


Handbook of Natural Language Processing

and Machine Translation





Joseph Olive · Caitlin Christianson · John McCary

Editors

Handbook of Natural Language
Processing and Machine
Translation

DARPA Global Autonomous Language Exploitation

123



ISBN 978-1-4419-7712-0 e-ISBN 978-1-4419-7713-7

DOI 10.1007/978-1-4419-7713-7
Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011920954

Editors

Joseph Olive
Defense Advanced Research Projects Agency
IPTO
N Fairfax Drive 3701
Arlington, VA 22203, USA
joseph.olive@darpa.mil

Caitlin Christianson
Defense Advanced Research Projects Agency
Reston Virginia, USA
caitlin.christianson.ctr@darpa.mil

John McCary
Defense Advanced Research Projects Agency
Bethesda Maryland, USA
john.mccary@gmail.com

c© Springer Science+Business Media, LLC 2011
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the

publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts

in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval,

electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is
forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as

such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



 
 
First, I would like to thank the community for all of its hard work in making GALE a 

success. I would like to thank the technical assistants Caitlin Christianson and John 
McCary for all of their help with the program and this book. Special thanks to Paul 
Dietrich for making GALE run smoothly. 

We would like to thank the current DARPA management for its continued support 
throughout the program, especially DARPA Director Regina Dugan, Deputy DARPA 
Director Ken Gabriel, Information Processing Techniques Office (IPTO) Director Daniel 
Kaufman, and IPTO Deputy Director Mark Luettgen.  We would also like to thank 
previous IPTO Directors and Deputy Directors Ron Brachman, Charles Holland, Barbara 
Yoon, Charles Holland, and Charles Morefield for their help in launching the program, 
continued support, and encouragement to write this book. 

Special thanks to former DARPA Director Anthony Tether for having the vision and 
the faith in us to fund the program so that it had a chance to succeed. 

Finally, I would like to thank my wife Virginia Kayhart Olive. Without her great 
personal sacrifice this project would not have been possible.  
 

 

 

Acknowledgements 

v





 

 

 

Introduction 

Authors: Joseph Olive, Caitlin Christianson, and John McCary 

 
“When I use a word, it means just what I choose it to mean – neither more nor less.” 
Humpty Dumpty in Lewis Carroll’s Through the Looking Glass, or Alice in Wonderland 
 
 

The meaning of what Lewis Carroll’s Humpty Dumpty says is abundantly clear to 
him, but to others, it is virtually incomprehensible.  Because the rules of his language are 
entirely of his own devising, he is the only one who knows what he means.   Translation 
of one language into another poses a similar problem; knowing the usual meaning of a 
word is not enough.  To translate, it is necessary to convey the meaning of the entire 
message, not just transfer words from one language to another.   Because people can 
perform this task so adeptly, it is easy to underestimate the challenge it poses to 
computers.   Although computational capabilities of machines exceed those of humans in 
many ways, even the most advanced of today’s computers cannot match the language 
ability that humans acquire naturally.  To translate and extract information conveyed 
through language, humans take advantage of a variety of cognitive abilities that no 
computer can currently emulate.  The Defense Advanced Research Projects Agency 
(DARPA), however, specializes in tackling just such challenging problems.  DARPA 
researchers have attacked the problem of machine translation as part of the Global 
Autonomous Language Exploitation (GALE) Program. 

Like other programs at DARPA, GALE was initiated to fill a need for the Defense 
Department. In the case of GALE, this need is to close the language gap – to make 
relevant information, regardless of source language, accessible to English-speaking 
personnel.  The program’s goal is to create technology to automatically translate, analyze, 
and distill the information that forms the overwhelming tidal wave of foreign language 
material facing Defense Department personnel.  The value of GALE technology is to be 
creation of the ability not only to translate, but also to identify relevant information and 
sort it from what is not, and to present a final product in a form both understandable and 
useable. 

While there is no existing parallel for such a capability, there have certainly been 
fictionalized precedents to the idea behind GALE – the universal translator, capable of 
translating between English and thousands of other languages, in the form of a compact 
silver device worn on the chest of every Star Trek crew member; the HAL 9000 
computer, capable of reasoning and defending itself in 2001, Stanley Kubrick’s classic 

vii



 

futuristic film; and Star Wars’ robot C3PO, who speaks nearly every known language in 
the universe. 

For the purpose of research and development of automated translation and human 
language processing capability in the GALE Program, language has been classified into 
two input modes– speech and electronic text.  A third important language input mode, 
hardcopy document text, is the subject of another DARPA program.  While research 
related to each of GALE’s two input modes focuses on producing a correct translation 
and extracting information, each mode of input presents singular problems that require 
different research paths. Unlike text, which generally has orthographic separation, speech 
signals are continuous, lacking word and phrase boundary markers. In speech, even 
sentence boundaries are difficult to determine. In addition, the confusability of many 
phonemes adds to the uncertainty. Because these difficulties are alleviated when a 
computer carries out transcription using a more explicit orthographic system than those 
used by human writers, machine translation researchers previously attempted to use 
computers to transcribe speech into text and then translate that text.   

In the GALE Program, researchers have begun to combine the processes of 
transcription and translation, enabling information about possible translations to assist 
transcription, and information about possible transcriptions and transcription ambiguities 
to assist translation.  An important benefit of using this method is that interactivity 
between transcription and translation reduces instances of propagation of errors made 
earlier in the process by providing opportunities for correction. This interactive technique 
has yielded significant improvements in accuracy for both transcription and translation of 
speech.  In this way, GALE researchers have achieved revolutionary progress by 
consistently and effectively blending previously distinct speech and text technologies.   

Text input can also be problematic. In many languages, word boundaries are clear in 
writing, but due to the lack of orthographic representation of other language elements, 
such as prosody, it can still be difficult to know a writer’s intent. Scripts without word 
boundaries introduce additional uncertainty in reading. Chinese writing, for example, 
does not indicate word boundaries orthographically, a characteristic that can create 
ambiguity.  Semitic language scripts do indicate word boundaries, but often do not 
include explicit vowel marking, thus creating ambiguities, since it can be uncertain which 
vowels were intended. GALE researchers have undertaken extraordinary efforts to 
address these and other obstacles in machine translation of text. 

One of the greatest challenges in planning an approach for GALE was defining 
precisely what tasks GALE’s natural language processing machines would be achieving.  
Was it the ability to translate any language into English?  Or was there an even higher 
goal of retrieving what was relevant from the input?  Would achieving such a goal mean 
that GALE researchers would have to create technology that could extract relevant 
information from translated material and operate on foreign language material directly?  
Would GALE machines be able to perform all of these tasks well enough to enable 
assessment and analysis of the volume of information now available to anyone connected 
to the Internet or satellite television?   

These questions have resulted in many challenges to GALE and refinements of the 
program’s fundamental aspects. 

 

viii Introduction



 

A Partial History of Human Language Technology Research at 
DARPA 

During the past four decades, DARPA has sponsored a wide variety of research on 
human language technology – efforts that turned out to be stepping stones to GALE. 

DARPA entered the speech recognition field in 1971 with the launch of the five-year 
Speech Understanding Research (SUR) Program.  Although its immediate impact was 
limited, SUR included pioneering work with hidden Markov models, which lie at the 
heart of all modern speech-to-text systems. 

DARPA speech and text processing research proceeded at a relatively low level from 
the late 1970s through the early 1980s, then accelerated in the second half of the 1980s. 

On the speech side, the Spoken Language Program worked on automatic 
transcription of grammatically constrained read speech with a 1000-word vocabulary, 
advancing from speaker-dependent to speaker-independent transcription.  In the early 
1990s, the program moved on to include read speech from Wall Street Journal sentences, 
progressing from a 5000-word vocabulary, through a 20,000-word vocabulary, to an 
unlimited vocabulary.  A companion program, WHISPER, made an initial foray into 
automatic transcription of conversational telephone speech.   

On the text side, the Written Language Program began working on technology to pull 
facts out of short, semantically-constrained military reports.  In the early and mid 1990s, 
the TIPSTER program aggressively tackled the twin challenges of detecting relevant 
documents and extracting information needed to fill templates, using naturally-occurring 
English and Japanese documents as source data.  And in the early 1990s, a modest 
DARPA machine translation initiative explored competing approaches for translating 
unconstrained foreign language text, laying important groundwork for future advances. 

In the mid and late 1990s, DARPA’s Text, Radio, Video, Speech (TRVS) Program 
worked on transcribing and analyzing broadcast news, emphasizing English, but 
including some preliminary work on Arabic and Chinese.  In the late 1990s, Topic 
Detection and Tracking (TDT) attacked the problem of finding and following events 
discussed in news reports.  In the early 2000’s, Automatic Content Extraction (ACE) 
made a fresh assault on the challenge of discovering and characterizing entities, relations 
and events described in newswire plus automatically transcribed broadcast news. 

Two major programs launched in the early 2000’s were particularly significant — 
Effective, Affordable, Reusable Speech-to-Text (EARS) attacked challenges 

posed by broadcast news and telephone conversations in English, Chinese, and Arabic.  
In addition to improving the speed and accuracy of transcription, EARS worked on 
automatic metadata extraction to make transcripts more readable by adding structure and 
removing disfluencies.   

Translingual Information Detection, Extraction, and Summarization (TIDES) 
worked towards enabling English speakers to find and interpret required information 
quickly and effectively regardless of language or medium.  TIDES dealt with input from 
a variety of sources including newswires and automatically transcribed broadcast news in 

 
Handbook of Natural Language Processing and Machine Translation ix

Author: Allen Sears 



 

English, Arabic, and Chinese. It also included “surprise language experiments” that 
showed how well and how quickly the technology could be ported to other languages. 

To meet the challenges posed by real world data, DARPA researchers developed 
increasingly sophisticated algorithms, moving away from symbolic approaches that relied 
on hand-coded rules and towards statistical approaches that learned from large quantities 
of sample data and were substantially language-independent.  The shift from symbolic to 
statistical approaches occurred over a number of years.  It happened first in the speech 
community, where a 1987 evaluation of automatic transcription algorithms put to rest the 
notion that good speech-to-text systems could be built from hand-coded rules.  The text 
processing community followed suit, learning a great deal from the speech community. 

Building on the advances in automatic transcription and translation achieved by 
EARS and TIDES, DARPA produced two multilingual news monitoring systems (eTAP 
and TALES) able to convert Arabic and Chinese broadcasts to English good enough for 
English speakers to find relevant material.  Deployed to military customers (CENTCOM 
and PACOM), these systems were productively employed from 2004 onwards. 

Three and a half decades of progress had begun to produce useful technology and 
provided a strong foundation.  It was time for a grander and more ambitious program, 
GALE.  

 

The GALE Program 

Authors: Joseph Olive and Caitlin Christianson 

Planning GALE 
 

The most fundamental difference between GALE and its predecessor programs has 
been its holistic integration of previously separate or sequential processes.  In earlier 
language programs, each of the individual component processes was carried out 
individually: speech recognition, transcription, translation, information retrieval, content 
extraction, and content presentation.  GALE involves use of a distinctly new approach, 
one by which researchers have sought to create systems able to execute these processes 
simultaneously.  Under this rubric, speech transcription algorithms aid translation and 
vice versa.  In addition, the processes of information retrieval, content extraction, and 
content presentation have been joined into an activity referred to under GALE as 
distillation, which has also been included in the interactive assistance framework of 
transcription and translation.  As is further detailed in the chapters that follow, this 
combination of previously distinct processes has resulted in substantial technological 
breakthroughs. 

The GALE program focuses primarily on transcription, translation, and distillation of 
information in two languages: Mandarin Chinese and Arabic. These two languages have 
been chosen because of the high degree of difficulty posed by translation between each of 
them and English, their relative linguistic distance from each other and from English, the 
relatively high availability of data in both, and their immediate relevance to current 
national security applications.   

Introductionx



 

 
The Origin of the GALE Program 
 

Around 2004, DARPA Director Anthony Tether asked two important questions 
regarding human language technology programs at DARPA: who the end users were, and 
at what level of accuracy the technologies would become useful.  In part, these questions 
arose from the reduction in word error rate (WER) that resulted from the EARS Program, 
but it was not clear toward what goal this reduction was aimed. For dictation, WER 
above 10 percent is not acceptable, but for a dialogue system, a much higher rate can be 
tolerated as long as the system can enable a user to complete a specific task successfully. 

Initial studies were conducted to determine answers to these questions, but the results 
were not satisfactory, mainly due to the fact that the stimuli used did not represent a fine 
enough grain to determine what level of accuracy was sufficient. For example, translation 
quality testing was performed on only two intermediate levels of translation quality 
between machine-generated translation quality and human-generated translation quality. 
The stimuli consisted of translation in which either one or two of every three sentences 
was machine generated and the remaining sentences were human generated. 

To get better answers to the questions of language technology applications and the 
quality of output required for these applications, it was necessary to design a new study. 
With the help of retired Air Force Colonel Jose Negron, DARPA contacted Colonel 
Rafael Sanchez-Carrasquillo, head of a group of language analysts at the Defense 
Intelligence Agency to ask him if, based on his experience, he could answer DARPA’s 
question about the level of accuracy at which a translation would become useful for 
various analysis tasks.  Colonel Sanchez-Carrasquillo agreed to provide assistance in 
carrying out a study to determine the answer, so the next task was to create a set of 
translations at accuracy levels between those of baseline machine translation and human 
translation with quality gradations small enough to enable determination of the level of 
accuracy necessary to enable performance of various tasks. With assistance from Kevin 
Knight and Salim Roukos, two representatives of the machine translation community,  
the following process was created.  First, machine translation was corrected by a human 
so that the edited translation reflected the meaning of the original document.  Dividing 
the number of edits by the number of words in the translated passage resulted in an 
accuracy value of 55 percent for both Arabic and Spanish. Randomly-selected errors 
were then removed 5 percent at a time to create ten translations, ranging from 55 percent 
to 100 percent accurate relative to the human-translated standard.  These translations of 
varying accuracy were then presented to analysts from the intelligence community and 
Defense Department, who were asked to determine what quality of translation would be 
appropriate for gisting, triage, editing, or use without any alteration. While there was no 
overwhelming consensus among the analysts as to the level of accuracy at which a 
translation was felt to be useful, there was a sense that an accuracy level between 75 
percent and 80 percent was required to gain a basic understanding of the meaning of a 
passage.  For a translation to be truly useful, however, the intelligence analysts chose the 
90 percent mark.  They stated that with translation at or above a 90 percent accuracy 
level, they would choose to work with an existing translation, making edits improve its 
quality, rather than starting from scratch.  The 90th percentile was therefore determined to 

 
Handbook of Natural Language Processing and Machine Translation xi



 

be the standard for a translation to be deemed edit-worthy, and would become an 
important programmatic target for GALE.  It is important to note, however, that 
translations created by human professionals often do not meet this mark without multiple 
stages of revision. 
 
Evaluation under GALE 
 

Prior to GALE, many translation programs relied on the BLEU metric (See Section 
5.2.2.2), an automatic system for evaluating translation quality by counting word or word 
group matches between a machine-generated translation and multiple human-created 
translations. The fact that this means of evaluation was automatic rather than manual 
allowed algorithm developers to conduct numerous experiments in a relatively short 
period of time, which enabled great progress in machine translation.  Despite comparing 
each machine translation to multiple human translations, however, there was no 
guarantee that scores generated by BLEU would correlate with preservation of the 
meaning of the source-language document in the translation.  

Instead of using an automatic metric, it was determined that GALE machine 
translation systems would be evaluated on the basis of whether their output accurately 
conveyed the correct meaning of the source language in English, allowing for different 
but equivalent word choice and word order.  The evaluation standard used in GALE has 
become known as human translation error rate (HTER) and is based on edit distance.  For 
GALE purposes, edit distance is determined as the number of edits an editor is required 
to make to a machine-generated translation for it to accurately reflect the meaning of a 
corresponding highly perfected human translation created through multiple translators 
and multiple levels of revision, i.e. a “gold standard” translation.  The process for 
creating gold standard translations was developed in cooperation with National Virtual 
Translation Center Technology Director Kathleen Egan and Stephanie Strassel of the 
Linguistic Data Consortium. 

The ultimate goal of the GALE Program has been set as achievement of 95 percent 
accuracy in translation of Arabic and Chinese newswire text and broadcast news speech 
into English text.  Also, in response to requirements gathered from potential users of 
GALE technologies, additional genres have been added, such as talk shows, newsgroups, 
and weblogs.  For these less formal genres, which pose a higher degree of difficulty to 
both human translators and machine translation systems than do the more formal genres, 
target accuracy has been set at 85 percent. At the end of GALE’s first year, the goals for 
that year had been achieved, but DARPA’s director revised the targets to make the task 
more difficult by specifying that future target accuracy levels would not be averages, but 
minimums that had to be met for a certain percentage of documents in each test set. The 
resulting goals follow a gradually increasing scale, specifying that translation accuracy of 
95 percent must be achieved for 95 percent of documents in the relevant test set for 
newswire, with slightly lower targets for the other, more difficult genres (See section 
5.4.4.8.1 for all GALE targets). 

To accomplish these ambitious targets for speech input, it was proposed that there be 
combination of translation and transcription technologies, which had previously been 
developed separately, so that errors in transcription would not necessarily be 

Introductionxii



 

irrecoverable in translation. For all translation, it was also proposed that there be 
incorporation of a variety of algorithms, including algorithms relating to morphology, 
syntax, semantics, and topic-dependent language models.  In GALE, researchers have 
also stopped relying on the unsustainable process of developing extremely large parallel 
corpora, for which matching sets of heavily annotated transcripts in both English and a 
corresponding foreign language must be obtained or created.  This step has been taken 
under GALE due to the fact that although machine translation accuracy does increase 
when systems are trained with increasingly large amounts of parallel data, each degree of 
accuracy improvement requires an exponentially larger amount of data.   
 
GALE Data 

 
The approach adopted in GALE represents a shift from the concept of employment of 

increasingly large amounts of data to the use of smaller amounts of richer data. As there 
was already a huge amount of newswire and broadcast news parallel data at the beginning 
of the program, some new data has been added to these genres, but the greatest portion of 
the funds for data collection have been invested in targeted collection of data to address 
particular areas of difficulty, as well as annotation, such as treebanks, propbanks, careful 
text alignment, etc.  In addition, corpora used in GALE have been augmented by addition 
of collections from other language programs such as the Text Retrieval Evaluation 
Conference.  
 
GALE Distillation 
 

In view of the ever-increasing amount of information confronting those responsible 
for maintaining the security of the United States, the decision was made that GALE 
would not just address the most immediate challenges in human language processing of 
transcription and translation, but also take human language technology research a step 
further, towards determining how to use all the new information made accessible by 
automatic transcription and translation.   

To answer this challenge, GALE has included, as a second and integral step in the 
language processing paradigm, the assessment, analysis, and presentation of translation 
results in an easily readable and coherent format.  This process consists of a combination 
of information retrieval, content extraction, and content presentation, which have been 
collectively termed distillation.  Distillation is a concept entirely new in GALE, in which 
relevant information is extracted from foreign language and English input and concisely 
presented to the user in English.  GALE distillation is not just a key-word search, and 
does not involve summarization. Instead, it consists of utilization of language analysis to 
identify information relevant to a user's query, with the aim of extracting all available 
relevant information without redundancy and presenting it to the user in a functional 
form. 

Because warfighters and analysts often face time pressure, they do not have the 
luxury of wading through many documents that present similar information. Therefore, 
GALE distillation entails placing particular importance on targeted searches and 
elimination of redundant results.  GALE distillation includes a goal of combining 

 
Handbook of Natural Language Processing and Machine Translation xiii



 

redundant results and presenting users with a single, distilled version of what is 
important, accompanied by multiple citations.  Depending on the intended task of a user – 
enabling military operations, conducting intelligence analysis, assisting policy 
formulation, monitoring foreign perceptions – GALE systems are required to provide a 
customized version of a given set of data, saving users hours, if not days or weeks, and 
allowing a user’s valuable energy and insight to be focused on only the most important 
information. Through translation in combination with distillation, GALE systems are 
intended to increase the number of sources of information available by translating 
previously inaccessible foreign language data and the efficiency of system users in 
employing this newly-available data to conduct whatever task is required. 

Like the GALE translation goals, GALE distillation performance targets have also 
been set very high, with a final target of 95 percent recall and 90 percent precision.  To 
give system performance a meaningful standard of measurement, computer distillation 
performance is compared to that of a human given the same requirements. 

The research detailed in this book shows a snapshot of the results of the first three 
years of groundbreaking progress under the GALE Program.  As of the writing of this 
book, two years of GALE research remain.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Introductionxiv



 

xv

Contents 

1 Data Acquisition and Linguistic Resources ............................................................... 1 
1.1  Introduction ............................................................................................................ 1 
1.2  Data Collection, Distribution, and Management .................................................... 2 
1.3  Human Annotation ............................................................................................... 14 
1.4  Automatic Annotation .......................................................................................... 64 

 
2 Machine Translation from Text ............................................................................. 133 

2.1 Introduction ........................................................................................................ 133 
2.2 Segmentation, Tokenization and Preprocessing................................................. 135 
2.3 Word Alignment ................................................................................................ 164 
2.4 Translation Models ............................................................................................ 183 
2.5 Language Modeling for SMT ............................................................................ 252 
2.6 Search and Complexity ...................................................................................... 271 
2.7 Adaptation and Data Selection ........................................................................... 297 
2.8 System Combination .......................................................................................... 324 

 
 

3.1 Introduction ........................................................................................................ 399 
3.2 Front End Features ............................................................................................. 401 
3.3 Improved Speech Acoustic Models ................................................................... 428 
3.4 Language Models ............................................................................................... 460 
3.5 Language-Specific Models and Systems: Mandarin .......................................... 485 
3.6 Language-Specific Models and Systems: Arabic............................................... 520 
3.7 Integration of Speech Recognition and Translation ........................................... 569 

 
4 Distillation ................................................................................................................ 617 

4.1 Introduction ........................................................................................................ 617 
4.2  Template-Based Query Development ................................................................ 618 
4.3  Architecture and Implementation of a Distillation System ................................ 623 
4.4  Enabling Technology Breakthroughs to Improve Distillation Capabilities ....... 636 
4.5  Distillation in an Integrated GALE system ........................................................ 690 
4.6  Evaluating Distillation Technology ................................................................... 716 

 
5 Machine Translation Evaluation and Optimization ............................................. 745 

5.1 Introduction ........................................................................................................ 745 
5.2 Automatic and Semi-Automatic Measures ........................................................ 758 
5.3 Tasks and Human-in-the-Loop Measures .......................................................... 768 

3 Machine Translation from Speech ......................................................................... 399 



 

 
 

 

xvi Contents

5.4 GALE Machine Translation Metrology: Definition, Implementation,  
and Calculation .................................................................................................. 783 

5.5 Use of Evaluation for Optimization ................................................................... 812 
5.6 Searching for Better Automatic MT Metrics ..................................................... 818 

 
6 Operational Engines ................................................................................................ 845 

6.1  Introduction ........................................................................................................ 845 
6.2  Implementation of Operational Engines ............................................................ 846 
6.3  Evaluation of Operational Engines .................................................................... 905 

 
Concluding Remarks .................................................................................................... 933 



 

xvii

Contributors 
 
 

Abhaya Agarwal Carnegie Mellon University, Pittsburgh, PA, USA 

Jaewook Ahn University of Pittsburgh, Pittsburgh, PA, USA 

James Allan University of Massachusetts Amherst, Amherst, MA, USA 

Abhishek Arun University of Edinburgh, Edinburgh, UK 

Sabine Atwell Defense Language Institute, Monterey, CA, USA 

Necip Fazil Ayan SRI International, Menlo Park, CA, USA 

Olga Babko-Malaya BAE Systems, Burlington, MA, USA 

Robert Belvin HRL Laboratories, Malibu, CA, USA 

Oliver Bender RWTH Aachen University, Aachen, Germany 

Ann Bies Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA 

Daniel M. Bikel IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Maximilian Bisani RWTH Aachen University, Aachen, Germany 

Matthias Blume Fair Isaac Corporation, San Diego, CA, USA 

Roger Bock BBN Technologies, Cambridge, MA, USA 

Elizabeth Boschee BBN Technologies, Cambridge, MA, USA 

Sebastién Bronsart National Institute of Standards and Technology, Gaithersburg, MD, 
USA 

Peter Brusilovsky University of Pittsburgh, Pittsburgh, PA, USA 

William Byrne Cambridge University, Cambridge, UK 

Marine Carpuat Columbia University, New York, NY, USA 

Christopher Caruso Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

Vittorio Castelli IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Ozgur Cetin International Computer Science Institute, Berkeley, CA, USA 

Achraf Chalabi Sakhr Software, Vienna, VA, USA 

Pi-Chuan Chang Stanford University, Stanford, CA, USA 

Upendra V. Chaudhari IBM T. J. Watson Research Center, Yorktown Heights, NY, 
USA 

Caitlin Christianson Defense Advanced Research Projects Agency, Arlington, VA, USA 



xviii Contributors

 

Stephen M. Chu IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Christopher Cieri Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

Sean Colbath BBN Technologies, Cambridge, MA, USA 

Steve DeNeefe Information Sciences Institute, University of Southern California, 
Los Angeles, CA, USA 

Michael Denkowski Carnegie Mellon University, Pittsburgh, PA, USA 

Thomas Deselaers RWTH Aachen University, Aachen, Germany 

Mona T. Diab Columbia University, New York, NY, USA 

Frank Diehl Cambridge University, Cambridge, UK 

Dan Ding Defense Language Institute, Monterey, CA, USA 

Denise DiPersio Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

Bonnie Dorr University of Maryland, College Park, MD, USA 

Loϊc Dugast SYSTRAN Software, Inc., San Diego, CA, USA 

Chris Dyer University of Maryland, College Park, MD, USA 

Abdessamad Echihabi Language Weaver, Los Angeles, CA, USA 

Kathleen Egan Department of Defense, USA 

Jason Eisner Johns Hopkins University, Baltimore, MD, USA 

Ahmad Emami Johns Hopkins University, Baltimore, MD, USA 

Edward A. Epstein IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Reem Faraj Columbia University, New York, NY, USA 

Arlo Faria International Computer Science Institute, Berkeley, CA, USA 

Benoit Favre International Computer Science Institute, Berkeley, CA, USA 

David Ferrucci IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Radu Hans Florian IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

George Foster National Research Institute of Canada, Saskatoon, SK, Canada 

Connie Fournelle BAE Systems, Burlington, MA, USA 

Petr Fousek IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Marjorie Freedman BBN Technologies, Cambridge, MA, USA 

Dayne Freitag Fair Isaac Corporation, San Diego, CA, USA 



 
Handbook of Natural Language Processing and Machine Translation xix

 

Lauren Friedman Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

Mark Fuhs Carnegie Mellon University, Pittsburgh, PA, USA 

Pascale Fung The Hong Kong University of Science and Technology, Hong Kong, 
China 

Mark J.F. Gales Cambridge University, Cambridge, UK 

Michel Galley Stanford University, Stanford, CA, USA 

Jianfeng Gao Microsoft Corporation, Redmond, WA, USA 

Qin Gao Carnegie Mellon University, Pittsburgh, PA, USA 

Jean-Luc Gauvain The Computer Sciences Laboratory for Mechanics and Engineering 
Sciences (LIMSI), Orsay Cedex, France 

Niyu Ge IBM T.J. Watson Research Center, Yorktown Heights, NY, USA 

Daniel Gillick International Computer Science Institute, Berkeley, CA, USA 

Adrià de Gispert Cambridge University, Cambridge, UK 

Meghan Lammie Glenn Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

Christian Gollan RWTH Aachen University, Aachen, Germany 

Martin Graciarena SRI International, Menlo Park, CA, USA 

Jonathan Grady University of Pittsburgh, Pittsburgh, PA, USA 

John Graettinger BBN Technologies, Cambridge, MA, USA 

Stephen Grimes Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

Ralph Grishman New York University, New York, NY, USA 

Francisco Guzman Carnegie Mellon University, Pittsburgh, PA, USA 

Nizar Habash Columbia University, New York, NY, USA 

Dilek Hakkani-Tür International Computer Science Institute, Berkeley, CA, USA 

Greg Hanneman Carnegie Mellon University, Pittsburgh, PA, USA 

Mary Harper University of Maryland, College Park, MD, USA 

Saša Hasan RWTH Aachen University, Aachen, Germany 

Daqing He University of Pittsburgh, Pittsburgh, PA, USA 

Kenneth Heafield Carnegie Mellon University, Pittsburgh, PA, USA 

Georg Heigold RWTH Aachen University, Aachen, Germany 



xx Contributors

 

Hynek Hermansky International Computer Science Institute, Berkeley, CA, USA 

Martha Herzog Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, 
MA, USA 

Almut Silja Hildebrand Carnegie Mellon University, Pittsburgh, PA, USA 

Dustin Hillard University of Washington, Seattle, WA, USA 

Julia Hirschberg Columbia University, New York, NY, USA 

Hieu Hoang University of Edinburgh, Edinburgh, UK 

Bjorn Hoffmeister RWTH Aachen University, Aachen, Germany 

Jon Holbrook Aptima, Inc., Woburn, MA, USA 

Eduard Hovy Information Sciences Institute, University of Southern California, 
Los Angeles, CA, USA 

Roger Hsiao Carnegie Mellon University, Pittsburgh, PA, USA 

Fei Huang IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Zhongqiang Huang University of Maryland, College Park, MD, USA 

Dan Hunter BAE Systems, Burlington, MA, USA 

Mei-Yuh Hwang University of Washington, Seattle, WA, USA 

Hussny Ibrahim Defense Language Institute, Monterey, CA, USA 

Abraham Ittycheriah IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Heng Ji New York University, New York, NY, USA 

Qin Jin Carnegie Mellon University, Pittsburgh, PA, USA 

Doug Jones Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, 
MA, USA 

Jeremy Kahn University of Washington, Seattle, WA, USA 

Damianos Karakos Johns Hopkins University, Baltimore, MD, USA 

Shahram Khadivi RWTH Aachen University, Aachen, Germany 

Sanjeev Khudanpur Johns Hopkins University, Baltimore, MD, USA 

Daniel Kiecza BBN Technologies, Cambridge, MA, USA 

Brian Kingsbury IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Katrin Kirchhoff University of Washington, Seattle, WA, USA 

Judith L. Klavans University of Maryland, College Park, MD, USA 

Kevin Knight Information Sciences Institute, University of Southern California, 
Los Angeles, CA, USA 



 
Handbook of Natural Language Processing and Machine Translation xxi

 

Philipp Koehn University of Edinburgh, Edinburgh, UK 

Gary Krug Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, 
USA 

Roland Kuhn National Research Institute of Canada, Saskatoon, SK, Canada 

Seth Kulick Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, 
USA 

Hong-Kwang Kuo IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Lori Lamel The Computer Sciences Laboratory for Mechanics and Engineering 
Sciences (LIMSI), Orsay Cedex, France 

Ian Lane Carnegie Mellon University, Pittsburgh, PA, USA 

Alon Lavie Carnegie Mellon University, Pittsburgh, PA, USA 

Audrey Le National Institute of Standards and Technology, Gaithersburg, MD, USA 

Haejoong Lee Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

Xin Lei SRI International, Menlo Park, CA, USA 

Gregor Leusch RWTH Aachen University, Aachen, Germany 

Michael Levit International Computer Science Institute, Berkeley, CA, USA 

Burn L. Lewis IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Xuansong Li Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

Zhifei Li Johns Hopkins University, Baltimore, MD, USA 

Martha Lillie BBN Technologies, Cambridge, MA, USA 

Xunying Andrew Liu Cambridge University, Cambridge, UK 

Chi-kiu Lo The Hong Kong University of Science and Technology, Hong Kong, China 

Tomasz Loboda University of Pittsburgh, Pittsburgh, PA, USA 

Jun Luo University of Maryland, College Park, MD, USA 

Xiaoqiang Luo IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Jeff Ma BBN Technologies, Cambridge, MA, USA 

Weiyun Ma Columbia University, New York, NY, USA 

Xiaoyi Ma Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA 

Mohamed Maamouri Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

Jessica MacBride BBN Technologies, Cambridge, MA, USA 



xxii Contributors

 

Nitin Madnani University of Maryland, College Park, MD, USA 

Carl Madson SRI International, Menlo Park, CA, USA 

Kazuaki Maeda Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

John Makhoul BBN Technologies, Cambridge, MA, USA 

Arindam Mandal SRI International, Menlo Park, CA, USA 

Lidia Mangu IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Christopher D. Manning Stanford University, Stanford, CA, USA 

Daniel Marcu Language Weaver, Los Angeles, CA, USA 

Mitchell Marcus University of Pennsylvania, Philadelphia, PA, USA 

Marie-Catherine de Marneffe Stanford University, Stanford, CA, USA 

Spyros Matsoukas BBN Technologies, Cambridge, MA, USA 

Evgeny Matusov RWTH Aachen University, Aachen, Germany 

Arne Mauser RWTH Aachen University, Aachen, Germany 

Andrea Mazzucchi Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

Abdelkhalek Messaoudi The Computer Sciences Laboratory for Mechanics and 
Engineering Sciences (LIMSI), Orsay Cedex, France 

Scott McCarley IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

John McCary Defense Advanced Research Projects Agency, Arlington, VA, USA 

Kathleen McKeown Columbia University, New York, NY, USA 

Calandra Tate Moore University of Maryland, College Park, MD, USA 

Nelson Morgan International Computer Science Institute, Berkeley, CA, USA 

Smaranda Muresan Rutgers University, New Brunswick, NJ, USA 

Hazem Nader Sakhr Software, Vienna, VA, USA 

Udhyakumar Nallasamy Carnegie Mellon University, Pittsburgh, PA, USA 

Prem Natarajan BBN Technologies, Cambridge, MA, USA 

Hermann Ney RWTH Aachen University, Aachen, Germany 

Tim Ng BBN Technologies, Cambridge, MA, USA 

Kham Nguyen BBN Technologies, Cambridge, MA, USA 

Long Nguyen BBN Technologies, Cambridge, MA, USA 

Jan Niehues Institute for Theoretical Computer Science, Zürich, Switzerland 



 
Handbook of Natural Language Processing and Machine Translation xxiii

 

Mohamed Noamany Carnegie Mellon University, Pittsburgh, PA, USA 

Eric Nyberg Carnegie Mellon University, Pittsburgh, PA, USA 

Douglas W. Oard University of Maryland, College Park, MD, USA 

Joseph Olive Defense Advanced Research Projects Agency, Arlington, VA, USA 

Mari Ostendorf University of Washington, Seattle, WA, USA 

Sebastian Pado Stanford University, Stanford, CA, USA 

Martha Palmer University of Colorado at Boulder, Boulder, CO, USA 

Kishore Papineni IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Junho Park Cambridge University, Cambridge, UK 

Robert Parker Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

Alok Parlikar Carnegie Mellon University, Pittsburgh, PA, USA 

Kristen Parton Columbia University, New York, NY, USA 

Matthias Paulik Carnegie Mellon University, Pittsburgh, PA, USA 

Jason Pelecanos IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

John F. Pitrelli IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Christian Plahl RWTH Aachen University, Aachen, Germany 

Daniel Povey Microsoft Corporation, Redmond, WA, USA 

Sameer Pradhan BBN Technologies, Cambridge, MA, USA 

Mark Przybocki National Institute of Standards and Technology, Gaithersburg, MD, 
USA 

Leiming Qian IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Yong Qin IBM China Research Lab, Beijing, China 

Jerry Quinn IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Anna N. Rafferty University of California, Berkeley, CA, USA 

Owen Rambow Columbia University, New York, NY, USA 

Lance Ramshaw BBN Technologies, Cambridge, MA, USA 

Suman Ravuri Columbia University, New York, NY, USA 

Philip Resnik University of Maryland, College Park, MD, USA 

Eric Riebling Carnegie Mellon University, Pittsburgh, PA, USA 

Brian Roark Oregon Health & Sciences University, Portland, OR, USA 



xxiv Contributors

 

Monica Rogati Carnegie Mellon University, Pittsburgh, PA, USA 

Antti-Veikko I. Rosti BBN Technologies, Cambridge, MA, USA 

Ryan M. Roth Columbia University, New York, NY, USA 

David Rybach RWTH Aachen University, Aachen, Germany 

Salim Roukos IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Fatiha Sadat University of Quebec Montreal, Montreal, QC, Canada 

Rami Safadi Sakhr Software, Vienna, VA, USA 

Guruprasad Saikumar BBN Technologies, Cambridge, MA, USA 

William Salter Aptima, Inc., Woburn, MA, USA 

Gregory Sanders National Institute of Standards and Technology, Gaithersburg, MD, 
USA 

George Saon IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Ralf Schlüter RWTH Aachen University, Aachen, Germany 

Tanja Schultz Carnegie Mellon University, Pittsburgh, PA, USA 

Richard Schwartz BBN Technologies, Cambridge, MA, USA 

Holger Schwenk University of Le Mans, Le Mans, France 

Allen Sears Corporation for National Research Initiatives, Reston, VA, USA 

Jean Senellart SYSTRAN Software, Inc., San Diego, CA, USA 

Libin Shen BBN Technologies, Cambridge, MA, USA 

Wade Shen Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, 
MA, USA 

Qin Shi IBM China Research Lab, Beijing, China 

Heather Simpson Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

Adish Singla International Computer Science Institute, Berkeley, CA, USA 

Jason Smith Johns Hopkins University, Baltimore, MD, USA 

Matthew Snover University of Maryland, College Park, MD, USA 

Dagobert Soergel University of Maryland, College Park, MD, USA 

Hagen Soltau IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Zhiyi Song Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, 
USA 

Jeffrey Sorensen IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 



 
Handbook of Natural Language Processing and Machine Translation xxv

 

Amit Srivastava BBN Technologies, Cambridge, MA, USA 

William Staderman Defense Advanced Research Projects Agency, Arlington, VA, 
USA 

Daniel Stein RWTH Aachen University, Aachen, Germany 

Jens Stephan SYSTRAN Software, Inc., San Diego, CA, USA 

Andreas Stolcke SRI International, Menlo Park, CA, USA 

Stephanie Strassel Linguistic Data Consortium, University of Pennsylvania, 
Philadelphia, PA, USA 

David Svoboda Carnegie Mellon University, Pittsburgh, PA, USA 

Yik-Cheung Tam Carnegie Mellon University, Pittsburgh, PA, USA 

Christoph Tillmann IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Marcus Tomalin Cambridge University, Cambridge, UK 

Kristina Toutanova Microsoft Corporation, Redmond, WA, USA 

Gokhan Tür SRI International, Menlo Park, CA, USA 

Nicola Ueffing National Research Institute of Canada, Saskatoon, SK, Canada 

Fabio Valente IDIAP Research Institute, Martigny, Switzerland 

Dimitra Vergyri SRI International, Menlo Park, CA, USA 

David Vilar RWTH Aachen University, Aachen, Germany 

Paola Virga IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Stephan Vogel Carnegie Mellon University, Pittsburgh, PA, USA 

Clare Voss University of Maryland, College Park, MD, USA 

Kevin Walker Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

Lan Wang Cambridge University, Cambridge, UK 

Wei Wang Language Weaver, Los Angeles, CA, USA 

Wen Wang SRI International, Menlo Park, CA, USA 

Zhiqiang (John) Wang Fair Isaac Corporation, San Diego, CA, USA 

Todd Ward IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Ralph Weischedel BBN Technologies, Cambridge, MA, USA 

James V. White BAE Systems, Burlington, MA, USA 

William Wong Language Weaver, Los Angeles, CA, USA 

Phillip C. Woodland Cambridge University, Cambridge, UK 



xxvi Contributors

 

Dekai Wu The Hong Kong University of Science and Technology, Hong Kong, China 

Wei Wu University of Washington, Seattle, WA, USA 

Zhaojun Wu The Hong Kong University of Science and Technology, Hong Kong, 
China 

Eric P. Xing Carnegie Mellon University, Pittsburgh, PA, USA 

Jia Xu RWTH Aachen University, Aachen, Germany 

Jinxi Xu BBN Technologies, Cambridge, MA, USA 

Nianwen Xue Brandeis University, Waltham, MA, USA 

Sibel Yaman International Computer Science Institute, Berkeley, CA, USA 

Jin Yang SYSTRAN Software, Inc., San Diego, CA, USA 

Yiming Yang Carnegie Mellon University, Pittsburgh, PA, USA 

Yongsheng Yang The Hong Kong University of Science and Technology, Hong Kong, 
China 

Kai Yu Cambridge University, Cambridge, UK 

Dalal Zakhary Linguistic Data Consortium, University of Pennsylvania, Philadelphia, 
PA, USA 

Alex Zamanian BBN Technologies, Cambridge, MA, USA 

Rabih Zbib BBN Technologies, Cambridge, MA, USA 

Richard Zens RWTH Aachen University, Aachen, Germany 

Bing Zhang BBN Technologies, Cambridge, MA, USA 

Pengyi Zhang University of Maryland, College Park, MD, USA 

Shilei Zhang IBM China Research Lab, Beijing, China 

Ying Zhang Carnegie Mellon University, Pittsburgh, PA, USA 

Bing Zhao IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

Sherry Zhao International Computer Science Institute, Berkeley, CA, USA 

Jing Zheng SRI International, Menlo Park, CA, USA 

Imed Zitouni IBM T. J. Watson Research Center, Yorktown Heights, NY, USA 

 

 

 

Contributor affiliations are as of when the work described in this book was performed. 

 





Chapter 1:   Data Acquisition and Linguistic 
Resources 

Editors: Stephanie Strassel, Caitlin Christianson, John McCary, William Staderman, and Joseph Olive 
 

 
 

1.1 Introduction 
Author: Stephanie Strassel 
 

J. Olive et al. (eds.), Handbook of Natural LanguageProcessing  
DOI 10.1007/978-1-4419-7713-7_1, � Springer ScienceþBusiness Media, LLC 2011

1 and Machine Translation,

All human language technology demands substantial quantities of data for system 
training and development, plus stable benchmark data to measure ongoing progress. 
While creation of high quality linguistic resources is both costly and time consuming, 
such data has the potential to profoundly impact not just a single evaluation program but 
language technology research in general. GALE's challenging performance targets de-
mand linguistic data on a scale and complexity never before encountered. Resources cov-
er multiple languages (Arabic, Chinese, and English) and multiple genres -- both struc-
tured (newswire and broadcast news) and unstructured (web text, including blogs and 
newsgroups, and broadcast conversation). These resources include significant volumes of 
monolingual text and speech, parallel text, and transcribed audio combined with multiple 
layers of linguistic annotation, ranging from word aligned parallel text and Treebanks to 
rich semantic annotation.  

The GALE Program's ever-evolving technology goals have demanded a robust, flex-
ible, scalable data pipeline. Over the life of the program, resource creation has become 
more efficient and adaptive, with increased emphasis on automation and utilization of 
emergent GALE technology to improve and augment the data creation process. Since the 
effort involved in linguistic resource creation is significant, coordination is critical. So 
that data tagged in one task is readily available for exploitation in the next, GALE re-
quired implementation of an end-to-end annotation strategy resulting in selected data be-
ing consecutively transcribed, translated, word-aligned, and Treebanked, made available 
for semantic annotation, then tagged for information content under the distillation task. 
This pipelined approach has not only reduced costs but also offered the opportunity to 
learn from multiple types of annotation carried out on the same source data. Also, be-
cause volume demands are high and resources necessarily limited, considerable effort has 
been expended to utilize found data and to build upon existing resources wherever possi-
ble. Finally, all GALE linguistic data has been developed with broader distribution in 
mind. This legacy of data has the promise of empowering research for many years to 
come. 

Section 1.2 covers the topic of data resource management, including large-scale 
broadcast and text data collection. In order to meet the need of performers for more va-
ried, targeted, open-source data against which to test and train their systems, the Linguis-
tic Data Consortium (LDC) devised an unparalleled foreign language media collection 



2 Chapter 1: Data Acquisition and Linguistic Resources 

1.2 Data Collection, Distribution, and Management 

1.2.1. Large Scale Multilingual Broadcast Data Collection to 
Support Machine Translation and Distillation 

Authors: Kevin Walker, Christopher Caruso, and Denise DiPersio 

1.2.1.1. Choosing Broadcast Sources  

LDC’s local collection 
In the beginning of the GALE program, LDC’s priority was ramping up collection to 

meet program targets, i.e., 1000 hours each of broadcast news (BN) and broadcast con-
versation (BC) in each of Arabic, Chinese and English..  Later, LDC added additional 
receivers to the collection system to increase the range of its Arabic collection, respond-
ing to sponsor requests for greater representation of programming across the Arabic-
speaking region, particularly, the Gulf region and Iraq. A number of Arabic sources were 
available from free-to-air (FTA) satellites transmitting over the Philadelphia area. LDC 
designed program surveys of the various sources that ran roughly twice per hour for sev-

Technology Development  

strategy literally spanning the globe, with collection sites in the United States, North 
Africa, Asia, and elsewhere. Beyond data collection, LDC has managed distribution of 
hundreds of GALE corpora to dozens of sites, ensuring appropriate protections on blind 
test data, releases of data designated for official use only, and other restricted data sets, 
and implementing new approaches to enable sharing of resources within and across 
GALE teams. Creation of these many resources has also required new technical solutions, 
including infrastructure for data management, collection, annotation, and distribution. 

Section 1.3 covers the wide range of human annotation tasks applied to the data col-
lected under GALE. Human annotation employed under GALE ranges from simple to 
complex and from well-established to novel: 
 

1. Integrated transcription and translation of training and test data (Section 
1.3.1) 

2. Parallel corpora manually aligned at the word level (Section 1.3.2) 
3. Distillation queries and answers (Section 1.3.3) 
4. New approaches to Treebanking (Section 1.3.4) 
5. Integrated syntactic and semantic annotations, including parse trees, proposi-

tions, coreference, names, and word senses (Section 1.3.5). 
 

Section 1.4 includes reports on the use of algorithms for automatic annotation of data. 
This topic is explored with regard to rich transcription of speech, segmenting and parsing 
Arabic, Chinese word segmentation in the context of parsing, and parsing spoken 
Chinese.   



Handbook of Natural Language Processing and Machine Translation 3 

eral days, since these types of channels do not maintain scheduling information.  LDC 
also coordinated with Hong Kong University of Science and Technology (HKUST), Me-
dianet in Tunisia and MTC/ELRA in Morocco to obtain additional sources.  

LDC’s GALE broadcast collection includes programming from the 26 Arabic 

number of hours of broadcast programming collected by LDC and remote sites in the first 
four years of the GALE program through December 2009. 

 

LDC’s outsourced collection 
GALE’s goal to create end-to-end language systems meant that the broadcast collec-

tion should incorporate programming from as wide a variety of sources as possible. Ac-
cordingly, LDC obtained data collection assistance from several groups located within 
geographical areas of interest with access to targeted satellite and local programming. 
LDC’s broadcast collection programmer designed a portable collection platform that was 
deployed outside of the continental US. 

1.2.1.2. Broadcast Collection System Design and Operation 

Part of the design intent driving the development of LDC’s broadcast collection sys-
tem was that it be modular and regularized. That meant that all of the recording nodes 
should be interchangeable, that filenames and database fields should follow consistent, 
formal rules and that signal interconnects should be consistent. The receivers feed into an 
audio/video (A/V) matrix switch so that any source can be routed to any receiver simply 
by changing an entry in the schedule.  

Initial recordings consist of video, stereo audio, and, in the case of English source, 
closed captions. LDC collects both audio and video data for each recording so that this 
material can be reusable for a variety of research purposes and because having access to 
the video portion of a given broadcast aids troubleshooting system functions and makes 
auditing more reliable, more efficient, and less error-prone. Recordings are typically tran-
scoded to MPEG-4/AVC at 1Mbps shortly after capture. 

The collections system is illustrated in the block diagram in Figure 1.1. 

sources, 13 Chinese sources, and 3 English sources. Table 1.1 shows the combined total 

Collection Type P1 Hours P2 Hours P3 Hours P4 thru 12/09  
1Arabic BN 751 3896 3944 4940 
Arabic BC 700 2813 3125 3153 
Chinese BN 918 1231 1055 1452 
Chinese BC 1242 1484 1427 1729 
English BN 558 655 632 511 
English BC 1041 1234 1035 1351 

Table 1.1: LDC broadcast collection for GALE 



 
Collection database 

The database is the heart of the collection and contains all essential information: it is 
a history of all of the recordings that have been made; it has configuration and status in-
formation for all recorders; it has information about all receivers and associates specific 
programs of interest with the appropriate receiver; it contains a schedule of all recording 
jobs that need to be executed, along with their status; and finally, it stores all audit judg-
ments associated with a given recording. Figure 1.2 depicts the collection database. 

1.2.1.3. Automatic Speech Recognition (ASR) Technology 

LDC has integrated three client ASR systems (from GALE research sites BBN, IBM 
and SRI) into its daily collection processes for the duration of the GALE program. Tran-
scripts are automatically generated on the BBN and IBM systems for all locally-collected 
Arabic and Chinese audio data. The text output is used for downstream data selection. 
Audio data from LDC’s remote broadcast collections is not processed daily due to time 
constraints, but is instead run as needed as part of the GALE evaluation data selection 
process. Data is processed on the SRI system by request. 

4 Chapter 1: Data Acquisition and Linguistic Resources 

Figure 1.1: LDC Broadcast Collection Functional Block Diagram 



Handbook of Natural Language Processing and Machine Translation 

Locally-collected broadcasts are automatically pooled onto a centralized server as 
they are recorded and processed. This server then supplies the extracted audio portions to 
the different ASR systems which generate transcripts for the previous day's broadcasts.  
 
 

 
Figure 1.2: Broadcast Collection Database Entity Relationship Diagram 

1.2.1.4. Portable Broadcast Collection Platform 

LDC’s portable broadcast collection platform is a digital video recording (DVR) sys-
tem capable of recording two streams of A/V material simultaneously. It supports analog 
CATV (NTSC and PAL) and FTA DVB-S satellite programming and is capable of oper-
ating outside of the United States. It has a very small footprint and is suitable for trans-
portation as a piece of carry-on luggage. The portable platform and the main LDC collec-
tion system share the same code base and rely on a modular, unified hardware specifica-

5 



tion.  Improvements in the main collection platform, therefore, translate into benefits for 
both platforms.  

1.2.1.5. Conclusion 

Using a highly-automated design and open source utilities, the GALE broadcast col-
lection system represents a significant achievement in delivering volumes of high-quality 
broadcast data from multiple programming sources and geographic locations. The system 
has performed impressively. Through GALE Phase 3, LDC had delivered over 11,000 
hours of broadcast audio to GALE research sites. A large portion of that data has been 
transcribed and translated as well, thus providing the GALE community with a consider-
able quantity of training, devtest and evaluation data. 

1.2.2. Text Collection for Volume 
Authors: Haejoong Lee, Denise DiPersio, and Robert Parker 

1.2.2.1. Web Data Collection 

GALE has required huge amounts of web data. With the launch of the program, the 
goal was to collect two million words for each language. To date, the number has in-
creased to twenty million words for each language. LDC developed a web data collection 
framework to support GALE. The web collection project for GALE currently collects 
data from 47,857 weblogs or newsgroups, which are hosted by 94 web sites using the 
framework. 

In this section, we describe the details of the framework, and discuss benefits and li-
mitations of the framework, and a future development plan. 

The framework also provides a common ground on which various management appli-
cations can be built. For example, a collection management GUI makes it possible for a 
non-technical user to manage the entire collection process. Another program is capable of 
producing a real time collection status report out of the tracking database. These tools 
help streamline the collection process and reduce the management cost. 

 
Data Model 

Most weblog and newsgroup sites are structured in a similar way. This structure can 
be generalized by a three-level hierarchy. At the top, there is a site that hosts individual 
weblogs or discussion groups. The weblogs and discussion groups form the middle level. 
Each of the weblogs or discussion groups in turn contains threads of messages, which 
form the bottom level. In this hierarchy, we call the topmost entities sites, middle ones 
groups, and bottom ones threads. 

The basic data unit of the web data collection framework is a thread. Thread can be 
viewed as a tree whose root node is either a blog post or an initial newsgroup post. Com-
ments by viewers for weblogs, and replies to a previous post for discussion groups form 
the inner nodes and leaves of the tree.  

6 Chapter 1: Data Acquisition and Linguistic Resources 



Handbook of Natural Language Processing and Machine Translation 

As an example, the weblog site blogspot.com is a site. This site hosts numerous web-
logs, which are groups, contributed by bloggers. Each weblog has blog posts, e.g. daily 
coverage of presidential election. Such blog posts become threads. 

 
Collection Process 

Under the framework, a collection task is defined by a group of sub-processes running 
in parallel. This includes harvesting, formatting, token counting and language identifica-
tion processes. 

The harvester process identifies and downloads web documents in raw HTML format. 
Downloaded HTML files are converted into SGML-based format by the separate format-
ting process. 

The token counting process queries the tracking database to get a list of threads that 
haven’t been counted. For each thread in the list, a token counting algorithm is applied to 
get the token count. The result is the number of white-space-separated tokens for lan-
guages like Arabic and English, and number of characters for Chinese. The result is 
stored in the tracking database. 

Language identification is a process of verifying the language of a thread. When a 
thread is downloaded, a new record for the thread is added to the thread table of the track-
ing database. By default, the language field of this record is set to the language of the 
thread’s group. It is not uncommon for a group to have threads of different languages. 
For example, some groups have both Arabic and English threads. Also, it is possible that 
the language initially assigned to the group is wrong. Thus, it’s necessary to have a 
process to verify the language of downloaded threads. For language identification, a lan-
guage model trained with character n-grams ሺ1  ݊  5ሻ of the target language is used. 
For a given document, the language model returns a floating point number indicating the 
likelihood of the document being in the language in question. This number is stored in the 
tracking database. 

Note that the same token counting and language identification programs can be used 
across different sites. On the other hand, each site has its own harvester and formatter. 
Thus, a collection process usually consists of one token counting process, one language 
identification process, and several harvester processes with the same number of formatter 
processes, all of which running in parallel. 

1.2.2.2. Newswire Collection 

As of the commencement of GALE in 2005, LDC was collecting newswire in the tar-
get languages from six Arabic sources, two Chinese sources and five English sources. In 
late 2006, new web sources were added to support GALE (three additional Arabic and 
four additional Chinese sources). 

These new resources represented a 50% increase in LDC’s Arabic collection and a 
56% increase in the Chinese collection. The average monthly volumes represented by the 
GALE newswire collection from Phase 2 forward are 13.4 million words/month for 
Arabic, 64.4 million characters/month for Chinese and 35.3 million words/month for 
English. 

7 



Most of LDC’s GALE newswire sources are harvested from provider websites, but 
some are received via satellite modem, FTP uploads and downloads, NNTP (Network 
News Transfer Protocol), proprietary clients and email.  

1.2.2.3. Future Work 

LDC developed the web data collection framework during the early months of the 
GALE program. Since then, it has been driving the web data collection project for 
GALE. At the same time, it has been debugged, modified and improved. However, there 
is still large room for improvement. 

First of all, extracting information from the input HTML data is done by harvester and 
formatter code crafted by human. This is time-consuming and sometimes becomes a bot-
tleneck during an early stage of a collection project. As an attempt to solve this problem, 
automatic pattern learning algorithms such as (Pennman 2009) and (Holovaty 2007) are 
being studied.  

Another area requiring improvement is to automate the collection process, which cur-
rently requires human intervention on a regular-basis. Human intervention is needed be-
cause the harvester processes are often confronted by various types of errors such as a 
bug in the script, temporary problem of a web server, a system problem or a formatting 
problem of the HTML data it was trying to download, etc.  

Although the time required to resolve such issues is minimal, automation that per-
forms analysis of errors followed by an appropriate action is desired for smoother data 
collection process. Moreover, instead of harvesters being launched manually by a human, 
a scheduler is being researched that initiates harvester and formatter processes just as fre-
quently as indicated by data volume that sites or groups produce. LDC is planning to add 
these capabilities for fuller automation of the web data collection process. 

LDC continues to work to refine its newswire procedures. This is particularly evident 
in the evolution of the collection and processing of newswire data from the web. Initially, 
the web collections were very simple bulk fetches from provider websites, resulting in the 
collection of duplicate or unwanted content. Over time, LDC has developed more intelli-
gent web-crawling processes to reduce these issues, as well as to exploit newer technolo-
gies such as RSS (Rich Site Summary) and ATOM syndication. In addition, LDC has 
instituted automated reporting to monitor the collection and conversion processes and to 
provide alerts for any discrepancies. 

1.2.2.4. Conclusion 

LDC has collected a very large volume of text data for the GALE program. The 
amount of text data LDC collects and processes each month is 242.8 million words: 151.2 
million words of weblog and newsgroup data, and 91.6 million words of newswire data.1 
Robust and efficient text collection infrastructures have been crucial for such a huge 
achievement. The web data collection framework has provided a scalable and cost-
effective method for collecting web data for GALE. LDC continues to use the newswire 
collection infrastructure for GALE with great success. It was developed in early 1990’s 

                                                      
1 For Chinese data, 1.5 characters were counted as 1 word. 

8 Chapter 1: Data Acquisition and Linguistic Resources 



Handbook of Natural Language Processing and Machine Translation 

and is evolving ever since. Further research and development for improvement on both 
the web data collection framework and newswire collection infrastructure are in progress. 

1.2.3. Distribution of GALE Resources  

1.2.3.1. Introduction  

The particular challenge posed by the GALE distribution objective – to distribute 
significant volumes of data timely and efficiently while conforming with external licens-
ing and contractual arrangements – required an organization with expertise in distributing 
a broad range of resources to many users. LDC was particularly well-suited for this task; 
prior to GALE, it had distributed tens of thousands of corpora on media and via web 
download under various licensing schemes to thousands of users worldwide.           

The GALE distribution objective required the performance of five principle tasks: 
creating a licensing structure; developing a data distribution plan for each GALE phase; 
preparing the data for release; distributing the data sets; and establishing a Secure Copy 
Server (SCP) server for rapid sharing of copyrighted data within GALE teams. Each of 
these tasks is described below.  

1.2.3.2. Licensing  

LDC developed evaluation license agreements stipulating that GALE participants 
would have to agree to use the data provided by LDC solely for GALE-related purposes.  

1.2.3.3. Data Distribution Plan 

GALE established ambitious goals for data collection, creation and distribution: 2000 
hours each of broadcast news and broadcast conversation plus five million words of new-
sgroups and blogs a   large portion of which was transcribed, translated and treebanked  
in each of Arabic, Chinese and English each year. In order to assure that GALE sites re-
ceived a steady flow of data for training and testing purposes, LDC developed a plan to 
provide quarterly data deliveries. In response to community feedback, LDC changed that 
strategy to provide two large training data releases timed to be of maximum value to the 
sites as they prepared for scheduled evaluations.  

At the commencement of the program, LDC provided a kickoff release to GALE re-
search sites that included existing publications as well as previously unreleased data rele-
vant to the program. In the first year, new data was distributed in four quarterly releases. 
Starting in the second year, training data releases were front-loaded at the request of 
GALE sites in order to allow as much time as possible to prepare for the evaluation task. 
In practice, this meant making two large distributions per phase, typically in the fall and 
spring.  

Midway through year 4, LDC had distributed nearly 7000 copies of 509 distinct corpo-
ra to 45 sites in 7 countries. That data includes 159 corpora from the LDC catalog desig-
nated as being relevant to GALE and approximately 200 new corpora. The latter consists 
of various training, test and development data (“ecorpora” or  corpora desginated for an 

9 

Author: Denise DiPersio 



evaluation community such as GALE), FOUO corpora (“G-corpora,” only for use in the 
GALE program), restricted corpora (“R-corpora,” data whose distribution is confined to a 
limited group) and donated data.  

1.2.3.4. Data Preparation 

GALE task managers and programmers prepared the data, and conducted task-
specific data quality checks for content and format before it was mastered for release. 
The Publications Group performed additional quality assurance that included: checks for 
file integrity, permissions and file access; checking character ranges and parsing XML in 
text files; and checking headers in audio files. For media releases, each duplicate was 
automatically compared with the master using md5 checksums, and random manual 
checks are conducted on duplicated media. For web download releases, the Publications 
Group verifies content and completeness before preparing the download. 

1.2.3.5. Data Distribution 

There were two principal methods for distribution depending on the size of the data-
set. HTTP distributions were downloadable from LDC’s members’ web site by authenti-
cated GALE participants. Media distributions were shipped to all eligible participants 
using established courier services. 

1.2.3.6. SCP Server 

The SCP server was established in year one in response to requests from sites to al-
low for rapid sharing of copyrighted data and annotations thereof within GALE teams at 
different geographic locations. Such activity was otherwise prohibited by the GALE li-
cense agreement and by LDC’s agreements with data providers, that is, data could only 
be shared within one organization at a single geographic site. For security reasons, access 
to the server was by means of public/private key pairs only.  

1.2.3.7. Conclusion 

GALE has conferred a measurable benefit to the data needs of the linguistic research 
community. Most of the data collected and/or created for use in GALE will be released in 
the LDC catalog. As of this writing, some year one materials were already available, and 
other data was in the pipeline. This is consistent with LDC’s mission to share linguistic 
resources as broadly as possible. 

Furthermore, GALE’s volume and distribution requirements provided the acid test 
for existing processes and have resulted in the establishment of an efficient infrastructure 
for data distribution. This includes the creation of stable master copies, media shipment 
tracking, perseverance of downloadable releases and rapid data sharing via the SCP serv-
er. That infrastructure can now be propagated to other common task projects with relative 
ease.  

10 Chapter 1: Data Acquisition and Linguistic Resources 



Handbook of Natural Language Processing and Machine Translation 

1.2.4. Technical Infrastructure Supporting Large-scale 

Authors: Kazuaki Maeda, Andrea Mazzucchi, and Christopher Cieri 

1.2.4.1. Introduction 

The DARPA GALE program set a new level of technical requirements for LDC due 
to the quantity and diversity of training and evaluation data, including the manual and 
automatic transcripts, manual and automatic translations, found parallel text, word 
aligned parallel text, distillation annotations and treebank annotations. This section pro-
vides an overview of the technical infrastructure supporting the GALE program at LDC. 

1.2.4.2. Data Storage Infrastructure 

The data storage requirements for GALE included large storage capability, flexible 
expansion capability and solid data security.  The size of the dynamic data, such as anno-
tations, software and documentation, exceeded more than 1TB for each phase of GALE, 
which is more than 10 times larger than previous resource creation projects such as TDT 
(Cieri et al. 2002).  The size of the static data, such as audio, video, newswire and web 
text data, is even larger.  The total hours of broadcast news collection per phase, which 
includes both video and audio data, grew from approximately 5,000 hours in Phase 1 to 
more than 11,000 hours in Phase 3.  The volume of web text collection grew from almost 
none before the GALE collection to approximately 7 million threads in Phase 4.  The to-
tal size of the data storage for GALE has reached 90 TB as of this writing. 

1.2.4.3. Software Infrastructure 

The challenges presented by large-scale GALE data creation necessitate software 
tools that maximize efficiency. Most of GALE data collection, annotation, and distribu-
tion tasks use custom-built software developed by LDC's technical staff. Software tools 
are written to support annotation according to guidelines and other specifications, and to 
output consistent data formats. 

 
Annotation Tools: In order to maximize the efficiency of annotation software devel-

opment, we have adopted a common set of technologies for stand-alone annotation tools, 
such as Python, Qt, PyQt and MySQL, which are compatible with those previously de-
veloped at LDC, such as AGTK (Maeda et al. 2006).  This allows the developers to reuse 
software components, and allows flexibility for allocation of software developers to 
available tasks as all developers are familiar with these technologies.  Other tools use 
web-based technologies, such as PHP and Java Script.  Annotation tools developed for 
GALE include XTrans, the Translation QC Tool, the SU annotation tool, the Distillation 
Annotation Toolkit, the broadcast audio auditing tool, and the GALE evaluation snippet 
selection tool. 

 
Annotation Workflow Management Tools: LDC has developed a custom annota-

tion workflow management system called AWS (Annotation Workflow System), used for 

11 

Linguistic Resource Creation 



most in-house manual annotation tasks at LDC.  LDC has also developed a workflow 
management system, specifically for the Machine Translation (MT) Post-Editing task. 
The MT Post-editing system is web-based, allowing MT Post Editors to log in, receive 
their current assignments, annotate them, and submit them via the system (Maeda et al. 
2008).  

 
Parallel Text Alignment Tool: LDC has developed two toolkits that are used for au-

tomatically aligning parallel text for GALE. One is the BITS (Bilingual Internet Text 
Search) toolkit (Ma and Liberman 1999). The document alignment module of this toolkit 
was used for the document aligning task. The other toolkit is called the Champollion 
toolkit (Ma 2006). This toolkit was designed for sentence alignment of noisy data, and 
proved to be very useful for alignment of parallel text harvested from web sites (Maeda et 
al. 2008a). 

 
Content Duplication Identification Tool: It is inevitable to have some degree of 

content duplication in the raw collected data. For example, newswire agencies often dis-
tribute multiple versions of the same article with minor updates; the same clips may be 
used in multiple broadcast programs. LDC runs a content duplication identification tool 
on the evaluation snippets, and on the source files selected for translation training data.  

 
Language ID Tool: A language identification tool is run over LDC's web text collec-

tion to confirm that the majority of the collected text is in the target language. This is im-
portant for multilingual sources and noisy sources, such as newsgroup text, in which 
postings in non-target languages are often observed. 

 
Arabic Morphological Analyzer: The LDC Standard Arabic Morphological Ana-

lyzer (SAMA), which is based on the Buckwalter Arabic Morphological Analyzer (BA-
MA) (Buckwalter 2004), is run on the input data to the Arabic Treebank annotation task. 
The BAMA tool was developed by former LDC staff member Tim Buckwalter, and has 
been extended as the SAMA tool. The SAMA tool is extensively used in LDC's Arabic 
language projects. 

1.2.4.4. Training Data Creation 
 
LDC is responsible for creating the following types of training data for GALE: 

 
• Broadcast  
• Web Text  
• Transcription  
• Parallel Text  
• Distillation  
• Word Alignment  
• Arabic Treebank  
• English Translation Treebank  

12 Chapter 1: Data Acquisition and Linguistic Resources 



Handbook of Natural Language Processing and Machine Translation 

1.2.4.5. Evaluation Data Creation 

LDC also creates development and evaluation data for GALE MT evaluation pro-
grams. While the basic data creation process is the same for the training data, the evalua-
tion data creation requires more detailed quality control and secure handling of the data. 
The evaluation data process is done in close collaboration with the National Institute of 
Standards and Technology (NIST), which administers the GALE MT evaluation. 

 
MT Evaluation Snippets: Unlike the training data, the GALE MT evaluation uses 

snippets of documents or broadcast recordings. The evaluation snippets are created in the 
following steps. 

 
1. Data collection  
2. Program-level broadcast audit  
3. Decision of evaluation epoch by GALE data committee  
4. Manual selection of evaluation snippets  
5. Transcription (for BC and BN) and SU annotation (for NW and WB)  
6. Duplicate content identification  
7. Down-sampling of evaluation pool by NIST  
8. Initial translation  
9. Complete QC of source and translation  
10. Final selection of evaluation snippets by NIST  

 
In each stage above, snippets that are found problematic or unsuitable are dropped 

from the data set, so over-selection of data is crucial. For the Phase 4 evaluation, LDC 
selected four times as much data for the initial pool than remained in the final evaluation 
data set. 

 
Data Security: All GALE evaluation data is protected with strict data security con-

trol. Evaluation data on the file servers is protected with Unix group access control, and 
only LDC personnel who are working on the GALE program are permitted to be in this 
restricted group. 

1.2.4.6. Conclusion 

 The technical infrastructure described in this section represents the work done for 
the GALE program, which is the largest scale language resource creation effort in the 
history of LDC.  This infrastructure was built on our experience in GALE as well as other 
projects at LDC, and will be a fundamental resource for future work at LDC. 

 

13 



1.3 Human Annotation 

1.3.1. Linguistic Resources for Transcription and Translation 
Authors: Meghan Lammie Glenn, Lauren Friedman, Stephanie M. Strassel, Zhiyi Song, Gary Krug, Kazuaki 
Maeda, Haejoong Lee, and Christopher Caruso 

1.3.1.1. Introduction  

The GALE program required significant volumes of new training data -- hundreds of 
hours of transcribed and annotated speech, plus hundreds of thousands of words of paral-
lel text -- for each language and genre being evaluated in the program. As such, LDC's 
initial focus was on developing efficient, scalable processes for data selection, transcrip-
tion and translation. The primary emphasis was on quantity and coverage, especially with 
respect to training data for Machine Translation (MT) and Automatic Speech Recognition 
(ASR) systems. Large volumes of Arabic and Chinese text and audio were collected to 
provide background language models and data for unsupervised training, and a sizeable 
portion of the collected data was then selected for manual transcription and translation. 
Over time, as the archive of existing training data expanded and GALE system perfor-
mance improved, requirements for new linguistic resources evolved accordingly, shifting 
from rapid, high volume resource production to a more refined and targeted selection of 
material to address specific gaps in coverage. Each stage of the GALE program has moti-
vated advances in LDC's resource creation pipeline. New annotation tasks and guidelines, 
quality control procedures and enabling infrastructure like annotation software and data 
formats have been developed at regular intervals to keep apace with evolving program 
requirements. As GALE system performance improves, LDC has increasingly relied on 
ASR and MT system output to augment and improve the data production pipeline.  

This section describes LDC’s methodology for creating linguistic resources for tran-
scription and translation, covering both training and evaluation data. We describe data 
selection; annotation including transcription, translation, and pilot efforts; quality control 
practices; and the novel technical infrastructure developed to support the unique demands 
of GALE.    

1.3.1.2. Training Data Production  

Data Selection 
Although some transcribed audio and parallel text may be harvested online or 

adapted from existing resources, the bulk of the training data developed for GALE is 
created manually. Training data production starts with selection of material for manual 
transcription and translation. This material is chosen from Arabic and Chinese source 
newswire, web text, broadcast news and broadcast conversation collected by LDC for 
GALE, following procedural guidelines developed by LDC in consultation with NIST, 
DARPA and GALE research teams. Detailed volume and genre requirements for each 
round of selection are established by LDC and GALE sites, and refined at regular inter-
vals to meet evolving program goals. 

