2 The Implementation of Transfer for MILC
The approach for chart-based transfer chosen for the work presented here is in two
respects a generalization of the method just described. First, the description of
translation knowledge is not only based on syntactic criteria but also incorporates
semantic knowledge to a great degree. Secondly, we abandon the rigid adjacency
requirement, which is adequate for a transfer component based on syntactic struc-
tural rules, but that is not sufficient for the syntactic-semantic descriptions that show
up in MILC.

The input for transfer consists of inactive analysis edges from the integrator,
together with inheritance and inhibition information. The edges contain feature
structures that describe the syntactic-semantic content of an input constituent. The
principle goal is to find a corresponding English description for that input.

The first step is to find applicable transfer rules for the given input structure. An
example of such a rule is shown in Figure 4.20. In analogy to some of the meth-

4.8 Transfer 133

tr−rule
concept−equivs c−equiv

source 3= relation−concepts

source−sub 4= relation−concepts

target 8= relation−concepts

target−sub 9= relation−concepts

rulename vp

source v−sem
mood 1= moods

qtype 2= qtypes

relation relations
agent 5= sem

exp 6= sem

name 3

subtype 4

theme 7= sem

subseq tr−rule
check 5

source 5= sem

target 10= sem

tr−rule
check 6

source 6= sem

target 11= sem

tr−rule
check 7

source 7= sem

target 12= sem

target v−sem
mood 1

qtype 2

relation relations
agent 10

exp 11

name 8

subtype 9

theme 12

Figure 4.20.A transfer rule for verbal phrases

134 4. MILC: Structure and Implementation

c−equiv
source sein−rel
source−sub pred−recht
target suit−rel
target−sub nil

Figure 4.21.The transfer lexicon entry for“recht sein” (“suit”)

ods explained in Section 3.2, a rule consists of two central features, one of which
(source) contains the source language semantic description, and the other (target)
the corresponding description in terms of the target language semantics. Contrastive
equivalences between these two are either expressed using direct coreference (fea-
ture qtype in Figure 4.20) or indirectly (featuressubseq andconcept-equivs).
Here, thesubseq feature defines the necessary partial translations that have to be
carried out recursively. Their use is analogous to the� -relations of Kaplanet al.
(1989) in that a correspondence is demanded on different sides of the translation.
The featureconcept-equivs mainly drives the transfer of lexical concepts. From
the example it should be obvious that the filler of case roles (agent, experiencer,
theme) are treated using recursive transfer, while the main concept of the relation
is controlled using a regress to a transfer lexicon. The elements of that lexicon map
German semantic concepts to their English counterparts, as shown by Figure 4.21.31

The first part of the application of a transfer rule consists of the unification of the
source feature of the rule and the semantic aspect of the incoming analysis feature
structure. Hence, for instance the main distinctions between verbal and nominal cat-
egories are drawn. Moreover, the coreferent contents in the target language descrip-
tion as well as the source language parts of conceptual equivalences and subordinate
transfer equations are set. In case of a successful unification, the result is a transfer
edge, the status of which (active or inactive) has yet to be determined. A transfer
edge is said to be active if it contains one or more subordinate transfer equations
that are open, i.e. still unsolved. This classification corresponds to the use of the no-
tion of activeness in chart parsing approaches and in the preceding syntactic-driven
research. In order to keep the number of transfer rules small and to be able to formu-
late general rules, we do not require that every equation of thesubseq-feature in a
rule is accounted for. In contrast, after the unification has happened, all elements of
that list are examined in order to find out if they are relevant in the present situation
or not. If the source structure of an element of thesubseq list is not used, it is

31To be more precise, the entries map syntactic representations of a semantic concept that
are formulated close to the German language in a form that is more suitable for the English
generation.

4.8 Transfer 135

e1

e3
e2

Figure 4.22.Topology of the fundamental rule for transfer

deleted from the list. The categorization of whether an edge is active or inactive, is
only carried out after this step.

Now, the fundamental rule of chart transfer is to combine an active and an inac-
tive transfer edge. A pair of edges basically has to fulfill two conditions in order to
be processed.

They have to be compatible with respect to the topology of the graph. In the case
of the syntactic transfer chart this meant that the active and inactive edges had to be
adjacent. This condition could always be met because the complete partial graph
that was built from analysis edges was present in transfer. The situation is different,
however, for the implementation described here. Only edges that had goal status
according to the integrator are delivered to the transfer component. This entails that
for several inactive edges no sub-paths are present that could be used for a simple
compositional transfer using a bottom-up strategy. Moreover, some modal particles
are treated as artifacts of spontaneous speech. They are integrated into the analysis
in order to be able to create structures spanning them, but they do not contribute to
the semantic content of an analysis.

One obvious solution would be to move away from a chart-based processing
mechanism in favor of a conventional transfer approach. That decision, however,
would neglect the fact that even under the circumstances just described, a desirable
reuse of already constructed partial translations can be carried out. Additionally, one

136 4. MILC: Structure and Implementation

would lose the advantageous control mechanism provided by the use of an agenda
in a chart-based paradigm.

Thus, we preferred to use an approach keeping the advantageous chart proper-
ties. We do not require that one of the end vertices of the active edge be identical
to one of the start vertices of the inactive edge, thereby extending active edges by
consuming inactive edges adjacent to them. Instead, we leave the sets of start and
end vertices as they were given by the inactive edge triggering the creation of the
active edge. The relation between two edges in transfer has to be the following: The
active edge spans the inactive edge with which it is to be combined. Since transfer
edges are hyperedges as is the case in the rest of the system, we use the earliest
start vertex (�<(e)) and the latest end vertex (�>(e)) of both edges to check this.
Figure 4.22 shows a possible arrangement of edges.e1 depicts an inactive analy-
sis edge that has been delivered to transfer from the integrator. The edgee2 was
created due to the application of a transfer rule and thus has identical start and end
vertices.e3denotes an inactive transfer edge which has been created beforehand. It
is completely covered bye2and therefore can be combined with that edge.

This type of evaluation does not take into account the fine-grained topology of
the graph. Thus, we cannot guarantee that an inactive edge that is incorporated by
an active edge has been, in fact, a member of the sub-path described by the active
edge. However, this is not critical, since almost all invalid cases are excluded by
the following unification, which is the second condition for the combination of two
edges. The feature structure describing the inactive edge must fulfill one of the
open transfer equations of the active edge, i.e. the unification of these must succeed.
Thus, the compatibility of the semantic descriptions is ensured.

If no matching inactive edge can be found using this procedure, we have to
rely on conventional recursive transfer. In order to do this, the open transfer equa-
tions that could not be solved are taken to be initial edges, which are handed to the
grammar for a search of matching rules. Once the edges created by grammar rule
applications are inserted into the chart, the normal operation cycle resumes.

Finally, for an inactive edge to be added to the chart, all concept equivalences
have to be solved. Here, all combinations of transfer lexicon entries are considered
that fulfill the elements of theconcept-equivs feature. For each such combination
of lexicon entries, the matching pairs are unified with the elements of the concept
equivalences.

Edges that have been created that way are potential result candidates that might
have to be delivered to the English surface generation. However, this only happens
if the root of an inactive edge has been within the input from the integrator. The
intention for this additional examination is to prevent the delivery of edges that
have been proposed in the transfer component through recursive transfer. Those
have not been marked as goal edges by the integrator and thus should not be given
to the generation module. In total, the transfer module transmits only complete
translations of constituents that have been relevant for the linguistic analysis.

4.9 Generation 137

4.9 Generation
Within the framework of MILC, we do not carry out a complete generation, but
rather a surface realization if we argue in accordance with the classic division of the
creation of a language form from a set of communicative goals (cf. Horacek, 1993).
This segmentation consists of a strategic, content-generating text planning stage
(the “What To Say”), a tactical text planning phase defining the form (the“How
To Say”) and finally the surface generation proper. If we consider the input for the
generator of MILC, this is reasonable, since they already are semantic descriptions
of the content of single utterances that are quite near to the actual surface form.
The planning of a lengthy discourse is thus not a topic for the research presented
here. Even the part defining the surface form is quite lean in dimension; the input is
underspecified concerning the lexemes that are generated, yet, we do not carry out a
complete word choice. Instead, all words matching the input semantics are chosen.

After a generation system has accepted the semantic content to be verbalized,
the order in which individual substructures are processed has to be stated. Moreover,
a suitable representation for the partial results created during the generation has to
be set up. In general, the realization of an algorithm schema (which defines the
structure) and a strategy (which makes an algorithm from the schema) is necessary.

In the framework of generation, head-driven strategies are the ones used most
often. It is quite natural to first select the lemma which dominates the content
(“semantic-head-driven”, cf. Shieberet al., 1989, Shieberet al., 1990, Kikui, 1992)
or the syntactic structure (“syntactic-head-driven”, cf. König, 1994) of an utter-
ance. Starting out from that central information, additional language material can
be placed into the correct position. This procedure terminates when all input el-
ements have been considered (although not all input elements have to be realized
overtly).

Concerning the embedding of a data structure for generation, it can be noted
that chart-based approaches are often used to handle the operations and data ele-
ments needed. Chart-based approaches offer a non-redundant storage schema and
the possibility of fine-grained control. Thus, not only is the repetitive generation of
identical surface structures avoided, it is also possible to integrate different search
strategies. For instance, the introduction of a bidirectional generation is possible,
enabling the generator to construct islands within the surface realizations that are
extended to the left and right (Harunoet al., 1993). The only problematic issue is
the fact that a direct mapping from chart vertices to points in time is not straight-
forward. The order in which different parts of a surface form are realized is created
only during generation and thus cannot be used analogously to the analysis. For
that reason, Kay (1996) uses sets of already processed semantic substructures as
identification of edges.

A discrimination criterion for several different approaches to generation is also
given by the kind in which the generator consumes its input. Most systems rely on
the complete delivery of a semantic representation of the content before the genera-
tion takes place. This is in particular important for head-driven methods, since they
have to know the head (be it semantic or syntactic) of an utterance in order to build

138 4. MILC: Structure and Implementation

the structural frame of the surface form. Even chart-based systems that use flat se-
mantic descriptions, like Kay (1996), are not specifically designed for incremental
input. However, an incremental generation is reasonable and practical, as Reithinger
(1992) demonstrates with the POPEL system (also cf. Finkler and Schauder, 1992,
and Kilger, 1994).

One interesting variant of generation algorithms is the so-calledshake-and-
bake-generation (Beaven, 1992; Brew, 1992; Whitelock, 1992). Here, the input
is considered to be a set of uncorrelated units. These units are combined to form
bigger signs until finally all input units have been used and the sign thus formed
conforms to the underlying grammar that licenses combinations. The main draw-
back of the early version of this system is its exponential complexity. Therefore,
shake-and-bake generation has not been extensively used in applications. However,
Pozna´nski, Beaven and Whitelock (1995) publish a polynomial generation algo-
rithm within this framework.

The generator for MILC combines some of the properties mentioned so far: It is
incremental, chart-based and may operate on a head-driven basis. We will demon-
strate the different aspects of processing using the example shown in Figure 4.23. It
depicts a part of the input delivered from the transfer to the generator.

The feature structure in Figure 4.23 is only part of the input, as it only contains
the semantic description covering the whole input. All analyses that represent a
smaller part of the input are omitted here. The type of the feature structure (v-sem)
instructs the generator to look for rules within its grammar that have the same type
on the left-hand side.

The model underlying the derivation is again made up from phrase structure
rules (see Figure 4.24). However, generation rules are treated differently from pars-
ing rules. First and foremost, the direction of the application is opposite. In a struc-
tural analysis, the feature structures on the left-hand side of a rule are composed
from subordinate structures on the right-hand side of the rule. The situation for
generation is as follows: The semantic description for an element on the left-hand
side of a rule is given as input to the system. The goal is to create the syntactic and
phonological structure by iteratively processing the elements on the right-hand side.
This enables a program to have a more restrictive method of selecting applicable
rules, as it would have been possible simply by testing types of feature structures.
The goal for having such a restrictive rule selection schema is to reduce the number
of rule applications and thus the number of unifications. To accomplish this, the
featurecheck shown in the rule of Figure 4.24 defines a path (or a list of paths) that
must not carry empty values within the structure to be generated. For instance, this
consideration is used to bar the generation of modifying phrases for a structure if
the semantic input does not contain any modifying elements.

The author of a generation grammar has a second method of influencing the
processing by modifying the order in which right-hand side elements in a rule occur.
This order does not — as in analysis — specify the surface order of constituents.
The surface order is defined by thephon feature on the left-hand side of a rule.
This enables the author to arrange the elements on the right-hand side following

4.9 Generation 139

v−sem
14= let−relconcept

nilmods
2= impmood

3= nilqtype

relations
np−sem

hearerconcept
5= defdef

6= index
masc−femgen
plnum
3pers

index

nilmods

agent

np−sem
usconcept
7= defdef

8= index
masc−femgen
plnum
1pers

index

nilmods

exp

14name

nilsubtype
v−sem

15= ausmachen−relconcept

nilmods
10= indmood

11= qtypesqtype

relations
np−sem

hearerconcept
5def

6index

nilmods

agent

nilexp
15name

nilsubtype
np−sem

work−meetingconcept
12= defdef

13= index
neutgen
sgnum
3pers

index

adjp
adjp−sem

pred−nextcond
sem

mods

theme

relation

theme

relation

Figure 4.23.A subpart of the generation input for“lassen Sie uns das nächste Arbeitstr-
effen vereinbaren” (“let us schedule the next work meeting”)

140 4. MILC: Structure and Implementation

rule
sem relation namecheck

vp
2= *top*

3= *top*

phon

1= v−sem
nilmods
impmood
nilqtype
relations

np−sem
index

(2 , 3)pers
index

agent
relation

sem

v
2phon

1sem

v−syn
top

.
4= *top*

subcat

3subcat−phon

finitevtype

syn

.
4

rule

vp−imprulename

Figure 4.24.Generation rules for imperative verbs

economic principles. Usually, this means that the element that generates the most
restrictions is generated first. For example, while generating a verb phrase, it is
not reasonable to first generate the subject and then the finite verb form, since the
verb may pose further agreement restrictions on the subject. Instead, the verb would
be generated first, then the subject. Using this kind of economic ordering for the
right-hand side of a rule, a head-driven approach can be easily integrated into the
derivation.

A further advantage of the strategy presented here is the very general, elegant
way in which rules for the subcategorization of verbs and other elements can be
formulated. The formalism we use allows for the specification of a pair (which
defines the head and the rest of a list, similar to the construction[H jT] in Prolog

4.9 Generation 141

or a Lisp cons-cell). Using this method, the subcategorization list of a verb can be
used to dynamically create specific generation rules that contain exactly as many
complements as the verb demands. This possibility is also used in the rule shown in
Figure 4.24.

The generator that we present here works incrementally. However, the incre-
mentality is not based on the steady flow of parts of a semantic descriptions into
the generator, as it is done in the approach of Finkler (1996); instead, even in gen-
eration the basis of incrementality is the extension of input in time. The semantic
descriptions usually arrive in the order of their endpoints. The mechanisms of chart-
analysis are used to integrate already generated fragments into edges that cover big-
ger parts of the input utterance. Whenever an edge arrives in generation, coming
from transfer, the generation grammar is consulted. It delivers rules that are poten-
tial candidates describing the surface realization of the given input. The search for
rules is steered by the type of the fragment to be generated and by the features to be
checked (stated by thecheck feature of a rule). If matching rules are found, their
left-hand sides are unified with the input, respectively. The edges thus generated are
inserted into the chart.

Depending on the number of elements that are still unaccounted for on the right-
hand side of a generation rule, edges are classified as being active or inactive. The
rules for active edges have not yet been completely satisfied. While adding such an
edge to the chart, a search is carried out for inactive edges that are able to fill the
rule element to be processed next. This is evaluated by unification. If successful, a
new edge is created and undergoes the same cycle. Additionally, for a nonterminal
on the right-hand side, the process of searching for applicable grammar rules is
initiated again. This is due to the fact that there may be more derivations apart
from the ones found until now. Using this mechanism, active and inactive edges
are combined until finally one edge is found that completely realizes the semantic
input description. In analogy, the generator tries to incorporate inactive edges within
larger contexts. The implementation searches for active edges that span an inactive
edge inserted into the chart and that are compatible with it. In this case, both may
be combined.

The processing of terminal elements within grammar rules needs special consid-
eration. A feature structure is called terminal if it is associated with a lexical type,
like the substructure of typev in the rule shown in Figure 4.24. If such a rule ele-
ment is to be generated, a lexical access is carried out on the basis of the semantic
concept requested in the description. The generation lexicon is specified using full
forms. We do not carry out morphological generation. For each matching word,
a new edge is generated. Figure 4.25 shows a lexicon entry being relevant for the
fragment used here as an example. The entry simultaneously shows the manner in
which the order of the phonological values of subcategorized elements is computed.
The list-valued featuresubcat-phon describes the surface order of the utterance
fragments belonging to the verb.

The special typegener-catdenotes edges that have to be realized by the gener-
ator. Those feature structures of edges created by the generator that are subsumed

142 4. MILC: Structure and Implementation

v
letphon

v−sem
let−relconcept
relations

semagent
3= np−semexp

let−relname
nilsubtype
v−sem

relations
semagent
semexp
5= relation−conceptsname

nilsubtype
6= semtheme

relation
theme

relation

sem

v−syn
np

*top*phon
1= np−semsem

np−syn
nomcas

syn

np
2= *top*phon

3sem

np−syn
acccas

syn

vp
4= *top*phon

v−sem
5concept

relations
1agent

nilexp
5name

nilsubtype
6theme

relation

sem

vp−syn
infinitevtype

syn

subcat

2

4

subcat−phon

finitevtype

syn

Figure 4.25.Generation lexicon entry for“let”

4.10 Visualization 143

Table 4.4.An example for the output of the generator

you
you jwe
you jwe jit
you jwe jit jwork meeting
you jwe jit jschedule work meeting
you jwe jthe next work meeting
you jwe jschedule the next work meeting
let us schedule the next work meeting

by gener-catare marked as final output of the system. The generation component
maintains a hypergraph of these edges at all times. That graph represents fragments
of surface realizations that could possibly be part of the translation of the input.
Whenever a new edge is added to this graph, we use the incremental Algorithm 14
in Section 2.7 to determine the shortest path through the generation graph. If the
path changes, the surface forms are printed as output. The weight of an edge is
determined by the acoustic score of the original input words. Additionally, we im-
pose a penalty for a transition between two vertices of the graph if the transition is
not justified by an edge. Using this method, a path through the complete graph of
surface edges is found. A further modification of the score depending on the length
of the surface realization has the effect that semantic contributions are preferred to
be realized overtly.