14 Chapter 1: Data Acquisition and Linguistic Resources 



Handbook of Natural Language Processing and Machine Translation 

For each batch of data to be transcribed or translated, a selection pool is prepared that 
adheres to requirements for (1) source and program variety, (2) genre balance, (3) broad-
cast/publication dates, and (4) content of existing transcript and translation resources. The 
selection pool is heavily weighted to prefer sources and programs that are underrepre-
sented in previous training data releases. Priority is also given to recently collected data 
and/or material from epochs close to the current evaluation epoch. Once the selection 
pool is established, human annotators quickly review each candidate, excluding items 
that do not meet requirements. Because GALE is primarily focused on transcription and 
translation of Modern Standard Arabic (MSA) and Mandarin Chinese, candidates that 
contain large volumes of non-MSA or non-Mandarin Chinese dialects are typically ex-
cluded from selection. Similarly, material whose content focus is deemed inappropriate - 
coverage of sporting events, spam or other offensive material, soap operas, and the like - 
is also excluded.  
 
New Selection Methodology 

After substantial volumes of high-quality, broad coverage training data for translation 
and transcription became available during the initial phases of the program, there was 
growing interest from GALE research sites and LDC alike in developing refined data se-
lection techniques that would especially target high-payoff data; i.e., novel material that 
does not duplicate the salient features of existing training data, and material that is espe-
cially difficult for ASR and MT systems. In response to this need, LDC began working 
closely with research teams to develop a series of “smart data selection” techniques to 
guide selection of new transcription and translation training data. These new approaches 
rely both on understanding the properties of existing training data (for instance, what n-
grams already occur in sufficient numbers in existing parallel text?), and on detecting 
data on which system performance is unexpectedly poor.  

 
Smart Data Selection for Transcription 

As a starting point, LDC and GALE research teams collaborated to install production 
MT and ASR systems at LDC, and to integrate these systems into LDC's regular collec-
tion pipeline (Section 1.). Collected audio recordings are run daily through the ASR sys-
tems, yielding two dozen or more hours of ASR output per language per day. GALE re-
searchers worked with LDC to develop a process that could leverage this resource by 
tapping into a simple intuition: if multiple ASR output streams have high rates of agree-
ment with one another for a single recording, ASR error rates for that recording are prob-
ably low, whereas low agreement rates likely signal high ASR error rates. Audio record-
ings showing moderately high rates of disagreement among ASR systems could then be 
targeted for manual transcription, to produce high-value training resources when com-
pared to resources selected using traditional methods.  

To implement the new approach, segmented ASR output for Arabic and Chinese is 
first stripped of all segmentation markers and converted into plain text for more accurate 
comparison. The resulting files are then processed by sclite (Fiscus et al. 2006), a scoring 
script developed by NIST, which generates a report of the word error and agreement rates 
among the different systems for each show’s recording. The result of the process is a list 
of programs ranked by scoring agreement for all programs in a given selection pool. 

15 



A pilot study conducted by LDC during GALE Phase 3, which compared the output 
of two ASR systems, demonstrated a “sweet spot” between 30% and 80% agreement. 
Annotators audited the ranked list of audio files and recorded information about each file, 
noting lengthy music segments, foreign language speech, non-native speakers, commer-
cials, and the like. Recordings with 30% or lower agreement tended to contain extended 
commercials, music programs, heavy regional speech variation, or recording errors. 
Those with 80% or higher agreement tended to be “talking-head” style read speech, 
usually by a single speaker. LDC leverages this information to exclude files from the two 
extremes during selection. The programs between the 30% and 80% error range may con-
tain speech phenomena for which there is not yet enough training data for ASR systems. 

Once the outlier programs have been removed from the selection pool, annotators re-
view the programs to further eliminate those which may not be suitable for GALE tran-
scription and translation due to their content or level of speaker interaction. The files ap-
proved during this process are then manually transcribed. 

An added benefit to leveraging ASR technology and scoring recordings according to 
the level of agreement among shows is that programs with exceptionally low or high le-
vels of matching segments may be further examined to determine the causes of variation, 
enabling LDC to identify potentially problematic audio elements of broadcasts. Another 
potential use for these reports would be to more quickly identify “challenge” sets of 
broadcast genres for system development. This ASR-assisted selection approach has been 
implemented to select half of all new training data transcripts. 

 
Smart Data Selection for Translation 

Starting in Phase 3, data selection for translation underwent a similar transformation. 
Whereas previous selection methods produced full-document translations (a whole 
newswire article, blog post or broadcast story), the new method targets selection of indi-
vidual high-yield sentences -- where high-yield is defined having features that are novel 
compared to existing stores of training data. LDC collaborated with GALE research 
teams, in particular IBM and SRI, to developed scripts to implement the novel selection 
method. The process begins by establishing a table of n-grams for sentences in existing 
training data sets. Next, LDC prepares a pool of candidate documents for a given lan-
guage and genre. The script is run over this data pool, and generates a list of candidate 
sentences, scoring each according to its uniqueness against the table of existing n-grams. 
Humans quickly scan the resulting ranked list of candidate sentences, discarding inappro-
priate material prior to manual translation. Initial feedback from GALE teams is positive, 
and this sentence-based method is now exclusively used to select new translation training 
data. 

1.3.1.2.1. Training Data for Transcription 

Manual Transcripts  
While some manual transcription and related speech annotation activities are per-

formed by local LDC staff, we also maintain relationships with a number of international 
partner sites and commercial agencies who possess the infrastructure and know-how to 
rapidly produce high-volume, low-cost training transcripts and translations of sufficient 
quality. All transcription partners undergo regular hands-on training conducted by LDC 

16 Chapter 1: Data Acquisition and Linguistic Resources 



annotation staff, and all partners utilize LDC infrastructure including transcription guide-
lines and user interfaces, to ensure consistent quality. Moreover, small volumes of data 
are regularly subject to dual, independent transcription to provide material for analysis of 
human transcription variation and to ensure that inter-transcriber agreement both within 
and across sites falls within an acceptable range.  
 
Transcription Task Specifications 

All transcribers, whether they are working at LDC or at one of our partner sites, are 
required to follow formally-defined transcription specifications to ensure efficiency and 
consistency among all transcripts, regardless of source language. Guidelines differ de-
pending on the purpose of the data, though the goal for all transcription approaches is 
essentially the same  –  to produce a verbatim transcript with speaker and story identifica-
tion in the most efficient manner. Training data requirements place a higher value on pro-
curing large volumes of transcripts with less emphasis on gold standard perfection, whe-
reas evaluation data requirements reverse these priorities. This section describes the train-
ing data transcription approaches employed within GALE.  
 
Quick Transcription 

Quick transcription (QTR) for broadcast news and broadcast conversation aims to 
quickly produce a (near-) verbatim transcript, time-aligned at the phrase or pause-group 
level, with markup limited to story boundaries and speaker turns/IDs. The emphasis is on 
efficiency, with a goal of producing fairly accurate transcripts in five to ten times real-
time (in other words, five to ten hours of transcription effort per hour of speech). QTR is 
used only for training data production. 

 
Quick Rich Transcription 

Quick-Rich Transcription (QRTR) was defined at the outset of the GALE program 
and is the default manual transcription method for GALE. The goal of QRTR is to bal-
ance efficiency and completeness, producing transcripts that are maximally useful for 
downstream manual and automatic annotation tasks including translation, distillation and 
Treebanking. Like QTR, QRTR results in verbatim, time-aligned transcript with story 
boundaries and speaker turn identification, but QRTR also incorporates features like sen-
tence-unit (SU) identification and sentence-based time alignment. (LDC 2008). 

The methodology for identifying sentence-units in spontaneous speech grew out of 
work performed during the metadata extraction (MDE) evaluation of the DARPA EARS 
program, which aimed to annotate verbatim transcripts of spontaneous speech in order to 
make them maximally readable (LDC 2004). Annotations included removing disfluent 
non-content words such as filled pauses or backchannels, and labeling each SU according 
to its type, such as statement, question, or incomplete utterance.  

QRTR incorporates SU annotation into the audio segmentation process, which is the 
first stage of transcription. A sentence-unit (SU) is a natural grouping of words produced 
by a single speaker. SUs have semantic and syntactic cohesion. When creating SU boun-
daries for spoken language, the transcriber’s goal is to identify a semantically and syntac-
tically cohesive group of words that constitute a reasonable sentence-like unit. The seg-
mentation remains consistent for all downstream tasks, permitting a mapping from the 

Handbook of Natural Language Processing and Machine Translation 17 



source audio signal to the source transcript to the English translation and annotations for 
each sentence-unit. Transcription rates for QRTR are targeted at 15 to 20 times real-time. 

1.3.1.2.2. Overview of QRTR Rules 

Transcription rules are consistent for all three source languages. The elements of a 
quick rich transcript include: verbatim transcription, time-aligned story boundaries; 
speaker turn, section and sentence-type identification; speaker identification, and stan-
dard treatment of common spoken phenomena (e.g., hesitation sounds, spoken letters or 
numbers, and disfluencies).  
 
Segmentation 

Transcription begins with audio segmentation, which involves marking structural 
boundaries including story boundaries, speaker turns and sentences. Speakers are identi-
fied by name where possible, or by a unique identifier, such as “speaker1”. Transcribers 
also indicate the speaker’s type  –  male, female, child, or other  –  and native or non-
native speaker status. Story boundaries are inserted when there is a change in topic, and 
stories are labeled according to their style: talking-head broadcast news sections are la-
beled “reports”; discussions or informal chats are labeled “conversations”. Musical inter-
ludes, commercials, public service announcements, and periods of silence are left un-
segmented, or in some instances may be segmented and labeled “non-trans” and left un-
transcribed.  
 
Verbatim Transcription and Orthography 

Once audio has been segmented into smaller units, annotators transcribe the content 
of each segment. Transcribers use standard Mandarin Chinese, MSA, and North Ameri-
can English orthography. Special conventions are used to flag certain speech phenomena 
like disfluencies, mispronounced words, and non-target language speech. Quality control 
checks verify the format of the resulting file, as well, as overall transcript quality.  
 
Foreign or Colloquial Speech 

When transcribers encounter speech not in the target language, they identify the lan-
guage, but do not attempt to transcribe the region.  

Colloquial speech regions are transcribed, but are marked as being “non-standard.” 
Due to the prevalence of dialectal speech in Arabic broadcast conversation files, tran-
scribers mark speech that is not MSA as such, for example:  
 

<non-MSA> </non-MSA> 
 
When the transcriber understands the dialect, he/she transcribes the utterance, for in-

stance:  
<non-MSA> آمان </non-MSA> 

 
While transcribers do not label specific Arabic dialects during the transcription 

process, identifying non-MSA regions at this stage may help downstream processing, 

18 Chapter 1: Data Acquisition and Linguistic Resources 



error analysis, or setting the stage for Arabic linguists to revisit those regions as a sepa-
rate dialect annotation task. 
 
Web Transcripts 
 

To supplement manual transcription efforts, LDC routinely harvests available web 
transcripts in Arabic, Chinese and English for sources that are part of our ongoing audio 
collection, and conducts periodic searches to identify transcripts from new broadcast 
sources. 2 Plain text transcripts are extracted from HTML files, converted to UTF-8, and 
divided into sentences based on punctuation characters. While web transcripts are typical-
ly verbatim or near-verbatim, the format differs considerably from LDC's native tran-
scription format in several ways. First, web transcripts are not time-aligned with the au-
dio; second, they do not follow LDC-style transcription conventions; finally, story boun-
daries and sentence units (SUs) have not been explicitly labeled. 

  
Transcription Volume 
 

LDC has released over 10,000 hours of training transcripts in Arabic, Chinese and 
English from Phase 1 through Phase 4 of GALE. The total number of transcript hours 
released, and the distribution of those transcripts by language and genre, varies from 
phase to phase depending on the specific requirements expressed by the GALE research 
teams, and also in part due to the availability of collected and audited broadcast data.  
 

Language Genre Phase 1 Phase 2 Phase 3 Phase 4 

Arabic BC 454 798 667 459 
BN 640 751 557 171 

Chinese BC 975 478 280 262 
BN 586 492 341 310 

English BC 763 128 154 282 
BN 507 122 151 65 

Table 1.2: Volumes, in hours, of manual and web training transcripts distributed through Phase 4 of GALE. 

1.3.1.2.3. Training Data: Translation  

All statistical machine translation systems require significant linguistic resources for 
system training; GALE required LDC to produce these materials on a larger scale and 
with greater variety and agility than ever previously undertaken. In response, it was ne-
cessary for LDC to develop novel methods, technical infrastructure, and best practices to 
create a pipeline that is flexible, scalable and efficient. While the quality of training data 
is important, it must be balanced against the unwavering demand for high volume, low 
cost, and rapid distribution -- in well-established translation genres like newswire, but 
also in diverse and challenging new genres like talk shows and weblogs. As the GALE 
program progresses, the translation pipeline must also become more refined, and the effi-
ciency of the processes and the quality of the data improve in tandem. This section fully 

                                                      
2 LDC’s web collection efforts are described in detail in Section 1.2.2.  

Handbook of Natural Language Processing and Machine Translation 19 



describes the translation pipeline, which includes not only the actual translation process, 
but also numerous preparation and quality control measures that shape the final product. 
 
Before Translation 

LDC conducts multiple data preparation stages before sending source documents to 
translation agencies. First, all files put through the translation pipeline are either manually 
selected or  –  if automatically selected  –  manually reviewed to reject non-target con-
tent, as previously discussed in the Data Selection section.  

 
Corpus-wide Scans 

Once the translation pool has been identified, the corpus is automatically scanned to 
remove duplicate documents and to ensure that there is no overlap between the training 
and evaluation sets. This crucial step further focuses the use of resources on novel data 
and is one of many safeguards to preserve the integrity of evaluation sets.  

 
SU Annotation  

Selected data is segmented into SUs. SU segmentation is performed manually or au-
tomatically depending on the genre and timeline. In general, newswire data can be auto-
matically segmented; QRTR transcripts are manually segmented during transcription; 
QTR transcripts and web documents must be manually segmented prior to translation. 
Automatically-segmented data is manually checked and corrected to confirm that logical 
semantic segments have been created. SU segmentation is preserved throughout the train-
ing data pipeline.  

 
 
Pre-processing 

Before the data pool is outsourced for translation, it is subsampled in order to achieve 
the best diversity and balance among sources and genres, according to requests or re-
quirements for each dataset. The final set of segmented source data is then sent out in a 
special UTF-8 text format where each numbered segment of source data is paired with a 
corresponding blank numbered line. For example, an outgoing Arabic source file would 
look like this: 

 
<ar=1> Arabic text 
<en=1> [blank line] 
<ar=2> Arabic text 
<en=2> [blank line] 

 
Translators perform the translation one segment at a time, inputting the English on 

the blank line for each source segment. This process was developed to create perfect 
alignment at the sentence level between the source and translation. Using this translation 
format, manual or automatic alignment at the sentence-level is not needed downstream; 
the translation is aligned as it is generated. 

These translator-ready files are then collected into “kits” for outsourcing to vetted 
commercial translation agencies. Kits are customized for each agency based on target 

20 Chapter 1: Data Acquisition and Linguistic Resources 



volume, agency expertise, file length, and level of difficulty. Different sources are distri-
buted evenly across agencies so that any observations about a particular source are not 
invalidated by different agencies’ variability in style or quality. 

 
Manual Translation 

In addition to the technical infrastructure it has developed, LDC has also produced 
extensive documentation to systematize and standardize large-scale human translation for 
the GALE program. While variability cannot be completely eliminated in a human task 
such as translation, where there will always be multiple correct translations, it is con-
trolled as much as possible through the provision and enforcement of detailed and rigid 
translation guidelines developed for GALE, which instruct translators to emphasize accu-
racy and fidelity to the source text, and provide clear guidance on how to approach spe-
cial cases (LDC 2009). 

These guidelines include instructions and examples to aid translators in approaching 
documents collected for GALE, which differ significantly from the data translators usual-
ly encounter, as well as, requirements for how and by whom documents must be trans-
lated. LDC uses multiple translation teams for each language, and each team must have at 
least one translator native in the source language and one native in the target language.  

Translators are required to follow the guidelines’ specifications for translating speech 
disfluencies, factual errors, filled pauses, proper names, and more. Instructions for han-
dling potential challenges – like typos, neologisms, emoticons, and other features of web 
data – are also included. Addressing these special cases in the translation guidelines as-
sures consistency where there would otherwise be variability if individual translators re-
lied on their own best judgment. Furthermore, clear markup that indicates typos, transla-
tor uncertainty, and made-up words allows sites and evaluators to treat these instances 
differently when necessary.  

The translation guidelines are a living document, constantly updated to include more 
examples and address new translation issues. Releases include READMEs to indicate 
which version of the guidelines has been applied to each particular data set. Distinct 
guidelines have been developed for Arabic and Chinese source languages so that lan-
guage-specific issues can be adequately addressed. Translation agencies are always re-
quired to use the most up-to-date version of the guidelines to ensure that all data is trans-
lated according the same standards.  

1.3.1.2.4. After Translation  

Post-processing and Sanity Checks 
Once a set of data has been translated, incoming translations are processed using a 

suite of scripts that extract the English lines from the merged source/translation docu-
ments and perform a bevy of sanity checks. These checks ensure that all files have been 
returned, all files are correctly encoded, all source segments are present, all segments 
have corresponding translations, and the data format is intact. Thus, most problems with 
incoming translations are discovered automatically and can often be rectified automati-
cally as well. Identifying problems at this early stage allows LDC enough time to return 
files to agencies for retranslation when errors cannot be easily fixed by LDC. 

 

Handbook of Natural Language Processing and Machine Translation 21 



Manual Quality Control  
Manual quality control (QC) occurs after this series of automatic sanity checks. Even 

when translations are created by skilled translators and then proofread closely, erroneous 
translations and areas of ambiguity frequently exist in raw translations. Certain genres 
that are included in GALE, especially broadcast conversation and web data, provide par-
ticular challenges to human translators, as noted previously. In addition, since translation 
is not an exact science, two independent translators will typically produce two different 
translations for an identical source document. However, human translations produced for 
MT training and evaluation must be exact and fully expressive: the translation must con-
vey no more and no less information than the source. 

The quality control processes undertaken for training and evaluation data are vastly 
different. Evaluation translation quality control is discussed in detail in Section 1.3.1.3. 
For training data, a subset of each translation delivery (between 10 and 20 percent of the 
total word count) is checked by bilingual LDC annotators trained in the appropriate pro-
cedure. Annotators apply specific scoring mechanisms according to a rubric included in 
the translation guidelines provided to agencies. Translation errors are categorized as: syn-
tactic, lexical, poor English usage, or typographic (significant spelling or punctuation 
mistakes). Each category is given a certain number of points. Deliveries that receive a 
failing score (too many points) are rejected and returned to the agency; payment is with-
held until corrections are completed on the entire translation set (not just the files that 
were reviewed) and the revised translation delivery meets QC standards.  

1.3.1.2.5. Training Data: Parallel Text Harvesting 

LDC has also developed a set of software tools including BITS (Ma and Liberman 
1999) to identify potential parallel text resources among online archives of multilingual 
documents (Maeda, et al. 2008a). LDC uses this software to scan and harvest likely pa-
rallel documents from the web on a regular basis. These sources include newswire ar-
ticles from multilingual news agencies, such as Agence France Presse and Xinhua News 
Agency.  

Parallel text documents on the web come in a variety of formats. After harvesting, 
files are converted to a text format with a predefined set of SGML or XML markups, and 
the document mapping module of the BITS system is then run to identify pairs of possi-
ble parallel documents. Once pairs are identified, each document is automatically seg-
mented into sentences and then processed by the Champollion sentence aligner (Ma 
2006) to create sentence mapping tables. For the GALE program, LDC has created and 
distributed over 82,000 automatically harvested document pairs containing likely Arabic-
English parallel text, and over 67,000 document pairs for Chinese-English. 

1.3.1.3. Evaluation and Development Data Production 

One of the greatest challenges encountered in producing linguistic resources for 
GALE is creating the gold standard source and reference sets for evaluation. The GALE 
evaluation paradigm relies on a carefully constructed test set, which includes careful ma-
nual selection and transcription (for audio genres) of the evaluation data pool. On the sur-
face, creation of test data for machine translation is straightforward: take the set of evalu-

22 Chapter 1: Data Acquisition and Linguistic Resources 



ation documents and manually translate them. But, like any task involving human judg-
ment, “translation” is not a monolithic task and there are multiple decision points along 
the way. As the provider of evaluation data, LDC must consider not only the fully articu-
lated requirements for test data  –  the type stated in an evaluation plan  –  but, also hid-
den assumptions and implicit requirements that are equally important in constructing ap-
propriate data for evaluation.  

 
Data Selection 

Evaluation data is selected carefully, according to very specific guidelines. An evalu-
ation epoch is first decided collaboratively by LDC, DARPA and NIST. LDC compiles 
candidate files from that epoch to construct a pool of newswire, broadcast audio and web 
data. Each candidate file (audio or text) is examined carefully to identify snippets that 
meet the criteria specified in the selection task specification. These text and audio snip-
pets typically correspond to a topically cohesive story selected from each document or 
recording. Information about topic category, presence of dialect, and acoustic and dialect 
features of the audio file are noted by annotators. 

 
Segmentation and Transcription 

Segmentation for evaluation data is especially important, since MT output is scored 
at the segment level. Poorly constructed segments can lead to ambiguity and then inaccu-
rate MT scores. Segmentation errors that affect the meaning or interpretation of the text 
are always corrected, even if they are discovered at the final stage of the pipeline.  

SUs are manually identified for the newswire and web snippets. Selected audio snip-
pets are carefully transcribed and segment boundaries identified by professional tran-
scription agencies and LDC annotators, following an enhanced version of the Quick Rich 
Transcription (QRTR) specification. Transcription of evaluation data differs from the 
training data approach in that it requires multiple manual reviews of a file to produce a 
gold standard reference transcript. Transcribers first create a basic quick-rich transcript, 
with speaker and sentence unit annotation and a verbatim transcript. Senior transcribers 
then review each utterance carefully to verify the transcripts' accuracy, making modifica-
tions where necessary. The lead transcriber conducts a final review over all transcripts 
before marking them complete, and the reference transcripts are then passed to the gold-
standard translation process.  

 
Translation and Manual Quality Control  

Transcribed and segmented files are reformatted into a human-readable translation 
format, and assigned to the best professional translators for careful translation, following 
LDC’s standard GALE translation guidelines (LDC 2009).  

After translation, reference files undergo several additional stages of annotation and 
quality control to correct errors, finalize and correct segmentation, improve translation 
adequacy, add translation variants, standardize proper nouns, verify technical terms and 
so on, with the ultimate goal of having gold standard translations that are absolutely faith-
ful to the source data in terms of meaning, fluency, structure and style. 

In order to standardize the translations and produce an appropriate reference for eval-
uation, LDC has developed a six-step translation and QC process: 

Handbook of Natural Language Processing and Machine Translation 23 



 
1) A source-language dominant bilingual translator produces a preliminary transla-

tion emphasizing accuracy; 
2) A target-language dominant bilingual translator revises the translation to improve 

fluency; 
3) A source-language dominant bilingual annotator checks translation for errors and 

omissions; 
4) A source-language dominant bilingual senior annotator checks for remaining er-

rors, improves fluency, corrects and standardizes named entities; 
5) A target-language dominant bilingual annotator improves fluency and adds trans-

lation variants where required; 
6) A target-language monolingual annotator reviews for fluency and consistency, and 

flags questionable regions. 
 
Steps 1 and 2 are largely the same as those used in the creation of training data, but 

additional quality control loops are added to meet the evaluation data standards. The 
translations delivered after Step 2 are considered final and complete by the agencies; the 
subsequent steps are an above-and-beyond layer added by LDC in order to ensure the 
highest possible confidence in the released gold standard. 

Steps 3 through 6 are performed in-house. In Step 3, the annotator focuses only on 
correcting egregious errors. The main objective of Step 4 is to resolve any nuanced issues 
with the translation, while verifying total fidelity to the source  –  a requirement for the 
GALE evaluation. In Step 5, fluency problems are corrected and translation variants are 
introduced to clarify regions of ambiguity. 

Relative to Step 5, Steps 3 and 4 are extremely time-intensive. For the most recent 
GALE evaluation, Step 3 averaged 25 minutes per Arabic document and 21 minutes per 
Chinese document. (Each document is between 150 and 350 tokens, where a token is an 
Arabic word or Chinese character.) Step 4 averaged 13 minutes per Arabic document and 
15 minutes per Chinese document. Step 5, however, averaged just 6 minutes per docu-
ment for both languages, since the translation is generally in excellent condition by the 
time it reaches Step 5. 

The final check, Step 6, is a quick but thorough read-through of all of the transla-
tions, with an eye to any errors that may have been introduced inadvertently in previous 
steps. The Step 6 reviewer must also ensure that the translations read as correct, fluent 
English, independent of the source text. Each stage requires a different level of expertise, 
and while six different translators might produce six different translations, the six-person 
translation and QC team  –  who work independently but consecutively on one working 
document  –  is designed to achieve a higher level of consistency and predictability. Step 
5, where translation variants are introduced when required, is especially important for 
ensuring that any alternate, but equally accurate interpretations of the source text are in-
cluded in the final translation reference. 

 
Development Data 

In addition to training and evaluation data, LDC produces development datasets, 
which are typically small-volume, carefully-created datasets that resemble evaluation 

24 Chapter 1: Data Acquisition and Linguistic Resources 



data in terms of preparation and total volume, and are carefully selected from the epoch 
immediately before the evaluation collection epoch. In terms of production procedures, 
devtest sets fall somewhere between the carefully controlled process for evaluation data, 
and the high volume rapid turnaround approach taken for training data production. Re-
quirements for development data vary across phases, and are typically specified by 
GALE research teams. For instance, in GALE Phase 4 LDC selected, transcribed, anno-
tated, and translated a large devtest corpus of over 600 snippets per language per genre. A 
smaller subset of each phase's devtest set is typically enhanced with additional annotation 
including word alignment and multilingual Treebanking.  

1.3.1.4. Annotation Tools and Infrastructure 

The constantly evolving data requirements of the GALE program have required LDC 
to develop an innovative suite of supporting software and related technical infrastructure, 
in order to construct an adaptable and extensible pipeline for transcription and translation 
that appropriately balances concerns of quality, efficiency, complexity and flexibility.  
 
XTrans 

Among the challenges faced in creating manual transcripts for training or evaluation 
purposes is the efficiency of the transcription software itself, since an efficient tool can 
boost productivity and provide opportunities for richer annotation or research. Broadcast 
recordings present the challenge of containing overlapping speech from multiple speakers 
on a single audio channel. Creating segments and transcripts for such overlapping utter-
ances is a function that many currently available transcription tools lacked. To meet de-
mands for increased volumes of spontaneous speech, which often include conversations 
among multiple, simultaneous speakers, LDC required an efficient and straightforward 
tool for transcribing overlapping speech. Furthermore, the need to produce large volumes 
of transcripts with a consistent file format across multiple languages promoted the devel-
opment of a new transcription tool.  
 

XTrans, the resulting speech annotation toolkit (Glenn et al. 2009), supports a full 
range of speech annotation tasks including quick and rich transcription and annotation of 
broadcast audio, telephone speech and meetings. Powered by Qt’s international language 
support, XTrans can be used for transcription tasks in many different languages. It is easi-
ly ported to most UNIX derivatives, Microsoft Windows and Mac OS X. XTrans consists 

Handbook of Natural Language Processing and Machine Translation 25 

 
Figure 1.3: Arabic broadcast conversation transcription session in XTrans. 



of several re-usable components such as text and waveform display. Most of the compo-
nents are written in Python with some components written in C++ (LDC 2007). 

The Qt text widget also supports bi-directional text input for right-to-left (RTL) lan-
guages like Arabic. This functionality allows transcribers to insert English-language me-
tadata tags in the Arabic language transcript. Clicking on a segment in the transcript high-
lights the corresponding segment in the waveform, and vice versa. 

XTrans alleviates the challenge of efficiently annotating multiple overlapping speak-
ers. The tool incorporates the concept of a virtual speaker channel (VSC). Each VSC cor-
responds to one speaker, rather than to any particular physical channel in a sound file. A 
VSC may also be used to represent background noise or other non-speaker sound sources. 
The addition of this feature allows transcribers to transcribe a potentially unlimited num-
ber of simultaneous speakers without having to resort to any cumbersome markup. 

  

Each speaker in the recording is randomly assigned a color by the tool. The segments 
for that speaker are coded with the same color in the transcript window. The waveform 
display also shows the span of each segment in the audio channel as a color-coded box. 
Overlapping utterances are depicted in the waveform display by stacked boxes, as shown 
in Figure 1.4. The overlapping segment information is then extrapolated from the times in 
the transcript file, as shown by the start and end times of the two segments in the follow-
ing example:  
 

Start End SpeakerID Transcript 
394 400 speaker1 那一会儿我们跟您详细聊一聊,给我们讲讲您

的故事,好吗,好谢谢何伯伯 
394.2 399 speaker2 呃呃, 呃呃呃, 呃呃呃 

Table 1.3: Overlapping segments in plain text transcript. 

XTrans incorporates a number of quality control functions that improve the accuracy 
of speaker identification by the transcriber, such as the ability to listen to random seg-
ments or all segments from a selected speaker. In addition, transcribers can listen to all 
unsegmented audio “gaps” in the transcript, which assists in identifying regions of missed 
speech. It is easily configured to make transcription efforts more efficient -- for instance, 
all segmentation functions can be performed using keyboard shortcuts instead of a 
mouse. Users may also add their own keybindings or modify existing keybindings to suit 
their comfort and preference. 
 

26 Chapter 1: Data Acquisition and Linguistic Resources 

 
Figure 1.4: Close-up of overlapping utterances in XTrans. 



Translation QCTool 
The multi-stage translation quality control process for evaluation datasets is facili-

tated by QCTool, an annotation tool written in Python and based on XTrans. QCTool 
allows annotators to view source documents and translations side-by-side and edit the 
working copy of a translation. It also includes functionality for viewing and reverting to 
previous translation versions, flagging sections for further review, playing back source 
audio data, and displaying edits as they are made. 

QCTool was developed by reusing and specializing components of XTrans. A simple 
analysis shows that QCTool reused 99% of the XTrans code. About 8% of the QCTool 
code was newly added, due to the object-oriented design of XTrans. For example, the text 
display required enhancement to ensure that corresponding segments are aligned when 
displayed on the tree panel text display. It is this approach that made the rapid develop-
ment of the tool possible. 

As with LDC's other annotation tools, QCTool is fully integrated with LDC's Anno-
tation Workflow System (AWS), which manages documents, directories, permissions, 
and assignments, and tracks annotator efficiency and progress. Together, QCTool and 
AWS ensure that each intermediary version of the translation is stored for later training 
and analysis. In LDC’s production pipeline, QCTool is integrated with AWS for Steps 3, 
4 and 5 of the 6-step process.  

Before entering the AWS workflow, the file contains two layers of text: source text 
and a preliminary translation. At each step of the workflow, AWS adds an exact copy of 
the previous translation layer. The annotator at each step works on the most recently add-
ed layer, which is displayed in the “Working Copy” panel, to correct and improve that 
layer. One of the previous translations is displayed on the “Revision” panel, and the user 
can select which revision to display. The source text is displayed on the “Source” panel.  

QCTool uses a slightly modified version of the original data model used by XTrans. 
The original data model is essentially a table where each row represents a segment or 
sentence. The translation QC process involves several layers of such tables. For example, 
source text, preliminary translation and corrections from additional QC steps each form a 

Handbook of Natural Language Processing and Machine Translation 27 

 

 
Figure 1.5:  Screenshot of QCTool. 



layer. In QCTool, these layers are combined into one by means of a table ID; that is, each 
row is augmented by an ID of the table it belongs to. The new data model is physically 
stored using the same file format used by XTrans. However, only QCTool recognizes the 
additional information to display each row in an appropriate text panel. 

QCTool increases the speed and accuracy of the quality control process by giving the 
annotator access to all of the relevant information in one place, and making it much easier 
to visualize revisions and identify problematic regions. 

 
Translation Pipeline Database 

LDC’s core translation infrastructure is grounded in a custom MySQL database that 
tracks every file at every stage of the translation pipeline and allows the steps outlined 
above to be followed smoothly, efficiently, and consistently.  

This database stores information on data features (e.g., token count, language, genre) 
and partitions (devtest, training, evaluation); tracks assignments, deadlines, and payments 
for outsourced translation; and captures information on data location and storage that is 
exploited by downstream processing scripts. The database is also the backend for the 
Translation Extranet, which allows files to be stored securely but easily accessed and ma-
naged by external agencies and LDC administrators via a simple web interface. 

This database is the key to data management of this scale and complexity. Fields are 
generally populated via batch imports, and files are added at the planning stages so that 
each step in the pipeline can be tracked and recorded.  

Querying allows programmers and managers to drill down and retrieve all of the re-
levant information associated with a particular file (e.g., which kit it belongs to, when it 
was delivered, what the QC score was, which agency translated it, whether it has been 
processed, etc.), as well as, all the files associated with a particular stage (e.g., processed 
but not released), feature set (e.g., Arabic Broadcast News from Phase 2 Training), source 
(e.g., Xinhua), translation agency, and so on. Processing scripts hook into the database to 
improve efficiency and allow certain fields to be automatically updated in real time. Ad-
ditionally, reports synthesizing various points of interest can be generated on the fly for 
better planning, management, and information-sharing. 

 
Transcription and Translation File Format 
 

ID Label Description Format 
1 file file name or id Unicode 
2 channel audio channel Int 
3 start start time Float 
4 end end time Float 
5 speaker speaker name or id Unicode 
6 speakerType speaker type Unicode 
7 speakerDialect speaker dialect Unicode 
8 transcript transcript Unicode 
9 section section id Int 
10 turn turn id Int 
11 segment segment id Int 
12 sectionType section type Unicode 
13 suType SU type Unicode 

Table 1.4: The 13 fields of a record, or segment, in XTrans .tdf format. 

28 Chapter 1: Data Acquisition and Linguistic Resources 



The output of XTrans and QCTool is a simple Tab Delimited Format (TDF), which is 
the primary file format for transcripts and translations produced at LDC. This file format 
represents data as a set of “records”, which are in turn a set of “fields” separated by tab 
characters. Each record refers to a particular segment in the transcript.  

In addition to the body of segments, there are several lines of meta-information in the 
.tdf file. The first line declares the above field specification for segments in the following 
form: 

file;unicode channel;int start;float ... 
 

The second and third lines specify where the location and types of the section bounda-
ries. For example, 
 

;;MM sectionTypes [u'report', u'nontrans', None] 
;;MM sectionBoundaries [0.0, 425.3, 9999999.0] 

 
These lines mean that the first section starts at 0.0 second and its type is “report”, and 

that the second section starts at 425.3 seconds and its type is “nontrans”, and this is the 
last section (9999999.0 is always the last field in this line). 

1.3.1.5. Pilot Annotation 

 
Supralexical Annotation 

In GALE Phase 3, LDC performed pilot annotation to enrich devtest and unseques-
tered evaluation transcripts from previous GALE phases. The supralexical annotation 
pilot aimed to maximize usefulness of existing transcripts for research teams, and in-
volved in-line transcript annotation and named-entity annotation. The supralexical anno-
tation task was performed in two stages: the first stage required annotators to listen to the 
audio file while annotating the transcript and included the following tasks:  
 

• marking filled pauses 
• confirming accuracy of speaker info (gender & native/non-native status) 
• adding in-line notation about bandwidth, which included surrounding transcribed 

words that sounded like telephone speech with <telephone> 
</telephone> tags, and digitally-transferred field reports with <field re-
port> </field report> tags 

• inserting speaker-created and background noises 
• adding Arabic dialect descriptions for non-MSA utterances  

 
Since Arabic dialect annotation is a specialist task, supralexical annotators only 

changed non-MSA tags when they could confidently identify the dialect. Annotators 
chose one of the following dialect descriptions: (1) Maghrebi, (2) Egyptian/Sudanese, (3) 

Handbook of Natural Language Processing and Machine Translation 29 

LDC transcription and translation efforts aim to maximize the utility of data for 
GALE teams; this vision includes producing pilot annotations and experimenting with 
new approaches to provide researchers with additional resources to support system de-
velopment and testing. 



Levantine, or (4) Gulf/Iraqi. When annotators could not confidently identify dialect being 
spoken, they retained the non-MSA tags from the original transcript. Any region not 
tagged with a dialect ID or as non-MSA was assumed to be MSA (LDC 2009).  

The second stage of supralexical annotation involved marking named entities as Per-
son, Title, Organization, or Location (LDC 2006).  
 

Language # files BC # files BN Approximate 
total hours 

Arabic 102 152 8.5 
Chinese 157 144 10 

Table 1.5: Data volumes annotated for the Phase 3 supralexical annotation pilot. 

Translation Pilot Experiments 
LDC’s streamlined translation processes have led to a previously impossible level of 

adaptability to new techniques or datasets and allow quick responses to innovative data 
ideas. For example, LDC performed a pilot experiment called “MT Plus” wherein source 
data was run through in-house MT systems and then sent out to translation agencies for 
correction. GALE sites were interested in comparing MT-based translation to standard 
from-scratch translation.  

Pilot experiments have also been undertaken in translation from English into Arab-
ic/Chinese, in first-pass translation without quality control, and in sentence-level transla-
tion. LDC's efficient infrastructure means that resources are maximized and start-up costs 
are minimized.  

1.3.1.6. Conclusion 

This section described LDC’s efforts to produce training and evaluation data, includ-
ing transcripts and translations, to support the DARPA GALE program. GALE's chal-
lenging performance targets demand linguistic resources on a scale and complexity never 
before encountered. LDC has developed a robust and flexible pipeline, combining enabl-
ing technical infrastructure, detailed task specifications and fully documented best prac-
tices. Over the life of the program resource creation at LDC has become more efficient 
and adaptive, with increased emphasis on automation and utilization of emergent GALE 
technology to improve and augment the data pipeline. These combined efforts have 
enabled LDC to meet and often exceed requirements for large volumes of translation and 
transcription training data, high quality evaluation and development sets, and informative 
annotation experiments that are responsive to the ever-evolving needs of system develop-
ers, evaluators and program sponsors. 

 
 
 
 
 

30 Chapter 1: Data Acquisition and Linguistic Resources 



1.3.2. Word Alignment for Improved Machine Translation  
Authors: Xuansong Li, Xiaoyi Ma, Stephen Grimes, Stephanie Strassel, Gary Krug, and Dalal Zakhary 

1.3.2.1. Introduction 

Manual word alignment annotation at LDC is a part of the GALE project and is an 
ongoing five year effort. This project has produced Arabic-English and Chinese-English 
word alignment corpora with the amounts of data shown in Table 1.6.  
 

 Genre Phase 1 Phase 3 Phase 4 Total 
 
Arabic 
 
 

BN 25 79 89 193 
BC 31 105 n/a 136 
NW 105 n/a 266 371 
WEB 94 26 85 205 

 
Chinese 
 
 

BN 35 95 n/a 130 
BC 33 75 57 165 
NW 102 n/a 149 251 
WEB 102 33 126 261 
Table 1.6: Data volume in thousands. 

1.3.2.2. Data and Tool 

Data type and source 
Two types of source languages involved in the current task are Arabic and Chinese.  

In the first year of the GALE project, the data types used included newswire, broadcast 
news, broadcast conversation (talk shows, call-in shows), newsgroups and weblogs. 
Newswire text came from tree-bank data while other types were harvested at LDC and 
translated by different translation agencies. In Phase Three of GALE, data types were 
reduced to broadcast news, broadcast conversation, and web (including newsgroup and 
weblogs). These data are now or will be tree-banked. The data source is shown in Table 
1.7 Table 1.8. 
 

Genre Chinese Data Source 
BN/BC 
 
 

2005-2006 CCTV, 2005 Phoenix TV, 2006 CCTVNEWS, 
CCTV4, HUBEI 2007 Phoenix TV, CCTV, CCTVNEWS, 
China Central TV 2005-2006, CCTV, 2005 Phoenix TV 

NW 1994-1998 Xinhua 
WEB Online, VOA 

Table 1.7: Chinese data source. 

Genre Arabic Data Source 

BN/BC 
 
 

2005 Aljazeera, 2001 Nile TV, 2005-2006 Al Arabiyah, 
2007 Saudi Nightly News, Dubai TV, Al Iraqiyah, Kuwait 
TV News, Lebanese Broadcast Corp, Saudi Nightly News 
2005 Aljazeera,2001 Nile TV 

NW 2002 An Nahar 
WEB Online, VOA 

Table 1.8: Arabic data source. 

Handbook of Natural Language Processing and Machine Translation 31 



The data was selected from the released source of LDC GALE Phases 2 and 3. 
   

Tokenization 
For a more precise text and punctuation alignment, both the source and translation 

were tokenized automatically, without human interventions. The tokenization of English 
follows the same guidelines used in Penn English Treebank: split words by white spaces, 
split clitics/contractions (such as: shouldn’t, I’m, etc.), separate punctuations from the 
preceding/following words. Apostrophe S (‘s) is treated as a separate token. Penn English 
Treebank treats most hyphens as separate tokens; however, some are treated as part of 
words. Arabic tokenization follows the ATB tokenization scheme by directly extracting 
tree tokens from ATB for word alignment tasks.     

Because of a lack of word boundary, Chinese tokenization is challenging due to seg-
mentation issues. We finally chose character-based files for tokenization with the follow-
ing considerations. First, word segmented files are normally automatically done by a 
word segmentation tool and a predefined monolingual dictionary. Yielded errors need to 
be manually corrected, which is another added process to word alignment itself. Second, 
character-based system can be easily adapted to any existing segmentation system. Third, 
character-based files provide the flexibility of ignoring a word boundary when necessary 
and breaking down a two-character word to minimum semantic units, which greatly ben-
efits cross-cultural findings and more subtle linguistic descriptions. Fourth, the conveni-
ence of handling new words is obvious with character-based files, such as proper nouns 
and newly coined words. These types of words usually require a great effort in manual 
correction after the texts have been word-segmented. Finally, Chinese input texts at cha-
racter level can simplify data pre-processing.  Therefore, in tokenization we treat each 
Chinese character as a separate token. All hyphens are separate tokens. In addition, we 
separate punctuations from the preceding/following characters.  

 
Data structure and format  

The input data, including both source and translation data, are in tab delimited format 
(.tdf). The annotation results are stored in an xml-like format, as illustrated in Figure 1.6. 

The key tags are:  
 
Source: the source sentence (in Arabic or Chinese).  
Translation: the English translation. 
Matrix: a two dimensional array M indicating alignment among words. The rows 

contain the indices to the English tokens and the columns, the into the 
source (Arabic/Chinese) sentence tokens. The value of each cell can be 0, 1 
or 2.  ࡹሾ݅, 0ሿ represents the “Not Translated” English tokens, ࡹሾ0, ݆ሿ represents the “Not 

Translated” source tokens. A value of 1 indicates “Not Translated” and “Correct,” mean-
ing a word alignment cannot be found, but the meaning is conveyed in the translation. A 
value of 2 indicates “Not Translated” and “Incorrect,” meaning a word alignment cannot 
be found, and the translator has made an error (missing or inserted word), which is rare. 
For example, if M[3,0] is 1, it indicates that the third English token is not translated, but 
the translation is correct. 

32 Chapter 1: Data Acquisition and Linguistic Resources 



If ۻሾ݅, ݆ሿ is 1 or 2, it indicates there is a link between English token i and source to-
ken j. A value of 1 indicates the translation is correct, and value of 2 indicates incorrect, 
which is rare. There are cases where more than one English token are aligned to more 
than one source token, in which case, links will be drawn between every English token 
and every source token. For example, if English tokens i and ݅  ݇ align to source token j 
and ݆  ݈, ,ሾ݅ࡹ  ݆ሿ, ሾ݅ࡹ   ݇, ݆ሿ, ,ሾ݅ࡹ ݆  ݈ሿ  and ࡹሾ݅  ݇, ݆  ݈ሿ  will be set to 1 or 2, de-
pending on whether the translation is correct. 

“Unaligned_sentence” between matrix tags indicates the sentences rejected by anno-
tators during annotation in cases where sentences are half translated, foreign text, stylistic 
text of peculiar data types, or locally ill-formatted. For instance, in broadcast conversa-
tions, there are fragments of music which are represented as blank lines, and in new-
sgroups and weblogs, there is foreign text, email address or web links.  All data are en-
coded in UTF8. 

 

 
Figure 1.6: Data File Format.  

Tool 
The alignment tool is a simplified version of a JAVA-based word alignment tool de-

veloped by Carol Nichols (cln23+@pitt.edu) and Rebecca Hwa 
(hwa@cs.pitt.edu) at the University of Pittsburgh (Nichols 2005). The original tool 
has a client-server model and works for Chinese-English only, and the server side is very 

<seg id=1> 

<source_raw>新华社拉萨二月二日电(记者央珍) </source_raw> 

<source>新华社拉萨二月二日电(记者央珍)</source> 
<translation_raw>Xinhua news Agency, Lhasa, February 2, (reporter Zhen Yang)</translation_raw> 
<translation>Xinhua news Agency, Lhasa, February 2, (reporter Zhen Yang)</translation> 
<matrix> 
0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0  
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0  
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
</matrix> 
<time>100</time> 
<comments> </comments> 
</seg> 
<seg id=2> 

Handbook of Natural Language Processing and Machine Translation 33 



CPU intensive. To better serve our task, the server side is discarded and only client side 
(GUI interface) is kept. Instead of JAVA applet, the tool has been changed to work as a 
stand-alone GUI application, and Arabic support has been added. The GUI interface has 
been improved for both visualization and functionality of annotation. The tool presents 
each pair of tokenized sentences vertically, which are clickable for one-to-one, one-to-
many, many-to-one, and many-to-many links. To handle noisy data or style features of 
different data types which are not appropriate for alignment, a “reject-segment” button 
was created to conveniently exclude the inappropriate data from alignment while main-
taining the integrity of source data.  

1.3.2.3. Annotation Guidelines 

Guideline compilation process 
Guidelines compilation began with the annotation of a pilot set of files by native 

Arabic and Chinese lead annotators. The first guidelines draft was written based on initial 
annotation results, with reference to the Annotation Style Guide for the Blinker Project 
(Melamed 1998). After several rounds of discussions, the draft was revised to form the 
first version. Two Chinese annotators and two Arabic annotators then joined in and anno-
tated the trial sets according to these guidelines. Their annotation results were examined 
carefully for differences, which were discussed and tackled again in revising the guide-
lines. These guidelines were consistently updated to tackle new findings. During the an-
notation process in Phase1 and Phase 3, guidelines were updated several times due to 
newly found untackled language phenomena or direct requirements from the GALE re-
search sites. The basic approaches of guidelines, however, remain the same.   

 
Guideline approaches 

Two versions of guidelines have been developed: Chinese-English and Arabic-
English. The same framework is adopted for the two types of guidelines, with the general 
principles and strategies discussed first, then the specific rules and language issues. Am-
ple examples are provided to support the annotation rules. The most recently updated 
word alignment guidelines GALE_Arabic_alignment_guidelines_v3.0.pdf and 
GALE_Chinese_alignment_guidelines_v3.0.pdf can be accessed and downloaded from 
http://projects.ldc.upenn.edu/gale. 

Word alignment is a task performed between parallel texts, involving two languages 
and addressing universal linguistic phenomena as well as cross-cultural features. To re-
spond to universal linguistic issues, general principles are discussed, while specific rules 
are stipulated to tackle cross-culturally different topics. 

 
Language universals 

a. Alignment types:  
Two types of links (translated-correct and translated-incorrect) and two types of mar-

kups (“not-translated correct” and “not-translated incorrect”) are established to capture 
linguistic information and cross-cultural elements.  
 

34 Chapter 1: Data Acquisition and Linguistic Resources 



b. Translated:  
Pure linguistic translation equivalence refers to semantic “deep structure” equiva-

lence either with or without lexical/functional surface-structure equivalence. A word can 
be translated in various ways. As long as the meaning is adequately expressed, the word 
is semantically “translated” in spite of variations in surface-structure. Passive voice in 
one language can be translated into active voice in another, or there may be divergences 
in diction, as in:  

高兴(happy)死(die)了.   

Extremely happy. 

 
他(he)买(buy)了牛奶(milk)黄油(butter)和(and)鸡蛋(egg)。 
.إشترى الحليب والزبدة والبيض  
He bought milk and eggs. 

 
Translating cross-cultural thought inevitably involves translation variations, which 

are realized by means of expansion, deletion, summarization, explanation, supplement, 
combination, and reformation in the light of the special needs of readers. Such adapta-
tions and translation variations lead to superficial or surface structure changes, such as 
overt additions or omissions. These words are extraneous. Deleting them, however, 
would corrupt the correctness of the sentence, as with determiners which are absent in 
Chinese but present in English. The additions or omissions are, from a cross-cultural 
perspective, obligatory and systematic. Special grammatical rules in different languages 
can be revealed by studying omissions or additions in translation. To this end, the “not-
translated correct” markup is designed to label these extras in source/translation.   

Our primary concern is how to adequately categorize these superficially extraneous 
words or phrases. They can be divided into two types: functional (grammatical) and se-
mantic. Furthermore, they can be either at word-level, sentence-level, or discourse level. 
In English translations, the functional (synsemantic) words, such as prepositions, deter-
miners, subordinating conjunctions, certain particles, auxiliary, and modal verbs are 
mostly word-level or local level tokens and cannot be neglected. They are so rudimental 

Handbook of Natural Language Processing and Machine Translation 35 

All such variant versions are semantic translations of the source, and thus “correct” 
links. This is true for all languages. Aligning correct links is important to word alignment 
task because valid translation pairs can be conveniently extracted to construct translation 
lexicons. Most of the links in our task are of this kind.  We designed “Translated incor-
rect” link type to cover instances where the text is improperly translated in meaning or 
grammatically wrong.  

c. Not-translated:  
If a word is not translated or conveyed, thus causing information loss, then it is re-

garded as “not translated”, and naturally is “incorrect.” Therefore, “not-translated incor-
rect” refers to cases with a  loss of deep structure meaning and an absence of surface 
structure representation, as in the following example, “butter,” is missing in deep struc-
ture as well as surface structure in translation.  



in revealing the hidden information regarding constituent dependencies that leaving them 
unaligned would lose valuable dependency information. Moreover, word-level synseman-
tic words contribute to revealing the complete semantic equivalence between languages, 
without which the language would be unacceptable. Therefore, synsemantic words at the 
word level are attached to their autosemantic head words and they jointly constitute 
“translated correct” links. For instance, “the” can be attached to “reporter,” and “the re-
porter记者 (reporter)” is an aligned “translated correct” link. Describing word relations 
at a local level by the attachment approach is import for word alignment tasks because 
word relations can help to capture local level syntactic information.     

Extraneous words at sentence level usually carry strong cross-cultural or discourse 
significance. They are not important for semantic equivalence. Without them, the transla-
tions are still correct or acceptable. Therefore, these added words with no direct lexical 
equivalence can be marked as “not translated correct.” They are not translated in the 
sense that they have no written equivalents. However, they are correct in the sense that 
they are needed for being more like English or Chinese, or they are grammatically 
needed. Language idiosyncrasies play an important role here. Some words appear or dis-
appear depending on the peculiarities of a specific language. For instance, “都 (all)” in 
the following example does not carry meaning, but it makes the Chinese sentence more 
fluent. Marking these words is important to machine translation in the sense that a gram-
matical/rule-based translation model can choose to ignore such words.  

国 家 (nation) 每 (every) 年 (year) 都 (all) 拨 (allocate) 专

(special) 款 (fund) 用 (use) 于 (for) 开 展 (develop) 残 疾 人

(handicapped)体育(sports)活动(activities).  
Every year the nation allocates special funds to be 

used in developing handicapped sports activities.  

Currently, pragmatic and contextual features are also covered under “not-translated 
correct” category.  Discourse-level extraneous words rely on discourse clues and no di-
rect lexical correspondence could be found locally within a phrase or sentence. For these 
cases, “not-translated correct” is the best solution. For instance, in the following example, 
the word 中国 (China) is omitted from translation and can be labeled as “not-translated 
correct.” Here, 中国 (Chinese) 排球 (volleyball) 队 (team) is semantically equivalent to 
“the volleyball team” if we carry on the same topic. However, if they are examined at the 
word-level or locally, we can never say that these two terms are semantically equivalent. 
They are equivalent only by adding discourse clues. 

中国(Chinese)排球(volleyball)队(team)昨日(yesterday)抵达(arrive)美国(the 

U.S.)。中国(Chinese)排球(volleyball)队(team)今天(today)下午(afternoon)与

(and)当地(local)纽约(New York)队(team)进行(have)了比赛(match)。 

Chinese volleyball team arrived in the U.S. yesterday. 

The volleyball team had a game with the local New York 

team this afternoon.   

36 Chapter 1: Data Acquisition and Linguistic Resources 



Likewise, insertions or omissions of personal or genre stylistic features may not be 
translated, and no pair equivalency can be detected. They are not very important semanti-
cally, thus are treated as “not-translated correct” if no match is found.  

 
d. Minimum Match: 
Another alignment issue concerns the recognition of link boundaries. The “minimum 

match” approach is proposed for finding complete and minimal semantic translation 
units. In word alignment, the principle of a word-for-word link is strictly followed, that 
is, the smallest number of words will be preferred, such as the case “鲜(fresh)” in “鲜
(fresh)花(flower)” is paired to “fresh” in “fresh flowers” instead of treating “鲜(fresh)花
(flower)” as a whole correspondent to “fresh flowers.” This minimum unit approach is 
important to word alignment because without these minimum unit alignments, minimum 
syntactic structures units built on these units then cannot be adequately established.   

However, some links are many-to-many links since they cannot be separated from 
each other. Such cases include abbreviations like “世界 (world) 卫生 (health) 组织
(organization) WTO,” idiomatic expressions/transliteration phrases like “ 齐 (in line 
with) 头(head) 并(and) 进(march) keep abreast with,” “heart is racing  热(hot) 血
(blood) 沸腾(boil),” “in your dreams  في المشمش ,” “the youngest child  ”, آخر العنقود 
and other inseparable cases. Hyphenated words in English are treated as one unit if the 
subparts of hyphenated words are inseparable. However, if salient one-to-one links exist 
on both sides, they are paired separately, especially with nonce words.   

While a hidden matching semantic structure of two languages with cross-cultural fea-
tures can be revealed by systematically reoccurring omissions/insertions, the study of 
peculiarities of one language can indicate idiosyncrasies with no systematic matching 
structure in other languages. A large part of the guidelines is reserved for these language 
idiosyncrasies with specific rules, which have been augmented with new findings of lan-
guage peculiarities during annotation process. Arabic guidelines deal with Arabic specific 
features, including equational sentences, empty subject, cliticization of determiners, pre-
positions, pronouns, and conjunctions, as well as idioms and particular Arabic interroga-
tive words with no equivalent in English. In Chinese-English alignments, featured idio-
syncratic topics include non-inflection, topicalization, measure words, duplication, tense 
and aspects, various types of helping words, etc. Chinese 的, sometimes described as 
“evil” or “notorious” due to its uncertain features, requires several annotation rules for a 
comprehensive description. A glimpse of the following examples can well tell its multi-
function and extreme uncertainty idiosyncrasies: adjective modifier as in a); adverb mod-
ifier as in b); possession modifier as in c); noun modifier as in d); location (general) mod-
ifier as in e); clause modifier as in f); tense modifier as in g). During annotation, 的 is 
either aligned to its counterparts as in c), d), and f) or attached to related words as in a), 
b), e), and g).   
 

a) 红红(red) 的 red (的 attached to 红红) 

b) 高兴(happy)地  happily (地 attached to 高兴) 

Handbook of Natural Language Processing and Machine Translation 37 

e. Language peculiarities: 



c) 中国(China) 的产品(product)  China’s prouct(的 aligned 

to “‘s”) 

d) 人生(life) 的历程(cause)(  the cause of life(的 aligned 

to “of”) 

e) 桌子(table)上(on)的书(book)  book on the table (的
attached to 上) 

f) 经历(experience)过(past)战争(war)的(DE)人(person)  

those who have experienced wars(的 aligned to “who”) 

g) 呈交(submit)的报告(report)  report submitted (的
attached to 呈交)    

1.3.2.4. Evaluation  

 

Pass
F1 links   
108-108

F2 links 
190-185

F3 links 
273-269

F4 links 
215-218

Precision 1P 87% 85% 82% 85%
Recall 1P 87% 88% 83% 84%
F-score 1P 87% 86% 83% 85%

Pass
F1 links   
106-105

F2 links 
182-182

F3 links 
262-257

F4 links 
220-216

Precision 2P 95% 95% 91% 90%
Recall 2P 96% 95% 93% 91%
F-score 2P 96% 95% 92% 91%  

1.3.2.5. Future Work 

      Word alignment is a complex task requiring an exhaustive description of translation 
unit equivalence between source and target languages.  The work reported in this section 
established a framework for alignment.  With IBM we then jointly designed and deployed 
an enhanced alignment and tagging annotation scheme as part of the Phase 4 Chinese-

38 Chapter 1: Data Acquisition and Linguistic Resources 

To test the inter annotation rate, dual annotation is done using AWS workflow sys-
tem, which blindly assigns a number of files to two annotators at the same time. The re-
sults are then computed to show the rate of difference. Because of translation quality and 
genre of files, the agreement rate for newswire files is obviously higher, as shown in Ta-
ble 1.9, whereas the rate for web and broadcast news is relatively lower, with a range of 
80%-90%. Table 1.9 shows the inter-annotator agreement of two annotators on 4 news-
wire files (F1, F2, F3, and F4). The first row of the table shows the total alignment links 
from each annotator. The agreement is computed based on their common links. When re-
assigning the same file to the same annotator after an interval of about one month, the 
intra annotation rate shows a good result of 95%-99% for the newswire data.   

Table 1.9: Inter-annotator Agreement on 4 Newswire Files. 



English alignment task.  As a next step, this tagging scheme will be implemented for oth-
er language pairs including Arabic-English. 

Another avenue for further research is the inclusion of additional levels of align-
ment.  Initial investigations during Phase 4 on automatic post-processing to induce higher 
level alignment proved fruitful; this has yielded a promising automatic annotation struc-
ture for creating multi-level alignments during Phase 5.  The focus of Phase 5 word 
alignment will be on infrastructure and technologies for streamlining the creation of mul-
ti-level parallel aligned Treebank corpora. 

1.3.3. Distillation Training Data  
Authors: Heather Simpson, Stephanie M. Strassel, Zhiyi Song, Robert Parker, Kazuaki Maeda 

1.3.3.1. Introduction  

Distillation is the final stage of language processing in the GALE program, in which 
relevant information is extracted from foreign language and English input and concisely 
presented to users in English. It is not a key-word search, and does not involve summari-
zation, but rather it utilizes language analysis techniques to identify information relevant 
to a user’s query, with the aim of extracting all available relevant information and elimi-
nating redundancy in that information. The GALE Distillation evaluation is designed to 
quantify the amount of relevant and non-redundant information a distillation engine is 
able to produce in response to a given template query. Linguistic Data Consortium 
creates and distributes linguistic resources for distillation system training, including 
source data, annotations, inter-annotator agreement studies, annotation GUIs and soft-
ware, and annotation guidelines and related documentation.   

1.3.3.2. Distillation Source Data  
 

Creation of training data for distillation begins with selection of source documents 
that provide the basis for human annotation. Distillation source data is derived from exist-
ing LDC corpora, combined with new material collected by LDC specifically for GALE. 
To support a variety of approaches to distillation system development, LDC targets 
source data in all three GALE languages (Arabic, Chinese and English) and all four ge-
nres (newswire, web text, and transcripts of broadcast news and broadcast conversation). 
Selection of source material for each phase is informed by research sites' needs, and is 
further guided by the particular evaluation requirements for each phase. In general an 
effort is made to select documents that are likely to be most useful for system training; 
for instance, documents that are rich in named entities and documents known to be rele-
vant to training data queries are favored over more general news documents. After semi-
automated selection, source documents undergo data formatting and processing as needed 
to conform to the GALE program standard. Source data may be automatically or manual-
ly segmented into sentences prior to distribution and annotation, and documents are in-
dexed for use with Querier, LDC's internally developed search engine. After indexing, 
the source data enters the annotation pipeline. Note that not all selected source data is 

Handbook of Natural Language Processing and Machine Translation 39 



manually annotated, because not all documents prove relevant to the targeted training 
queries, but at this stage all selected data is available for annotation.  

In addition to training source data, LDC also selects, formats and distributes test data 
to support the annual evaluation of Distillation engines. Evaluation source data require-
ments are specified by BAE Systems who is responsible for conducting the performance 
evaluations and for providing the gold standard evaluation references. Evaluation source 
data may be identical to training data (but with different queries); or it may be distinct, 
depending on the current evaluation protocol. Evaluation data may also require additional 
work by LDC prior to its distribution to BAE; for instance, in some cases LDC provides 
English (human) translations of foreign language source text to enable analysis of those 
texts by English-speaking judges at BAE.  

1.3.3.3. Annotation Approaches 

1.3.3.3.1. Query Annotation 
Distillation annotation begins with queries. At the start of each GALE phase, BAE 

Systems develops a set of query templates that are appropriate to that year's evaluation 
focus. Query templates consist of argument variables for persons, organizations, dates, 
locations, events, topics and so on; for instance “WHERE HAS [person] BEEN AND 
WHEN?”. To satisfy training data requirements it is necessary to develop a large set of 
specific training queries that conform to the available templates for each new phase of the 
program, with argument variables replaced with specific entities and events. To ensure 
consistency between evaluation and training data development approaches, BAE first 
develops a dozen or more exemplar queries in English, then LDC continues to develop 
additional queries as needed.  

For the initial phases of Distillation, LDC created queries based on a search of exter-
nal news sources. This was an efficient method for query creation, but resulted in some 
queries having little or no representation of answers in the corpus. In later phases LDC 
improved upon the process by requiring annotators to search the training source data cor-
pus to generate new queries. Searching the source data for entities and events with at-
tested query answers is significantly more time-consuming, but results in a set of queries 
with richer representation of answers. Query creation is facilitated by a simple GUI that 
allows senior annotators to manually input queries intended for downstream annotation 
into a form that output queries in the required query XML format. Because annotation of 
each query may take place across languages, initial English queries are also translated by 
LDC into Chinese and Arabic. 

Once queries are in place, manual annotation begins. Native Arabic, Chinese or Eng-
lish annotators submit their assigned query into the search engine component of the anno-
tation toolkit. The tool returns a relevance ranked list of documents, which annotators 
briefly review and label as relevant or off-topic. As soon as a document is labeled YES, 
the annotator then extracts relevant snippets that are subject to further annotation. A snip-
pet is defined as a continuous string of text (noun phrase, clause and/or sentence) that 
contains an answer to the assigned query. Annotators follow template-specific relevance 
guidelines provided by BAE when determining whether a string of text is relevant to a 
given query.  

40 Chapter 1: Data Acquisition and Linguistic Resources 



Because snippets are extracted directly from a document, they often contain pronouns, 
temporals and locative constructions whose reference is ambiguous within the selected 
string. In such cases, annotators must attempt to disambiguate the pronoun or other word 
based on information provided elsewhere in the document, as in the following example 
where here can be resolved to a specific location based on document context: 

 
 Iraq's Deputy Prime Minister Tariq Aziz was to meet with Russian Foreign  
 Minister Andrei Kozyrev here [Moscow] on Wednesday. 

 
For some phases of Distillation, snippet extraction and antecedent resolution is fol-

lowed by manual nuggetization. A nugget is a fact or a statement extracted from a snippet. 
Nuggets describe any piece of information that an annotator considers a valid answer to 
the query. If a snippet contains a fact that is unrelated to the query by any standard of re-
levance, no nugget is created for that fact. Any piece of information that might have some 
relevance to the query is nuggetized. For instance, the following sentence has three nug-
gets.3  
 
 Pinochet, who is 82 and who stepped down as commander in chief of the Chilean 
 military, was arrested by the British police. 
 Nugget 1: Pinochet is 82 
 Nugget 2: Pinochet stepped down as commander in chief of the Chilean military 
 Nugget 3: Pinochet was arrested by the British police 

 
Nuggets might provide a description of a named entity or assert that a certain event 

took place. They may also provide temporal, locative, causal, or other types of informa-
tion that further describe an event. Detailed annotation guidelines created by LDC in-
struct annotators in the procedural approach to nuggetization.4  

Some phases of Distillation also incorporate nugget co-reference, both within and 
across languages. Semantically equivalent nuggets for a single query and a single lan-
guage are first grouped into “nugs” by senior annotators. Then, after all nugs for a given 
query have been established for each language independently, one group of bilingual lead 
annotators co-reference English and Arabic nugs, while a separate team of bilingual lead 
annotators co-reference Chinese and English nugs. Arabic and Chinese nugs co-
referenced to the same English nug are automatically merged to create a trilingual “su-
pernug”. Arabic and Chinese nugs that remain unmapped to any English nug at this stage 
are further reviewed, and English translations are created to enable further co-reference 
between Chinese and Arabic nugs. This additional co-reference was provided in order to 
improve systems’ performance in identification of redundant information. The resulting 
list of supernugs for each query represents a complete list of “facts” in English, drawn 
from all of the multilingual, multi-genre documents that were judged as relevant to the 
query.  

                                                      
3 Possible nuggets are determined not only by the sentence content but also the constraints of the specific 
query.   
4 See http://projects.ldc.upenn.edu/gale/Distillation/ for links to annotation guidelines. 

Handbook of Natural Language Processing and Machine Translation 41 



The nugget co-reference task proved to be quite difficult and time-consuming. Anno-
tators struggled to agree whether the pairs of nuggets should be co-referenced, since 
many nuggets contain related but not completely identical information as in the following 
examples. 
 

Nugget 1: 14 suicide bombers killed 28 weekend revelers 
Nugget 2: 28 civilians were killed 
 
Nugget 1: Tariq Aziz was a minister in Saddam's government  
Nugget 2: Tariq Aziz was an Iraqi official in the Saddam regime 

 
Although LDC's annotation guidelines provided detailed instructions and examples for 
resolving such uncertainty, the task remained challenging and time-consuming. Later 
phases of Distillation drop manual nuggetization and nugget co-reference altogether, in 
response to BAE adopting automatic nuggetization as part of the evaluation protocol. 

1.3.3.3.2. Entailment Annotation 
To support Distillation's goal of identifying redundant and contradictory information, 

and in lieu of nugget co-reference annotation which proved difficult for annotators to do 
consistently, LDC developed a supplemental annotation task in Phase 2. In Entailment 
Judgment annotation, ordered pairs of nuggets for each query were presented to annota-
tors and labeled as follows: 

 
• Redundant: Nugget B is redundant with respect to nugget A if A entails B 

and if nuggets A and B refer to the same event or fact. 
• Equivalent: Nugget A entails nugget B and B entails A, and nuggets A and B 

refer to the same event or fact. 
• Contradictory: A and B contradict if assuming that A is true, it can never be 

the case that B is also true. 
• Not related: Nuggets A and B stand in an entailment relation but do not refer 

to the same event or fact 
• Not Sure: Annotator is not sure; especially used when it cannot be determined 

whether nuggets refer to the same fact or event. 
 
Portions of the data were also dually annotated for the purpose of assessing annotator 
consistency. Entailment annotation proved to be an efficient annotation task when com-
pared to nugget co-reference, with significantly higher annotation consistency. 

1.3.3.3.3 System Output Relevance Assessment 
One additional annotation task introduced in later phases of Distillation is assessment 

of system-extracted snippets. Systems process LDC-supplied training queries, and return 
extracted snippets for LDC assessment. All extracted snippets are in English, either from 
English source documents or foreign language snippets translated by GALE systems into 
English. No limits are placed on the number of snippets extracted per query. Annotators 

42 Chapter 1: Data Acquisition and Linguistic Resources 



judge each system snippet as Relevant or Irrelevant, following the existing relevance 
guidelines. In later phases these categories were expanded to include Partially Relevant, 
Too Little Information and I Don't Know. In some cases snippet relevance is impossible 
to determine, either because of poor translation quality or lack of context. Such snippets 
are judged as Unknown. 

1.3.3.4. Challenges and Conclusions  

To respond to evolving research approaches and evaluation protocols, LDC's ap-
proach to training data creation was slightly different for each phase. This presents a 
number of challenges, most notably the need to define new annotation guidelines and 
adapt annotation infrastructure like GUIs and data processing scripts. The most notable 
changes over time were the addition of new templates, the changing approach to manual 
nuggetization and nugget co-reference, and the introduction of the system assessment 
task. During these task changes a primary concern was maintaining annotation consisten-
cy, both within LDC and between LDC and BAE. Although the process used by BAE to 
develop gold standard evaluation data necessarily differs from LDC's approach to train-
ing data creation, BAE and LDC relied on the same annotation guidelines for templates, 
judging relevance, and defining nuggets. Particularly in early phases of GALE annotation 
managers from each organization met regularly to discuss approaches and review consis-
tency. Despite these mutual efforts some difficulties persist. In particular, relevance 
guidelines proved to be underspecified when confronted with real-world data. Guidelines 
for some templates, particularly unstructured and open ended ones, leave significant 
room for subjective interpretation by the annotator. In such cases LDC introduced and 
documented rules of thumb for the annotation team to follow. Still, studies on inter-
annotator consistency for relevance judgment on system-extracted (and machine trans-
lated) snippets ranges from 59-89%, depending on template and annotator (c.f. Babko-
Malaya, 2008).  

Across the four phases of Distillation, LDC has distributed source data, transcripts 
and translations plus relevant snippets, with optional nuggetization, for 1148 English, 
Chinese and Arabic queries. Additionally, LDC has distributed entailment judgments for 
60 English queries and has assessed relevance of system-extracted snippets for several 
hundred queries. 

 

1.3.4. Arabic Treebanking 
Authors: Mohamed Maamouri, Ann Bies, Seth Kulick, Nizar Habash, Reem Faraj and Ryan Roth 

1.3.4.1. Introduction 

Collections of manually checked syntactic analyses of sentences, or treebanks, are an 
important resource for building statistical parses and evaluating parsers in general.  Rich 
treebank annotations have also been used for a variety of applications such as tokeniza-
tion, diacritization, POS tagging, morphological disambiguation, base phrase chunking 
and semantic role labeling. 

Handbook of Natural Language Processing and Machine Translation 43 



Two prominent efforts in Arabic Treebanking existed prior to GALE: the Penn Arab-
ic Treebank (PATB) and the Prague Arabic Dependency Treebank (PADT).  The main 
difference between these two resources is the linguistic representation: PATB uses phrase 
structure and PADT uses dependency representation.  Both of these important efforts 
employ complex and very rich linguistic representations that require extensive annotator 
training.  More concretely, the PATB provides tokenization, complex POS tags and syn-
tactic structure, in addition to diacritizations, lemma choices and some semantic tags 
(such as TMP and LOC) to distinguish different modifiers.  PATB annotation consists of 
two phases: (a) Morphological/Part-of-Speech (=POS) tagging which divides the text into 
lexical tokens and includes morphological, morphosyntactic and gloss information, and 
(b) Syntactic analysis referred to as Arabic Treebanking (=Arabic TB) which characteriz-
es the constituent structures of word sequences, provides function categories for each 
non-terminal node, and identifies null elements, co-reference, traces, etc. (similar to the 
Penn English Treebank II style) (Marcus et al. 1994; Marcus et al. 1993; Bies et al. 
1995).  In addition to the usual issues involved with the complex annotation of data, the 
work on Arabic treebanking, spearheaded by the LDC’s PATB effort since 2001, has 
caused the field to come to terms with a number of issues that are specific to a highly in-
flected language with a rich history of traditional grammar (Maamouri and Bies 2004) in 
a variety of ways. 

Within GALE, the work on Arabic treebanking was manifested in two efforts.  First 
was the continuing annotation and upgrading of the PATB with a focus on unifying the 
different PATB parts.  Second was a new exploratory annotation effort called the Colum-
bia Arabic Tree Bank (CATiB).  CATiB contrasts with PATB (and PADT) in putting an 
emphasis on faster production with some constraints on linguistic richness.  Like PATB, 
CATiB annotation also consists of two levels of annotation: POS and syntactic.  Howev-
er, because of the different choices made in the CATiB annotation style, these two levels 
contain different amounts of information.  Like PADT, CATiB uses a dependency repre-
sentation, however with much less morphological information and shallower syntactic 
relations. 

The intent behind both GALE Arabic treebanks is producing more data to serve 
GALE targets such as improved machine translation using syntactic models.  As a result 
of these efforts, the GALE community now has available to it a variety of morphological-
ly and syntactically annotated Arabic data to use. 

This section is divided into two parts describing these two GALE efforts. 

1.3.4.2. Upgrading and Enhancing the Penn Arabic Treebank 
Authors: Mohamed Maamouri, Ann Bies, Seth Kulick 

1.3.4.2.1. Introduction 

The LDC Arabic Treebank team has significantly revised and enhanced its annotation 
guidelines and annotation procedures during GALE.  The revision process was initiated 
by the GALE sponsor and research teams based on lower than expected initial parsing 
scores and a high level of inconsistencies in the annotation of the Arabic Treebank (ATB) 

44 Chapter 1: Data Acquisition and Linguistic Resources 



data.  Those inconsistencies were the initial targets for improvement in both guidelines 
and annotator training.   

In order to reduce the cognitive load on annotators, both morphological and syntactic 
annotation guidelines were revised in several respects to be more closely aligned with 
traditional grammar concepts already familiar to our annotators.  We also determined that 
many of the problems derived from an improper partitioning of the work between differ-
ent levels, both conceptually and in the actual annotation procedure.  Conceptually, sub-
ordinating syntactic to semantic needs in certain constructions led to inconsistencies in 
annotation, as different annotators gave higher priority to one or the other.  In order to 
address such concerns, the decision was made to subordinate semantic needs to syntactic 
needs in constructions such as إضافة/idafa (noun-noun construct state structures) with 
quantifiers.  Overhauling some key aspects of the morphological/part-of-s peech guide-
lines, such as making new, more fine grained tags for comparatives, quantifiers and num-
erals, provided more information to the Treebank annotators and to the parser (Maamouri 
et al. 2008). 

The annotators then underwent a period of intensive training focused on the revised 
annotation guidelines and difficult linguistic structures, as well as on consistency in gen-
eral.  This training combined with the revised guidelines has resulted in a markedly high-
er rate of inter-annotator agreement and a more consistently annotated corpus. 

We have now completed automatic and partial manual revisions to all of ATB15, 
ATB26 and ATB37, bringing them into line as far as possible8 with the new annotation 
guidelines and greatly improving the annotation consistency and parsing results.  The 
success of this revision process and the improved outcome has been the result of a signif-
icant collaboration between data providers and end users. 

1.3.4.2.2. Motivation for Enhanced Annotation 

The revision process was initiated based on lower than expected initial parsing scores 
and on an examination of inconsistencies in the annotation.  Parser scores for a statistical 
parser trained on ATB data were roughly 9 points in absolute f-measure below that of the 
English Penn Treebank (WSJ) (see section 1.3.4.2.7 for more detail on these scores).  
Inconsistencies within the Treebank annotation regarding the relationship between Mor-
phological/Part-of-Speech (POS) tags and the syntactic annotation as well as inconsisten-
cies in the annotation of certain syntactic constructions were shown to contribute to the 
parser performance.  Those inconsistencies were, therefore, the initial targets for im-
provement both in the guidelines and in annotator training. 

Many of the inconsistencies derived from an improper partitioning of the work be-
tween different levels, both conceptually and in the actual annotation procedure.  Concep-
tually, subordinating syntactic to semantic needs in certain constructions led to inconsis-
tencies in annotation, as different annotators gave higher priority to one or the other.  For 
example, a quantifier-noun sequence such as “every collection” in Arabic is traditionally 

                                                      
5 LDC2008E61 - Arabic Treebank Part 1 v 4.0 
6 LDC2008E62 - Arabic Treebank Part 2 v 3.0 
7 LDC2008E22 - Arabic Treebank Part 3 v 3.1 
8 As far as possible within the current time constraints and without a full-scale entirely manual review. 

Handbook of Natural Language Processing and Machine Translation 45 



expressed in terms of an إضافة/idafa construction, in which the noun is considered depen-
dent on the quantifier, which itself is treated as a noun: 

 
(NP every/all/each_one |-kul~u |- ُّآُل 
    (NP collection/group|majomuwEapK|ٍمَجْمُوعَة)) 
 
However, in earlier ATB work, this structure was treated as flat 
 
(NP every/all/each_one|-kul~u|- ُّآُل  
    collection/group |majomuwEapK|ٍمَجْمُوعَة) 
 

in order to make what is often thought of as the “semantic head” (here, “collection”) 
more easily accessible to users.  However, annotators applied both interpretations, and 
such structures were inconsistently annotated in the Treebank.  The resolution of this type 
of inconsistency among others led to substantial revision of the annotation guidelines. 

1.3.4.2.3. Improvements to Annotation Guidelines and Procedures 

More complete and detailed annotation guidelines overall were developed, and a pe-
riod of intensive annotator training focusing on the new guidelines and on specific incon-
sistently annotated constructions followed. 

Both POS and Treebank guidelines were revised in several respects, balancing the 
goals of (1) representing more finely-grained distinctions, and (2) aligning more closely 
with traditional grammar concepts already familiar to annotators.  

1.3.4.2.4. Morphological/Part-of-Speech Level 

We overhauled some key aspects of the POS guidelines, such as making new tags for 
comparatives and quantifiers, since tagging these simply as NOUN was not informative 
enough for either the Treebank annotators or the parser.  The POS tags for nouns and ad-
jectives in particular were revised to be more fine-grained.  In addition to NOUN_PROP 
(proper name), the core POS tag of NOUN is now further distinguished as  

 
• NOUN (common noun) 
• NOUN_NUM (number) 
• NOUN_QUANT (quantifier) 

 
The core POS tag of ADJ is also further distinguished as  
 

• ADJ (common adjective) 
• ADJ_NUM (ordinal number) 
• ADJ_COMP (comparative adjective) 

 

46 Chapter 1: Data Acquisition and Linguistic Resources 



The above greater distinctions among nouns and adjectives also follow traditional 
Arabic grammar categories.9 

Additional POS changes were also made to more closely follow traditional Arabic 
grammar categories, for example, the number of prepositions was drastically reduced 
(most of those lexical items are now categorized as NOUN), and many particles are now 
given several POS alternatives, again closely aligned with traditional categories.  For ex-
ample, the word fa had one POS value only in previous Treebank annotation: CONJ.  The 
word fa now has four different POS tags available, corresponding to potentially different 
syntactic contexts and following its four traditional categories: CONJ (for fa Al-EaTf/ فاء
-the fa of con , فاء الربط/the fa of coordination), CONNEC_PART (for fA’ Al-rabT , العطف
nection), RC_PART (for fa Al-jazA’/فاء الجزاء  , the fa of reward, response conditional), 
and SUB_CONJ (for fa Al-sababiy~ap/فاء السببية , the fa of causality). 

A new POS category of pseudo-verbs has been added to account for the verbal beha-
vior of certain Arabic particles.  These are “the sisters of َّإن <inna” (with the exception of 
 anna,” the complementizer “that”), a category regarded by Arabic grammarians as<“ أنَّ
having verbal properties, such as subcategorizing for a subject and a predicate or clausal 
complement.  Since these words display verbal behavior although they are not technically 
verbs, they will now be given the POS tag “PSEUDO_VERB” and head a VP in the tree. 

1.3.4.2.5. Syntactic/Treebank Level 

In order to address concerns such as the inconsistent annotation of quantifiers, the 
decision was made to subordinate semantic needs to syntactic needs in certain construc-
tions (for example, idafa with quantifiers). 

As the idafa structure is a particularly frequent noun phrase structure, this decision 
affects the annotation of a significant portion of the corpus.  In idafa structures syntacti-
cally headed by common nouns, the semantic and syntactic head of the noun phrase will 
be the same noun (as in the “grammar book” example below, where “book” is both the 
semantic and the syntactic head of the noun phrase).   

 
(NP (NOUN+CASE_DEF_NOM 
 (kitaAbu book آتاب              
    (NP (NOUN+CASE_INDEF_GEN 
 (((naHowK grammar نحو              

 آتاب نحوٍ
(a) grammar book 

vs. 
 
(NP (NOUN_QUANT+CASE_DEF_NOM  
               every -kul~u – ُّآُل ) 
    (NP (NOUN+NSUFF_FEM_SG+CASE_INDEF_GEN  
               collection majomuwEapK ٍمَجْمُوعَة))) 
 آُلّ مَجْمُوعَةٍُ 

every collection 

                                                      
9 For now we have chosen to retain the noun and adjective labels for active participles, passive participles and 
gerunds/masdars, rather than switching to an entirely traditional representation of these categories. 

Handbook of Natural Language Processing and Machine Translation 47 



However, in idafa structures that are syntactically headed by quantifiers (as in the 
“every collection” example above), the semantic head of the noun phrase is not the quan-
tifier at all, but its dependent noun.  The interaction of this idafa structure with the new, 
more fine-grained POS tags allows the difference in semantic and syntactic heads to be 
captured.  The syntactic/Treebank annotation is based on the syntactic head (the quantifi-
er, “every”).  However, the semantic head (the dependent noun, “collection”) is still easi-
ly accessible to end-users based on the POS tag NOUN_QUANT on the quantifier.  This 
interaction of the changes in POS and syntactic annotation guidelines also results in an 
overall conceptual and practical improvement, since (1) a simple algorithm can recover 
the necessary semantic information, and (2) inter-annotator agreement is higher. 

As with the revision of POS guidelines, the revision of the syntactic annotation 
guidelines also served to more closely align the Treebank annotation with traditional 
Arabic grammar categories for several constructions.  These include the treatment of 
comparatives, numbers and numerical expressions and the treatment of several particular 
pronominal constructions such as separating pronouns/Damiyr Al-faSl/ضمير الفصل and 
anticipatory pronouns/Damiyr Al$a>n/ضمير الشأن . 

Further revisions include a more careful and complete classification of verbs and 
their argument structure and a more comprehensive approach to the contexts in which 
gerunds or participles have a verbal reading.  For example, a masdar/gerund, active parti-
ciple or passive participle followed by a PP complement to the regular verb form (PP-
CLR) is now shown with a verbal reading. 

For a more complete description of the new annotation policies, see the Arabic Tree-
bank Morphological and Syntactic Annotation Guidelines (2008).10  

1.3.4.2.6. Corrections of Previous Annotation Level 

The initial POS annotation is still selected from the morphologically analyzed alter-
natives provided by the Buckwalter morphological analyzer (BAMA 2004).11  However, 
crucial to reducing the number of mismatches between POS tags and syntactic structures 
is the ability of Treebank annotators to correct certain specified POS tags from the earlier 
annotation level.  The annotation tool has been revised so that Treebank annotators now 
have the ability to correct specific POS tags such as CONJ  ADV or PREP  NOUN.  
In addition, a careful set of quality control searches based on head rules leads to further 
manual correction of POS tags in conflict with the tree structure. 

1.3.4.2.7. Improvements in Inter-annotator Agreement and Training 

Intensive annotator training focused on agreement and consistency and led to an im-
provement of inter-annotator agreement scores on the tree structures from an initial f-
measure of 86.98% to the much improved f-measure of 94.3%.  

The ATB production workflow includes both automatic and manual error correction, 
along with planned on-going annotator training, and it is hoped that these measures will 
continue to improve the agreement further.  In order to maintain a high rate of inter-
                                                      
10 http://projects.ldc.upenn.edu/ArabicTreebank/ 
11 Future new annotation will use the newly revised LDC Standard Arabic Morphological Analyzer (SAMA) 
Version 3.1. LDC Catalog Number: LDC2009E73. 

48 Chapter 1: Data Acquisition and Linguistic Resources 



annotator agreement, approximately 10% of each corpus is dual blind annotated during 
production and put through the full workflow.  The 94.3% score measured 293 sentences 
of dual blind annotation from the ATB3 (Annahar) corpus, annotated independently by 
two Treebank annotators.  This score was computed using the standard evalb program 
(not including function tags).  

The initial agreement score was considered to be too low for the purpose of training 
statistical parsers on the ATB data.  The goal was to approach the reported score of 
93.8% for the Chinese Treebank.  This goal has now been not only met but surpassed, 
and data produced with this level of agreement is expected to support on-going work on 
improving parsing results. 

1.3.4.2.8. Revision Process and Quality Assurance 

As described above, the annotation process for creating the original corpora consisted 
of a level of POS/morphological annotation on the original tokens from the text file, fol-
lowed by separation of various clitic morphemes to create the tokens actually used for 
treebanking.  

The guideline revisions specified changes at various different levels, including toke-
nization and POS tags as well as the trees.  As a result, there are cases in which different 
decisions are now being taken in the morphological guidelines as to when the original 
tokens should have been split or not.  In order to modify the tokenization to match the 
current guidelines, it was not possible to do so only by examining individual tokens in the 
Treebank, since such tokens may themselves be part of a larger original token.  

For example, while “limA*A” formerly existed in the ATB3-v2.0 corpus both as a 
single token and also split into two tokens (“li” and “mA*A”), in the revised morphologi-
cal guidelines it is now treated as one token only.  However, the annotation as it existed 
in the ATB3-v2.0 corpus for the two-token analysis had already split up the word, and the 
individual Treebank tokens “li” and “mA*A” were both acceptable tokens unto them-
selves.  It was only in the context of being part of a larger original word that it could be 
recognized that they needed to be merged back together for this revised release.  

Therefore, we created a version of the corpus which associated each original token 
from the source text file with the one or more Treebank tokens that together make up that 
original token.12  We then modified the tokenization automatically based on that correla-
tion.  This also helped to identify possible tags in some cases for when the range of POS 
tags was restricted when part of a larger token (e.g., “mA” in the context of “bi+mA” has 
a smaller range of possible tags compared to “mA” occurring by itself).  

The software written for this process was not only useful for automatic changes to 
adjust the tokenization, but also resulted in a characterization of all original tokens for, 
roughly speaking, the closed class “function words” that were the focus of the POS revi-
sions.  That is, all such tokens were automatically identified in terms of potential compo-
nent morphemes and possible POS tags for each morpheme (e.g., the “bimA” case just 
mentioned).  This helped ensure the consistency and accuracy of annotation at the token 
level.   

                                                      
12 We found this version to be so useful internally that as of ATB5, ATB releases will also include a version 
of the corpus showing this mapping between the source text tokens and the Treebank tokens. 

Handbook of Natural Language Processing and Machine Translation 49 



In addition to automatic revisions as above, we significantly improved the post-
annotation quality control (QC) process for the ATB.  The QC process consists of a series 
of specific searches targeting several types of potential inconsistency and annotation er-
ror, and we increased the number of error searches threefold during the ATB revision 
process.  These error searches are run after annotation is complete, and any errors found 
via these searches are hand corrected. 

1.3.4.2.9. Parsing Improvement and Analysis 

An important goal is to evaluate the increase in parser accuracy as a result of the re-
visions described in this section, and to compare the current accuracy to that of parsing 
on a more established source, namely the Wall Street Journal portion of the English Penn 
Treebank (PTB).  Using a previously proposed data split, we trained and tested on each 
of the revised ATB1, ATB2 and ATB3 individually, as well as the combined ATB123 
(738, 845 tokens/words in total), for both the newly revised versions and the older pre-
revision releases. 13  In addition, we have trained and tested on an amount of PTB data 
comparable in size to ATB3, since ATB3 is the largest of the three revised ATB corpora, 
as well as for the combined ATB123. 

The parser used was the Bikel adaptation of the Collins parser.14  We ran the parser in 
two modes.  In both, the parser input contains the gold Part-of-Speech tags.  The dev sec-
tion results in Table 1.10 columns 2-4 are for the mode in which the parser used the given 
tags only for words with which it was unfamiliar from training, and otherwise was free to 
choose its own tags.  In the second mode, shown in Table 1.10 columns 5-7, the parser 
was forced to use the given tag for each word.  

 
Tags Parser’s own Supplied 

 Old New PTB Old New PTB 
ATB3 77.5 81.0 87.6 78.5 83.2 87.2 
ATB123 78.8 82.7 88.6 79.1 84.1 88.8 

Table 1.10: Parser Results, with parser choosing its own tags and with parser forced to use given tags. 

As can be seen in Table 1.10, there is improvement in the score for the parser with 
the revised data, roughly halfway bridging the gap to the PTB score.15  It is perhaps of 
note as well that there is a greater distinction in the two ways of running the parser for 
ATB as compared to PTB.  This is perhaps indicative of greater tree/tag consistency in 
the ATB, or perhaps of a greater share of the burden put on the pos tags.  This is a matter 
for further study, but in both parser modes there is noteworthy improvement for the new 
compared to the old scores.  

In order to better understand the source of the parser improvement, we performed a 
dependency analysis, as was also done in Kulick, Gabbard and Marcus (2006).  Each 
parser output tree and corresponding gold tree is broken down into a collection of rela-
tions, which is a one-level slice of the context-free tree.  We have selected some of the 
                                                      
13 http://nlp.stanford.edu/software/parser-arabic-data-splits.shtml 
14 http://www.cis.upenn.edu/~dbikel/software.html#stat-parser 
15 Note, however, that due to differences in data and style of annotation, a comparison of scores across Tree-
banks is at best a rough indication of performance differences. 

50 Chapter 1: Data Acquisition and Linguistic Resources 



most frequent relations for ATB123 and categorized them into two groups, shown in Ta-
ble 1.11.  In this table, the columns are (1) the relation, (2) the frequency of that relation 
in the new ATB123, and (3-5) the scores for ATB123-old, ATB123-new, and PTB. 

The top portion of Table 1.11 shows relations that make up what might be called the 
core syntactic structures.  For example, the relation NP   NOUN NP is the idafa con-
struction.16  PP  PREP NP is the relation of the object of a preposition to the PREP, and 
so on.  A “base NP” (NPB) is an NP without another NP inside it.  This table demon-
strates the improvement in the parser recovery of these core relations, which seems 
strongly indicative of increased Treebank internal consistency.  One place where there is 
certainly room for improvement is with the S  NP VP relation, in which it seems likely 
that the parser is getting confused over the optionality of the subject placement in Arabic.  
 

 
Relation % of all relations 

in ATB123-new 
ATB123-old  
f-measure 

ATB123-new  
f-measure 

PTB  
f-measure 

NP  NOUN NP 16.75 90.4 97.4 n/a 
PP  PREP NP 13.40 96.5 99.2 95.2 
Base NP 12.71 84.1 90.2 95.0 
VP  verb NP 11.59 92.1 94.1 93.3 
SBAR compl S 2.59 91.1 92.9 92.0 
S  NP VP 2.03 87.4 91.3 96.3 
VP  VERB PP 6.44 82.6 83.4 83.5 
NP  NPB PP 3.49 73.3 75.7 86.2 
NP  NP PP 1.77 33.5 45.0 n/a 

Table 1.11: Parser accuracy on core syntactic structure relations (top) and PP attachment relations (bottom). 

The bottom portion of Table 1.11 shows the three relations having to do with PP at-
tachment.  Here, while the score for attachment of a PP modifier to a VP is nearly iden-
tical to that of the PTB, the score is significantly lower for PP attachment to an NPB (the 
very low scoring relation for PP attachment to an NP that is not an NPB does not even 
exist in the PTB).  The lower score for the NP  NPB PP relation is no doubt because of 
the impact of the idafa structure upon the PP attachment problem, as has been discussed 
in the literature (see e.g., Kulick et al. 2006 and Gabbard and Kulick 2008).  

1.3.4.2.10. Conclusions 

We have discussed some of the issues that arise when the Arabic Treebank syntactic 
annotation is manually enhanced as the first step, ahead of the morphological/Part-of 
Speech annotation.  We outlined an automatic procedure that more closely aligns the POS 
tags and the Treebank annotation, leading to increased parsing results and additionally 
providing the annotation pipeline with improved error checking and quality control.  The 
importance of the interaction between POS tags and the tree structure is shown by the 
increase in parsing results obtained by forcing the parser to use the given tags resulting 
from this procedure, also indicating the important role that a POS tagger would play in a 

                                                      
16 Note that this right branching structure is also used for tamyiz in some constructions.  See the ATB syntac-
tic guidelines for details on those constructions. 

Handbook of Natural Language Processing and Machine Translation 51 



full Arabic NLP pipeline.  In future work, we intend to investigate whether certain of the 
tags may be more crucial for the parser to get right.  It seems reasonable that many of the 
“function word” particles are particularly crucial. 

Revising the annotation of the existing Arabic Treebank corpora to reflect the newly 
updated guidelines has provided a significantly improved resource to the community.  
Additional annotation of new data in the improved guidelines style will follow.  

The improved ATB guidelines, improving inter-annotator agreement scores, and an 
expected continuing improvement in parsing scores are the result of a fruitful collabora-
tion between data producers, sponsors and end users, along with the support and time to 
effect the change.  It is hoped that such collaboration will continue to benefit both annota-
tion production and NLP applications in the future. 
 

1.3.4.3. The Columbia Arabic Treebank  
Authors: Nizar Habash, Reem Faraj and Ryan Roth 

1.3.4.3.1. Introduction 

Under time restrictions, the creation of a treebank faces a tradeoff between linguistic 
depth and treebank size.  This is especially the case for morpho-syntactically complex 
languages such as Arabic or Czech.  Linguistic depth provides the advantage of providing 
many linguistic features that may be useful for a variety of applications. This comes at 
the cost of slower annotation as a result of longer guidelines and more intense necessary 
annotator training.  As a result, the deeper the annotation, the slower the annotation 
process and the smaller the size of the treebank. And consequently, the less data there is 
to train tools that can benefit from more data. 

Two basic ideas inspire the Columbia Arabic Treebank (CATiB) approach. First, 
CATiB avoids annotation of redundant linguistic information. For example, nominal case 
marks and state (definite, indefinite, construct) in Arabic are determined automatically 
from syntax and morphological analysis of the words and needn’t be specified by human 
annotators.  Of course, some information is not easily recoverable in CATiB, such as 
phrasal co-indexation and full lemma disambiguation. Second, CATiB uses a linguistic 
representation and terminology inspired by Arabic’s long tradition of syntactic studies. 
This makes it easier to train annotators. CATiB uses an intuitive dependency representa-
tion and relational labels inspired by Arabic grammar such as idafa (a syntactic construc-
tion used for indicating a possession relationship between two nouns) in addition to the 
universally recognizable predicate-argument labels of subject and object. 

1.3.4.3.2. CATiB Linguistic Annotation Profile 

CATiB uses the same tokenization scheme of the PATB and PADT. However, unlike 
these resources, the CATiB POS tag set is much smaller. Whereas PATB uses over 400 
(tokenized) tags specifying every aspect of Arabic word morphology such as definiteness, 
gender, number, person, mood, voice and case; CATiB uses six POS tags: NOM (nomin-
als such as nouns, pronouns, adjectives and adverbs), PROP (proper noun), VRB (verb), 
VRB-PASS (passive verb), PRT (particles such as prepositions or conjunctions) and PNX 

52 Chapter 1: Data Acquisition and Linguistic Resources 



(punctuation).   CATiB uses a dependency representation that models predicate-argument 
structure (subject, object, etc.) and Arabic nominal structure (idafa [possessive construc-
tion], tamyiz [specification construction], modification). Here are all the relations: SBJ 
(subject of verb or topic of simple nominal sentence), OBJ (object of verb, preposition, or 
deverbal noun), TPC (topic in complex nominal sentences containing an explicit prono-
minal referent), MOD (general modifier of verbs or nominals), IDF (idafa in nominal 
constructions) and TMZ (tamyiz in nominal constructions). No empty categories are 
made explicit and no co-indexation of phrases.  A detailed discussion of the CATiB 
guidelines is presented by Habash et al. (2009). Although the CATiB tag set is small, it is 
appropriate for human annotation purposes. We are able to reproduce a parsing-tailored 
tag set [size 36] (Kulick et al. 2006) automatically at 98.5% accuracy using features from 
the annotated trees. Details of this result will be presented in a future publication.  

1.3.4.3.3. CATiB Annotation Process 

Although CATiB is independent of previous annotation projects, we made sure to 
build on top of existing resources and lessons learned.  In our CATiB pipeline, we token-
ize using the MADA+TOKAN toolkit, trained on PATB (Habash and Rambow 2005). 
We initially parse using the MALT parser trained also on a converted version of the 
PATB (Nivre et al. 2007).  The generated trees are then manually checked and modified 
using the Tred toolkit produced by the team that developed the PADT (Pajas 2002).    

Our annotators are all educated native Arabic speakers – although not necessarily in 
Arabic linguistics or linguistics in general.  The training process took place over two 
months (150 hours on average). This is much faster than the reported six months training 
for PATB. The speed of annotation of POS and syntax in production mode is over 540 
tokens/hour.  The speed of verifying the tokenization is over 5K words/hour.  In PATB 
annotation, the reported speed of syntactic annotation alone (no POS) is similar to CA-
TiB’s. When combining this speed with the speed of the PATB POS annotation step, we 
get an effective 250-300 tokens/hour – almost half the CATiB speed.17 

We were able to create the CATiB manual from scratch; interview, hire and train an-
notators; and produce over 228K annotated words all in the span of seven months. In ad-
dition to annotation of new data, we automatically converted PATB trees to our CATiB 
representation – this task is possible primarily because we use less linguistic information. 
Collectively, the CATiB version 1.0 release contains over 1M tokens (841K words, 
31,319 trees), including annotated and converted data.  

Our basic inter-annotator agreement scores are around 91.6% on unlabeled parent at-
tachment (for sentences <= 40 tokens) and reach up to 94.7%. A serial annotation expe-
riment, where the annotators corrected already-annotated output, gives results reaching 
up to 97.8% at 30% overall speed reduction. These results are generally comparable to 
previous efforts that take longer time to train and annotate.  More details about CATiB 
results are presented by Habash and Roth (2009). 

                                                      
17 Personal Communication with Mohamed Maamouri. 

Handbook of Natural Language Processing and Machine Translation 53 



1.3.5. OntoNotes: A Large Training Corpus for Enhanced 
Processing  

Authors: Ralph Weischedel, Eduard Hovy, Mitchell Marcus, Martha Palmer, Robert Belvin, Sameer Pradhan, 
Lance Ramshaw, Nianwen Xue 

1.3.5.1. Introduction 

 

Figure 1.7: Levels in OntoNotes. 

1.3.5.2. Motivation, Goals, and Rationale 

As shown in Figure 1.7, to the baseline structure of parse trees and propositions, On-
toNotes adds: 

 
• Referring expressions and the textual phrases they refer to 
• Terms disambiguated by word sense and localized in an ontology 
• Named Entities 

 
Based on our interpretation of the criteria for successfully applying learning algo-

rithms, our guiding principle has been to find a “sweet spot” in the space of 
 

• Inter-tagger agreement, so that human agreement as a ceiling on algorithm per-
formance is as high as possible.   

• Productivity, so that the amount of training data is maximized, given a budget, 
• Depth of representation, so that the added semantic features are as deep as poss-

ible. 

54 Chapter 1: Data Acquisition and Linguistic Resources 

Text

Co-reference
Word Sense 
wrt Ontology

Treebank

PropBank

OntoNotes
Annotated Text

Names

This section describes a large multilingual richly annotated corpus that is being made 
available to the community.  We emphasize quality and consistency, targeting interanno-
tator agreement rates at 90%. The data covers multiple genres in English, Chinese, and 
Arabic, including a significant amount of parallel data. The annotation, intended to cap-
ture a skeletal representation of literal meaning, includes parse trees, predicate argument 
structures, word senses localized in an ontology, coreference, and name types. The re-
source is delivered as an integrated database, supporting combined queries that access 
multiple annotation layers. Annual incremental releases are distributed via the LDC.  



 
  The methodology described here was tested prior to entering production mode, 

where pilot rounds of annotation were conducted to find the sweet spot above.  In particu-
lar, only those classes of co-reference satisfying the methodology above during the pilot 
study are annotated.  The methodology has been applied for word sense, with the sense 
inventory for each word being selected according to the criteria above. 

Another dimension of the OntoNotes product is the integration of all of the annota-
tions in a database (Pradhan et al. 2007a), which has at least two benefits: 

 
• Consistency checks on entering each annotation element flag many incon-
sistencies across annotations for manual correction. 

• The data may be searched for phenomena of interest. 
 
This section illustrates annotation primarily of English, though OntoNotes covers 

Arabic and Chinese as well. In the next sections, we describe each of the component an-
notations:  treebanking, proposition banking, word sense, ontology creation, coreference, 
and names.  The section concludes with a summary of related work. 

1.3.5.3. Treebanking 

The Treebank style in OntoNotes for English is a modification of the Treebank II 
style for the Penn Treebank (Marcus et al. 1993; Marcus et al. 1994). For Chinese, the 
style follows the Chinese Treebank (Xue et al., 2005). (Arabic Treebank annotation is 
being performed at the Linguistic Data Consortium.) These are annotated with informa-
tion to make predicate-argument structure easy to decode, including function tags and 
markers of “empty” categories that represent displaced constituents.  

To facilitate merging of the syntactically annotated material with the PropBanked 
material, both the Treebank style and PropBank style were modified to correct for some 
small mismatches between the annotations (Babko-Malaya et el. 2006).  The major 
changes to the Treebank stylebook involved modifying the list of verbs considered to 
take so called “small clauses” to conform to the argument structures assigned by Prop-
Bank, and changing the structures of resultatives to match the PropBank analysis.   

The internal consistency of the newly syntactically annotated material for English has 
been tested, and is quite good.  The principal annotator for English reannotated sampled 
material a year after the original annotation.  The F-measure of the newly annotated ma-
terial against the initial annotation by the EVALB measure was 98.5. 

A major editing pass of the OntoNotes Treebank materials is now underway to 
achieve full consistency with all materials treebanked under the GALE project. The first 
modification retrofits much of the OntoNotes treebanked materials to conform with the 
current LDC syntactic style for NPs, crucially adding branching structure whenever the 
default right branching structure of pre-head modifiers is violated.  The second modifica-
tion changes the tokenization so as to split on most token-internal hyphen. This elimi-
nates some anomalies that resulted from the earlier tokenization, which was based entire-
ly on white space. In “the New York-based company”, for example, the old tokenization, 
with “York” attached to “-based” made it impossible to annotate “New York”. 

Handbook of Natural Language Processing and Machine Translation 55 



1.3.5.4. PropBanking 

PropBanking focuses on annotating the argument structure of verbs, and provides a 
corpus annotated with semantic roles, including participants traditionally viewed as ar-
guments and adjuncts. The style for English is that of the 1M word Penn Treebank II 
Wall Street Journal corpus (Palmer et al. 2005). In addition to annotating verbs we are 
also applying Nombank style annotation to just those nouns with predicate-argument 
structures that can participate in event coreferences, such as nominalizations and eventive 
nouns. Links from the argument labels in the Frames Files to FrameNet frame elements 
and VerbNet thematic roles have been added. This style of annotation has also been suc-
cessfully applied to other genres and languages. For Chinese, the style is that of (Xue & 
Palmer 2009) The same style has also been applied to Arabic (Diab et al. 2007). 

1.3.5.5. Word Sense 

One of the daunting challenges was attaining 90% annotator agreement for word 
sense, since, for example, WordNet inter-annotator agreement averages in the low 70s.  
Building on results in grouping fine-grained WordNet senses into more coarse-grained 
senses that led to improved inter-annotator agreement (ITA) and system performance 
(Palmer et al. 2007), we have developed a process for rapid sense inventory creation and 
annotation that includes critical links between the grouped word senses and the Omega 
ontology (Philpot et al. 2005).  

Figure 1.8: Annotation Procedure 

56 Chapter 1: Data Acquisition and Linguistic Resources 

word

Sense creation:
definitions, examples, etc.

(1 person)

Pre-annotation: 50 instances
(2 people)

Full annotation: all instances
(2 people)

Results: ok agreement?

Adjudication: fix remainder
(1 person)

Results: ok agreement?

not ok

not ok

ok

ok

Store results
in database

Sense creation

Annotation



Figure 1.8 shows the empirical process for proposing meaningful sense distinctions 
and determining if they could be annotated at 90% accuracy.  A 50-sentence sample of 
instances is annotated and immediately checked for inter-annotator agreement for all 
verbs and any noun with frequency over 100.  ITA scores below 90% lead to a revision 
and clarification of the groupings by the linguist. It is only after the groupings have 
passed the ITA hurdle that each individual group is linked to a conceptual node in the 
ontology. In addition to higher accuracy, we find at least a three-fold increase in annota-
tor productivity. 

The same methodology has been applied to English, Arabic, and Chinese; the only 
difference is the starting point for suggesting sense inventories.  For English, WordNet 
has been our starting point of choice.  For Chinese, diverse sources are reviewed before 
hypothesizing an inventory, including entries in web-accessible dictionaries, print dictio-
naries, samples from the corpora to be annotated and general web searches.  For Chinese 
verbs, the starting point has been the course-grained senses in the frame files created for 
the PropBank annotation, although print and electronic dictionaries are also consulted.  
Similar research including access to Arabic WordNet is carried out for each Arabic word 
prior to authoring its sense inventory file. 

1.3.5.6. Verbs 

GI: operating or traveling via a vehicle 
NP (Agent) drive NP, NP drive PP 

WN1: “Can you drive a truck?”,  
WN2: “drive to school,”,  
WN3: “drive her to school,”,  
WN12: “this truck drives well,”  
WN13: “he drives a taxi,”, 
WN14: “The car drove around the corner,”,  
WN:16: “drive the turnpike to work,”  

G2: force to a position or stance 
NP drive NP/PP/infinitival 

WN4: “He drives me mad.,”  
WN5: “She is driven by her passion,”  
WN6: “drive back the invaders,”  
WN7: “She finally drove him to change jobs,”  
WN15: “drive the herd,”  
WN22: “drive the game.” 

G3:  to exert energy on behalf of something NP 
drive NP/infinitival 

WN11: “What are you driving at?,”  
WN10: “He is driving away at his thesis.” 

G4: cause object to move rapidly by striking it 
NP drive NP 

WN9: “drive the ball into the outfield ,”  
WN17 “drive a golf ball,” WN18 “drive a ball” 

Table 1.12: Four Groups for “drive”, Compared to the WordNet Senses 

The word sense inventories for English verbs come initially from grouping related 
WordNet senses (Palmer, et. al. 2007). Subcategorization frames and semantic classes of 
arguments play major roles in determining the groupings, as illustrated by the grouping 
for the 22 WN 2.1 senses for drive in Table 1.12.  The groupings are also linked to the 
ontology (see Section 1.3.5.5). In addition to improved annotator productivity and accu-
racy, we have found a corresponding improvement in word sense disambiguation perfor-
mance.  Training on this new data, Dligach and Palmer (2008) report 83% accuracy for 
verbs using a Support Vector Machine  and rich linguistic features, which is almost 20% 
higher than state-of-the art performance on ungrouped, fine-grained senses (Chen and 

Handbook of Natural Language Processing and Machine Translation 57 



Palmer, 2005).  The sense inventories for Chinese and Arabic verbs are created by start-
ing with the PropBank frame files and subdividing the verb entries into more fine-grained 
senses where deemed appropriate. 

1.3.5.7. Nouns 

Noun annotation follows a procedure similar to that for verbs.  The noun senses are 
created starting with WordNet and other dictionaries. We aim to double-annotate, at the 
target agreement level, the 1100 most frequent polysemous English nouns in the entire 
corpus before the end of 2009, while maximizing overlap with the sentences containing 
annotated verbs.  We have lower targets for the other two languages, which were started 
later.   

Certain nouns carry predicate structure. To ensure conformity with verbs, the struc-
ture of nominalizations (destruction) and eventive nouns (party) is created and assigned 
by the verb specialists at Colorado.    

In order to speed up annotation, we investigated a form of active learning, in which 
nouns with high agreement in a subset of the whole corpus were used as training data by 
an automated annotation learner.  Unfortunately, different sense distributions across cor-
pora meant that we could not always use results from one year to automatically annotate 
another year’s data.  We investigated various strategies to bootstrap the learning, by mix-
ing into the training data small amounts of annotated data from the new corpus.  The re-
sults show that even 50 instances from the new distribution permit learning that is accu-
rate enough for about 50% of the high-frequency nouns (Zhu and Hovy 2007; Zhu et al. 
2008).   

The OntoNotes (release 1.0) verb and noun word sense data was used in the Semeval-
1 (Pradhan et al. 2007b)  Overall accuracy over 100 lemmas (65 verbs and 35 nouns) 
from WSJ corpus, for the best performing system was 86% ― with average over verbs 
being 78% and over nouns being 89%. 

1.3.5.8. Coverage Issues 

There are far too many polysemous lexical items for any project to provide exhaus-
tive coverage.  Therefore the prioritization of items for annotation is of pressing concern.   

Clearly high frequency items provide the most leverage, but they often have a pre-
dominant sense (as much as 90% of the data) which can overwhelm annotators with 
hundreds or even thousands of repetitive examples that will provide little if no system 
performance improvement.    For example, 183 of the 186 instances of the word “bank” 
in the Ontonotes portion of the WSJ corpus are cases of the first of the 10 senses (a fi-
nancial institution).  In all corpora combined, 607 of the 640 instances of “investment” 
are the third sense (the activity of investing money for profit).  With this type of data, 
double blind manual annotation and adjudication is not really necessary. 

Of course, prior to the manual annotation the entropy of a word’s sense distribution 
is unknown.    When we are partially through annotation of a given word and it is clear 
that the majority of its instances fall into one sense, we can then dispense with full 
double-annotation of all senses, and allow one of the “annotators” to be a trained clas-
sifier.  This method is described in more detail by Zhu and Hovy (2007). This allows for 

58 Chapter 1: Data Acquisition and Linguistic Resources 



somewhat quicker annotation progress to be carried out for the most common senses, so 
more time can be devoted to human annotation of rarer words and senses.   

The desired aim is a balance between sufficient coverage of high frequency items 
and maximal coverage of low frequency ones. For these rare words and senses the great-
est challenge is finding enough instances to provide adequate training material.  We are 
also exploring techniques such as language modeling for preselecting instances of rare 
senses from a new corpus (Dligach and Palmer 2009).  In addition we have implemented 
a data selection plan which supplements our “whole document” based annotation ap-
proach with lexical samples for specific lexical items which require greater coverage. 

1.3.5.9. Ontology 

Standard dictionaries simply list the senses for each word.  To support synonym 
access, inheritance of features and other properties such as predicate frames, links to in-
stances, and so on, we group together the senses that share the same meaning, and then 
arrange them into a shallow taxonomy that we call the Omega Ontology (Philpot et al. 
2005) following the process of Figure 1.9.  
 

 
Figure 1.9: Process for adding to the Ontology. 

A manual procedure forms sense pools by selecting and grouping together individual 
noun and verb senses that convey the same meaning.  (Sense pools correspond to Word-
Net’s synsets, but are generally less fine-grained.)  Each sense pool contains one or more 
definitions, examples, features, and pointers to the individual senses that comprise it, 
from which one can access their respective annotated sentences.  It is thus possible to 

Handbook of Natural Language Processing and Machine Translation 59 

Word Sense
Inventory

Collect synonyms
(1 person)

Create sense pools
(1 person)

Validate sense pools
(2 people)

Taxonomize pools
(3 people)

Store results
in ontology

not ok

Results: ok agreement?

ok

Ontologizing



assemble for each meaning a set of sentences that contain different target words, each 
expressing that meaning, in order to train more-powerful sense disambiguation engines. 

All sense pools are attached into Omega’s Upper Model (Hovy et al. 2009), a net-
work of some 120 nodes that represent very abstract conceptualizations. Reference to 
VerbNet semantic classes has been helpful in creating nodes for the verb upper level on-
tology (Palmer et. al. 2009). To date, about 5000 noun-derived and 3500 verb-derived 
pools (from English sources) have been created and attached, by multiple annotators who 
compare their decisions to ensure quality, using a specialized interface.  Work is under-
way to create sense structures also for the other two languages and either merge them into 
English-derived pools or attach them to the Upper Model separately.  In addition, we 
have started creating sense structures for the 3000-odd monosemous English nouns oc-
curring in the corpus, and merging or inserting them into Omega. 

1.3.5.10. Coreference 

The coreference annotation in OntoNotes connects coreferring instances of specific 
referring expressions, primarily NPs that introduce or access a discourse entity. For ex-
ample, “Elco Industries, Inc.”, “the Rockford, Ill. Maker of fasteners”, and “it” could all 
corefer. (Non-specific references like “officials” in “Later, officials reported…” are not 
included, since coreference for them is frequently unclear.) In addition, proper noun pre-
modifiers and verb phrases can be marked when coreferent with an NP, such as linking, 
“when the company withdrew from the bidding” to “the withdrawal of New England 
Electric”.  

Unlike the coreference task as defined in the ACE program, attributives are not gen-
erally marked. For example, the “veterinarian” NP would not be marked in “Baxter Black 
is a large animal veterinarian”.  

However, the sense of “be” is marked so that attributive information is annotated. 
Adjectival modifiers like “American” in “the American embassy” are also not subject to 
coreference. 

Appositives are annotated as a special kind of coreference, so that later processing 
will be able to supply and interpret the implicit copula link. 

All of the coreference annotation is being doubly annotated and adjudicated. Over the 
first two years, the overall average agreement between individual annotators and the ad-
judicated result for non-appositive coreference using the MUC coreference scorer was 
86%. 

Pradhan et al. (2007) report baseline performance on the OntoNotes coreference data 
using a standard feature set.  Coreference decoding contrasts with decoding other layers 
in that system performance on coreference still lags very much behind the ITA, in spite of 
the latter being very high. This is most likely due to the fact that richer semantic and 
word-knowledge components, in addition to annotation granularity and consistency, are 
important in identifying co-referring entities.  Better learning strategies combined with 
the accompanying layers in OntoNotes would likely help bridge this gap in the future. 

60 Chapter 1: Data Acquisition and Linguistic Resources 



1.3.5.11. Names 

Names are also annotated using an 18-type superset of the ACE name guidelines. 
This supplemental annotation is done in a single pass. 

1.3.5.12. Database 

Since we are delivering multiple levels of annotation (syntax, propositions, corefe-
rence, word sense, ontology, and names), several questions arose: 

 
1. How could we ensure that all the components are consistent with each 

other, avoiding engineering/formatting inconsistencies? 
2. Should the annotations be delivered as independent pieces provided in an 

integrated representation?  
3. What representation would best facilitate use of this information as train-

ing data for systems that will be incorporated into applications? Can this 
representation also support leveraging these additional knowledge 
sources during the training process?  

 

 
Figure 1.10: Simplified diagram of the interconnections between annotation layers. 

We have created a corpus with diverse levels of semantic information integrated in 
one database (Pradhan et al. 2007a). Figure 1.10 illustrates some of the interconnections 
captured. The database contains these multiple annotation levels on texts in each of the 
three target languages.  

Each document is stored as a sequence of sentence strings. The token table identifies 
the word substrings by their offsets, and those tokens in turn are the leaves of a parse tree 
showing the syntactic structure of the sentence. Supplementary link tables implement 
many-to-many relations whereby PropBank, word sense, and coreference annotations can 
be associated with parse tree nodes. Link tables are also used to connect the OntoNotes 
word senses with the associated PropBank frames. For parallel text that is available in 
multiple languages, the database also supplies alignment information that maps from each 
sentence to the associated sentence(s) in the other language. 

Handbook of Natural Language Processing and Machine Translation 61 

 

 

NP

S

NP

NPNPNP NP NP NPNPNP

PP

PP

has     and     toof

VP S

VP

NP

e2:
founder2

e1:
admit1

e9

e8e4e3 e7 e12e11
and

e6:
transfer2

Arg0 Arg1

Arg0 Arg1

Arg2-to

Arg1

The
founder

Pakistan’s
Nuclear
department

Abdul
Qadeer
Khan

admitted he transferred Nuclear
technology

Iran, Libya North
Korea

Pakistan’s Abdul
Qadeer
Khan

he nuclear
technology3

Iran Libya North
Korea

e10

Syntax Propositions

Coreference Concepts

engineering

subject area …

…

cognition

object

…  Mental object …

nation

large geopolitical entity

geopolitical entity

social object …  tangible object

…  event …

summum genus

nuclear
department2

originator …

causal agent

…

admit

tangible event …

…  event …

…

e2 e4
e7

=
e2 =



This process of integrating these disparate types of annotation into a single database 
identified several types of inconsistencies between the layers. Some of these were theo-
retical differences For example, the original freestanding PropBank annotation used mul-
tiple pointers for a single argument whose immediate value was a trace node that pointed 
to another, more distant tree node. In the integrated annotation, each PropBank argument 
is a single syntactic constituent, since the Treebank already provides the trace informa-
tion.  

There were also cases where the syntactic analysis implied by the original PropBank 
annotation clashed with that in the Treebank. For example, for the phrase “keep their 
markets active”, the original PropBank analysis had “their markets” and “active” both as 
arguments of “keep”, while the Treebank treated “active” as the predicate of a small 
clause. The two groups each made some changes to resolve these inconsistencies (Babko-
Malaya et al. 2006). 

Other clashes that showed up in the database merge were just incidental, for example, 
tree structure changes that had been made by one set of annotators but not communicated 
to the other groups. Resolving all of these inconsistencies helped to ensure a clean, con-
sistent final product, where the relationships between all the layers and within the layers 
themselves can be efficiently captured in the database schema.  

We have also provided an object layer on top of the database layer, written in Python. 
This layer implements a Python object type for almost every database table. These ob-
jects directly represent data values like inverse pointers that are not stored explicitly in 
the database, and they thus allow for more efficient and flexible data manipulation than 
when working directly at the level of the underlying database tables, particularly when 
working across multiple layers. It can also output representations of each individual lay-
ers by itself, or a human-readable representation that combines the information in all the 
layers.  

This object layer facilitates defining custom views of the data as well as extracting 
cross-layer features for use in analysis or in predictive models, neither of which was easi-
ly possible before. For example, one could use this API to find out the distribution of 
named entity types that occur as ARG0 arguments of the predicate “say”, combining in-
formation from the Treebank, PropBank, and names layers. 

1.3.5.13. Related Work 

PropBank I (Palmer et al. 2005), developed at UPenn, captures predicate argument 
structure for verbs; NomBank provides predicate argument structure for nominalizations 
and other noun predicates (Meyers et al. 2004).  PropBank II annotation (eventuality 
ID’s, coarse-grained sense tags, nominal coreference and selected discourse connectives) 
has been applied to a small (100K) parallel Chinese/English corpus (Babko-Malaya et al. 
2004).  The OntoNotes representation extends these annotations, and allows eventual in-
clusion of additional shallow semantic representations for other phenomena, including 
temporal and spatial relations, numerical expressions, deixis, etc.  

One of the principal aims of OntoNotes is to enable automated semantic analysis.  
One state-of-the-art algorithm for semantic role labeling for PropBank style annotation 
(Pradhan et al. 2005) achieves an F-score of 81.0 using an SVM model. OntoNotes will 
provide a large amount of new training data for similar efforts.   

62 Chapter 1: Data Acquisition and Linguistic Resources 



Other related work falls into two classes: the development of resources for specific 
phenomena or the annotation of corpora. An example of the former is Berkeley’s Frame-
Net project (Baker et al. 1998), which produces rich semantic frames, annotating a set of 
examples for each predicator (including verbs, nouns and adjectives), and describing the 
network of relations among the semantic frames.  An example of corpora annotation is 
the Salsa project (Burchardt et al. 2006), which produced a German lexicon based on the 
FrameNet semantic frames and annotated a large German newswire corpus.  A second 
example, the Prague Dependency Treebank (Hajic et al. 2001), has annotated a large 
Czech corpus with several levels of (tectogrammatical) representation, including parts of 
speech, syntax, and topic/focus information structure. The Tsinghua Chinese Treebank 
TCT (Zhou 2003) contains some 2 million Chinese characters, of which half has been 
treebanked, and manually annotated for syntactic and certain semantic relations, such as 
causality and conditionals.  It covers various genres  

Finally, the IL-Annotation project (Reeder et al. 2004) focused on the representations 
required to support a series of increasingly semantic phenomena across seven languages 
(Arabic, Hindi, English, Spanish, Korean, Japanese and French). In intent and in many 
details, OntoNotes is compatible with all these efforts, which may one day all participate 
in a larger multilingual corpus integration effort. 

1.3.5.14. Summary 

 
 English Chinese Arabic 
NW 550 K 250 K 300 K 
BN 200 K 300 K 200 K 
BC 200 K 150 K – 
Web 300 K 150 K – 

Table 1.13: Planned corpus (token counts). 

The plan for the full OntoNotes corpus is shown in Table 1.13, covering three lan-
guages and four genres (NewsWire, Broadcast News, Broadcast Conversation, and Web 
text), and including significant amounts of parallel bilingual data. OntoNotes Version 2.0, 
released by the LDC in early 2008, covered NW and BN in English and Chinese and NW 
in Arabic. Version 3.0, to be released in June 2009, will add coverage of BC data in Eng-
lish and Chinese, with additional Arabic NW. It is our hope that this annotation will pro-
vide an enduring resource for the community. 

 
 
 
 
 

Handbook of Natural Language Processing and Machine Translation 63 



1.4 Automatic Annotation  

1.4.1. Speech Segmentation and Its Impact on Spoken
 

1.4.1.1. Introduction 

Dramatic improvements in automatic speech recognition (ASR) technology make it 
now possible to explore how language processing techniques designed for text can be 
applied to spoken language. Ever increasing collections of information are available as 
speech recordings, including news broadcasts, talk shows, meetings, debates, lectures, 
hearings, oral histories, and webcasts, among other types of human-directed (vs. comput-
er-directed) communications. ASR can automatically transcribe (albeit imperfectly) the 
speech in such spoken documents into a stream of words. But to derive content of inter-
est, one would like to be able to apply language processing techniques that have tradi-
tionally been developed for written input. 

A challenge for the processing of most classes of spoken documents - as compared 
with text documents - is the lack of overt segmentation information. Text input typically 
contains punctuation that segments words into sentences and subsentential units. Sen-
tences are further organized into higher-level units such as speaker quotes, paragraphs, 
sections, chapters, articles, and so on, via formatting. In contrast, when spoken language 
is processed by an automatic speech recognizer, the output is simply an unannotated 
stream of words, as shown in the example below. Human listeners can easily segment 
such spoken input, arriving at the formatted version that follows. To do so they draw on a 
range of cues, not all of which are fully understood. 

Automatic segmentation is still far from human performance, but significant progress 
has been made by combining lexical information from a word recognizer, with spectral 
and prosodic cues. Lexical sequence information provides cues related to syntactic and 
semantic constraints, and is thus helpful in finding sentence and clause boundaries. For 
ex-ample, a sentence in English is not likely to end with a determiner. Such cues are, 
however, subject to degradation from word recognition errors. Lexical cues can also be 
fairly domain-specific, and may thus perform poorly when training and test data come 
from different speaking contexts. Spectral information provides cues to speaker and show 
changes, as well as to non-speech events such as laughter. Prosodic features such as fun-
damental frequency, duration, and energy patterns provide information about multiple 
types of segment boundaries. For example, pitch tends to drop before the ends of sen-
tences, and to an even lower value at the end of a topic or paragraph-like unit. Boundaries 
are often accompanied by pauses and by durational lengthening of phones directly pre-
ceding the boundary. 

 
 
 
 

64 Chapter 1: Data Acquisition and Linguistic Resources 

Document Processing
Authors: Mari Ostendorf, Benoit Favre, Ralph Grishman, Dilek Hakkani-Tür, Mary Harper, & Dustin Hillard 



Unformatted Word Transcripts  
with more american firepower being considered for the persian gulf defense secretary 
cohen to-day issued by far the administration’s toughest criticism of the u. n. security 
council without mentioning russia or china by name cohen took dead aim at their reluc-
tance to get tough with iraq frankly i find it uh incredibly hard to accept the proposition 
that in the face of saddam’s uh actions that uh members of the security council cannot 
bring themselves to declare that this is a fundamental or material breach uh of uh con-
duct on his part i think it challenges the credibility of the security council in europe to-
day secretary of state albright trying to gather support for tougher measures was told by 
the british and french ... 
Formatted transcripts  
Reporter: With more American firepower being considered for the Persian Gulf, de-
fense secretary Cohen today issued by far the administration’s toughest criticism of the 
U.N. Security Council. Without mentioning Russia or China by name, Cohen took dead 
aim at their reluctance to get tough with Iraq. 
 
Cohen: Frankly I find it incredibly hard to accept the proposition that in the face of 
Saddam’s actions that members of the Security Council cannot bring themselves to dec-
lare that this is a fundamental or material breach of conduct on his part. I think it chal-
lenges the credibility of the Security Council. 
 
Reporter: In Europe today, Secretary of State Albright trying to gather support for 
tougher measures was told by the British and French ... 
 
Over the past decade, researchers have explored methods for improving computa-

tional models for various levels of segmentation, showing that combining both acoustic 
and lexical cues provides significant gains in accuracy over a naive pause-based segmen-
tation. More importantly, as will be shown here for a variety of language processing 
tasks, these segmentations also lead to much better task performance than pause-based 
segmentations. The experiments described represent a survey of the work of different 
groups over different time periods controlling for different aspects of segmentation, so 
the results are not directly comparable. However, the findings together tell a consistent 
story, specifically that many language processing tasks benefit from linguistic structure 
(beyond pause units) and that optimizing segmentation for the task is a useful strategy, 
i.e., the best tradeoff of recall and precision varies depending on the task. 

In the remainder of this section, we describe different types of segmentation useful 
for spoken document processing, outline popular methods for feature extraction and 
computational modeling, survey recent results showing the impact of segmentation in 
several language processing applications, and summarize the findings and open ques-
tions. 

1.4.1.2. Segmentation in Spoken Language 

Language processing technology for text leverages sentence boundary and punctua-
tion information, and the spoken language versions of this technology build on these sys-
tems. Thus, sentence segmentation is of particular importance for automatic spoken doc-
ument analysis and understanding.  Sentence boundaries are also important for aiding 

Handbook of Natural Language Processing and Machine Translation 65 



human readability of the output of automatic speech recognition systems (Jones et al. 
2005). 

Sentence-level information is but one of many useful levels of structure in language, 
as evidenced by the additional forms of punctuation (for example, commas) often availa-
ble in text. For some language analysis tasks, such as parsing and entity extraction, sub-
sentence punctuation is of additional value. However, many of these applications may 
benefit more from an alternative to punctuation: prosodic phrase boundaries. Speakers 
naturally group words into semantically coherent phrases indicated by timing and pitch 
cues; these prosodic phrase boundaries often coincide with major syntactic constituent 
boundaries (particularly those marked with commas and semi-colons) but have a much 
flatter structure than syntax. They provide smaller (and potentially more useful) units for 
processing. 

Applications of segmentation above the sentence level depend on genre. For exam-
ple, topic segmentation is important when processing news broad-casts that include mul-
tiple stories. Similarly, speaker tracking and possibly role or identity recognition can pro-
vide useful structure in genres with multiple speakers. Simply knowing who is speaking 
(even without an associated name) can improve the read-ability of a speech transcript 
when there is more than one person talking. Speaker tracking is also useful for automatic 
analysis of conversation or meeting dynamics and for attribution in question answering. 
Both speaker and topic segmentation can be useful in speech recognition, for acoustic and 
language model adaptation, respectively. 

1.4.1.3. Computational Modeling Techniques 

Two very different types of segmentation algorithms are used: audio diarization and 
structural segmentation. Audio diarization aims to segment an audio recording into 
acoustically homogeneous regions, given only features extracted from the audio signal. 
Audio diarization techniques can include a variety of tasks, such as distinguishing speech 
from music or advertisements from news. The term structural segmentation is used here 
to include tasks that represent linguistic structure (commas, sentences, story/discourse), 
for which algorithms leverage both acoustic and lexical cues. The two classes of algo-
rithms are treated separately below, followed by a discussion of how different types of 
segmentation may be combined. We provide an overview of the most popular methods in 
each case, with the disclaimer that technology is still evolving in this field. 

1.4.1.4. Speaker Diarization 

Much of the foundation for speaker diarization comes from speaker recognition re-
search; some of the earliest systems were developed to support work on speaker identifi-
cation in broadcast news. A typical speaker diarization system may be broken down into 
several “standard” components (Tranter and Reynolds 2006), with the two main compo-
nents being “segmentation” and “clustering.” During the segmentation step (or “speaker 
change detection”), boundaries between acoustic events (typically due to a change of 
speaker) are located to create homogeneous segments of audio. The dominant approach 
to segmentation involves computing a generalized log likelihood ratio at candidate boun-
daries, comparing the likelihoods of the data using two distributions for the subsets of 

66 Chapter 1: Data Acquisition and Linguistic Resources 



data to the left and right of the boundary vs. a single distribution for the combined set. To 
determine the cut-off point, typically some form of regularization or prior is used, such as 
the Bayesian Information Criterion, which effectively adds a penalty for increased num-
bers of parameters. Then, during clustering, all of the segments belonging to the same 
speaker are grouped together. The most common approach for the initial speaker cluster-
ing is hierarchical agglomerative clustering, which begins with a large number of clusters 
that are merged pair-wise. The number of speakers is not known a priori, so various heu-
ristics are used to determine the stopping point. Determining the number of speakers can 
be difficult in applications where some speak only briefly (e.g., in news sound bites), 
since they tend to be clustered with other speakers. 

The segmentation and clustering steps may be iterated until some stopping criteria is 
satisfied. In subsequent passes, different models may be used, such as hidden Markov 
models (HMMs) for joint segmentation and clustering. Multi-pass methods are useful for 
the challenge of handling speaker overlap (in talk shows) and handling noisy conditions 
(reporters calling in from the field). The most common features used in audio diarization 
are cepstral features and their derivatives, as in speech recognition except without the 
normalization aimed at factoring out speaker and channel differences since these are ex-
actly the types of differences that are targeted in diarization. 

Speaker diarization performance is typically measured by diarization error rate 
(DER), which measures the percentage of time that a system incorrectly labels the audio 
recording based on an automatic mapping of hypothesized speaker clusters to reference 
speakers according to maximal overlap.18 Diarization error rates vary depending on the 
number of speakers, speaker overlap, and acoustic conditions. Hence, DER can vary 
widely, e.g., from roughly 2% to 12% for different broadcast news sources (Tranter and 
Reynolds 2006). 

1.4.1.5. Structural Segmentation 

There are two basic modeling approaches used for structural segmentation: 1) detec-
tion of boundary events, and 2) whole constituent modeling. The approaches can also be 
combined. Both models are applied after speech recognition, and take advantage of the 
alignment between words (and the phones therein) and the acoustic speech signal. 

Boundary event detection is essentially a sequence tagging problem: for each word in 
the sequence, assign a boundary label indicating the constituent (or none) ending at that 
point. As such, any computational model for tagging is applicable here. HMM-like mod-
els dominated early work in speech segmentation (Stolcke and Shriberg 1996). Given the 
word sequence W and the prosodic features F, the most likely event sequence E is given 
by: 

ܧ  ൌ  argmaxா ܲ ሺܨ|ܧ, ܹሻ ൎ  argmaxா ܲሺܹ, ሻܧ ܲሺܧ|ܨሻ 

 
The transition probabilities (in ܲሺܹ, -ሻ) are obtained from an n-gram language modܧ

el, also referred to as a hidden-event language model, that characterizes the event labels 

                                                      
18 http://www.nist.gov/speech/tests/rt/rt2007/ 

Handbook of Natural Language Processing and Machine Translation 67 



and words jointly. The observation posteriors ܲሺܧ|ܨሻ are generated from a prosody mod-
el, e.g., a decision tree classifier or neural network. HMMs that are discriminatively 
trained have also been used for sentence boundary detection (Tomalin and Woodland 
2006). 

Maximum entropy (Maxent) and conditional random field (CRF) classifiers have also 
been investigated for boundary event detection (Huang and Zweig 2002; Liu et al. 2006). 
Unlike HMMs, Maxent and CRF approaches provide more freedom to incorporate con-
textual information and to combine word-based and prosodic features. Both use the ex-
ponential form for the conditional probabilities.  For example, in Maxent: 

 ܲሺܧ|ܹ, ሻܨ ൌ  1ఒܼሺܹ, ሻܨ exp ൭ ,ܧ݃ሺߣ ܹ, ሻ୩ܨ ൱ 

 
A CRF models sequence information, whereas Maxent individually classifies each 

data sample. The weights (λ) for the features are estimated to maximize the conditional 
probabilities of the training set. Liu et al. (2006) compare HMM, Maxent, and CRF ap-
proaches for sentence segmentation of broadcast news and conversational speech, finding 
that the CRF leads to the best results but by a small margin and at a higher computational 
cost. Another approach that can accommodate a rich variety of features is based on com-
bining Boostexter with a hidden-event language model (Zimmermann et al. 2006). Boos-
texter is based on the principle of boosting that combines many weak classifiers, each 
having a basic form of one level decision trees using confidence-rated prediction. It has 
the advantage of good performance with a relatively low cost implementation. 

The modeling approaches described above rely on various word-based and prosodic 
features. Lexical features typically consist of word n-grams and part-of-speech n-grams. 
These features are useful for identifying short utterances in spontaneous speech such as 
backchannels (“uhhuh”, “yeah”), for characterizing sequences of words that are unlikely 
to be split by a sentence boundary (“the problem”), and for representing words that are 

68 Chapter 1: Data Acquisition and Linguistic Resources 

Whole constituent modeling considers both the beginning and the end time of a seg-
ment in determining boundary location. For many problems, the cues are local to the 
boundary, such as for prosodic phrase boundaries. For others, the cues extend over the 
entire phrase, and the whole constituent approach is preferable. Whole constituent model-
ing is also useful when a maximum or minimum length constraint is needed. The chal-
lenge of modeling the full constituent is in decoding. Since it is impractical to consider all 
possible constituent onset times, the search space is often reduced by restricting the set of 
candidate boundaries. Whole constituent modeling has been used for sentence segmenta-
tion, story segmentation, and in speaker modeling where both acoustic and lexical cues 
are incorporated. In sentence segmentation for translation (Matusov et al. 2006), an ex-
plicit sentence length model is incorporated in a log-linear combination of language mod-
el and prosody model scores. Posterior probabilities identified via boundary event detec-
tion can be included in the combination for further improvements (Matusov et al. 2007). 
In story segmentation, whole constituent modeling is needed for characterizing the topi-
cal coherence of sentences in the segment and extracting position-based information 
about lexical cue words (Rosenberg et al. 2007). 



likely to start a new sentence (such as “I”). Syntactic features have also been used to im-
prove sentence boundary detection (Roark et al. 2006a; Favre et al. 2008). The features 
have different representations in different modeling approaches, for example, an n-gram 
language model in the HMM framework or word tuple indicators in discriminative clas-
sifier approaches. 

Prosodic features reflect information about duration, pause, intonational and energy 
contours. Features can be extracted from automatic alignments of word and phone tran-
scriptions with the speech signal. Duration features (such as word, pause, and phone du-
rations) are obtained directly from alignment time marks. Since different phones have 
different baseline durations, duration features are typically normalized for phonetic con-
tent. In addition they may be normalized by speaker or speaking rate. Pause duration is 
known to be important for segmentation, but it poses some challenges because of editing 
in broadcast news and speaker overlap in conversational speech. Useful pitch and energy 
features tend to capture differences across the word boundary in question, as well as 
slopes and normalized level of pitch or energy just before a boundary. In the case of both 
pitch and energy, features must be appropriately normalized (by speaker for pitch; by 
channel for energy). 

Sentence segmentation is reported either using an F-measure or the sentence error 
rate, which computes error rate as the number of incorrect boundaries over the total num-
ber of boundaries using the mdeval tool.19 Performance depends on speech genre and re-
cognizer error rate. Conversational genres tend to have shorter sentences but higher error 
rates. With the caveat that performance continues to improve, example F-measures on 
automatically transcribed speech are roughly 65% for broadcast news (Favre et al. 2008a) 
and 64% for broadcast conversations in English. The F for Mandarin broad-cast news is 
about 75% (Matusov et al. 2007). 

1.4.1.6. Multi-level Segmentation 

Since the various types of segmentation are generally interdependent and since auto-
matically detected boundaries can be errorful, soft predictions (boundary posteriors) at 
the different levels can be considered jointly to improve performance. Speaker bounda-
ries based purely on acoustic information often do not align perfectly with sentence 
boundaries that are based on speech recognizer output. Higher accuracy speaker bounda-
ries can be obtained by adjusting boundary times to match those of nearby sentence 
boundaries. Similarly, improved story boundary detection is achieved by considering 
candidate boundary points at more locations than the automatically detected sentence 
boundaries, either by lowering the threshold for sentence detection (e.g. from probability 
0.5 to probability 0.1) or simply by considering all boundaries with a 250ms or greater 
length pause (Rosenberg et al. 2007). Taking into consideration the higher-level informa-
tion associated with story boundary detection can potentially feedback into improvements 
in sentence segmentation. The use of soft decisions on segment boundaries also makes it 
possible to tune the boundary detection threshold or operating point for specific applica-
tions. Work described in the next section shows that this is indeed useful, though the best 
operating point varies with the different tasks. 
                                                      

19 http://www.nist.gov/speech/tests/rt/2004-fall/ 

Handbook of Natural Language Processing and Machine Translation 69 



1.4.1.7. Applications 

Spoken document processing can involve a combination of several tasks, typically 
starting with speech recognition and speaker segmentation, followed by some basic lin-
guistic analysis such as part-of-speech tagging and parsing, and then involving higher 
level processing such as translation and information extraction. Automatic segmentation 
touches on all of these problems, but we will focus on stages after speech recognition. In 
the examples here, the segmentation types used (speaker, sentence, comma, intonational 
phrase, and story) employ the basic algorithms described in Section 1.4.1.3. The specific 
methods vary with genre and with the time period of the work, since this is still an area of 
research and the best case configurations are evolving. 

1.4.1.8. Speaker Role and Identity Recognition 

In broadcast news, most speech is from anchors and reporters, but there are excerpts 
from speeches or interviews, sometimes referred to as “soundbites.” Detecting soundbites 
and associating them with particular speakers is important for information extraction and 
attribution in question answering. Using the example in Section 1.4.1.1, the task is to as-
sociate the speech segments produced by Cohen with his name, given speaker diarization 
results and ASR transcripts. 

Data from Mandarin broadcast news has been used for soundbite and speaker name 
recognition (Liu and Liu 2007) using a classification frame-work. Each speaker turn is 
labeled with one of three roles: anchor, reporter, or soundbite. The features used are 
based on textual information (mainly word n-grams) from the current segment, the pre-
ceding and the following segments. Speaker name recognition takes advantage of the 
coded behavior typical of broadcast news (i.e., reporters often naming the next or pre-
vious speaker). Hypothesized names from the current and neighboring segments are clas-
sified in terms of whether or not it is the speaker’s name for a target soundbite segment 
using keywords and position of the name in the sentence. 

In experiments with Mandarin broadcast news, word errors and sentence segmenta-
tion errors have different impacts on the soundbite detection and name recognition tasks 
due to the types of cues they use. For soundbite detection, segmentation errors were more 
harmful than word errors, with degradation in F-measure of 12% vs. 2%, respectively, 
com-pared to detection on oracle transcripts. Incorrect sentence segmentation leads to 
missed cue words to soundbites. For name recognition, the opposite is true: 1% degrada-
tion of F-measure due to segmentation errors, compared to 15% with word errors. Since 
many soundbite speaker names are infrequent, they are less reliably recognized than other 
words. 

1.4.1.9. Tagging and Parsing 

Part-of-speech (POS) tagging is the process of marking up a sequence of words with 
their parts of speech (e.g., noun, verb). Parsing produces a structural analysis of a word 
sequence with respect to a grammar. High quality automatic sentence segmentation is 
important for utilizing these techniques most effectively, both for accuracy and for ad-
dressing length-dependent complexity issues. Experiments on the impact of comma pre-

70 Chapter 1: Data Acquisition and Linguistic Resources 



diction on POS tagging accuracy of Mandarin broadcast news speech showed that per-
formance was significantly better when using the automatic commas compared to a 
matched train/test condition without sentence-internal punctuation (Hillard et al. 2006). 
Other work on parsing English conversational speech showed a significant effect of sen-
tence segmentation on parsing whether using the reference word transcriptions (Kahn et 
al. 2004) or ASR transcripts (Harper et al. 2005): automatic sentence segmentation can 
recover roughly half the loss in parsing performance due to using pause-based segmenta-
tion compared to hand-labeled references (roughly 10 points F-measure recovered). 