The method of keeping search information within the generator utilizes an in-
cremental output of the target language utterance while it is being translated and
generated. Table 4.4 presents the output of the complete MILC system for the Ger-
man input“lassen Sie uns den nächsten Termin ausmachen”, which was used
for all examples in this chapter.

It is clear how evergrowing parts of the input utterance are translated into En-
glish. For instance, the imperative verb“lassen” (“let”) is only generated after all
subcategorized complements have been realized. Only using this schema the struc-
tural information of“den” being a determiner and not a demonstrative is incorpo-
rated.

4.10 Visualization
The visualization of information being created during the course of processing is
essential for all large systems, be it for reasons of debugging, or to present results
in a more instructing way than is possible with pages of textual representations.
Several reasons for the importance of a visualization for MILC follow:

144 4. MILC: Structure and Implementation

� MILC is a distributed system, currently consisting of six components for the anal-
ysis of an incoming speech signal. The search for programming errors in such
distributed systems is notoriously complex; the uncertainty about the exact order
in which some actions happen provides a whole array of error sources.

� MILC processes spoken language. This results in a very high number of initial
elementary input elements (word hypotheses). Their number is reduced by the
incorporation into a hypergraph, however it is still orders of magnitude bigger
than written input. Moreover, the relation of edges can be assessed much more
easily using a graphical interface than e.g. comparing vertex numbers of a chart.

� MILC uses complex data structures. The development of grammars and lexi-
cons using text-based tools is usually fast and sufficient. The reasons for this
are on one hand the property of many formalisms (including the formalism for
MILC) to allow concise formulations using macros, and on the other hand the
structures created (grammar rules and lexicon entries) are in many cases highly
under-specified. However, if feature structures representing the final output of
some processing stage are given as output, then a simple text-based represen-
tation is unsatisfying. A graphical presentation may use different fonts, sizes
and a visual bracketing to aid the user in correlating different parts of a feature
structure in a fast, efficient manner. The visualization implemented for MILC is
no development tool for linguistic knowledge sources; there is no possibility of
modification nor a mechanism to fold feature structures as a manipulation of the
output form, as has been realized with the system Fegramed (Kiefer and Fettig,
1993).

We chose Tcl/Tk (Ousterhout, 1994) as implementation language for the vi-
sualization because of the efficiency (both in development and execution). That
language forms the framework for the graphical interface for the visualization (a
snapshot of the interface is shown in Figure 4.26). The figure shows a fragment of
a hypergraph that is currenty being processed. The property of hyperedges having
several start and end vertices is depicted by the ray-shaped connections of edges to
vertices. One of the edges was selected using the mouse. The properties of that edge
are displayed in the bottom half of the window.

These properties include the original input (“Herr Pfitzinger”), the information
about the start and end vertices of the edge, and possible annotations from differ-
ent components. These annotations are shown in the list on the left; one of them
has been selected. The content of the selection is the target language surface rep-
resentation (“Mr. Pfitzinger”) described by the feature structure to the right. The
visualization of hyperedges and feature structures has not been implemented using
Tcl/Tk directly; instead, they have been realized in an underlying C-layer.

The incremental visualization of word graphs in an appealing manner is aston-
ishingly difficult (Florey, 1998). In particular, the incremental creation of a graph-
ical representation by ensuring that certain layout characteristics are kept (e.g. the
property that vertices are ordered by time), is difficult using conventional graph lay-
out algorithms. The situation for MILC is in so far favorable, as we reduce the
number of edges drastically by converting simple word graphs to hypergraphs. That

4.11 Extensions 145

Figure 4.26.A snapshot of the processing with MILC

enables us to use a relatively simple drawing of vertices (linear and equidistant in
the x-axis) and edges (as parts of ovals) without loosing too much clarity.

4.11 Extensions
MILC is a complete system for the translation of single, spontaneously spoken Ger-
man utterances into English. We described the extent and the function of the system
in the preceding sections. Despite the completeness, an augmentation or extension
of the functionality is possible and desirable in several aspects. This is exactly
within the intention of the implementation, which on one hand was to provide an
overall incremental system for the translation of spoken language, offering on the
other hand an experimental platform suitable for further investigations into the ar-
chitecture of natural language processing systems in general and the role of incre-
mentality and interactivity in particular. In this sense, MILC was designed to be an
open system. In this section, we will point out several obvious modifications that
can be implemented immediately. Moreover, we will present an extension consist-
ing of two parts, covering the range of phenomena the system can handle within

146 4. MILC: Structure and Implementation

an utterance as well as the extension to process more than one isolated utterance.
Finally, we discuss some questions that arise in the context of an attempted anytime
analysis.

The simpler extensions we want to mention are mostly local modifications of
individual components that may have a direct impact on the performance or pro-
cessing quality of a module. Examples for this type of modification are:

� Language model. The language model we use within MILC is a bigram model,
predicting the probability of two words being adjacent. However, since the input
utterances usually cover more than two words, the application of a trigram at least
seems reasonable.

� Extended idiom processing. The treatment of idioms in the current version of
MILC concentrates on routine formulas which are strictly lexicalized. They are
not allowed to be inflected or otherwise structurally variable. In the domain of
appointment scheduling this might be too restrictive, since there are many id-
iomatic expressions that show some degree of freedom in realization: For in-
stance, proposals for an appointment are often realized idiomatically, but they
frequently contain date expressions or interspersed modal particles, and thus can-
not be adequately processed using a strictly lexicalized approach (Erbach and
Krenn, 1994). The variable modeling of idioms necessary to do this can, for ex-
ample, be achieved using finite state transducers that have access to the category
information of words. Also, optional parts like particles can be captured like this
(Zajac, 1998).

� Grammars. The rules of the grammars used in the system should be augmented
by probabilities, following the method of Weber (1995). This approach of com-
puting the score of a derivation, taking into account statistical information about
the grammar itself, is not restricted to syntactic parsing. It can consequently be
applied to transfer and generation as well.

� Selection. The evaluation function that searches for the best sequence of hy-
potheses in the generation graph can be revised. Two aspects offer themselves as
being helpful:
– The scoring function could additionally use an English language model to

smooth the generation output.
– The utterances that have been generated could be reanalyzed to a certain de-

gree, thereby generating a better coherence between fragments of an utterance.
� Generation grammar. The rules of the generation grammar are ordered hierar-

chically. This results in a better control of their application and ensures that rules
for specific cases are always treated with priority. Additionally, the performance
of the generator can be improved by applying general rules only if no other more
special rule can be used.

� Chart structure . At least the analysis algorithms currently demand the adja-
cency of words and constituents when integrating them into larger contexts. In
Section 4.6.2, we examined the possibility of marking certain categories of edges
that could be consumed without modification of the linguistic description. In Sec-
tion 2.6, we presented the introduction of gaps within the structure of the chart.

4.11 Extensions 147

A combination of both approaches could lead to a method capable of skipping
enough material in the chart to construct a continuous analysis without introduc-
ing too much overhead.

� Search strategy. Left-connected graphs contain vertices that have no outgoing
edges because no word hypotheses having a sufficiently high confidence could
be found. The search strategy (again, at least within the analysis modules of the
partial parser and the integrator) may be modified to take advantage of this fact.
In order to do this, a schema of delayed evaluation could be introduced. Tasks
for an edge are inserted into the global agenda only if the end vertex of the edge
has at least one outgoing edge. Using this restriction, at least simple dead ends
(those consisting of a single edge) are not considered. However, such a delayed
evaluation interferes with the strict left-to-right paradigm, since we cannot predict
how long to wait for the continuation.

� Parallelization. The structure and implementation of MILC guarantee a high de-
gree of inter-modular parallelism of all components. We did not delve into the
options of an intra-modular parallelization of individual components. It turns out
that a concept using layered charts together with a shift-invariant formalism is a
nearly ideal foundation for the parallel processing of graph-like structures. We
have already shown in an earlier investigation (Amtrup, 1992; Amtrup, 1995c)
that parallel parsing using a chart-based paradigm results in a potential perfor-
mance increase. However, Amtrup (1995c) only covers the processing of written
language. Spilker (1995) attempts to process spoken language with an agenda-
based parallel system, but does not achieve satisfying performance on a shared
memory multiprocessor system. Starting off from these two results, the distribu-
tion of parts of the analysis based on sub-paths of a word graph and using loosely
coupled multiprocessors seems to be more appropriate. A variant that offers it-
self immediately is to take the edges emerging from each vertex as seeds of a
distributed processing. Up to a certain degree, the graph is unfolded into a tree
in order to utilize as many processors as possible. After sub-paths have been an-
alyzed on different processors, the results have to be combined to reconstruct the
original topology of the graph.
The use of chart-based mechanisms throughout allows a system like MILC to ex-
tend parallel processing beyond the application to a syntactic parser. Other mod-
ules may also benefit from the availability of highly parallel computer systems,
e.g. on the basis of loosely coupled transputer systems.

4.11.1 Extension of the Architecture

The extension we are going to present in this section touches two aspects of com-
putation: First, additional properties of spoken languages are integrated into the
processing. Here, we are mainly concerned with prosodic phenomena, to a lesser
degree we are going to discuss the introduction of feedback loops that have not been
implemented so far. Second, we extend the applicability of the system by taking into

148 4. MILC: Structure and Implementation

account complete dialogs. This is done in order to be able to model effects that cover
more than a single, isolated utterance.

Both directions of extension have been previously studied in different contexts,
thus they present nothing new that would have been impossible without an architec-
ture like MILC. Nevertheless, the investigation of both aspects and the exploration
of their embedding into an integrated, uniform system seems to be desirable, e.g.
in order to evaluate the mutual influence of design decisions within a complex sys-
tem for processing of spontaneous speech. MILC is an ideal framework for this
endeavor.

The influence of prosody has been extensively investigated in the Verbmobil
project for the first time (Noethet al., 1997). Each word hypotheses is annotated
with probabilities that indicate if the hypothesis carries a phrasal accent, if it marks a
phrase or sentence boundary and if it marks a certain sentence mood. This informa-
tion is used by the following modules for linguistic analysis to modify the scores of
rules and thus increase the efficiency and accuracy of the analysis itself (cf. Amtrup
and Jekat, 1995). With the aid of prosodic evidence, the syntactic analysis of the
Verbmobil project could be augmented considerably, reducing the number of syn-
tactic readings by 90%. A different aspect of prosody was used in the architectonic
prototype INTARC. Here, prosodic information was used to calculate the focus of
an utterance, which in turn was used to produce a shallow translation based on dia-
log acts (cf. Jekat, 1997). An analysis of the underlying corpus showed that focused
words are often used as the basis of determining the dialog act conveyed in the utter-
ance. Thus, a prosodically motivated keyword search predicts the dialog act (Elsner
and Klein, 1996).

The integration of prosodic evidence can in principle be achieved in two differ-
ent ways. The method accepted for Verbmobil consists of annotating recognized
words with prosodic information after the initial word recognition. This is partly
due to the fact that the syllabic structure of a word has to be known in order to com-
pute its prosodic feature vectors. Such an additional annotation can be integrated
seamlessly into the architecture of MILC. The only possible obstacle would be con-
tradicting prosodic information of two word hypotheses that are to be integrated
into a single hyperedge. In this case, the simple solution would be to create a new
hyperedge. However, there are approaches that do not depend on previously com-
puted word hypotheses. These methods use only content of the signal and do not
rely on a word segmentation (Strom and Widera, 1996). The results of this method
are quite good (the recognition rate for phrase boundaries is approximately 86%)
and can be integrated into the layered chart as additional edges that may be used by
any component.

The second augmenting measure that can be taken within the context of a single
utterance is the introduction of feedback loops between components. In particular,
this seems promising at the crucial speech-language interface, between components
for a linguistic analysis and for speech recognition. Such a mechanism has been
used within INTARC to increase the efficiency of the system as a whole. As already
mentioned in the introduction, the feedback loop was established between the word

4.11 Extensions 149

recognition and the syntactic parser (Hauenstein and Weber, 1994). MILC does
currently not use feedback loops, but the design and implementation are specifi-
cally aligned with their exploration. Besides the interweaving of recognition and
syntax the employment of influences from higher linguistic levels is reasonable and
desirable (Menzel, 1994).

These higher linguistic levels come into view as we discuss the second extension
of MILC, namely the processing of complete dialogs instead of single utterances.
So far, MILC operates on single utterances of participants in a dialog without stor-
ing and using the information that was gathered during processing of an utterance.
To do this is advantageous from several points of view. First, it is obvious that the
coherence of a text is established over several utterances in a dialog. The informa-
tion extracted from previous sentences can be used to disambiguate the content and
communicative goals of the current utterance. Some utterances are only understand-
able by taking into account context and can only be translated in an appropriate way
using that context (cf. Alexandersson, Reithinger and Maier, 1997). Thus, the in-
corporation of a dialog management component into MILC is a suitable goal. We
can leave it an open issue for now whether the dialog component stores the knowl-
edge about the utterances internally, or whether the structure of the layered chart
is extended in order to capture the complete dialog. In order to carry out disam-
biguation, the integration of several utterances into the chart is not necessary, this
function may be fulfilled on a question-answer basis as in Verbmobil (cf. Alexander-
sson, Maier and Reithinger, 1995). If, however, the dialog processing is to influence
other components by means of a feedback loop, then an extension of the chart seems
preferable for reasons of uniformity of information storage. This schema requires a
slight modification of the chart structure in order to be able to remove all utterance
internal information once an utterance has been completely processed.

The extension of the architecture of MILC in the direction of a dialog process-
ing machine is also favorable from the viewpoint of generation. Only if a system
has access to translations already carried out and verbalized, a strategic or tactical
text planning becomes feasible, e.g. to augment the style of utterances by replacing
definite descriptions by pronouns for their second occurrence.

4.11.2 Anytime Translation

Anytime algorithms have been employed mainly for planning problems so far (Rus-
sel and Zilberstein, 1991; Boddy and Dean, 1994). The application of anytime
procedures is highly desirable for natural language processing, as we already men-
tioned in the introduction. However, there are many problems of theoretical and
practical nature with their use in highly modular, natural language processing sys-
tems that work with complex feature formalisms. First, we have to define what the
impact of anytime algorithms would be for the function of a system, and what kind
of effect users may realistically expect. Only after this, the consequences for de-
pendencies between single algorithms and modules can be predicted in a satisfying
manner.

150 4. MILC: Structure and Implementation

The time profile of a system processing spoken language can be divided into two
sections, if we assume the application of interpreting within a dialog:

� The first phase is characterized by the time that a speaker needs to finish his or
her dialog contribution. Depending on the situation and the speaker, the duration
of this phase is between a few seconds and one minute.32

� The second phase consists of the period that the user has to wait for the translation
of the machine. Once the speaker has completed an utterance, his attention span
is relatively short and the relevance of a translation degrades fast.33

Russel and Zilberstein (1991) distinguish between two different kinds of any-
time algorithms.Interrupt algorithmsmay be interrupted at any point during their
computation and are always able to deliver some results.Contract algorithmson
the other hand, have been informed beforehand about the amount of time they may
spend for an analysis. If they are interrupted before this time span has ended, they
produce no output. After the computing interval ends, they are able to deliver re-
sults. The common property of both variants is that the quality of results increases
monotonically with the time the algorithms spend for the computation. This is mod-
eled using a probabilistic performance profile.

It is apparent from this definition that contract algorithms are primarily not ap-
plicable in the framework of natural language processing we assume here. The
length of the first phase mentioned above is unknown in advance, the second phase
is very short. The first point in time at which it would be possible to get an estimate
about the remaining time is the borderline between those two phases. In principle,
interrupt algorithms seem to be the method of choice.34 Now, the question would
be, what the granularity of such an algorithm is, i.e. in what intervals it is reason-
able to extract a result. Essentially, this is the question of establishing a quantization
of time. Görz and Kesseler (1994) investigate this issue for the structural analysis
within the INTARC system and report intervals of 10 or 100 ms. Individual unifi-
cations should be atomic in their opinion, since otherwise there might be unsolved
coreferences.35 Within a chart-based system, two choices of intervals offer them-
selves: The execution of one individual task on the agenda, or the execution of all
tasks at one point in time.

32Utterances lasting longer than one minute are rare and in the framework of appointment
scheduling almost always artificially elicited. However, cultural influences play a certain
role for the length of utterances.

33An interesting method to prolong the time that a system may use for the processing of
input, is to “mumble” about the current state of the analysis during the computation (Karl-
gren, 1994).

34Russel and Zilberstein (1991) show that every contract algorithm can be converted into
an interrupt algorithm. The algorithm thus constructed needs three times longer to obtain
results of equal quality.

35However, they claim that it would be possible to define core features and features of lesser
importance within a type lattice, thereby allowing for a phased unification.

4.11 Extensions 151

Further consideration reveals that it is not useful to interrupt a system processing
spoken language before the input utterance is completely spoken. This may be triv-
ial, but it effects the measurement of time in the system. Previous work within the
anytime framework for planning assumes that the input is initially available, provid-
ing the data for the computation of the result. The input is atomic and conceptually
does not consume any time. However, under the circumstances present here, the
construction of the initial condition is by no means instantaneous. To the contrary,
the time needed for input amounts to the majority of processing time available.
Thus, the total computation time is the sum of the two phases mentioned above;
an interruption during the first phase is, however, impossible. After completion of
the first phase, the system may be interrupted in certain intervals (e.g. 100ms), and
delivers a result with monotonically increasing quality.

The issue of the quality of a result is widely undecided. In the area of machine
translation, th structural complexity of a translation (or, better, the complexity of the
tree representing the translation) may be a first clue, but without having the status
of universal validity. For that reason, artificial methods for the processing of natural
language can only be classified asweak anytimealgorithms (Menzel, 1994), having
no general performance profile, but only a profile based on the actual input. In
the MILC system, we provide continually better results by applying the selection
function within the generator component. In this respect, the incremental output of
utterance fragments can be viewed as a first step towards the preparation of output
with a monotonically growing quality.