Further experiments (Roark et al. 2006a; Harper et al. 2005) showed that optimizing 
sentence segmentation thresholds specifically for parse accuracy (vs. sentence segmenta-
tion accuracy) yielded greater improvements in parsing (from F of 64.8 to 65.7). When 
optimizing for parse accuracy, the system tended to produce shorter segments than when 
optimizing for sentence segmentation accuracy, i.e. trading off precision for recall. The 
shorter sentence-like segments also benefited a parsing language model used in speech 
recognition, leading to significant improvements in the SParseval score when word se-
quences and parses are chosen jointly. 

1.4.1.10. Information Extraction 

Information Extraction (IE) aims at finding semantically defined entities in docu-
ments and characterizing relations between them. Like many text processing tasks, IE 
systems typically benefit from handwritten punctuation. Studies show that when punctua-
tion is removed, there is an associated loss in performance. For example, missing com-
mas have a dramatic impact on IE (Makhoul et al. 2005), with performance loss typically 
bigger than that observed when moving from reference to ASR output (for a range of 
word error rates on English news). Similar results were reported for name tagging on 
Mandarin broadcast news (Hillard et al. 2006), and it was shown that half of the lost per-
formance was recovered with automatic comma prediction (from F of 84.9 to 85.4). 

Another study (Favre et al. 2008a) confirmed these observations for English IE on 
speech, and found that optimizing sentence and comma prediction thresholds for IE per-
formance is more effective than optimizing these thresholds separately for punctuation 
prediction accuracy: improvements in the ACE scores are from 15.6 to 18.4 for relations, 
and 47.0 to 48.2 for entities. Error analysis showed that punctuation errors can result in 
merged noun phrases or split entities. The best case performance was obtained by jointly 
optimizing comma and sentence boundary thresholds, but allowing the thresholds to vary 
in detecting entities vs. relations. 

1.4.1.11. Machine Translation 

In machine translation (MT), sentence segmentation helps provide translations with 
proper punctuation, but it also impacts word choice since sentence boundaries are incor-
porated in the language model and they constrain the possible phrase translations. Many 
systems limit sentence lengths for complexity reasons, which motivates a constituent-
based approach to sentence segmentation. The translation application also motivates a 
new type of feature, introduced by Matusov et al. (2007) to characterize phrase coverage 
of the words that span the candidate boundaries to ensure that word sequences with good 

Handbook of Natural Language Processing and Machine Translation 71 



phrasal translations will not be broken by a segment boundary. The phrase coverage fea-
ture is a bigram language model probability. Depending on whether the bigram probabili-
ty is high or low, there is likely to be a good phrasal translation in the system or not, re-
spectively. 

Different sentence segmentation algorithms have been evaluated on large vocabulary 
Arabic-to-English and Chinese-to-English broadcast news translation tasks using the 
phrase-based MT system of RWTH (Mauser et al. 2006). The explicit length modeling of 
the whole constituent model (using a less sophisticated prosody model and without the 
phrase coverage feature) did not do as well as the boundary detection approach in terms 
of sentence segmentation accuracy, but it did lead to better MT performance. MT per-
formance improves by combining the two methods, but the best result was achieved by 
using the phrase coverage feature, increasing BLEU from 18.1 for fixed-length segments 
to 21.2 for the MT-optimized sentence predictions. The sentence boundary precision is 
reduced significantly when the phrase coverage feature is used, but this does not affect 
the translation because the context at the erroneously inserted boundaries was not cap-
tured in MT training anyway. As in the parsing work, MT experiments have shown that a 
lower detection threshold is better for translation of Chinese (0.2 vs. the minimum error 
threshold of 0.5), favoring recall over precision or shorter segments. A separate study on 
Arabic-to-English translation found that longer sentences are better (Matsoukas et al. 
2007). Shorter sentences in Chinese are likely to help limit reordering errors, while for 
Arabic (which has less long distance reordering), longer segments likely provide addi-
tional context without much increased risk of reordering mistakes. 

While punctuation marks predicted in ASR output can be useful for predicting target 
language punctuation, they can be also used to guide the MT process. Matusov et al. 
(2007) used automatically predicted Chinese commas as soft boundaries for reordering in 
MT search. Reordering across a comma is found to be highly unlikely and is penalized by 
modifying the lexicalized reordering model of the phrase-based MT system (Zens and 
Ney 2006), with reduced penalties for lower confidence predictions. In experiments on 
the Chinese-to-English task, the soft comma constraints did not result in a significant im-
provement in standard MT development scoring methods (BLEU and TER). However, the 
word order in several translated sentences was subjectively better when the soft boundary 
penalty was applied. 

1.4.1.12. Conclusions 

In summary, the fact that most language technology used in spoken document 
processing is designed in large part from written text argues that speech must be made to 
look more like text for achieving good performance. An important challenge in this re-
spect is speech segmentation, including sentence segmentation at a minimum, but ideally 
also speaker and topic segmentation for formatting and adaptation, as well as sub-
sentence punctuation and/or intonational phrase prediction. Both event-based and consti-
tuent-level computational models have been developed for these problems, many of 
which combine lexical and acoustic cues in detecting boundaries. While these algorithms 
are far from perfect, in most applications they provide a much better solution than simple 
pause-based segmentation. Oracle results suggest that further improvements to segmenta-
tion algorithms would be useful, though improvements to word recognition have higher 

72 Chapter 1: Data Acquisition and Linguistic Resources 

impact for some tasks. 



In the various applications surveyed here, there is a consistent finding that tuning the 
segmentation thresholds for the application leads to significant performance improve-
ments over using the threshold that minimizes segmentation error. In many cases (but not 
all), higher recall is more effective (i.e. shorter sentences), but the optimal threshold va-
ries. This raises the question as to how best to meet the needs of multiple language 
processing modules, particularly when they all operate on the same hypothesized tran-
script. One solution is to use a low threshold (more hypothesized boundaries) with confi-
dences associated with the boundaries, so that different downstream modules can use 
their own threshold. Alternatively (or in addition), the need for different thresholds may 
reflect a need for different types of structures, including subsentence units such as intona-
tional phrases or syntactic chunks. 

1.4.2. CADIM Arabic Tools: Morphological Analysis, 
Disambiguation and Generation, Tokenization, 
Diacritization, Lemmatization, POS Tagging and Base 
Phrase Chunking 

Authors: Mona T. Diab, Nizar Habash, Owen Rambow, and Ryan M. Roth 

1.4.2.1. Introduction 

In this section, we describe some of the NLP tools we developed over the past num-
ber of years to process Modern Standard Arabic and Arabic Dialect text. We present a 
series of tools that vary in their dependence on explicit linguistic rules and linguistic 
depth, and that target a variety of NLP tasks. AL-MORGEANA and MAGEAD are mor-
phological analysis and generation systems. AL-MORGEANA extends on the Buckwal-
ter analyzer and MAGEAD handles Arabic dialects. MADA is a system for morphologi-
cal disambiguation including POS tagging, lemmatization and diacritization. TOKAN is a 
general tokenizer for Arabic that works with MADA. AMIRA is a suite of shallow lin-
guistic processing tools with limited dependence on explicit linguistic rules; AMIRA per-
forms tokenization, POS tagging, and base phrase chunking. We compare some of the 
functionality of our different systems. We also present several of the NLP applications 
that have successfully used our different systems. 

 
Morphological Analysis refers to the process by which a word (defined orthographi-

cally for our purposes) has all of its possible morphological analyses determined. Each 
analysis also includes a single choice of core part-of-speech (such as noun or verb; the 
exact set is a matter of choice). A morphological analysis can be either form-based, in 
which case we divide word into all of its constituent morphemes, or functional, in which 
case we also interpret these morphemes. For example, in broken (i.e., irregular) plurals, a 
form-based analysis may not identify the fact that the word is a plural, since it lacks the 
usual plural morpheme, while functional analysis would.  

 
 

Handbook of Natural Language Processing and Machine Translation 73 



Morphological disambiguation refers to the choice of a morphological analysis in 
context. This task for English is referred to as part-of-speech (POS) tagging, since the 
standard POS tagset, though only comprising 46 tags, completely disambiguates English 
morphologically. In Arabic, the corresponding tagset comprises up to 330,000 theoreti-
cally possible tags, so the task is much harder. Reduced tagsets have been proposed for 
Arabic as well, in which certain morphological differences are conflated, making the 
morphological disambiguation task easier. The term POS tagging is usually used for 
Arabic with respect to some of the smaller tagsets.  

 
Tokenization (also sometimes called segmentation) refers to the division of a word 

into clusters of consecutive morphemes, one of which typically corresponds to the word 
stem, usually including inflectional morphemes. There are two parameters. First, we need 
to choose which types of morphemes to segment and how to present them (the tokeniza-
tion scheme). There is no single correct tokenization scheme. Second, we need to decide 
whether after removing some morphemes, we regularize the orthography of the resulting 
segments, since the concatenation of morphemes can lead to spelling changes on their 
boundaries.  For example, the Ta-Marbuta (ة p) appears as a regular Ta (ت t) when fol-
lowed by a pronominal clitic. 20 Usually, the term segmentation is only used when no or-
thography regularization takes place. Orthography regularization is desirable in NLP be-
cause it reduces data sparseness, as does tokenization itself. 

 
Lemmatization is the mapping of a word form to its corresponding lemma (also 

known as a citation form), the canonical representative of its lexeme. A lexeme is a lex-
icographic abstraction: it is the set of all word forms that differ only in inflection and 
possible cliticization, processes which are (almost) always productive. The lemma is a 
conventionalized choice of one of these word forms to stand for the set. Usually, a lex-
eme is assumed to have one sense, so that homonyms (such as the multiple meanings of 
English word ‘bank’) are considered two lexemes. If the sense distinction is removed 
from the definition of lexemes, one sometimes uses the term vocable, which is a purely 
morphological characterization of a set of word forms. In this chapter, we use the term 
lexeme without the semantic dimension, i.e., we collapse the concepts of lexeme and 
vocable.  

 
Diacritization is the process of adding missing diacritics (short vowels, the marker 

of the absence of a short vowel, and the gemination marker). Diacritization is closely re-
lated to morphological disambiguation and to lemmatization: for an undiacritized word 
form, different morphological analyses often correspond to different diacritizations (for 
example, voice in MSA), and different lemmas can be seen to lead to different diacritiza-
tions as well. Often, the choice of the diacritic on the last written letter of the word (with-
out the possessive or object clitic which may be attached) is particularly hard, since it 
requires syntactic information: in verbs, this diacritic often expresses mood, and in nouns 
and adjectives, it expresses syntactic case. Thus, it is often common to define a simpler 
diacritization task which does not choose the word final diacritic. 
                                                      

20 Arabic romanization is in the Buckwalter transliteration scheme (Buckwalter, 2002). 

74 Chapter 1: Data Acquisition and Linguistic Resources 



Base phrase chunking is a syntactic task, in which non-recursive multiword syntac-
tic phrases are identified without actual parsing. The relevant notion of phrase needs to be 
clearly defined depending on where and how these syntactic chunks can be used, and in 
Arabic, this is not as straightforward as in English due to the complexity of some of the 
syntactic structures of noun phrases. 

The Columbia Arabic and its Dialects Modeling (CADIM) group has produced a set 
of tools to address these tasks. In this chapter we will present the functionality of several 
of our basic tools that have been widely used in the NLP community and in our own re-
search. This chapter is a survey chapter, it is meant to highlight the various tools that we 
have and how they compare with one another. We will also refer to some of the applica-
tions where we used our tools. 

Our tools can be classified coarsely into a set of deep and shallow processing tools as 
they vary in their dependence on explicit linguistic representations in their machinery. 
The deep processing tools depend on explicitly expressed linguistic analyses as an essen-
tial component in the processing of the text, and require corpora that have been annotated 
at this level. The shallow processing tools, on the other hand, learn from surface repre-
sentations where the morphological information and linguistic knowledge is implicitly 
represented and the system learns pattern generalizations without reference to explicitly 
represented linguistic units. 

1.4.2.2. ALMORGEANA 

ALMORGEANA is a system for Arabic Lexeme-based Morphological Generation 
and Analysis (Habash 2007).21 

 
Desiderata: We chose the following desiderata for the design of ALMORGEANA 

(and also MAGEAD, Section1.4.2.3): (1) coverage of the language of interest in terms of 
both lexical coverage (large scale) and coverage of morphological and orthographic phe-
nomena (robustness); (2) a complete mapping between surface word forms to/from a 
functional representation of morphology; (3) full reversibility of the system so it can be 
used as an analyzer or a generator; (4) usability in a wide range of natural language 
processing applications such as MT or IR; and finally, (5) availability for the research 
community. 

 
Lexicon: ALMORGEANA is built on top of the publicly available large-scale data-

base of the Buckwalter Arabic Morphological Analysis (BAMA) (Buckwalter 2002; 
Buckwalter 2004). The database consists of six components: three morphological data-
bases for prefixes, stems, and suffixes; and three tables showing the compatibility of en-
tries from the three morphological databases with each other (prefix-stem, stem-suffix 
and prefix-suffix). Unlike BAMA, which focuses on analysis to a surfacy form-based 
representation, ALMORGEANA analyzes to, and generates from the functional (lexeme-
and-feature) level of representation. To that effect, the ALMORGEANA lexicon extends 
the BAMA morphological databases with lexeme and feature keys, which are used in 
                                                      
21 A previous publication about ALMORGEANA focused on the generation component of the system which 
was named Aragen (Habash, 2004). 

Handbook of Natural Language Processing and Machine Translation 75 



analysis and generation. This work on ALMORGEANA is close in spirit to the exten-
sions to BAMA in the functional morphology system, ELIXIRFM (Smrž 2007). 

 
Analysis: Analysis in ALMORGEANA is similar to BAMA: the word is segmented 

into prefix-stem-suffix triples, whose individual presence and bi-lateral compatibility is 
checked against the BAMA database. The difference lies in an extra step that uses lexeme 
and feature keys associated with stem, prefix and suffix string sequences to construct the 
lexeme and feature output. The output of ALMORGEANA includes all possible analyses. 
Each analysis consists of the diacritized form of the word, its lexeme, its morphological 
features, and an English gloss.  For example the word للكتب  llktb ‘for the books’ returns 
the following analysis: 

 
lilkutubi=[kitAb_1 POS:N l+ Al+ +PL +GEN]=books 
 
Here, lilkutubi is the diacritized form of the word. Inside the square brackets, we find 

the nominal lexeme kitAb_1 ‘book’, the proclitic preposition l+ ‘to/for’, the definite ar-
ticle Al+ ‘the’, the feature +PL ‘plural’ and the feature +GEN ‘genitive case’. Most of the 
information in the feature set is directly derivable from the morpheme tags in the BAMA 
output for the same word: li/PREP+Al/DET+kutub/NOUN+i/CASE_DEF_GEN. How-
ever the feature +PL indicating plurality is not. It is part of the extension done in AL-
MORGEANA in processing the BAMA databases. 

The challenge of out-of-lexicon words during analysis is handled in two ways similar 
to BAMA. First, simple spelling expansion is used for cases with common spelling varia-
tions such Alef-Hamza- Above (أ >) spelled without the Hamza (ء ’) as Alef (ا A), and Ya 
 Second, a back-off analysis mode  .(Y ى) spelled without the dots as Alef-Maqsura (y ي)
can be turned on in which prefix and suffix matching and compatibility is used but unat-
tested stems can be hypothesized. A full description is given by Habash and Rambow 
(2005). 

 
Generation: In generation, the input is a lexeme and feature set. The generated out-

put is a fully inflected and diacritized word. For example, [kitAb_1 POS:N l+ Al+ +PL 
+GEN] generates lilkutubi. The process of generating from lexeme and features is similar 
to analysis except that lexeme and feature keys are used instead of string sequences. First, 
the feature set is expanded to include all forms of under-specified obligatory features, 
such as case, gender, number, etc. Next, all lexeme and feature keys in the ALMOR-
GEANA lexicon that fully match any subset of the lexeme and expanded feature set are 
selected. All combinations of keys that completely cover the lexeme and expanded fea-
ture set are matched up in prefix-stem-suffix triples. Then, each key is converted to its 
corresponding prefix, stem or suffix string. The same compatibility tables used in analy-
sis are used to accept or reject prefix-stem-suffix triples. Finally, all unique accepted 
triples are concatenated and output. In the case that no surface form is found, a back-off 
solution that attempts to regenerate after discarding one of the input features is explored. 

See (Habash 2007) for more details on ALMORGEANA and an evaluation of its per-
formance. 

76 Chapter 1: Data Acquisition and Linguistic Resources 



1.4.2.3. MAGEAD 

MAGEAD is a morphological analyzer and generator for the Arabic language family, 
by which we mean both MSA and the spoken dialects. We shall collectively refer to 
MSA and its dialects as Arabic variants. For a fuller discussion of MAGEAD (including 
an evaluation), see (Habash et al. 2005; Habash and Rambow 2006). For an excellent 
discussion of related work, see (Al-Sughaiyer and Al-Kharashi 2004). 

MAGEAD relates (bidirectionally) a lexeme and a set of linguistic features to a sur-
face word form through a sequence of transformations. In a generation perspective, the 
features are translated to abstract morphemes which are then ordered, and expressed as 
concrete morphemes. The concrete templatic morphemes are interdigitated and affixes 
added, and finally morphological and phonological rewrite rules are applied. In this sec-
tion, we discuss our organization of linguistic knowledge, and give some examples; a 
more complete discussion of the organization of linguistic knowledge in MAGEAD is 
presented by Habash et al. (2006). 

Lexeme and Features: Morphological analyses are represented in terms of a lexeme 
and features. We define the lexeme to be a triple consisting of a root, a morphological 
behavior class (MBC), and a meaning index. We do not deal with issues relating to word 
sense here and therefore do not further discuss the meaning index. It is through this view 
of the lexeme (which incorporates productive derivational morphology without making 
claims about semantic predictability) that we can both have a lexeme-based representa-
tion, and operate without a lexicon (as we may need to do when dealing with a dialect). 
In fact, because lexemes have internal structure, we can hypothesize lexemes on the fly 
without having to make wild guesses (we know the pattern, it is only the root that we are 
guessing). Our evaluation shows that this approach does not wildly over-generate. 
 

We use as our example the surface form, ازدهرت Aizdaharat (Azdhrt without diacrit-
ics) ‘she/it flourished’. The MAGEAD lexeme-and-features representation of this word 
form is as follows: 

 
(1)  Root:zhr MBC:verb-VIII POS:V PER:3 GEN:F NUM:SG ASPECT:PERF 
 
Morphological Behavior Class: An MBC maps sets of linguistic feature-value pairs 

to sets of abstract morphemes. For example, MBC verb-VIII maps the feature-value pair 
ASPECT:PERF to the abstract root morpheme [PAT_PV:VIII], which in MSA corres-
ponds to the concrete root morpheme V1tV2V3, while the MBC verb-II maps AS-
PECT:PERF to the abstract root morpheme [PAT_PV:II], which in MSA corresponds to 
the concrete root morpheme 1V22V3. We define MBCs using a hierarchical representa-
tion with non-monotonic inheritance. The hierarchy allows us to specify only once those 
feature-to-morpheme mappings for all MBCs which share them. For example, the root 
node of our MBC hierarchy is a word, and all Arabic words share certain mappings, such 
as that from the linguistic feature conj:w to the clitic w+. This means that all Arabic 
words can take a cliticized conjunction. Similarly, the object pronominal clitics are the 
same for all transitive verbs, no matter what their templatic pattern is. We have developed 
a specification language for expressing MBC hierarchies in a concise manner. Our hypo-

Handbook of Natural Language Processing and Machine Translation 77 



thesis is that the MBC hierarchy is variant-independent, i.e. dialect/MSA independent. 
However, as more variants are added, some modifications may be needed. Our current 
MBC hierarchy specification for both MSA and Levantine, which covers only the verbs, 
comprises 66 classes, of which 25 are abstract, i.e., only used for organizing the inherit-
ance hierarchy and never instantiated in a lexeme. 

 
MAGEAD Morphemes: To keep the MBC hierarchy variant-independent, we have 

also chosen a variant-independent representation of the morphemes that the MBC hie-
rarchy maps to. We refer to these morphemes as abstract morphemes (AMs). The AMs 
are then ordered into the surface order of the corresponding concrete morphemes. The 
ordering of AMs is specified in a variant-independent context-free grammar. At this 
point, our example (1) looks like this: 

 
[Root:zhr][PAT_PV:VIII] [VOC_PV:VIII-act] + [SUBJUF_PV:3FS] 
 
Note that as the root, pattern, and vocalism are not ordered with respect to each other, 

they are simply juxtaposed. The ‘+’ sign indicates the ordering of affixival morphemes. 
Only now are the AMs translated to concrete morphemes (CMs), which are concatenated 
in the specified order. Our example becomes: 

 
 
(3)  <zhr,V1tV2V3,iaa> +at 
 
Simple interdigitation of root, pattern and vocal-ism then yields the form iztahar+at. 
 
MAGEAD Rules: We have two types of rules. Morphophonemic/phonological rules 

map from the morphemic representation to the phonological and orthographic representa-
tions. For MSA, we have 69 rules of this type. Orthographic rules rewrite only the ortho-
graphic representation. These include, for examples, rules for using the shadda (conso-
nant doubling diacritic). For Levantine, we have 53 such rules. 

For our example, we get /izdaharat/ at the phonological level. Using standard MSA 
diacritized orthography, our example becomes Aizdaharat (in transliteration). Removing 
the diacritics turns this into the more familiar ازدهرت Azdhrt.  Note that in analysis mode, 
we hypothesize all possible diacritics (a finite number, even in combination) and perform 
the analysis on the resulting multi-path automaton. 

We follow (Kiraz 2000) in using a multi-tape representation. We extend the analysis 
of Kiraz by introducing a fifth tier. The five tiers are used as follows: Tier 1: pattern and 
affixational morphemes; Tier 2: root; Tier 3: vocalism; Tier 4: phonological representa-
tion; Tier 5: orthographic representation. In the generation direction, tiers 1 through 3 are 
always input tiers. Tier 4 is first an output tier, and subsequently an input tier. Tier 5 is 
always an output tier. 

We have implemented multi-tape finite state automata as a layer on top of the AT&T 
two-tape finite state transducers (Mohri et al. 1998). We have defined a specification lan-
guage for the higher multi-tape level, the new MORPHTOOLS format. Specification in 
the MORPHTOOLS format of different types of information such as rules or context-free 

78 Chapter 1: Data Acquisition and Linguistic Resources 



grammars for morpheme ordering are compiled to the appropriate LEXTOOLS format 
(an NLP-oriented extension of the AT&T toolkit for finite-state machines, (Sproat 
1995)). For reasons of space, we omit a further discussion of MORPHTOOLS. For de-
tails, see (Habash et al. 2005). 

 
From MSA to Levantine: We have modified MAGEAD so that it accepts Levantine 

rather than MSA verbs. Our effort concentrated on the orthographic representation; to 
simplify our task, we used a diacritic-free orthography for Levantine developed at the 
Linguistic Data Consortium (Maamouri et al. 2006). Changes were done only to the re-
presentations of linguistic knowledge, not to the processing engine. We modified the 
MBC hierarchy, but only minor changes were needed. The AM ordering can be read off 
from examples in a fairly straightforward manner; the introduction of an indirect object 
AM would, for example, require an extension of the ordering specification. The mapping 
from AMs to CMs, which is variant-specific, can be obtained easily from a linguistically 
trained (near-)native speaker or from a grammar handbook. Finally, the rules, which 
again can be variant-specific, require either a good morphophonological treatise for the 
dialect, a linguistically trained (near-)native speaker, or extensive access to an informant. 
In our case, the entire conversion from MSA to Levantine was performed by a native 
speaker linguist in about six hours. 

1.4.2.4. MADA 

MADA (Morphological Analysis and Disambiguation for Arabic) is a utility that, 
given raw Arabic text, adds as much lexical and morphological information as possible 
by disambiguating in one operation part-of-speech tags, lexemes, diacritizations and full 
morphological analyses. This task is not trivial, due to the morphological complexity of 
the language. The complexity of the morphology together with the underspecification of 
the orthography creates a high degree of ambiguity. On average, a word form in the Penn 
Arabic Treebank (Maamouri et al. 2004) has about 12 morphological analyses. 

MADA’s approach distinguishes between the problems of morphological analysis 
(what are all the different readings of a word without regard to context) which is handled 
by a morphological analyzer such as ALMORGEANA or MAGEAD, and morphological 
disambiguation (what is the correct reading in a specific context). MADA is a morpho-
logical disambiguation system. Once a morphological analysis is chosen in context, we 
can determine its full POS tag, lemma and diacritization in a single step. Knowing the 
morphological analysis also allows us to tokenize and stem deterministically; this is han-
dled by TOKAN (Section 1.4.2.5) once MADA has finished processing the text. 

MADA operates in stages. First, it uses ALMORGEANA (Section 1.4.2.2) internally 
to produce a list of potential analyses for each word encountered in the text; at this point, 
word context is not considered. MADA then makes use of up to 19 features to rank the 
list of analyses. For each feature, a classifier is used to create a prediction for the value of 
that feature for each word in its context. Fourteen of the features use Support Vector Ma-
chine (SVM) classifiers; the remaining features capture information such as spelling vari-
ations and n-gram statistics. 

Each classifier prediction is weighted using a tuning set, and the collection of feature 
predictions is compared to the list of potential morphological analyses. Those analyses 

Handbook of Natural Language Processing and Machine Translation 79 



that more closely agree with the weighted set of feature predictions receive higher-
ranking scores than those, which do not; the highest scoring analysis is flagged as the 
correct analysis for that word in that context. 

Once MADA has finished, the user has access to the full morphological analysis for 
each word in the input. The user may then extract any or all of the analysis information. 
This is why MADA can be used for a multitude of tasks, including part-of-speech and 
morphological feature tagging, lemmatization, predicting full diacritization, glossing, 
stemming and others. Since MADA selects a complete analysis from ALMORGEANA, 
all decisions regarding morphological ambiguity, lexical ambiguity, tokenization, diacri-
tization and POS tagging in any possible POS tag set are made in one fell swoop (Habash 
and Rambow 2005; Habash and Rambow 2007; Roth et al. 2008). MADA has over 96% 
accuracy on basic morphological choice (including tokenization but excluding syntactic 
case, mood, and nunation) and on lemmatization. MADA has over 86% accuracy in pre-
dicting full diacritization (including syntactic case and mood). Detailed comparative 
evaluations are provided in the following publications: (Habash and Rambow 2005; Ha-
bash and Rambow 2007; Roth et al. 2008). 

The operation of MADA is versatile and highly configurable. Starting with version 
2.0, MADA applies weights to each of the 19 features it uses for better accuracy; these 
weights are determined on a tuning set and are optimized for different purposes, such as 
tokenization, diacritization, or POS tagging. These weight sets are included with the 
package and should be chosen by the user depending on how MADA will be used. How-
ever, users can also choose to set these weights directly themselves. By default, MADA 
attempts to rank complete analyses in terms of overall correctness. By choosing an alter-
native feature and weight set, it is possible to have MADA focus more specifically on 
getting a particular analysis aspect correct. For example, users can achieve a 0.4% abso-
lute improvement in POS tagging accuracy if they use the weight set that was tuned for 
POS tagging, as opposed to the default set. However, the accuracy of the other MADA 
outputs (the lexeme prediction, for example) may suffer. Starting with version 2.1, MA-
DA also includes a morphological back off procedure, which can be turned on or off by 
the user (see Section 1.4.2.2). 

1.4.2.5. TOKAN 

TOKAN is a general tokenizer for Arabic that provides an easy-to-use resource for 
tokenizing MADA disambiguated Arabic text into a large set of possibilities (Habash and 
Sadat 2006; Habash 2007). The decision on whether an Arabic word has a conjunction or 
preposition clitic is made in MADA; but the actual tokenization of the clitics including 
handling various morphotactics and spelling regularization is done in TOKAN. The toke-
nization scheme can be used as parameter in machine learning for a variety of applica-
tions, such as machine translation, or named-entity recognition (see Section 1.4.2.8.). 

 
 
 
 
 

 

80 Chapter 1: Data Acquisition and Linguistic Resources 



 وسينهى الرئيس جولته بزيارته الى ترآيا 
Input wsynhY Alr}ys jwlth AlY trkyA 
Gloss and will finish the president tour his with visit to Turkey 
English The president will finish his tour with a visit to Turkey.
Scheme       
ON wsynhy Alr}ys jwlth bzyArp <lY trkyA 
D1 w+ synhy Alr}ys jwlth bzyArp <lY trkyA 
D2 w+ s+ ynhy Alr}ys jwlth b+ zyArp <lY trkyA 
D3 w+ s+ ynhy Al+ r}ys jwlp +h b+ zyArp <lY trkyA 
WA w+ synhy Alr}ys jwlth bzyArp <lY trkyA 
TB1 w+ synhy Alr}ys jwlp +h b+ zyArp <lY trkyA 
TB2 w+ s+ ynhy Alr}ys jwlp +h b+ zyArp <lY trkyA 
MR w+ s+ y+ nhy Al+ r}ys jwl +p +h b+ zyAr +p <lY trkyA 
LEM >nhY r}ys jwlp zyArp <lY trkyA 
POS1 V N N N P PN 
POS2 VBP NN NN NN IN NNP 
ENX w+ s+ >nhYVBP 

+S3MS 
Al+ r}ysNN jwlpNN +h b+ zyArpNN <lYIN trkyANNP 

DIAC wasayunohiy Alra}iyosu jawolatahu biziyArapK <ilaY turokiyA 
Table 1.14: Some of the preprocessing schemes supported by TOKAN: ON (orthographic normalization), 
D1, D2 and D3 (different degrees of decliticization), WA (wa+ decliticization), TB1 and TB2 (old and new 
Arabic Treebank tokenization, respectively), MR (morphemes), LEM (lemmatization), POS1 and POS2 
(two possible POS tag sets), ENX (a tokenization equivalent to D3+LEM+POS2 with markers for verbal 
subject) and DIAC (diacritization). 

TOKAN takes as input a MADA-disambiguated file and a tokenization scheme de-
scription that specifies tokenization target. Consider the following specification: 

 
“w+ f+ b+ k+ l+ s+ Al+ REST + / + POS +P: +O: -DIAC” 

 
This scheme separates conjunctions, prepositions, verbal particles, the definite article and 
pronominal clitics and it adds the basic POS tag to the form of the word. The scheme also 
specifies that diacritics be generated. An analysis of the word  وسيكاتبها  
wasayukAtibuhA ‘and he will correspond with her’ would be tokenized as “wa+ sa+  
yukAtibu/V +hA.” A simpler scheme such as “w+ f+ REST” would simply produce “w+ 
sykAtbhA.” See (Habash and Sadat, 2006) for a detailed description of several schemes 
that have become commonly followed since that work was published. TOKAN has a 
large number of other features that allow the user to perform different kinds of ortho-
graphic normalizations or control how the output is ordered and presented as it may fit 
different needs of different systems. Table 1.14 exemplifies a few of the TOKAN sup-
ported schemes with the same sentence. 

Internally, TOKAN uses morphological generation (through ALMORGEANA) to 
recreate the word once different clitics are split off. This approach of back generation 
allows us to modify the morphological content in a word including, for instance, delet-
ing/defaulting specific features of a word easily. We do this to guarantee the form of the 
generated word is normalized and consistent with other occurrences of that word. For 
example, simply splitting the pronominal clitic off a word with Ta-Marbuta (ة p) would 
keep the Ta-Marbuta in its word-internal form  (regular  letter  Ta,ت t). With  TOKAN, 
the Ta-Marbuta is generated as appropriate (e.g.,  جولته   jwlth  ‘his-visit’ is  tokenized  

p 

Handbook of Natural Language Processing and Machine Translation 81 

into  جولة + ه  jwlp+h ‘visit +his’, not جولت +ه  jwlt+h (which is not a valid spelling).  

bzyAr



1.4.2.6. AMIRA 

AMIRA is a set of tools built as a successor to the ASVMT toolkit developed at Stan-
ford University (Diab et al. 2004) and described in detail by Diab et al. (2007b). The 
toolkit includes a tokenizer, a part of speech tagger (POS) and a base phrase chunker 
(BPC), also known as a shallow syntactic parser. The technology of AMIRA is based on 
supervised learning with no explicit dependence on knowledge of deep morphology, 
hence, in contrast to the previous tools, it relies on surface data to learn generalizations. 
In general the tools use a unified framework, which casts each of the component prob-
lems as a classification problem. The underlying technology uses Support Vector Ma-
chines in a sequence-modeling framework using YAMCHA.22 The AMIRA tools are 
highly accurate, very fast, and robust. They allow for a limited number of variable user 
settings depending on the disambiguation granularity. The AMIRA tools have been wide-
ly used for different NLP applications due to their speed and high performance, such as 
MT, IR, Parsing, NER, and IE. 

From the user perspective, the different components of the tool suite could be in-
voked sequentially, taking raw text in any encoding and producing clitic tokenized, POS 
tagged and/or base phrase chunked data. They could also be applied directly on some 
given text. For example POS tagging could be applied on raw text without explicitly in-
voking tokenization. We briefly review the three main components of the AMIRA suite. 

1.4.2.7. AMIRA-TOK 

A tokenization scheme is a convention chosen by the researcher, and there are many 
possibly tokenization schemes. For AMIRA-TOK we focus primarily on clitic tokeniza-
tion. Clitics in Arabic are typically affixes that latch onto base words. They are mor-
phemes that have a syntactic role and affect the orthography and phonology of words. 
AMIRA tools do not rely on morphological analysis or generation tools in any of its 
processes. 23 Hence, AMIRA-TOK learns clitic tokenization generalizations from the clit-
ic segmentations present in the Penn Arabic Treebank (PATB) directly without relying on 
rules explicitly. 

AMIRA Clitics: In addition to the standard PATB clitic tokenization, AMIRA-TOK 
can also segment off the nominal definite article ال Al. Accordingly, we have modified 
the training data to include segmentation of the ال Al.24 The motivation behind segment-
ing off the Al is that it has a positive impact on higher order NLP applications especially 
those involving correspondence to other languages where the definite article is a stand 
alone word. Moreover, this segmentation reduces the sparseness associated with nominal 
forms. 

                                                      
22 http://chasen.org/~taku/software/yamcha/ 
23 For example, the definite article preceding sun letters in Arabic. 
24 A clear demarcation of the definite article ال Al is present in the fully vowelized version of the PATB. 

82 Chapter 1: Data Acquisition and Linguistic Resources 

In total, AMIRA-TOK segments off the following set of clitics: conjunction proclit-
ics (prefixes) و w, ف f, prepositional proclitics ك k, ك l, ب b, future marker proclitic س s, 
verbal particle proclitic ل l, definite article proclitic ال Al), and pronominal enclitics (suf-



Since multiple proclitics are allowed in Arabic, they follow a specific order if 
present. The definite article ال Al is always closest to the base word, followed outwardly 
by the prepositions, then by the conjunctions. Likewise for the verbal proclitics, the fu-
ture marker or verbal particle is the clitic affixed to the verb directly, followed outwardly 
by  the  conjunction.   Accordingly,  in  the  example و بالحسنات  wbAlHsnAt,  ‘and  by  
the  virtues’,  the proclitic  tokenization  will  be  rendered  as  follows: و w+ب b+ الAl+  

اتنحس  HsnAt where و w is the conjunction and, ب b is the preposition ‘by’, and ال Al is the 
definite article ‘the’. 

The modeling of clitic tokenization in AMIRA-TOK is exactly the same. 
 
Character Chunking: For AMIRA-TOK, we apply a chunking scheme on the cha-

racter level casting the problem as a chunk boundary identification and chunk classifica-
tion problem. We use an IOB annotation scheme, every character in our data (including 
punctuation) is annotated as: inside a chunk (I), outside a chunk (O), or beginning of a 
chunk (B). For the I and B tags, we have five possible classes: Pre-fix 1, Prefix 2, Prefix 
3, Word, Suffix. This leads to a total of 11 classes in the data: O, B-PRE1, I-PRE2, B-
PRE2, I-PRE2, B-PRE3, I-PRE3, B-WORD, I-WORD, B-SUFF, I-SUFF. 

 
Given raw data, the words are segmented into a series of chunks corresponding to the 

different classes above. Our goal is to produce text where all the word tokens (modulo the 
clitics) are bona fide words in a dictionary and increasing the level of regularity in the 
text as a means of normalization. Note that AMIRA-TOK does not perform lemmatiza-
tion. For example, in our running example و بالحسنات  wbAlHsnAt, ‘and by the virtues’, the 
clitic tokenization AMIRA-TOK reduces it maximally to و+ ب+ ال+ حسنات w+ b+ Al+ 
HsnAt, where  حسنات HsnAt is kept in its plural form and not reduced to the singular lem-
ma form  حسنة Hsnp. 

 
Morphotactic Restorations: AMIRA-TOK does not produce stemmed words, which 

are not valid Arabic words. Accordingly, we apply some heuristics to reverse the effect of 
morphotactics such as the loss of ا A in the definite article ال Al when in the context of the 
proclitic preposition ل l ‘for’. For example, the input word وللبلاد wllblAd, ‘and for the 
countries’, is clitic tokenized as w+l+l+blAd in the system output from the classification. 
A post-hoc fix is applied to ensure the consistency of the output. The final output is ren-
dered و+ل+ال+.بلاد w+l+Al+blAd. Most of these morphotactic restorations can be deter-
ministically applied. 

                                                      
25 Prepositions and definite articles, by definition, do not affix onto verbs and similarly, future marker س s 

and verbal clitic ل l clitic do not prefix onto nominals and do not co-occur. 

Handbook of Natural Language Processing and Machine Translation 83 

fixes) indicating possessive/object pro-nouns. In general, nominals can have 0- 3 possible 
proclitics from the conjunction, prepositions and definite article set. Verbs can have 0- 2 
proclitics from the set of conjunctions and the future clitic marker.25 

 However, some morphotactics are not deterministic such as those involving the no-
minal feminine marker (Ta-Marbuta), the Alef-Maqsura, and word final Hamzas. In 
AMIRA-TOK, we currently handle the former two cases: the Ta-Marbuta and the Alef-
Maqsura. 



 

 
Alef-Maqsura Normalization: The Alef-Maqsura (ى Y) always occurs word finally. It is 
letter that graphically looks like a dotless Ya (ي y), yet phonologically sounds like an 
Alef ا A). In the context of a pronominal enclitic, it changes to an orthographic ا A. For 
example a noun such as عصاهم  ESAhm ‘he-went-against them’,   is   initially   segmented   
into عصا#هم ESA#hm yet the stem final ا A should be an Alef-Maqsura (ى Y): عصى#هم 
ESY#hm. In this case the resulting verb stem عصى ESY would be confused with the noun 
 A is a lexical distinction relating ا Y and ى ESA ‘stick’. In most cases the variation of عصا
to the underlying root of the word or the word pattern. Accordingly, AMIRA-TOK con-
verts these word final ا A into ى Y. 

Both Ta-Marbuta and Alef-Maqsura normalization are lexically determined; hence, 
we apply another layer of learning to the problem of classifying word final letters. A stem 
final ت t either remains a regular ت t or is converted to ة p, and the stem final  ا A either remains 
an ا A or is converted to a ى Y. As a result, the end output from the AMIRA-TOK is valid 
surface form words with clitic tokens. AMIRA-TOK performs at a very high F-score 
measure of 99.2% evaluated using standard Conlleval evaluation metrics. 

 
User Interface: In the current version of AMIRA-TOK, the user is allowed ample 

flexibility in deciding the form of output they would like. The user can decide what level 
of clitic segmentation they desire, and whether tokenization should be indicated with 
spaces (changing the token count) or with a plus sign only (preserving token count). We 
have specified several schemes as illustrated in Table 1.15. 

 
 
 
 
 
 
 
 
 
 
 

 

84 Chapter 1: Data Acquisition and Linguistic Resources 

 
Ta-Marbuta  Normalization: The  Ta-Marbuta (ة p) is a word final nominal femi-

nine marker that is realized as a   ت t preceding a pronominal  enclitic.    Accordingly,  a  
stem  after  token  cliticization  ending  with  a  ت t  could  either  be  a  verb  (not  a  Ta-
Marbuta)  or  a  noun (possibly a Ta-Marbuta).  In و+ب+حسنت #هم w+b+Hsnt#hm, ‘and by 
their virtue’, the word-final ت t in Hsnt is a ة p converted to ت t in the context of the en-
clitic هم hm: و+ب+حسنة#هم  w+b+Hsnp#hm.  As part of AMIRA-TOK, the ت t is converted 
to the corresponding ة p.  This allows for more accurate POS tagging later as the base 
word Hsnp will correctly be identified as a noun rather than verb.  



 wbAlHsnAt wllblAd Fbmktbthm wsnqwlhA 

Arabic 
Gloss 
Translation 

وبالحسنات دوللبلا فبمكتبتهم  ا وسنقوله  
and+by+the+  
virtues 

and+for+the 
+ countries 

then+by+libraries
+their 

and+will+we_s
ay+it 

And by the  
virtues 

And for the 
countries 

Then by their  
libraries 

And we will say 
it 

Scheme     
PATB w+ b+ AlHsnAt w+ l+ AlblAd f+ b+ mktbt #hm w+ s+ nqwl #hA 
AMIRA-TOK w+ b+ Al+ HsnAt w+ l+ Al+ blAd f+ b+ mktb_h #hm w+ s+ nqwl #hA 

Conjunction-only w+ bAlHsnAt w+ llblAd f+ bmktbthm w+ snqwlhA 
Conjunction-only+Suffix w+ bAlHsnAt w+ llblAd f+ bmktb_h #hm w+ snqwl #hA 
Preposition-only w+b+ AlHsnAt w+l+ AlblAd f+b+ mktbthm wsnqwlhA 
Preposition-only+Suffix w+b+ AlHsnAt w+l+ AlblAd f+b+ mktb_h #hm wsnqwl #hA 
Al-only wb+Al+ HsnAt wl+Al+ blAd Fbmktbthm wsnqwlhA 
Al-only+Suffix wb+Al+ HsnAt wl+Al+ blAd fbmktb_h #hm wsnqwl #hA 
future marker-only wbAlHsnAt wllblAd Fbmktbthm w+s+ nqwlhA 
future marker+Suffix wbAlHsnAt wllblAd fbmktb_h #hm w+s+ nqwl #hA 
All Prefix Only wbAl+ HsnAt wll+ blAd fb+ mktbthm ws+ nqwlhA 
Suffix only wbAlHsnAt wllblAd fbmktb_h #hm wsnqwl #Ha 
All Prefixes+Suffix wbAl+ HsnAt wll+ blAd fb+ mktbthm ws+ nqwl #hA 

Table 1.15: Some of the different AMIRA-TOK clitic tokenization schemes in the change token count mode 

1.4.2.8. AMIRA-POS 

Part-of-speech tagging is the process by which every word in running text is assigned 
a POS tag from a predefined tag set. AMIRA-POS assumes the text is clitic tokenized. 

 
AMIRA POS Tag Sets: The POS tag set (ERTS) used by AMIRA-POS has 72 tags; 

it is a subset of the full morphological set defined over tokenized text. ERTS is a superset 
of the reduced PATB tag set (RTS) that comprises 25 tags. In addition to the information 
contained in the RTS tags, ERTS encodes additional morphological features such as 
number, gender, and definiteness on nominals. For example, in RTS nouns are tagged as 
either NN or NNS, indicating only number. In ERTS, nouns tags represent definiteness 
and gender in addition to number; furthermore, we add the dual as a value to the number 
feature. A full description of ERTS is presented by Diab (2007a). 

 
POS Tagging: We adopt an SVM-based classification approach using character n-

grams as features in our sequence models. Interestingly, the accuracy of the ERTS tagger 
is 96.13% and the accuracy of the RTS tagger is 96.15%. This suggests that our choice of 
information to include in our ERTS tag set reflects a natural division in the syntactic 
space. In previous work, (Diab 2007 and 2007a), we showed that using ERTS improves 
the quality of downstream processing such as base phrase chunking. 

 
User Interface: The user has the flexibility to in-put raw or tokenized text in a 

scheme that is consistent with one of the schemes defined by AMIRA-TOK. Consequent-

Handbook of Natural Language Processing and Machine Translation 85 



ly the user may request that the POS tags be assigned to the surface forms. Internally, in 
case of the raw input, AMIRA-POS runs AMIRA-TOK on the raw text and then per-
forms POS tagging. The output can be presented as tokenized and POS tagged, or without 
tokenization where the POS tag is assigned to the surface words. In this latter case, the 
ERTS tag set is appended with the clitic POS tags to form more complex POS tags. The 
user can choose to either tag with ERTS or RTS. 

1.4.2.9. AMIRA-BPC 

Base phrase chunking is the process by which a sequence of adjacent words is 
grouped together to form syntactic phrases such as NPs and VPs. An English example of 
base phrases would be [I]NP [would eat]V P [red luscious apples]NP [on Sundays]PP . BPC is 
the first step towards shallow syntactic parsing. Many applications such as information 
extraction and semantic role labeling in English have been proven to benefit tremendous-
ly from BPC at a relatively low loss in performance when compared to the use of deep 
syntactic parsing. 
 

Chunking: AMIRA-BPC produces the longest possible base phrases with not much 
internal recursion. The internal recursion is done as a deterministic post process. We have 
modified the BPC rules to be more appropriate for the Arabic language (Diab 2007). 
Nine types of chunked phrases are recognized using a phrase IOB tagging scheme (de-
scribed earlier in Section 1.4.2.6); Inside (I) a phrase, Outside (O) a phrase, and Begin-
ning (B) of a phrase. The nine chunk phrases identified for Arabic are ADJP, ADVP, 
CONJP, PP, PRT, NP, SBAR, INTJ, VP. Thus the task is a one of 19 classification tasks 
(since there are I and B tags for each chunk phrase type, and a single O tag). The training 
data is derived from the PATB using the CHUNKLINK software.26 CHUNKLINK flat-
tens the tree to a sequence of base (non-recursive) phrase chunks with their IOB labels. 
For example, a token occurring at the beginning of a noun phrase is labeled as B-NP. We 
have adapted the CHUNKLINK software to the Arabic language. 

However we do acknowledge that an appropriate size of a chunk is most dependent 
on an end application. 

 
The AMIRA-BPC component is very fast and extremely accurate. The system yields 

an F1 mea-sure of 96.33%. Different research groups have shown the utility of BPC for 
different applications such as Machine Translation and information ex-traction specifical-
ly in Named Entity Recognition (NER) (Benajiba et al. 2008; Benajiba et al. 2009). 

 
User Interface: AMIRA-BPC can accept any level of preprocessing on input text. 

AMIRA-BPC internally uses ERTS POS tag set. However, the user may request the RTS 
as the POS tag set, we have an internal mapping process from ERTS to the RTS POS tag 
set. Also AMIRA-BPC can produce the BPC tags on any form of AMIRA-TOK consis-
tent schemes in addition to raw input text. 

                                                      
26 http://ilk.uvt.nl/team/sabine/chunklink/README.html 

86 Chapter 1: Data Acquisition and Linguistic Resources 



1.4.2.10. Comparison of CADIM Tools 

In this section, we compare and contrast the different CADIM tools discussed so far 
in terms of their design, functionality and performance. 

 
 
 
 
 
 
 
 
 
 

Figure 1.11. The MADA suite and the AMIRA suite. 

In the AMIRA suite, the three components focus on tokenization (AMIRA-TOK), 
POS tagging (AMIRA-POS) and base-phrase chunking (AMIRA-BPC), in that order. 

The AMIRA-BPC component is unique in that it has no parallel in the MADA suite. 
In fact the output of TOKAN can be designed to look like the output of AMIRA-TOK 
followed by AMIRA-POS, and then be used as input to AMIRA-BPC. 

In terms of their design, AMIRA-TOK and AMIRA-POS are different from the 
MADA suite in that they take a two-step approach to POS tagging: tokenize then tag. In 
comparison, MADA has a different approach that breaks the problem into three steps 
(analyze, disambiguate, generate), which are orthogonal to AMIRA’s split. In the AMI-
RA suite, the three components focus on tokenization (AMIRA-TOK), POS tagging 
(AMIRA-POS) and base-phrase chunking (AMIRA-BPC), in that order. 

Although there are three steps in MADA, the decision for tokenization and POS tag-
ging is done together in one-fell-swoop. One way of distinguishing these tools is in terms 
of the depth of linguistic knowledge needed. AMIRA is shallow in that it focuses on 
form-based morphology (specifically cliticization) learned from annotated data; whereas 
MADA uses deeper lexically modeled functional morphology. Another difference be-
tween the current MADA suite and the AMIRA-TOK and AMIRA-POS suite is that the 
former may produce no analysis for a given word if it does not exist in the underlying 

Handbook of Natural Language Processing and Machine Translation 87 

ALMORGEANA 

MAGEAD 

MADA TOKAN 

AMIRA-TOK AMIRA-POS AMIRA-BPC 

Design: As for their design, it may help to contextualize the different tools in terms 
of their basic use in two suites: The MADA suite and the AMIRA suite (see Figure 1.11). 
Within the MADA suite, we have an explicit morphological analysis step handled by 
ALMORGEANA or MAGEAD. Currently, ALMORGEANA is fully integrated and we 
plan to integrate MAGEAD. MAGEAD uses a different approach to morphology than 
ALMORGEANA. The difference, however, should not be evident for MSA. MAGEAD’s 
advantage over ALMORGEANA is the ease of extensibility to new dialects. The second, 
in fact core, component in the MADA suite, is the MADA system, which disambiguates 
the analyses produced by the morphological analyzers. Finally, the TOKAN component 
makes use of the morphological generation power of ALMORGEANA and MAGEAD to 
tokenize the disambiguated analysis through regeneration. 



morphological tools while the AMIRA suite always produces a hypothesized tokenization 
and POS tag for every word in the text. 

In terms of their training needs, the MADA suite expects the presence of both a mor-
phological analyzer and training data for supervised learning, whereas the AMIRA suite 
only needs annotated training data. The training data could be created through any num-
ber of ways, including the use of morphological analyzers followed by human annotation 
as is done at LDC; but this is not a requirement for the AMIRA suite. These different yet 
similar requirements put similar limits on the kind of extensions that could be done in 
either approach. For example, going to an Arabic dialect would require the presence of 
some morphological analyzer/generator for the dialect for MADA, but not AMIRA. 
However, both need some amount of annotated data to train on. 

 
Functionality: Base-phrase chunking is only handled in the AMIRA suite, but it is in 

fact a separate module that can be used independently with the MADA suite. The other 
four applications are handled at once in MADA as part of its common morphological dis-
ambiguation process. AMIRA does not handle lemmatization or diacritization. As for 
tokenization and POS tagging, since MADA goes deeper than AMIRA, a wider set of 
possible tokenization schemes and POS tags can be output by MADA. Although AMIRA 
is more limited by comparison, it does handle the most commonly used tokenizations and 
POS tags. Researchers interested in exploring a large number of different sets of tokeni-
zations as features in their systems should consider MADA. Researchers only interested 
in limited comparisons or specific applications, whose to-kenizations and POS tags are 
supported by AMIRA should consider AMIRA. 

 

 
Applications: In terms of functionality, we consider five applications: tokenization, 

diacritization, POS tagging, MADA, TOKAN, and the AMIRA suites have been and are 
being used by 50+ academic and commercial research institutes around the world, includ-
ing University of Washington, University of Massachusetts, University of Maryland, 
University of Sus-sex, Dublin City University, Cambridge University, SRI, BBN, Fair 
Isaac Inc., SketchEngine LLC, MIT, RWTH Aachen, Polytechnic University of Catalu-
nya (UPC), Copenhagen Business School, Polytechnic University of Valencia (UPV), 
and the National Research Center of Canada, among others. The tools have been cited in 
numerous publications and have been shown to improve performance in a variety of NLP 
applications such MT, IR, and IE. 

 
MADA+TOKAN for NLP applications: In the context of machine translation (MT) 

from Arabic to English, Habash and Sadat (2006) and Sadat and Habash (2006) explored 
the use of different preprocessing schemes and their combination. Their results have been 

88 Chapter 1: Data Acquisition and Linguistic Resources 

Performance: It is hard to compare the performance of AMIRA and MADA suites. 
Previous attempts by Habash and Rambow (2005) show that similar performance is poss-
ible on tasks that are shared: specific PATB tokenization and POS tags. AMIRA can be 
significantly faster than MADA; however, MADA needs to be run only once and a much 
larger number of tokenizations and POS tags (in addition to other outputs not supported 
by AMIRA) can be produced by running the fast TOKAN step. 



followed by different groups of researchers working on Arabic-English MT (Costa-jussà 
et al. 2006; Crego et al. 2006; Vilar et al. 2008). Diab et al. (2007a) explored the use of 
MADA-generated diacritizations for MT. Elming and Habash (2007) and Elming et al. 
(2008) improved automatic word alignment for Arabic-English MT using combinations 
of different tokenization schemes generated by MADA+TOKAN. See (Habash 2007) for 
more details on different representations of Arabic morphology for MT. Badr et al. 
(2008) used MADA in the context of English-to-Arabic MT. MADA has also been used 
to produce features for Named Entity Recognition (NER) (Farber et al. 2008; Benajiba et 
al. 2008). 

 
AMIRA for NLP applications: The AMIRA suite has been successfully used by 

several groups in the context of text MT, specifically for alignment improvement and 
reordering within the context of statistical MT (Crego and Habash 2008), and also for 
identifying difficult source language text (Mohit and Hwa 2007). Moreover, the AMIRA 
suite was used in the context of speech MT (Stroppa and Way 2006). The AMIRA suite 
was explored for the purposes of cross language information retrieval in work by Larkey 
et al. (2007). AMIRA has been used to produce POS tag and BPC features for NER, 
which significantly boost the performance of the Arabic NER system (Benajiba et al. 
2008; Farwell et al. 2007). 

 
Case Study of a Complex ASR+MT system: In the following example we show how 
MADA+TOKAN can be incorporated into an MT project that is based loosely on the SRI 
GALE project Nightingale. Figure 1.12 shows the overall architecture of the project. The 
MT process needs to make use of data from both text sources and audio sources via au-
tomatic speech recognition (ASR). The ASR process processes audio files, but needs to 
build reliable language models from text sources first. The subsystems ASRLM and 
MTTEXT process raw Arabic script before passing important information to the ASR 
and MT components, respectively. The MTASR subsystem processes ASR output for use 
in MT. These three subsystems use specific instantiations of MADA+TOKAN with dif-
ferent input and output specifications. 

 
Figure 1.12. Example of an ASR/MT pipeline. MADA and TOKAN are used in the ASRLM, MTASR, and 

MTTEXT subsystems. 

Handbook of Natural Language Processing and Machine Translation 89 

ASR MTASR MT 

MTTEXT
Speech Source 

ASRLM

Arabic
Source Text 

LEGEND 

Arabic Script Text 

Buckwalter Text 



The ASRLM subsystem cleans the raw data and converts the UTF-8 encoding into 
Buckwalter transliteration. A separate utility is used to convert numeric digits to word 
expressions (Habash and Roth 2008), as is required for ASR. The subsystem then runs 
MADA and uses the toolkit’s stem orthographic normalization tool to remove spelling 
variations. The subsystem consequently runs TOKAN to produce an output suitable for 
ASR; here, TOKAN uses a basic readoff scheme that produces only the fully diacritized 
words without further tokenization. Finally, punctuation is removed. This provides the 
ASR system with nicely formatted, fully diacritized data, which is what the acoustic 
component of the ASR component produces. 

The MTASR subsystem takes the output of ASR (which originally came from the 
audio files), cleans it, and runs MADA+TOKAN, using a tokenization scheme that splits 
off conjunctions and particles, (a tokenization scheme known as ‘D2’). Stem orthograph-
ic normalization is also used to collapse words with common spelling variants. The same 
numerical utility used in ASRLM is also used here to tag numerical expressions (which 
may be digital or expressed as words). The Buckwalter-transliterated data is converted 
back to UTF-8 prior to sending the data to the MT system. 

The MTTEXT subsystem processes text for MT. It cleans the raw data and converts 
UTF-8 to Buckwalter transliteration. MADA+TOKAN (with stem orthographic normali-
zation, number tagging and UTF-8 conversion) are used here to produce the same tokeni-
zation (D2) as the MTASR subsystem, making the output of MTTEXT and MTASR 
identical. The result is that the MT system can draw on similarly formatted ASR-derived 
and text-derived data for training and development. 

1.4.3. Chinese Statistical Parsing 
Authors: Mary Harper and Zhongqiang Huang 

1.4.3.1. Introduction 

This section describes several issues that are fundamental to achieving accurate Chi-
nese parsing given available Chinese resources and the challenges of the Gale processing 
pipeline. For Gale, our parsing algorithm was expected to accurately parse various differ-
ent materials, ranging from newswire text, which tends to be grammatically well formed, 
to ݊-best ASR outputs, many of which are poorly formed sentences. To address this chal-
lenge, we have re-implemented and enhanced the Berkeley parser to handle unknown 
Chinese words efficiently, parse difficult sentences robustly, and operate more efficient-
ly. We also address issues related to training the parser for several different genres given 
a limited number of available training trees, the importance of matching word segmenta-
tion to the treebank segmentation standard to support accurate parsing, and the need for 
standardized tokenization for managing the types of things that will appear as input to the 
parser. Understanding and handling these issues is a prerequisite for achieving adequate 
parsing performance levels. We also investigate self training with automatically labeled 
in-domain data to enhance parsing performance given the limited number of trees in the 
Chinese treebanks. 

There have been several attempts to develop high quality parsers for Chinese (Bikel 
and Chiang 2000; Levy and Manning 2003; Petrov and Klein 2007a), but the state-of-the-

90 Chapter 1: Data Acquisition and Linguistic Resources 



art performance, around 83% F measure on Penn Chinese Treebank, achieved by the 
Berkeley parser (Petrov et al. 2006; Petrov and Klein 2007a) falls far short when com-
pared to English.27 As pointed out by Levy and Manning (2003), there are many linguis-
tic differences between Chinese and English, as well as structural differences between 
their corresponding treebanks, and some of these make it a harder task to parse Chinese. 
Additionally, the fact that the available treebanked Chinese materials are far more limited 
than those for English also increases the difficulty of building high quality Chinese pars-
ers. While there have been some investigations using treebanks to determine what makes 
Chinese hard to parse, here we attempt to learn about and control the factors that chal-
lenge Chinese parsers as applied to materials that are less controlled than a treebank. 

Research that involves only parsing treebank test sets in some sense masks the chal-
lenges of providing high quality syntactic analyses for Chinese text and speech. First, 
Chinese documents are not segmented into words that conform to the word segmentation 
standard used by the Chinese treebank. Second, the Chinese treebanks contain punctua-
tion, letters, and digits that are typically full-width; whereas, it is not uncommon for ma-
terials to contain mixtures of full- and half-width representations. It is in fact unlikely that 
the treebank would cover the combination of possible character types that may be ob-
served in Chinese documents. Third, the treebank data is quite limited compared to the 
resources available for English parsing of newswire and speech genre, and so we must 
develop strategies to effectively parse materials in the text and speech genre covered by 
the GALE program given the resources at hand: Chinese Treebank 6 (CTB6) with parsed 
newswire and broadcast news sentences and Chinese Broadcast Conversation Treebank 
(BCTB) with parsed broadcast conversation sentences. 

We will focus our parsing investigations in this section on the Chinese newswire and 
broadcast conversation genres because of the availability of tree-banks representative of 
these genres. Unfortunately, the broadcast news treebank does not fully capture the spo-
ken aspects it should represent in that it contains symbolic expressions that can be verba-
lized in a variety of ways. Although we can map this treebank to a verbalized form, this 
mapping is unfortunately less variable than an exact transcription of the corresponding 
speech would be. To maximize parsing performance, we process the treebanks differently 
for the newswire and broadcast conversation genres and train the models to match genre 
conditions. We evaluate genre matched parsers on a test set drawn from the respective 
newswire and broadcast conversation treebank. 

1.4.3.2. Experimental Data  

We used the Penn Chinese Treebank 6.0 (CTB6) and the Chinese Broadcast Conver-
sation Treebank (BCTB) in our parsing studies, as well as a set of unlabeled sentences to 
support the use of semi-supervised self-training (see Table 1.16). 

CTB6 contains 28k parsed sentences, including news articles from Xinhua news 
agency (China-Mainland), Information Services Department of HKSAR (Hong Kong), 
and Sinorama magazine (Taiwan), as well as broadcast news from ACE evaluation 
(which we call CTB6BN). The news articles from the first three sources, with a total of 
                                                      
27 In some cases, the parse results do not take into account the brackets of gold trees for sentences that do not 
produce a final parse in the score, and so the reported results are more optimistic than they should be. 

Handbook of Natural Language Processing and Machine Translation 91 



19k sentences, constitute the former Penn Chinese Treebank 5 (CTB5) and are the prima-
ry source of labeled data used for newswire experiments. Since the CTB5 corpus was 
collected during different time periods from different sources with a diversity of topics, in 
order to obtain a representative split of train-test-development sets, we divide it into 
blocks of 10 files in sorted order and for each block use the first file for development, the 
second for test, and the remaining for training. Although CTB6BN consists of parses for 
broadcast news transcriptions, it exhibits many of the characteristics of newswire text (it 
contains many nonverbal expressions, e.g., numbers and symbols, and is fully punc-
tuated). Because of this similarity, we evaluate using this corpus as additional labeled 
training data for training the newswire model in Section 1.4.3.7.  

 
Genre Train Dev Test Unlabeled 

NW 

CTB5 
14,925 (~405k) CTB5 

1,904 
(~51k) 

CTB5 
1,975 
(~52k) 

210k 
(~6255k) CTB5+CTB6BN 

24,416 (~679k) 

BC 

BC 
8,149 (~110k) 

BC 
1,297 
(~14k) 

BC 
1,497 
(~17k) 

210k 
(~2128k) 

CTB5+CTB6BN 
24,412 (~584k) 

BC+CTB5+CTB6BN 
32,561 (~695k) 

Table 1.16. Number of sentences and words (in parentheses) of the data splits used in our experiments. 

BCTB contains 11k parsed sentences from three broadcast conversation sources (i.e., 
CCTV, CNN with Chinese translations, and Phoenix TV). In contrast to the CTB6BN 
data, the words in this treebank are fully verbal; however, most of the sentences in the 
treebank are punctuated. We manually selected the train-test-development split of the 
files to balance the number of sentences in each set. Since BCTB may be too small to 
train an accurate grammar for parsing speech, we also augment the training set with a 
verbalized version of CTB6, as discussed in Section 1.4.3.7. 

In addition to the above two labeled treebanks, we also utilize a greater number of 
unlabeled sentences for investigating the use of semi-supervised self-training in Section 
1.4.3.8. For the newswire experiments, 210k unlabeled sentences are selected from three 
newswire sources covering materials from China Mainland, Taiwan, and Hong Kong. For 
broadcast conversation experiments, 210k unlabeled sentences are selected from tran-
scribed broadcast conversations.  

We have developed a set of scripts to clean up the treebank trees used in our investi-
gations. We remove comments and then delete empty nodes and non-terminal-yield unary 
rules, e.g., NP→VP, using tsurgeon (Levy and Andrew 2006). As non-terminal-yield un-
ary rules are less likely to be posited by a statistical parser, it is common for parsers 
trained on the standard Chinese treebank to have substantially higher precision than re-
call. This gap between bracket recall and precision is alleviated without loss of parse ac-
curacy by deleting the non-terminal-yield unary rules. 

92 Chapter 1: Data Acquisition and Linguistic Resources 



The SParseval tool (Harper et al. 2005; Roark et al. 2006) was originally designed to 
support English speech-based bracket and head dependency scoring (recall, precision, 
and F-score) at the level of a demarcated chunk of speech such as a conversation side, 
while also supporting more traditional text-based scoring methods that require the input 
to the parser to match perfectly in words and sentence segments to the gold standard. The 
tool was developed to address the fact that output from an automatic speech recognition 
system is likely to contain word errors and the automatic segmentation of these words 
into sentences is likely to differ from those in the gold standard parses (Harper et al. 
2005). To calculate the bracket scores in the face of word and sentence segmentation er-
rors, the tool utilizes information from a word-level alignment between the yields of the 
system parses and reference parses in a transcript chunk (e.g., a conversation side or sto-
ry).28  

We extended the functionality of this tool to support the scoring of Chinese parses 
when the word segmentation of the input to the parser differs from the gold standard 
word segmentation in order to investigate the effect of word segmentation algorithms on 
parse quality. We use bracket scores with word alignment as the metric for evaluating 
word segmentation impact. To score parses with different word segmentations using this 
tool, we align the words in a gold standard file with the words in a test file and score the 
brackets with punctuation removed.29 

The Berkeley parser (Petrov et al. 2006; Petrov and Klein 2007a) is an efficient and 
effective parser that introduces latent annotations (Matsuzaki et al. 2005; Prescher 2005) 
to refine the syntactic categories and learns PCFG grammars based on these latent anno-
tations. We have re-implemented and enhanced the Berkeley parser to handle unknown 
Chinese words efficiently, parse difficult sentences robustly, and operate more efficient-
ly. 30 We will describe our enhancements in detail in the remainder of this section. 

The Chinese word formation process can be quite complex (Packard 2000), and it 
differs substantially from the English process. Although Chinese morphology is generally 
considered less informative of the part-of-speech (POS) type of the entire word, its cha-
racters do reflect some information about a Chinese word. The last characters in a Chi-
nese word are, in some cases, most informative of the POS type, while for others, it is the 
characters at the beginning or the middle of a word. 

                                                      
28 The tool can also provide scores based on all of the head dependencies extracted from the system and ref-
erence trees, as well as a more focused set of open class dependencies, which involve open class content 
words. 
29 When evaluating test parses that have the same word segmentation as the gold standard parses, SParseval 
provides scores on a sentence-by-sentence basis, just like EVALB. 
30 The major motivation for re-implementation is to allow more generic and flexible state-tying operations 
that are important for some algorithms we are developing. 

Handbook of Natural Language Processing and Machine Translation 93 

1.4.3.3. SParseval Scoring 

1.4.3.4. Parsing Model 

1.4.3.4.1. Unknown Word Handling 



Chinese words such as digits and dates. For words outside of these classes, the parser ig-
nores character-level information and relies only on the rare-word part-of-speech tag sta-
tistics. In our approach, which is similar to (Huang et al. 2007), we employ a rather sim-
ple, but effective method to estimate the word emission probability, ሺݏ|ݓሻ, of an un-
known word ݓ given the latent state ݏ of some syntactic category. We use the geometric 
average of the emission probability of the characters in the word, i.e., ሺܿ|ݏሻ with ܿ 
being the ݇-th character of the word, to estimate the word emission probability: 
 ܲሺݏ|ݓሻ ൌ ඨ ෑ ܲሺܿ|ݏሻೖא௪,ሺೖ|௦ሻஷ  

where ݊ ൌ |ሼܿ א ሻݏ|ሺܿܲ|ݓ ് 0ሽ|. 
 
characters unseen in the training data are ignored in the computation of the geometric 
average. In case there is any character in the word that was previously seen in the training 
data, but only with other latent annotations, then we back off by using the rare word sta-
tistics from the state ݏ regardless of the word. 

As we can see in Table 1.17, the character based unknown word handling method 
improves performance on both recall and precision when evaluated on CTB5. 

 
Treebank Unk Recall Precision F 

CTB5 
default 82.12 82.88 82.50

character 82.84 83.22 83.03

Table 1.17. The effect of the character-based unknown word handling method. 

 

1.4.3.4.2. Robustness 

Although the grammars trained by the Berkeley parser are compact, parsing can still 
be computationally expensive because of the many fine-grained latent states to consider 
in the computation of inside-outside probabilities in the chart. Fortunately, Petrov and 
Klein (Petrov and Klein 2007a) developed an efficient coarse-to-fine parsing strategy that 
starts from simpler grammars and prunes away unlikely chart items before parsing using 
the more complex grammars. In practice, the pruning thresholds are chosen to balance the 
parsing accuracy and speed. 

Setting pruning thresholds to support robust but efficient parsing can be challenging 
over the range of parsing tasks we support in the GALE project; our parser is expected to 
parse various different materials, ranging from newswire text, which tends to be gram-
matically well formed, to ݊-best ASR outputs, many of which are poorly formed sen-
tences. It is not uncommon for thresholds that work well for parsing treebank materials to 
fail to parse less well-formed sentences we are expected to process. To support more ro-
bust parsing, we incrementally lower pruning thresholds when the current thresholds fail 
to parse a sentence and then restore the default thresholds after finishing parsing that sen-

94 Chapter 1: Data Acquisition and Linguistic Resources 

The Berkeley parser has some built-in ability to handle certain classes of unknown 



tence. With this strategy, we were able to more fully parse sentences in the GALE 
processing pipeline. We balance this with a parsing time threshold to address cases when 
sentences are too long to parse in a reasonable amount of time, returning an empty parse 
when the time threshold is exceeded. 

In addition to variable pruning thresholds, we made several other minor changes to 
the parser to improve robustness. For example, we added smoothing for the word emis-
sion probabilities associated with a word tag pair ݐ ,ݓ to eliminate zeros when a frequent-
ly observed word ݓ does not co-occur with tag ݐ in the training data. 

1.4.3.4.3. Parallelization 

The time needed to train a single-threaded Berkeley parser is acceptable for a corpus 
of moderate size. For example, it takes roughly one day to train a grammar on 
CTB5+CTB6BN. However, the training speed becomes a bigger issue when applying 
self-training strategies. For example, in the self-training experiments described in Section 
1.4.3.8, the automatically labeled training data is an order of magnitude larger than the 
treebank training set, and it takes several weeks to finish training a more complex gram-
mar. In our re-implementation of the parser, we parallelized the Expectation-
Maximization step, the most computationally intensive component of the training code to 
take advantage of the computing power of multi-core/multi-CPU machines. The resulting 
training code is about 7 times faster with 10 threads on a 16-core machine than the single 
threaded version. We parallelized the parsing code as well to improve the decoding 
speed. The MapReduce framework (Dean and Ghemawat 2005) is also naturally applica-
ble to both grammar training and sentence parsing, and this framework will be explored 
in future work. 

 

1.4.3.5. Word Segmentation and Parsing 

Written Chinese text consists of sequences of characters with no delimiters between 
words, and yet for word-based NLP applications (tagging, parsing, MT), word segmenta-
tion is a prerequisite. The output of word segmentation algorithms may vary depending 
on their different definitions of words and system engineering requirements. While word 
segmentation, in and of itself, is worthy of study, as shown in the efforts in the SIGHAN 
Chinese Word Segmentation Bakeoffs (Sproat and Emerson 2003), in this section we fo-
cus on the effect of word segmentation on parse accuracy. Discrepancies in word seg-
mentation compared to the gold standard are likely to be the source of significant error 
when comparing the parse of those words to the gold standard parse of the gold standard 
word segmentation. Consistency between the words in the gold standard trees and the 
input to the parser is likely to be an important factor for achieving greater parse accura-
cies. 

Here we will use the Penn Chinese Treebank (CTB) Segmentation Standard (Xia 
2000) because that is the resource we use to train our Chinese parser (Xue et al. 2002; 
Xue et al. 2005). In the rest of this section, we will first describe the word segmentation 
algorithms we use and then evaluate the effect of those algorithms on parse accuracy. As 
described in Section 1.4.3.3., the Sparseval tool with alignment will be used to score 

Handbook of Natural Language Processing and Machine Translation 95 



parses, because there can be mismatches between the yields of the test parses and gold 
standard trees. 

1.4.3.5.1. Word Segmentation Algorithms 

Parse accuracy can be substantially affected by the word segmentation algorithm and 
how it is trained. A word segmentation algorithm that is trained on treebank data is likely 
to produce a word segmentation that is more consistent with the treebank, and so is likely 
to result in parses with greater parse accuracy. We evaluated three different segmenters. 

The first is Fair Issac’s extension of the LDC segmenter (LNUplus) with an expanded 
dictionary (it adds words from the NYU name dictionary and the lexicon used by the 
University of Washington word segmenter), and instead of using a greedy left-to-right, 
longest dictionary entry match at each point, it uses dynamic programming to find a seg-
mentation that maximizes mean token length. This is strictly a dictionary-driven segmen-
ter, and the dictionaries it uses were not optimized to conform with CTB6. 

The University of Washington word segmenter (UW) (Hwang et al. 2006) uses a 
very large segmentation dictionary that includes frequent words extracted from GALE 
acoustic data transcripts, Chinese Gigaword2, and the Chinese treebank 6.0. It then uses 
the longest-first-match algorithm to segment the training data comprised of GALE acous-
tic data transcripts and Chinese Gigaword, and then trains an ݊ -gram LM on these 
sources and the Chinese treebank 6.0 data duplicated 5 times to weight the source more 
heavily. The language model uses a vocabulary of 70K words, with the remaining words 
mapped to a garbage word. This ݊-gram LM is then used to provide the maximum like-
lihood segmentation for a sentence. This word segmenter uses information provided by 
CTB6, but it is not optimized for the treebank. 

The Stanford Chinese Word Segmenter (Tseng et al. 2005; Chang et al. 2008) uses 
conditional random fields with character identity, morphological, and character redupli-
cation features extracted from the training data. The current segmenter also uses external 
lexicon features (Chang et al. 2008) to segment more consistently. We trained several 
versions of the Stanford segmenter: 
 

• Stanford (all) is trained using the entire Chinese Penn Treebank. This represents an 
upper bound on the parsing accuracy for the parser given this word segmentation 
approach (since the training set contains the test sentences).  

• Stanford (parser) is trained using the same training data split of the Chinese Penn 
Treebank as the parser, i.e., the CTB5+CTB6BN training set. The same dev set in 
Table 1.16 is used for development.  

• Stanford (parser+LDC) is trained under the same conditions as Stanford (parser) 
except that the training data is augmented with an additional file that was segmented 
by LDC and contains 16,448 sentences.  

• Stanford (parser+LDC+self-labeled) is trained under the same conditions as Stan-
ford (parser+LDC) except that the training data is augmented with Gale data files 
that were segmented using Stanford (parser). Hence, this segmenter was trained on 
175,852 sentences in total (24,416 from CTB5+CTB6BN training, 16,448 LDC 
hand-segmented, and 134,988 automatically word segmented). 

96 Chapter 1: Data Acquisition and Linguistic Resources 



• Stanford (parser+LDC+UW-labeled) is trained under the same conditions as Stan-
ford (parser+LDC) except that the training data is augmented with the same Gale da-
ta files as in Stanford (parser+LDC self-labeled) segmented using the UW segmen-
ter. 

1.4.3.5.2. Results and Discussion 

In Table 1.18, we compare the word segmentation and parsing performance of each 
of the segmentation algorithms and training conditions described in Section 1.4.3.5.1. 
The parser is our re-implementation of the Berkeley parser described in Section 1.4.3.4. 
The parser was trained on the CTB5+CTB6BN training set (i.e., treebank data only), and 
this parser was used to parse the CTB5 test set re-segmented by each of the word seg-
mentation models. The resulting parses were then compared with the gold standard using 
aligned bracket scoring from the Sparseval tool as described in Section 1.4.3.3. 

 
Models Word Segmentation Parser  

Recall Precision F Recall Precision F  
Treebank Segmentation 100 100 100 83.58 84.00 83.79  

LNUplus 81.70 82.50 82.10 67.46 68.29 67.87  
UW 86.60 91.60 89.00 71.15 76.71 73.83  

Stanford (all) 99.40 99.40 99.40 83.12 83.45 83.28  
Stanford (parser) 95.70 96.60 96.20 80.49 81.65 81.07  

Stanford (parser+LDC) 96.10 96.90 96.50 80.59 81.75 81.16  
Stanford (parser+LDC+self-labeled) 97.50 97.60 97.50 81.84 82.27 82.05  
Stanford (parser+LDC+UW-labeled) 89.00 90.50 89.80 74.13 75.98 75.04  

Table 1.18: Results on the Chinese Treebank 6.0 test set for different models and training configurations. 

It is not surprising that the best parsing performance is obtained using the treebank’s 
gold standard word segmentation. Parses of the sentences processed by the LNUplus and 
UW segmenters had significantly lower parse scores than was obtained given the gold 
standard word segmentation. 31 Since neither segmenter was tuned to the treebank’s word 
segmentation standard, the errors in word segmentation harm the parse accuracies great-
ly. The UW segmenter’s use of the treebank data improves its word segmentation accura-
cy relative to the LNUplus segmenter; however, the use of training data that is inconsis-
tent with the treebank’s standard plays a role in the 10% drop in parse accuracy. 

To get at the upper bound parsing performance of the Stanford segmenter, we eva-
luated parsing accuracy when it was trained on the entire treebank. Although parse accu-
racy in this case is slightly lower than that obtained with gold standard word segmenta-
tion, it is clear that match to the gold standard words is an important factor for obtaining 
accurate Chinese parses. The Stanford segmenter was able to produce fairly accurate 
word segmentations when trained on the same treebank data as the parser and achieved 
parse F-scores within 3% of those obtained using gold standard word segmentations. It is 
notable that retraining the Stanford segmenter using additional LDC-segmented data and 
self-labeled data improves both word segmentation and parsing scores. When adding au-
                                                      
31We used Bikel’s randomized parsing evaluation comparator to determine the significance (p < 0.05) of 
difference between two parsers’ output. 

Handbook of Natural Language Processing and Machine Translation 97 



tomatically labeled data to the training set, it is important that it is consistent with the 
treebank word segmentation standard, as can be observed by the decline in performance 
obtained by adding data segmented by the UW segmenter. The use of consistently self-
labeled data to re-train the segmenter improves parse performance by 1% F-measure over 
using the treebank training data alone. If parsing accuracy is important for downstream 
applications, then using a word segmenter that is tuned to the treebank standard is vital 
for achieving performance levels that are within 1-2% of those obtained with perfect 
word segmentation. 

1.4.3.6. Text Tokenization 

The UW Decatur (Zhang and Kahn 2008) text normalization process was developed 
to standardize the text pipeline stream for the Nightingale team. The value of this norma-
lization for parsing lies with the fact that a parser that is trained to match its input condi-
tions will perform better than a parser that must process highly varying data that is harder 
to model. For example, if we train the parser on the treebank, which largely contains full-
width punctuation, but the input to the parser contains only half-width punctuation, then 
the parsing performance would be reduced due to the fact that the treebank contains only 
a few half-width punctuation tokens.32 While it is a simple matter to create a second set of 
training trees with all punctuation converted to half-width and mix it with the original 
treebank training, it may not cover all the ways in which full and half-width punctuation 
occur in real-world data. However, it is a simple matter to apply the Decatur normaliza-
tion to our treebank by converting all full-width letters, digits, and punctuation marks to 
their half-width equivalents and train on the normalized trees. The Decatur tokenizer 
would then be applied to all input coming through the Nightingale pipeline to ensure that 
we have a good match between training and test conditions. 

To ensure that the Decatur tokenization does not harm parsing performance signifi-
cantly, we compare a parser trained on the original treebank CTB5 training set and tested 
on the original CTB5 test set with one trained based on Decatur normalized training and 
tested on the Decatur normalized CTB5 test set. As can be seen in Table 1.19, the parsing 
performance is slightly degraded by the normalization process, largely due to the fact that 
some punctuation distinctions are collapsed. However, because Decatur normalization 
will be carried out on all input to the parser, it eliminates a lot of the variability in the 
input that it would be hard to anticipate to adequately train the parser for the Gale pipe-
line. 

CTB5 Recall Precision F 
Original 82.84 83.22 83.03 
Decatur 82.66 83.14 82.90 

Table 1.19: Performance of the parser on CTB5 before and after Decatur normalization. 

                                                      
32If we accidentally parse sentences using a model trained with a mismatching representation of punctuation, 
say the sentence contains full-width punctuation but the parser was trained with parses containing half-width 
punctuation, then the parse accuracy would be quite low, dropping from 82.90 to 72.16 F score. This reduc-
tion in parse accuracy results because the punctuation marks are not recognized as such.  
 

98 Chapter 1: Data Acquisition and Linguistic Resources 



1.4.3.7. Genre Mapping 

Newswire stories contain a wide variety of textual phenomena, including words, 
symbolic expressions, and punctuation, using both full and half-width representations. 
When parsing newswire text, it is beneficial to normalize the input to the parser and map 
the training trees to the same normalized style to match the conditions in which the parser 
will be used. Additionally, it is important to fully utilize existing treebank resources to 
train the parser, given the limited amount of training data. Hence, we investigate the ef-
fect of combining trees from the broadcast news genre with the newswire training trees 
when training a newswire model. Table 1.20 shows the benefit of adding text normalized 
broadcast news data for training a better grammar for newswire. As we can see, the 
grammar trained on the combination of CTB5 and CTB6BN has a significantly better 
performance when evaluated on the CTB5 test set, due to the increase in domain matched 
training data. In an attempt to further boost performance, we will investigate the effect of 
combining automatically parsed newswire genre-matched trees with treebank training 
trees to further improve the newswire model in section 1.4.3.8. 
 

Training Data Recall Precision F 
CTB5 82.66 83.14 82.90 

CTB5+CTB6BN 83.36 83.95 83.65 
Table 1.20: Results on the Chinese CTB5 test set for grammars trained on different configurations. 

When parsing automatically transcribed broadcast conversation speech, the parser 
will need to process speech transcripts that are segmented into SUs using automatic sen-
tence boundary detection; hence, words will be fully verbal (i.e., no symbolic expres-
sions) and there will be no punctuation. While there is a small treebank that matches this 
genre, access to a greater diversity of speech-based trees is important for training as accu-
rate a model as possible. 

Because the annotated BC treebank is quite limited in size, a grammar trained only 
on BC treebank alone is quite poor as can be observed in Table 1.21. It is a natural idea to 
use CTB6 to enhance the training corpora for BC grammars. However, the textual nature 
of the CTB5 sub-corpus presents a challenge. One obvious difference is that the tran-
scripts of the BC treebank are verbalized, i.e., all numbers, dates, and other phenomena 
are orthographically transcribed while CTB5 contains many symbolic forms. Although 
CTB6BN should be orthographically transcribed as speech, it contains digits and other 
symbolic expressions that make it inconsistent with the BC treebank. To address the 
mismatch between the CTB6 and BC treebanks in order to use CTB6 as additional train-
ing material for BC grammars, we have developed scripts to speech normalize (i.e., ver-
balize) the CTB6 treebank. The normalization procedure considers the part-of-speech tag 
of a word, as well as its context to determine how to verbalize the word. The major nor-
malization operations include: 
 

• Verbalize all sequences of digits based on their context. If the context suggests 
that a sequence of digits represents a number, this number is verbalized accord-
ing to how it is pronounced, e.g., 12.4% is verbalized to百分之十二点四(twelve 

Handbook of Natural Language Processing and Machine Translation 99 



point four percent). Otherwise each digit is verbalized as it is pronounced indivi-
dually, e.g., 03012 is verbalized to 零三零一二(zero three zero one two). 

• Special care is taken to verbalize digits in temporal nouns. For example, 1998 is 
verbalized to 一九九八(year nineteen ninety eight), 5.4 to 五四(The May 4th 
Movement), 10:12 to 十分十二秒(ten minutes twelve seconds), etc.  

• Split foreign names with first and last names delimited by a dot or hyphen into 
two names. Web and email addresses are also split into separate tokens with ‘.’ 
and ‘@’ verbalized.  

• Remove all punctuation.  
 

Table 1.21 shows the benefit of adding the speech normalized CTB6 for training a bet-
ter grammar for conversational speech. As we can see, although the grammar trained on 
speech normalized CTB6 has a much lower performance when evaluated on the BC test 
set, its combination with the small amount of in-domain BC training data boosts the per-
formance significantly, outperforming the grammar trained on BC training data alone. 33 
We will also investigate the use of additional automatically parsed BC genre-matched 
sentences in the self-training manner to further improve parsing performance on BC data 
in section 1.4.3.8. 

 
Training Data Recall Precision F 

BC 76.89 76.48 76.69 
CTB5+CTB6BN 72.85 71.66 72.25 

BC+CTB5+CTB6BN 78.95 78.96 78.96 
Table 1.21: Results on the Chinese BC test set for grammars trained on different configurations.  

1.4.3.8. Parser Self-training 

To support self training in a semi-supervised setting, manually labeled training data is 
used to train an initial parser, which is then used to parse additional unlabeled data to 
combine with the manually labeled data to retrain a new parser. Early investigations us-
ing self-training for parser training were fairly unsuccessful at improving in-domain pars-
ing. Charniak (1997) reported that self-training does not improve the performance of a 
context-free grammar trained on the WSJ training set. Steedman et al. (2003) reported 
some degradation using a lexicalized tree adjoining grammar parser (Sarkar 2001) and a 
minor gain using Collins lexicalized PCFG parser (Collins 1999); however, this gain was 
obtained using a poor parser trained on few sentences and was expected to level out 
quickly on a larger training set. One might conclude from these investigations that either 
the self-labeled data does not provide useful information or the training algorithm used 
for the parsers does not learn useful information from the self-labeled data. 

Recently, McClosky et al. (2006) used semi-supervised training of a re-ranking pars-
er (Charniak and Johnson 2005) and obtained exciting positive results on WSJ over a 
strong baseline. Their state-of-the-art re-ranking parser consists of two components, a 

100 Chapter 1: Data Acquisition and Linguistic Resources 

                                                      
33 If we had not normalized the treebank data for speech, the parsing accuracy would have been far worse due 
to a mismatch between the training and testing conditions. 



lexicalized probabilistic 50-best parser and a discriminative reranker, which re-orders and 
selects the best of the 50-best parses returned by the first generative parser by utilizing a 
rich set of features that could not be feasibly used by the first parser. They used this two-
stage parser to parse millions of unlabeled news article sentences and retrained the first 
parser using the combination of the original labeled data and the reranker-labeled data. 
Although they did not fully explain why this two stage method works, they suggest that 
the parse trees selected by the superior reranker provides guidance for retraining the first 
parser, which in turn produces better 50-best parses for the reranker. It should be noted 
that they also reported that no improvement was obtained from self-training their genera-
tive parser. 
 

 Genre  Training Data Recall Precision F   
 NW 

CTB6 83.36 83.95 83.65   
 +unlabeled 84.28 85.28 84.78   
 BC 

 BCTB+CTB6 78.95 78.96 78.96   
  +unlabeled 79.54 79.44 79.49   

Table 1.22: The performance of self-training on both NW and BC. 

We have investigated the self-training capability of our parser on both newswire and 
broadcast conversation by utilizing a moderately large amount of unlabeled in-domain 
data. As described in Section 1.4.3.2, 210k unlabeled sentences are used for both the 
newswire and broadcast conversation genres. The results are presented in Table 1.22. For 
the NW task, self-training gains one point on F measure over the grammar trained using 
the treebank CTB6 alone. This improvement is even greater than the benefit of adding 
CTB6BN to CTB5. The improvement on the BC task is smaller but consistent across dif-
ferent random runs. Given that the number of words for self-training BC is much smaller 
than for the NW task, use of additional genre-matched data is an important next step. All 
the improvements are statistically significant. We also tried self-training using a Chinese 
port of Charniak’s generative parser on our data set but obtained no significant improve-
ment. 

We observed that many of the rule parameters of the grammar trained on CTB6 alone 
have zero probability. On one hand, this is what we want because the grammar should 
learn about impossible rule expansions. On the other hand, this might also be a sign of 
over-fitting. In contrast, the grammar obtained using self-training contains far more non-
zero rules than the grammar trained on CTB6 alone. This suggests that one of the benefits 
of using automatically labeled data is smoothing. The nature of the EM algorithm aims to 
adjust the model parameters to increase the likelihood of the training data. The greater the 
number of free parameters, the more power EM has to learn from and fit the training data. 
Resulting grammars may not generalize well when the training data is too small in size. 
We believe that the addition of automatically labeled data helps to prevent the EM algo-
rithm from over-fitting the correctly labeled training data while learning with more latent 
states. This hypothesis will be investigated further in future work. 

Handbook of Natural Language Processing and Machine Translation 101 



1.4.3.9. Conclusions 

In this section, we have explored issues such as unknown word handling and word 
segmentation in parsing Chinese, and conducted experiments that highlight the fact that 
greater newswire parse accuracy can be achieved by training on the combination of 
newswire and broadcast news parses, than by training on newswire parses alone. Addi-
tionally, we have found that self-training with a large amount of unlabeled data further 
improves parsing performance. We conjecture based on our analyses that the EM training 
algorithm is able to exploit the information available in both gold and automatically la-
beled data with more complex grammars while being less affected by over-fitting the 
treebank. Self-training should also benefit other discriminatively trained parsers with la-
tent annotations (Petrov and Klein 2007; Petrov and Klein 2008), although training would 
be much slower compared to using generative models, as in our case. 

In future work, we will evaluate the impact of using larger quantities of self-labeled 
data. As the amount of data increases, it will also be important to investigate the impact 
of weighting the self-labeled data. It is quite possible that the errors in the automatically 
labeled data could limit the accuracy of the self-trained model, especially when there is a 
much greater quantity of automatically labeled data than the gold standard training data, 
so by weighting the posterior probabilities computed for the gold and automatically la-
beled data the information provided by the gold trees will not be swamped by the errors 
in the automatically labeled trees. Another approach would be to introduce the automati-
cally labeled data at different stages of training rather than at the outset, because it is 
possible that a later introduction of the automatically labeled data, after well-founded an-
notations are learned from the treebank, would result in more effective learning. We will 
also investigate methods for automatic data selection of the automatically labeled sen-
tences in order to choose those that would be most helpful for self-training. 

 

1.4.4. Evaluating the Impact of Word Segmentation on 

Author: Nianwen Xue 

1.4.4.1. Introduction 

Word segmentation (or tokenization) has long been recognized as the first step in 
Chinese language processing and it is a problem that has generated a lot of research inter-
est in the NLP community in the last few decades (Chen and Liu 1992; Sproat et al. 
1996; Xue 2003; Gao et al. 2005; Low et al. 2005; Zhao and Kit 2008; Huang et al. 

102 Chapter 1: Data Acquisition and Linguistic Resources 

Chinese Parsing 

Because Chinese does not have conventional word delimiters like white spaces, it is 
generally assumed that a prerequisite in Chinese language processing is to perform au-
tomatic word segmentation. Despite the enormous literature on Chinese word segmen-
tation and syntactic parsing, to our knowledge, there has not been a thorough evaluation 
on the impact of word segmentation on Chinese parsing. As a result, there are often 
conflicting views on how much of a problem Chinese word segmentation is for later 
processing stages.  



2008). There has been a steady improvement in word segmentation accuracy as the re-
search shifted from early dictionary lookup approaches to statistical approaches (Sproat 
and Shih 1990; Sproat et al. 1996) and machine learning-based character-tagging ap-
proaches (Xue 2003; Gao et al. 2005; Zhao et al. 2006; Zhao and Kit 2008). It is still a 
very much active area of research in the Chinese language processing community, and 
the primary forum has been the successive SIGHAN Chinese word segmentation ba-
keoffs (Sproat and Emerson 2003; Emerson 2005; Levow 2006; Jin and Chen 2008).34 
Early successes came with the Maximum Match (Maxmatch) algorithm, a greedy search 
algorithm based on dictionary lookup. Given a text string, the algorithm looks for the 
longest word in the dictionary that matches the text from the current position. If there is a 
match, the current position is advanced past each character in that word. If there is no 
match, the algorithm starts again at the next character. There are some inherent problems 
with the Maxmatch algorithm. The performance of the Maxmatch algorithm is tied close-
ly to the completeness of the dictionary. Since a complete dictionary is impossible to 
come by, given that new words such as names constantly find their way into the lan-
guage, Chinese word segmentation is insolvable by the Maxmatch algorithm alone. In 
addition to new words, some character sequences are inherently ambiguous and the 
Maxmatch algorithm would consistently get it wrong in contexts where shorter words are 
the correct segmentation. For example, there are two perfectly legitimate segmentations 
for the character sequence “个-人”, depending on the context, e.g., “一/one  个/CL 人
/person” vs. “个人/individual 所得税/income tax”. The Maxmatch algorithm would con-
sistently get the latter but miss the former. To address the weaknesses of the Maxmatch 
algorithm, statistical approaches such as mutual information were proposed to capture the 
strength of the internal binding between the two characters within a word (Sproat and 
Shih 1990). However, mutual information based approaches have their own limitations. 
Mutual information for words longer than two characters is hard to define, and it is not 
straightforward to incorporate a dictionary in this framework, thus losing the benefit of a 
dictionary, in spite of the fact that no dictionary is complete. More recently, Chinese 
word segmentation has been formulated as a character tagging problem where each cha-
racter in the text is labeled with a tag indicating its position within a word (Xue 2003). 
Combined with supervised machine learning methods this approach has consistently out-
performed other approaches in the SIGHAN Bakeoffs (Xue and Shen 2003; Low et al. 
2005; Zhao and Kit 2008) and produces state-of-the-art results. Top performing systems 
have consistently achieved accuracy that are in the high nineties (above 95%) using a 
wide range of benchmarks. 

As large-scale hand-parsed Chinese corpora such as the Chinese Treebank (Xue et al. 
2005) became available, there as has been considerable work done on Chinese parsing as 
well (Levy and Manning 2003; Bikel 2004). However, Chinese parsers, at least by North 
America based researchers, are mostly extensions of English parsers. The same basic as-
sumptions and methodologies are carried over from English to Chinese. With rare excep-
tions such as Luo (2003), most Chinese parsers assume word-segmented sentences as 
input and parsing accuracy is reported assuming gold standard word segmentation. In 
real-world applications, however, Chinese text has to be automatically segmented and 
there is inevitable degradation in parser performance caused by segmentation errors. As 

                                                      
34 SIGHAN is a special interest group under ACL focusing on Chinese language processing. Website: 
www.sighan.org 

Handbook of Natural Language Processing and Machine Translation 103 



far as we know, no formal evaluation on the effect of automatic word segmentation on 
parsing accuracy has been performed, although in informal settings in the GALE com-
munity there has been talk that parsing accuracy drops substantially when automatic word 
segmentation is used as input. The goal of this section is to elucidate this issue by per-
forming a formal analysis and see how much impact word segmentation has on syntactic 
parsing. 

1.4.4.2. Methodology 

To perform such an analysis we obviously need i) training and test data, ii) a Chinese 
word segmenter, iii) a Chinese parser, and iv) an evaluation metric. For training and test 
data we use the Chinese Treebank 6.0 (CTB6.0).35 CTB 6.0 has three main sources: Xin-
hua newswire, Sinorama magazine articles, and broadcast news.36 The LDC release of 
CTB 6.0 has a recommended training set, development set, and test set and the data split 
can be found in CTB 6.0 documentation. The test set can be further divided into three 
subsets: the Xinhua newswire, the Sinorama and the broadcast news test sets. The train-
ing set has 639,697 words, consisting of roughly equal amount of Xinhua newswire, Si-
norama and broadcast news data. The test sets also have roughly the same size: the Xin-
hua test set has 24,801 words, the Sinorama test set 28,879 words and the broadcast news 
test set 27,744 words. Both our word segmenter and parser are trained on the training set 
as a whole and tested separately on each of the three test sets. The Chinese parser we use 
is the Bikel parser (Bikel 2004) retrained on this training set without any further optimi-
zation, so the parsing results we present in this section may not be the best possible per-
formance it can achieve. However, we believe that the performance is good enough so 
that whatever conclusion we draw from our experiments here will not be affected by the 
accuracy of the parser. The word segmenter is a Maxent-based Chinese word segmenter 
we developed in-house. The test data is first segmented by the Maxent word segmenter, 
and then parsed by the Bikel parser, and evaluated with the SParseval metric (Roark et al. 
2006) and the CParseval metric we developed proposed. It is reasonable to assume that 
word segmentation accuracy will have a great impact on parsing accuracy as the latter 
takes the former as input, so it is important to use a state-of-the-art word segmenter so as 
to evaluate the impact of word segmentation on Chinese parsing given the current state of 
the art. It is also important to look at the evaluation metric very closely and examine the 
assumptions based on which the evaluation metrics are formulated. In the next two sec-
tions, we will look at these two aspects in greater detail. 

1.4.4.3. Word Segmentation 

The word segmenter we used for our experiment is an improved version of the word 
segmenter described by Xue (2003). The word segmenter formulates Chinese word seg-
mentation as a character-tagging problem. The idea is to label each character in a sen-
tence with its position in a word, and then reconstitutes the words in a sentence based on 
the character position labels. There are four possible positions for a character: in the be-

                                                      
35 Available from the Linguistic Data Consortium. Website: www.ldc.upenn.edu 
36 A small amount of Hong Kong news has been folded into Xinhua newswire section in CTB 6.0. 

104 Chapter 1: Data Acquisition and Linguistic Resources 



ginning (LL), in the middle (MM), in the end (RR), or a word by itself (LR). Based on 
this formulation, the word sequence in (1a) would be labeled as (1b). The training data 
for the segmenter is derived from the training set in CTB 6.0 and a Maxent classifier is 
trained to tag un-seen data. The labeled data is then converted back to word sequences. 

 
a. 上海计到本世纪末实现人均国内生产总值五千美元 

b. 上/LL 海/RR 计/LL 划/RR 到/LR 本/LR 

世/LL 纪/RR 末/LR 实/LL 现/RR 人/LL 

均/RR 国/LL 内/RR 生/LL 产/RR 总/LL 

值/RR 五/LL 千/RR 美/LL 元/RR 
c. Shanghai plans to reach the goal of 5,000 dollars in per capita GDP by the end of 

the century.  
 

The features used in the (Xue 2003) are fairly simple and they are character unigrams 
and bigrams extracted from a five character window, consisting of the current character 
(C0), the previous two characters (C−1 and C−2), and the next two characters (C1, C2), as 
well as, the tags of the previous two characters (T−1, T−2 ). The full list of features is de-
scribed below: 
 

a. Character unigrams: current character (C0), the previous (next) two 
characters (C−1 , C−2 , C0, C1, C2)  

b. Character bigrams: the conjunction of the previous (next) character 
and the current character (C−1C0 , C0 C1) , the previous two characters 
(C−1C−2 ) and the next two characters (C1 C2), the previous and the 
next character (C−1C1 ) 

c. Tags: the tags of the previous two characters (T−1 and T−2 ) 
 

This simple tagset is effective in predicting shorter words, but often makes mistakes 
with longer words such as numbers (e.g. 一百五十六点七八/1256.78), time expressions 
(e.g. 二零零九年/2009), idioms (e.g. 一目了然/clear at first sight) and names (e.g. 阿尔
及利亚/Algeria), which often consist of four or more characters. To address these short-
comings, the improved segmenter used in our experiments also uses regular expression-
based features, features extracted from a name list and an idiom list. These features are: 
 

a. The position of the current character (C0 ) in a number, where the val-
ues for the position are “ln” (left of a number),”rn” (right of a num-
ber) or “mn” (middle of a number). For example, if the current posi-
tion is 点, then its position is “mn” in一百五十六点七八 

b. The position of the current character in a time expression, where the 
values for the position are “lt” (left of a time expression), “rt” (right of 
a time expression), or “mt” (middle of a time expression).   For exam-
ple, the position of  二  is  “lt”  in  二零零九年  if it is the current 
character.  

Handbook of Natural Language Processing and Machine Translation 105 



c. The position of the current character in an idiom, where the values of 
the position are “li” (left of an idiom), “ri” ( the right of an idiom), or 
“mi”, (the middle of an idiom). For example, the position of 然 is “ri” 
in the idiom 一目了然 

d. Whether the current  character  starts  or  ends  a name. For example, 
if the character sequence C0C1 matches the first two characters of a 
name, the feature “StartName” is extracted. If the current and the pre-
vious character match the last two characters of a name, then the fea-
ture “EndName” is added. For example, if C0=阿 and C1 =尔, then the 
feature “Start-Name” is extracted given 阿尔及利亚 is in the name 
list.  
 

Adding these features to the classifier cleaned up the errors with numbers, time ex-
pressions, names and idioms and improved the overall word segmentation accuracy sig-
nificantly. Table 1.23 presents the word segmentation accuracy for each of the three test 
sets described in Section 1.4.4.2 when trained on the entire training set. For reasons that 
are not entirely clear, the accuracy for the Sinorama data is significantly lower than the 
other two sources, the Xinhua newswire and the broadcast news. The accuracy for the 
broadcast news is slightly lower, as expected because it is transcribed from speech data 
and is slightly noisier. Overall, the accuracy is comparable to that of the best systems in 
the SIGHAN bakeoffs. This allows us to measure the impact of word segmentation on 
syntactic parsing given the current state of the art. 

 
genre precision recall f-score 
bn 95.36 95.51 95.44 
xinhua 96.80 96.25 96.52 
Sinorama 93.18 92.46 92.81 

Table 1.23: Word Segmentation Accuracy. 

1.4.4.4. Evaluation Metric: SParseval vs. CParseval 

In over a decade, most of results on parsing are re-ported with the Evalb software us-
ing the Parseval metric, which measures the precision (the number of matched constitu-
ents between the treebank parse and the parser output to the total number of constituents 
in the parser output) and recall (the number of matched constituents to the total number 
of constituents in the treebank) and the F1 measure, which is a harmonic mean between 
precision and recall.  

A key assumption for the Parseval metric is that there is a complete match between 
word tokens in a treebank parse and those in the parser output for a given sentence, an 
assumption that does not hold when parsing Chinese with automatic word segmentation 
as input.37 One can imagine a trick that uses the characters instead of words as terminals 
in the parse tree. However, such a metric is essentially a combined metric of word seg-
mentation and parsing, and given the reasonable assumption that word segmentation is 

                                                      
37 http://nlp.cs.nyu.edu/evalb 

106 Chapter 1: Data Acquisition and Linguistic Resources 



substantially easier than syntactic parsing because the latter builds larger structures, the 
resulting accuracy is inflated and is incomparable with parsing accuracy reported for oth-
er languages using the Parseval metric.  

The SParseval metric (Roark et al. 2006), which is developed to evaluate parsing ac-
curacy on transcribed speech data and does not assume total match between word tokens 
in the gold standard parse and the parser output, seems like a natural alternative. So SPar-
seval is the first evaluation metric we tried. When examining the evaluation results, we 
noticed that the metric penalizes word segmentation errors severely, even though word 
segmentation is not the target of the evaluation. For example, the two parses in the exam-
ple below only differ in the segmentation of 全球(“the whole world”). However, when 
the two parse trees are compared, the SParseval metric returns a recall (precision as well 
since there is the same number of constituents in the two parse trees) of 11/13 = 0.84. 
Apparently, both layers of NP that dominate this character sequence are considered to be 
wrong by the SParseval metric due to the different segmentations of this character string. 
The SParseval seems to be overly harsh, especially considering that there are cases in 
Chinese where reasonable people differ as to what the correct word segmentations are.  

To address this problem, we developed an alternative CParseval metric that assumes 
a constituent is correctly parsed if it spans over the same character sequence as a consti-
tuent in the gold standard parse. This metric factors out word segmentation errors when 
evaluating syntactic parses. With this metric, there is a complete match between (a) and 
(b), below. 
 

a. (IP (NP-SBJ (NP (NN全球)) 
(QP (OD 第五) 

(CLP (M 个))) 
(NP-PN (NR 迪斯尼) 

(NN 乐园))) 
(VP (ADVP (AD 即将)) 

(PP-LOC (P 在) 
(NP (PN 这里))) 

(PP-DIR(P 向) 
(NP (NN 公众 ))) 

(VP (VV 开放))) 
(PU 。)) 

  
b. (IP (NP-SBJ (NP ( NN 全)( NN 球)) 

(QP (OD第五)  
(CLP (M 个))) 

(NP-PN(NR迪斯尼) 
(NN乐园))) 

(VP (ADVP (AD 即将)) 
(PP-LOC (P 在) 

(NP (PN 这里))) 
(PP-DIR(P 向) 

(NP (NN 公众 ))) 
(VP (VV 开放))) 

(PU 。)) 

Handbook of Natural Language Processing and Machine Translation 107 



1.4.4.5. Experimental Results 

With the evaluation metrics in place, we are ready to report parsing evaluation re-
sults. The parsing results are reported for the Bikel parser retrained on the training set and 
tested on the three test sets described in Section 1.4.4.2. The accuracy is reported in terms 
of labeled F1 measure and all nodes in the tree are counted, including unary nodes. There 
are three points of comparison in the results presented Table 1.24. The results are for all 
three sources (Xinhua, Sinorama and Broadcast news) of CTB 6.0, and the parser takes 
both gold standard and automatic word segmentations as input, and the parser output is 
evaluated against both SParseval and CParseval metrics.  

When gold standard word segmentation is used as input, the CParseval metric consis-
tently returns slightly lower parsing accuracy, indicating CParseval is not generally a 
more lenient metric than SParseval. However, when automatic word segmentation is used 
as input to the parser, the accuracy returned by the CParseval metric is consistently high-
er, indicating a significant number of errors reported with the SParseval metric are due to 
incorrect word segmentation. The constituents built on top of wrongly segmented words 
may not be incorrect in that they still span over the correct character strings.  

 
Genre Seg SParseval (f1) CParseval (f1) 

    
Xinhua gold 80.37 79.52
Xinhua auto 75.93 77.13
Sinorama gold 71.37 70.20
Sinorama auto 63.41 65.96
BN gold 79.39 78.51
BN auto 74.56 76.44

 
Table 1.24: Comparing SParseval and CParseval. 

The third point to notice is that Sinorama data is substantially harder to parse than the 
other two sources, and there is also a larger divide between the parsing accuracy for gold 
standard and automatic word segmentations and presumably this is due to the lower word 
segmentation accuracy for this data set. Over-all, the parsing performance degradation 
caused by using automatic word segmentation ranges from 2% to 4% using the CParseval 
metric, and from 4% to 8% using the SParseval metric. 

108 Chapter 1: Data Acquisition and Linguistic Resources 

 

Table 1.25 presents results with unary nodes included or excluded, using just the CPar-
seval metric. When unary nodes are excluded from calculation, the accuracy is consis-
tently higher for all three sources and for both experimental conditions (when gold stan-

 
Translation: The fifth Disney World around the globe is going to be open here to the pub-
lic soon. 



 
Genre  Seg F1 (w/o unary) F1 (w/ unary) 

Xinhua  gold 81.47 79.52
Xinhua  auto 79.04 77.13
Sinorama gold 72.72 70.20
Sinorama auto 68.36 65.96
BN  gold 80.60 78.51
BN  auto 78.47 76.44

Table 1.25: CParseval labeled accuracy with and without unary nodes. 

1.4.4.6. Conclusion 

1.4.5. Combining Discriminative Re-ranking and Co-training 
for Parsing Mandarin Speech Transcripts  

Author: Wen Wang 

1.4.5.1. Introduction 

Discriminative re-ranking has significantly improved parsing performance, and co-
training has proven to be an effective weakly supervised learning algorithm to bootstrap 
parsers from a small in-domain seed labeled corpus using a large amount of unlabeled in-
domain data. In this section, we present systematic investigations on combining discri-
minative re-ranking and co-training, including co-training reranked parsers and co-
training rerankers. We show that combining discriminative re-ranking and co-training 
could improve the F-measure by 1.8%–2% absolute compared to co-training two state-of-
the-art Chinese parsers without re-ranking for parsing Mandarin broadcast news and con-
versation transcripts. 

Parsing aims at resolving structural ambiguity. State-of-the-art statistical parsers re-
quire treebanks to estimate their parameters, but their performance degrades when there 
is mismatch on genres/domains between the training treebank and the data to parse. Fur-
thermore, creating a high-quality in-genre/in-domain treebank for the data to parse is ex-

Handbook of Natural Language Processing and Machine Translation 109 

dard word segmentation or automatic word segmentation is used as input to the Bikel 
parser). It is also interesting to note that the difference is around 2% by F1 measure for all 
experimental conditions. 

This section reports an attempt to formally evaluate the impact of automatic word 
segmentation on syntactic parsing. Given a state-of-the-art word segmenter, the degrada-
tion in parsing performance when using the automatic word segmentation as input ranges 
from 4% to 8% in F1 score by the SParseval metric, depending on the source. We also 
described the CParseval metric that factors out the word segmentation errors from the 
parsing accuracy calculation. By this metric the parsing accuracy degradation is 2% to 
4% in F1 score. The substantial drop in accuracy floated around informally in the GALE 
community is likely a result of lower word segmentation accuracy and overly harsh eval-
uation metrics. 



pensive and difficult. However, under the GALE program, there are new genres besides 
newswire text, namely, broadcast news (BN), broadcast conversation (BC), newsgroup 
(NG), and web log (WL). Generating high-quality parse trees for Chinese data in these 
genres can be useful for various tasks within GALE, including syntax-guided translation 
and reordering models for Chinese-to-English machine translation (MT), name entity de-
tection, and structured language modeling for automatic speech recognition (ASR) on 
Mandarin BN and BC audio.  

In our earlier research (Wang 2008), we employed the weakly supervised co-training 
technique on two state-of-the-art parsers, Charniak's parser and the Berkeley parser, to 
bootstrap them from a newswire Chinese treebank and a small amount of BN and BC 
seed annotated treebank with a large amount of unlabeled BN and BC transcripts, in or-
der to achieve high parsing accuracy on Mandarin BN and BC transcripts. By employing 
co-training, we obtained 2.2% – 2.6% absolute improvement on F-measure for parsing 
BN and BC transcripts. F-measure is based on labeled Precision (LP) and labeled Recall 
(LR). LP is the number of correct constituents divided by the number of constituents 
found by the parser, and LR is the number of correct constituents divided by the number 
of constituents in the gold parse. F -measure is defined as F1ൌ ଶPRPାR  . On the other hand, 
discriminative re-ranking for parsers (Collins and Koo 2005; Charniak and Johnson 
2005) has produced significant improvement on parsing accuracy. In this section, we ex-
plore the effectiveness of combining discriminative re-ranking and co-training to further 
improve parsing performance on Mandarin BN and BC transcripts. 

1.4.5.2. Discriminative Re-ranking 

We first describe our use of the RankBoost-based discriminative re-ranking approach 
that was originally developed by Collins and Koo (Collins and Koo 2005) for parsing. 
This approach allows us to investigate the impact of various features on Mandarin pars-
ing performance. The re-ranking algorithm takes as input a list of candidates produced by 
a Chinese parser and reranks these candidates based on a set of features. For training the 
reranker for the parsing task, there are n sentences ሼݏ   ݅ ൌ  1,, ݊ሽ each with ni candi-
dates ሼݔ, ൌ  1,, ݊ሽ  along with the log-probability ܮሺݔ, ሻ  produced by the parser. 
Each parsing candidate ݔ,  in the training data has a score ܵܿ݁ݎሺݔ, ሻ  that measures 
the similarity between the candidate and the gold reference. For parsing, we use parse 
accuracy as the similarity measure. Without loss of generality, we assume that ݔ,ଵ has the  
highest  score,  i.e. ܵܿ݁ݎሺݔ,ଵ ሻ   ൌ ݆ ݎ݂ , ሻݔሺ݁ݎܿܵ    2,, ݊ . A set of indicator 
functions ሼ݄   ݇ ൌ  1,, ݉ ሽ is used to extract binary features, ሼ݄ሺݔ, ሻ   ݇ ൌ  1,, ݉ ሽ on each example ݔ, . Each indicator function ݄ is associated with a weight para-
meter ߙ  that is real valued.  In addition, a weight parameter ߙ  is associated with the 
log-probability ܮሺݔ, ሻ . The ranking function of candidates ݔ,   is defined as αܮሺݔ,ሻ    ∑ ୀଵߙ ݄ሺݔ,ሻ. The objective of the training process is to set the parame-
ters ߙത ൌ  ሼߙ, ,ଵߙ ڮ ,  ሽߙ  to minimize the loss function ݏݏܮሺߙതሻ  (which is an upper 
bound on the training error), as ݏݏܮሺߙതሻ ൌ  ∑ ∑ ܵ,ୀଶ ݁ିெ,ೕሺఈഥሻ where ܵ,  is the weight 
function that gives the importance of each example, and ܯ, ሺߙതሻ is the margin (Collins 

110 Chapter 1: Data Acquisition and Linguistic Resources 



and Koo 2005). All the ߙ 's are initially set to zero. Then a greedy sequential optimiza-
tion method is used in each boosting round to select the feature that has the most impact 
on reducing the loss function and then update its weight parameter accordingly. 

Collins' method allows multiple updates to the weight of a feature. Huang et al. 
(2007) found that for those strong features, Collins' weight update formula can increase 
their weight (in absolute value) in only one direction. Although these features are strong 
and useful, setting weights too large can be harmful in that it limits the use of other fea-
tures for reducing the loss. Based on this analysis, Huang et al. (2007) have developed an 
update-once method, in which the weight update is limited so that once a feature is se-
lected in a certain iteration and its weight parameter is updated, no update will be con-
ducted on it again. In this way, the weights of the strong features will not be allowed to 
prevent other features from being considered during the training procedure. Huang et al. 
observed that the update-once method could select significantly more features compared 
to Collins' original method and produce better reranking performance. In this section, we 
employed this update-once strategy for updating feature weights 

For the work described in this section, we employed the features described by Collins 
and Koo (2005). Note that before generating these features, we applied headword perco-
lation on the trees that are the output of parsers, as employed by Collins and Koo (2005). 
Features include rules (all context-free rules in the tree), bigrams (adjacent pairs of non-
terminals to the left and right of the head), grand-parent rules (same as rules, but also in-
cluding the non-terminal above the rule), head-modifiers (all head-modifier pairs, also 
including the grandparent non-terminal), and PPs (lexical trigrams involving the heads of 
arguments of prepositional phrases) and so on. More details are presented by Collins and 
Koo (2005). 

1.4.5.3. Co-training 

Co-training was first introduced by Blum and Mitchell (Blum and Mitchell 1998) as a 
weakly supervised learning method and can be used for boot-strapping a model from a 
seed corpus of labeled examples, which is typically quite small, augmented with a much 
larger amount of unlabeled examples, by exploiting redundancy among multiple statistic-
al models that generate different views of the data. Informally, co-training can be de-
scribed as picking multiple classifiers (“views”) of a classification problem, building 
models for each view and training these models on a small set of labeled data, then on a 
large set of unlabeled data, sampling a subset, labeling the sampled subset using the mod-
els, selecting examples from the labeled results, adding them to the training pool, and 
iterating this procedure until the unlabeled set is all labeled. 

In Figure 1.13, when calling the classifier that provides additional training data for 
the opposite classifier the teacher and the opposite classifier the student, since the labeled 
output from both classifiers h1 and h2 is noisy, an important question is which newly la-
beled examples from the teacher should be added to the training data pool of the student. 
This issue of example selection plays an important role in the learning rate of co-training 
and the performance of resulting classifiers. In previous work, investigated four example 
selection approaches, namely, naive co-training, agreement-based co-training, max-
score, and max-t-min-s (Wang 2008). We also developed the max-score and max-t-min-s 

Handbook of Natural Language Processing and Machine Translation 111 



approaches (Wang et al. 2007). We also compare the performance of co-training to self-
training. Self-training in this work simply adds all examples in the labeled cache to the 
training pool in each iteration (Nigram and Ghani 2000). 
 

   Input: S is a seed set of labeled data.    ܮభis labeled training data for h1.    ܮమis labeled training data for h2. 
   U is the unlabeled data set. 
   C is the cache holding a small subset of U. 
భܮ  1  ՚ S 
మܮ  2  ՚ S 
3  Train classified h1 on  భܮ
4  Train classified h2 on  మܮ
5  repeat 
6  Randomly partition U into C where |ܥ| ൌ  and ܷᇱ ݑ
7  Apply h1, h2 to assign labels for all examples in C 
8  Select examples labeled by h1 and add to ܮభ 
9  Train h2 on  మܮ
10  Select examples labeled by h2 and add to ܮభ 
11  Train h1 on  భܮ
12  ܷ ՚ ܷᇱ 
13  until U is empty 

Figure 1.13: General co-training algorithm. 

In previous work (Wang 2008), we systematically investigated applying weakly su-
pervised co-training approaches to improve parsing performance for parsing Mandarin 
BN and BC transcripts, by iteratively retraining two competitive Chinese parsers, Char-
niak's re-ranking parser (Charniak and Johnson 2005) and the Berkeley parser (Petrov et 
al. 2006), from a small set of treebanked data and a large set of un-labeled data. Com-
pared to parsers trained only on the small in-domain seed labeled corpus, the parsers re-
sulting from co-training could gain 6.8% absolute on BN and 7.3% absolute on BC based 
on the F-measure.  

Overall, compared to parsers trained on all available treebank data including in-
domain and out-of-domain treebanks, co-training yields a 2.2%– 2.6% absolute gain on 
BN and 2.4% – 2.5% absolute gain on BC based on the F-measure (and 1.5% – 1.9% ab-
solute gain on BN and 1.7% – 2.0% absolute gain on BC over self-training (Wang 
2008)). In this section, we investigate the combination of discriminative re-ranking and 
co-training on Charniak's maximum-entropy inspired parser (Charniak 2000) (i.e., the 
parser without re-ranking compared to the parser of Charniak and Johnson (2005)) and 
the Berkeley parser (also originally without re-ranking). For co-training parsers, we em-
ployed the max-t-min-s example selection approach, as it is computation-ally inexpensive 
and also produced the best performance (Wang 2008).  

112 Chapter 1: Data Acquisition and Linguistic Resources 



1.4.5.4. Combining Re-ranking and Co-training 

Both Charniak and Berkeley parsers support generating N-best parses for re-ranking 
purposes. In fact, Charniak and Johnson have implemented a discriminative reranker us-
ing a MaxEnt estimator to find the feature weights and when using the reranker to rerank 
50-best parses from Charniak's Maximum-entropy inspired parser, it improved F-measure 
by 1.3% absolute on sentences of length less than 100 words in Wall Street Journal Penn 
Treebank section 23 (Charniak and Johnson 2005). 

In this work, we adopted this reranker for Charniak's parser, implemented the Rank-
Boost-based re-ranking algorithm described in Section 1.4.5.2 to rerank 50-best from the 
Berkeley parser, and then investigated two ways to combine re-ranking and co-training. 
The direct combination approach is for each iteration of co-training, instead of generating 
1-best parse directly from the no-re-ranking, standard Charniak and Berkeley parsers, 50-
best parses are generated from each parser and then reordered by their cor-responding 
rerankers, respectively. Then the 1-best parses after re-ranking for the unlabeled data are 
selected and added to the training pool of the parsers. In this section this approach is de-
noted co-training reranked parsers. Note that for this approach the features and feature 
weight parameters for rerankers remain the same during the co-training procedure. 

Different from the original binary classification problems on which co-training was 
developed, parsing contains a number of smaller decisions about which constituents are 
probable, and inherently each parser includes good and bad decisions on how to 
create/attach different constituents. On the other hand, re-ranking is closer to binary clas-
sification than parsing, as it tries to decide whether or not a parse hypothesis is the best 
parse for the sentence, so it is explicit to maximize agreement between rerankers, as the 
principled agreement-based example selection approach could be applied here, which 
could guarantee co-training to improve parsing accuracy. Hence, we hypothesize that co-
training rerankers could better fit the co-training algorithm. For effectiveness, rerankers 
can consider features that span the entire tree of a parse (while parsers generally consider 
only local features). For efficiency, co-training rerankers requests unlabeled data to be 
parsed just once, compared to multiple parsing iterations for co-training reranked parsers. 
The output will be reranked many times, but this is much more efficient than training and 
running parsers. Hence, in this work, we also investigated co-training our RankBoost-
based reranker with Charniak's and Johnson's MaxEnt reranker and applied the co-trained 
rerankers to the two standard parsers. This second approach is denoted co-training re-
rankers. 

1.4.5.5. Data 

For selecting parsers and also contributing to training parsers, we used Chinese Tree-
bank 5.2 released by LDC (denoted as CTB). Chinese Treebank 5.2 contains 500K 
words, 800K characters, 18K sentences, and 900 data files. Under the GALE program, 
the BN genre follows its tradition and consists of “talking head” style broadcasts, i.e., 
generally one person reading a news script. The BC genre, by contrast, is more conversa-
tional and spontaneous, consisting of talk shows, interviews, call-in programs, and round-
tables.  

Handbook of Natural Language Processing and Machine Translation 113 



ducted on the GALE OntoNotes released Mandarin BN and BC treebanks. The BN tree-
bank is from the Mandarin TDT4 collection, and the BC treebank is from GALE Manda-
rin BC data and translations from English BC data. The Mandarin BN treebank includes 
300K words and 814 data files, and the BC treebank 100K words and 16 data files.  

To create a seed corpus and a test set for evaluating parsing accuracy, for BN and BC 
respectively, we divided the whole BN/BC treebank into blocks of 10 files by sorted or-
der. Within each block, the first file is used for co-training development and the second 
for testing parsing accuracy. The remaining eight files are used as part of the seed anno-
tated corpus for co-training. The resulting BN test set is denoted BN-test and the seed 
annotated corpus BN-seed. The BC test set is de-noted BC-test and the BC seed anno-
tated corpus BC-seed. BN-test includes 31K words and 1,565 sentences. BC-test includes 
11K words and 1,482 sentences. The large set of unlabeled data for BN parsing includes 
Hub4 1997 Mandarin BN acoustic transcripts, LDC Chinese TDT {2,3,4}  corpora, Chi-
nese Gigaword 3.0, and all GALE released BN audio transcripts, denoted BN-unlabeled. 
For BC parsing, we add all GALE released BC audio transcripts denoted BC-unlabeled. 
After word segmentation, BN-unlabeled comprises around 1.4 billion words and BC-
unlabeled around 11 million words. 

1.4.5.6. Selecting Parsers for Co-training 

 
Parser F-measure 
Charniak 83.2% 
Stanford 82.0% 
Berkeley 83.5% 
Bikel 82.9% 

Table 1.26: F-measure of all four parsers on the CTB test set. The train/dev/test split is described in Section 
1.4.5.5. 

To select the two parsers for co-training, we investigated four publicly available 
parsers, namely, Charniak's maximum-entropy inspired parser (Charniak 2000), the Stan-
ford unlexicalized parser (Klein and Manning 2003), Berkeley parser (Petrov et al. 2006), 
and Dan Bikel's reimplementation of Michael Collins' Model 2 parser (Collins 1999). To 
select two from them in our co-training setup, we considered two important factors: accu-
racy and mutual complementariness. To evaluate parser accuracy, we consider the F-
measure. Using the train/dev/test split described in Section 1.4.5.5, Table 1.26 shows the 
F-measure of all four parsers on the test set. 

The co-training principle requires the two views to be conditionally independent or 
weakly conditionally independent. This means that we need to select parsers that are 
complementary on their learning patterns and error types. To measure the structural com-
plementariness between parsers, we adapted the measure of structural consistency be-
tween parsers and modified the objective function for maximizing the structural comple-
mentariness between parsers to be selecting parsers with the minimal structural consis-
tency.  

114 Chapter 1: Data Acquisition and Linguistic Resources 

The evaluation of co-training for parsing Mandarin BN and BC transcripts is con-



parsers and gold standard parses, Black, Garside, and Leech (Black et al. 1993) defined 
the metric average crossing brackets (ACB), the mean number of times per sentence that 
a bracketed sequence from one parser overlaps with the gold standard from the treebank 
such that neither is properly contained in the other. Although ACB does not account for 
all types of conflicting constituency, it is a practical measure for the structural consisten-
cy between two sets of parse trees.  

By using the output from one parser B as the gold set, we can calculate the pair-wise 
ACBAB of parser A on parser B. The  ACB  values  on  the  CTB  test  set  among all  six  
pairs  from  the  four  parsers  are  ordered  as {Charniak,  Stanford},  2.11;  {Berkeley,  
Stanford}, 2.09; {Charniak, Bikel}, 2.05; {Berkeley, Bikel}, 2.01; {Charniak, Berkeley}, 
1.99; {Bikel, Stanford}, 1.87. Since we need to achieve the best combination of maximiz-
ing parsers' accuracy and maximizing their mutual complementariness (i.e., maximizing 
their pair-wise ACB), we selected Charniak's maximum-entropy inspired parser and the 
Berkeley parser for co-training. 

 

1.4.5.7. Experimental Results and Discussions 

Training Condition F-measure (%)
  Charniak Berkeley 
1. BN-seed 75.1 75.2 
2. CTB 79.1 79.1 
3. CTB+BN-seed 80.4 80.5 
4.  co-training initialized as 

Condition 3, max-t-min-s 82.3 82.6
Table 1.27: Overall parsing accuracy F-measure (%) on the Mandarin BN treebank test set, BN-test, after 
applying co-training using Charniak's maximum-entropy inspired parser and the Berkeley parser, both with-
out re-ranking. 

Table 1.27 shows the parsing accuracy F-measure (%) on BN-test under various 
parser training conditions on Charniak's parser and the Berkeley parser without re-
ranking. As can be seen from the table, training Charniak's parser and the Berkeley parser 
using only the small training set of BN treebank, i.e., BN-seed, resulted in relatively poor 
parsing performance, at 75.1% F1 for Charniak's parser and 75.2% for the Berkeley pars-
er. Using the larger full CTB corpus for training improves parsing performance signifi-
cantly and adding BN-seed to CTB brought additional gain. However, co-training using 
CTB plus BN-seed as the initial training pool significantly improved the performance of 
the two parsers over directly training on CTB plus BN-seed, with 1.9% absolute and 
2.1% absolute improvement on F-measure for Charniak's parser and the Berkeley parser, 
respectively.  

For co-training carried out in these experiments, we used cache size as 10K sen-
tences.  Table 1.28 shows the F-measure from the two no-re-ranking parsers on BC-test 
under various training conditions. The condition BN-co-trained denotes the BN-seed 
treebank and the final annotated BN-unlabeled data after applying max-t-min-s co-
training to the two parsers initialized on the BN-seed treebank. BN-co-trained signifi-
cantly outperforms CTB, indicating greater similarity between the two speech genres 

Handbook of Natural Language Processing and Machine Translation 115 

Note that to measure the structural consistency between the bracketing parses from 



compared to CTB vs. BC. Using CTB and BN-seed to initialize the two parsers and then 
co-training on the BN-unlabeled data achieved further gain on parsing performance, de-
noted by (CTB+BN)-co-trained. Consistent with Table 1.27  it is always helpful to add 
the small in-genre seed treebank into training, as (CTB+BN)-co-trained+BC-seed out-
performs (CTB+BN)-co-trained. Co-training on BC-unlabeled also produced consistent 
improvement on F-measures.  

Overall, we gained 2.5% absolute on F-measure on BC-test over the two parsers from 
co-training. Using the same BC-unlabeled data for co-training, we also compared initia-
lizing the two parsers with the condition of CTB only and the condition of adding the 
small BN-seed and BC-seed corpora, and observed that adding this small in-genre seed 
corpus always outperforms initializing with CTB only, by 1% on BN and 1.4% on BC. 

 
Training Condition F-measure (%) 
  Charniak Berkeley 

1. BC-seed 72.0 72.8 

2. CTB 73.4 73.7 

3. BN-co-trained 74.7 74.8 

4. (CTB+BN)-co-trained 75.6 75.7 

5. (CTB+BN)-co-trained+BC-seed 76.8 77.0 
6.   co-training initialized as Condition 5, 

max-t-min-s 79.3 79.5 

Table 1.28: Overall parsing accuracy F-measure (%) on the Mandarin BC treebank test set, BC-test, after 
applying co-training using Charniak's maximum-entropy inspired parser and the Berkeley parser, both with-
out re-ranking. 

Training Condition BN-test F-measure (%) BC-test F-measure (%) 
 Charniak Berkeley Charniak Berkeley 

co-training standard parsers 82.3 79.3 79.5 82.6 

co-training reranked parsers 83.8 81.0 81.1 84.0 
co-training rerankers 84.0 81.5 81.5 84.4 

Table 1.29: Overall parsing accuracy F-measure (%) on BN-test and BC-test, after applying co-training using 
Charniak's maximum-entropy inspired parser and the Berkeley parser, both without re-ranking and with re-
ranking. 

As can be seen, co-training reranked parsers (using the max-t-min-s example selec-
tion approach) significantly outperforms co-training without re-ranking, by 1.5% absolute 

116 Chapter 1: Data Acquisition and Linguistic Resources 

The results from the two approaches of combining discriminative re-ranking and co-
training, as proposed in Section 1.4.5.4, are shown in Table 1.29. The results of co-
training standard parsers are the last rows in Tables 1.27 and 1.28. When co-training 
reranked parsers, the rerankers were trained on CTB+BN-seed for BN and CTB+BN-
seed+BC-seed for BC and remained the same during co-training. When co-training 
rerankers, the rerankers were initialized on CTB+BN-seed for BN and CTB+BN-
seed+BC-seed for BC and updated during co-training. For both combination approaches, 
co-training explored BN-unlabeled for BN and BC-unlabeled for BC as unlabeled data, 
respectively.  



and 1.4% absolute gain on F-measure on the two parsers on BN-test, and 1.7% absolute 
and 1.6% absolute gain on F-measure on the two parsers on BC-test. For co-training re-
rankers, as discussed in Section 1.4.5.4, it is feasible now for us to employ the more 
principled agreement-based example selection approach during co-training since we can 
simply train each reranker multiple times on different subsets of the automatically labeled 
data and examine which partition of the data produced the maximum agreement among 
the rerankers.  

As a reminder, for co-training reranked parsers, we still used the max-t-min-s ap-
proach as it is computationally efficient and also proved to be very effective for co-
training parsers (Wang 2008). As can be seen from the tables, co-training rerankers 
produced a small yet consistent gain over co-training reranked parsers, by 0.2% – 
0.4% absolute improvement on BN-test and 0.4% – 0.5% absolute improvement on BC-
test, raising the absolute improvement on F-measure up to 1.8% on BN-test and 2% on 
BC-test, from combining discriminative re-ranking and co-training compared to co-
training only. 
 
  

Handbook of Natural Language Processing and Machine Translation 117 



References 
Al-Sughaiyer, I. A. and I. A. Al-Kharashi. 2004. Arabic Morphological Analysis Tech-
niques: A Comprehensive Survey.  Journal of the American Society for Information 
Science and Technology 55(3):189–213. 

Babko-Malaya, O. 2008. Annotation of Nuggets and Relevance in GALE Distillation 
Evaluation. Proceedings of the International Conference on Language Resources and 
Evaluation. Marrakech, Morocco. 

Babko-Malaya, O., A. Bies, A. Taylor, S. Yi, M. Palmer, M. Marcus, S. Kulick and L. 
Shen. 2006. Issues in Synchronizing the English Treebank and PropBank. Proceedings of 
the Workshop on Frontiers in Linguistically Annotated Corpora. 

Babko-Malaya, O., M. Palmer, N. Xue, A. Joshi and S. Kulick. 2004. Proposition Bank 
II: Delving Deeper. Proceedings of the Human Language Technologies Conference/ 
Meeting of the North American Chapter of the Association for Computational Linguistics 
Frontiers in Corpus Annotation Workshop. 

Babko-Malaya, O., Z. Song, R. Zakhary, S. Strassel and J. Medero. 2006. GALE Y1 - 
Distillation Training Query Answer Keys V7.0. LDC2006E15. 

Badr, I., R. Zbib and J. Glass. 2008. Segmentation For English-To-Arabic Statistical Ma-
chine Translation. Proceedings of the Human Language Technologies Conference/ Meet-
ing of the North American Chapter of the Association for Computational Linguistics. 
Short Papers: 153–156. Columbus, Ohio.  

Baker, C.F., C. J. Fillmore and J. B. Lowe. 1998. The Berkeley FrameNet Project. Pro-
ceedings of the International Conference on Computational Linguistics/Meeting of the 
Association for Computational Linguistics pp. 86-90. 

Benajiba, Y., M. Diab and P. Rosso. 2008. Arabic Named Entity Recognition Using Op-
timized Feature Sets. Proceedings of the 2008 Conference on Empirical Methods on Nat-
ural Language Processing pp. 284–293. Honolulu, Hawaii. 

Benajiba, Y., M. Diab and P. Rosso. 2009. Arabic Named Entity Recognition: A Feature-
Driven Study. IEEE Transactions on Audio, Speech & Language Processing 17(5): 926-
934. 

Bies, A. and M. Ferguson, K. Katz and R. MacIntyre, Eds. 1995. Bracketing Guidelines 
for Treebank II Style. Penn Treebank Project, University of Pennsylvania, CIS Technical 
Report MS-CIS-95-06.  

Bikel, D.M. 2004. On the Parameter Space of Generative Lexicalized Statistical Parsing 
Models. Ph.D. thesis, University of Pennsylvania. 

Bikel, D.M. and D. Chiang. 2000. Two Statistical Parsing Models Applied To The Chi-
nese Treebank. Proceedings of the Second Chinese Language Processing Workshop. 

Black, E., R. Garside and G. Leech. 1993. Statistically-driven Computer Grammars of 
English: The IBM/Lancaster Approach. Rodopi, Amsterdam.  

118 Chapter 1: Data Acquisition and Linguistic Resources 



Blum, A. and T. Mitchell. 1998. Combining Labeled and Unlabeled Data With Co-
Training. Proceedings of the Conference on Learning Theory. 

Buckwalter, T. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0. Linguistic 
Data Consortium, University of Pennsylvania. LDC Catalog No.: LDC2002L49. 

Buckwalter, T. 2004. Buckwalter Arabic Morphological Analyzer Version 2.0. Linguistic 
Data Consortium, University of Pennsylvania. LDC Catalog No.: LDC2004L02.  

Burchardt, A., K. Erk, A. Frank, A. Kowalski, S. Pado and M. Pinkal. 2006. Consistency 
And Coverage: Challenges for Exhaustive Semantic Annotation. Proceedings of The 
German Society for Linguistics Conference (DGfS). 

Chang, P.C., M. Gally and C. Manning. 2008. Optimizing Chinese Word Segmentation 
for Machine Translation Performance. Proceedings of the Meeting of the Association for 
Computational Linguistics Third Workshop on Statistical Machine Translation. 

Charniak, E. 1997. Statistical Parsing with a Context-Free Grammar and Word Statistics. 
Proceedings of the International Conference on Artificial Intelligence.  

Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. Proceedings of the Meeting of 
the North American Chapter of the Association for Computational Linguistics. 

Charniak, E. and M. Johnson. 2005. Coarse-to-fine Nbest Parsing and MaxEnt Discri-
minative Reranking. Proceedings of the 43rd Meeting of the Association for Computa-
tional Linguistics. 

Chen, J. and M. Palmer.  2005.  Towards Robust High Performance Word Sense Disam-
biguation of English Verbs Using Rich Linguistic Features. Proceedings of the Interna-
tional Joint Conference on Natural Language Processing pp. 933-944. 

Chen, K.J. and S. H. Liu. 1992. Word Identification for Mandarin Chinese Sentences. 
Proceedings  of the International Conference on Computational Linguistics pp. 101–107. 

Cieri, C., S. Strassel, D. Graff, N. Martey, Ka. Rennert and M. Liberman. 2002. Corpora 
for topic detection and tracking. James Allen, editor, Topic Detection and Tracking: 
Event-based Information Organization. Kluwer Academic Publishers. 

Cieri, C. and Liberman, M. 2000. Issues in Corpus Creation and Distribution: The Evolu-
tion of the Linguistic Data Consortium. Proceedings of the International Conference on 
Language Resources and Evaluation. 

Cieri, C., S. Strassel, M. Glenn and L. Friedman. 2007. Linguistic Resources in Support 
of Various Evaluation Metrics. Automatic Procedures in MT Evaluation Workshop: MT 
Summit XI. 

Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D. 
thesis, University of Pennsylvania. 

Collins, M. and T. Koo. 2005. Discriminative Reranking For Natural Language Parsing. 
Computational Linguistics, 31(1):25–70. 

Handbook of Natural Language Processing and Machine Translation 119 



Costa-jussà, M.R., J.M. Crego, A. de Gispert, P. Lambert, M. Khalilov, J.A.R. Fonollosa, 
J.B. Mariño and R. Banchs. 2006. TALP Phrase-Based System and TALP System Com-
bination. Proceedings of the International Workshop on Spoken Language Translation 
pp. 123–129. Kyoto, Japan. 

Cowan, M. 2009. GNU Wget. http://www.gnu.org/software/wget. 

Crego, J.M. and N. Habash. 2008. Using Shallow Syntax Information to Improve Word 
Alignment and Reordering for SMT. Proceedings of the Third Workshop on Statistical 
Machine Translation pp. 53–61. Columbus, Ohio. 

CRL Lesser Studied Languages Center. 2009. http://crl.nmsu.edu/say/ 

Dean, J. and S. Ghemawat. 2005. MapReduce: Simplified Data Processing on Large 
Clusters.  Proceedings of the Sixth Symposium on Operating System Design and Imple-
mentation (OSDI’04). 

Diab, M. 2007. Improved Arabic Base Phrase Chunking with a New Enriched Pos Tag 
Set.  Proceedings of the 2007 Workshop on Computational Approaches to Semitic Lan-
guages: Common Issues and Resources pp. 89–96. Prague, Czech Republic. 

Diab, M. 2007a. Towards An Optimal Pos Tag Set For Modern Standard Arabic 
Processing. Proceedings of the Conference on Recent Advances in Natural Language 
Processing. Borovets, Bulgaria. 

Diab, M., K. Hacioglu and D. Jurafsky. 2004. Automatic Tagging of Arabic Text: From 
Raw Text to Base Phrase Chunks. Proceedings of the Human Language Technologies 
Conference/ Meeting of the North American Chapter of the Association for Computation-
al Linguistics. Boston, MA.  

Diab, M., M. Alkhalifa, S. ElKateb, C. Fellbaum, A. Mansouri, M. Palmer. 2007. Se-
mEval-2007 Task 18: Arabic Semantic Labeling. Proceedings of the International Work-
shop on Semantic Evaluations. 

Diab, M., M. Ghoneim and N. Habash. 2007a. Arabic Diacritization In The Context Of 
Statistical Machine Translation.  Proceedings of the Machine Translation Summit. Co-
penhagen, Denmark. 

Diab, M., K. Hacioglu and D. Jurafsky. 2007b. Automatic Processing of Modern Stan-
dard Arabic Text. Arabic Computational Morphology: Knowledge-based and Empirical 
Methods. Abdelhadi Soudi, Antal van den Bosch and Günter Neumann, eds. Springer. 

Dligach, D. and M. Palmer. 2008. Novel Semantic Features for Verb Sense Disambigua-
tion. Proceedings of the Meeting of the Association for Computational Linguistics. 

Dligach, D. and M. Palmer. 2009. Using Language Modeling to Select Useful Annotation 
Data.  Proceedings of the Human Language Technologies Conference/ Meeting of the 
North American Chapter of the Association for Computational Linguistics. Boulder, Col-
orado. 

Elming, J. and N. Habash. 2007. Combination of Statistical Word Alignments Based on 
Multiple Preprocessing Schemes.  Proceedings of the Human Language Technologies 

120 Chapter 1: Data Acquisition and Linguistic Resources 



Conference/ Meeting of the North American Chapter of the Association for Computation-
al Linguistics Companion Volume, Short Papers: 25–28. Rochester, New York.  

Elming, J., N. Habash and J. Crego. 2008. Combination Of Statistical Word Alignments 
Based On Multiple Preprocessing Schemes. Cyril Goutte, Nicola Cancedda, Marc Dy-
metman and George Foster, eds., Learning for Machine Translation. MIT Press. 

Emerson, T. 2005. The Second International Chinese Word Segmentation Bakeoff. Pro-
ceedings  of the Fourth SIGHAN Workshop on Chinese Language Processing pp. 123–
133. Jeju Island, Korea. 

Farber, B., D. Freitag, N. Habash and O. Rambow. 2008. Improving NER in Arabic Us-
ing a Morphological Tagger. Proceedings of the International Conference on Language 
Resources and Evaluation. Marrakech, Morocco. 

Farwell, D., J. Giménez, E. González, R. Halkoum, H. Rodríguez and M. Surdeanu. 
2007. The UPC System for Arabic-to-English Entity Translation. Proceedings of the Au-
tomatic Content Extraction Conference. 

Favre, B., D. Hakkani-Tur, S. Petrov and D. Klein. 2008. Efficient Sentence Segmenta-
tion Using Syntactic Features.  Proceedings of the IEEE/Meeting of the Association for 
Computational Linguistics Workshop on Spoken Language Technologies. 