Of course, MILC does not implement an anytime behavior. While being incre-
mental throughout, it is not reasonable to interrupt the execution before generation
hypotheses for a large part of the input has been computed. Thus, MILC cannot
react to time constraints below a certain threshold.

The incremental operation of all modules in a system, on the other hand, is a
necessary precondition for the introduction of anytime behavior. Assume a non-
monolithical system. If such a system works non-incrementally, and if that system
is interrupted, there will be situations in which only a subset of the modules has
completed their tasks. Thus, no result can be presented in response to the interrupt.
Even if contract algorithms are used, the resources that one component needs to
complete its operation depend on the output of preceding components and can thus
not be easily determined.

Incremental modular systems are in principle able to cope with anytime de-
mands. If one assumes that the increments of individual components are small
enough, a repetitive operation and increase of quality is possible. The strategy
would be to produce a very weak output first (e.g. a word-for-word translation).
Further iterations of processing would analyze the input utterance again and try to
increase the quality of results. A selection function evaluates the set of results ob-
tained so far, and is able to improve them. Such a behavior, as is exemplified by
MILC, avoids the commitment for intermediate results and leaves the ultimate de-
cision for results open as long as possible. This is done at the cost of inducing an
increased effort to process a high number of alternatives. Besides the definition of

152 4. MILC: Structure and Implementation

quality, which we already discussed, the question of how much effort has to be in-
vested in the augmentation of an insufficient result is also of great importance, i.e.
a dynamic cost-effectiveness analysis. Here, no definite solutions exist either, only
heuristics can be thought of, the impact of which have not yet been investigated. A
first approach could be to include constraint satisfaction algorithms (Menzel, 1998).

The procedure of translation in the framework of anytime algorithms can be
more precisely stated:

� While the user is speaking and the input is not yet complete, each component
tries to process tasks as far to the right as possible. This corresponds to working
as time-synchronously as possible. A component may produce additional results
only if the recognition process leads to delays in the production of word hypothe-
ses.

� At the end of the utterance36 this behavior changes. For a short period of time
the time-synchronous processing has to continue, up to a point when all compo-
nents have initially processed the whole input. At this point, a raw translation is
complete. Therefore, the augmentation of the translation quality is the foremost
goal now. A reasonable strategy would first identify segments of the input that
resulted in a translation of poor quality and invest computing time in order to
come up with better results. The iterative processing and consideration of these
intervals may achieve the biggest increase in overall translation quality, it is thus
worth processing them with priority.

4.12 System Size
MILC, as well as some of the support programs (grammar compiler etc.), are com-
pletely implemented using C++. For the implementation of the visualization we
used the scripting language Tcl/Tk (Ousterhout, 1994), which has been extended by
C-routines to draw edges and feature structures. Table 4.5 shows the current size of
the MILC system in lines of code.

4.13 Summary
In this chapter we explained the implementation of MILC. We discussed the archi-
tectonic foundation, the behavior of each component of the system and their coop-
eration within a distributed system. The predominant motivation was to implement

36Even the recognition of the end of an utterance is a non-trivial problem. If one assumes
that a period of silence marks the end of a user’s input, then it is disputable how long the
silence has to be in order to unambiguously mark the end. In the first phase of Verbmobil,
the user had to push a button while speaking; thus, the detection of the end of an utterance
was simple.

4.13 Summary 153

Table 4.5.System size (in lines of code)

Component No. of lines
Communication and configuration
Communication system ICE 10715
Configuration 1158
Misc.
Trees and lists 1794
System statistics, object creation 465
Graph analysis
DAGs 4825
Analysis system 360
Feature structures
Core 6178
Functions 103
Chart
Chart maintenance 1428
Agenda maintenance 244
Knowledge sources
Grammar maintenance 454
Lexicon maintenance 317
Compiler for grammars and lexicons 240
Type lattice 464
Grammars 2494
Lexicons 4322
Components
Recognizer 362
Idioms processor 697
Parser 825
Integrator 765
Transfer 779
Generation 439
Visualization 1118
Total 40546

a complete system translating spontaneous spoken language, which follows the in-
cremental paradigm. Additionally, we wanted to provide an architectonic frame-
work that could be used for future research and experiments. This motivation first
lead to the design of layered charts, a data structure supporting the development of
highly complex, distributed software systems for natural language processing. The
integration that is achieved by a layered chart is complemented by the use of an
uniform formalism within the system. Layered charts have properties which make
them superior to data structures employing a central control (like blackboards and
whiteboards).

154 4. MILC: Structure and Implementation

The validity and suitability of the data structure thus implemented have been
confirmed by the complete implementation of the translation system MILC. A com-
prehensive implementation ensures at the same time that a theoretical advantage can
be realized in practice. A partial implementation in whatever way could not have
been accepted as a proof of this. All components (word recognition, idioms pro-
cessing, partial parsing, utterance integration, transfer and generation) are entirely
incremental. This enables the system to preserve this type of operation until English
surface fragments are generated. MILC works on the level of single utterances.

The main desirable extensions in a conventional framework are the utilization
of prosodic information for disambiguation and the incorporation of whole dialogs.
As for architectonic aspects, the introduction of feedback loops seems promising,
especially at the crucial speech-language interface.

Chapter 5

Experiments and Results

In this chapter we describe the experiments that have been carried out with the
MILC system. The most important findings are given by the investigation of the

translation of several dialogs from the Verbmobil domain. Accompanying
experiments deal with the usability of hypergraphs for the underlying task and an
attempt to estimate how efficient incremental systems may be in comparison with

conventional approaches.

In the preceding chapters, we presented the theoretical foundation, the architec-
ture and implementation of the MILC system. We argued that having an experi-
mental work bench for experiments in the framework of incremental translation was
one of the primary motivations to implement the application. To show the adequacy
of incremental methods leads to the complete implementation of the system, as a
partial implementation could not have been used to validate this. In order to fur-
ther demonstrate that such an incremental system is actually capable of coping with
real-world input, we investigate dialogs in this chapter that have been recorded for
the Verbmobil project.

First, we will demonstrate the effect that using hypergraphs has on the perfor-
mance of a parsing system. The result is that the transition from conventional graphs
to hypergraphs having edges with sets of start and end vertices facilitates the anal-
ysis of large, incremental word graphs and makes it possible to achieve processing
times that are in acceptable dimensions. Then, we will investigate complete dialogs
in the appointment scheduling domain, the translations of which were evaluated by
native English speakers. The last experimental section in this chapter deals with the
question of whether the use of a multiprocessor system actually speeds up the com-
putation. We also investigate the relation between an incremental parallel imple-
mentation and a comparable non-incremental implementation on a single processor.

All experiments we describe in this chapter (with the exception of the hyper-
graph conversion) have been executed an a Sun UltraSparc 4 with two processors
and 1 GB of main memory. The operating system used was Solaris 2.6, the experi-
ments were carried out under low workload (load values of 0.03 without MILC).

J.W. Amtrup: Incremental Speech Translation, LNAI 1735, pp. 155-168, 1999.
 Springer-Verlag Berlin Heidelberg 1999

156 5. Experiments and Results

0 1000 2000 3000 4000 5000

Edges

0

1000

2000

3000

4000

m

ap
pe

d

Maximum gaps

Figure 5.1. Reduction of word edges by hypergraph conversion

5.1 Hypergraphs
The main modification that distinguishes hypergraphs from ordinary word graphs
for the processing of natural language is their ability to allow multiple start and end
vertices for a single edge. It follows that the number of vertices will not change,
but the number of edges should decrease drastically by converting word graphs into
hypergraphs. This should have severe consequences for the runtime of modules for
processing spoken language.

In order to evaluate both phenomena, we investigated a dialog in the domain of
appointment scheduling. We carried out experiments with the dialog n002k from
the Verbmobil corpus. The dialog contains 41 turns with an average length of 4.65
seconds of speech. The word graphs produced by the Hamburg word recognizer
contain 1,828 edges on the average.

Figure 5.1 shows the reduction in the number of edges by transforming the word
graph into a hypergraph. Only 157 edges remained on the average, a reduction of
approximately 91%.

In order to assess the consequences of such a modification for the performance
of a linguistic analysis, both the word graphs and hypergraphs have been subject to
partial parsing. We used the knowledge sources already mentioned in Section 4.6,

5.1 Hypergraphs 157

0 2000 4000 6000

Edges

100

1000

10000

C

ha
rt

 e
dg

es

Without mapping

With mapping

Figure 5.2. Reduction of chart edges by hypergraph conversion

i.e. a type hierarchy with 345 types, a lexicon with 413 entries and a grammar with
80 rules.

We use two parameters to characterize the performance gain achieved by using
hypergraphs: The number of edges in the chart that are created during the course of
parsing, and the total time used to process the input. The performance increase we
saw is within the same order of magnitude as the reduction in the number of edges in
the input graph; the gain is not exponential, as one may have expected if all possible
paths would have been considered. The main reason for this is the redundancy test
that is carried out inside the parser. The parsing of the original word graphs created
15,547 edges on the average, while only 3,316 edges were created for hypergraphs,
a reduction of 79%. The detailed analysis is shown in Figure 5.2. The reduction
in parsing time is approximately identical, as Figure 5.3 shows. Parsing of word
graphs took 87.7 seconds, parsing of hypergraphs 6.4 seconds, a reduction of 93%.
The number of spurious analyses resulting from hypergraph conversion (cf. Section
2.6.3) is negligible. The analysis of the original dialog generates 5,586 syntactic
constituents, while the analysis of hypergraphs creates 12 additional constituents,
an over-generation of 0.2%. Moreover, the additional hypotheses are very short
(two or three words).

158 5. Experiments and Results

0 2000 4000 6000

Edges

0.01

0.10

1.00

10

100

1000

P
ar

se
 t

im
e

[s
]

Without mapping

With mapping

Figure 5.3. Reduction of analysis time by hypergraph conversion

However, there were extreme cases in which the hypergraph analysis was 94
times as fast as a word graph analysis. One turn had to be excluded from the test set,
because it could not be processed as a word graph due to lack of system memory.
The experiments mentioned here were conducted on a Sun Ultra SparcStation 1 with
128 MB of main memory.

5.2 Translation

5.2.1 Data Material

The recordings, which are the used in the investigation reported here, contain five
dialogs from the Verbmobil domain. These are dialogs whose goal is the scheduling
of an appointment. Some characteristic properties of the dialogs are shown in Table
5.1. We use data that has been used for the acoustic evaluation and that thus have
not been used for the training of the word recognizer we used (Huebener, Jost and
Heine, 1996). The dialogs were spoken by people of different gender and the word
accuracy is around 70%. This result was achieved by using three active tokens per

5.2 Translation 159

Table 5.1.Properties of the dialogs used in the experiments

Property Dialog Dialog Dialog Dialog Dialog
j512 j533 j534 m111 m123

No. utterances [#] 17 6 24 24 11
Length [s] (min) 0.76 0.65 0.83 0.67 0.96

(max) 36.09 18.89 17.29 10.19 10.7
(;) 8.50 7.84 7.44 3.16 5.25

No. words (;) 23.8 24.3 22.2 10.5 14.9
speakers m/m m/f m/m f/m f/m
word accuracy (%) 64.8 68.1 66.2 70.3 76.8
word accuracy
best path (%) 43.6 37.0 42.6 40.2 58.3
No. vertices (;) 784 699 687 302 470
No. edges (;) 7340 7904 6869 3828 4342
No. paths (;) 7:5�10213 7:4�10150 8:8�10106 8:3�1081 3:7�1063

state of the word recognition net describing the recognizer lexicon. The threshold
for the evaluation of partial results within words and at the end of a word was 100.

The word accuracy we use here is several percentage points below the current
best values for the data involved (Lehning, 1996). However, the evaluation data
is usually computed non-incrementally and undergoes severe modifications, which
usually are not useful for incremental processing (Amtrup, Heine and Jost, 1997;
Jost, 1997). Moreover, the investigation into graphs with such a low recognition rate
is in principle what we want to do, since they correspond to the current best results
obtained for speech much less restricted than in Verbmobil. Currently, they are
in-between theSwitchboard-corpus and theCallHome-corpus (Finkeet al., 1997).

Table 5.2 gives an impression of the type of dialogs used. It shows the translit-
eration of utterances in the dialog m123. The extralinguistic hypotheses used are
hNIBi (non-interpretable area) andhSPELLi (spelling entities, here the branch
O.B.K.I.). We show a literal translation for each of the turns.

The five dialogs have been separated to give a qualitative assessment of the
coverage of the knowledge sources integrated into the system. The dialogs m111
and m123 were used to develop the grammar and lexicon, while the dialogs j512,
j533 and j534 have been analyzed without any modification of the grammar. The
lexicon was augmented to cover the words occurring in the new dialogs.

5.2.2 Linguistic Knowledge Sources
All linguistic modules use a common type lattice in order to guarantee the com-
patibility of feature structures in the system. This type hierarchy consists of 633
types. The structure of the lattice has already been described in Section 3.3.1. We

160 5. Experiments and Results

Table 5.2.The utterances in dialog m123

Turn Utterance
m123n000 guten Tag HerrhNIBi Klitscher hier ist wieder Fringes ich m¨ochte gerne

diesmal einen TerminhNIBi für das Arbeitstreffen in der FilialehSPELLi
in Potsdam mit Ihnen vereinbarenhNIBi
good day Mr. Klitscher hier is again Fringes I would like this time an ap-
pointment for the work meeting in the branch ... in potsdam with you sched-
ule

m123n001 hNIBi guten Tag Frau Fringes ja wie sieht es denn bei Ihnen aus in der
Woche vom sechsten bis zehnten Mai
god day Mrs. Fringes yes how looks it then with you out in the week from
sixth to tenth may

m123n002 hNIBi sechster bis zehnter Mai ach da muß ich unbedingt zu einem Seminar
nach RothenburghNIBi
sixth to tenth may well there must I really to a seminar to Rothenburg

m123n003 hNIBi dann schlagen Sie doch einen Termin vor der Ihnen passen w¨urde
then propose you then a date on which you fit would

m123n004 ja also wie wäre es denn im April vom zweiundzwanzigsten bis zum sech-
sundzwanzigsten
yes well how would it then in april from twentysecond up to twentysixth

m123n005 oh das gehthNIBi leider nicht da habe ich ein Seminar in KoblenzhNIBi
haben Sie noch einen anderen Termin
oh that goes regrettably not there have I a seminar in Koblenz have you
another a different date

m123n006 ja lassen Sie mich mal sehenhNIBi ja da hätte ich noch im Juni vom zehnten
bis zum vierzehnten einen Termin freihNIBi
yes let you me then see yes there would I still in june from tenth to fourteenth
a date free

m123n007 das würde mir auch passen ja sollen wir uns dann in Potsdam treffen in der
hNIBi Filiale hSPELLi
that would me also fit yes shall we us then in Potsdam meet in the branch ...

m123n008 ja machen wir das
yes make we that

m123n009 okay auf Wiedersehen Frau FringeshNIBi
OK good bye Mrs. Fringes

m123n010 auf Wiederh¨oren
good bye

used the lattice to construct the relevant knowledge sources, among them four lexi-
cons (idioms, analysis, transfer and generation) and four grammars (partial parsing,
utterance integration, transfer and generation):

� The lexicon for idiom recognition consists of 21 entries for fixed expressions that
cannot otherwise be analyzed compositionally, like“guten Tag” (how do you do)
or interjections like“einen Moment” (just a second). Additionally, we used the
idiom recognition for the modeling of multi-word prepositions (e.g.“bis auf”,

5.2 Translation 161

expect from). Using this method, the description of prepositional phrases in the
analysis grammar may assume that prepositions are single words, the construc-
tion is left for idiom processing. Naturally, the idiom recognition does not use a
grammar.

� The partial parsing stage uses two sources of linguistic knowledge: A phrase
structure grammar and a lexicon. The grammar consists of 35 rules for the con-
struction of “small” phrases. The attachment of complements and adjuncts has
not been modeled. The set of rules can be divided into rules for describing date
expressions, prepositional phrases, noun phrases and the construction of mod-
ifying adverbial phrases. Adjectives are integrated into the noun phrases that
dominate them.
The corresponding lexicon consists of 772 entries. We use a full form dictionary
with a lexical ambiguity of 1.15, i.e. there are 1.15 feature structures describing
different facets of a surface word. If restricted to verbs, the lexical ambiguity is
1.38. The lexicon contains entries for verbs, nouns, adjectives, adverbs, deter-
miners, date expressions, conjunctions and interjections.

� The utterance integration does not need a lexicon. All relevant structures have al-
ready been created by the partial parsing stage, in particular, we carry out lexical
access for verbs and distribute the results as preterminal edges to the integration.
The grammar of the integration phase foremost models the binding of comple-
ments and the attachment of prepositional and adverbial phrases. The grammar
contains 18 general rules.

� For transfer we need a grammar, as well as a lexicon. The grammar describes the
transformation of German semantic descriptions into their English counterparts.
It contains only 10 rules, most of which deal with the transformation of verbal
and nominal expressions. Part of the rules describe the transfer of modifiers.
Date expressions, however, which account for a lot of rules during analysis, are
simply takes as they are. The lexicon used in this part of the system captures the
mapping of semantic concepts and is mainly ordered by word classes. Currently,
it contains 207 descriptions.

� The generation produces English surface representations from English semantic
descriptions. The lexicon used for this purpose contains 311 entries, noticeably
less that the lexicon used for analysis. Besides the easier English morphology,
the reason for this is that we did not assign a high importance to stylistic issues
during generation, but instead maintained a correct and adequate realization of
the content. The grammar contains 40 rules and describes the necessary syntactic
concepts like verbal phrases, noun phrases and preposition phrases, adjectival and
adverbial modifiers.