Favre, B., R. Grishman, D. Hillard, H. Ji, D. Hakkani-Tur and M. Ostendorf. 2008a. 
Punctuating Speech for Information Extraction. Proceedings of the International Confe-
rence on Acoustics, Speech and Signal Processing pp. 5013–5106. 

Fellbaum, C. ed. 1998. WordNet: An On-line Lexical Database and Some of its Applica-
tions. MIT Press. 

Fiscus, J., J. Ajot, N. Radde and C. Laprun. 2006. Multiple Dimension Levenshtein Edit 
Distance Calculations for Evaluating Automatic Speech Recognition Systems During 
Simultaneous Speech. Proceedings of the International Conference on Linguistic Re-
sources and Evaluation. 

Fraser, A. and D. Marcu. 2007. Measuring Word Alignment Quality for Statistical Ma-
chine Translation. Computational Linguistics 33(3):293-303  

Friedman, L. and S. Strassel. 2008. Identifying Common Challenges for Human and Ma-
chine Translation: A Case Study from the GALE Program. Proceedings of the Meeting of 
the Association for Machine Translation in the Americas. Waikiki, Hawaii. 

Friedman, L., H. Lee and S. Strassel. 2008. A Quality Control Framework for Gold Stan-
dard Reference Translations: The Process and Toolkit Developed for GALE. Translating 
and the Computer 30 Proceedings. London, UK.  

Friedman, L., S. Strassel and M. Glenn. 2008. Explicit and Implicit Requirements of 
Technology Evaluations: Implications for Test Data Creation. Proceedings of the Inter-
national Conference on Language Resources and Evaluation. Marrakech, Morocco.  

Gabbard, R. and S. Kulick. 2008. Construct State Modification in the Arabic Treebank. 
Proceedings of Meeting of the Association for Computational Linguistics Short Papers.  

Handbook of Natural Language Processing and Machine Translation 121 



Gao, J.F., M. Li, A. Wu and C.N. Huang. 2005. Chinese Word Segmentation and Named 
Entity Recognition: a Pragmatic Approach. Computational Linguistics, 31(4):531–574. 

Glenn, M. and S. Strassel. 2006. Shared Linguistic Resources for the Meeting Domain. 
Proceedings of the Classification of Events, Activities, and Relationships Evaluation and 
RT Evaluation. 

Glenn, Meghan Lammie, Haejoong Lee and Stephanie M. Strassel. 2009. XTrans: a 
speech annotation and transcription tool. Proceedings of Interspeech 2009, Brighton, UK. 

Habash, N. 2004. Large Scale Lexeme Based Arabic Morphological Generation. Pro-
ceedings of the Conference on Automated Processing of Natural Languages (TALN-04) 
pp. 271–276. Fez, Morocco. 

Habash, N. 2007. Arabic Morphological Representations for Machine Translation. Arabic 
Computational Morphology: Knowledge-based and Empirical Methods. Abdelhadi Sou-
di, Antal van den Bosch and Günter Neumann, eds. Springer. 

Habash, N. and F. Sadat. 2006. Arabic Preprocessing Schemes for Statistical Machine 
Translation. Proceedings of the 7th Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics/ Human Language Technologies Conference pp. 
49–52. New York, New York. 

Habash, N. and O. Rambow. 2005. Arabic Tokenization, Morphological Analysis, and 
Part-of-Speech Tagging in One Fell Swoop. Proceedings of the Meeting of the Associa-
tion for Computational Linguistics. Ann Arbor, Michigan. 

Habash, N. and O. Rambow. 2006. Magead: A morphological analyzer for Arabic and its 
dialects.  Proceedings of the 21st International Conference on Computational Linguistics 
and 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Aus-
tralia. 

Habash, N. and O. Rambow. 2007. Arabic Diacritization through Full Morphological 
Tagging.  Proceedings of the Human Language Technologies Conference/ Meeting of the 
North American Chapter of the Association for Computational Linguistics. 

Habash, N. and R. Roth. 2008. Identification of Naturally Occurring Numerical Expres-
sions in Arabic. Proceedings of the International Conference on Language Resources 
and Evaluation. Marrakech, Morocco. 

Habash, N. and R. Roth. 2009. CATiB: The Columbia Arabic Treebank. Proceedings of 
the Conference of the Association for Computational Linguistics. Suntec, Singapore. 

Habash, N., O. Rambow and G. Kiraz. 2005. Morphological Analysis and Generation for 
Arabic Dialects. Proceedings of the Meeting of the Association for Computational Lin-
guistics, Workshop on Computational Approaches to Semitic Languages. Ann Arbor, MI. 

Habash, N., A. Soudi and T. Buckwalter. 2007. On Arabic Transliteration. Arabic Com-
putational Morphology: Knowledge-based and Empirical Methods. Abdelhadi Soudi, 
Antal van den Bosch, and Günter Neumann, eds. Springer. 

122 Chapter 1: Data Acquisition and Linguistic Resources 



Habash, N., R. Faraj and R. Roth. 2009. Syntactic Annotation in the Columbia Arabic 
Treebank. Proceedings of the International Conference on Arabic Language Resources 
and Tools (MEDAR). Cairo, Egypt. 

Hajic, A.J., B. Vidová-Hladká and P. Pajas.  2001. The Prague Dependency Treebank: 
Annotation Structure and Support. Proceeding of the IRCS Workshop on Linguistic Da-
tabases, pp. 105–114. 

Hajič, J., O. Smrž, P. Zemánek, J. Šnaidauf and E. Beška. 2004. Prague Arabic Depen-
dency Treebank: Development in Data and Tools. Proceedings of the Network for Euro-
Mediterranean Language Resources Conference on Arabic Language Resources and 
Tools. Cairo, Egypt. 

Harper, M., B. Dorr, J. Hale, B. Roark, I. Shafran, M. Lease, Y. Liu, M. Snover, L.Yung, 
A. Krasnyanskaya and R. Stewart. 2005.  The Johns Hopkins Summer Workshop Final 
Report on Parsing and Spoken Structural Event Detection. Johns Hopkins University. 

Hillard, D., Z. Huang, H. Ji, R. Grishman, D. Hakkani-Tur, M. Harper, M. Ostendorf and 
W. Wang. 2006. Impact of Automatic Comma Prediction on POS/Name Tagging Of 
Speech.  Proceedings of the IEEE/Meeting of the Association for Computational Linguis-
tics Workshop Spoken Language Technology pp. 58–61. 

Holovaty, A. 2007. Templatemaker. http://code.-google.com/p/templatemaker/. 

Hovy, E.H., A. Philpot, et al. 2009. The Omega Upper Model. Unpublished ms.  

Huang, C.R., T.S. You, P. Simon and S.K. Hsieh. 2008. A Realistic and Robust Model 
for Chinese Word Segmentation.  Proceedings of the Conference on Computational Lin-
guistics and Speech Processing (ROCLING-2008). Taiwan. 

Huang, J. and G. Zweig. 2002. Maximum Entropy Model for Punctuation Annotation 
from Speech.  Proceedings of the International Conference on Spoken Language 
Processing pp.917–920. 

Huang, Z., M. Harper and W. Wang. 2007. Mandarin Part-of-speech Tagging and Dis-
criminative Reranking. Proceedings of the Conference on Empirical Methods on Natural 
Language Processing. 

Hwang, M.Y., X. Lei, W. Wang and T. Shinozaki. 2006. Investigation on Mandarin 
Broadcast News Speech Recognition. Proceedings of the International Conference on 
Spoken Language Processing.  

Jin, G. and X. Chen. 2008. The Fourth International Chinese Word Segmentation Ba-
keoff. Proceedings  of the Sixth SIGHAN Workshop on Chinese Language Processing. 
Hyderabad, India. 

Jones, D., E. Gibson, W. Shen, N. Granoien, M. Herzog, D. Reynolds and C. Weinstein. 
2005. Measuring Human Readability of Machine-Generated Text: Three Case Studies in 
Speech Recognition and Machine Translation. Proceedings of the International Confe-
rence on Acoustics, Speech, and Signal Processing pp. 1009–1012. 

Handbook of Natural Language Processing and Machine Translation 123 



Kahn, J.G., M. Ostendorf and C. Chelba. 2004. Parsing Conversational Speech Using 
Enhanced Segmentation.  Proceedings of the Human Language Technologies Confe-
rence/ Meeting of the North American Chapter of the Association for Computational Lin-
guistics pp. 125–128.  

Kiraz, G.A. 2000. Multi-tiered Nonlinear Morphology Using Multi-tape Finite Automata: 
A Case Study on Syriac and Arabic. Computational Linguistics 26(1):77–105. 

Klein, D. and C. Manning. 2003. Accurate Unlexicalized Parsing. Proceedings of the 41st 
Meeting of the Association for Computational Linguistics pp. 423– 430. 

Kruijff-Korbayová, I., K. Chvátalová, O. Postolache. 2006. Annotation Guidelines for 
Czech-English Word Alignment. Proceedings of the International Conference on Lan-
guage Resources and Evaluation pp. 1256-1261.  

Kulick, S., R. Gabbard and M. Marcus. 2006. Parsing the Arabic Treebank: Analysis and 
Improvements.  Proceedings of the Treebanks and Linguistic Theories Conference. Pra-
gue, Czech Republic. 

Larkey, L.S., L. Ballesteros and M.E. Connell. 2007. Light Stemming for Arabic Infor-
mation Retrieval. Arabic Computational Morphology: Knowledge-based and Empirical 
Methods. Abdelhadi Soudi, Antal van den Bosch, and Günter Neumann, eds. Springer.  

Le, S., Y. Jin, L. Du and Y. Sun. 2000. Word Alignment of English-Chinese Bilingual 
Corpus Based on Chunks. Proceedings of the 2000 Joint SIGDAT conference on Empiri-
cal Methods on Natural Language Processing and Very Large Corpora/ The 38th Annual 
Meeting of the Association for Computational Linguistics 13: 110 – 116. 

Levow, G.A. 2006. The Third International ChineseWord Segmentation Bakeoff: Word 
Segmentation and Named Entity Recognition. Proceedings of the Fifth SIGHAN Work-
shop on Chinese Language Processing. Sydney, Australia. 

Levy, R. and C. Manning. 2003. Is it Harder to Parse Chinese, or the Chinese Treebank. 
Proceedings of the 41st Annual Meeting of the Association for Computational Linguis-
tics. Sapporo, Japan. 

Levy, R. and G. Andrew. 2006. Tregex and Tsurgeon: Tools for Querying and Manipu-
lating Tree Data Structures. Proceedings of the International Conference on Language 
Resources and Evaluation. 

124 Chapter 1: Data Acquisition and Linguistic Resources 

LDC. 2004. Simple Metadata Annotation Specification, Version 6.2. 
http://projects.ldc.upenn.edu/MDE/Guidelines/SimpleMDE_V6.2.pdf 

LDC. 2006. Simple Named Entity Guidelines for Less Commonly Taught Languages, 
Version 6.5. 

LDC. 2007. Using XTrans for Broadcast Transcription: A User Manual, Version 3.0.  
http://projects.ldc.upenn.edu/gale/Transcription/XTransManualV3.pdf 

http://projects.ldc.upenn.edu/LCTL/Specifications/SimpleNamedEntityGuidelinesV6.5.pdf 



Liu, F. and Y. Liu. 2007. Soundbite Identification Using Reference and Automatic Tran-
scripts of Broadcast News Speech.  Proceedings of the Automatic Speech Recognition 
and Understanding Workshop pp. 653–658. 

Liu, Y., E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf and M. Harper. 2006. Enrich-
ing Speech  Recognition with Automatic Detection of Sentence Boundaries and Dis-
fluencies. IEEE Transactions on Audio, Speech, and Language Processing 14(5):1526–
1540. 

Low, J.K., H.T. Ng and W.Y. Guo. 2005. A Maximum Entropy Approach to Chinese-
Word Segmentation. Proceedings of the Fourth SIGHAN Workshop on Chinese Lan-
guage Processing pp. 161–164. Jeju Island, Korea. 

Luo, X.Q. 2003. A Maximum Entropy Chinese Character-Based Parser. Proceedings of 
the Conference on Empirical Methods on Natural Language Processing. Sapporo, Japan. 

Ma, X. 2006. Champollion: A Robust Parallel Text Sentence Aligner. Proceedings of 
LREC-2006, Genoa, Italy. 

Ma, X. and M. Liberman. 1999. BITS: A method for bilingual text search over the web. 
Proceedings of the Machine Translation Summit VII. 

Maamouri, M. and A. Bies. 2004. Developing an Arabic Treebank: Methods, Guidelines, 
Procedures, and Tools. Proceedings of the International Conference on Computational 
Linguistics. Geneva, Switzerland.  

Maamouri, M., A. Bies and S. Kulick. 2008. Enhancing the Arabic Treebank: A Colla-
borative Effort toward New Annotation Guidelines. Proceedings of the International 
Conference on Language Resources and Evaluation.  

Maamouri, M., A. Bies and T. Buckwalter.  2004. The Penn Arabic Treebank : Building a 
Large-scale Annotated Arabic Corpus. Proceedings of the Network for Euro-
Mediterranean Language Resources Conference on Arabic Language Resources. Cairo, 
Egypt.  

Maamouri, M., A. Bies, T. Buckwalter, M. Diab, N. Habash, O. Rambow and D. Tabessi. 
2006. Developing and Using a Pilot Dialectal Arabic Treebank. Proceedings of the Lan-
guage Resource and Evaluation Conference. Genoa, Italy. 

MacWhinney, B. 2001. From CHILDES to Talkbank. Research on Child Language Ac-
quisition. M. Almgren, A. Barreña, M. Ezeizaberrena, I. Idiazabal and B. MacWhinney 
eds., pp. 17-34. Somerville, MA: Cascadilla. 

Maeda, K., H. Lee, J. Medero and S. Strassel, 2006. A new phase in annotation tool de-
velopment at the Linguistic Data Consortium: The evolution of the Annotation Graph 

Handbook of Natural Language Processing and Machine Translation 125 

LDC. 2008. GALE P3 Supra-Lexical Annotation Experiment Guidelines. 
http://projects.ldc.upenn.edu/gale/Transcription/Supra-lexicalAnnotation_v0.6.pdf 

LDC. 2009. GALE Website. http://projects.ldc.upenn.edu/gale/index.html 



Toolkit.  Proceedings of the Fifth International Conference on Language Resources  and
Evaluation. 

Maeda, K., H. Lee, S. Medero, J. Medero, R. Parker and S. Strassel, 2008.  Annotation 
tool development for large-scale corpus creation projects at the Linguistic Data Consor-
tium.  Proceedings of the Sixth International Conference on Language Resources and 
Evaluation. 

Maeda, K., X. Ma and S. Strassel, 2008a.  Creating sentence-aligned parallel text corpora 
from a large archive of potential parallel text using BITS and Champollion. Proceedings 
of the Sixth International Conference on Language Resources and Evaluation. 

Makhoul, J., A. Baron, I. Bulyko, L. Nguyen, L. Ramshaw, D. Stallard, R. Schwartz and 
B. Xiang. 2005. The effects of speech recognition and punctuation on information extrac-
tion performance. Proceedings of the European Conference on Speech Communication 
and Technology (Eurospeech) pp. 57–60. 

Marcus, M. G. Kim, M.A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz 
and B. Schasberger. 1994. The Penn Treebank: annotating predicate argument structure. 
Proceedings of the Human Language Technologies Workshop. 

Marcus, M., B. Santorini and M. A. Marcinkiewicz. 1993. Building a Large Annotated 
Corpus of English: The Penn Treebank. Computational Linguistics 19: 313-330. 

Marcus, M., G. Kim, M.A. Marcinkiewicz, R. MacIntyre, A. Bies, M. Ferguson, K. Katz 
and B. Schasberger. 1994. The Penn Treebank: Annotating Predicate Argument Struc-
ture. Proceedings of the Human Language Technology Workshop. San Francisco, Cali-
fornia.  

Matsoukas, S., I. Bulyko, B. Xiang, K. Nguyen, R. Schwartz and J. Makhoul. 2007. Inte-
grating Speech Recognition and Machine Translation. Proceedings of the International 
Conference on Acoustics, Speech, and Signal Processing pp. 1281–1284. 

Matsuzaki, T., Y. Miyao and J. Tsujii. 2005. Probabilistic CFG with Latent Annotations. 
Proceedings of the Meeting of the Association for Computational Linguistics. 

Matusov, E., A. Mauser and H. Ney. 2006. Automatic Sentence Segmentation And Punc-
tuation Prediction For Spoken Language Translation. Proceedings of the International 
Workshop on Spoken Language Translation pp. 158–165. 

Matusov, E., D. Hillard, M. Magimai-Doss, D. Hakkani-Tur, M. Ostendorf and H. Ney. 
2007. Improving Speech Translation by Automatic Boundary Prediction. Proceedings of 
the International Speech Communication Association Conference (Interspeech) pp. 
2449–2452. 

Mauser, A., R. Zens, E. Matusov, S. Hasan and H. Ney. 2006. The RWTH Statistical 
Machine Translation System for the IWSLT 2006 Evaluation. Proceedings of the Inter-
national Workshop on Spoken Language Translation pp. 103– 110. 

126 Chapter 1: Data Acquisition and Linguistic Resources 



McClosky, D., E. Charniak and M. Johnson. 2006. Effective Self-training for Parsing. 
Proceedings of the Human Language Technologies Conference/ Meeting of the North 
American Chapter of the Association for Computational Linguistics. 

Meyers, A., R. Reeves, C. Macleod, R. Szekely, V. Zielinska, B. Young and R. Grish-
man. 2004. The NomBank Project: An Interim Report. Proceedings of the Frontiers in 
Corpus Annotation Workshop, held in conjunction with the Human Language Technolo-
gies Conference/ Meeting of the North American Chapter of the Association for Compu-
tational Linguistics 

Mohit, B. and R. Hwa. 2007. Localization of Difficult-to-translate Phrases. Proceedings 
of the Second Workshop on Statistical Machine Translation pp. 248–255, Prague, Czech 
Republic. 

Mohri, M., F. Pereira and M. Riley. 1998. A Rational Design for a Weighted Finite-state 
Transducer Library. Automata Implementation, Lecture Notes in Computer Science 
1436:144– 58. D.Wood and S. Yu, eds. Springer. 

Nichols, C. and R. Hwa. 2005. Word Alignment and Cross-lingual Resource Acquisition. 
Proceedings of the Meeting of the Association for Computational Linguistics Poster and 
Demonstration Sessions.  

Nigram, K. and R. Ghani. 2000. Analyzing the Effectiveness and Applicability of Co-
training. Proceedings of the Conference on Information and Knowledge Management. 

Nivre, J., J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kübler, S. Marinov and E. Marsi. 
2007. MaltParser: A language-independent System for Data-driven Dependency Parsing. 
Natural Language Engineering 13(2), 95-135. 

Packard, J. 2000. The Morphology of Chinese. Cambridge University Press. 

Palmer, M., D. Gildea and P. Kingsbury. 2005. The Proposition Bank: A Corpus Anno-
tated with Semantic Roles. Computational Linguistics 31(1). 

Palmer, M., H. Dang and C. Fellbaum. 2007. Making Fine-grained and Coarse-grained 
Sense Distinctions, Both Manually and Automatically. Journal of Natural Language En-
gineering 13:2, 137-163. 

Palmer, M., J. Hwang, S. W. Brown, K. K. Schuler and A. Lanfranchi, 2009 Leveraging 
Lexical Resources for the Detection of Event Relations. Proceedings of the AAAI 2009 
Spring Symposium on Learning by Reading. 

Handbook of Natural Language Processing and Machine Translation 127 

Melamed, D. 1998. Annotation Style Guide for the Blinker Project, IRCS Technical Re-
port #98-06. http://www.cs.nyu.edu/~melamed/ftp/papers/styleguide.ps.gz  

Pajas, P. 2002. Tree Editor TrEd. Charles University, Prague. 
http://ufal.mff.cuni.cz/~pajas/tred/. 

Penman, R.B. 2009. Web Scraping Made Simple with SiteScrapper. 
http://code.google.com/p/site-scraper/. 



Petrov, S., L. Barrett, R. Thibaux and D. Klein. 2006. Learning Accurate, Compact, and 
Interpretable Tree Annotation. Proceedings of the Meeting of the Association for Compu-
tational Linguistics pp. 433– 440. Sydney, Australia, July.  

Petrov, S. and D. Klein. 2007. Discriminative Log- Linear Grammars with Latent Va-
riables. Proceedings of the Conference on Neural Information Processing Systems. 

Petrov, S. and D. Klein. 2007a. Improved Inference for Unlexicalized Parsing. Proceed-
ings of the Human Language Technologies Conference/ Meeting of the North American 
Chapter of the Association for Computational Linguistics. 

Petrov, S. and D. Klein. 2008. Sparse Multi-Scale Grammars for Discriminative Latent 
Variable Parsing. Proceedings of the Conference on Empirical Methods on Natural Lan-
guage Processing. 

Philpot, A., E.H. Hovy and P. Pantel. 2005. The Omega Ontology. Proceedings of the 
International Joint Conference on Natural Language Processing ONTOLEX Workshop. 

Pradhan, S., L. Ramshaw, R. Weischedel, J. MacBride, L. Miccuilla.  2007. Unrestricted 
Coreference: Identifying Entities and Events in OntoNotes.  Proceedings of the Interna-
tional Conference on Semantic Computing.  

Pradhan, S., E. Hovy, M. Marcus, M. Palmer, L. Ramshaw and R. Weischedel. 2007a. 
OntoNotes: A Unified Relational Representation. International Journal of Semantic 
Computing 1:4 405-419 

Pradhan, S., E. Loper, D. Dligach and M. Palmer. 2007b. SemEval-2007 Task 17: Eng-
lish Lexical Sample, SRL and All Words.  Proceedings of the International Workshop on 
Semantic Evaluations.  

Pradhan, S., W. Ward, K. Hacioglu, J. Martin, D. Jurafsky.  2005.  Semantic Role Labe-
ling Using Different Syntactic Views.  Proceedings of Meeting of the Association for 
Computational Linguistics.  

Prescher, D. 2005. Inducing Head-Driven PCFGs with Latent Heads: Refining a Tree-
Bank Grammar for Parsing. Proceedings of the European Conference on Machine Learn-
ing. 

Reeder, F., B. Dorr, D. Farwell, N. Habash, S. Helmreich, E.H. Hovy, L. Levin, T. Mita-
mura, K. Miller, O. Rambow, A. Siddharthan. 2004.  Interlingual Annotation for MT De-
velopment. Proceedings of the Meeting of the Association for Machine Translation of the 
Americas.  

Roark, B., M. Harper, E. Charniak, B. Dorr, M. Johnson, J.G. Kahn, M. Ostendorf, Y. 
Liu, J. Hale, A. Krasnyanskaya, M. Lease, I. Shafran, M. Snover, R. Stewart and L. 
Yung. 2006. SParseval: Evaluation Metrics for Parsing Speech.  Proceedings of the In-
ternational Conference on Language Resources and Evaluation. Genoa, Italy. 

Roark, B., Y. Liu, M. P. Harper, R. Stewart, M. Lease, M. Snover, I. Shafran, B. Dorr, J. 
Hale, A. Krasnyanskaya and L.Yung. 2006a. Reranking for Sentence Boundary Detection 

128 Chapter 1: Data Acquisition and Linguistic Resources 



in Conversational Speech.  Proceedings of the International Conference on Acoustics, 
Speech, and Signal Processing pp. 545–548. 

Rosenberg, A., M. Sharifi and J. Hirschberg. 2007. Varying Input Segmentation for Story 
Boundary Detection in English, Arabic, and Mandarin Broadcast News. Proceedings of 
the International Speech Communication Association Conference (Interspeech) pp. 
2589–2592. 

Roth, R., O. Rambow, N. Habash, M. Diab and C. Rudin. 2008. Arabic Morphological 
Tagging, Diacritization, and Lemmatization Using Lexeme Models and Feature Ranking. 
Proceedings of the Meeting of the Association for Computational Linguistics Short Pa-
pers. Columbus, Ohio. 

Sadat, F. and N. Habash. 2006. Combination of Arabic Preprocessing Schemes for Statis-
tical Machine Translation. Proceedings of the International Conference on Computation-
al Linguistics and  Meeting of the Association for Computational Linguistics pp. 1–8. 
Sydney, Australia. 

Sarkar, A. 2001. Applying Co-training Methods to Statistical Parsing. Proceedings of the 
Meeting of the North American Chapter of the Association for Computational Linguistics. 

Shriberg, E., R. Dhillon, S. Bhagat, J. Ang and H. Carvey. 2004. The ICSI meeting re-
corder dialog act (MRDA) Corpus. Proceedings of the Special Interest Group on Dis-
course and Dialogue Conference. 

Smrž, O. 2007. Functional Arabic Morphology. Formal System and Implementation. 
Ph.D. thesis, Charles University in Prague, Prague, Czech Republic.  

Sproat, R. 1995. Lextools: Tools for finite-state linguistic analysis. Technical Report 
11522-951108- 10TM, Bell Laboratories. 

Sproat, R. and C. L. Shih. 1990. A Statistical Method for Finding Word Boundaries in 
Chinese Text. Computer Processing of Chinese and Oriental Languages 4(4):336–351. 

Sproat, R. and T. Emerson. 2003. The First International Chinese Word Segmentation 
Bakeoff. Proceedings of the Second SIGHAN Workshop on Chinese Language 
Processing. Sapporo, Japan. 

Sproat, R., C. Shih, W. Gale and N. Chang. 1996. A Stochastic Finite-State Word-
segmentation Algorithm for Chinese. Computational Linguistics 22(3):377–404. 

Steedman, M., M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen, S. 
Baker and J. Crim. 2003. Bootstrapping statistical parsers from small datasets. Proceed-
ings of the Meeting of the European Chapter of the Association for Computational Lin-
guistics.  

Stolcke, A. and E. Shriberg. 1996. Automatic Linguistic Segmentation of Conversational 
Speech. Proceedings of the International Conference on Spoken Language Processing 
pp. 005–1008. 

Handbook of Natural Language Processing and Machine Translation 129 



Strassel, S. 2004. Linguistic Resources for Effective, Affordable, Reusable Speech-to-
Text.  Proceedings of the International Conference on Language Resources and Evalua-
tion. Lisbon, Portugal. 

Strassel, S. and Cole, A. W. 2006. Corpus Development and Publication. Proceedings of 
the International Conference on Language Resources and Evaluation. 

Strassel, S. et al. 2006. Integrated Linguistic Resources for Language Exploitation Tech-
nologies. Proceedings of the International Conference on Language Resources and Eval-
uation.  

Stroppa, N. and A. Way. 2006. MATREX: DCU Machine Translation System for IWSLT 
2006. Proceedings of the International Workshop on Spoken Language Translation pp. 
31–36. Kyoto, Japan. 

Tomalin, M. and P. Woodland. 2006. Discriminatively Trained Gaussian Mixture Models 
for Sentence Boundary Detection. Proceedings of the International Conference on 
Acoustics, Speech, and Signal Processing pp. 549–552. 

Tranter, S. and D. Reynolds. 2006. An Overview of Automatic Speaker Diarization Sys-
tems. IEEE Transactions on Audio, Speech, and Language Processing 14(5):1557–1565. 

Tseng, H., P.C. Chang, G. Andrew, D. Jurafsky and C. Manning. 2005. A Conditional 
Random Field Word Segmenter. Proceedings of the Fourth SIGHAN Workshop on Chi-
nese Language Processing. 

Vilar, D., D. Stein, Y. Zhang, E. Matusov, A. Mauser, O. Bender, S. Mansour and H. 
Ney. 2008. The RWTH Machine Translation System for IWSLT 2008. Proceedings of the 
International Workshop on Spoken Language Translation pp. 108–115. Hawaii, USA. 

Wang, W. 2008. Weakly supervised training for parsing Mandarin broadcast transcripts. 
Proceedings of the International Speech Communication Association Conference (Inters-
peech). Brisbane, Australia. 

Wang, W., Z. Huang and M. P. Harper. 2007. Semisupervised Learning for Part-of-
speech Tagging of Mandarin Transcribed Speech. Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing. 

Xia, F. 2000. The Segmentation Guidelines for the Penn Chinese Treebank (3.0). Univer-
sity of Pennsylvania Institute for Research in Cognitive Science Technical Report No. 
IRCS-00-06. 

Xue, N. 2003. Chinese Word Segmentation as Character Tagging. International Journal 
of Computational Linguistics and Chinese Language Processing 8(1):29–48. 

Xue, N. and L. Shen. 2003. Chinese Word Segmentation as LMR Tagging. Proceedings 
of the 2nd SIGHAN Workshop on Chinese Language Processing. Sapporo, Japan. 

Xue, N. and M. Palmer. 2009. Adding Semantic Roles to the Chinese Treebank. Natural 
Language Engineering 15(1): 143-172. 

130 Chapter 1: Data Acquisition and Linguistic Resources 



Xue, N., F. Xia, C. Chiou and M. Palmer. 2005.  The Penn Chinese Treebank: Phrase 
Structure Annotation of a Large Corpus. Natural language Engineering 11(2): 207-238. 

Xue, Ni., F.D. Chiou and M. Palmer. 2002. Building a Large-scale Annotated Chinese 
Corpus. Proceedings of the Meeting of the Association for Computational Linguistics. 

Zens, R. and H. Ney. 2006. Discriminative Reordering Models for Statistical Machine 
Translation.  Proceedings of the Human Language Technologies Conference/ Meeting of 
the North American Chapter of the Association for Computational Linguistics Workshop 
on Statistical Machine Translation pp. 55–63. 

Zhang, B. and J.G. Kahn. 2008. Evaluation of Decatur Text Normalizer for Language 
Model Training. Technical report, University of Washington. 

Zhao, H. and C. Kit. 2008. Unsupervised Segmentation Helps Supervised Learning of 
Character Tagging For Word Segmentation and Named Entity Recognition. Proceedings 
of the Sixth SIGHAN Workshop on Chinese Language Processing pp. 106–111. Hydera-
bad, India. 

Zhao, H., C.N. Huang, M. Li and B.L. Lu. 2006. Effective Tag Set Selection in Chinese 
Word Segmentation via Conditional Random Field Modeling. Proceedings of the 20th 
Pacific Asia Conference on Language, Information and Computation pp. 87–94.Wuhan, 
China. 

Zhou, Q. 2003. Build a Large-scale Syntactically Annotated Chinese Corpus. Springer 
Lecture Notes in Computer Science 2807: 106–113.   

Zhu, J. and E.H. Hovy. 2007. Active Learning for Word Sense Disambiguation with Me-
thods for Addressing the Class Imbalance Problem. Proceedings of the Conference on 
Empirical Methods on Natural Language Processing. 

Zhu, J., H. Wang and E.H. Hovy. 2008. Multi-Criteria-based Strategy to Stop Active 
Learning for Data Annotation. Proceedings of the International Conference on Computa-
tional Linguistics. 

Zimmermann, M., D. Tur, J. Fung, N. Mirghafori, L. Gottlieb, E. Shriberg and Y. Liu. 
2006. The ICSI+ Multilingual Sentence Segmentation System. Proceedings of the Inter-
national Speech Communication Association Conference (Interspeech). 

 

Handbook of Natural Language Processing and Machine Translation 131 





Chapter 2: Machine Translation from Text 
Editors: Nizar Habash, Joseph Olive, Caitlin Christianson, and John McCary 

 
 
 
 

2.1 Introduction 
Author: Nizar Habash 
 

Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of 
the GALE project. Beyond being a well defined application that stands on its own, MT 
from text is the link between the automatic speech recognition component and the 
distillation component. The focus of MT in GALE is on translating from Arabic or 
Chinese to English. The three languages represent a wide range of linguistic diversity and 
make the GALE MT task rather challenging and exciting. 

There are two big camps when it comes to how to do MT: rule-based MT (RBMT) 
and statistical machine translation (SMT). RBMT is characterized with the explicit use 
and manual creation of linguistically informed rules and representations. In its pure form, 
RBMT includes techniques such as Transfer MT and Interlingual MT.  SMT in its pure 
form is corpus based, i.e., learned from examples of translations called parallel/bilingual 
corpora. The distinction and nomenclature of both of camps can be deceptive since 
explicit linguistic rules can be probabilistic and can be learned automatically, of course.  
There has been a large push for integrating components from the two camps into what is 
called hybrid approaches.   Currently the most successful of such attempts and the 
general MT research direction in GALE, builds on statistical corpus-based approaches by 
adding linguistics constraints or features.   

The rest of this introduction will contextualize the reader with the basic story of how 
translation happens in the SMT pipeline. This is important to understand the relevance of 
the different sections in this chapter, which will be briefly described at the end of this 
section. 

The most important resource in the SMT approach is the corpus of paired source and 
target texts or parallel corpus (e.g., Arabic and English versions of the UN corpus). An 
initial step before a parallel text can be used involves cleaning it and preprocessing it to a 
representation that allow us to learn from it optimally. This includes identifying pairs of 
sentences within the paragraphs and reducing the sparsity in the text through some form 
of tokenization. Next comes the automatic alignment step, which learns in an unsupervised 
manner what pairs of words in the paired sentences are translations of each other. Once 
this is completed, a translation model can be learned that relates words and sequences 

J. Olive et al. (eds.), Handbook of Natural LanguageProcessing  
DOI 10.1007/978-1-4419-7713-7_2, � Springer ScienceþBusiness Media, LLC 2011

133and Machine Translation,



of words in the source language to words or sequences of words in the target language. 
Translation models typically include various additional statistics reflecting the likelihood 
of a certain translation pair, which are learned from the corpus.  A translation model 
relates source to target language, but it does not model the fluency of the target language. 
To address this, a different type of a model, called a language model is used to rank 
complete sentences in the target language. In their simplest form, language models are 
built for sequences of words or n-grams. Since language models are monolingual they 
typically can be built with much more data that parallel text. Translation of a sentence 
then involves combining entries from the translation and language models to produce 
target sentences in what is called decoding. The search space for decoding can be very 
large especially when techniques such as distortion, which allow words to move around 
to model syntactic differences, are used. Efficient and accurate decoding for MT is an 
important area of research.  The output of a decoder is a ranked list of optimal sentences 
in the target language. Every single step described here uses numerous parameters that 
can be manually set or automatically learned to maximize the system’s overall 
performance against some automatic evaluation measure. Linguistically informed 
constraints, or features, can be used also to help each and every step from preprocessing 
and alignment through decoding.  Finally, since in the GALE project, there are many 
researchers working on MT in each competing team, an important area in MT research is 
MT system combination, which investigates how to use the output from multiple systems 
to produce an output superior to all of them. 

This chapter addresses different aspects of the SMT pipeline. 2.2 addresses the 
question of the optimal token form for Arabic and Chinese to learn MT over.  The 
challenges for Arabic and Chinese are different but the goal is the same: learning better 
translation models that are robust to the data sparsity challenge. Improvements to the 
automatic word alignment problem are presented in 2.3. Automatic word alignment is 
truly the backbone of statistical MT. However, improvements in it are hard to translate to 
MT improvements. In 2.4, six translation models are presented. These models vary 
widely in the degree and type of linguistic constraints or back offs they use. 2.5 presents 
important extensions to simple n-gram language models that address efficiency and 
linguistic abstraction/depth. 2.6 discusses issues and improvements to the MT decoding 
problem. 2.7 presents two takes on the issue of how to optimally select training data 
adapted to the test text. Since SMT systems tend to be biased to the training corpora used 
to build them, these approaches try to anticipate this bias and use it. Finally 2.8 presents a 
number of approaches used in different GALE teams to combine the various systems 
developed to maximize overall performance. 

134 Chapter 2: Machine Translation from Text 



2.2  Segmentation, Tokenization and Preprocessing 

2.2.1.  Preprocessing Arabic for Arabic-English Statistical 
Machine Translation  

Authors: Adrià de Gispert, William Byrne, Jinxi Xu, Rabih Zbib, John Makhoul, Achraf Chalabi, Hazem 
Nader, Nizar Habash, Fatiha Sadat 

2.2.1.1 Introduction 

Statistical machine translation (SMT) is robust when it comes to the choice of input 
representation: the only requirement is consistency between training and evaluation.  This 
leaves a wide range of possible preprocessing choices, even more so for morphologically 
rich languages such as Arabic.  We use the term ‘preprocessing’ to describe various input 
modifications that can be applied to raw training and evaluation texts for SMT to make 
them suitable for model training and decoding, including different kinds of tokenization, 
stemming, part-of-speech (POS) tagging and lemmatization.  We refer to a specific kind 
of preprocessing as a ‘scheme’ and differentiate it from the ‘technique’ used to obtain it. 
Identifying a proper preprocessing scheme and technique is important to SMT because 
tokenized words are the most basic units of translation. Improper tokenization methods 
can cause a high out-of-vocabulary (OOV) rate and the loss of useful lexical context and 
hence hurt MT performance.  

In this section, we will examine the impact of morphological preprocessing. In our 
experiments, we used two morphological disambiguation systems, Sakhr Morphological 
Tagger and MADA (Habash and Rambow 2005). While the use of morphological 
preprocessing of Arabic text for SMT can be traced at least to 2003 (Lee et al. 2003), we 
hope that our findings using three different techniques on small and medium sized data 
sets and two different sophisticated analyzers/disambiguatirs on very large data sets will 
complement existing work in this area. 

2.2.1.2 Linguistic Facts and Motivation  

Arabic is a morphologically complex language with a large set of morphological 
features. These features are realized using both concatenative (affixes and stems) and 
templatic (root and patterns) morphology with a variety of morphological and 
phonological adjustments that appear in word orthography and interact with orthographic 
variations.  

135Handbook of Natural Language Processing and Machine Translation



We focus here on Arabic’s set of attachable function words (or clitics) distinct from 
inflectional features such as gender, number, person and voice. These clitics are written 
attached to the word, and thus, increase its ambiguity.  We can classify three degrees of 
cliticization that are applicable in a strict order to a word base: 

 
 [CONJ+ [PART+ [Al+ BASE +PRON]]] 

 
At the deepest level, the BASE can have a definite article Al+ `the'  or a member of 

the class of pronominal enclitics, +PRON, (e.g. +hm `their/them'. Pronominal enclitics 
can attach to nouns (as possessives) or verbs and prepositions (as objects).  The definite 
article doesn't apply to verbs or prepositions.  +PRON and Al+ do not co-exist on nouns.  
Next comes the class of particle proclitics (PART+), which includes single-letter 
prepositions and other functional particles, e.g., b+ `by/with' and s+ `will'.  At the 
shallowest level of attachment we find the conjunctions (CONJ+) w+ `and' f+ `so'.  They 
can attach to all words.  An archaic question particle proclitic >+ can attach before 
conjunctions, but it has almost completely disappeared in modern standard Arabic.  

Clitics sometimes interact with the phonological and orthographic forms of the word 
they attach too.  One common example is the feminine ending +p (Ta Marbuta), which 
can only be word final.  In medial position, it is turned into the letter +t (see example 3 
second reading below).  Another example is the deletion of the Alif  (A) of the definite 
article Al+ when preceded by the proclitic l+, but no other proclitic (see example 4 first 
reading below). 

The following examples show the decomposition into clitics and base words 
including cases of orthographic adjustment (bolded) and ambiguous readings that results 
in different decompositions: 

 
1. wsyqAblhm: w+  s+   yqAbl +hm 
          and will he-meet   them 
          ‘and he will meet them’ 
2. wbydh:  w+  b+    yd      +h 
          and with hand his 
          ‘and with his hand’ 
3. wktbthA: w+  ktbt +hA  w+ ktbp +hA 
          and wrote-she it  and scribes her 
          ‘and she wrote it’ ‘and her scribes’ 
4. wlljnp:  w+  l+    Al+ jnp w+ l+ ljnp 
          and for the paradise and for a-committee 
          ‘and for paradise’ ‘and for a committee’ 
 

All of these phrases are written as one word in Arabic. 

136 Chapter 2: Machine Translation from Text 



 

These phenomena and examples highlight three issues related to preprocessing. First, 
ambiguity in Arabic words is an important issue to address.  For example, to determine 
whether a clitic should be split off requires that we determine that said clitic is indeed 
present in the word we are considering in context – not just that it is possible given an 
analyzer or, worse, because of regular expression matching.  

Secondly, once a specific analysis is determined, the process of splitting off or 
abstracting off a word feature must be clear on what the form of the resulting word 
should be so that no unnecessary ambiguity is added.  

Third, the degree of splitting to consider (e.g., only conjunctions, conjunctions and 
prepositions, etc.) needs to be determined empirically and may vary from system to 
system and depending on the size of available corpora. Under splitting increases sparsity, 
while over splitting adds ambiguity and requires higher accuracy of preprocessing tools 
which, when failed, introduce errors and noise.  

For a given parallel text, the Arabic vocabulary size is significantly larger than the 
English one. In the LDC parallel news corpora used in the experiments described below, 
for instance, the average English sentence length is 33 words compared to 25 words on 
the Arabic side. The larger vocabulary size on the Arabic side creates problems in 
sparsity and variability in estimating translation models, since Arabic words do not 
appear as often in the training data as their English counterparts. This is a general 
problem when applying statistical machine translation systems to language pair with 
significant vocabulary size difference.  If a language F has a larger vocabulary than a 
language E, problems in analysis dominate when translating from F into E (due to a 
relatively larger number of out-of-vocabulary words in the input) whereas, generation 
problems dominate when translating from E into F. 

Several authors have addressed these issues by attempting to reduce the differences 
in vocabulary size between language pairs. Broadly speaking, the general trend is to find 
procedures which can perform morphological analysis and disambiguation of the more 
inflected languages in order to segment words into subword units, with the aim of 
reducing sparsity in statistical models trained on the data. This potentially reduces the 
OOV rate, since a compound word might not have occurred in the training data, but its 
subwords are more likely to occur. These techniques have the largest impact for tasks 
with relatively small-sized resources although gains are still possible when large parallel 
corpora are available. For a summary of recent work in this area, see the publications of 
de Gispert (2006) and de Gispert and Marino (2008). 

Note that the application of morphological splitting on the source side is conveniently 
simpler than applying it on the target side, since no recombination is needed in this case. 

Handbook of Natural Language Processing and Machine Translation 137 



 

2.2.1.3 Arabic Preprocessing: Schemes and Techniques  

A scheme is a specification of the form of preprocessed output; whereas a technique 
is the method used to create such output. In this section we examine four techniques and 
nine schemes. Not all schemes can be created using all techniques.  Additional schemes 
we do not discuss here are described by Sadat and Habash (2006). 

The different techniques we consider illustrate three degrees of linguistic knowledge 
dependence. First is a very light and cheap baseline technique. It simply uses greedy 
regular expression (REGEX) matching to split off prefix/suffix substrings that look like 
clitics indicated by specific schemes.  REGEX technique cannot be used with complex 
schemes requiring lexical resources.   

The second type of techniques is more expensive, requiring the use of a 
morphological analyzer. The Buckwalter Arabic Morphological Analyzer (BAMA) 
(Buckwalter 2002) is used to obtain possible word analyses. Using BAMA prevents 
incorrect greedy REGEX matches. Since BAMA produces multiple analyses, we always 
select one in a consistent arbitrary manner (first, in a sorted list of analyses). 

The third type of techniques is yet more expensive. It involves a disambiguation 
system that requires an analyzer and a disambiguated training corpus. One such tool is 
the Morphological Analysis and Disambiguation for Arabic (MADA) tool. MADA is an 
off-the-shelf resource for Arabic disambiguation (Habash and Rambow 2005), which 
selects among BAMA analyses using a combination of classifiers trained on the Penn 
Arabic Treebank (Maamouri and Bies 2004). For BAMA and MADA, applying a 
preprocessing scheme involves using the general tokenizer tool TOKAN (Habash 2004; 
Habash 2007a). A second similar tool we experiment with is the Sakhr Morphological 
Tagger. The Sakhr tagger was trained on a manually tagged corpus of seven million 
words with morphological, lexical and syntactic features and used maximum likelihood 
Viterbi decoding to decide the best tag sequence for a sentence. 

As for preprocessing schemes, we define next nine preprocessing schemes for Arabic 
studied in this section. Table 2.1 exemplifies the different schemes for the same sentence. 

 
• ST: Simple Tokenization is the baseline preprocessing scheme. It is 

limited to splitting off punctuations and numbers from words and 
removing any diacritics that appear in the input. This scheme requires no 
disambiguation.  

• Decliticizations (D1, D2 and D3):  D1 splits off the class of conjunction 
clitics only.  D2 splits off the class of particles beyond D1.  Finally, D3 
splits off what D2 does in addition to the definite article and pronominal 
clitics. 

138 Chapter 2: Machine Translation from Text 



 

• MR: Morphemes. This scheme breaks up words into stem and affixival 
morphemes.  It is identical to the initial tokenization used by Lee (2004). 

• EN: English-like. This scheme is intended to minimize differences 
between Arabic and English. It decliticizes similarly to D3; however, it 
uses lexeme and English-like POS tags instead of the regenerated word 
and it indicates the pro-dropped verb subject explicitly as a separate 
token. 

• Sakhr Morphological Analysis is the output of the Sakhr Tagger. 
• Split (cliticizing) Morphemes is comparable to D3 except that 

orthographic adjustments are not done.  
• PREF+STEM+SUF is a version of Split Morphemes that collapses the 

prefixes (specifically proclitics) and suffixes (specifically enclitics).   
 

Arabic Text (ST) wb*lk ElynA An nEArDhA bkl AlwsA}l 
English translation and thus we have to oppose it with all means 
D1 w+ b*lk ElynA An nEArDhA bkl AlwsA}l 
D2 w+ b+ *lk ElynA An nEArDhA b+ kl AlwsA}l 
D3 w+ b+ *lk ElY +nA An nEArD +hA b+ kl Al+ wsA}l 
MR w+ b+ *lk ElY +nA An n+ EArD +hA b+ kl Al+ wsA}l 
EN w+ b+ *lk/DT ElY/IN +nA An/IN EArD/VBP  +S:1P +hA b+ kl/NN Al+ 

wsylp/NN 
Sakhr Morphological 
Analysis 

AND-OR*BE*DEM-SM PREP*PRLG ANN VPC-1DP*PRLN*PRLA & 
BE*QNTFR AL*N-PF 

Split Morphemes w+ b+ *lk Ely +nA An nEArD +hA b+ kl Al+ wsA}l 
PREF+STEM+SUFF wb+ *lk Ely +nA An nEArD +hA b+ kl Al+ wsA}l 

Table 2.1: Example Arabic sentence (in simple tokenization, ST), its translation and different preprocessing 
schemes: D1, D2 and D3 (different degrees of decliticization), MR (morphemes) and EN (an English-like 
tokenization), Sakhr morphological processor output and decompositions. 

2.2.1.4 Experiments with Preprocessing for Portage  

Portage 
Portage is a phrase-based SMT system (Sadat et al. 2005). For training, Portage uses 

IBM word alignment models (models 1 and 2) trained in both directions to extract phrase 
tables. Maximum phrase size used is 8. Trigram language models are implemented using 
the SRILM toolkit (Stolcke 2002). Decoding weights are optimized using Och’s 
algorithm (Och 2003) to set weights for the four components of the log-linear model: 
language model, phrase translation model, distortion model and word-length feature. The 
weights are optimized over the BLEU metric (Papineni et al. 2002). The Portage decoder, 
Canoe, is a dynamic-programming beam search algorithm, resembling the algorithm 
described by Koehn (2004a).  
 
 

Handbook of Natural Language Processing and Machine Translation 139 



 

Experimental Data  
For translation model training data, we use an Arabic-English parallel corpus of 

about five million words available from the Linguistic Data Consortium (LDC): Arabic 
News (LDC2004T17), eTIRR (LDC2004E72), English translation of Arabic Treebank 
(LDC2005E46) and Ummah (LDC2004T18). We created the English language model 
from the English side of the parallel corpus together with 116 million words from the 
English Gigaword Corpus (LDC2005T12) and 128 million words from the English side 
of the UN Parallel corpus (LDC2004E13). Arabic preprocessing was varied using the 
proposed schemes and techniques. English preprocessing comprised down-casing, 
separating punctuation from words and splitting off “’s”. The same preprocessing was 
used on the English data for all experiments. Only Arabic preprocessing was varied. 
Decoding weight optimization was done on 200 sentences from the 2003 NIST MT 
(MT03) evaluation test set. Testing is done with the 2004 NIST MT evaluation test set 
(MT04).  Both MT03 and MT04 have one Arabic source and four English reference 
translations. We use the evaluation metric BLEU-4 (Papineni et al. 2002). 
 
Results and Discussion  

We conducted all possible combinations of schemes and techniques discussed in 
Section 2.2.1.2  with different training corpus sizes: 1%, 10% and 100%. The results of 
the experiments are summarized.  

Across different schemes, EN performs the best under low-resource condition and D2 
performs best under large-resource condition. Across techniques and under low-resource 
conditions, MADA is better than BAMA, which is better than REGEX. Under large-
resource conditions, the differences among techniques are not statistically significant, 
though they are generally consistent across schemes.  

 

MT04 
MADA BAMA REGEX 

1 10 100 1 10 100 1 10 100 
ST 9.4 22.9 34.6 9.4 22.9 34.6 9.4 22.9 34.6 
D1 13.1 26.9 36.1 12.9 26.5 35.6 11.4 25.5 34.8 
D2 14.2 27.7 37.1 13.7 27.9 36.2 12.0 25.5 35.8 
D3 16.5 28.7 34.3 15.9 28.3 34.2 13.6 26.1 34.0 
MR 11.6 27.5 34.4 14.2 27.5 33.4 n/a n/a n/a 
EN 17.5 28.4 34.5 16.3 27.9 34.0 n/a n/a n/a 

Table 2.2: Results of the experiments reported in BLEU. The test set presented is MT04 with three 
techniques (MADA, BAMA and REGEX) and in three training sizes (1%, 10% and 100%). Rows represent 
different schemes. 

An oracle analysis shows that combination of output from all six schemes has a large 
potential improvement over all of the different systems, suggesting a high degree of 
complementarity: for MT04 under MADA with 100% training, a 19% improvement in 

140 Chapter 2: Machine Translation from Text 



 

BLEU score (from 37.1 in D2 to 44.3) can be reached by selecting for each input sentence 
the output with the highest sentence-level BLEU score. Obviously, this is an optimistic 
score that only identifies the topline performance of a combination system. Sadat and 
Habash (2006) demonstrate that a combination of a large number of schemes can give a 
BLEU score of 38.67 on the MT04 data set (4.2% relative increase, 22% of the difference 
to the combination top line).  Additional experiments and detailed analysis and discussion 
are presented by Habash and Sadat (2006). 

2.2.1.5 MADA-Based Arabic Word Tokenization for TTM  
Experimental Data  

The two Agile newswire sets contain around 1500 segments of data from the NIST 
and GALE sets. The two news group Agile sets contain between 1500 and 3000 segments 
from the NIST and GALE web test sets. The NIST test sets for news groups contain 
about 2100 segments each taken from the GALE Phase 1 quarter 4 LDC web data. The 
NIST newswire test sets contain about 2000 sentences each from the NIST MT02_05 
Arabic-to-English test sets. The broadcast news set contains about 21k words of Arabic 
broadcast news recognized by a STT system. The parallel training data used is from 
GALE Phase 2. 

We used tokenization scheme ‘D2’ in our experiments, which entails only the 
segmentation of some prefixes, specifically conjunctions and prepositions. Further 
segmentation of Arabic words into more and shorter tokens was not found to improve 
translation results, which is consistent with results presented in the previous section. 

 
 without MADA with MADA 
num. sents. 6489720 6489720 
num. words 139.3 M 156.8 M 
vocabulary 612.4 k 421.6 k 

Table 2.3: MADA morphosyntactic processing and Arabic corpus statistics 

Table 2.3 compares the GALE Phase 2 parallel corpus statistics with and without the 
MADA based Arabic tokenization.  As is apparent, there is a very significant vocabulary 
reduction of around 30% when applying tokenization using MADA. 
 
Experimental Results 

To study whether this strong Arabic vocabulary reduction benefits our Translation 
Template Model (TTM) system (Blackwood et al. 2008a), various translation 
experiments for different conditions have been carried out. After MADA-based Arabic 
corpus processing, alignment and translation models are retrained from scratch to build 
independent systems for translating from analyzed Arabic into English. Table 2.4 shows 
the TTM scores obtained in the newswire sets for the baseline system and by applying the 
MADA tokenization in corpus preprocessing. Note that two different language models 

Handbook of Natural Language Processing and Machine Translation 141 



 

are compared in this experiment. While ‘ptext-v2x1’ is trained on both English sides of 
the Arabic-English and Chinese-English parallel texts+Giga Word II Xinhua+Giga Word 
II AFP, ‘ptext-v2x2’ is a much larger model, trained on Bitext UN data+Bitext 
News+Giga Word II Xinhua+Giga Word II AFP.  Clearly, the use of MADA produces 
significant improvements both in BLEU and TER. As shown in Table 2.4, this positive 
impact is also present for newsgroup and speech sets, where differences of more than 1.0 
BLEU are observed. 

 
  Newswire News Groups Broadcast 

News 
 Language Model BLEU TER BLEU TER BLEU TER 

baseline Ptext-v2x1 44.87 46.34 13.18 68.38 17.96 64.93 
with MADA 45.67 45.55 14.16 67.48 18.77 64.72 

baseline Ptext-v2x1 46.33 45.22 11.97 69.27   
with MADA 47.13 44.48 13.24 68.12   

Table 2.4: Baseline TTM results on newswire, news groups and broadcast news data sets with and without 
MADA 

We also report the effect on the Minimum Error Training (MET) applied to our 
baseline TTM system. Table 2.5 compares the MET scores for the baseline and the 
MADA-based system. Clearly, the improved performance of baseline TTM due to 
morphosyntax-based word tokenization still holds when applying MET, yielding 
improvements between 0.8 and 1.3 BLEU points for both newswire and newsgroup data. 
TER scores show similar improvements. Additionally, MET BLEU scores do not 
fluctuate over the newsgroup data, steadily improving across iterations. These results 
demonstrate that morphological analysis can improve translation performance over a 
variety of conditions and that it interacts well with other components of the translation 
system.  

 
 

 MET 
iteration 

Newswire News Groups 
 BLEU TER BLEU TER 
Baseline 1 47.50 46.03 5.37 128.20 
with MADA 48.73 45.24 14.56 76.06 
Baseline 3 47.98 45.32 14.80 70.02 
with MADA 48.70 44.21 16.05 69.50 

Table 2.5: Effect of MET with and without MADA. Tuned on newswires and news groups 

Finally, we apply integrated lattice rescoring tools to include several additional 
models, namely a second-order Phrasal Segmentation Model (PSM) (Blackwood 2008) 
and a Word Alignment Model 1 implemented via MTTK (Machine Translation Tool Kit) 
(MOD1) (Deng and Byrne 2006; Deng and Byrne 2008). First, Finite State Machine 
(FST) composition is used to apply a weighted second-order Phrasal Segmentation Model 
and a Phrase Insertion Penalty and to search for their optimal weights over the tuning set, 
producing a new set of lattices. Then, a second alignment of these lattices using weighted 

142 Chapter 2: Machine Translation from Text 



 

Model 1 word-to-word p(e|f) probabilities (from MTTK) is performed with an additional 
word insertion penalty (Blackwood et al. 2008a). Results comparing these lattice 
rescoring steps applied to the baseline and the MADA-based system are shown in Table 
2.6. 

Two basic conclusions can be drawn from these tables. On the one hand, the 
significant differences already observed in baseline TTM scores between the regular 
system (without MADA) and the system incorporating MADA-based Arabic tokenization 
still hold after MET and lattice rescoring is applied. In fact, final BLEU improvements are 
of about 1.3 points (except in news groups test, where they are 0.9) and TER reductions 
are more than 1 point for newswire and about 2 points for newsgroup data. 

 
 

 Newswire News 
Groups 

 BLEU TER BLEU TER 
Baseline TTM+MET 47.98 45.32 14.80 70.02 
with MADA 48.70 44.21 16.05 69.50 
Baseline +PSM 49.65 45.00 15.52 70.01 
with MADA 50.52 44.27 16.13 68.52 
Baseline +PSM+MOD1 49.62 44.72 15.83 69.42 
with MADA 50.95 43.56 16.69 67.70 

 
Table 2.6: Effect of Phrasal Segmentation Model lattice rescoring (PSM) and MTTK Model 1 lattice 

rescoring (MOD1) applied to MET lattices with and without MADA. 

While Model 1 rescoring did not significantly improve the results after Phrasal 
Segmentation Model in the baseline system, this changes when applying it on the MADA 
version. Clearly, there is a positive interaction between vocabulary reduction and word 
alignment models.   MADA training has improved both the alignment models trained on 
the underlying parallel text and the translation system based on the alignments. Overall, 
the use of morphosyntax-based Arabic word tokenization is found to be useful in 
improving the TTM translation system.   

2.2.1.6 Experiments using Sakhr's Morphological Tagger with BBN’s 
Hierarchical SMT System 

This section describes experiments on the use of the Sakhr Arabic Morphological 
Tagger to split prefix and suffix morphemes of Arabic words. We show that splitting the 
affixes of both training and test data using the Sakhr Morphological tagger reduces out of 
vocabulary rates and improves both TER and BLEU scores. 

Based on the POS information from the Sakhr tagger, the morpheme boundaries can 
then be easily determined by matching the surface forms of the limited list of affixes. 
When one morpheme is a substring of another, care has to be taken not to match the 
substring morpheme before the superstring morpheme. If a word has several prefixes or 

Handbook of Natural Language Processing and Machine Translation 143 



 

suffixes, they are concatenated into a single composite prefix or suffix in order to avoid 
unnecessarily long sentences that complicate training and decoding. The most general 
form of a decomposed word is, then, PREF+STEM+SUFF.  

The experiments were performed using the BBN Hierarchical SMT system (Shen et 
al. 2008). The system was trained on GALE Phase 2 parallel training data. The 
vocabulary size was reduced from 0.76 million words to 0.42 million words. 

For newswire and web data, we tuned on Agile devset and tested on Agile testsets. 
All tuning is done on the BLEU score. 

 
Test Set Affix Splitting TER (%) BLEU (%) OOV Rate 

newswire No 43.81 47.10 0.51% 
Yes 42.82 47.87 0.19% 

web No 69.70 16.77 3.75% 
Yes 63.31 18.61 0.97% 

Table 2.7: Impact of morphological analysis using Sakhr tagger on BLEU,  TER  & OOV rates. 

Table 2.7 shows the impact of affix splitting on the TER AND BLEU scores. The 
improvement in BLEU is 0.8 and 1.8 points for newswire and web data respectively. The 
TER improvement is around 1% on newswire. On the web data, the TER improvement is 
very large, 6.4%, which correlates to a large reduction in OOV rate shown in the same 
Table. The large difference in MT scores between the newswire and web data is mostly 
due to the existence of four reference translations for the newswire data and only one for 
the web data.  

2.2.1.7 Comparison between Sakhr Morphological Tagger and MADA 

We performed experiments to compare the two affix splitting methods on identical 
test sets and obtained mixed results. We provide only a summary here in order to save 
space. For the TTM system, MADA is better than SAKHR by about 0.5 BLEU point. 
However, for the BBN Hierarchical system, SAKHR is better than MADA by 
approximately 0.5 BLEU point. More experiments are needed to determine if the 
discrepancy is due to fundamental differences in the systems or small differences in data 
preprocessing. 

2.2.1.8 Conclusions 

Experiments with two Arabic morphological analysis and disambiguation systems 
showed that morphologically aware tokenization significantly reduced data fragmentation 
and improved Arabic-to-English SMT. One area for future work is to combine different 
morphological splitting algorithms for Arabic MT. For example, simple MBR hypothesis 
combination schemes can be used to exploit these differences in morphological analyses 

144 Chapter 2: Machine Translation from Text 



 

yielding improvements of around 1.5 BLEU relative to that of the best individual system 
(de Gispert 2009) 

2.2.2. Customizing Chinese Word Segmentation for Improved 
Machine Translation 

Authors: Pi-Chuan Chang, Michel Galley, Niyu Ge and Christopher D. Manning  

2.2.2.1 Introduction  

While occasionally experimenting with other tools, for Chinese-English machine 
translation (MT), the GALE Rosetta consortium has uniformly used an automatic word 
segmentation of the Chinese input according to the Chinese Treebank word segmentation 
standard (Xue et al. 2005), as produced by the Stanford Chinese segmenter (Tseng et al. 
2005). This segmenter is a feature-based conditional random field (CRF) model, which 
had produced competition-winning performance in formal evaluations (Emerson 2005). 
However, during the GALE Phase 2 evaluation, we became aware that although the CRF 
segmenter gives a very good F-measure on a segmentation evaluation and generates a 
very good recall rate on out-of-vocabulary (OOV) words, it did not operate in a way that 
was most congenial to improving MT performance, at either training or test time. Since 
the CRF segmenter tried to identify unknown words and compounds, the issue could be 
that it produced a large vocabulary relative to a lexicon-based segmenter. However, as 
the experiments below show, the truth turned out to be more complex than this. Based on 
a series of experiments, we improved the Stanford CRF segmenter with lexicon-based 
features that improve the consistency of segmentation and yield better MT performance. 
Also, since the optimal granularity of words for phrase-based MT is unknown, we 
introduced an extra feature in the CRF segmenter which we can use to adjust average 
word size and, thus, can further improve MT performance. The lexicon-based features 
reduced the MT training lexicon by 29.5%, reduced the MT test data OOV rate by 34.1% 
and led to a 0.38 BLEU point gain on the test data (MT05). When we tuned the CRF 
model to adjust word size to directly optimize the performance of MT, we found that 
words slightly shorter than the CTB standard were optimal and that we could improve 
performance by 0.52 BLEU (on MT05). 

2.2.2.2 Experimental Setting 

Chinese Word Segmentation 
For directly evaluating segmentation performance, we train each segmenter on the 

SIGHAN Bakeoff 2006 training data (the UPUC data set) and then evaluate on the test 
data. The training data contains 509K words and the test data has 155K words. The 
percentage of words in the test data that are unseen in the training data is 8.8%. Detail 
of the Bakeoff data sets can be seen in the work of Levow (2006). In order to 
understand how each segmenter performs on OOV words, we will report the segmentation 

Handbook of Natural Language Processing and Machine Translation 145 



 

F-measure, the in-vocabulary (IV) recall rate, as well as, OOV recall rate of each 
segmenter. 

 
Phrase-Based Chinese-to-English MT 

In order to allow easier comparisons, we used the MT system Moses, an open source, 
state-of-the-art, phrase-based system (Koehn et al. 2003). We build phrase translations by 
first acquiring bidirectional GIZA++ (Och and Ney 2003) alignments and using Moses’ 
grow-diag alignment symmetrization heuristic.1 We set the maximum phrase length to a 
large value (10), because some segmenters described later in this section will result in 
shorter words, therefore it is more comparable if we increase the maximum phrase length. 
During decoding, we incorporate the standard eight feature functions of Moses as well as 
the lexicalized reordering model. We tuned the parameters of these features with 
Minimum Error Rate Training (MERT) (Och 2003) on the NIST MT03 Evaluation data 
set (919 sentences) and then test MT performance on NIST MT02 and MT05 Evaluation 
data (878 and 1082 sentences, respectively). We report MT performance with uncased 
scores using the original BLEU metric (Papineni et al. 2001). 

The MT training data was subsampled from the GALE Phase 2 training data using a 
collection of character 5-grams and smaller n-grams drawn from all segmentations of the 
test data. Since the MT training data is subsampled with character n-grams, it is not 
biased towards any particular word segmentation. The MT training data contains 
1,140,693 sentence pairs; on the Chinese side there are 60,573,223 non-whitespace 
characters and the English sentences have 40,629,997 words. 

Our main source for training our 5-gram language model was the English Gigaword 
corpus and we also included close to one million English sentences taken from LDC 
parallel texts: GALE Phase 1 training data (excluding FOUO data), Sinorama, Xinhua 
News and Hong Kong News. We restricted the Gigaword corpus to a sub-sample of 25 
million sentences, because of memory constraints. 

2.2.2.3 Understanding Chinese Word Segmentation for Phrase-Based 
MT 

In this section, we experiment with lexicon-based and feature-based segmenters and 
find that segmentation performance doesn’t always correlate positively with MT 
performance. We introduce a feature-based CRF that uses lexicon features and show that 
this segmenter combines desirable characteristics from both the feature-based and 
lexicon-based segmenters. 

 
 

                                                      
 
1 In our experiments, this heuristic consistently performed better than the default, 
grow-diag-final. 

146 Chapter 2: Machine Translation from Text 



 

Lexicon-Based and Feature-Based Segmenters  
We compare the performance of a simple maximum matching lexicon-based model 

(MaxMatch) and a CRF segmenter with only basic features. We trained a CRF model 
with a set of basic features: character identity features of the current character, previous 
character and next character and the conjunction of previous and current characters as 
zero-order templates. We will refer to this segmenter as CRF-basic. 

 
 CRF-basic MaxMatch CRF-Lex

F measure 0.877 0.828 0.940 
OOV Recall 0.502 0.012 0.729 
IV Recall 0.926 0.951 0.970 
MT05 (test) BLEU 30.35 30.73 30.95 
MT05 (test) METEOR  58.57 59.08 59.71 

Table 2.8: The segmentation and MT performance of CRF-basic, MaxMatch  and MaxMatch 

Table 2.8 shows that the feature-based segmenter CRF-basic outperforms the 
lexicon-based MaxMatch by 5.9% relative F-measure because CRF-basic has a greater 
OOV recall rate. We see that a feature-based segmenter like CRF-basic clearly has a 
stronger ability to recognize unseen words. On MT performance, however, CRF-basic is 
0.38 BLEU points worse than MaxMatch on the test set. The results show that better 
segmentation F-measure does not always lead to a better MT BLEU score, because the 
segmentation F-measure ordering is CRF-basic > MaxMatch, while, in terms of MT 
performance, MaxMatch > CRF-basic. 

To better understand what factors other than segmentation F-measure can affect MT 
performance, we introduce another CRF segmenter CRF-Lex that includes lexicon-based 
features by using external lexicons. More details of CRF-Lex will be described in the 
next section. In Table 2.9, we list some statistics of each segmenter to explain this 
phenomenon. First we look at the lexicon size of the MT training and test data. While 
segmenting the MT data, CRF-basic generates an MT training lexicon size of 583K 
unique word tokens and MaxMatch has a much smaller lexicon size of 39K. CRF-Lex 
uses lexicon features in the feature-based framework, and it successfully reduced the 
lexicon OOV rate. From Table 2.8 and Table 2.9, we see that the hybrid feature-based 
segmenter CRF-Lex outperforms MaxMatch in MT performance despite its larger 
lexicon size. This is because CRF-Lex generalizes better on OOV words and more 
importantly, has better consistency (Chang et al. 2008) 

 
Segmenter CRF-basic Maxatch CRF-Lex 
# MT Training LexiconSize 583147 39040 411406 
# MT Test Lexicon Size 5443 5083 5164 
MT Test Lexicon OOV rate 7.40% 0.49% 4.88% 

Table 2.9: MT Lexicon Statistics of three segmenters 

 
 
 

Handbook of Natural Language Processing and Machine Translation 147 



 

Making Use of External Lexicons if a Feature-Based Sequence Model  
 

Lexicon-based Features Linguistic Features (1.1)  ܮ(ܥ); ݊ ∈ ሾ−2,1ሿ (1.2) ܮௌ(ܥ); ݊ ∈ ሾ−2,1ሿ (1.3) ܮாௗ(ܥ); ݊ ∈ ሾ−2,1ሿ (1.4) ܮாௗ(ିܥଵ)  (ܥ)ாௗܮ  (ଶିܥ)ாௗܮ (1.5) (ଵܥ)ாௗܮ  (ଵିܥ)ாௗܮ  (ܥ)ܮ (ଶିܥ)ாௗܮ (1.6) (ܥ)ௌܮ  (ଵିܥ)ாௗܮ  (ଵିܥ)ܮ (ܥ)ܮ  (ܥ)ௌܮ

;ܥ (2.1) ݊ ∈ ሾ−2,1ሿ 
;ܥିଵܥ (2.2) ݊ ∈ ሾ−1,1ሿ 
;ܥିଶܥ (2.3) ݊ ∈ ሾ1,2ሿ 
;(ܥ)݈݁݃݊݅ܵ (2.4) ݊ ∈ ሾ−2,1ሿ 
 (ܥଵିܥ)݉ܽݎ݃݅ܤ݊ݓܷ݊݇݊ (2.5)
 (ܥଵିܥ)ݏ݁ݔ݂݂݅ܣ݁ݒ݅ݐܿݑ݀ݎܲ (2.6)
݊ ,(ܥଵିܥ)݊݅ݐ݈ܽܿ݅ݑܴ݀݁ (2.7) ∈ሾ0,1ሿ 

Table 2.10: Features for CRF-Lex 

In this section we describe how we use external lexicons in our feature-based 
segmenter to improve its consistency. We add lexicon-based features from external 
lexicons (i.e., not part of the segmentation training data) to improve the consistency of 
the CRF model. We built a CRF segmenter with all the features listed in Table 2.10 
(CRF-Lex). The linguistic features are adopted from Ng and Low (2004) and Tseng et al. 
(2005) and comprise character identity n-grams, morphological and character 
reduplication features. Our lexicon-based features are adopted from Shi and Wang 
(2007), where LBegin(C0), LMid (C0) and LEnd (C0) represent the maximum length of words 
found in a lexicon that contain the current character as either the first, middle or last 
character and we group any length equal or longer than six together. The linguistic 
features help capturing words that were unseen to the segmenter, while the lexicon-based 
features constrain the segmenter with external knowledge of what sequences are likely to 
be words. 

The external lexicons we used for the lexicon-based features come from various 
sources including named entities collected from Wikipedia and the Chinese section of the 
UN website, named entities collected by Harbin Institute of Technology (Jiang et al. 
2005), the ADSO dictionary,2 EMM News Explorer,3 Online Chinese Tools,4  Online 
Dictionary from Peking University and HowNet.5 There are 423,224 distinct entries in all 
the external lexicons. 

The MT lexicon consistency of CRF-Lex in Table 2.9 shows that the MT training 
lexicon size has been reduced by 29.5% and the MT test data OOV rate is reduced by 
34.1%. 