5.2.3 Experiments and System Parameters

The dialogs described earlier have been analyzed using the MILC system. We
recorded runtime and the output of the generation stage, as well as some inter-
esting system parameters. Table 5.3 shows the relevant results. All computations

162 5. Experiments and Results

Table 5.3.Results of analyzing five dialogs

Parameter Dialog Dialog Dialog Dialog Dialog
j512 j533 j534 m111 m123

Runtime [ms] 63977 48974 54725 17361 19352
No. translations [#] 51 45 44 24 28
No. edges [#] 9876 11065 8849 4952 5740
No. tasks [#] 92579 190212 93961 44013 37793
. . . pruned [#] 48137 137019 47121 21764 13600
Main memory [MB] 81 102 92 48 55
Unifications [#/s] 2068 3048 4520 3018 3622

have been carried out with a language model weight of 5.0 and a beam search which
allowed for 200 tasks per vertex, cutting off all others. All values represent average
values for the processing of one utterance within a dialog. The runtime is measured
as wall clock time from the loading of the first component up to termination of the
system.

In order to give an impression of the type of output, we show the sequence
of generator results for the utterance j534a005 (“hNIBi hNIBi oh das ist schade
da bin ich zu einem geschäftlichen hNIBi Termin in Freiburg aber wie ist
es denn vom vierzehnten bis zum neunzehnten”) in Table 5.4. It is plain to see
how recognition errors lead to misinterpretations and incorrect translations (“Termin
in Freiburg” comes out as“appointment on Friday”); moreover, the incremental
nature of MILC can be seen in the growing length of output hypotheses from the
generator. It searches continuously for the best path through the current hypergraph
of English fragments and issues it. The processing of the turn shown here led to 130
English utterance fragments. These fragments constitute the graph in which surface
hypotheses are searched.

5.2.4 Evaluation

We presented the translation created by the system to native English speakers to
evaluate the results achieved by MILC. After a short introduction into the dialog
setting and the special kind of results provided by MILC (i.e. as a sequence of frag-
ments in English for each utterance), the subjects recorded three pieces of informa-
tion for each turn. They were asked to note the most important pragmatic content of
each utterance, which was chosen from a list of dialog-act similar classes, namely
Greeting, Goodbye, Request for a proposal, Proposal, Denial, Reason, Acceptance.1

Multiple choices were possible. Moreover, the subjects could issue a date relevant

1This list is a selection from the dialog acts used in Verbmobil, cf. Jekatet al. (1995).

5.2 Translation 163

Table 5.4.Generator output for the utterance j534a005

Yes
Yesjlet’s say
my jlet’s say
me jYesjlet’s say
me jYesjit jlet’s say
me jYesjit jfor mejlet’s say
me jYesjit jfor mejlet’s sayjmy
me jYesjit jI would suggest
me jYesjit jI would suggestjyou
me jYesjit jI would suggest
me jYesjit jI would suggestjan appointment
me jYesjit jI would suggestjan appointmentjus
me jYesjit jI would suggestjan appointmentjwe
me jYesjit jI would suggestjan appointmentjfriday
me jYesjit jI would suggestjan appointmentjfriday jwe
me jYesjit jI would suggestjan appointmentjfriday jwe jus
me jYesjit jI would suggestjan appointmentjon fridayjwe
me jYesjit jI would suggestjan appointmentjon fridayjwe jus
me jYesjit jI would suggestjan appointmentjon fridayjwe
me jYesjit jI would suggestjan appointmentjwe
me jYesjit jI would suggestjan appointmentjwe jus
me jYesjit jI would suggestjan appointmentjwe
me jYesjit jI would suggestjan appointmentjwe jyou
me jYesjit jI would suggestjan appointmentjwe jsomething
me jYesjit jI would suggestjan appointmentjwe jthe fifth
me jYesjit jI would suggestjan appointment on fridayjwe jthe fifth
me jYesjit jI would suggestjan appointmentjwe jthe fifth
me jYesjit jI would suggestjan appointment on fridayjwe jthe fifth
me jYes jit jI would suggestjan appointment on fridayjwe jsomethingjthe four-
teenth
me jYesjit jI would suggestjan appointment on fridayjwe jfrom the fourteenth
me jYesjit jI would suggestjan appointment on fridayjwe jsuggest maybejyou j
mejYesjit jI would suggestjan appointment on fridayjwe jsuggest maybejyou jthe
fourteenth
mejYesjit jI would suggestjan appointment on fridayjwe jsuggest maybejyou jthe
fourteenthjup to the nineteenth

164 5. Experiments and Results

Table 5.5.Evaluation of the translations

Parameter Dialog Dialog Dialog Dialog Dialog
j512 j533 j534 m111 m123

Pragmatics correct [%] 74 65 58 63 81
Date correct [%] 61 45 46 66 45
Quality [1–4] 2.3 2.1 2.4 2.3 1.9

for the utterance, if possible. Finally, we asked for the subjective quality of the trans-
lation, which could be chosen from four values (Good, Rough, Understandable, Not
Intelligible).

Table 5.5 shows the result of this evaluation. The information produced by the
subjects was compared to values obtained from the original German utterances. We
show the percentages of correct answers for dialog act and central date. The quality
measures have been mapped to numerical values, 1 meaning good and 4 meaning
not intelligible.

This kind of evaluation is relatively coarse. Neither can the influence of an
individual component be singled out, nor can definite trends be identified, as the
data basis is too small. In order to perform such an evaluation, more restrictive
criteria would have to be developed for the evaluation itself, bigger test corpora
would have to be analyzed, and the number of subjects performing the evaluation
would have to be higher. However, such a rigid evaluation cannot be carried out
in the framework presented here, this is the domain of larger projects (Jost, 1997;
Carter et al., 1997). Nevertheless, the evaluation we conducted here is suitable to
assess the qualitative power of a system like MILC.

5.2.5 Extensions

The results of the evaluation show that a large portion of the input for MILC can
be processed adequately. The success rate can be given as 60.4% approximately
correct translations (Wahlster, 1997). The runtime of the system is about six times
real-time. If we assume that the processing starts immediately upon the start of the
speaker’s utterance2, then the user has to wait for approximately 34 more seconds
after finishing his utterance for the complete translation. This value is relatively
high — it is certainly beyond the patience of a casual user — but nevertheless in a
range which allows further experiments.

The dialogs j512, j533 and j534 have not been used to augment the grammar.
An analysis shows that the processing of subordinate sentences (e.g. j533a000:“...

2We do not take into account the time needed for recording and word recognition.

5.3 Comparison With Non-Incremental Methods 165

Table 5.6.Comparison of runtime for incremental and non-incremental configurations

Configuration Dialog Dialog Dialog Dialog Dialog Rel. runtime
j512 j533 j534 m111 m123

I I - 63977 48974 54725 17361 19352 1.17
I N - 113245 99752 86179 29541 33457 2.08
N I - 22012 26692 40101 13915 14070 0.67
N N - 41322 39490 53600 19380 20634 1.00
N N B 56017 57486 73310 27377 28489 1.39

nachdem der letzte Termin im Juni gewesen ist würde es mir im Juli nicht
so hUNKi gut passen ...”) and assertions with a spontaneous word order (z.B.
j533a001:“bin ich sehr mit einverstanden”) have not yet been fully incorporated.
Thus, a more elaborate analysis of structural variants and their incorporation into
the grammars is necessary. Moreover, a better model for tempus and conjunctive
expressions (needed mainly for politeness reasons) seems adequate.

As a concluding note we would like to add that an investigation like the one pre-
sented here cannot reach a coverage like bigger projects, e.g. Verbmobil (Wahlster,
1997) or Janus (Lavieet al., 1997). In our opinion, however, the modeling of a re-
stricted aspect of a domain like appointment scheduling is a test case well suited for
the evaluation of the power of new architecture schemata. The effort for an analysis
(and, thus, the runtime) grows more than linear with the number of lexicon en-
tries, especially if the ambiguity increases due to multiple categories for individual
words. Also, the addition of grammar rules leads to an increase in effort. However,
the same means lead to a more selective application of rules. We think that both
effects are approximately balanced. Nevertheless, one of the modifications we men-
tioned in Section 4.11, the augmentation of rules with probabilistic scores, should
be implemented, as this would reduce search times.

5.3 Comparison With Non-Incremental
Methods
An interesting aspect in investigating incremental techniques is the question as to
how far the inevitable increase in processing effort can be made up by employing
inter-modular parallelism. In order to approach this issue, we conducted a number of
experiments and measured runtimes for different system configurations. The results
are shown in Table 5.6.

The dialogs in the test corpus have been analyzed repeatedly, we measured total
system running time. The first column describes the configuration of the system

166 5. Experiments and Results

we used for each measurement. The first letter denotes whether incremental, left-
connected word graphs have been used as input (I) or if we transformed them to
conventional word graphs beforehand (N). The second letter characterizes the pro-
cessing strategy of MILC. If this letter is I, then we used the normal configuration,
only data dependencies led to delays in the processing. If the letter is N, then we
artificially serialized the processing. In order to do this, we introduced a protocol
that allows a component to start only if the preceding components have finished their
work. This is possible without any immediate problems, as MILC does not use feed-
back channels in the current version. However, we have to note that the serialization
is not complete. On one hand, the start of each component is carried out in parallel
on the multiprocessor we used, and on the other hand the underlying communica-
tion software works concurrently with other processes. Therefore, we introduced a
further configuration that is characterized by the third letter. If we marked a B here,
we started one additional process in order to create a high load for one of the proces-
sors. It carries out simple arithmetic calculations in an infinite loop. This means that
we can assume MILC as being restricted to one processor with a sufficient amount
of precision, while all other parameters, like processor type, memory space etc., can
be kept stable.

The results of the experiments show that incremental approaches can well com-
pete with non-incremental methods. As expected, the processing of non-incremental
graphs (connected graphs that do not contain dead ends) is consistently faster than
the processing of corresponding incremental graphs. It is not astonishing that the
incremental processing was always faster than a non-incremental processing, since
parallel processing could be employed. Instead, the main result that can be drawn
from the experiments is that the incremental processing of incremental graphs is
only 17% slower than the non-incremental processing of non-incremental word
graphs. Until now, the processing of left-connected graphs was always much less
efficient than the analysis of conventional graphs, even though parallelism could
have been used. Thus, so far incremental approaches were unfavorable. The results
we have shown here suggest that incremental approaches may show an efficiency
similar to conventional algorithms by exploiting means we have described in this
monograph. An absolute necessity for this kind of results is, of course, the use of
parallel computers. This is especially true, since the machine we used only pos-
sessed two processors, while there are at least four high-load processes in the MILC
system (Parsing, Integration, Transfer, Generation).

However, the statements made are only valid for the narrow case we described
here. The non-incremental version of the processing modules was created by ar-
tificially serializing incremental algorithms. There is no doubt that a careful con-
ventional implementation would have used different processing strategies in several
places. As it is, the linguistic modules still operate from left to right in time. All pos-
sibilities for optimization, which arise from the accessibility of the complete input
signal, have not been used. Thus, a strictly correct comparison between incremental
and non-incremental systems can only be carried out if the non-incremental version

5.4 Summary 167

1000 10000

Signal length (ms)

1000

10000

100000

P
ro

ce
ss

in
g

ti
m

e
(m

s)

Figure 5.4. Comparison of incremental (—) and non-incremental (- - -) processing

is similarly optimized. We estimate that optimization could accelerate a system by
a factor of two or three.

Figure 5.4 gives a detailed view on the processing times for different utterances.
It shows the processing time for incremental (continuous line) and non-incremental
(dashed line) system runs over the length of a single utterance. The trend that can
be seen is that the employment of incremental algorithms has a stronger effect on
shorter utterances as compared to relatively long turns. This may be due to a un-
proportional big unfolding of left-connected word graphs for long turns. A possible
remedy for this effect involves the introduction of a delayed evaluation, which only
processes an edge if there is a possibility of extending an end vertex by other edges.
By doing that, trivial dead ends (dead ends of length one) can be avoided. In general,
this mechanism can be extended to a larger lookahead, but this implies a penalty for
the strict left-to-right incrementality.

5.4 Summary
In this chapter, we described the experiments used to validate the concept of layered
charts and the system MILC. There were three main goals in these experiments.

First, we wanted to investigate whether hypergraphs are a reasonable basis for
the processing of spoken language. The results of the analysis of one dialog with
41 turns resulted in a reduction of initial edges of 91%, and a reduction in overall

168 5. Experiments and Results

parsing time of 93%. Thus, hypergraphs are a powerful tool, the application of
which makes the analysis of large incremental word graphs reasonable.

Second, we evaluated the behavior of MILC when applied to the translation of
authentic dialogs from an appointment scheduling domain. We used five dialogs in
our experiments. Two of them were used to create the grammars used in the system,
while the other three dialogs were only checked for dictionary coverage. Overall,
the translation of spontaneously spoken utterances can be performed in sixfold real-
time. The English output is to 60.4% approximately correct, which means that the
central pragmatic and propositional content was translated correctly. However, the
style of the translations can only be described as very rough.

Finally, we investigated if and to what degree incremental approaches to spo-
ken natural language processing are inferior to non-incremental approaches, as they
have to cope with an input which is at least ten times larger. At least for the present
case, we showed that an incremental version is not significantly slower than a non-
incremental version. The difference in processing time was approximately 17%.
Even if we have to concede that we used a oversimplifying model for the non-
incremental version, which neglected all kinds of optimizations, we can neverthe-
less conclude that incremental approaches should be taken into account more in
the future, since they offer tremendous methodological advantages while incurring
minor penalties in performance.

Chapter 6

Conclusion and Outlook

Human language understanding works incrementally.
This insight formed the starting point for the work presented in this monograph.

We have tried to demonstrate that using analogous principles in natural language
processing is both desirable and reasonable. It is desirable because only the in-
tegrated processing of small parts of the input allows the construction of highly
sophisticated systems for man-machine communication or support systems for hu-
man communication. Again, we can use dialog systems as an example that would be
able to interrupt the user in important cases — just like humans do — or applications
aiming at a simultaneous translation of spoken language.

Both the power of computers in general and the power of speech recognition sys-
tems have recently reached a level that enables an incremental processing through-
out. Today, it is possible to connect a set of workstations in order to reduce the
overhead introduced by incremental algorithms to a tractable amount. Our experi-
ments show that incremental methods are roughly an order of magnitude more diffi-
cult than corresponding non-incremental approaches. Nevertheless, we estimate the
processing time to be only three times higher than highly optimized conventional
programs.

On the other hand, the accuracy of speech recognition systems has increased
during the past few years to a degree that makes processing of spontaneous speech
feasible. The dialogs recorded within the Verbmobil project are only a milestone,
however, since they are restricted to a narrow domain, the scheduling of business
appointments. The word accuracy we achieve in the input word graphs is approx-
imately 70%, which is much less than what the best recognizers currently deliver
in an evaluation setting for the Verbmobil domain. This value roughly corresponds
to results one could expect for much less restricted speech, for instance during tele-
phone conversations. Such a high word error rate is relativized through the use
of large word graphs that encode huge amounts of alternatives in a very compact
manner. Among these alternatives, the linguistic processing conducts a search for
plausible interpretations.

The incremental nature of human language understanding can be shown on al-
most all levels of processing. We have tried to demonstrate this at least for the
analysis of speech in the areas of word recognition and semantic preference mod-
eling by providing results from psycholinguistic research. Conference interpreters
“profit” from the incremental nature of the human language processor, because this

J.W. Amtrup: Incremental Speech Translation, LNAI 1735, pp. 169-174, 1999.
 Springer-Verlag Berlin Heidelberg 1999

170 6. Conclusion and Outlook

property allows them to simultaneously listen to source language utterances and
produce target language translations at an early stage. Obviously, incrementality is
in at least responsible in three ways for the human performance: First, it enables
us to process almost identical parts of the input signal on several different levels of
representation. Second, results from higher levels of linguistic processing can be
used to block improbable alternatives on lower levels of understanding. Third, we
employ feedback to generate predictions that influence some parts of the language
processing facility in an expectation driven way.

Consequently, the investigation of a completely incremental speech analysis in
the framework of translating spontaneously spoken language makes up the main
motivation for the work described in this monograph.

However, in the process of creating a system, we also posed the goal of not
having a static system that would be difficult to modify in the future. In order to
analyze incremental algorithms in a qualitative way and conduct some quantitative
experiments, a complete system was needed. A second aim, however, was to design
and implement an open, dynamic system that could be the foundation for further
architectonic studies in the framework of incremental speech processing. In partic-
ular, there is much too little known about the area of feedback between different
modules, thus no commonly accepted architecture has emerged in this field. We
have tried to pose as few restrictions for the implementation of alternative modules
as possible.

In our view, the main contributions of this work are:

� The characterization of important properties of word graphs and the development
of algorithms that facilitate the processing of even large word graphs within au-
tomatic natural language processing. Besides our critique of the common view of
speech recognition evaluation and the proposal of new measures, which are not
centered around recognition itself but allow a broader view of the efficiency of a
whole system, we also developed algorithms to reduce the size and complexity
of word graphs. In order to allow the analysis of incremental word graphs, the
hypergraph mechanism provides an easy and highly efficient method, rendering
the processing of input possible that, so far, has been out of reach of conventional
methods.

� The design and development of an architecture schema that is broad and open
enough to facilitate further research into incremental, interactive speech process-
ing in the future. The schema consists mainly of three components that cover
the important areas of data structures, representation and system integration. On
the level of data structures, we introduced the layered chart, a wide-ranging ex-
tension of charts as they have been used earlier. Layered charts are capable of
the distributed storage of several aspects of an input utterance with little need for
synchronization. They are independent from a central storage of data or a central-
ized control and guarantee easy interaction within a system due to the integrated
data modeling. All interaction between components is done by exchanging hy-
peredges, thereby preventing any kind of interface problems. Moreover, the union
of all edges gives a nearly accurate picture of the current state of processing at

6. Conclusion and Outlook 171

any given time. Layered charts extend the graph-like structure used so far mainly
for speech recognition results to all levels of a system, thus they establish an
integrated interpretation graph for an application.
On the level of representations, the concept and implementation of a position-
invariant typed feature structure formalism with appropriateness delivers a highly
efficient, declarative language for the description of linguistic objects. This lan-
guage — like some of its predecessors — allows for the graph-like specification
of typed feature structures. The starting point for the implementation described
in this work was the assumption that a heavily pointer-oriented internal represen-
tation for feature structures is unsuitable for highly distributed, parallel systems.
This is valid for inter-modular parallelism, as well as for intra-modular paral-
lelism. Instead, we pursued an implementation using a block-oriented allocation
schema for feature structures. This storage schema is extremely compact and al-
lows for the transport of feature structures into different address spaces without
a complex and time-consuming linearization and reconstruction. The formalism
can be used by all components and realizes a uniform representation of diverse
kinds of linguistic knowledge.
Finally, on the level of system integration, an architecture schema was developed
for the construction of heterogeneous systems of components allowing a uniform
view on communication. The channel-oriented design of the communication sub-
system ICE guarantees a highly efficient and conceptually clear exchange of in-
formation. The class of applications targeted here consists of systems that have
mainly independent, heterogeneous modules that can cooperate without the need
of a central instance. A flexible configuration allows for a widespread control
over the topology of a system, without interfering with the type of processing
performed by individual modules. The interchange of typed messages frees the
user from paying attention to infrastructural issues. The processing of an indi-
vidual component is performed data-driven; distributed termination supervision
is automatically done by the architecture framework.

� The complete implementation of an interpreting system for the translation of
spontaneously spoken German utterances into English surface representations in
the domain of appointment scheduling. This system (MILC,MachineInterpreting
with LayeredCharts) is rooted within the architecture framework just mentioned.
The implementation proves that it is feasible to translate incrementally by also
sticking to the chart paradigm. All types of hypotheses are viewed as potential
interpretations of an interval of the input utterance. This extends not only to anal-
ysis and generation, but also to transfer which, up to now, has not been performed
with the aid of chart-based methods. The incrementality is kept active even for
the construction of English surface hypotheses, which is evident from the stream
of growing utterance hypotheses issued by MILC.
As important as the successful implementation of a complete working system is
the possibility for changes to the system. We show an example of this strategy by
integrating the recognition and translation of idioms into the system. The idiom
processing is performed orthogonally to the main information flow. Its main pur-

172 6. Conclusion and Outlook

pose is to show what the shape of future components could be. Idioms that have
been recognized are treated preferentially in the rest of the system and are used
to restrict search spaces that otherwise would have to be examined fruitlessly.

Within this experimental framework, several extensions offer themselves that
affect the efficiency of the system and the bandwidth of phenomena covered. Im-
mediately possible would be the exploitation of further information prevalent in the
speech signal that is not being used directly by the word recognition process. In
particular, the integration of prosodic evidence in order to find phrase boundaries
and to assign stress patterns will have a relevant influence to the quality of transla-
tions and the speed with which they are obtained. Mode information may be used
for disambiguation. Additionally, the establishment of a dialog component seems
to be the next logical step, because it would enable the system to handle complete
dialogs. On one hand, this would lead to better analysis results by using an addi-
tional knowledge source for disambiguation, and on the other hand, it would raise
the quality of translation by employing dialogic phenomena. A further extension,
which is easy and powerful simultaneously, would be the incorporation of example-
based translations. Those may be treated mostly like idioms are right now, and in
extreme cases may lead to very fast and accurate translations at least for parts of
utterances.

For principle reasons of architecture, the coupling of the word recognizer with
modules for linguistic analysis would be fruitful in order to investigate the influence
of linguistic processes on speech recognition. This is especially true if restrictions
from semantics or dialog modeling are applied, which have found little attention so
far.

Finally, a dynamic unfolding of search spaces should only be done if the infor-
mation present is not sufficient to compute a successful analysis. The approach we
want to explore in this direction operates incrementally on the best path through the
part of a graph that has been visited so far. The scores of edges are modeled in a
way that allows to recur to acoustic hypotheses that have not yet been taken into
consideration.

In a broader context, the range of applications, which rest on the concept of a
layered chart, is very big. The automatic translation of spoken language represents
only a small portion of the possibilities, albeit, a complex one. Besides that, access
methods to information systems (e.g. data bases) or applications in natural language
control (e.g. in robotics) are feasible as well.

But we don’t need to restrict the applications to the processing of spoken lan-
guage. Written text can be processed as well. The graph-like representation allows
the modeling of ambiguity without further work; especially in the area of highly
modular systems designed to handle multi-lingual input, a common architecture
schema is a major advantage, if an application has to be adapted to several lan-
guages in a short period of time.

An architecture like the one we presented in this work makes it possible to store
different aspects of information and to use these different aspects consistently and
efficiently within a system. Restricted to natural language processing, we argued

6. Conclusion and Outlook 173

for the incorporation of dialog phenomena that can be viewed as an easy extension
in order to model supra-utterance phenomena. Similarly, prosodic knowledge can
be represented as hypotheses about intervals in time of an utterance.

Viewed from a broader angle, the effect of a graph-oriented method of represen-
tation is not restricted to language-inherent properties. The extension to multi-modal
input and output, as well as to the representation of events, can be achieved. This
is immediately obvious for all kinds of input information that is thematically and
chronologically related to the speech input in a narrower sense. Deictic gestures of
an user, for instance, can be easily integrated into the course of a system, be they
mouse movements, eye or hand gestures. They could be recognized — similarly to
idioms — in a specialized component that delivers a description of the action in the
form of a feature structure and its extension in time. Obviously, the other compo-
nents of the system have to be modified accordingly, in order to be able to process
that additional information.

A further type of additional input channel is given by the lip movements of a
speaker. The chronological and conceptual relation between the original input (a
word graph) and the input in another modality is immediately clear. The informa-
tion about the lip configuration can be used for disambiguation. An articulatory
model could be constructed form a word graph, which then could be matched with
the actual lip movements issued. Again, the additional information represents hy-
potheses about intervals in time during the input speech.

Much more complex, but nevertheless possible, is the integration of arbitrary ob-
jects and their states that change over time. The starting point for such an endeavor
would be the extension of the coverage of a layered chart over the boundaries of
one utterance and directed toward a continuous time model. In order to restrict the
amount of data necessary, it is important to develop a focus model that describes
which area in time is currently most interesting. Once the focus changes, irrelevant
information can be removed from the chart and only central hypotheses prevail.

The second problem here is the introduction of a method for combining linguis-
tic and extra-linguistic knowledge. We can’t do this here for reasons of time and
space. However, a graph-like representation is very suitable to model relations in
time by mapping them to topological properties. In the simplest case, relations can
be viewed as an intersection of vertex sets or as a computation of the reachability
relation.

Moreover, the representation of non-linguistic knowledge has to be tightly in-
tegrated into the preexisting type lattice. The goal would be to prevent an uncon-
trollable interaction between purely linguistic facts and extra-linguistic information.
Objects and state descriptions must not interfere with linguistic operations. Instead,
the processing of such heterogeneous knowledge has to be made explicit. This does
not exclude, however, the application of methods developed in this monograph to
the processing of edges of different origin. The multiple layers of a layered chart
are suitable for encapsulating different aspects of information without preventing
their integrated processing. Just to mention one example, object and procedural ref-
erences can be made much easier, for instance in a maintenance scenario in which

174 6. Conclusion and Outlook

an unexperienced user attempts to refill motor oil. Deictic expressions (“Not that
one!” if the user tries to open the cooling system cap instead of the oil cap) can
be generated and analyzed more easily. In this hypothetical example, the dialog
focused around the oil cap, but the object modeling also knows about other caps
(like the cooling cap). The chronological relation between the request to open the
oil cap and the action of the user (trying to open the cooling cap) enables the system
to establish a restriction of the reference and the system is able to correct the user’s
action. In such a scenario, the relevance of incremental operation surfaces again.
The system should be able to warn the user at once in order to prevent mistakes
during the maintenance operations.

All hypothetical areas of applications presented here exhibit certain common
properties: The primary dimension of the input is time. Complex objects (linguis-
tic descriptions, representations of actions) are used to represent knowledge. The
employment of incremental techniques is necessary or at least desirable. A data
structure like a layered chart, which is oriented toward graph like structures, pro-
vides an excellent starting point for the investigation of such phenomena, given the
architectonic environment we described.

Bibliography

Abney, Steven. 1991. Parsing By Chunks. In Robert Berwick, Steven Abney and

Carol Tenny, editors, Principle-Based Parsing. Kluwer Academic Publishers,

Dordrecht.

Abney, Steven. 1996. Partial Parsing via Finite-State Cascades. In Proceedings of

the ESSLLI ’96 Robust Parsing Workshop.

Agnas, Marie-Susanne, Hiyan Alshawi, Ivan Bretan and David Carter et al. 1994.

Spoken Language Translator: First-Year Report. Research Report R94:03,

SICS, Stockholm, January.

Aigner, Martin. 1984. Graphentheorie: Eine Entwicklung aus dem 4-Farben Prob-

lem. Teubner Studienbu¨cher: Mathematik. Stuttgart: Teubner.

Ait-Kaci, Hassan, Robert Boyer, Patrick Lincoln and Roger Nasr. 1989. Efficient

Implementation of Lattice Operations. ACM Transactions on Programming

Languages and Systems, 11(1): 115-146, January.

Alexandersson, Jan, Elisabeth Maier and Norbert Reithinger. 1995. A Robust and

Efficient Three-Layered Dialog Component for a Speech-to-Speech Translation

System. In Proc. of the 7
th

 EACL, pages 188-193, Bergen, Norway. Also

available as: Verbmobil-ReportNo. 50, DFKI GmbH, December 1994.

Alexandersson, Jan, Norbert Reithinger and Elisabeth Maier. 1997. Insights into

the Dialogue Processing of Verbmobil. In Proc. of the 5th Conference on Ap-

plied Natural Language Processing, Washington, D.C.

Allen, James F. 1987. Natural Language Understanding. The

Ben-jamin/Cummings Series in Computer Science. Menlo Park, CA:

Ben-jamin/Cummings.

Allen, James F, Bradford W. Miller, Eric K. Ringger and Teresa Sikorski. 1996. A

Robust System for Natural Spoken Dialogue. In Proc. of the 34
nd

 ACL, pages

62-70, Santa Cruz, CA, June.

Allen, James F, LenhartK. Schubert, George Ferguson, Peter Heeman, Chung Hee

Hwang, Tsuneaki Kato, Marc Light, Nathaniel G. Martin, Bradford W. Miller,

Massimo Poesio and David R. Traum. 1994. The TRAINS Project: A case

study in building a conversational planning agent. TRAINS Technical Note

94-3, University of Rochester, Rochester, NY, September.

Amtrup, Jan W. 1992. Parallele Strukturanalyse Naturlicher Sprache mit

Transput-ern. ASL-TR 44-92/UHH, Univ. of Hamburg.

J.W. Amtrup: Incremental Speech Translation, LNAI 1735, pp. 175-192, 1999. ©

Springer-Verlag Berlin Heidelberg 1999

176 Bibliography

Amtrup, Jan W. 1994a. ICE-Intarc Communication Environment: Design und

Spezifikation. Verbmobil Memo 48, Univ. of Hamburg, September.

Amtrup, Jan W. 1994b. Transfer and Architecture: Views from Chart Parsing.

Verbmobil Report 8, Univ. of Hamburg, March.

Amtrup, Jan W. 1995a. Chart-based Incremental Transfer in Machine Translation.

In Proceedings of the Sixth International Conference on Theoretical and

Methodological Issues in Machine Translation, TMI ’95, pages 188-195,

Leu-ven, Belgium, July.

Amtrup, Jan W. 1995b. ICE-Intarc Communication Environment: User’s Guide

and Reference Manual. Version 1.4. Verbmobil Technical Document 14, Univ.

of Hamburg, December.

Amtrup, Jan W. 1995c. Parallel Parsing: Different Distribution Schemata for

Charts. In Proceedings of the 4
th

 International Workshop on Parsing Tech-

nologies (IWPT95), pages 12-13, Prague, September. Charles University.

Amtrup, Jan W. 1997a. ICE: A Communication Environment for Natural Language

Processing. In Proceedings of the International Conference on Parallel and

Distributed Processing Techniques and Applications (PDPTA97), Las Vegas,

NV, July.

Amtrup, Jan W. 1997b. Layered Charts for Speech Translation. In Proceedings of

the Seventh International Conference on Theoretical and Methodological Issues

in Machine Translation, TMI ’97, Santa Fe, NM, July.

Amtrup, Jan W. 1997c. Perspectives for Incremental MT with Charts. In Christa

Hauenschild and Susanne Heizmann, editors, Machine Translation and Trans-

lation Theory. Perspectives of Co-operation, Text, Translation, Computational

Processing (TTCP), number 1. Moutonde Gruyter.

Amtrup, Jan W. 1998. Incremental Speech Translation: A Layered Chart Approach.

In 28. Jahrestagung der Gesellschaftfur Informatik, Magdeburg, September.

Amtrup, Jan W. and Jorg Benra. 1996. Communication in Large Distributed AI

Systems for Natural Language Processing. InProc. of the 16
th
 COLING, pages

35-40, Copenhagen, Denmark, August. Center for Sprogteknologi.

Amtrup, Jan W., Henrik Heine and Uwe Jost. 1996. What’s in a Word Graph —

Evaluation and Enhancement of Word Lattices. Verbmobil Report 186, Univ. of

Hamburg, Hamburg, December.

Amtrup, Jan W., Henrik Heine and Uwe Jost. 1997. What’s in a Word Graph —

Evaluation and Enhancement of Word Lattices. In Proc. of Eurospeech 1997,

Rhodes, Greece, September.

Amtrup, Jan W and Susanne J. Jekat. 1995. Segmentation of Spoken Language for

NLP. In KI95-Activities: Workshops, Posters, Demos, pages 298-299, Biele-

feld, September.

Amtrup, Jan W and Volker Weber. 1998. Time Mapping with Hypergraphs. In

Proc. of the 17
th

 COLING, Montreal, Canada.

Anderson, Linda. 1994. Simultaneous Interpretation: Contextual and Translation

Aspects. In Sylvie Lambert and Barbara Moser-Mercer, editors, Bridging the

Bibliography 177

Gap: Empirical Research in Simultaneous Interpretation. John Benjamins Pub-

lishing Co, pages 101-120.

Aubert, Xavier and Hermann Ney. 1995. Large Vocabulary Continuous Speech

Recognition Using Word Graphs. In ICASSP 95.

Ausiello, Giorgio, Giuseppe F. Italiano, Alberto Marchetti Marchetti-Spaccamela

and Umberto Nanni. 1991. Incremental Algorithms for Minimal Length Paths.

Journal of Algorithms, 12:615-638.

Backofen, Rolf, Lutz Euler and Gu¨nther Gorz. 1991. Distributed Disjunctions in

LIFER. In Proc. International Workshop on Processing Declarative Knowl-

edge, pages 161-170, Berlin, Heidelberg, New York. Springer Verlag.

Batliner, Anton, Susanne Burger and Andreas Kiessling. 1994. Ausergrammatische

Phanomene in der Spontansprache. VM Technisches Dokument 2, Univ.

Mu¨nchen.

Beaven, J.L. 1992. Lexicalist Unification BasedMachine Translation. Ph.D. thesis,

Department of Artificial Intelligence, University of Edinburgh, Edinburgh, UK.

Beskow, Bjorn. 1993. Unification Based Transfer: Multilingual Support for Trans-

lation and Writing. Draft, Uppsala University, Uppsala, Sweden, February.

Billot, Sylvie and Bernard Lang. 1989. The Structure of Shared Forests in Am-

biguous Parsing. In Proc. of the 27
th
 ACL, pages 143-151, Vancouver, June.

Block, H. U. 1997. The Language Components in Verbmobil. In Proc. ICASSP

’97, pages 79-82, Munich, Germany, April.

Boddy, Mark and Thomas L. Dean. 1994. Deliberation Scheduling for Problem

Solving in Time-Constrained Environments. Artificial Intelligence,

67(2):245-285.

Boitet, Christian and Mark Seligman 1994. The ―Whiteboard‖ Architecture: A

Way to Integrate Heterogeneous Components of NLP systems. In COLING-94:

The 15th International Conference on Computational Linguistics, Kyoto, Japan.

Brandstadt, Andreas, 1994. ―Ku¨rzeste Wege‖. In GraphenundAlgorithmen, chap-

ter 5, pages 106-123. Stuttgart: Teubner.

Bresnan, Joan, editor. 1982. The Mental Representation of Grammatical Relation.

Cambridge, MA: MIT Press.

Brew, Chris. 1992. Letting the Cat out of the Bag: Generation for Shake-and-Bake

MT. In COLING-92: The 15th International Conference on Computational

Linguistics, pages 610-616, Nantes, France.

Brietzmann, Astrid. 1992. ―Reif fur die Insel‖. Syntaktische Analyse naturlich

gesprochener Sprache durch bidirektionals Chart-Parsing. In Helmut Mangold,

editor, Sprachliche Mensch-Maschine-Kommunikation. R. Oldenbourg Verlag,

pages 103-116.

Briscoe, Edward J. 1987. Modelling Human Speech Comprehension: A Computa-

tional Approach. Wiley.

Brown, P., J. Cocke, S. A. Della Pietra, Felinek, J. D. F. Lafferty, R. L. Mercer and

P. S. Roossin. 1990. A Statistical Approach to Machine Translation. Computa-

tional Linguistics, 16:79-85.

178 Bibliography

Brown, Ralf and Robert Frederking. 1995. Applying Statistical English Language

Modelling to Symbolic Machine Translation. In TMI95P, TMI95L.

Bub, Thomas, Wolfgang Wahlster and Alex Waibel. 1997. Verbmobil: The Com-

bination of Deep and Shallow Processing for Spontaneous Speech Translation.

In Proc. of the IEEE International Conference on Acoustics, Speech and Signal

Processing, ICASSP, pages 1/71-1/74, Munich, Germany.

Burns, Alan. 1988. Programming in OCCAM2. Reading, Ma.: Addison-Wesley.

Buschbeck-Wolf, Bianka et al. 1995. Transfer in the Verbmobil Demonstrator.

Technical report, IAI, Saarbru¨cken.

Carlson, Lauri and Maria Vilkuna. 1990. Independent Transfer Using Graph Unifi-

cation. In Proc. of the 13
th
 COLING, pages 3/60-3/63, Helsinki, Finland.

Carpenter, Bob. 1992. The Logic of Typed Feature Structures. Tracts in Theoretical

Computer Science. Cambridge: Cambridge University Press.

Carpenter, Bob and Gerald Penn. 1998. ALE - The Attribute Logic Engine User’s

Guide. Version 3.0 Beta. Technical report, Bell Labs/Univ. Tubingen, March.

Carpenter, Bob and Yan Qu. 1995. An Abstract Machine for Attribute-Value Log-

ics. In Proceedings of the 4
th

 International Workshop on Parsing Technologies

(IWPT95), pages 59-70, Prague. Charles University.