                                                      
 
2 http://www.adsotrans.com  
3 http://press.jrc.it/NewsExplorer/home/en/latest.html  
4 www.mandarintools.com  
5 www.keenage.com  

148 Chapter 2: Machine Translation from Text 



 

2.2.2.4 Optimal Average Token Length for MT 

Since the word segmentation standard under consideration (Chinese Treebank (Xue 
et al. 2005)) was neither specifically designed nor optimized for MT, it seems reasonable 
to investigate whether a different segmentation granularity segmentation is more effective 
for MT – many of the differences between segmentation standards turn on to what extent 
compound words are kept together or split apart. In this section, we present a technique 
for directly optimizing a segmentation property — characters per token average — for 
translation quality, which yields significant improvements in MT performance. 

Our CRF segmenter makes a binary decision on labels: the prediction yt = +1 
indicates the tth character of the sequence is preceded by a space and where yt = -1 
indicates there is none. In order to calibrate the average word length produced by our 
CRF segmenter, i.e., to adjust the rate of word boundary predictions  (yt = +1), we apply a 
relatively simple technique (Minkov et al. 2006), originally devised for adjusting the 
precision/recall tradeoff of any sequential classifier. Specifically, the weight vector w and 
feature vector of a trained linear sequence classifier are augmented at test time to include 
new class conditional feature functions to bias the classifier towards particular class 
labels. In our case, since we wish to adjust the frequency of word boundaries, we simply 
add a single feature that votes for a word boundary and then we can adjust the weight λ0 
of that feature appropriately so as to maximize MT performance. Table 2.11 displays how 
changes of the bias parameter λ0 affect segmentation granularity. 6  Since we were 
interested in analyzing the range of MT performance between CTB segmentation and 
segmentation into individual characters, we performed a grid search in the range between λ0 = 0 (maximum-likelihood estimate) and λ0 = 32 (a value that is large enough to split 
the data into 1 character words). For each λ0 value, we ran an entire MT training and 
testing cycle, i.e., we resegmented the entire training data, ran GIZA++, acquired phrasal 
translations that abide to this new segmentation, ran MERT and evaluated on segmented 
data using the same λ0 values. 

 λ0 -1 0 1 2 4 8 2 
len 1.64 1.62 1.61 1.59 1.55 1.37 1 

Table 2.11: Effect of the bias parameter λ0 on the average number of character per token on MT data. 

                                                      
 
6 Note that character-per-token averages provided in the ta-ble consider each non-Chinese word (e.g., foreign 
names, num-bers) as one character, since our segmentation post-processing prevents these tokens from being 
segmented. 

Handbook of Natural Language Processing and Machine Translation 149 



 

 

 
Figure 2.1: A bias towards more segment boundaries (l0 > 0) yields better MT performance and worse 

segmentation results. 

Segmentation and MT results are displayed in Figure 2.1. First, we observe that 
adjusting the precision and recall tradeoff by setting negative bias values (λ0 = 2) slightly 
improves segmentation performance. We also notice that raising λ0 yields relatively 
consistent improvements in MT performance, yet causes segmentation performance (F-
measure) to be increasingly worse. While the latter finding is not particularly surprising, 
it further confirms that segmentation and MT evaluations can yield rather different 
outcomes. We chose the value λ0= 2 on another dev set (MT02). On the test set MT05, λ0 
= 2 yields 31.47 BLEU, which represents a quite large improvement compared to the 
unbiased segmenter (30.95 BLEU). Further reducing the average number of characters per 
token yields gradual drops of performance until character-level segmentation (λ0 32, 
29.36 BLEU). 

Here are some examples of how setting λ0 = 2 shortens the words in a way that can 
help MT. 

• separating adjectives and pre-modifying adverbs: 很大(very big) → 很(very) 
大( big) 

• separating nouns and pre-modifying adjectives: 高血压 (high blood pressure) 
→ 高 (high) 血压 (blood pressure) 

150 Chapter 2: Machine Translation from Text 



 

• separating compound nouns: 内政部 (Department of Internal Affairs) → 内政

(Internal Affairs) 部(Department). 

2.2.2.5 A Comparison across Segmenters  

When incorporated into the Rosetta MT systems, the CRF-Lex segmenter shows 
consistent improvement over other segmenters on the GALE test set DEV07. We finally 
describe the experimental setup for comparing word segmenters used in Rosetta systems. 

 
Segmenter #Words OOV Rate BLEUrln4-ci 
Character 25,715 0.1% 11.60 

Harbin 17,634 2.2% 11.65 
FB Maximum Match 17,558 1.2% 11.16 
Stanford CRF-Lex 16,768 1.1% 12.10 

Table 2.12: Test Data Statistics and Machine Translation Results 

Four different segmenters are compared. The first is character segmentation. The 
second segmenter is a similar to a lexicon-based MaxMatch segmenter, but it uses the 
forward-backward algorithm to maximize the sentence probability of the segmented 
words. The third segmenter is the Harbin word segmenter by HIT, which uses a mixture 
of language models and some MAXENT model rescoring (Jiang et al. 2005). The fourth 
segmenter is the Stanford CRF-Lex segmenter. The test data is half of the text portion of 
GALE DEV07. The test set statistics are shown in Table 2.12. The OOVs in the character 
input are all non-Chinese words. 

The MT decoder used for these experiments is an IBM phrase-based statistical MT 
system. The first step of the experiment is character-level sub-sampling from the 10M 
sentence Chinese-English parallel corpus. The sub-sampling selects those parallel 
sentence pairs that are have at least one n-gram overlap with the training data. We match 
up to 5-gram in the sub-sample process. The sub-sampled training corpus is then 
segmented by the four segmenters resulting in four sets of training data for each style of 
segmentation. We then measure the OOV rate of the segmenters on the corresponding 
training corpus. The HMM model and Block Model (Zhao et al. 2005) are used to 
produce word alignments on the training data. Phrase pair translations are extracted from 
the word alignments. We use a smoothed 5-gram English LM built on the English 
Gigaword corpus and the English side the Chinese-English parallel corpora distributed by 
LDC from years 2000 to 2005. The reordering used in the decoding is phrase level 
reordering. Up to two phrases are allowed to be skipped over. The metric of evaluation is 
case insensitive BLEUr1n4 with one reference translation. The results are presented in 
Table 2.12. The numbers are much lower than those for MT03/MT05, because this test 
set has only one reference translation, whereas the NIST test sets have four reference 
translations. Here we see that the CRF-Lex segmenter outperforms all other segmenters 
by a significant margin. 

Handbook of Natural Language Processing and Machine Translation 151 



 

2.2.2.6 Conclusion  

We have investigated what segmentation properties can improve machine translation 
performance. We found that a feature-based CRF segmenter combined with lexicon 
features has better consistency and the ability to recognize new words. We also found 
that neither character-based nor a standard word segmentation standard are optimal for 
MT and show that an intermediate granularity is much more effective. We find that either 
character segmentation or the state-of-the-art Harbin segmenter performs about 0.5 
BLEUr1n4 points better than a baseline FB Maximum Match segmenter, but that the 
improved Stanford segmenter is another 0.5 BLEUr1n4 above the performance of these 
segmenters. 

2.2.3. Combination of Alternative Word Segmentations for 
Chinese Machine Translation 

Authors: Jinxi Xu  and  Roger Bock 

2.2.3.1 Introduction 

Word segmentation is important to Chinese machine translation (MT) because 
tokenized words are the most basic units of translation. We address the problem of word 
segmentation using two techniques. One technique is to segment the parallel training data 
using an ensemble of complementary segmentation algorithms and combine the 
alignments in order to mitigate the impact of segmentation errors. The other is to decode 
input sentences as sequences of characters to reduce mismatches between training 
examples and test data. While similar ideas appeared in earlier studies (Xu et al. 2005a; 
Zhang et al. 2008; Dyer et al. 2008), in this work we used segmenters that are 
complementary to maximize the benefit of combination. 

2.2.3.2 Motivation 

Unlike in languages written in Western scripts, there are no spaces between words in 
Chinese text. Word segmentation, i.e., detecting word boundaries in running text, is 
therefore a prerequisite for Chinese MT. Word segmentation is a tricky issue for a 
number of reasons. First, due to input ambiguity (e.g., “xiang bei-jing/to Bejing” vs 
“xiang-bei jing/northward capital”), error-free segmentation is not possible. Second, 
segmentation inconsistency is a big problem. Due to the often murky distinction between 
words and phrases, the same string may have multiple valid segmentations. For example, 
“ai-zhi-bing” can be segmented as either “ai-zhi/AIDS bing/disease” or “ai-zhi-
bing/AIDS”. Inconsistent segmentations cause fragmentation of training data and 
mismatches between training and test. Third, choosing the right word granularity is not 
easy. While shorter words are desirable with limited training (fewer OOV words), longer 

152 Chapter 2: Machine Translation from Text 



 

words are more desirable with abundant training (less ambiguity). Determining the right 
granularity usually requires costly experimentation. 

We propose two techniques to address the above issues. One technique is to combine 
different segmentation algorithms to mitigate the problem of segmentation errors in word 
alignment. Another technique is to address the issues of segmentation consistency and 
word granularity by using character-based translation. The two techniques will be 
described in detail in the next two sections. 

2.2.3.3 Combination of Different Segmentation Algorithms 

The first technique we use is to combine different segmentation algorithms. 
Specifically, we tokenize the parallel training data using each segmenter and run GIZA++ 
separately for each. Then we concatenate the alignment files from different segmenters 
and use the combined alignment file for training the translation model (i.e., rule 
extraction).  The advantage of this approach is that it mitigates the segmentation errors. 
While each segmenter may make mistakes for a given string, there is a good chance that 
one of the segmentations is correct and that the decoder will prefer it over the erroneous 
ones.  

In our experiments, we used the following word segmentation algorithms, which 
were chosen for their complementary characteristics: 

 
• L2R: Left to right greedy longest word match. This algorithm scans the input left 

to right for the longest dictionary entry that matches the input and then 
increments the start position before searching for the next word. It uses a 
predefined lexicon with 52K Chinese words. 

• L2R’: The same as L2R, except that it uses a smaller lexicon with 18K words. 
The lexicon was derived by removing infrequent words (words with a small 
number of occurrences in the parallel training data) from the L2R lexicon. 

• R2L: Similar to L2R, except that it scans words right to left. 
• Stat: Uses a trigram language model trained on 5M words of manually segmented 

text, consisting of the Chinese Treebank corpus and the Academic Sinica 
Balanced Corpus (Huang and Chen 1995). The algorithm builds a lattice of 
segmentation alternatives of the input and searches for the segmentation path 
with the greatest language model score. 

• Stat’: Similar to Stat, except that it uses a unigram language model trained from 
the Chinese Gigaword corpus. To train the language model, we first segmented 
the Gigaword corpus using the L2R method. 
 

Table 2.13 shows the degree of overlap between each pair of segmenters, measured 
by their F score. If one segmenter outputs a tokens and the other b tokens and the number 

Handbook of Natural Language Processing and Machine Translation 153 



 

of shared tokens is c, their F score is ቀ  ቁ /2. We can see the segmenters are rather 
different: the F score varies from 84.3% to 93.8%.  

 
F L2R L2R’ R2L Stat Stat’ 

L2R 100 91.5 93.8 85.0 87.9 
L2R’ 91.5 100 93.0 84.3 86.7 
R2L 93.8 93.0 100 87.9 90.8 
Stat 85.0 84.3 87.9 100 91.4 
Stat’ 87.9 86.7 90.8 91.4 100 

Table 2.13: Segmentation overlaps (F scores) between different segmenters. 

2.2.3.4 Character-Based Translation 

The second technique we use is to address the issues of segmentation 
consistency and word granularity by using character-based translation. 
Specifically, we convert word-aligned training data into character-aligned data, by 
splitting Chinese words into characters (English words are not affected) and 
replicating the alignment links accordingly. We do not run GIZA++ directly on 
character-tokenized data, because the drastic difference in sentence lengths can 
result in many unaligned characters. The character-aligned data is then used for 
model training (i.e., rule extraction). In decoding, the input sentences are 
translated as sequences of characters. Due to the use of phrases in the translation 
rules, character-based translation allows the test and training data to be matched at 
different levels (phrases, words and even subwords). We hypothesize that with 
more sources of evidence (e.g., English LM score) at its disposal, the decoder can 
do a better job of selecting the optimal segmentation for a given input than with a 
fixed word segmentation algorithm.  

2.2.3.5 Experiments using Phrasal Decoding 

The experiments described in this and the following sections use a number of data 
sets for tuning and testing. These data sets have been constructed from various GALE 
and NIST evaluation data sets. They contain different subsets of the Chinese NIST 
MT04-08 tests, as well as subsets of the GALE Phase 2 development and evaluation data. 
The Agile Chinese newswire development and test sets are around 1500 sentences each. 
The Agile Chinese development and test v2 sets are around 2000 sentences each. It is 
worth noting that when a data set is divided, the division always respects document 
boundaries, so that no two sentences from the same document end up in different sets.  

For fast turnaround, we used a phrase-based decoder in the experiments described in 
this section. The findings are validated using a slower but more accurate hierarchical 
decoder in the next section. We used the Agile development set for tuning and the Agile 

154 Chapter 2: Machine Translation from Text 



 

test set for testing. Translation models were trained using the GALE Phase 2 Chinese 
parallel training data. 

Table 2.14 shows that character-based translation trained with the L2R segmenter is 
better than word-based translation using the same segmenter. The improvement, as seen 
by comparing the first and second rows, is 0.3 in BLEU and 0.6 in TER. Combining 
alignments of different segmenters (Comb for training, Char for decoding in the table) 
produced an additional improvement of 0.2 in BLEU and 1.1 in TER, as seen by 
comparing the second and seventh rows. The results show that both segmentation 
combination and character-based translation improve MT performance. The Comb 
system is also better than all word-based systems in terms of TER and BLEU. 

 
Training 

segmenter 
Decoding 
segmenter BLEU TER 

L2R L2R 31.2 61.3 
L2R Char 31.5 60.7 
L2R’ L2R’ 31.3 60.6 
R2L R2L 31.4 60.8 
Stat Stat 30.6 61.6 
Stat’ Stat’ 31.2 61.0 

Comb Char 31.7 59.6 

Table 2.14: Impact of character-based decoding and segmentation combination. In the Comb run, alignments 
from individual segmenters were combined. Char indicates character-based translation. 

 

2.2.3.6 Experiments with Hierarchical Decoding  

To further demonstrate the benefits of character-based translation and segmentation 
combination, we performed experiments using a state of the art hierarchical decoder 
(Shen et al. 2008). For model training, we used the GALE Phase 3 Chinese parallel data. 
We used the Agile development v2 set for tuning and the Agile test v2 set for testing. 
Note that the results in this section are not directly comparable to those in the previous 
section due to the differences in training and test data. 

 
Training 

segmenter 
Decoding 
segmenter BLEU TER 

L2R L2R 36.7 56.1 
L2R char 37.2 56.0 

Comb char 37.2 55.2 

Table 2.15: Impact of character based translation and segmentation combination with a hierarchical decoder. 
In the Comb run, alignments were trained using three segmenters, L2R, L2R’ and Stat. 

The results in Table 2.15 show that character-based translation improved over word-
based translation by 0.5 in BLEU and 0.1 in TER. By combining alignment files from 
different segmentations, there is an additional 0.8 improvement in TER, but no improvement 

Handbook of Natural Language Processing and Machine Translation 155 



 

in BLEU. The total improvement over the word-based baseline is 0.5 in BLEU and 0.9 in 
TER. The improvements are in line with those described in the previous section. 

2.2.3.7 Discussion 

In our experiments, we concatenated the aligned training data from different 
segmenters in rule extraction. Obviously, not all segmenters are equally useful. A 
refinement is to weight the alignments from different segmenters (or exclude some 
segmenters altogether) based on performances on the development set. While performing 
such an experiment is straightforward, due to the limitation of time we leave it for future 
work. 

2.2.4. Synchronous Learning of Chinese Word Segmentation 
and Word Alignment  

 
Authors: Jia Xu, Jianfeng Gao, Kristina Toutanova, and Hermann Ney 

2.2.4.1 Introduction 

Chinese sentences are written in the form of a sequence of Chinese characters; words 
are not separated by white spaces. This is different from most European languages and 
poses difficulty in many natural language processing tasks, such as machine translation.  

It is difficult to define “correct” Chinese word segmentation (CWS) and various 
definitions have been proposed. The common solution in Chinese-to-English translation 
has been to segment the Chinese text using an off-the-shelf CWS method and to apply a 
standard translation model given the fixed segmentation. The most widely applied 
method for MT is unigram segmentation, such as segmentation using the LDC (LDC 
2003) tool, which requires a manual lexicon containing a list of Chinese words and their 
frequencies. The lexicon and frequencies are obtained using manually annotated data. 
This method is sub-optimal for MT, because words out of the manual lexicon cannot be 

156 Chapter 2: Machine Translation from Text 

While character-based decoding is similar to decoding a segmentation lattice (Dyer 
et al. 2008), it has two advantages. First, it incurs a smaller overhead in translation table 
size, since rules with the same unsegmented source string are merged. In our 
experiments, the character-based phrase translation table (extracted from the combined 
alignments) was only 40% larger than that of the word-based translation table (left to 
right word segmentation). Due to a compact translation table, the overhead in decoding 
speed is also small: Character-based decoding was only 45% slower than the word-based 
baseline. We expect lattice-based methods will result in a much larger translation table 
and a significant reduction in decoding speed. A disadvantage with character-based 
decoding is that it cannot assign weights to different segmentations of the input in scoring 
translation theories, while lattice-based methods do not have this problem. 



 

generated. In addition to unigram segmentation, other methods have been proposed. For 
example, Gao et al. (2005) described an adaptive CWS system and Andrew (2006) and 
Chang et. al. (2008) employed a conditional random field model for word segmentation. 
However, these methods are not specifically developed for the MT application, where 
Chinese word segmentation and translation model training are separate steps although 
they influence each other. 

In the work of Xu et al. (2004), word segmentations are learned from word 
alignments. We refine this method by integrating the Chinese word segmentation into the 
word alignment training so that the word segmentation and alignment can be learned 
synchronously and their effects on each other can be considered in the training. We 
present a log-linear model derived from a generative model which consists of a word 
model and two alignment models, representing the monolingual and bilingual 
information, respectively. The model is trained using Gibbs sampling. Alternative 
segmentation boundaries and realignments of words due to the change of these 
boundaries are taken into account in the sampling process. New Chinese words are 
generated using Dirichlet Process and the lexicon is updated dynamically. In this way, 
two problems are solved: adaptation to the parallel training corpus and out of vocabulary 
words.  

Our experiments on both large (GALE) and small (IWSLT) data tracks of Chinese-
to-English translation show that our method improves the performance of state-of-the-art 
machine translation systems. 

2.2.4.2 Review of the Baseline System 

In statistical machine translation, we are given a Chinese sentence in characters ܿଵ ൌ ܿଵ … ܿ which is to be translated into an English sentence ݁ଵூ ൌ ݁ଵ … ݁ூ. In order to 
obtain a more adequate mapping between Chinese and English words, ܿଵ  is usually 
segmented into words ଵ݂ ൌ ଵ݂ … ݂ in preprocessing. 

In our baseline system, we apply the commonly used unigram model to generate the 
segmentation. Given a manually compiled lexicon containing words and their relative 
frequencies, the best segmentation is the one that maximizes the joint probability of all 
words in the sentence, under the assumption that words are independent of each other. 
However, a human collected lexicon can hardly cover all Chinese words in various 
domains. Words out of the lexicon list are dropped during word segmentation and might 
not be able to contribute to the translation any more. Inaccurate word distributions can 
also result in sub-optimal segmentation. 

Once we have segmented the Chinese sentences into words, we train standard 
alignment models in both directions with GIZA++ (Och and Ney 2002) using models 
of IBM-1 (Brown et al. 1993), HMM (Vogel et al. 1996) and IBM-4 (Brown et al. 
1993). The translation system uses a phrase-based decoder with a log-linear model 
described by Zens and Ney (2004). The feature weights are tuned on the development 

Handbook of Natural Language Processing and Machine Translation 157 



 

set using a downhill simplex algorithm (Press et al. 2002). The language model is a 
statistical n-gram model estimated using modified Kneser-Ney smoothing. 

2.2.4.3 Semi-supervised Word Segmentation 

We introduce a semi-supervised approach to perform Chinese word segmentation as 
illustrated in Figure 2.2. The inputs to the system are the bilingual training data, including 
a set of Chinese sentences in characters and its English translations, a manual Chinese 
word lexicon, such as LDC lexicon, as well as the test corpus on character level. First, we 
segment the Chinese training corpus with a unigram segmenter using the manual lexicon 
and get an initialized training corpus in words. Then, we perform the synchronous 
training of Chinese word segmentations and word alignments to maximize the likelihood 
of a log-linear model. Optimal word segmentations and alignments are generated as 
outputs. By counting the Chinese word frequencies of the generated training corpus, we 
obtain a lexicon. To combine this lexicon with a manual lexicon, we interpolate the 
probabilities of each word entry in both lexicons linearly. This combined lexicon is 
applied to segment the test corpus using unigram segmentation. The optimal Chinese 
word segmentations of the training and test data, as well as, the alignments of the training 
data, are the system outputs, which will be used further into the decoder. 

 

 
Figure 2.2: Semi-supervised CWS process. 

 
 

158 Chapter 2: Machine Translation from Text 



 

2.2.4.4 Generative and Log-linear Model 

 
Observations   

Chinese characters ܿଵ 小孩玩纸牌

English sentence ݁ଵூ Children play cards
Hidden variables   

Alignment normal ܽଵ e.g. (cards, 纸),(cards, 牌)
Alignment inverse ܾଵூ  e.g. (纸, cards),(牌, cards)

Chinese words ଵ݂ e.g. 小孩玩纸牌 
Table 2.16: Observations and hidden variables of the generative model. 

As a solution to the problems with the conventional approach to CWS mentioned in 
Section 2.2.4, we propose a generative model for CWS in this section and then extend the 
model to a more general, but deficient model, a log-linear model in which most features 
are derived from the sub-models of the generative model. 

As shown in Table 2.16, the generative model assumes that a corpus of parallel 
sentences (ܿଵ, ݁ଵூ) is generated along with a hidden sequence of Chinese words ଵ݂ and a 
hidden word alignment ܾଵூ  in the inverse direction for every sentence. The joint 
probability of the observations (ܿଵ, ݁ଵூ) can be obtained by summing over all possible 
values of the hidden variables ଵ݂ and ܾଵூ  and each value is computed as following: ܲݎ(ܿଵ, ݁ଵூ, ଵ݂, ܾଵூ) ൌ ൫ݎܲ ଵ݂൯ߜ൫ ଵ݂, ܿଵ൯ܲݎ (݁ଵூ, ܾଵூ | ଵ݂)                (2.1) 

                            ൎ ଵ௭ ܲ൫ ଵ݂൯ఒభܲ (݁ଵூ, ܾଵூ| ଵ݂)ఒమܲ ( ଵ݂, ܽଵ|݁ଵூ)ఒయ ൫ߜ (2.2)      ଵ݂, ܿଵ൯ is 1 if the characters of the sequence of words ଵ݂ are ܿଵ  and to 0 otherwise,  Z 
is the normalization factor. We can drop the conditioning on ܿଵ  in ܲݎ (݁ଵூ, ܾଵூ| ଵ݂) , 
because the characters are deterministic given the words. 

In Equation 2.2, we put the monolingual model and the translation models in both 
directions together into a single model, where each of the component models is weighted 
by a scaling factor. This model can be viewed as a weighted linear combination of the log 
probabilities of sub-models. The weights, which are optimized on a development dataset, 
have empirical justifications. Since different sub-models are trained on different datasets, 
their dynamic value ranges can be so different that it is inappropriate to combine their log 
probabilities through simple addition. Moreover, some models may be poorly estimated 
due to for example the lack of large amount of training data. Therefore, empirical results 

Handbook of Natural Language Processing and Machine Translation 159 



 

have demonstrated that the use of scaling factors that reflect the relative contribution of 
different sub-models often improves the performance. 

In practice, we do not renormalize probabilities and our model is thus deficient 
because it does not sum to 1 over observations. However, the model works very well in 
our experiments. Similar deficient models have been used successfully before, such as in 
IBM models (Och and Ney  2002). 

 
Monolingual Chinese sentence model  

We use the Dirichlet Process unigram word model (Xu et al. 2008) to introduce new 
Chinese word types and to learn word distributions automatically from unlabeled data, 
where the parameters of a distribution over words G are first drawn from the Dirichlet 
prior ߙ) ܲܦ, ܲ) . Words are then independently generated according to G. The 
probability of a sequence of Chinese words in a sentence is thus: ܲݎ൫ ଵ݂൯ ൌ ∏ ܲீ ( ݂ୀଵ )       (2.3) 

Translation model 
We employ the Dirichlet Process inverse IBM model 1 to generate English words and 

alignments given the Chinese words. In this model, for every Chinese word f (including 
the null word), a distribution over English words Gf is first drawn from a Dirichlet 
Process prior ߙ)ܲܦ, ܲ(݁)) , where for ܲ(݁)  we use the empirical distribution over 
English words in the parallel data. Then the probability of an English sentence and 
alignment given a Chinese sentence in words is given by ܲݎ൫݁ଵூ, ܾଵூห ଵ݂൯ ൌ ∏ ଵାଵூୀଵ G್ܲ (݁| ݂)    (2.4) 

where the probability of ݁ is distributed according to ܩ್ . This is the same model form 
as inverse IBM model 1, except we have placed Dirichlet Process priors on the Chinese 
word specific distributions over English words.7  

In practice, we observed that using a word alignment model in one direction is not 
sufficient then added a factor to our model which includes the word alignment in the 
other direction, i.e., a Dirichlet Process IBM model 1. We ignore the detailed description 
here, because the calculation is the same as that of the inverse IBM model 1. According 
to this model, for every English word e (including the null word), a distribution over 
Chinese words Ge is first drawn from a Dirichlet Process prior ߙ)ܲܦ, ܲ(݂)). Here, for 

                                                      
 
7 fୠ is the Chinese word aligned to ei and Gౘ  is the distribution over English words conditioned on the word fୠ   . Similarly, eୟౠ is the English word aligned to fj in the other direction and Gୣౠ is the distribution over 
Chinese words conditioned on eୟౠ. 
 

160 Chapter 2: Machine Translation from Text 



 

the base distribution ܲ(݂) we used the same spelling model as for the monolingual 
unigram Dirichlet Process prior as described by Xu et al. (2008). The probability of a 
sequence of Chinese words ଵ݂  and a word alignment ܽଵ  given a sequence of English 
words ݁ଵூ is then computed in the same way. 

 
Gibbs Sampling Training 

It is generally impossible to find the most likely segmentation according to our 
Bayesian model using exact inference, because the hidden variables do not allow exact 
computation of the integrals. Nonetheless, it is possible to define algorithms using 
Markov chain Monte Carlo (MCMC) that produce a stream of samples from the posterior 
distribution of the hidden variables given the observations. We applied the Gibbs sampler 
(Geman and Geman  1984), one of the simplest MCMC methods, in which transitions 
between states of the Markov chain result from sampling each component of the state 
conditioned on the current value of all other variables. For a complete discussion of 
Gibbs sampling training and the word segmentation and realignment algorithm used in 
our experiment see (Xu et al. 2008).  

The Gibbs sampler for our model works as follows: For each iteration we sample on 
each character position by fixing other segmentations and alignments, then we compare 
hypotheses considering the segmentation and the related alignments of this position. Each 
position has two alternative segmentations: a boundary exists, or not. The change of a 
segmentation boundary causes relinking alignment points to parts or groups of the 
original words. In the work of Xu et al. (2008) all alignment alternatives are discussed in 
detail. Together with the boundary versus no-boundary state at each character position, 
we sample a set of alignment links between English words and any of the Chinese words 
related to this position given all other word alignments and segmentations in the parallel 
corpus fixed. After sampling by using the posterior probabilities of each candidate, we 
choose one of these candidates and perform the same operation for the next position. This 
process is usually terminated until the result is converged.� � Since we only implemented 
the IBM model 1 in both directions for computational efficiency, more advanced word 
alignment models are applied by repeatedly aligning the corpus using GIZA++. 

2.2.4.5 Translation Experiments  

We performed experiments using our models on a large and a small data track. We 
evaluated performance by measuring WER (word error rate), PER (position-independent 
word error rate), BLEU (Papineni et al. 2002) and TER (translation error rate) (Snover et 
al. 2006) using multiple references.  

 

Handbook of Natural Language Processing and Machine Translation 161 



 

Translation Task: Large Track GALE Translation  
We first report the experiments on the GALE machine translation task (GALE 2008). 

The bilingual training corpus is a superset of corpora in the news, conversation domains 
collected from different sources provided under the GALE program. As shown in Table 
2.17, the training corpus in each language contains more than seven million sentences 
after the bilingual sentence segmentation (Xu et al. 2005b). We took LDC (LDC 2003) as 
baseline method to compare. The word segmentation using Gibbs Sampling (GS) and 
baseline method generated 92.8 and 93.9 million Chinese running words respectively. 

 
  Chinese English

  LDC GS  

Train 

Sentences[M] 7.57 
Running Words[M] 93.9 92.8 102

Vocabulary[K] 112 121 347
Singletons[K] 38.1 38.3 152 

Test 

Sentences 1943 
Running Words[K] 44.3 44.3 53.2

Vocabulary[K] 6.78 6.60 6.15
OOVs (R. W.) 15 17 246

OOVs (in voc.) 13 14 158

Table 2.17: Statistics of corpora in task GALE. 

The CWS model parameters are not optimized but fixed as applied in the IWSLT task 
because of the computational complexity. The log-linear model scaling factors in the 
decoder as mentioned in Section 2.2.4.2 are neither optimized and we took the values 
optimized on the baseline system for convenience. The resulting systems were evaluated on 
the test corpus in 2008 including all domains with 1943 sentences. We only list the 
statistics of the first English reference. 

Starting from the unigram segmentation as initial word segmentation, we performed 
Gibbs sampling with only one iteration, which takes several hours, on the training corpus 
because of the large computational requirement. After that, we merged the GS generated 
lexicon with a weight of 0.4 and the manual LDC lexicon with a weight of 0.6 using 
linear combination on the probabilities of the word entries. Then we performed the 
unigram segmentation on the test corpus using the combined lexicon. 

As shown in Table 2.18, on the test data, the BLEU score was improved by 0.5% 
absolutely or more than 1.8% relatively using GS with combined lexicon. The TER score was 
also enhanced significantly, 0.8% absolutely and 0.9% relatively. 

 
Method WER PER BLEU TER

LDC 73.0 49.5 28.2 67.1
Unigram 73.0 49.7 28.4 67.2
GS with combined lexicon 72.5 48.6 28.7 66.3

Table 2.18: Translation performance with the baselines (LDC, unigram) and GS method on GALE [%]. 

162 Chapter 2: Machine Translation from Text 



 

We can see that although the semi-supervised word segmentation is not yet 
converged, it can still outperform a supervised one in MT. One of the reasons is probably 
the training and test corpora contain many words and words have different frequencies in 
our MT data from they do in the manually labeled CWS data. 

 
Task: Small Track IWSLT 

The Chinese training corpus of the IWSLT task was segmented using the unigram 
segmenter as baseline method (Baseline) and our GS method. The parameter 
optimizations were performed on the Dev2 data with 500 sentences and evaluations were 
done on both the Dev3 and the Eval data, i.e., the evaluation corpus of (IWSLT  2007). 

The model weights of GS were optimized using the Powell (Press et al. 2002) 
algorithm with respect to the BLEU score. We obtained the optimal number of iterations 
of the GIZA++ word alignment update as four. 
 

Test Method WER PER BLEU TER

Dev2 Unigram (Baseline) 38.2 31.2 55.4 37.0
GS 36.8 30.0 56.6 35.5 

Dev3 Unigram (Baseline) 33.5 27.5 60.4 32.1 
GS 32.3 26.6 61.0 31.4 

Eval 

Characters 49.3 41.8 35.4 47.5 
LDC 46.2 40.0 39.2 45.0
ICT 45.9 40.4 40.1 44.9
Unigram (Baseline) 46.8 40.2 41.6 45.6
9-gram 46.9 40.4 40.1 45.4
GS 45.9 40.0 41.6 44.8

Table 2.19: Translation performance with different CWS methods on IWSLT[%]. 

For a fair comparison, we evaluated on various CWS methods including translation 
on characters, LDC (LDC  2003), ICT (Zhang et al. 2003), unigram, 9-gram and GS. 
Improvements using GS can be seen in Table 2.19. Under all test sets and evaluation 
criteria, GS outperforms the baseline method. The absolute WER decreases with 1.2% on 
the Dev3 and with 0.9% on the Eval data over the baseline. In the BLEU score there is no 
change on the Eval set between the baseline and the GS, because the Eval data has a 
lower vocabulary coverage with the Dev2 than the other test sets such as the Dev3 do. 
The optimization of many parameters leads to a slight over-fitting of the model, so that 
the parameters may not be optimal for the Eval translation. 

We compared the translation outputs using the GS with those using the baseline 
method. On the Eval data, 196 sentences have different translations out of 489 lines, 
where 64 sentences from the GS are better, 33 sentences are worse and the rests have 
similar translation qualities. Table 2.20 shows two examples from the Eval corpus. We 
list segmentations produced by the baseline and the GS methods, as well as the 

Handbook of Natural Language Processing and Machine Translation 163 



 

translations generated using these segmentations. The GS method generates better 
translation results than the baseline method in these cases. 

 
a) Baseline   有近路吗？ 
                     do you have a ? 
GS                有近路吗？ 
                     do you have a shorter way ? 
REF              is there a shorter route ? 
 
b) Baseline   请告诉我总金额 
                     please show me the in . 
GS                请告诉我总金额 
                     please show me the total price . 
REF              can you tell me the total amount? 

Table 2.20: Segmentation and translation outputs with baseline and GS methods. 

2.2.4.6 Conclusion and Future Work 

We showed that it is possible to learn Chinese word boundaries during the word 
alignment training so that the translation performance of Chinese-English MT systems is 
improved. 

We presented a Bayesian generative model for parallel Chinese-English sentences, 
which uses word segmentation and alignment as hidden variables and incorporates both 
monolingual and bilingual information to derive word segmentation and alignment for 
MT. 

Starting with initial word segmentation, our method learns both new Chinese words 
and word distributions using the Dirichlet Process. In a small data environment and a 
large data environment, our method outperformed the standard Chinese word 
segmentation approach in terms of the Chinese-English translation quality. In future 
work, we plan to enrich our models to better represent the true distribution of the data. 

2.3 Word Alignment 

2.3.1. Word Alignment Revisited  
Authors: Francisco Guzman, Qin Gao, Jan Niehues, and Stephan Vogel 

2.3.1.1 Introduction 

Word alignment can be considered the backbone of Statistical Machine Translation. 
Even when Statistical Machine Translation (SMT) shifted from a word-based to a phrase-
based paradigm, word alignment remained the base for most phrase-based (Koehn et al. 
2003), hierarchical (Chiang 2007) and syntactic SMT systems (Zollmann and Venugopal 
2006; Marcu et al. 2006). Generative models have the advantage that they are well suited 
for a noisy-channel approach. Unsupervised training can be used to align a large amount 

164 Chapter 2: Machine Translation from Text 



 

of unlabeled parallel corpora. Nonetheless, they have a major disadvantage, because these 
models are completely unsupervised, they can hardly make use of the increasingly 
available manual alignments. Also, given their complexity, to incorporate other 
information, such as POS tags, word frequencies etc., is a non-trivial task. Moreover, 
because the IBM models are not symmetric, the alignments for different directions are 
quite different, which makes the search for a symmetrized combination of the word 
alignments a challenging procedure. 

Given the fact that the word alignments serve as a starting point of the SMT pipeline, 
improving their quality has been a major focus of research in the SMT community. 
However, the quality of word alignment is not directly related to the quality of 
translation. In fact, only weak correlation between alignment error rate (AER) and BLEU 
scores has been reported (Fraser and Marcu 2006b). The mismatch between the quality of 
word alignment models and that of phrase-based or syntactic based SMT may lead to the 
phenomenon of “improved” word alignment resulting in decreased translation quality 
(Vilar et al. 2006). This calls for more careful analysis of word alignment errors to better 
understand the impact of alignment errors and alignment characteristics on the entire MT 
pipeline. Recently, different efforts have focused on the symmetrization of the word 
alignment models (Matusov et al. 2004; Liang et al. 2006b), the inclusion of annotated 
data in the training of generative models (Fraser and Marcu 2006a) and the use of 
discriminative models (Blunsom and Cohn  2006; Taskar et al. 2005; Niehues and Vogel, 
2008). One of the advantages of these discriminative models is that the word alignment 
quality can be tuned towards a given word alignment quality measurement.8 Moreover, 
their conditional probability model allows the inclusion of different features, enabling 
that any available knowledge source can be used to find the best alignment. 

In this work, we present the results of an extensive error analysis of the word 
alignments created by the generative models, using the well-known toolkit GIZA++ (Al-
Onaizan et al. 1999; Gao and Vogel  2008). By characterizing the errors, we hope to shed 
light on the behavior of the aligners, as well as, to identify some opportunities for 
improvement. We also present our work on a discriminative word alignment framework, 
as presented by Niehues and Vogel (2008), which is easy to enhance with new features. 
We believe that proper analysis of the alignment behavior, coupled with the use of 
discriminative word alignment, can help to overcome many of the weaknesses of the 
generative models.  

2.3.1.2 Error Analysis 

To analyze the errors in automatically generated word alignments we compare the 
Viterbi alignments generated by GIZA++ against a gold standard of hand aligned data. In 

                                                      
 
8 For some measurements, smoothing is required. 

Handbook of Natural Language Processing and Machine Translation 165 



 

some gold standards, there is a distinction between sure and possible links. Sure links 
represent the hand alignments made by the annotator for which he is sure of the 
alignment. Possible links are those which represent a degree of uncertainty, e.g., where 
different annotators differ in the manual alignment. However, in this study, we include 
only sure links. Based on the differences between Viterbi and hand alignments, there are 
three basic quantities that we can measure: the number of links in which these two 
alignments agree, i.e., true positives (tp); the number of links that are present in the 
output of the aligner, but not in the gold standard, i.e., false positives (fp); and the 
number of links that are present in the gold standard, but not in the output of the aligner, 
i.e., false negatives (fn). There are several metrics that are used for measuring the quality 
of a word alignment, but most of them are based on these three quantities. Error measures 
included Alignment Error Rates, Precision and Recall: 

 
• Alignment Error Rate: AER, as defined by Och and Ney (2003), takes Sure and 

Possible links into account. ܴܧܣ ൌ ࡿା|ࡼ∪||ࡿ∪|       (2.5) 

Without the distinction into sure and possible links, the metric is related to the F 
measure: ܴܧܣ ൌ 1 − ଶ௧ଶ௧ାା ൌ 1 −  (2.6)     ܨ

• Precision: This measure gives us a notion of how accurate is the output of the 
aligner. It is the ratio of the correct to all generated links. ܲ݊݅ݏ݅ܿ݁ݎ ൌ ௧௧ା     (2.7) 

• Recall: This measures how well we cover the desired links, i.e. those in the hand 
alignments, with the automatically generated ones. That is, of all the links in the 
gold standard, what is the amount of links that are also present in the aligner 
output. ܴ݈݈݁ܿܽ ൌ  (2.8)       ࢌା࢚࢚

For some time, AER has been the predominant metric in the area. However, recent 
studies have raised some concerns. Fraser and Marcu (2006b) showed that when the 
distinction between sure and possible alignments is made, AER is biased towards 
precision, rather than being balanced between precision and recall and suggest using 
weighted F-measure to have control over this balance. In this study, we chose to use 
AER, given that are not making use of possible alignments and that the optimal 
coefficient for the weighted F-measure depends on the language being analyzed. 

 

166 Chapter 2: Machine Translation from Text 



 

Data Analysis 
In this section, we present a detailed error analysis of the Viterbi alignments, 

resulting from training the standard sequence of word alignment models IBM1, HMM, 
IBM3 and finally IBM4, in both directions, i.e., source to target (S2T) and target to 
source (T2S). We used the modified GIZA toolkit (Gao and Vogel, 2008). In addition, we 
generated the combined alignment, using the grow-diag-final heuristics implemented and 
used in the MOSES package (Koehn et al. 2007). In our analysis we use alignments for 
Arabic-English and Chinese-English. The data sets used for training and the data sets that 
we used for evaluation are summarized in Table 2.21. 

 
  Training Corpora Evaluation Corpora 
  # sentences # words # sentences # words Avg. Sen. Len. (std) 

A to 
E 

Arabic 7.7M 218M 14K 287K 20.5 (10.) 
English 7.7M 216M 14K 358K 25.7 (12.) 

C to 
E 

Chinese 11.0M 309M 19K 375K 19.4 (12.) 
English 11.0M 273M 19K 463K 23.9 (15.) 

Table 2.21: Statistics of corpora used in GIZA++ training and evaluation test sets 

From the statistics we can see that the English sentences are on average longer than 
the Arabic and Chinese sentences. Therefore, it is to be expected that source words often 
need to be aligned to several English words (i.e., English words have higher fertility), or 
that many English words are not aligned to Chinese or Arabic source words. This poses a 
problem for the generative models, because they can align at most one source word to a 
target word. Therefore, a greater asymmetry is to be expected.  

 
Alignment #Links GS #Links Precision Recall AER 

Arabic-English 
IBM4 S2T 

336,995 
275,386 73.6 60.2 33.7 

IBM4 T2S 339,281 68.6 69.0 31.1 
combined 334,469 73.2 72.6 27.0 

Chinese-English 
IBM4 S2T 

527803 
359,485 51.9 35.3 57.9 

IBM4 T2S 451,222 66.4 56.7 38.7 
combined 437,241 67.7 56.1 38.5 

Table 2.22: Statistics of the different alignments (GS = Gold Standard Alignment). 

In Table 2.22, we summarize the results for the evaluation of Arabic-English and 
Chinese-English. As expected, IBM4 models from source-to-target perform worse than 
the target-to-source ones. This difference is more striking for the Chinese-English case, 
where the AER difference is almost 20 points. What can be observed for the source-to-
target cases is that the aligner is omitting many alignments, which leads to low recall, 

Handbook of Natural Language Processing and Machine Translation 167 



 

while precision remains higher. In the hand-aligned data Chinese and Arabic words are 
often aligned to more than one English word, which cannot be replicated in the 
asymmetric IBM Models. 

 
Unaligned Words   

As an additional consequence of the symmetry we also expect an unbalance between 
the number of “NULL” alignments, i.e., source words aligned to the virtual “NULL 
words” and the number of target words that are left unaligned. Looking at the statistics of 
unaligned words for the output of GIZA++, as well as, the behavior of symmetrization 
heuristics, we can get a better sense of the impact of the underlying structure of these 
models. Table 2.23 gives the percentage of NULL-Alignments (words aligned to the 
NULL word) and the percentage of words not aligned. We also show these numbers for a 
symmetrized alignment and for the discriminative word alignment (DWA) described later 
in Section 2.3.1.3. 

 
Alignment NULL Alignments Unaligned Words 

Arabic-English 
Manual 
Alignment 

8.5% 11.8% 

IBM4 S2T 3.5% 30.0% 
IBM4 T2S 5.3% 15.7% 
combined 5.5% 7.80% 
DWA 17.6% 18.7% 

Chinese-English 
Manual 
Alignment 

7.80% 11.9% 

IBM4 S2T 5.5% 23.8% 
IBM4 T2S 6.4% 34.5% 
combined 14.6% 14.6% 
DWA 16.7% 23.7% 

Table 2.23: Statistics for unaligned words and null-alignments 

Compared to the hand aligned data, GIZA++ tends to have less NULL alignments, 
but a larger number of unaligned words. Depending on the language considered as source 
and target, we see that up to one third of the target words are not aligned. This highlights 
a weakness of the generative alignment models. On the other hand, the heuristic 
symmetrization (grow-diag-and) generates alignments which are more balanced between 
the number of NULL alignments and unaligned words and reasonably close to the hand 
alignment. In contrast, the discriminative alignment is sparser, leaving more source and 
target words unaligned. This is especially true for Chinese-English where we observe a 
large number of unaligned English words, which will impact the phrase pairs extracted 
from this kind of alignment. 

 
 
 

168 Chapter 2: Machine Translation from Text 



 

Alignment Errors: Sentence Level Analysis 
Now, we analyze the distribution of alignment errors over all sentence pairs. The 

distribution of the per-sentence AER shown in Figure 2.3 is almost Gaussian. However, 
we see a peak at AER=0. This is partially an artifact of the bucketing: to achieve an AER 
of 0.1 the sentence has to be already in the range of 10 words.  

Figure 2.4 shows some Arabic-English sentence pairs, which were perfectly aligned. 
Manual inspection revealed that all the perfectly aligned sentence pairs have no long 
distance reordering. 

 

 
Figure 2.3: AER distribution for the Arabic-English alignment generated by GIZA++ S2T. The vertical axis 
shows the counts of sentences versus their corresponding AER evaluation in the horizontal axis. 

 
Figure 2.4: Examples of perfectly aligned sentences of the Arabic-English alignment generated by GIZA++ 
S2T. 

Finally, it is interesting to see how well the alignment model scores correlate to the 
alignment quality. A high correlation would allow us to select sentence pairs, for which 

Handbook of Natural Language Processing and Machine Translation 169 



 

the alignment is more likely correct. In Figure 2.5 a scatter plot shows the correlation 
between the alignment error rate and the normalized alignment log probability (i.e. 
divided by the number of words in the sentence). We see a weak correlation, which might 
not be sufficient for a reliable data selection. We also observe a series of bands (at approx 
0.3, 0.5, 0.6, etc.) which correspond to the discrete nature of AER, i.e. a sentence pair of 
length 2/2 can only have AERs of f0, 0.25, 0.5, 0.75, 1g.  

 
 

 
Figure 2.5: Scatter plot of AER per Sentence versus Model Cost of the Arabic-English alignment generated 
by GIZA++ S2T. In the vertical axis, we observe the per sentence AER versus the normalized model cost 
from GIZA++ in the horizontal axis. 

Alignment Errors: Word Level Analysis 
 

 
Figure 2.6: Distribution of AER per frequency of English words of the Chinese-English alignment generated 
by GIZA++ S2T. The vertical axis shows the per word AER versus the log frequency of the English words 
displayed along the horizontal axis. 

170 Chapter 2: Machine Translation from Text 



 

The distribution of words in the training corpus typically follows a Zipf curve. This 
leads to the question if generating correct alignments is more problematic for very low 
frequency words (as there is not much evidence from the data), or for high frequency 
words, as they are seen co-occurring with almost every other word. In Figure 2.6 the 
AER with respect to word frequency is displayed, showing that indeed both high 
frequency words and low frequency words have higher alignment error rates than the mid 
frequency words. The word frequencies for this analysis were estimated with the counts 
over the corpus in Table 2.21. 

 
Stop Sign “.” Determiner “the” 

Chinese 
Word TP FP FN Chinese 

Word Agrmt FP FN 

, 1176 6540 4114 @NUM 3 19 573 

。 10325 2231 2071 美国 0 2 507 

“ 3 389 9 这 96 200 593 

了 0 248 0 的 1 3 367 

嗯 1 229 0 政府 0 3 363 

的 0 177 1 一 10 54 297 

) 0 116 3 国 2 12 293 

对 0 110 0 公司 0 0 213 

报道 0 98 0 问题 0 4 211 

@NUM 1 97 15 世界 0 0 208 

Table 2.24: Summarization of alignments of high frequency English words “the” and “.” extracted from 
Chinese-English alignment generated by GIZA++ S2T 

The errors in high frequency words are, of course, more problematic, as they add 
more to the overall alignment error rate. As we saw in Table 2.22, there are some 
disparities between the number of errors for the two alignment directions, in particular, 
the false negatives differ substantially. We, therefore, analyzed the errors for these words 
in more detail to see, which words contribute most to these errors. Figure 2.7 shows the 
distribution of the misalignments (fp) and missing links (fn) for the most frequent English 
words in the GIZA source to target alignments for Chinese. The most frequently 
misaligned word is the stop sign. On the other side, the word for which the required link 
is missing most often is the word “the” on the English side. In Table 2.24 we present 
some examples that illustrate those cases. As we can see from the distribution, the stop 
sign is misaligned more than half of the time. Other punctuation marks have also high 
alignment error rates. One conclusion that we can draw from looking at this table is that 
for Chinese, very frequent words such as the stop sign get often aligned to content words. 
On the other hand, there are many cases in which the English determiner “the” is missing 
from the alignment. This kind of behavior could be avoided if we could integrate some 

Handbook of Natural Language Processing and Machine Translation 171 



 

linguistic information into the generative models. Fortunately, there are other alignment 
models (such as the Discriminative Model), which enable us to do so. 

 

 
Figure 2.7: Alignment errors for high frequency English words from the Chinese-English alignment 

generated by GIZA++ S2T 

2.3.1.3 Discriminative Word Alignment 

In recent years several authors (Moore 2005; Taskar et al. 2005; Blunsom and Cohn 
2006) proposed discriminative word alignment frameworks and showed that this leads to 
improved alignment quality. One main advantage of the discriminative framework is the 
ability to use all available knowledge sources by introducing additional features. In this 
study, we use the discriminative model presented by Niehues and Vogel (2008), which 
uses a conditional random field (CRF) to model the alignment matrix.  

The structure of the described CRF is quite complex and there are many loops in the 
graph structure, so the inference cannot be done exactly. Consequently, an approximation 
algorithm has to be used. For this implementation, the belief propagation algorithm 
introduced by Pearl (1988) is used. This algorithm is not exact in loopy graphs and it is 
not even possible to prove that it converges, but by Yedidia et al. (2003), it was shown 
that this algorithm leads to good results. 

172 Chapter 2: Machine Translation from Text 



 

The weights of the CRFs are trained using gradient descent for a fixed number of 
iterations. The default method of training CRFs is to maximize the log-likelihood of the 
correct solution, which is given by a manually created gold standard alignment. However, 
in our experiments, the tuning process consists on a two step optimization: first we 
optimize towards maximum likelihood, then towards AER. This sequence has been 
shown to provide the best results (Niehues and Vogel 2008). 

 
Baseline Features 

In the model we are using, there are three different types of factored nodes 
corresponding to three groups of features. The first group of features is made up of those 
that depend only on the source and target words and are called local features. For 
instance, the lexical features, which represent the lexical translation probability of the 
words, belong to this group. In addition, there are source and target normalized lexical 
features for every lexicon. The source normalized feature, for instance, ensures that all 
translation probabilities of one source word to the different target words in the sentences 
sum up to one. The next group of features is made up of fertility features. They model the 
probability that a word translates into one, two, three or more words, or does not have 
any translation at all. The third group contains first order features, which model 
dependencies between different links. They are used to model relative positions of words, 
i.e., word reordering (also called distortion) within sentences. For further reference on the 
detail of these features, please see the work of Niehues and Vogel (2008). 

For our experiments the features for the baseline are set as follows: IBM4 lexicons 
both directions, IBM4 fertilities, IBM4 Viterbi alignments as well as source/target 
normalization features, identity feature, relative position feature, as well as, the following 
directions for the first order features: (1,1),(1,2),(2,1),(1,-1),(0,1),(1,0). 

 
New Discriminative Features 

One of the purposes of performing the extensive analysis in Section 2.3.1.2 was to 
recognize the weaknesses of the generative models and, therefore, incorporate new 
knowledge into the DWA in the form of new features. Such features, along with the 
existing ones are expected to refine the alignment models and to result in an improvement 
of alignment quality. To facilitate the integration of such information, we devised a new 
class-based feature, which scores the GIZA++ alignments that are used for discriminative 
training, according to the class of the source and target words. 

This class-based feature is a local feature and is defined as the conditional probability 
of a link between words fj and ei given the classes of the words ܥ൫ ݂൯ and ܥ(݁); and the 
alignments provided by GIZA++ in both directions. Using this feature, we can couple any 
kind of information regarding the class of words (whether they are POS tags, frequency 

Handbook of Natural Language Processing and Machine Translation 173 



 

based classes, etc.) with the alignment information from GIZA++. Then, we use this 
probability to provide a degree of confidence for the GIZA++ alignments.  

This degree of confidence for the GIZA++ alignments has to be estimated according 
to labeled data, during a feature training phase. This information is then integrated into 
the DWA as a weighted link feature. The estimation for the class-based feature is 
obtained through a simple MLE: ൫ݕ,ห … ൯ ൌ  ቀݕ,ቚܥ( ݂), ൫ܥ ݁൯, ,݆)௦ଶ௧ܮ ݅), ,݆)௧ଶ௦ܮ ݅)ቁ ൌ ห(),൫ೕ൯,ೞమ(,),మೞ(,),ೌ(,)หห(),൫ೕ൯,ೞమ(,),మೞ(,)ห         (2.9) 

where ܥ൫ ݂൯ is the class of the source word, ܥ(݁) is the class of the target word, ܮ(݆, ݅) 
a binary function indicating the existence of a link between the words ݂  and ݁  in a 
certain alignment set (source to target, target to source, hand aligned). 

We tested this kind of feature using a frequency-based classification of the source 
and target words. That is, we split the words into different classes according to their 
frequency. These classes are computed in such a way that they have similar number of 
word-counts. In the current implementation, the number of frequency based classes is set 
to ten for source and ten for target words. 

2.3.1.4 Experiments and Results 

In our experiments we wanted to compare the output of the Discriminative Word 
Aligner (DWA) to that of the Viterbi alignments from GIZA++, as well as, the combined 
alignment typically used for phrase extraction. As we stated before, the DWA allows one 
to combine several sources of information. Among them are the Viterbi alignments, the 
IBM-4 lexicons and IBM4 fertilities and relative position features. For the experiments 
described in this section, we also tested the frequency-class feature described in the 
previous section. This feature was trained using the data set previously defined for 
analysis (Table 2.21). 2552 Arabic-English and 2000 Chinese-English sentences were 
used for evaluation and the results of the alignment results are shown in Table 2.25. 

From these results we can conclude the following: First, discriminative word 
alignment improves over just heuristically combining the Viterbi alignments from the 
generative alignment models. This is more significant for Arabic, where the gain is of 4.3 
points. Whereas for Chinese is only of 2.6. Adding the frequency feature improves the 
precision for both Arabic and Chinese, however, leads also to a drop in coverage, giving 
a modest improvement in AER only for the Chinese to English alignment. 

 
 
 
 
 
 
 
 
 
 

174 Chapter 2: Machine Translation from Text 



 

Alignment Alignment Quality 
Precision Recall AER 
Arabic-English 

GIZA S2T 71.9 67.4 30.4 
GIZA T2S 64.5 72.7 31.6 
combined 68.0 76.5 28.0 

DWA – baseline 80.5 72.5 23.7 
DWA+Freq-class 83.7 69.6 24.0 

Chinese-English 
GIZA S2T 51.7 34.9 58.3 
GIZA T2S 66.5 56.9 38.7 
combined 68.0 56.3 38.4 

DWA - baseline 72.9 57.4 35.8 
DWA+Freq-class 75.8 56.7 35.1 

Table 2.25: Alignment quality results for the different aligners 

2.3.1.5 Conclusions and Future Work 

We analyzed word alignments resulting from the standard generative word alignment 
models. This analysis revealed fundamental problems with those alignment models. Most 
notably, while all source words are aligned to exactly one target word or the NULL word, 
a high percentage of the target words are not aligned. Symmetrizing the alignment using 
heuristics to combine the Viterbi alignments for both directions, while reducing the 
number of unaligned words, does often not result in any substantial improvement in the 
alignment quality. On the other side, discriminative word alignment, which can 
incorporate additional information, can lead to significant improvement over the 
generative alignment models. 

One additional problem with the word alignment remains unexplored in this study: 
how do changes in word alignment relate to translation quality. Again, as we use 
heuristics to extract phrase pairs from the word alignment, an improvement in alignment 
error rate does not necessarily translate into better phrase tables and, thereby, into better 
translations. To fully benefit from discriminative word alignment the phrase extraction 
process needs to be adjusted. 

2.3.2. Improved Word Alignment Algorithms for Arabic-
English and Chinese-English 

Authors: Abraham Ittycheriah, Fei Huang, Salim Roukos, and Abhishek Arun 

2.3.2.1 Introduction 

In word alignment algorithms, we seek a correspondence between words and phrases 
in a source sequence, S = [s1, s2 . . . sK ] and a target sequence of words,  T = [t1, t2  . . .  tM]. 
In this section, we document recent improvements in the Arabic-English and Chinese-
English word alignment algorithms utilizing the basic algorithm presented by 

Handbook of Natural Language Processing and Machine Translation 175 



 

Ittycheriah and Roukos (2005). Word Alignment as a statistical algorithm was first 
presented by Brown et al. (1993). The IBM Models 1-5 have been incorporated into the 
GIZA++ toolkit, which is the basis for many machine translation approaches (for 
example see the work of Koehn et al. (2007)). Word alignment remains dominated by 
unsupervised approaches (Brown et al. 1993; Vogel et al. 1996; Cherry and Lin 2003; 
Liang et al. 2006a); this is largely due to the success of sentence alignment algorithms to 
produce parallel corpora and, therefore, produce vast quantities of data for unsupervised 
approaches to word alignment. A survey of word alignment techniques is presented by 
Och and Ney (2003). Ittycheriah and Roukos (2005) showed that a small quantity of 
supervised data together with Model 1 statistics from the unsupervised corpora yield 
significant improvements in alignment accuracy. 

Alignments are specified by means of a variable attached to each target element that 
specifies which one source element it is attached to; this requirement reduces the space of 
alignments from 2|S+1||T| to |S+1||T|. Many-to-many alignments are often warranted in 
natural language especially in the case of idioms, but initially we ignore these and focus 
on the remainder of the words and return to this via post-processing mechanisms. 9 

The statistical alignment problem seeks the optimal alignment כܣ, 
 Aכ ൌ argmaxA∈ࣛ ,ܵ|ܣ) ܶ)      (2.10) 

where ࣛ  is the set of all possible alignment configurations that satisfy the above 
requirement on alignments. Following the developments of Ittycheriah and Roukos 
(2005), an alignment can be considered as a series of alignment decisions, 

(ܶܵ|ܣ)  ൌ ,ଵெݐ|ெܽ)  ଵ)       (2.11)ݏ

             ൌ ∏ ,ܯ1ݐ|݅ܽ) ,1݇ݏ ൌ0ܯ݅(1݅−1ܽ       (2.12) 

This is then factored into a transition model and an observation model with a 
weighting parameter α, 

(ܶܵ|ܣ)  ൌ ଵ ∏ ,ଵெݐ|ܽ)ఈ(|ܽିܽ) ,ଵݏ ܽଵି)ଵିఈெୀ      (2.13) 

where i− refers to all previous decisions up to i. 
 

                                                      
 
9 We extend the source sequence to have an extra item called the NULL cept (Brown et al., 1993) to which 
we align spontaneous target words. In our notation from above |S +1| = K +1 and |T | = M . 

 
 
 

176 Chapter 2: Machine Translation from Text 



 

Transition Model 
 The transition model serves as a shape function and is larger for those source 

positions where it is likely to transition to next in the alignment process. The transition 
model primarily serves to minimize the distance in terms of source positions between 
consecutive alignments. Two additional concepts are captured in the transition model: 

 
Frontier 

 In the alignment process, we align target words from left to right and the frontier is 
the right-most state (source word) that has a previous target word aligned to it. The 
frontier notion captures the frequent noun and adjective reversals in Arabic and the long 
jumps after a “DE” construction in Chinese. 
 
Fertility 

The number of target words aligned to a source word determines the fertility of the 
source word. In this aligner, the translation model is specified as, 

Here  is a penalty for a zero distance transition and is set to 1 in the experiments below; 
 is the frontier position and  is the previous alignment position. An example 

alignment for Chinese-English is shown in Figure 2.8. In the example, aligning the period 
in English has a frontier at source position 11 (because “on the functioning” which occurs 
earlier in the target string is aligned to position 11) and, therefore, the jump is 1, whereas 
without the frontier notion, the jump would be 5. 
 
 

 
Figure 2.8: An Alignment Example 

Handbook of Natural Language Processing and Machine Translation 177 

 (2.14)
 

    (2.15) 

           
 

       
 

 

             
 

 

      
 

 

                                      .  

Where  represents the fertility or state visits for state is the 
normalization constant and 

     i,        

 
       



 

ݕ ൌ ߰(ܽ)       (2.16) ݔ ൌ ,ଵିଵݐൣ ,ଵݏ ܽି൧             (2.17) (ݔ|ݕ) ൌ ଵ(௫) ݔ݁ ∑ ,ݔ)߶ߣ (ݕ     (2.18) 

where y is the future, x is the history and ܼ(ݔ) is the normalizing constant, 
(ݔ)ܼ  ൌ ∑ exp௬ᇲ ∑ ,ݔ)߶ߣ Ԣ)ݕ        (2.19)  

and ߶(ݔ,  Ԣ) are binary valued feature functions. The function ߰ selects the source wordݕ
at the position being aligned or an attribute of this position and is the key difference to 
the traditional formulations of maximum entropy. The future space is the set of source 
positions in the current source sentence and in order to generalize the features, we 
parameterize this space by the attributes observed at the source positions. Thus, the 
partition function, ܼ(ݔ), is a summation over all attributes observed at source positions 
that are available for the current decision, ai. The model parameters, λi, are solved using 
the IIS algorithm (Della Pietra et al. 1995) and converges in less than ten iterations. The 
features investigated so far in this model for each language pair, are presented below. 

 
Arabic Feature Set 

 
• Word Pairs (Lexical): Word based features that define the alignment link. These 

are very similar to the Model 1 type features except that singleton source and 
target words are classed. The classing of these rare words ensures that the model 
has support for unseen words. 

• Context: Lexical items to the left and right of both the source and target positions 
being aligned.  

• Segmentation: In Arabic, the words can be segmented into a detailed 
representation (Lee et al. 2003) and these features ask a question about a target 
word and the morpheme in Arabic. An example is “Al#” and “the”. In addition, 
in English we use a crude stemmer, which operates on long words (if the word is 
longer than 6 characters, it keeps the characters from position 3 to 7; for example, 
on “morpheme” it keeps just “rphe”).  

• Classing (WordNet): To group English synonyms, this feature type asks the 
question about the source word and the target WordNet id (Miller 1990).  

178 Chapter 2: Machine Translation from Text 

Observation Model 
The observation model is formulated using the maximum entropy formulation (Berger 
et al. 1996) and it models the probability that the source and target elements are aligned. 
The model details are, 



 

• Spelling Feature: Due to the small quantities of training data, the out-of-
vocabulary rate of this aligner is rather high and this feature measures the 
spelling overlap between the source and target words. Often names and numbers 
have high overlap in their spellings. For Arabic, we Romanize the word with 
vowels in order to maximize the overlap with the English word and measure a 
string kernel distance between the two tokens.  

• Dynamic Features: These features capture the notion that if we align a 
preposition or other introductory word, the next words in both languages are 
likely to be aligned. 

• Distortion Feature: This feature measures the distance from the previous aligned 
word; the distance is clipped to the range [-5,5].  

• Target Head Feature: This feature is a trigram consisting of the current source 
and target word and its head word. This feature captures only source and target 
words that occur in the supervised training data, whereas, the M1-proxy feature 
presented below is more general.  

• M1-proxy Feature. This feature is designed to align a spontaneous target word 
with the source word that is aligned to its head target word. For example, in 
Figure 2.9, consider the article “the” in “the constitutional assembly”, which 
should be aligned to the same source word (source position 5) as “assembly”. In 
most sentence pairs, articles occur several times in the same sentence and can be 
a significant cause of alignment errors. Since the target sentence is being aligned 
from left to right, the article is aligned before its head word. The M1-proxy 
feature utilizes Model 1 probabilities in conjunction with a parse tree as an 
indicator feature function. Note that this feature function provides a look ahead 
mechanism for the current decision of where to align the article.  

 
 

 
Figure 2.9: Arabic Alignment Example (MT03) 

In addition to features used in the Arabic aligner, the following features are utilized 
for Chinese-English word alignment: 

 
• Character Features: These features ask questions about the Chinese characters 

that compose a word and the English word being aligned in the current alignment 
decision.  

Handbook of Natural Language Processing and Machine Translation 179 



 

• Spelling Features: For Chinese, we utilize the Pinyin form of the word to 
measure the string edit distance to the English word being aligned in the current 
alignment. Parse Label Features. This feature utilizes syntactic information, i.e., 
the labels of the source and target constituents that cover the source and target 
words. Because words within a constituent are often translated together, this 
feature will ensure the words under certain parse tree labels (such as NP) are 
more likely to be aligned together. 
 

Smoothing the Observation Model 
Parallel corpora tend to be significantly larger than the hand aligned data and we 

utilize the IBM Model 1 probability matrix to smooth the observation model, (ܽ| … ) ൌ ଵ ,ଵିଵݐ|ொ൫ܽ ,ଵݏ ܽି൯ఉெଵ൫ݏ|ݐ൯ଵିఉ
    (2.20) 

where ߚ  controls the amount of smoothing. Higher order models could be used for 
smoothing, but Model-1 is found to be empirically better than a similar HMM probability 
matrix. Experiments in varying ߚ  are discussed below. During the search below, we 
require only a score for the observation model and thus drop the normalization Z. 

2.3.2.2 Search Algorithm 

The search process is a left-to-right beam (Viterbi) search aligning the target 
sequence to its source counterparts. Since words repeat in both source and target 
sequences, two hypotheses can only be merged if their alignment histories have been 
identical over a significant range of target words. This range has to be the maximum 
length between repeating words and in our experiments we find that a search history size 
of 30 is optimal. Since the average length of sentences is typically around this number, 
for most sentences very little merging occurs in the search process. The number of paths 
is controlled by the beam size, which is set to around 500 paths. 

2.3.2.3 Experimental Data 

Training data is comprised of the 35K parallel sentences for Arabic and 10.4K 
sentences for Chinese. Alignment performance is measured using the balanced F-measure 
(Fraser and Marcu 2007) and, we additionally report precision and recall figures. 

 
Arabic  

Although Arabic-English human alignments are done using unsegmented Arabic, 
recent machine translation systems built for GALE evaluations benefit from doing 

180 Chapter 2: Machine Translation from Text 



 

segmentation as performed in the Arabic Treebank (ATB). Mapping from unsegmented 
to segmented Arabic is done by a Model-1 type alignment of the tokens that are 
segmented. This introduces some error in the supervised corpus, but is small compared to 
the overall alignment error rate. 

 
Chinese  

Chinese word alignments are done at a character level, which allows any 
segmentation of the source into words and then alignments can be mapped to this word 
segmentation. This allows the annotation to be independent of the word segmentation 
decision. 

2.3.2.4 Experimets 

Testing of the above model is done for Arabic-English on the MT03 test set provided 
as part of LDC2006G09 with the same projection of unsegmented tokens to segmented 
tokens as was done for the training material. Chinese-English is tested on 512 sentences 
drawn randomly from a parallel corpus of over 10M sentence pairs.10 As baselines, in 
Table 2.26, we present results of an HMM algorithm (Vogel et al. 1996; Ge 2004) as well 
as GIZA++ alignments (IBM Model 4). 
 
Features 

In Table 2.26, the effect of incrementally adding each feature type is shown for 
Arabic-English. The Word Pairs feature type reduces the F-measure error (100 − F) of 
the HMM aligner by 48% and over the GIZA++ baseline by 37%. Adding the features 
shows a steady improvement in performance and with all the feature types, the system 
achieves an F-measure of 89.1 which is an F-measure error reduction of 55% over HMM 
and 46% over GIZA++. In order to compare to previous published results, on the same 50 
sentences of MT03 used by Ittycheriah and Roukos (2005), we obtain an F-measure of 
90.2. This result is not directly comparable since it is on segmented input and the number 
of input tokens is different from the previously published result. 

For Chinese-English, Table 2.27 shows the alignment scores when adding the 
features incrementally. The Word Pairs feature improves the F-measure error over the 
HMM algorithm by 17% and over GIZA++ by 4.6%. The Character features improve the 
F-measure by 1.0 point absolute and the parse label feature adds 0.6 point. Utilizing all 
the features, the F-measure error is reduced by 38.6% over the GIZA++ algorithm. 
 

A further refinement of the word alignment is to remove unlikely alignment links 
according to a confidence measure of the alignment links (Huang 2009). This leads to 
higher alignment precision, but lower recall. The link confidence filtering increased the 

                                                      
 
10 Both test sets are available from the authors for GALE participants. 

Handbook of Natural Language Processing and Machine Translation 181 



 

precision by 8 points while reducing the recall by 3.5 points and improved the overall F-
measure by 1.4 points. 

 
 

System 
#featur

es P R F 
HMM  77.0 74.6 75.8 

GIZA++  76.8 83.4 80.0 
Word Pairs 163K 88.6 86.3 87.4 
+Context 175K 89.8 86.3 88.0 
+Spelling 175K 90.0 86.6 88.3 

+Segmentation 178K 90.1 86.7 88.4 
+WordNet 272K 90.1 86.9 88.5 
+Distortion 292K 89.2 88.3 88.8 

+Dynamic Word 292K 89.2 88.3 88.7 
+Target Head 293K 89.3 88.5 88.9 
+M1 Proxy 294K 89.4 88.8 89.1 

Table 2.26: Arabic-English Word 
Alignment Performance. 

Sytem 
#feature

s P R F 
HMM  62.7 48.6 54.7 

GIZA++  67.0 55.3 60.6 
Word Pairs 65K 66.2 59.0 62.4 

+Char 92K 67.3 60.1 63.5 
+Context 122K 67.3 60.7 63.8 
+Spelling 122K 67.2 60.7 63.8 
+WordNet 201K 69.0 62.3 65.5 

+ParseLabel 219K 69.6 63.0 66.1 
+M1 Proxy 219K 70.8 64.4 67.5 

Link 
Confidence 

Filtering N/A 79.2 60.9 68.9 

Table 2.27: Chinese-English Word 
Alignment Performance. 

 

 

 
Figure 2.10: Effect of Transition 

Weight versus the Observation Model 
Weight for Arabic English. 

Figure 2.11: Effect of Maximum 
Entropy Model Weight versus Model 1 

Weight. 