Carter et al., David. 1997. Translation Methodology in the Spoken Language Trans-

lator: An Evaluation. In ACL Workshop on Spoken Language Translation.

Carver, N. and V Lesser. 1994. The Evolution of Blackboard Control Architec-

tures. Expert Systems with Applications, 7(1): 1-30.

Caspari, Rudolf and Ludwig Schmid. 1994. Parsing und Generierung in TrUG.

Verbmobil-Report 40, Siemens AG.

Chen, Wai-Kai. 1971. Applied Graph Theory. Applied Mathematics and Mechan-

ics, volume 13, edited by. Amsterdam: North Holland.

Chernov, G. V 1994. Message Redundancy and Message Anticipation in Si-

multaneous Interpretation. In Lambert and Moser-Mercer, editors, Bridging

the Gap: Empirical Research in Simultaneous Interpretation. John Benjamins,

pages 139-153.

Cheston, Grant A. 1976. Incremental Algorithms in Graph Theory. Ph.D. thesis,

Univ. of Toronto, March.

Chomsky, Noam. 1959. On certain formal properties of grammars. Information

and Control, 2(2):137-167.

Chomsky, Noam. 1995. The Minimalist Program. Current Studies in Linguistics,

number 28. Cambridge, MA: The MIT Press.

Cohen, P. R., A. Cheyer, M. Wang and S. C. Baeg. 1994. An Open Agent Architec-

ture. In Proc. of AAAI-94, pages 1-8, Stanford, CA.

Copestake, Ann, Dan Flickinger, Rob Malouf, Susanne Riehemann and Ivan Sag.

1995. Translation using Minimal Recursion Semantics. In Proceedings of the

Sixth International Conference on Theoretical and Methodological Issues in

Machine Translation, TMI ’95, Leuven, Belgium.

Corbin, John R. 1990. The Art of Distributed Applications. Sun Technical Refer-

ence Library. New York: Springer-Verlag.

Bibliography 179

Cormen, Thomas H, Charles E. Leiserson and Roanld L. Rivest. 1990. Introduction

to Algorithms. Cambridge, MA: MIT Press.

Denecke, Matthias. 1997. A Programmable Multi-Blackboard Architecture for

Dialogue Processing Systems. In ACL97P, ACL97L.

Diagne, Abdel Kader, Walter Kasper and Hans-Ulrich Krieger. 1995. Distributed

Parsing with HPSG Grammars. In Proceedings of the 4
th

 International Work-

shop on Parsing Technologies (IWPT95), pages 79-86, Prague, September.

Charles University.

Dorna, Michael. 1992. Erweiterung der Constraint-Logiksprache CUF um ein

Typensystem. Master’s thesis, Univ. of Stuttgart.

Dorna, Michael and Martin C. Emele. 1996. Efficient Implementation of a

Semantic-based Transfer Approach. In Proc. of the 12
th
 ECAI, Budapest, Hun-

gary, August.

Dorr, Bonnie Jean. 1993. Machine Translation: A View from the Lexicon. Cam-

bridge, MA.: MIT Press.

Doyle, Jon. 1979. A Truth Maintenance System. Artificial Intelligence, 12:231–

272.

Earley, Jay. 1970. An Efficient Context-Free Parsing Algorithm. Communications

oftheACM, 13:94-102.

Eberle, Kurt, Walter Kasper and Christian Rohrer. 1992. Contextual Constraints for

MT. In Proc. of the 4
th
 Int. Conf. on Theoretical and Methodological Issues in

Machine Translation, pages 213-224, Montreal, Canada, June.

Eisele, Andreas and Jochen Dorre. 1988. Unification of Disjunctive Feature Struc-

tures. In Proc. of the 26
th

 ACL, Buffalo, NY, June.

Elsner, Anja and Alexandra Klein. 1996. Erkennung des prosodischen Fokus und

die Anwendung im dialogaktbasierten Transfer. Verbmobil Memo 107,

Univer-sitat Bonn, Universitat Hamburg.

Emele, Martin, Ulrich Heid, Stefan Momma and Remi Zajac. 1991. Interactions

between Linguistic Constraints: Procedural vs. Declarative Approaches. Ma-

chine Translation, pages 61-98.

Emele, Martin E. and Remi Zajac. 1990. Typed Unification Grammars. In Proc. of

the 13
th

 COLING, pages 293-298, Helsinki, Finland.

Engelmore, Robert and Tony Morgan. 1988. Blackboard Systems. Reading, MA:

Addison-Wesley Publishing Company.

Erbach, G. and B. Krenn. 1994. Idioms and Support-Verb ConstructionsIn J.

Ner-bonne, K. Netter and C. Pollard, editors, German Grammar in HPSG.

CSLI, Stanford, CA.

Erman, Lee D., Frederick Hayes-Roth, Victor R. Lesser and Raj Reddy. 1980. The

Hearsay-II Speech-Understanding System: Integrating Knowledge to Resolve

Uncertainty. Computing Surveys, 12(2):213-253.

Fink, Gernot A., Franz Kummert and Gerhard Sagerer. 1994. A Close High-Level

Interaction Scheme for Recognition and Interpretation of Speech. In Proc.

ICSLP-94, pages 2183-2186, Yokohama, Japan.

Bibliography 181

Gondran, Michel and Michel Minoux. 1984. Graphs and algorithms.

Wiley-Interscience Series in Discrete Mathematics. Chichester: John Wiley &

Sons.

Gorz, Gu¨nther. 1988. Strukturanalyse natu¨rlicher Sprache. Bonn: Addison Wes-

ley.

Gorz, Gu¨nther. 1993. Kognitiv orientierte Architekturen fur die

Sprachverar-beitung. Technical Report ASL-TR-39-92, Universitat

Erlangen-Nurnberg, February.

Gorz, Gu¨nther and Marcus Kesseler. 1994. Anytime Algorithms for Speech Pars-

ing? In COLING-94: The 15th International Conference on Computational

Linguistics, Kyoto, Japan.

Gorz, Gu¨nther, Marcus Kesseler, Jorg Spilker and Hans Weber. 1996. Research on

Architectures for Integrated Speech/Language Systems in Verbmobil. In Proc.

of the 16
th
 COLING, pages 484-489, Copenhagen, Denmark, August.

Grabski, Michael. 1990. Transfer Statements as Conditional Constraints. WP

18/90. Eurotra-d working papers, IAI, Saarbru¨cken.

Graham, Ian and Tim King. 1990. The Transputer Handbook. New York, London

etal.: Prentice Hall.

Guard, J.R. 1964. Automated Logic for Semi-Automated Mathematics. Scientific

Report 1, Air Force Cambridge Research Laboratory, Bedford, MD.

Hager, Jochen and Martin Moser. 1989. An Approach to Parallel Unification Us-

ing Transputers. In German Workshop on Artificial Intelligence, pages 83-91,

Eringerfeld.

Hahn, Walther v. 1992. Von der Verknu¨pfung zur Integration: Kontrollstrate-gie

oder kognitive Architektur. In Procceedings ofKONVENS92, pages 1-10,

Berlin. Springer Verlag.

Hahn, Walther v. and Jan W Amtrup. 1996. Speech-to-Speech Translation: The

Project Verbmobil. InProceedings ofSPECOM96, pages 51-56, St. Petersburg,

October.

Hanrieder, Gerhard. 1996. Inkrementelles Parsing gesprochener Sprache mit einer

linksassoziativen Unifikationsgrammatik. DisKi, number 140. St. Augustin:

Infix.

Harary, Frank. 1974. Graphentheorie. Mu¨nchen, Wien: R. Oldenbourg Verlag.

Harbusch, Karin. 1990. Constraining Tree Adjoining Grammars by Unification. In

Proc. of the 13
th
 COLING, pages 167-172, Helsinki, Finland.

Haruno,Masahiko, YasuharuDen, YujiMastumotoandMakatoNagao. 1993. Bidi-

rectional Chart Generation of Natural Language Texts. In Proc. of AAAI-93,

pages 350-356.

Hauenschild, Christa. 1985. KIT/NASEV oder die Problematik des Transfers bei

der Maschinellen Ubersetzung. KIT Report 29, Technische Universitat Berlin,

Berlin, November.

Hauenschild, Christa and Birte Prahl. 1994. Konzept Translationsprobleme -

Trans-lationsstrategien. Technical report, Univ. of Hildesheim.

182 Bibliography

Hauenstein, Andreas. 1996. Aussprachewo¨rterbu¨cher zur automatischen

Spracherkennung. DISKI Dissertationen zur Ku¨nstlichen Intelligenz, number

133. St. Augustin: infix.

Hauenstein, Andreas and Hans Weber. 1994. An Investigation of Tightly Coupled

Speech Language Interfaces Using an Unification Grammar. In Proceedings of

the Workshop on Integration of Natural Language and Speech Processing at

AAAI ’94, pages 42–50, Seattle, WA.

Hayes-Roth, Barbara. 1995. A Blackboard Architecture for Control. Artificial

Intelligence, 26:251–321.

Hillis, W.D. 1985. The Connection Machine. Cambridge, MA: MIT Press.

Hoare, Charles A. Richard. 1978. Communicating Sequential Processes. Commu-

nications of the ACM, 21(8):666–677, August.

Hopcroft, J. and J. Ullman. 1979. introduction to Automata Theory, Languages and

Computation. Addison-Wesley.

Horacek, Helmut. 1993. Sprachgenerierung: Planungsvrefahren und

Architektur-modelle. K u¨nstliche Intelligenz, 7(2):8–13.

Huebener, Kai, Uwe Jost and Henrik Heine. 1996. Speech Recognition for Sponta-

neously Spoken German Dialogs. In ICSLP96, Philadelphia, PA.

Hutchins, John. 1994. Research methods and system designs in machine transla-

tion. In Machine Translation: Ten Years On, pages 5–1 – 5–16, Cranfield, UK,

November.

Hutchins, W. John. 1986. Machine Translation. Past, Present and Future. New

York: Horwood.

Hutchins, W. John and Harold L. Somers. 1992. An Introduction to Machine Trans-

lation. London: Academic Press.

Jagannathan, V., R. Dodhiawala and L. Baum (eds.). 1989. Blackboard Architec-

tures and Applications. Boston, MA: Academic Press.

Jekat, Susanne, Alexandra Klein, Elisabeth Maier, Ilona Maleck, Marion Mast and

Joachim Quantz. 1995. Dialogue Acts in Verbmobil. Verbmobil Report 65,

Universita¨t Hamburg, DFKI GmbH, Universita¨t Erlangen, TU Berlin.

Jekat, Susanne J. 1997. Automatic Interpretation of Dialogue Acts. In Christa

Hauenschild and Susanne Heizmann, editors, Machine Translation and Trans-

lation Theory. Perspectives of Co-operation, Text, Translation, Computational

Processing (TTCP), number 1. Mouton de Gruyter.

Jekat, Susanne J., Alexandra Klein, Elisabeth Maier, Ilona Maleck, Marion Mast

and J. Joachim Quantz. 1995. Dialogakte in Verbmobil. Verbmobil Technisches

Dokument 26, Universita¨t Hamburg.

Joshi, Aravind K. 1985. How much Context-Sensitivity is Necessary for Character-

izing Structural Descriptions—Tree Adjoining GrammarsIn D. Dowty, L.

Kart-tunen and A. Zwicky, editors, Natural Language Processing —

Theoretical, Computational and Psychological Perspectives. Cambridge

University Press, New York.

Jost, Uwe. 1997. System- und Modulevaluation. Verbmobil-Memo 125,

Univer-sita¨t Hamburg.

Bibliography 183

Juola, Patrick. 1994. Self-Organizing Machine Translation: Example-Driven In-

duction of Transfer Functions. Technical Report CU-CS722-94, Univ. of Col-

orado, Boulder, CO, May.

Kaplan, R., K. Netter, J. Wedekind and A. Zaenen. 1989. Translation by Structural

Correspondence. In Proc. of the 4
th
 EACL, Manchester, UK.

Kaplan, Ronald M. 1973. A General Syntactic Processor. In Natural Language

Processing. Algorithmic Press, Inc., New York, pages 193-241.

Kaplan, Ronald M. and Joan Bresnan. 1982. Lexical-Functional Grammar: A

Formal System for Grammatical Representation. In Joan Bresnan, editor, The

Mental Representation of Grammatical Relations. MIT Press, Cambridge, MA,

pages 173-281.

Kaplan, Ronald M. and John T. Maxwell. 1989. An Overview of Disjunctive

Constraint Satisfaction. In Proc. International Parsing Workshop, pages 18-27,

Pittsburgh, PA. Carnegie Mellon University.

Karlgren, Jussi. 1994. Mumbling — User-Driven Cooperative Interaction. Techni-

cal report, SICS, Stockholm, January.

Kasper, W., H.-U. Krieger, J. Spilker and H. Weber. 1996. From Word Hypotheses

to Logical Form: An Efficient Interleaved Approach. In Proc. ofKONVENS96.

Kasper, Walter and Hans-Ulrich Krieger. 1996. Integration of Prosodic and Gram-

matical Information in the Analysis of Dialogs. In KI-96: Advances in Artificial

Intelligence. 20th Annual German Conference on Artificial Intelligence, pages

163-174, Berlin, September. Springer Verlag.

Katoh, Naoto and Teruaki Aizawa. 1994. Machine Translation of Sentences with

Fixed Expressions. In Proc. of the 4
th
 Conference on Applied Natural Lan-

guage Processing, pages 28-33, Stuttgart, Germany, October.

Kay, M., J.M. Gawron and P. Norvig. 1991. Verbmobil: A Translation System for

Face-to-Face Dialog. CSLI.

Kay, Martin. 1973. The MIND System. InR. Rustin, editor, Natural Language

Processing. Algorithmic Press, New York, pages 155-188.

Kay, Martin. 1979. Functional Grammar. In C. Chiarelloetet al, editor, Proc. 5th

Annual Meeting of the Berekeley Linguistic Society, pages 142-158, Berkeley,

CA.

Kay, Martin. 1980. Algorithmic Schemata and Data Structures in Syntactic Pro-

cessing. Technical Report CSL-80-12, Xerox Palo Alto Research Center, Palo

Alto, CA.

Kay, Martin. 1984. Functional Unification Grammar: A Formalism for Machine

Translation. In Proc. of the 10
th
 COLING, pages 75-78, Stanford, CA.

Kay, Martin. 1996. Chart Generation. In Proc. of the 34
nd

 ACL, pages 200-204,

Santa Cruz, CA, June.

Kesseler, Marcus. 1994. Distributed Control in Verbmobil. Verbmobil Report 24,

Univ. of Erlangen-Nurnberg, August.

Kesseler, Marcus P. 1990. TransScheme: Entwurf und Implementierung eines

verteilten Scheme-Lisp Systems fur Transputernetzwerke. Master’s thesis,

Uni-versitat Erlangen-Nurnberg, October.

184 Bibliography

Kiefer, Bernd and Thomas Fettig. 1993. FEGRAMED: An Interactive Graphics

Editor for Feature Structures. DFKI-Report, April.

Kikui, Gen-ichiro. 1992. Feature Structure Based Semantic Head Driven Gener-

ation. In COLING-92: The 15th International Conference on Computational

Linguistics, pages 32-38, Nantes, France.

Kilbury, James. 1985. Chart Parsing and the Earley Algorithm. KIT-Report 24,

Projektgruppe Ku¨nstliche Intellligenz und Textverstehen.

Kilger, Anne. 1994. Using UTAGS for Incremental and Parallel Generation. Com-

putational Intelligence, 10(4):591-603, November.

Kinoshita, Satoshi, John Phillips and Jun-ichi Tsujii. 1992. Interaction between

Structural Changes in Machine Translation. In COLING-92: The 15th In-

ternational Conference on Computational Linguistics, pages 679-685, Nantes,

France.

Kitano, H. 1990. #DMDIALOG: A Speech-to-Speech Dialouge Translation System.

Machine Translation, 5.

Kitano, Hiroaki. 1994. Speech-to-Speech Translation: A Massively Parallel

Memory-Based Approach. Boston: Kluwer Academic Publishers.

Klein, Alexandra, Susanne J. Jekat and Jan W. Amtrup. 1996. Inkrementelle und

erwartungsgesteuerte Verarbeitung beim Maschinellen Dolmetschen. In Pro-

ceedings der zweiten Fachtagung der Gesellschaft fur Kognitionswissenschaft,

pages 68-70, Hamburg, March.

Knight, K. 1989. Unification: A Multi-Disciplinary Survey. ACM Computer Sur-

veys, 21:98-124.

Knight, Kevin, I. Chander, M. Haines, V Hatzivassiloglou, E. H. Hovy, M. Iida, S.

K. Luk, A. Okumura, R. A. Whitney and K. Yamada. 1994. Integrating

Knowledge Sources and Statistics inMT. In Proceedings of the 1stAMTA Con-

ference, Columbia, MD.

Konieczny, Lars. 1996. Human Sentence Processing: A Semantics-Oriented Pars-

ing Approach. Ph.D. thesis, Albert-Ludwigs-Universitat, Freiburg.

Konig, Esther. 1994. Syntactic-Head-Driven Generation. In COLING-94: The

15th International Conference on Computational Linguistics, Kyoto, Japan.

Krieger, Hans-Ulrich. 1995. TDC—A Type Description Language for

Constraint-Based Grammars. Foundations, Implementation, and Applications.

Ph.D. thesis, Universitat des Saarlandes, Department of Computer Science,

September.

Ku¨nzli, Alexander and Barbara Moser-Mercer. 1995. Human Strategies for Trans-

lation and Interpretation. InKI95-Activities: Workshops, Posters, Demos, pages

304-306, Bielefeld.

Lavie, Alon, Alex Waibel, Lori Levin, Michael Finke, Donna Gates, Marsal

Gavalda, Torsten Zeppenfeld and Puming Zhan. 1997. JANUS III:

Speech-to-Speech Translation in Multiple Languages. In Proc. of the IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP,

Munich, Germany.

Bibliography 185

Lehning, Michael. 1996. Evaluierung von signalnahen

Spracherkennungssyste-men fuer deutsche Spontansprache. Verbmobil Report

161, TU Braunschweig, www.dfki.uni-sb.de/verbmobil.

Levelt, Willem J. M. 1989. Speaking: From Intention to Articulation. Cambridge,

MA: MIT Press.

Light, Marc. 1996. CHUMP: Partial Parsing and Underspecified Representations.

In Proceedings of the ECAI-96 Workshop: Corpus-Oriented Semantic Analysis.

Luckhardt, Heinz-Dirk. 1987. Der Transfer in der maschinellen

Sprachuberset-zung. Sprache und Information. Tubingen: Niemeyer.

Marchetti-Spaccamela, Alberto, Umberto Nanni and Hans Rohnert. 1992. On-line

Graph Algorithms for Incremental Compilation. Technical Report TR-92-056,

ICSI.

Marcus, M. 1980.A Theory of Syntactic Recognition for Natural Language. Cam-

bridge, MA: MIT Press.

Marslen-Wilson, William D. 1987. Functional Parallelism in Spoken Word Recog-

nition. Cognition, 25:71-102.

Marslen-Wilson, William D. and Lorraine K. Tyler. 1980. The Temporal Structure

of Spoken Language Understanding. Cognition, 8:1-71.

Marslen-Wilson, William D. and A. Welsh. 1978. Processing Interactions During

Word Recognition in Continuous Speech. Cognitive Psychology, 10:29-63.

Matsubara, Shiegki and Yasuyoshi Inagaki. 1997a. Incremental Transfer in

English-Japanese Machine Translation. IEICE Transactions on Information and

Systems, 80(11): 1122-1129, November.

Matsubara, Shiegki and Yasuyoshi Inagaki. 1997b. Utilizing Extra-Grammatical

Phenomena in Incremental English-Japanese Machine Translation. In Proceed-

ings of the Seventh International Conference on Theoretical and Methodological

Issues in Machine Translation, TMI ’97, pages 31-38, Santa Fe, NM, July.

Mattern, Friedemann. 1987. Algorithms for Distributed Termination Detection.

Technical Report 20/87, SFB 124, Kaiserslautern.

Mayer, Otto. 1986. Syntaxanalyse. Reihe Informatik, number 27. Mannheim:

Bibliographisches Institut.

McClelland, J. L. and J. L. Elman. 1986. The TRACE model of speech perception.

Cognitive Psychology, 18:1-86.

McHugh, James A. 1990. Algorithmic Graph Theory. Englewood Cliffs, NJ:

Prentice Hall.

Melamed, I. Dan. 1998. Word-to-Word Models of Translational Equivalence.

IRCS Technical Report 98-08, Uinv. Pennsylvania.

Menzel, Wolfgang. 1994. Parsing of Spoken Language under Time Constraints. In

T. Cohn, editor, Proc. of the 1 1
t h

 ECAI, pages 560-564.

Menzel, Wolfgang. 1998. Constraint Satisfaction for Robust Parsing of Spoken

Language. Journal of Experimental and Theoretical Artificial Intelligence,

10(1):77-89.

Milward, David. 1995. Incremental Interpretation of Categorial Grammar. In Proc.

of the 7
th

 EACL, Bergen, Norway.

http://www.dfki.uni-sb.de/verbmobil

186 Bibliography

Mima, Hideki, Hitoshi Iida and Osamu Furuse. 1998. Simultaneous Interpretation

Utilizing Example-Based Incremental Transfer. In COLING98P, COLING98L.

Morimoto, T., M. Suzuki, T. Takazewa, F. Yato, S. Sagayama, T. Tashiro andM.

Na-gata. 1993. ATR’s Speech translation System: ASURA. In Proc.

ofEurospeech 1993.

Morimoto, Tsuyoshi, Masami Suzuki, Tosiyuki Takezawa, Genichiro Kikui,

Masaaki Nagata and Mutsuko Tomokiyo. 1992. A Spoken Language Transla-

tion System: SL-TRANS2. In COLING-92: The 15th International Conference

on Computational Linguistics, pages 1048-1052, Nantes, France.

Mouaddib, Abdel-illah and Shlomo Zilberstein. 1995. Knowledge-Based Anytime

Computation. In Proc. of the 14
th
 IJCAI, pages 775-781, Montreal, Canada.

Nagao, M. and J. Tsujii. 1986. The Transfer Phase of the Mu Machine Translation

System. In Proc. of the 11
th
 COLING, pages 97-103, Bonn, FRG.

Nederhof, Mark-Jan and Giorgio Satta. 1994. An Extended Theory of Head-Driven

Parsing. In Proc. of the 32
nd

 ACL, Las Cruces, NM.

Niemann, Heinrich, Elmar Noth, Andreas Kiessling, Ralf Kompe and Anton

Bat-liner. 1997. Prosodic Processing and its Use in Verbmobil. In Proc. of the

IEEE International Conference on Acoustics, Speech and Signal Processing,

ICASSP.

Niessen, S., S. Vogel, H. Ney and C Tillmann. 1998. A DP-Based Search Algorithm

for Statistical Machine Translation. In COLING98P, COLING98L.

Nirenburg, Sergei. 1987. Knowledge and Choices in Machine Translation. In

Sergei Nirenburg, editor, Machine Translation: Theoretical and Methodological

Issues. Cambridge University Press, pages 1-21.

Nirenburg, Sergei. 1992. Machine Translation. A Knowledge-based Approach. San

Mateo, CA: Kaufmann.

Nirenburg, Sergei (ed.). 1993. Progress in Machine Translation. Amsterdam: IOS

Press.

Niv, Michael. 1993. A Computational Model of Syntactic Processing: Ambiguity

Resolution from Interpretation. Ph.D. thesis, Univ. of Pennsylvania.

Noeth, Elmar, Anton Batliner, Andreas Kiessling, Ralf Kompe and Heinrich Nie-

mann. 1997. Prosodische Information: Begriffsbestimmung und Nutzen fur

das Sprachverstehen. In Paulus and Wahl, editors, Mustererkennung 1997,

In-formatik Aktuell, Heidelberg. Springer Verlag.

Noord, Gertjan van. 1990. Reversible Unification Based Machine Translation. In

Proc. of the 13
th
 COLING, pages 299-304, Helsinki, Finland.

Oerder, Martin and Hermann Ney. 1993. Word Graphs: An Efficient Interface Be-

tween Continuous-Speech Recognition and Language Understanding. In Pro-

ceedings of the 1993 IEEE International Conference on Acoustics, Speech &

Signal Processing, ICASSP, pages II/119–II/122, Minneapolis, MN.

Oi, Kozo, Eiichiro Sumita, Osamu Furuse, Hitoshi Iida and Tetsuya Higuchi. 1994.

Real-Time Spoken Language Translation Using Associative Processors. In

Proc. of the 4
th
 Conference on Applied Natural Language Processing, pages

101-106, Stuttgart, Germany.

Ousterhout, John K. 1994. Tcl and the Tk Toolkit. Addison-Wesley.

Bibliography 187

Paterson, M. S. andM. N. Wegman. 1978. Linear Unification. Journal of Computer

and System Sciences, 16:158-167.

Pereira, Fernando C. N and Stuart M. Shieber. 1984. The Semantics of Grammar

Formalisms Seen as Computer Languages. In Proc. of the 10
th

 COLING,

Stanford, CA.

Peres, L. andB. Rozoy. 1991. On the Evaluation of Distributed Termination Proto-

cols. Rapport de Recherche 656, LRI, Paris.

Pollard, Carl and Ivan A. Sag. 1987. Information-based Syntax and Semantics. Vol

1: Fundamentals. Stanford, CA: CSLI Lecture Notes 13.

Pollard, Carl and Ivan A. Sag. 1994. Head-Driven Phrase Structure Grammar.

Chicago, London: University of Chicago Press.

Poller, Peter. 1994. Incremental parsing with LD/TLP-TAGS. Computational In-

telligence, 10(4):549-562, November.

Poznan´ski, V., J. L. Beaven and P. Whitelock. 1995. An Efficient Generation Algo-

rithm for Lexicalist MT In Proc. of the 33
nd

 ACL, Cambridge, MA, June.

Prahl, Birte, Susanne Petzold, Susanne Heizmann and Christa Hauenschild. 1995.

Variable Analysetiefe und Bewertungskriterien in Verbmobil:

Translationswis-senschaftliche Grundlagen. Verbmobil-Report 54, University

of Hildesheim, Hildesheim, January.

Pyka, Claudius. 1992a. Management of Hypotheses in an Integrated

Speech-Language Architecture. In Proc. of the 10
t h

 ECAI, pages 558-560,

Vienna, Austria.

Pyka, Claudius. 1992b. Schnittstellendefinition mit ASL-DDL. ASL-TR

42-92/UHH, Univ. of Hamburg, March.

Pyka, Claudius. 1992c. Spezifikation einer Komponente. Technical Report

ASL-Memo-57-92/UHH, Univ. of Hamburg, Hamburg, September.

Ramalingam, G. and T. Reps. 1992. An Incremental Algorithm for a Generalization

of the Shortest-Path Problem. Technical report, Univ. of Wisconsin - Madison.

Rayner, Manny and David Carter. 1996. Fast Parsing Using Pruning and Grammar

Specialization. In Proc. of the 34
nd

 ACL, pages 223-230, Santa Cruz, CA,

June.

Rayner, Manny and David Carter. 1997. Hybrid Language Processing in the

Spoken Language Translator. In Proc. of the IEEE International Conference

on Acoustics, Speech and Signal Processing, ICASSP, Munich, Germany.

http://www.cam.sri.com/tr/crc064/paper.ps.Z.

Reinecke, Joerg. 1996. Evaluierung der signalnahen Spracherkennung. Verbmobil

Memo 113, TU Braunschweig, Nov.

Reithinger, Norbert. 1992. Eine parallele Architektur zur Inkrementellen

Gener-ierung Multimodaler Dialogbeitra¨ge. Sankt Augustin: infix.

Robinson, J. A. 1965. A Machine-Oriented Logic Based on the Resolution Princi-

ple. J.ACM, 12:23–41.

Russel, Stuart J. and Shlomo Zilberstein. 1991. Composing Real-Time Systems. In

Proc. of the 12
th

 IJCAI, pages 212-217, Sidney, Australia, August.

http://www.cam.sri.com/tr/crc064/paper.ps.Z

188 Bibliography

Sadler, Louisa and Henry S. Thompson. 1991. Structural Non-Correspondence in

Translation. In Proc. of the 5
th
 EACL, pages 293-298, Berlin, Germany.

Sampson, G. R. 1983. Context-Free Parsing and the Adequacy of Context-Free

Languages. In M. King, editor, Parsing Natural Language. Academic Press,

London, pages 151-170.

Samuel, Arthur G. 1990. Using Perceptual-Restoration Effects to Explore the Ar-

chitecture of Perception. In G. Altmann, editor, Cognitive Models of Speech

Processing. MIT Press, Cambridge, MA, chapter 14, pages 295-314.

Sato, S. andM. Nagao. 1990. Towards memory based translation. InProc. of the

13
th

 COLING, pages 3/247-3/252, Helsinki, Finland.

Satta, G. and Oliviero Stock. 1989. Formal Properties and Implementation of Bidi-

rectional Charts. In Proc. International Joint Conference on Artificial Intelli-

gence, pages 1480-1485, Detroit, MI.

Satta, Giorgio and Oliviero Stock. 1994. Bidirectional context-free grammar pars-

ing for natural language processing. Artificial Intelligence, 69:123-164.

Schollhammer, Thomas. 1997. Ubersetzung von Idiomen in einer

Speechumge-bung. Unveroff. Studienarbeit, Universitat Hamburg.

Schroder, Martin. 1993. Erwartungsgestutzte Analyse medizinischer

Befundungs-texte. Ein wissensbasiertes Modell zur Sprachverarbeitung. Ph.D.

thesis, Univ. of Hamburg, Hamburg.

Schubert, Klaus. 1992. Esperanto as an intermediate language for Machine Transla-

tion. In John Newton, editor, Computers in Translation: A Practical Appraisal.

Routledge, London, pages 78-95.

Seligman, Mark, Christian Boitet and Boubaker Meddeb Hamrouni. 1998. Trans-

forming Lattices into Non-deterministic Automata with Optional Null Arcs. In

COLING98P, COLING98L.

Sheil, B. A. 1976. Observations on Context-Free Parsing. Statistical Methods in

Linguistics, 6:71-109.

Shieber, Stuart M. 1984. The Design of a Computer Language for Linguistic Infor-

mation. InProc. of the 10
th
 COLING, pages 362-366, Stanford, CA, July.

Shieber, Stuart M. 1985. Evidence Against the Context-Freeness of Natural Lan-

guages. Linguistics and Philosophy, 8:362-366.

Shieber, StuartM., GertjanvanNoord, RobertC. Moore andFernando C.N. Pereira.

1989. A Semantic-Head-Driven Generation Algorithm for Unification-Based

Formalisms. InProc. of the 27
th
 ACL, pages 7-17, Vancouver.

Shieber, Stuart M., Gertjan van Noord, Robert C. Moore and Fernando C.N.

Pereira. 1990. Semantic-Head-Driven Generation. Computational Linguistics,

16(1):30-42.

Shillcock, Richard. 1990. Lexical Hypotheses in Continuous Speech. In G. Alt-

mann, editor, Cognitive Models of Speech Processing. MIT Press, Cambridge,

MA, chapter 2, pages 24-49.

Shillcock, Richard and Ellen Gurman Bard. 1993. Modularity and the Processing

of Closed-class Words. In Gerry T. M. Altmann and Richard Shillcock, edi-

Bibliography 189

tors, Cognitive Models of Speech Processing: The Second Sperlonga Meeting.

Lawrence Erlbaum, Hove, UK, chapter 9, pages 163-185. Sobashima,

Yasuhiro, Osamu Furuse, Susumu Akamine, Jun Kawai and Hitoshi

Iida. 1994. A Bidirectional, Transfer-Driven Machine Translation System

for Spoken Dialogues. In COLING-94: The 15th International Conference on

Computational Linguistics, pages 64-68, Kyoto, Japan. Somers, Harold L.

1993. Current Research in Machine Translation. Machine

Translation, 7:231-246. Sommerville, Ian. 1996. Software Engineering.

Addison-Wesley. Spilker, Jorg. 1995. Parallelisierung eines inkrementellen

aktiven Chart-Parsers.

Verbmobil-Report 105, Universitat Erlangen-Nu¨rnberg. Steel, Sam and Anne

de Roeck. 1987. Bidirectional Chart Parsing. In Proc. of the

1987 AISB Conference, pages 223-235, Edinburgh. Steele, G. L. and W. D. Hillis.

1986. Connection Machine Lisp: Fine-Grained Symbolic Processing. In

Proceedings of 1986 Symposium on Lisp and Functional

Programming, pages 279-297'. Steinbiß, V,B.H. TranandH. Ney. 1994.

Improvements in Beam Search. InProc.

ICSLP-94, pages 2143-2146, Yokohama, Japan. Stock, Oliviero. 1989. Parsing

with Flexibility, Dynamic Strategies, and Idioms in

Mind. Computational Linguistics, 15(1): 1-18, March. Stock, Oliviero, Rino

Falcone and Patrizia Insinnamo. 1988. Island Parsing and

Bidirectional Charts. InProc. of the 12
th
 COLING, pages 636-641, Budapest,

Hungary, August. Strom, Volker and G.Widera. 1996. What’s in the ―pure‖

Prosody? InProc. ICSLP

1996, Philadelphia, PA. Tanenhaus, M. K., J. M. LeimanandM. S. Seidenberg.

1979. Evidence for multiple

stages in the processing of ambiguous words in syntactic contexts. Journal of

Verbal; Learning and Verbal Behavior, 18:427-440. Thompson, Henry S. and

Graeme Ritchie. 1984. Implementing Natural Language

Parsers. In T. O’Shea and M. Einsenstadt, editors, Artificial Intelligence —

Tools, Techniques, and Application. Harper and Row, London, pages 245-300.

Tran, B. H., F. Seide and V. Steinbiss. 1996. A word graph based n-best search in

continuous speech recognition. In ICSLP. Tropf, Herbert S. 1994.

Spontansprachliche syntaktische Phanomene: Analyse

eines Korpus aus der Domane ―Terminabsprache‖. Technical report, Siemens

AG, Mu¨nchen, January. Vitter, J. S. andR. A. Simons. 1986. New Classes for

Parallel Complexity: A Study

of Unification and Other Complete Problems for P. IEEE Trans. Comp., pages

C-35. Vogel, Carl, Ulrike Hahn and Holly Branigan. 1996. Cross-Serial

Dependencies

Are Not Hard to Process. InProc. of the 16
th
 COLING, pages 157-162, Copen-

hagen, Denmark, August.

190 Bibliography

Wachsmuth, I. and Y. Cao. 1995. Interactive Graphics Design with Situated Agents.

In W. Strasser and F. Wahl, editors, Graphics and Robotics. Springer Verlag,

pages 73–85.

Wahlster, Wolfgang. 1993. Translation of Face-to-Face-Dialogs. In Proc. MT

Summit IV, pages 127–135, Kobe, Japan.

Wahlster, Wolfgang. 1997. Verbmobil: Erkennung, Analyse, Transfer, generierung

und Synthese von Spontansprache. Verbmobil-Report 198, DFKI, Saarbru¨cken.

Waibel, Alex. 1996. Interactive Translation of Conversational Speech. Computer,

29(7), July.

Waibel, Alex, A. M. Jain, A. E. McNair, H. Saito, A. G. Hauptmann and J.

Tebel-skis. 1991. JANUS: A Speech-to-Speech Translation System Using

Connec-tionist and Symbolic Processing Strategies. In Proc. of the IEEE

International Conference on Acoustics, Speech and Signal Processing, ICASSP

1991.

Wang, Ye-Yi and Alex Waibel. 1995. Connectionist Transfer in Machine Transla-

tion. In Proc. International Conference on Recent Advantages in Natural Lan-

guage Processing, pages 37–44, Tzigov Chark, Bulgaria, September.

Warren, David. 1983. An Abstract Prolog Instruction Set. Technical Note 309, SRI

International, Menlo Park, CA.

Warren, R. M. 1970. Perceptual restoration of missing speech sounds. Science,

167:392–393.

Weber, Hans. 1992. Chartparsing in ASL-Nord: Berichte zu den Arbeitspaketen P1

bis P9. Technical Report ASL-TR-28-92/UER, Universita¨t Erlangen-Nu¨rnberg,

Erlangen, December.

Weber, Hans. 1995. LR-inkrementelles, Probabilistisches Chartparsing von

Wor-thypothesengraphen mit Unifikationsgrammatiken: Eine Enge Kopplung

von Suche und Analyse. Ph.D. thesis, Universita¨t Hamburg.

Weber, Hans H., Jan W. Amtrup and Jo¨rg Spilker. 1997. Innovative

Systemar-chitekturen zur Inkrementellen Interaktiven Verarbeitung. K

u¨nstliche Intelli-genz, 11(4):26–30, December.

Weber, Volker. Forthcoming. Funktionales Konnektionistisches

Unifikations-basiertes Parsing. Ph.D. thesis, Univ. Hamburg.

Weisweber, Wilhelm. 1992. Term-Rewriting as a Basis for a Uniform Architecture

in Machine Translation. In COLING-92: The 15th International Conference on

Computational Linguistics, pages 777–783, Nantes, France.

Weisweber, Wilhelm. 1994. The experimental MT system of the project KIT FA S

T. I n Machine Translation: Ten Years On, pages 12–1–12–19, Cranfield, UK,

November.

Weisweber, Wilhelm and Christa Hauenschild. 1990. A Model of Multi-Level

Transfer for Machine Translation and Its Partial Realization. KIT-Report 77,

Technical University of Berlin.

Whitelock, P. 1992. Shake-and-Bake Translation. In COLING-92: The 15th In-

ternational Conference on Computational Linguistics, pages 784–791, Nantes,

France.

Bibliography 191

Winograd, Terry. 1983. Language as a Cognitive Process. Volume I: Syntax. Read-

ing, MA: Addison-Wesley.

Wintner, Shuly. 1997. An Abstract Machine for Unification Grammars. Ph.D.

thesis, Technion - Israel Institute of Technology, Haifa, Israel, January.

Wintner, Shuly and Nissim Francez. 1995a. Abstract Machine for Typed Feature

Structures. In Proceedings of the 5th Workshop on Natural Language Under-

standing and Logic Programming, Lisbon, Spain.

Wintner, Shuly and Nissim Francez. 1995b. Parsing with Typed Feature Struc-

tures. In Proceedings of the 4
th

 International Workshop on Parsing Technolo-

gies (IWPT95), pages 273-287, Prague, September. Charles University.

Wiren, Mats. 1988. On Control Strategies and Incrementality in Unification-Based

Parsing. Linkoping Studies in Science and Technology, Thesis No. 140. Mas-

ter’s thesis, Linkoping University.

Wiren, Mats. 1992. Studies in Incremental Natural-Language Analysis. Ph.D.

thesis, Linkoping University, Linkoping, Sweden.

Woodland, P. C, C. J. Leggetter, J. J. Odell, V Valtchev and S. J. Young. 1995. The

1994 HTK large vocabulary speech recognition system. In ICASSP95.

Woods, W A. 1973. An Experimental Parsing System for Transition Network

Grammars. In Randall Rustin, editor, Natural Language Processing. Algorith-

mic Press, New York.

Worm, Karsten and C. J. Rupp. 1998. Towards Robust Understanding of Speech by

Combination of Partial Analyses. In Proc. of the 13
th
 ECAI, Brighton, UK.

Worm, Karsten L. 1998. A Model for Robust Processing of Spontaneous Speech

by Integrating Viable Fragments. In COLING98P, COLING98L.

Wu, Dekai. 1995a. Grammarless Extraction of Phrasal Translation Examples From

Parallel Texts. In TMI95P, TMI95L.

Wu, Dekai. 1995b. Stochastic inversion transduction grammars, with application

to segmentation, bracketing, and alignment of parallel corpora. In Proc. of the

14
th
 IJCAI, pages 1328-1335, Montreal, Canada, August.

Ying, H. G. 1996. Multiple Constraints on Processing Ambiguous Sentences: Evi-

dence from Adult L2 Learners. Language Learning, 46(4):681-711, December.

Zajac, Remi. 1990. A Relational Approach to Translation. In Proc. of the 3
rd

Int.

Conf. on Theoretical and Methodological Issues of Machine Translation,

Austin, TX.

Zajac, Remi. 1991. Notes on the Typed Feature System. Technical report, IMS-CL,

Stuttgart.

Zajac, Remi. 1992. Inheritance and Constraint-Based Grammar Formalisms. Com-

putational Linguistics, 18(2):159–182.

Zajac, Remi. 1998. Feature Structures, Unification and Finite-State Transducers. In

FSMNLP’98, International Workshop on Finite State Methods in Natural Lan-

guage Processing, Ankara, Turkey, June.

Zajac, Remi, Marc Casper and Nigel Sharples. 1997. An Open Distributed Archi-

tecture for Reuse and Integration of Heterogeneous NLP Components. In Proc.

192 Bibliography

of the 5
th
 Conference on Applied Natural Language Processing, Washington,

D.C. Zechner, Klaus and Alex Waibel. 1998. Using Chunk Based Partial

Parsing of

Spontaneous Speech in Unrestricted Domains for Reducing Word Error Rate in

Speech Recognition. In COLING98P, COLING98L. Zwitserlood, P. 1989.

The Locus of Effects of Sentential-Semantic Context in

Spoken-Word Processing. Cognition, 32:25-64.

Glossary

Abbreviations and Acronyms

ALE Attribute Logic Engine 76

ASL Architecture of Speech-Language Systems 17

AT I S Air travel information System 22

AT N Augmented Transition Network 65

CFG Context-Free Grammar 66

CKY Cocke, Kasami, Younger algorithm 43

CSP Communicating Sequential Processes 96

DAG Directed acyclic graph 29

DCG Definite Clause Grammar 67

EVS Ear-voice span 15

FUG Functional Unification Grammar 73

HMM Hidden Markov Model 30

HPSG Head Driven Phrase Structure Grammar 66

ICE INTARC Communication Environment 96

IDL INTARC Data Layer 98

ILS INTARC License Server 98

INTARC INTeractive ARChitecture 23

LFG Lexical Functional Grammar 67

LR Left-Right (incrementality) 5

MILC Machine Interpreting with Layered Charts 1

MT Machine Translation 128

MUC Message Understanding Conference 110

NLP Natural Language Processing 3

NP Noun Phrase 117

PVM Parallel Virtual Machine 97

RPC Remote Procedure Call 96

SLT Spoken Language Translator 22

SSSP Single Source Shortest Paths 60

TDMT Transfer-Driven Machine Translation 22

TFS Typed Feature Structure 74

UTAG Unification Tree Adjoining Grammar 67

VIT Verbmobil Interface Term 77

XDR eXternal Data Representation 98

194 Glossary

Symbols

T The most general type in a type lattice 68

± The inconsistent type in a type lattice 68

-> Adjacency relation 27

A Reachability relation 27

zi Subsumption relation 69

n Unification 69
#m() In-degree of a vertex 3
#o«t() Out-degree of a vertex 32

!SIL, Silence label 48

a Access function for the start vertex of an edge 27

/? Access function for the end vertex of an edge 27

<5(v,v ') Distance between two vertices 28

£ Set of Edges 25

G Graph 25

G(0,0) The empty graph 25

He Hyperedge associated with a word graph edge 55

£ Set of labels 26

I Access function for the label of an edge 27
p(G) Number of paths in a graph 38

TDC Type Definition Language 78
T Topological order of a graph 34

V Set of vertices 25

VM Root of a graph 32

„(/) Final vertex of a graph 32

W Set of weights 26

w Access function for the weight of an edge 27

Index

-K"(3,3),28
n-best hypotheses, 31
"He, 55

Access
- lexical, 53 Ackermann
function, 67 Adjacent,
27, 55 Agenda, 93, 117
Agent architecture, 97
Agreement, 66
Algorithm
- incremental, 9
Algorithm schema, 93
Algorithms
- anytime, 21
- contract, 150
- interrupt, 150
- linear, 67
Ambiguity, 26
Analysis
- depth of, 19
- variable depth of, 20
Anytime
- weak, 151
Appointment scheduling, 109, 158
Approaches
- automata-oriented, 65
Appropriateness, 72, 82
Architecture, 170
argmax, 55
argmin, 55 Aspect,
20, 129
ATIS-Domain, 22
ATN, 65

Attachment, 98, 100
Automaton
- finite state, 39
Avoid new subjects, 14

Backbone
- context-free, 42
Bandwidth, 87
Best chain, 30
Bigram, 119
Bit vector, 80
Blackboard, 87
- discourse, 88
- distributed, 88
Boundary
- word, 53
Break off, 30
Broadcast, 101

CFG, 66
Channel, 97
- additional, 98
- base, 98
- configuration, 100
- split, 99 Chart,
25, 28, 92
- Combine operation, 93
- Insert operation, 93
- Layered, 95
- layered, 17, 85, 90, 105, 170
- number of edges, 157
- Propose operation, 93
- transfer, 131 Chomsky
normal form, 42
CKY-Algorithm, 43

196 Index

Cognitively oriented architecture model,
Cohort, 11
– word initial, 12
Cohort model, 11
Communicating Sequential Processes

(CSP), 96 Communication, 95,
171 – man-machine, 169 – using
message passing, 96 – using
remote procedure calls, 96 – using
shared memory, 96 Complement
complex, 123 Complexity – cubic
time, 42 Component, 96 – dialog,
172 – distribution of, 85
Connectionism, 131 Constraint, 66
Constraint satisfaction, 152
Context, 13 Control – central, 90
Control strategy, 87 Core language
engine, 22 Coreference, 67, 70
CSP, 96 Cycle, 27

Dag, 29
DCG, 67
Dead end, 9, 32, 167
Definite Clause Grammars, 67
Degree, 31
– in, 31
– out, 31
Deictic gestures, 39
Deixis, 173
Delay, 7
Density, 37, 48
– transcript-independent, 37
Dependencies
– cross-serial, 66
Derivation steps
– number of, 45
Detachment, 98, 100
Dialog, 14
Dialog act, 23, 109, 148, 162
Disjunction, 77
– atomic, 81
Distance, 28
Dynamic programming, 38

Ear-Voice-Span, 15

17 Edge
– active, 92, 119
– directed, 26
– inactive, 92, 117
– pre-terminal, 28
– transfer, 134
Edge sequence, 27
– closed, 27
– length of, 28
– open, 27
Edge train, 27
Edges
– family of, 52, 54
Equivalence class, 71
Error
– speech recognition, 22
Euler, 28
Evaluation, 34, 164, 170
– isolated, 38
Experiments
– cross-modal priming, 11

Feature structure, 25, 67, 69, 80
– array representation, 82
– atomic disjunction, 77
– classification of, 82
– completely well-typed, 72
– extended, 78
– functions in, 73
– restricted, 78
– sharing of, 77
– standard, 78
– subsumption of, 70
– unification of, 71
– well-typed, 72
Feed forward, 10
Feedback, 10
Formalism, 18
– declarative, 67
– typed feature structure, 18, 171
– unification-based, 66
– uniform, 85
Frame, 5, 7, 32
FUG, 73
Function call, 81
Functional Unification Grammar, 73

Garden path sentences, 14
Gender, 158
Generation, 137
– bidirectional, 137
– head-driven, 137
– knowledge sources, 161

Index

197

– Shake-And-Bake, 138
– strategic, 137
– surface, 93, 137
– tactical, 137
Grammar
– context-free, 66
– generative, 65
– phrase structure, 66
– probabilistic, 165
– strictness of, 47
Graph, 25
– bipartite, 28
– connected, 28
– directed, 26
– directed, acyclic, 29
– empty, 25
– interpretation, 53, 91
– interval, 53
– labeled, 26
– of components, 19
– planar, 28
– search in, 60
– weighted, 26

Head, 113
Head Driven Phrase Structure Grammar, 67
Head Feature Principle, 117
Head switching, 20
Hesitation, 30, 113
Hidden markov model, 52
HMM, 52, 86
Hmm, 30
Homophone, 13
HPSG, 67, 72, 73
Hyperedge
– combination of, 59
– merging of, 56
Hypergraph, 53, 54, 90, 94, 155, 170

Idiom, 20
Idiom processing, 108, 146
Idiom Recognition
– knowledge sources, 160
Idiom recognition, 106
ILS, 98
Ils, 100
Incidence, 31
Increment size, 7, 8
Incremental input, 7
Incremental output, 7
Incremental system, 7
Incrementality, 3, 5, 85, 90, 143, 169
– chronological, 5

– comparison to non-incremental methods,
165 – Left-Right, 5 –

LR, 5 – structural, 5
Infimum, 69 Information
– partial, 66 Information
hiding, 87 Inhibition,
110 Input
– written, 28
Intarc License Server (ILS), 98
Integration, 17
– of language and speech, 86
Interaction, 18
– between recognizer and parser, 10 –
top-down, 10, 13 Interactivity, 10
Interlingua, 19, 128 Interpretation
graph, 86 Interpreting – simultaneous,
14, 15 Island analysis, 93, 121 Item
– closed class, 13 –
open class, 13

Knowledge sources
– general, 47
Kuratowski
– theorem of, 28

Label, 26
– unique sequence of, 39
Language
– type-0, 65
– written, 86
Language model, 119, 131, 146
Lattice, 67
– of types, 69
Lexical decision, 11
Lexical Functional Grammar, 67
Lexical selection, 13
Lexicon entry, 116
LFG, 67, 73
Lip movement, 173
Lip movements, 39
List
– polymorphic, 81

Machine
– abstract, 18, 67
– Warren abstract, 76

198 Index

Maintenance, 173
Merging
– mutually unreachable vertices, 51
Message passing
– asynchronous, 96
Message Understanding Conference, 110
Modality, 39
Modularity, 3, 16
Modularity hypothesis, 13
– weak, 17

Node, 25 Noise,
30, 131

Occam, 96
Open sentence planning, 15
Optimization, 167
Order
– partial, 70
– topological, 61

Parallel Virtual Machine (PVM), 97
Parallelism, 3
– algorithmic, 4
– data-driven, 4
– inter-modular, 5, 9, 18
– intra-modular, 4
Parallelization, 147
Parser, 42
– chunk, 110
Parsing
– bidirectional, 122
– bottom-up, 53
– bottom-up left corner, 119
– partial, 156
Partial Parsing
– knowledge sources, 161
Partial parsing, 106
Path, 27
– additional, 60
– in feature structures, 69
– shortest, 60
– single source shortest (SSSP), 60
Paths
– number of distinct, 39
– number of, 38
PATR II, 67
Penalty
– transition, 62
Performance, 155
Performance Phenomena, 30
Phoneme, 89
Phoneme restoration effect, 12
Phrase

– noun, 121 –
prepositional, 121 – verb,
121 Predicate logic, 67
Presupposition, 14
Priming
– cross modal, 13
Processing strategy, 93
Prosody, 39, 147, 172
Pruning, 44
Psycholinguistics, 169
PVM, 97

Quality, 151, 164 Quality
measure, 44

Rank, 45
Reachability, 55
Real time, 164
Reason maintenance, 88, 94
Recognizer
– resolution, 53
Recording conditions, 30
Redundancy test, 40
Relation
– adjacency, 27
– reachability, 27
Robustness, 88
Routine formulae, 20
Rule
– fundamental, 93
– left-hand side, 117
– right hand side, 117
– transfer, 73, 131
Runtime, 164

Score, 91
– acoustic, 26, 31, 39, 59, 107, 119
scorejoin, 56, 57
Search
– A*, 23
– beam, 94, 162
– incremental, 109
Search space, 9, 10, 172
Search strategy, 147
Segmentation, 12
Sentence
– subordinate, 164
Serialization, 88
Sign
– lexical, 79
Signal detection test, 13
Silence, 48
– removing all, 51

Index

199

- removing consecutive, 49
- removing single, 48
SLT, 22
Speaker noise, 30
Speaker variation, 30
Speech, 86
- continuous, 30
- spontaneous, 16 Speech
recognition, 169
- and linguistic processing, 172
Speed up, 155
Spoken Language Translator, 22
Storage
- distributed, 90
Sub-Words, 12
Subcategorization, 110
Subsumption, 68
- of feature structures, 70
- of types, 69 Supremum,
69 Surface generation, 106
Synchronization, 10, 100
- initial, 102
- rendez-vous, 96
System
- continuous, 8
- example-based, 5
- memory-based, 5
- modular, 4
- monolithical, 4
- parallel, 4
- sequential, 4

TDMT, 22 Tense,
20, 129
Termination
- distributed, 105
Threshold, 117
Topological order, 34
Topology, 36 Trains,
22 Transcript, 114
Transducer
- finite state, 146
Transfer, 19, 106, 128
- chart-based, 130
- knowledge sources, 161
- Multi-level, 20
- recursive, 136
- variable, 20
Transfer-Driven Machine Translation, 22
Transition Networks
- augmented, 65

- recursive, 65
Transition penalty, 143
Translation
- Anytime, 149
- example-based, 131
- memory-based, 131
- quality, 164
- statistical, 130
Transputer, 96
Tree
- red-black, 117
Type, 66, 68
- bottom(±), 68
- top(T), 68
- encoding of, 80
- inference, 72
- lattice, 68, 159, 173
- lattice of, 69
- subsumption, 68, 69
- unification, 69
Types
- Inheritance, 66

Unification, 66
- disjunctive, 67
- graph, 67
- of feature structures, 71
- of types, 69
- parallel, 67
Unification Tree Adjoining Grammars, 67
Uniformity, 18
Unit
- functional, 5
UTAG, 67
Utterance Integration, 106
- knowledge sources, 161

Vector
- feature, 86
Verbmobil, 23
Vertex, 25
- end, 27, 32
- merging of, 40
- start, 27, 32
- total ordering, 55
Visualization, 143
- incremental, 144

Weight, 26
Well-Formed substring table, 92
Whiteboard, 88
Word graph
- size of, 38

Word accuracy, 37, 44, 158, 169

200 Index

Word edges
– inserting into hypergraph, 57
Word graph, 18, 25, 31, 32, 86, 114, 170
– incremental, 34
– left-connected, 34
– non-incremental, 32
– non-planarity, 28
– size, 52
Word order
– spontaneous, 165
Word recognition, 105, 106
Word sequence
– distinct, 34

XDR, 98
XPVM, 104