182 Chapter 2: Machine Translation from Text 

Smoothing 
Here we study the effect of the relative weight between the transition weight (α) and 

the observation model and the smoothing parameter (β) between Model 1 and the 
maximum entropy (ME) model. First, in Figure 2.10 we fix the Model 1 weight to be 0.1 
and vary the transition weight from 0 to 0.9. Next, in Figure 2.11 we fix the transition 
weight to 0.45 and vary the ME weight from 0 to 0.55. The graphs show a stable 
performance around the optimal thresholds, which set the Transition Model weight to 
0.45, Maximum Entropy Model weight to 0.45 and Model 1 weight to 0.1. These values 
are used in both Arabic-English and Chinese-English. 



 

 

2.3.2.5 Conclusion 

In this section, we have extended the work of Ittycheriah and Roukos (2005) to 
include several new features and showed its application to the Chinese-English word 
alignment problem. We showed significant improvement over standard algorithms such 
as GIZA++'s IBM Model 4. The resulting alignments are utilized in the DTM2 system 
(Ittycheriah and Roukos 2007) for both Arabic-English and Chinese-English systems. 

2.4 Translation Models 

2.4.1. Arabic-English Machine Translation Using the Direct 
Translation Model 

Authors: Abraham Ittycheriah and Salim Roukos 

2.4.1.1 Direct Translation Models 

Statistical machine translation (SMT) takes a source sequence, ࡿ ൌ ሾݏଵ ݏଶ … ݏሿ and 
generates a target sequence, כࢀ ൌ ሾݐଵ ݐଶ … ݐሿ, by finding the most likely translation 
given by: כࢀ ൌ argmaxࢀ  (2.21)       (ࡿ|ࢀ)

This work builds on that of Ittycheriah and Roukos (2007) and in particular we 
document our system improvements and methodology since GALE Phase 1 in this 
Section. This section is self-sufficient as we describe in some detail the model and newer 
experiments. In the seminal paper of Brown et al. (1993), Equation 2.21 was factored 
using the source-channel model into כࢀ ൌ  argmax் (ࢀ|ࡿ)  (2.22)     ,(ࢀ)ఒ

כࢀ ൌ  argmaxࢀ ∑ ݄ெୀଵߣ ,ࡿ)  (2.23)    ,(ࢀ

where one recognizes the exponential model using m feature functions, hm(.) and the 
features weights (scaling factors) are trained using either the maximum entropy principle 
or more typically by optimizing a translation error metric on a development test set. 

183Handbook of Natural Language Processing and Machine Translation

where the two models, the translation model, (ࢀ|ࡿ) and the language model, (ࢀ), are 
estimated separately: the former using a parallel corpus and a hidden alignment model 
and the latter using a typically much larger monolingual corpus. The weighting factor 
λ is typically tuned on a development test set by optimizing a translation accuracy 
criterion such as BLEU (Papineni et al. 2002). Equation 2.22 is a special case of a 
Maximum Entropy (log-linear) model described by Papineni et al. (1997), called the 
Direct Translation Model (DTM) with two feature functions. Och and Ney (2002) 
reintroduced the DTM to machine translation by using a larger number of feature 
functions (about a dozen or so) along with the use of phrase pairs. The proposed phrase-
based DTM is: 



 

Typically, the Direct Translation Models for machine translation have been limited to a 
dozen or so feature functions. Another key ingredient to the proposed phrase-based DTM 
model proposed by Och and Ney (2002) is the use of phrases. Briefly, we call a phrase 
pair of p source words and r target words a “block”. A sentence pair (S,T) can be seen as 
a sequence ࢈ଵ of B blocks. The phrase-based SMT achieved a significant improvement in 
translation quality over the source channel model by the use of phrase-pairs in defining 
the feature functions. The phrase pair library is extracted from a parallel corpus using a 
word alignment model (such as Model 4 in GIZA or a MaxEnt alignment (Ittycheriah and 
Roukos 2005)) to align source words to targets words and additional heuristics are used 
to extract phrase pairs from the aligned parallel corpus. Given a source sentence, we 
maximize over all possible target sentences and covering of the source sentence by the 
available phrase library (implicitly defining a block alignment defined by the best scoring 
hypothesis): כࢀ ൌ argmax் ∑ ݄ெୀଵߣ ,ࡿ)  (2.24)     (ࢀ

             ൌ argmax࢈భಳ(ࡿ) ∑ ݄ெୀଵߣ ൌ (2.25)                     (ଵ࢈)  argmax࢈భಳ(ࡿ) ∑ ߣ ∑ ݄ୀଵெୀଵ  (2.26)           (ି࢈|࢈)

where bB1(S) covers the input sentence S and produces the target sentence T. The feature 
functions h(.) are decomposed by the sequence of blocks covering the sentence pair (S,T) 
as shown in Equation 2.26, above. For some feature functions such as the block unigram 
cost and the block Model 1 cost in either direction, h(b) depends only on the current 
block b while for other feature functions such as the n-gram language model, they depend 
on the current block and as many previous blocks as needed to cover the n-gram target 
word history. Note that a distortion model has been used in some phrase-based systems 
and that is captured by the distance in words between the last source word of block bi−1 
and the first word of the source side of the next block bi; we sometimes refer to this 
distance as the “jump”, denoted by the variable j. As indicated earlier, current phrase-
based systems use a dozen or so feature functions such as the log unigram frequency of a 
block b, the Model 1 scores in both directions for block b, the n-gram language model 
score of the target sentence, the number of words in T, the number of blocks, etc. and the 
feature weights λm are estimated by optimizing an error criterion such as MER (Och 
2003). To summarize each of the feature functions hm(.) is typically a continuous valued 
function and is typically determined separately by a maximum likelihood estimate (with 
smoothing in some cases, e.g. the language model) and they are combined with a global 
set of weights (a small number on the order of a dozen or so). One can see that the 
phrase-based DTM uses a “block” alignment between source and target sentences and a 
small number of feature weights.  

In our proposed DTM approach (DTM2), we factor the model as: (ܶ|ܵ) ൌ  ∏ ୀଵ ,ି࢈|࢈) ܵ)                       (2.27) 

184 Chapter 2: Machine Translation from Text 



 

 

where bi− is the sequence of previous blocks producing the partial target sentence left to 
right and covering a subset of the source sentence S and we abuse the notation by only 
allowing blocks bi that are consistent with source sentence S and the partially generated 
target sentence up to this point. We make explicit the “jump” step between blocks by 
showing the jump variable in Equation 2.27 as: ࢈|࢈)ି, (ࡿ ൌ ,࢈)  ,ି࢈|݆  (2.28)   (ࡿ

We use a Maximum Entropy model for ࢈)|࢈ି, ,ି࢈|࢈) (ࡿ (ࡿ ൌ బ(࢈|࢈ష,ࡿ) exp ∑ ߶(ߣ ,ࡿ ,ଵିଵ࢈ ݆,  )       (2.29)࢈

where p0(.) is a prior distribution, Z is a normalizing term and ߶൫ࡿ, ,ଵିଵ࢈ ݆,  ൯ are the࢈
features of the model. The feature functions ߶m(.) are binary valued but are numerous 
trying to capture detailed aspects of the translation process as described in Section 2.4.1.2 
and each has its own weight λm; these feature weights are jointly estimated using the 
Maximum Entropy Principle (MaxEnt) in contrast to the independently estimated feature 
functions typically used in today's phrase-based systems. The prior distribution utilized in 
this work is the normal unigram phrase prior. The definition of the features will be 
discussed in detail below, however, because we can enumerate all possible futures, this 
model can be trained using MaxEnt. The set of phrases for each source word or sequence 
of words then limits the possible target translations. This greatly reduces the number of 
futures from one of being proportional to the vocabulary size to the number phrases that a 
source word is part of. Improved Iterative Scaling (Della Pietra et al. 1995) is utilized to 
solve for the feature weights λm. MaxEnt allows a very rich definition of features derived 
from the whole source sentence S, various analyses of the sentence such as word 
segmentation, morpheme segmentation, part-of-speech tagging and parsing and the 
partial target sentence produced at each point, denoted as ti1. We describe our rich set of 
features in Section 2.4.1.2. The blocks used in our work consist of phrases of lengths (m,n) and were categorized by Ittycheriah and Roukos (2007) into: 

 
1. n = 0, source word producing nothing in the target language (deletion block),  
2. m = 0, spontaneous target word (insertion block),  
3. m = 1 and n ≥ 1, a source word producing n target words including the possibility 

of a variable (denoted by X) which is to be filled with other blocks from the 
sentence (the latter case called a discontinuous block)  

4. m ≥ 1 and n = 1, a sequence of source words producing a single target words 
including the possibility of a variable on the source side (as in the French ne...pas 
translating into not, called multi-word singletons) in the source sequence  

5. m > 1 and n > 1, a non-compositional phrase translation.  
 
Although initial experiments were carried out only on types 1 and 3, the current 

effort incorporates all types of blocks except Type 2. The phrases are derived from 

Handbook of Natural Language Processing and Machine Translation 185



 

phrases and their categorization is given in Table 2.28. 
 

Word Position Source Phrase Target Phrase Categorization (Type) 
1 w# e_0 Deletion (1) 
2 ftHt opened Normal (3) 
3 mrAkz the X centers Normal with Variable (3) 

8,9 AlsAEp $num $num Multi-source word (4) 
11,12 Altwqyt AlmHly local time Non-compositional  (5) 

Table 2.28: Complex Phrase Examples 

In row 5, “Altwqyt AlmHly” seems to have a simpler word to word alignment, but 
we are limited to the alignment provided by the word alignment algorithm. The algorithm 
extracts more complex phrases whenever a simple block extraction fails. Thus, the 
resulting phrases still form a minimalist set. 

 

  
Figure 2.12: Arabic Parse Example 

2.4.1.2 Features 

The features used in this model are all binary questions about the phrase that is being 
generated and the previous generations. The features can be categorized into the 
following broad categories: 

 
1. Lexical Features: These are internal features to a phrase pair. They examine the 

source word(s), target word(s) and the jump from the previously translated source 
word and the size of the source phrase and target phrase. The target size indicates 
the “fertility” of this phrase and the source size allows the feature to be specific 
for different phrase sizes. As an example, for the Arabic word “mrAkz” above, 
the feature when it generates “the” is,  

 

186 Chapter 2: Machine Translation from Text 

the alignment and in particular the word position shown in Figure 2.12. Examples of 

 

  



 

 

,ݐ)߶ ݆, (ݏ ൌ ቄ10      ݂݅ ݏ ൌ mrAkz,   ݐ ൌ the,   ݆ ൌ  (2.30)                                      ݁ݏ݅ݓݎ݄݁ݐ  3

 
where the jump of 3 is obtained because the previous target word is the boundary 
which is aligned to the source boundary and we need to jump 3 words on the 
source side to produce the target “the” from the Arabic “mrAkz”. 11  The feature 
when “mrAkz” generates the word “centers” has a jump of −1 since the previous 
target word comes from the next Arabic word “AlAqtrAE”. The jump captures 
the complex generation story involved with the variable. 

2. Lexical Context Features: These examplify the lexical neighbors of the 
generation. The previous target words and the neighborhood of the source word 
are examined.  

3. Arabic Segmentation Features: An Arabic segmenter is utilized to produce 
detailed morphemes; these features examine Cartesian product of the Arabic 
segments together with the English words. Segments which are exclusively 
identified to only certain English words are restricted to those words by means of 
a dictionary. 

4. Part-of-Speech Features: For each language part-of-speech taggers provide 
additional class information which are used in this feature type.  

5. Coverage Features: These features examine the state of the source positions 
surrounding the current generation point. The state can be (a) covered: meaning 
that this source position has already generated an English phrase, (b) partial: 
indicating that this source position has generated some text, but is waiting for a 
variable to be filled, (c) uncovered: indicating that the source position is still 
open to future generation events.  

 
# Count Alpha Jump Source Target Label Coverage Orientation 
1 178 1.156 -1 FtHt opened NP-SBJ 1 1 
2 26 1.323 -2 FtHt opened NP-SBJ 1 1 
3 142 1.154 1 FtHt opened NP-OBJ 0 1 
4 18 1.569 1 FtHt opened PRT 0 -1 

Table 2.29: Features for “ftHt” (Source position 2 in Figure 2.12 

6. Parse Node Coverage Feature: A source parser produces parse trees as shown 
in Figure 2.12. This feature examines if when jumping the current source position 
there is a parse node that covers the intervening range. The parse node can be in 
one of four coverage states: (1) uncovered, (2) covered, (3) partial, (4) mixed: 

                                                      
 
11 Strictly speaking the jump is 2 since the first Arabic word w# uses a deletion block (that produces a null 
target) and these are handled left to right, but for the sake of simplifying the presentation we do not discuss 
deletion blocks further. 
 

Handbook of Natural Language Processing and Machine Translation 187



 

this state is when the range of source positions of this parse node are in a mixed 
state of coverage. The feature also indicates the orientation of the parse node, 
whether it is to the right or left of the current generating source position. In the 
example shown in Figure 2.12, source position 2 is a verb which is generating the 
English word “opened”. The Parse Node Coverage feature indicates that the next 
source position which has an NP-SBJ label above is in a covered state. This 
feature only fires when the decoder proposes to translate the verb after the NP-
SBJ has been covered. The features for this verb are displayed in Table 2.29. 

2.4.1.3 Translation Decoder 

A beam search decoder similar to phrase-based systems (Tillmann and Ney 2003) is 
used to translate the source sentence into the target sequence. The decoder is a skip-
window width decoder where the source sentence is traversed left to right. Each 
hypothesized target sequence remembers: 

 

1. Coverage status (both Complete and Partial covered states) 
2. The last covered source position 
 

The coverage status indicator is scanned to find the first open source position and a 
window of source positions is then proposed as generating the next target phrase. As is 
normally done in phrase based systems, the following meta-feature functions are 
computed with their weights given in parenthesis: 

 

1. Maximum Entropy model score ݐ),  (0.35)  (ݏ|݆
2. The phrase pair unigram score (0.01) 
3. Model 1 score, (0.2)  (ݐ|ݏ) 
4. Language Model score (0.3): This is implemented as a foreground 5-gram LM 

which encompasses all monolingual, as well as, the target side of the parallel 
corpus with weight of 0.2; the second component is a domain 4-gram LM, which 
trained on just the parallel corpus with a weight of 0.1. 

5. Word count score (-0.15) 
 
These are weighted in the log domain and added to form the score for this extension. 

The weights are tuned on the MT06 data set for both Arabic and Chinese. The word 
count weight is negative indicating a boost in the score for phrases that produce more 
target words. Word count weight is the only parameter that varies for the languages and 
in Chinese the system typically produces less target words than is desired and thus, we 
use a weight of -0.2. Performance is not very sensitive to small changes in the remaining 
parameters. Since the phrases employed in DTM are simple, a more extensive search is 
required to find the right ‘re’-ordering of the phrases. For Arabic, the skip parameter is 4 
and window width is variable between 5 and 14. The longer window width is applied 
when the part-of-speech tag of the Arabic word indicates it’s a verb. 

 
 
 

188 Chapter 2: Machine Translation from Text 



 

 

GALE Phase 3 Experiments and Analysis 
Recent experiments on Arabic-English were carried out on the GALE Dev07 

(LDC2007E16) corpus. This corpus has 579 sentences (21K words) in the newswire 
section and this is utilized as the test data below. As the training data increases with more 
recent material, older tests are less reliable predictors of performance as a certain amount 
of contamination occurs from the training data. Hence, here we repeat the experiments 
carried out by Ittycheriah and Roukos (2007) and also contrast the new PARSE-based 
features. Also, in GALE the official metric is Human TER by which means that human 
references are created and system's output are post-edited to match the meaning of this 
reference and then TER (Snover et al. 2006) is computed between the system output and 
the post-edited system. We utilize a combination of metrics in an effort to get a better 
correlation to HTER. This combination is essentially equally weighting BLEU and TER 
which is presented below as (TER-BLEU)/2. 

 
Sub-Sampling 

For the Arabic-English language pair, we have about 7.8 million sentence pairs. Test 
sets typically come from more recent material and sub-sampling is a method by which a 
parallel corpus is derived that is closer to the test set. In order to do this, n-grams up to 
order 15 are collected from the test set. For each n-gram, we require 20 examples from 
the larger parallel corpus and for the Dev07 test set we obtain a total of 295,913 
sentences on which to train the DTM model. Model 1 is trained on all of the training data. 
Sub-sampling typically yields 1 to 2 BLEU point improvements over a general system. 

 
Experiments 

A feature ablation study is carried out on Dev07 and is presented in Table 2.30. The 
different feature types have slight variation between test sets, but the general trend is that 
newer feature sets improve the scores. Of course, features are developed in an error-
driven approach and hence, this is not entirely surprising. The baseline phrase decoder is 
a multi-stack decoder that utilizes n, m phrases and is trained on a similar sub-sampled 
corpus. 

 
Analysis 

• Component Errors: Part-of-speech tags and Parse structures are used in the 
features and when these algorithms make errors, often the final result is 
impacted.  

• Alignment Errors: The derivation of the algorithm is predicated on a word 
alignment between the source and target sentences. Since we have limited the 
training to just the alignments provided, errors made by the aligner are a 
significant part of the errors in the translation system. This is in contrast to many 
approaches which still question the utility of improving alignments.  

• Model Errors: A fundamental assumption made in this model is that the number 
of translations for each source sequence can be limited to 15 to 20. This 
assumption is a poor one for frequent Arabic words which can translate into a 
number of frequent English phrases.  

Handbook of Natural Language Processing and Machine Translation 189



 

• Search Errors: Restricting the search to a skip of 4 source words and a window 
width of up to 14 words is still restrictive and a few sentences require a more 
significant search.  

 
 

Feature Types # offeats TER Bleu (T-B)/2 
Baseline Phrase Decoder  41.53 52.90 -5.68 

Lexical Features 524528 40.89 52.63 -5.87 
+Lexical Context Features 2312573 40.09 54.8 -7.15 
+Lexical Trigram Context 3402358 40.12 54.28 -7.08 
+Segmentation Features 3574173 40.01 54.33 -7.16 

+Variable Features 3584318 40.11 54.20 -7.04 
+Coverage Features 371939 40.06 54.30 -7.12 

+POS Features 3818413 39.96 55.06 -7.55 
+ParseFeats 4063782 39.78 55.37 -7.79 

Table 2.30: Dev07 Feature Study. 

The errors that the system makes can be categorized into: 
 
• Component Errors: Part-of-speech tags and Parse structures are used in the 

features and when these algorithms make errors, often the final result is 
impacted.  

• Alignment Errors: The derivation of the algorithm is predicated on a word 
alignment between the source and target sentences. Since we have limited the 
training to just the alignments provided, errors made by the aligner are a 
significant part of the errors in the translation system. This is in contrast to many 
approaches which still question the utility of improving alignments.  

• Model Errors: A fundamental assumption made in this model is that the number 
of translations for each source sequence can be limited to 15 to 20. This 
assumption is a poor one for frequent Arabic words which can translate into a 
number of frequent English phrases.  

• Search Errors: Restricting the search to a skip of 4 source words and a window 
width of up to 14 words is still restrictive and a few sentences require a more 
significant search.  

2.4.1.4 Conclusion and Future Work 

We have presented a novel formulation for the translation model. The model 
incorporates millions of features to learn the neighboring context to guide the search 
process in choosing the right word choice and order for the translating the source 
sentence. A feature ablation study shows that the platform is able to incorporate more 
sophisticated features with a resulting gain in a few automatic metrics. In the future, we 
intend to incorporate a statistical model for choosing the window of source positions to 
translate. 

 
 

190 Chapter 2: Machine Translation from Text 



 

 

2.4.2. Factored Translation Models 
Authors: Philipp Koehn and Hieu Hoang 

2.4.2.1 Introduction 

Phrase-based translation models form a strong baseline for statistical machine 
translation, especially since they make few assumptions about the training data. However, 
a number of translation problems, especially handling morphology and reordering are 
rooted in linguistic properties that are not well addressed by these models. There have 
been many pursuits motivated by the integration of linguistic knowledge into phrase-
based translation models. One promising direction is to follow the structural insight that 
language is fundamentally recursive and hence translation models should also be 
structured in the form of recursive (or hierarchical) rule applications (Chiang 2007). 

We are concerned here with another direction: the insight that many translation 
problems require a linguistic vocabulary that goes beyond the notion that language is a 
sequence (or tree structure) of word tokens. Several properties of words may matter for 
translation, such as their part-of-speech, their morphological features, or their syntactic or 
semantic behavior. 

To integrate such diverse properties of words into phrase-based translation models, 
we propose to represent words not as mere tokens from a finite vocabulary, but as vectors 
of factors. In this section, we outline factored translation models and show how they may 
be used to address problems such as reordering, rich morphology, syntactic agreement 
and other characteristics of language that pose problems for translation. 

2.4.2.2 Related Work 

A wide range of prior work exists on the idea of integrating linguistic information 
into phrase-based statistical machine translation models. 

 
Morphology — Statistical models for morphology as part of a statistical machine 

translation system have been developed for inflected languages (Nießen and Ney 2001, 
2004). Morphological features may be replaced by pseudo-words (Goldwater and 
McClosky 2005). Morphological annotation is especially useful for small training 
corpora (Popovic´ et al. 2005). For highly agglutinative languages such as Arabic, the 
main focus is splitting off affixes with various schemes (Habash and Sadat 2006), or by 
combination of such schemes (Sadat and Habash 2006). A straight forward application of 
the morpheme splitting idea may not always lead to performance gains (Virpioja et al. 
2007). Yang and Kirchhoff (2006) present a backoff method that resolves unknown 
words by increasingly aggressive morphological stemming and compound splitting. 
Denoual (2007) uses spelling similarity to find the translation of unknown words by 
analogy. Talbot and Osborne (2006) motivate similar work by reducing redundancy in 
the input language, again mostly by morphological stemming. Lemmatizing words may 
improve word alignment performance (Corston-Oliver and Gamon 2004). Using the 
frequency of stems in the corpus in a finite state approach may guide when to split (El 
Isbihani et al 2006), potentially guided by a small lexicon (Riesa and Yarowsky 2006). 

Handbook of Natural Language Processing and Machine Translation 191



 

Splitting off affixes may also be a viable strategy when translating into morphologically 
rich languages (Durgar El-Kahlout and Oflazer 2006). Different morphological analyses 
may be encoded in a confusion network as input to the translation system to avoid hard 
choices (Dyer 2007a, b). This approach may be extended to lattice decoding and tree-
based models (Dyer et al. 2008). 

 
Generating rich morphology — Generating rich morphology poses different 

challenges. Often relevant information is distributed widely over the input sentence or 
missing altogether. Minkov et al. (2007) use a maximum entropy model to generate rich 
Russian morphology and show improved performance over using the standard approach 
of relying on the language model. Such a model may be used for statistical machine 
translation by adjusting the inflections in a post-processing stage (Toutanova et al. 2008). 
Translation between related morphologically rich related languages may model the 
lexical translation step as a morphological analysis, transfer and generation process using 
finite state tools (Tantug et al. 2007a). But also, splitting words into stem and morphemes 
is a valid strategy for translating into a language with rich morphology as demonstrated 
for English–Turkish (Oflazer and Durgar El-Kahlout 2007) and English–Arabic (Badr et 
al. 2008), and also for translating between two highly inflected languages as in the case 
of Turkman–Turkish language pairs (Tantug et al. 2007b). Translating unknown 
morphological variants may be learned by analogy to other morphological spelling 
variations (Langlais and Patry 2007). For very closely related languages such as Catalan 
and Spanish, translating not chunks of words, but chunks of letters in a phrase-based 
approach achieves decent results and addresses very well the problem of unknown words 
(Vilar et al. 2007). 

 
Translating tense, case and markers — Schiehlen (1998) analyses the translation 

of tense across languages and warns against a simplistic view of the problem. Murata et 
al. (2001) propose a machine learning method using support vector machines to predict 
target language tense. Ye et al. (2006) propose to use additional features in a conditional 
random field classifier to determine verb tenses when translating from Chinese to 
English. Ueffing and Ney (2003) use a preprocessing method to transform the English 
verb complex to match its Spanish translation more closely. A similar problem is the 
prediction of case markers in Japanese (Suzuki and Toutanova 2006), which may be done 
using a maximum entropy model as part of a treelet translation system (Toutanova and 
Suzuki 2007), or the prediction of aspect markers in Chinese, which may be framed as 
classification problem and modeled with conditional random fields (Ye et al. 2007). 
Another example of syntactic markers that are more common in Asian than European 
languages are numeral classifiers (as in three sheets of paper). Paul et al. (2002) present a 
corpus-based method to generate them for Japanese and Zhang et al. (2008a) present a 
method for generating Chinese measure words. Dorr (1994) presents an overview of 
linguistic differences between languages, called divergences (Gupta and Chatterjee 
2003). 

 
 
 

192 Chapter 2: Machine Translation from Text 



 

 

Translation of chunks and clauses — To approach the problem of the translation of 
a sentence, one strategy is to break up the problem along syntactic lines, be it clauses 
(Kashioka et al. 2003) or syntactic chunks (Koehn and Knight 2002; Schafer and 
Yarowsky 2003a, b). This strategy also allows for special components for the translation 
of more basic syntactic elements such as noun phrases (Koehn and Knight 2003) or noun 
compounds (Tanaka and Baldwin  2003). Owczarzak et al. (2006) and Mellebeek et al. 
(2006) break up each sentence into chunks, translating the chunks separately and 
combine the translations into a transformed skeleton. Hewavitharana et al. (2007) 
augment a phrase-based model with translations for noun phrases that are translated 
separately. 

 
Syntactic pre-reordering — Given the limitations of the dominating phrase-based 

statistical machine translation especially with long-distance reordering for syntactic 
reasons, it may be better to treat reordering in preprocessing by a handcrafted component, 
which has been explored for German–English (Collins et al. 2005), Japanese–English 
(Komachi et al. 2006), Chinese–English (Wang et al. 2007) and English–Hindi 
(Ramanathan et al. 2008). Zwarts and Dras (2007) point out that translation 
improvements are due to both a reduction of reordering needed during decoding and the 
increased learning of phrases of syntactic dependents. Nguyen and Shimazu (2006) also 
use manual rules for syntactic transformation in a preprocessing step. Such a reordering 
component may also be learned automatically from parsed training data, as shown for 
French–English (Xia and McCord 2004), Arabic–English (Habash, 2007b) and Chinese–
English (Crego and Mariño 2007). The latter work encodes different orderings in an input 
lattice to the decoder. Li et al. (2007) propose a maximum entropy pre-reordering model 
based on syntactic parse trees in the source language. It may be beneficial to train 
different such pre-reordering models for different sentence types (questions, etc.) (Zhang 
et al. 2008b). Preprocessing the input to a machine translation system may also include 
splitting it up into smaller sentences (Lee et al. 2008). 

 
POS and chunk-based pre-reordering — Reordering patterns may also be learned 

over part-of-speech tags, allowing the input to be converted into a reordering graph 
(Crego and Mariño, 2006) or enabling a rescoring approach with the patterns as features 
(Chen et al. 2006). The reordering rules may also be integrated into an otherwise 
monotone decoder (Tillmann 2008). Such rules may also be used in a separate reordering 
model. Such rules may be based on automatic word classes (Costa-Jussa` and Fonollosa, 
2006; Crego et al. 2006), which was shown to outperform part-of-speech tags (Costa-
Jussa` and Fonollosa 2007), or they may be based on syntactic chunks (Zhang et al. 
2007a, b; Crego and Habash 2008). Scoring for rule applications may be encoded in the 
reordering graph, or done once the target word order is established, which allows for 
rewarding reorderings that happened due to phrase-internal reordering (Elming 2008a, b). 

 
Syntactic reranking — Linguistic features may be added to an n-best of candidate 

translation to be exploited by a reranking approach. This was explored by Och et al. 
(2004) and by Koehn and Knight (2003) for noun phrases. Sequence models trained on 
part-of-speech tags (Bonneau Maynard et al. 2007), or CCG supertags (Hassan et al. 

Handbook of Natural Language Processing and Machine Translation 193



 

2007), may be also used in reranking. To check if the dependency structure is preserved 
during translation, the number of preserved dependency links or paths may be a useful 
feature (Nikoulina and Dymetman 2008). 

2.4.2.3 Definition of Factored Models  
Factored translation models integrate additional linguistic markup at the word level. 

Each type of additional word-level information is called a factor. The type of information 
that may be useful could consist of word, lemma, part-of-speech, morphology, word 
class, etc. The translation of lemma and morphological factors separately would help with 
sparse data problems in morphologically rich languages. Additional information such as 
part-of-speech may be helpful in making reordering or grammatical coherence decisions. 
The presence of morphological features on the target side allows for checking agreement 
within noun phrases or between subject and verb. 

As we argue above, one example to illustrate the short-comings of the traditional 
surface word approach in statistical machine translation is the poor handling of 
morphology. Each word form is treated as a token in itself. This means that the 
translation model treats, say, the word house completely independent of the word houses. 
Any instance of house in the training data does not add any knowledge to the translation 
of houses. 

In the extreme case, while the translation of house may be known to the model, the 
word houses may be unknown and the system will not be able to translate it. While this 
problem does not show up as strongly in English — due to the very limited 
morphological inflection in English — it does constitute a significant problem for 
morphologically rich languages such as Arabic, German, Turkish, Czech, etc. 

Thus, it may be preferably to model translation between morphologically rich 
languages on the level of lemmas and, thus, pooling the evidence for different word 
forms that derive from a common lemma. In such a model, we would want to translate 
lemma and morphological information separately and combine this information on the 
output side to ultimately generate the output surface words. 

 

 
Figure 2.13: Example factored model: morphological analysis and generation, decomposed into three 
mapping steps (translation of lemmas, translation of part-of-speech and morphological information, 
generation of surface forms). 

Such a model can be defined in a straight forward way as a factored translation 
model. See Figure 2.13 for an illustration. Note that factored translation models may also 

194 Chapter 2: Machine Translation from Text 



 

 

integrate less obviously linguistic annotation such as statistically defined word classes, or 
any other annotation. For further details, refer to the work of Koehn and Hoang (2007). 
 
Training Factored Models 

The training of factored models follows closely the training method for traditional 
phrase-based models. The training data (a parallel corpus) has to be annotated with the 
additional factors. For instance, if we want to add part-of-speech information on the input 
and output side, we need part-of-speech tagged training data. Typically, this involves 
running automatic tools on the corpus, since manually annotated corpora are rare and 
expensive to produce. Next, we establish a word alignment for all the sentences in the 
parallel training corpus using standard methods. 

Each mapping step forms a component of the overall model. From a training point of 
view this means that we need to learn translation and generation tables from the word-
aligned parallel corpus and define scoring methods that help us to choose between 
ambiguous mappings. 

Phrase-based translation models are acquired from a word-aligned parallel corpus by 
extracting all phrase-pairs that are consistent with the word alignment. Given the set of 
extracted phrase pairs with counts, various feature functions are estimated, such as 
conditional phrase translation probabilities based on relative frequency estimation or 
lexical translation probabilities based on the words in the phrases. 

The models for the translation steps may be acquired in the same manner from a 
word-aligned parallel corpus. For the specified factors in the input and output, phrase 
mappings are extracted. The set of phrase mappings (now over factored representations) 
is scored based on relative counts and word-based translation probabilities. See Figure 
2.14 for an illustration. 

 
Figure 2.14: Training: Extraction of translation models for any factors follows the phrase extraction method 

for phrase-based models. 

The generation models are probability distributions that are estimated on the output 
side only. In fact, additional monolingual data may be used. The generation model is 
learnt on a word-for-word basis. For instance, for a generation step that maps surface 
forms to part-of-speech, a table with entries such as (fish,NN) is constructed. As feature 
functions we may use the conditional probability distributions, e.g., p(NN|fish), obtained 
by maximum likelihood estimation. 

An important component of statistical machine translation is the language model, 
typically an n-gram model over surface forms of words. In the framework of factored 
translation models, such sequence models may be defined over any factor, or any set of 

Handbook of Natural Language Processing and Machine Translation 195

 



 

factors. For factors such as part-of-speech tags, building and using higher order n-gram 
models (7-gram, 9-gram) is straight forward. 

2.4.2.4 Applications  
The framework of factored translation models has many applications, which we 

outline in this section. Additional factors may be supplied to the input and the output. 
They may be used in the reordering model or the translation model. 

 
Enriching the Input 

When tackling language pairs such as Chinese-English, we often have to create 
output words and phrases from input that is under specified. Chinese is less richly 
annotated than English. For instance, it lacks determiners, plural/singular distinction in 
nouns and verb tenses. 

This annotation is not strictly required to bring across the same meaning, since the 
information may be provided by other means, for instance by mentioning the number of 
objects or time of the event a few sentences earlier in the document. During the 
translation process with today’s models, however, we do need the information in a very 
local context when translating a word or a phrase. 

We may obtain the needed information from the context and add it as additional 
factor at the word level. For instance, by co-reference resolution, we can connect up the 
mentions of an entity and distribute information about singular/plural throughout the 
entity chain. 

We explored the use of factored translation models in such a scenario (Avramidis and 
Koehn 2008) to add annotation for verbs and noun phrases and showed improvements in 
selecting the correct morphological variants in the output (reducing verb translation 
errors from 19% to 5.4% and noun case translation errors from 9% to 6%). 

 
Enriching the Output 

A key component of statistical machine translation systems is the language model, 
which is typically an n-gram model. Since language models of order 5 are considered 
large, this limits the reach of the component that ensures fluent output to a relatively 
small local window. Especially for morphologically rich languages, even a 5-gram 
language model does not have sufficient coverage and frequently backs off to lower order 
models. 

Factored language models (Bilmes and Kirchhoff 2003) were proposed to address 
these challenges by allowing backoff to more robust histories, such as part-of-speech 
tags. In the factored translation model framework, we may use sequence models over 
specific factors, such as part-of-speech tags that are not strictly language models, but 
serve the same purpose: ensuring fluent output of the translation system. 

Sequence models over part-of-speech tags may use much larger windows (we used 7-
gram and 9-gram models), due to the much smaller vocabulary, the Penn tree bank tag set 
has 46 different tags. Such longer-range models ensure grammatical coherence beyond 
what surface word models are able to address. 

The use of additional factors has been explored in various ways. The approach has 
been shown to be successful for integrating part-of-speech tags (Koehn and Hoang 2007), 

196 Chapter 2: Machine Translation from Text 



 

 

word class factors (Shen et al. 2006), CCG super-tags (Birch et al. 2007), morphological 
tags (Koehn and Hoang 2007; Badr et al. 2008), and shallow syntactic tags (Cettolo and 
Bertoldi 2008). More complex use of additional output factors have been explored as well 
(Bojar 2007). 

The additional output factors may be either generated by a factored model consisting 
of a translation step (creating the output word) and a generation step (creating the 
additional output factor), or by a factored model that creates all output factors in one step. 
Our experiments have shown that the latter configuration typically performs better. 

 
Factored Reordering 

The problem of reordering is recognized as one of the hardest problems when 
translating between syntactically different languages. Much of the motivation for 
grammar-based translation models comes from the fact that the output from phrase-based 
systems is often ungrammatical due to failure to place words in the right output language 
order. 

Reordering between languages is often best described using syntactic concepts: In 
Arabic-English translation, the verb has to be moved after the subject. In Chinese-English 
translation, prepositional phrases have to be moved after the noun phrase they modify. 
Hence, the idea is to use syntactic properties such as part-of-speech tags or syntactic 
chunk labels during translation. 

The lexicalized reordering model (Tillmann 2004; Koehn et al. 2005) commonly 
used in phrase-based models provides an avenue for using linguistic information during 
reordering. However, instead of using the lexical identity of phrases to inform reordering 
decisions, we may use their part-of-speech tags. 

Part-of-speech tags may inform larger reordering patterns, or reordering templates. 
For instance, we may find a useful 5-word pattern to reorder words based on their part-of-
speech tags, but not the underlying 5-word phrase translation. This motivates the 
factored template model (Hoang and Koehn 2009). This variant of factored translation 
models allows the use of longer phrases for some factors. In essence, the part-of-speech 
template drives midrange reordering decisions of the traditional phrase-based translation 
model. 

 
Morphological Analysis and Generation 

Our motivating example was to deal with morphological rich languages the same 
way rule-based systems deal with them: We want to translate word lemmas and their 
morphological information separately, thus having a more general model that allows us to 
increase coverage and robustness. 

Our experiments in this area (Koehn and Hoang 2007) have shown two important 
points.  First, enabling the translation of morphological variants not observed in training, 
but explainable in terms of its morphological analysis, increases coverage and reduce the 
number of unknown words.  Second, relying only on a morphological analysis and 
generation model leads to a worse performance. The reason for this lies in part in 
increased decoding complexity and thus, more room for search errors, but also in the 
many additional independence assumptions that are introduced. In fact, the model, as 
shown in Figure 2.13 does not use the source word at all anymore, just its morphological 

Handbook of Natural Language Processing and Machine Translation 197



 

analysis. Our experiments have shown that we ultimately achieve gains in performance 
by using alternative decoding paths, which means allowing the construction of translation 
options both through the surface translation model and the morphological model. 

Basic models that treat words as tokens work best, if these tokens have been observed 
frequently in training. For rare or unseen words, the problem of data sparsity does often 
not allow for correct estimation of translation rules and thus, the morphological model is 
able to help out. 

This leads us to define backoff models for translation.  Just as language models back 
off from higher n-gram models to lower n-gram models, we may back off from one 
translation model to another, if the first one has no coverage. We already reported on 
methods that use alternative decoding paths, i.e., may chose between different translation 
models. Backoff implies a sequence of translation models, where the lower-priority 
models are only used in the higher-priority models do not apply. 

The experience in language models has shown the advantage of interpolated backoff.  
It may always be better to include estimates from lower-order language models. We may 
handle backoff translation models the same way, but as in language modeling, the 
interpolation calculations may be done during training, not decoding. We will report in 
future papers on experimental results with backoff models. 

2.4.2.5 Conclusion 

We introduced factored translation models, a framework to use additional annotation 
at the word level to improve statistical machine translation models in two ways: (1) by 
allowing more general models that are estimated on richer statistics, such as lemma 
translation models, part-of-speech or morphological sequence models, and (2) by 
introducing additional linguistic knowledge, which may be exploited, for instance, during 
reordering.  

We have shown that the framework allows for improvements through enriching the 
input, enriching the output, richer reordering models and translation models based on 
morphological analysis. 

We plan in future work to apply the idea of factored translation models to tree-based 
approaches, thus creating a formalism that could be described as probabilistic 
synchronous unification grammar. 

2.4.3. Soft Syntax Features and Other Extensions for 
Hierarchical SMT 

Authors: Daniel Stein, David Vilar and Hermann Ney 

2.4.3.1 Introduction 

Translation based on word groups (so called phrases) has proven to be an effective 
approach to statistical machine translation and a great improvement over the initial word-
based approaches first presented in the seminal IBM paper of Brown et al. (1993). 
However, these models are still limited. They do not consider long range dependencies, 
as the phrases must be contiguous both in the source and the target language and the 

198 Chapter 2: Machine Translation from Text 



 

 

reordering of the phrases is not directly modeled and is normally applied in a heuristic 
way. 

The hierarchical phrase based translation model (Chiang 2007) addresses these issues 
by allowing “gaps” in the phrases. In this way the reorderings are integrated in the 
translation process and non-contiguous word groups can be translated in a consistent 
way. 

In this work, we briefly review the hierarchical phrase-based approach and explore 
various refinements to the phrase extraction algorithm and the effect on the final 
translation quality. Additionally, we add syntax information to the extracted phrases, and 
computing features, which measure how well the extracted phrases correspond to 
linguistic structures. We expect that including this additional information will help the 
translation process selecting the most appropriate translation units. This becomes of 
greater importance for the hierarchical model, as the extraction process allows for a high 
number of phrases, most of them originating due to the high flexibility of the extraction 
algorithm and of limited use for the translation. 

The advantages of our approach in comparison to other recent syntax-based 
approaches is, on the one hand, its simplicity, and thus, flexibility, which allows it also to 
be integrated with standard phrase-based approaches, and on the other hand, the 
possibility to use syntax information both on the source and target languages. 

2.4.3.2 Related Work 

The hierarchical phrase based approach was first presented by David Chiang in 2005 
(Chiang 2005), and further detailed in 2007 (Chiang 2007). Already in 2005, Chiang 
proposes the use of syntactic information together with his new hierarchical approach, 
but without success. 

Some recent publications have shown that the use of syntax for translation achieves 
significant improvements. One prominent example is the work by the ISI group (e.g., 
(Galley et al. 2004; Marcu et al. 2006)). This work departs from the standard phrase-
based approach by defining new translation units and extraction procedures, but the 
investigators try to still keep the advantages of phrase-based translation (DeNeefe et al. 
2007). 

Our work differs from the above mentioned mainly in that we extract the syntactic 
information already at the training phrase and it is integrated in the search process as an 
additional model in the base log-linear combination that underlies most state-of-the-art 
statistical machine translation systems. Therefore, no modification of the search 
algorithms is needed and we can also make use of syntactic information for both 
languages, source and target. Most of the previous work was limited only to the target 
language side, as the correspondences between the syntactic structures of both languages 
are hard to define. 

2.4.3.3 Hierarchical Phrase Based Translation 

Details of the system are described by Vilar et. al. (2008).  The extraction process 
starts with the same phrase-extraction procedure as in the standard phrase-based 
translation, i.e., sequences of source and target words that are aligned only to each other. 

Handbook of Natural Language Processing and Machine Translation 199



 

We then proceed to generate new rules as follows: for each of the extracted phrase pairs, 
smaller sub-phrases are sought. If found, the corresponding parts are substituted by a 
non-terminal and linked together by the relation. This process is then iterated with the 
new extracted rules, until the desired maximum number of non-terminals is achieved. 
Note however, that only standard phrases are made into gaps. 

For phrase-based training, the phrases get scored by relative frequencies, whereas for 
the hierarchical phrases, the counts of the originating standard phrases get distributed 
among all the generated hierarchical rules. These scores are computed for the translation 
directions source-to-target and target-to-source, which get combined log-lineally with 
additional IBM1-like word level scores at the phrase level, word and phrase penalty 
scores at generation time. 

The decoding process is basically a parsing of the source sentence according to the 
defined grammar, keeping track of the target language translation contexts in order to 
compute language model scores during the translation process. The parsing is carried out 
via the CYK+ algorithm (Chappelier and Rajman 1998), which allows for a CYK-style 
parsing without transformation of the original grammar. The forest of possible parses is 
compactly represented in a hypergraph structure. This hypergraph gets traversed in a top-
down manner, generating the target language in the process, including language model 
computations. This pass is done in a lazy way, using the cube growing algorithm. The 
details can be found in the work of Huang and Chiang (2007). 

2.4.3.4 Experiments 

training data was kindly provided by the University of Maryland (Huang et al. 2008) and 
used for the training of the syntax components of our system. The statistics of the parsed 
data can be found in Table 2.31. 

 
 Chinese English 

number of running sentences 671701 
number of running words 2905698 21603468 

parsed categories 59 - 

Table 2.31: Statistics of the parsed data 

We analyze the effect of different extraction heuristics (a binary feature activated for 
hierarchical phrases, an extended glue rule, …), as well as, different approaches to 
include syntax information in the form of soft-syntax features. For more details refer to 
the above-mentioned paper. 

The results on the whole corpora are presented in Table 2.32. It can be seen from this 
table that the performance of the hierarchical system can be improved by incorporating 
additional information. The inclusion of the extended glue rule improved the system 
performance, however, the other heuristic features do not seem to help in the translation 
process, despite being beneficial for other corpora. The syntactic features show mixed 
results. While the binary feature seems to help improve the overall quality of the 

200 Chapter 2: Machine Translation from Text 

In this section we present experimental results for the methods introduced in Vilar 
et al. (2008) on the GALE 2008 development and test data sets. A parsed subset of the 



 

 

translation, the other smoothing methods seem to yield over fitting on the development 
corpus. 
 

 dev Test 
 BLEU TER BLEU TER 

base 24.6 64.5 24.1 64.2 
glue2 25.2 64.2 24.5 64.1 

all 25.1 64.2 24.2 64.2 
hierarch 24.4 64.4 23.8 64.1 

paste+hierarch 24.4 64.7 23.7 64.2 
paste 24.7 64.3 24.1 64.5 
binary 25.1 64.3 24.4 64.1 
linear 24.6 65.1 23.8 64.0 
log 23.8 65.7 23.2 65.9 

relative 24.8 64.4 24.0 64.7 

Table 2.32:  Results on the GALE dev- and test data. Training was conducted with help of only partially 
parsed corpora. 

The combination of heuristic and syntactic features helps in comparison to the 
baseline, but, regarding the improvements by the other scores, was expected to be higher. 
We believe this to be the result of shortcomings of the Downhill Simplex Method used 
for optimization, since a total 15 different scores have to be optimized. This is probably 
bigger than the maximum number of variables that can be estimated reliably using this 
method, a finding consistent with that of Chiang et al. (2008). We expect that this effect 
can be avoided by switching to other optimization techniques like the Margin Infused 
Relaxed Algorithm (MIRA) and will conduct these experiments in future work. 

 
 BC BN NW WT 
 BLEU TER BLEU TER BLEU TER BLEU TER 

base 25.1 61.3 25.9 62.0 25.7 62.1 19.6 TER 
glue2 24.8 61.4 26.2 62.0 26.4 61.7 19.8 65.9 

all 24.1 61.4 26.0 61.8 26.2 62.0 19.4 65.7 
hierarch 24.1 61.5 25.2 62.5 25.6 61.9 19.4 66.0 

paste+hierarch 23.8 61.7 25.5 62.1 25.8 61.8 19.2 66.0 
paste 24.3 61.6 25.6 62.1 26.2 62.0 19.5 65.9 
binary 24.6 61.5 25.9 62.1 26.4 61.5 20.1 66.2 
linear 24.0 62.0 25.3 62.9 25.8 62.7 19.3 65.7 
log 23.4 62.7 24.7 63.6 25.1 63.3 18.8 66.7 

relative 24.5 61.7 25.7 62.3 25.7 62.0 19.6 67.6 

Table 2.33: Results on the GALE test data, split by genre 

Table 2.33 shows the results for each of the genres composing the test corpus. The 
biggest improvement using the binary syntactic feature can be seen on the newswire data, 
followed by the webtext data. This is to be expected, as the broadcast news and 
especially, the broadcast conversation data are more speech-like data and the sentences 
tend to have a poorer grammatical structure. 

 

Handbook of Natural Language Processing and Machine Translation 201



 

reference Well I think it’s hard to say . Why ? 
baseline This i feel that we are very hard to say . Why ? 

syntactical I think that now it is difficult to say . Why is it so ?
 

reference Therefore , we would like to further intensify law enforcement . 
baseline We would like to further increased enforcement . 

syntactical We would like to further increased the intensity of law enforcement . 
 

Reference The reason is that people are afraid to spend their money . Is that right ? 
baseline This reason is that people rich do not want to spend , right ? 
syntax This reason that is to say , people dare not to spend money , right ? 

Figure 2.15: Sample sentences with changes due to syntactical feature 

Figure 2.15 shows some example sentences where the translation using the syntactic 
features was improved. 

2.4.3.5 Conclusions 

We have analyzed the effect on translation quality of different extraction heuristics 
for a hierarchical phrase-based translation system. We also have shown how to include 
syntactic information at the training phase. In this way, we can include syntactic 
information from both languages at translation time without the need of modification on a 
decoder. Experiments were reported on the GALE 2008 task, where some syntactic 
features helped to improve the translation quality. The flexibility of this method also 
allows it to be included in other systems such as standard phrase-based systems or even 
syntax-oriented systems, which normally take the target syntax into account. Including 
these features the source syntax can also be involved in the translation process. 

2.4.4. Two String-to-Tree Translation Models 
Authors: Steve DeNeefe, Libin Shen, Kevin Knight, Daniel Marcu, Wei Wang, Ralph Weischedel & Jinxi Xu 

2.4.4.1 Introduction  

String models are popular in statistical machine translation (MT). Approaches 
include word substitution systems (Brown et al. 1993), phrase substitution systems 
(Koehn et al. 2003; Och and Ney 2004), and synchronous context-free grammar systems 
(Wu and Wong 1998; Chiang 2007), all of which train on string pairs and seek to 
establish connections between source and target strings. By contrast, explicit syntax 
approaches seek to directly model the relations learned from parsed data, including 
models between source trees and target trees (Gildea 2003; Eisner 2003; Melamed 2004; 
Cowan et al. 2006), source trees and target strings (Quirk et al. 2005; Huang et al. 2006), 
or source strings and target trees (Yamada and Knight 2001; Galley et al. 2004). 

It is unclear which of these pursuits will best explain human translation data, as each 
has advantages and disadvantages. A strength of phrase models is that they can acquire 
all phrase pairs consistent with computed word alignments, snap those phrases together 
easily by concatenation and reorder them under several cost models. An advantage of 

202 Chapter 2: Machine Translation from Text 



 

 

syntax-based models is that outputs tend to be syntactically well formed, with reordering 
influenced by syntactic context and function words introduced to serve specific syntactic 
purposes. 

This section has two parts. In the first part (Section 2.4.4.2), we present a comparison 
of phrase-based and syntax-based rule extraction methods and phrase pair coverage. 
Additionally, we do a careful study of several syntax-based extraction techniques, testing 
whether (and how much) they affect phrase pair coverage and whether (and how much) 
they affect end-to-end MT accuracy. For this comparison, we choose a previously 
established statistical phrase-based model (Och and Ney 2004) and a previously 
established statistical string-to-tree model (Galley et. al. 2004). 

In the second part (Section 2.4.4.3), we discuss the string-to-dependency-tree 
translation model, a syntactic extension of the hierarchical phrase-based model (Chiang 
2005) that produces target dependency structures. This model represents the source side 
of a translation rule as a string and the target side as a dependency structure. It 
incorporates a dependency LM as a feature in decoding in order to exploit long-distance 
word relations, which cannot be captured by a traditional n-gram language model.  

2.4.4.2 Improving Syntax-Based MT with Phrase-Based MT 

Syntax-Based MT 
In this section, we describe our syntax-based translation system. This system accepts 

a foreign string (e.g., Chinese or Arabic) as input and it searches through a multiplicity of 
English tree outputs, seeking the one with the highest score (see Figure 2.16). The string-
to-tree framework is motivated by a desire to improve target language grammaticality. 
For example, it is common for string-based MT systems to output sentences with no verb. 
By contrast, the string-to-tree framework forces the output to respect syntactic 
requirements, for example, if the output is a syntactic tree whose root is S (sentence), 
then the S will generally have a child of type VP (verb phrase), which will in turn 
contain a verb. 

Another motivation is better treatment of function words. Often, these words are not 
literally translated (either by themselves or as part of a phrase), but rather they control 
what happens in the translation, as with case-marking particles or passive-voice particles. 
Finally, much of the reordering we find in translation is syntactically motivated and this 
can be captured explicitly with syntax-based translation rules. 

 

Handbook of Natural Language Processing and Machine Translation 203



 

 
Figure 2.16: the syntax-based translation system accepts a foreign string and produces a set of candidate 

translation trees with confidence weights 

 
Here are some examples of translation rules and the roles that they play in the 

translation of a sentence: 
 
• phrase pairs with syntax decoration: 

 
 

• extra contextual constraints: 

 
 

(this rule translates 说 to said, but only if some Chinese sequence to the right 
of 说 is translated into an SBAR-C)  

 
• non-constituent phrases: 

 

小渕恵三首相 

204 Chapter 2: Machine Translation from Text 



 

 

  
• non-contiguous phrases, effectively “phrases with holes”: 

 

 
• purely structural (no words): 

 
• re-ordering: 

 

Handbook of Natural Language Processing and Machine Translation 205



 

 
Figure 2.17: a syntax-based training example 

To prepare training data for such a system, we begin with a bilingual text that has 
been automatically processed into segment pairs. Our sentence splitting method ensures 
that the segments be single sentences on the English side, while the corresponding 
Chinese segments may be sentences, sentence fragments, or multiple sentences. We then 
parse the English side of the bilingual text using a re-implementation of the Collins 
(2003) parsing model, which we train on the Penn English Treebank (Marcus et al. 
1993). Finally, we word-align the segment pairs according IBM Model 4 (Brown et al. 

We build two generative statistical models from this data. First, we construct a 
smoothed n-gram language model (Kneser and Ney 1995; Stolcke 2002) out of the 
English side of the bilingual data. This model assigns a probability P(e) to any candidate 
translation, rewarding translations whose sub-sequences have been observed frequently in 
the training data. 

Second, we build a syntax-based translation model that we can use to produce 
candidate English trees from Chinese strings. Following previous work in noisy-channel 
SMT (Brown et al. 1993), our model operates in the English-to-Chinese direction.  We 
envision a generative top-down process by which an English tree is gradually 
transformed (by probabilistic rules) into an observed Chinese string. We represent a 
collection of such rules as a tree-to-string transducer (Knight and Graehl  2005). In order 
to construct this transducer from parsed and word-aligned data, we use the GHKM rule 
extraction algorithm of Galley et al. (2004). This algorithm computes the unique set of 
minimal rules needed to explain any sentence pair in the data. This is, in effect, a non-
overlapping tiling of translation rules over the tree-string pair. If there are no unaligned 
words in the source sentence, this is a unique set. Figure 2.18 shows the set of seven 

206 Chapter 2: Machine Translation from Text 

1993). Figure 2.17 shows a sample  triple. ⟨ ⟩ tree, string, alignment



 

 

minimal rules extracted from the example ⟨tree, string, word alignment⟩ triple in Figure 
2.17 if the unaligned 力 is ignored. This set, ordered into a tree of rule applications, is 
called the derivation tree of the training example. Unlike the ATS model described next, 
there are no inherent size limits, just the constraint that the rules be as small as possible 
for the example. 

 
 

 
Figure 2.18: rules extracted from the training example in Figure 2.17 (ignoring unaligned Chinese words) 

Notice that rule 6 is rather large and applies to a very limited syntactic context. The 
only constituent node that covers both i and my is the S, so the rule rooted at S is 
extracted, with variables for every branch below this top constituent that can be explained 
by other rules. Note also that to becomes a part of this rule naturally. If the alignments 
were not as constraining (e.g., if my was unaligned), then instead of this one big rule 
many smaller rules would be extracted, such as structural rules, e.g., 

 
and function word insertion rules, e.g., 

Handbook of Natural Language Processing and Machine Translation 207



 

 
We ignored unaligned source words in the example above. Galley et al. (2004) attach 

the unaligned source word to the highest possible location, in our example, the S. Thus it 
is extracted along with our large rule 6, changing the source language sequence “我 VBD0 
VBN1 VB2  NN3  力 PERIOD4”.  This treatment still results in a unique derivation tree no 
matter how many unaligned words are present. 

In the work of Galley et al. (2006), instead of a unique derivation tree, the extractor 
computes several derivation trees, each with the unaligned word added to a different rule 
such that the data is still explained. For example, for the tree-string pair in Figure 2.17, 力 
could be added not only to rule 6, but alternatively to rule 4 or 5, to make the new rules. 

 
This results in three different derivations, one with the 力 character in rule 4 (with 

rules 5 and 6, as originally shown), another with the 力 character in rule 5 (with rules 4 
and 6, as originally shown) and lastly, one with the 力 character in rule 6 (with rules 4 and 
5, as originally shown) as in the original paper (Galley et al. 2004). In total, ten different 
rules are extracted from this training example. 

Translation rules are extracted and counted over the entire bilingual training corpus, a 
count of one for each time they appear in a training example. These counts are used to 
estimate several features, including maximum likelihood rule probability features such as 
P(rule|eroot), P(ewords|fwords) and P(fwords|ewords). We smooth the rule counts with Good-
Turing smoothing (Good 1953). 

With these models, we can decode a new Chinese sentence by enumerating and 
scoring all of the English trees that can be derived from it by applying the rules to the 
Chinese string. The final score of each translation is a weighted product of P(e), the rule 
probabilities and several other models. One model rewards longer translations, offsetting 
the language model's desire for short output. Other models punish rules that drop Chinese 
content words or introduce spurious English content words. A handful of binary features 
indicate special-purpose rules for translating names/numbers/dates, handling unknown 
words, copying source-side ASCII text into the translation, or gluing together unparsable 
or especially long sentences. We also include lexical smoothing models (Gale and 
Sampson 1996; Good 1953) to help distinguish good low-count rules from bad low-count 
rules. We optimize the relative weights for these models through minimum error-rate 
training (Och 2003). 

To search efficiently, we employ the CKY dynamic programming parsing algorithm 
(Yamada and Knight 2002; Galley et al. 2006). This algorithm builds English trees on top 
of Chinese spans. In each cell of the CKY matrix, we store the non-terminal symbol at 
the root of the English tree being built up. We also store English words that appear at the 
left and right corners of the tree, as these are needed for computing the P(e) score when 

208 Chapter 2: Machine Translation from Text 



 

 

cells are combined. For CKY to work, all transducer rules must be binarized to contain at 
most two variables.  A more efficient search can be gained if this binarization produces 
rules that can be incrementally scored by the language model (Melamed et al. 2004; 
Zhang et al. 2006). Finally, we employ cube pruning (Chiang 2007) for further efficiency 
in the search. 

2.4.4.2.1 Phrase-Based Extraction  

The Alignment Template system (ATS) described by Och and Ney (2004) is 
representative of statistical phrase-based models. The basic unit of translation is the 
phrase pair, which consists of a sequence of words in the source language, a sequence of 
words in the target language and a vector of feature values which describe this pair's 
likelihood. Decoding produces a string in the target language, in order, from beginning to 
end. During decoding, features from each phrase pair are combined with other features 
(e.g., reordering, language models) using a log-linear model to compute the score of the 
entire translation. 

 
 
 
 

Figure 2.19: a phrase-based training example 

The ATS phrase extraction algorithm learns these phrase pairs from an aligned, 
parallel corpus. This corpus is conceptually a list of tuples of ⟨source string, target string, 
word alignments⟩ which serve as training examples, one of which is shown in Figure 
2.19. 

For each training example, the algorithm identifies and extracts all pairs of ⟨source 
sequence, target sequence⟩ that are consistent with the alignments. It does this by first 
enumerating all source-side word sequences up to a length limit L and for each source 
sequence, it identifies all target words aligned to those source words. For example, in 
Figure 2.19, for the source phrase 有责任尽, the target words it aligns to are felt, 
obliged and do. These words and all those between them, are the proposed target 
phrase. If no words in the proposed target phrase align to words outside of the source 
phrase, then this phrase pair is extracted. 

The extraction algorithm can also look to the left and right of the proposed target 
phrase for neighboring unaligned words and extracts phrases. For example, for the phrase 
pair 有责任  ↔ felt obliged, the word to is a neighboring unaligned word. It 
constructs new target phrases by adding on consecutive unaligned words in both 
directions and extracts those in new pairs, too (e.g., 有责任 ↔ felt obliged to). For 
efficiency reasons, implementations often skip this step. 

Figure 2.20 shows the complete set of phrase pairs up to length 4 that are extracted 
from the Figure 2.19 training example. Notice that no extracted phrase pair contains the 
character 我. Because of the alignments, the smallest legal phrase pair, 我有责任尽↔ i 
felt obliged to do my, is beyond the size limit of 4, so it is not extracted in this 
example. 

i felt obliged to do my part . 
 

我     有    责任    尽   一份   力。

Handbook of Natural Language Processing and Machine Translation 209



 

Figure 2.20: phrases up to length 4 extracted from the example in Figure 2.19 

As with GHKM, phrase pairs are extracted over the entire training corpus. Due to 
differing alignments, some phrase pairs that cannot be learned from one example may be 
learned from another. These pairs are then counted, once for each time they are seen in a 
training example and these counts are used as the basis for maximum likelihood 
probability features, such as P(f |e) and P(e|f). 
2.4.4.2.2 Differences in Phrasal Coverage  

 Chinese Arabic 

Document IDs 
LDC2003E07 LDC2004T17
LDC2003E14 LDC2004T18 
LDC2005T06 LDC2005E46 

# of segments 329,031 140,511
# of words in foreign corpus 7,520,779 3,147,420
# of words in English corpus 9,864,294 4,067,454

Table 2.34: parallel corpora used to train both models 

Both the ATS model and the GHKM model extract linguistic knowledge from 
parallel corpora, but each has fundamentally different constraints and assumptions. To 
compare the models empirically, we extracted phrase pairs (for the ATS model) and 
translation rules (for the GHKM model) from the same parallel training corpora, 
described in Table 2.34. The ATS model was limited to phrases of length 10 on the 
source side and length 20 on the target side. A superset of the parallel data was word 
aligned by GIZA union (Och and Ney 2003) and EMD (Fraser and Marcu 2006a). The 
English side of training data was parsed using an implementation of Collins' model 2 
(Collins 2003). 

Table 2.35 shows the total number of GHKM rules extracted and a breakdown of the 
different kinds of rules. Non-lexical rules are those whose source side is composed 
entirely of variables: there are no source words in them. Because of this, they potentially 
apply to any sentence. Lexical rules (their counterpart) far outnumber non-lexical rules. 
Of the lexical rules, a rule is considered a phrasal rule if its source side and the yield of 
its target side contain exactly one contiguous phrase each, optionally with one or more 

210 Chapter 2: Machine Translation from Text 

有  ↔  felt 

有责任 ↔  felt obliged 

有责任尽 ↔  felt obliged to do 

责任 ↔  obliged 

责任尽 ↔  obliged to do 

尽  ↔  do 

一份 ↔  part 

一份力  ↔  part 

一份力.   ↔  part . 

力.    ↔  . 

.    ↔  . 



 

 

variables on either side of the phrase. Non-phrasal rules include structural rules, 
reordering rules and non-contiguous phrases. These rules are not easy to directly compare 
to any phrase pairs from the ATS model, so we do not focus on them here. 

 
Statistic Chinese Arabic 
total translation rules 2,487,110 662,037
non-lexical rules 110,066 15,812 
lexical rules 2,377,044 646,225 
phrasal rules 1,069,233 406,020 
distinct GHKM-derived phrase pairs 919,234 352,783
Distinct corpus-specific GHKM-

derived  phrase pairs   203,809 75,807 

Table 2.35: a breakdown of how many rules the GHKM extraction algorithm produces and how many phrase 
pairs can be derived from them 

Phrasal rules can be directly compared to ATS phrase pairs, the easiest way being to 
discard the syntactic context and look at the phrases contained in the rules. The second to 
last line of Table 2.35 shows the number of phrase pairs that can be derived from the 
above phrasal rules. The number of GHKM-derived phrase pairs is lower than the 
number of phrasal rules, because some rules represent the same phrasal translation, but 
with different syntactic contexts. The last line of Table 2.35 shows the subset of phrase 
pairs that contain source phrases found in our development corpus. 

Source of phrase pairs
 

Chinese
 

Arabic
GHKM-derived 203,809 75,807
ATS 295,537 133,576
Overlap between models 160,901 75,038
GHKM only 42,908 769
ATS only 134,636 58,538
ATS-useful only 1,994 2,199

Table 2.36: comparison of corpus-specific phrase pairs from each model 

Table 2.36 compares these corpus-specific GHKM-derived phrase pairs with the 
corpus-specific ATS phrase pairs. Note that the number of phrase pairs derived from the 
GHKM rules is less than the number of phrase pairs extracted by ATS. Moreover, only 
slightly over half of the phrase pairs extracted by the ATS model are common to both 
models. The limits and constraints of each model are responsible for this difference in 
contiguous phrases learned.  

GHKM learns some contiguous phrase pairs that the phrase-based extractor does not. 
Only a small portion of these are due to the fact that the GHKM model has no inherent 
size limit, while the phrase based system has limits. More numerous are cases where 
unaligned English words are not added to an ATS phrase pair while GHKM adopts them 
at a syntactically motivated location, or where a larger rule contains mostly syntactic 
structure, but happens to have some unaligned words in it. For example, consider Figure 
2.21. Because basic and will are unaligned, ATS will learn no phrase pairs that 

Handbook of Natural Language Processing and Machine Translation 211



 

translate to these words alone, though they will be learned as a part of larger phrases. 
 

 
Figure 2.21: Situation where GHKM is able to learn rules that translate into basic and will, but ATS is 
not 

GHKM, however, will learn several phrasal rules that translate to basic, based on 
the syntactic context 

 

 
and one phrasal rule that translates into will 

 
Since we are working with noisy data and noisy alignments, the quality of such 

additional phrases will vary.   For example, the first translation of (literally:  “one” or 

212 Chapter 2: Machine Translation from Text 



 

 

“a”) to basic above is a phrase pair of poor quality, while the other two for basic and 
one for will are arguably reasonable. 

However, Table 2.36 shows that ATS was able to learn many more phrase pairs that 
GHKM was not. Even more significant is the subset of these missing phrase pairs that the 
ATS decoder used in its best translation of the corpus. 12 According to the phrase-based 
system these are the most “useful” phrase pairs and GHKM could not learn them.13 Since 
this is a clear deficiency, we will focus on analyzing these phrase pairs (which we call 
ATS-useful) and the reasons they were not learned. 

 
Category of missing ATS-useful phrase pairs Chinese Arabic 
Not minimal 1,320 1,366
Extra target words in GHKM rules 220 27
Extra source words in GHKM rules 446 799
Other (e.g.  parse failures) 8 7
Total missing useful phrase pairs 1,994 2,199

Table 2.37: reasons that ATS-useful phrase pairs could not be extracted by GHKM as phrasal rules 

Table 2.37 shows a breakdown, categorizing each of these missing ATS-useful 
phrase pairs and the reasons they were not able to be learned. The most common reason 
is straightforward: by extracting only the minimally-sized rules, GHKM is unable to learn 
many larger phrases that ATS learns. If GHKM can make a word-level analysis, it will do 
that, at the expense of a phrase-level analysis. Galley et al. (2006) propose one solution to 
this problem and Marcu et al. (2006) propose another, both of which are shown in Figure 
2.18. 

The second reason is that the GHKM model is sometimes forced by its syntactic 
constraints to include extra words. Sometimes this is only target language words and this 
is often useful: the rules are learning to insert these words in their proper context. Most of 
the time, source language words are also forced to be part of the rule and this is harmful: 
it makes the rules less general. This latter case is often due to poorly aligned target 
language words (such as the 我  in our Section 2.4.4.2 rule extraction example), or 
unaligned words under large, flat constituents. 

Another factor here: some of the phrase pairs are learned by both systems, but 
GHKM is more specific about the context of use. This can be both a strength and a 
weakness. It is a strength when the syntactic context helps the phrase to be used in a 
syntactically correct way, as in 

 
 

                                                      
 
12 i.e.  highest scoring. 
13 GHKM may ultimately be able to produce the same translation via a different, possibly lower scoring 
route. 

Handbook of Natural Language Processing and Machine Translation 213



 

where the syntax rule requires a constituent of type SBAR-C. Conversely, its weakness is 
seen when the context is too constrained. For example, ATS can easily learn the phrase  

总理 ↔ prime minister 
and is then free to use it in many contexts. But GHKM learns 45 different rules, each that 
translate this phrase pair in a unique context. Figure 2.22 shows a sampling. Notice that 
though many variations are present, the decoder is unable to use any of these rules to 
produce certain noun phrases, such as “current Japanese Prime Minister Shinzo Abe”, 
because no rule has the proper number of English modifiers. 

 

 
Figure 2.22: a sampling of the 45 rules that translate 总理 to prime minister 

2.4.4.2.3 Coverage Improvements  

Each of the models presented so far has advantages and disadvantages. In this 
section, we consider ideas that make up for deficiencies in the GHKM model, drawing 
our inspiration from the strong points of the ATS model. We then measure the effects of 
each idea empirically, showing both what is gained and the potential limits of each 
modification. 

 
Composed Rules. Galley et al. (2006) proposed the idea of composed rules. This 

removes the minimality constraint required earlier: any two or more rules in a parent-
child relationship in the derivation tree can be combined to form a larger, composed rule. 
This change is similar in spirit to the move from word-based to phrase-based MT models, 
or parsing with a DOP model (Bod et al. 2003) rather than a plain PCFG. 

 
Size limit (n) Chinese Arabic 
0 (minimal) 2,487,110 662,037
2 12,351,297 2,742,513
3 26,917,088 4,824,928
4 55,781,061 8,487,656

Table 2.38: increasing the size limit of composed rules significantly increases the number of rules extracted 

214 Chapter 2: Machine Translation from Text 



 

 

Because this results in exponential variations, a size limit is employed: for any two or 
more rules to be allowed to combine, the size of the resulting rule must be at most n. The 
size of a rule is defined as the number of non-part-of-speech, non-leaf constituent labels 
in a rule’s target tree. For example, rules 1-5 shown in Figure 2.18 have a size of 0 and 
rule 6 has a size of 10. Composed rules are extracted in addition to minimal rules, which 
means that a larger n limit always results in a superset of the rules extracted when a 
smaller n value is used. When n is set to 0, then only minimal rules are extracted. Table 
2.38 shows the growth in the number of rules extracted for several size limits.  

In our previous analysis, the main reason that GHKM did not learn translations for 
ATS-useful phrase pairs was due to its minimal only approach. Table 2.39 shows the 
effect that composed rule extraction has on the total number of ATS-useful phrases 
missing. Note that as the allowed size of composed rule increases, we are able to extract a 
greater percentage of the missing ATS-useful phrase pairs. 

 
Size limit (n) Chinese Arabic 

0 (minimal) 1,994 2,199
2 1,478 1,528
3 1,096 1,210
4 900 1,041 

Table 2.39: Number of ATS-useful phrases still missing when using GHKM composed rule extraction 

Unfortunately, a comparison of Table 2.38 and Table 2.39 indicates that the number 
of ATS-useful phrase pairs gained is growing at a much slower rate than the total number 
of rules. From a practical standpoint, more rules means more processing work and longer 
decoding times, so there are diminishing returns from continuing to explore larger size 
limits. 

Method Chinese Arabic 
composed alone (size 4) 900 1,041
SPMT model 1 alone 676 854
composed + SPMT model 1 663 835

Table 2.40: ATS-useful phrases still missing after different non-minimal methods are applied 

SPMT Model 1 Rules. An alternative for extracting larger rules called SPMT model 
1 is presented by Marcu et al. (2006). Though originally presented as a separate model, 
the method of rule extraction itself builds upon the minimal GHKM method just as 
composed rules do. For each training example, the method considers all source language 
phrases up to length L. For each of these phrases, it extracts the smallest possible syntax 
rule that does not violate the alignments. Table 2.40 shows that this method is able to 
extract rules that cover useful phrases and can be combined with size 4 composed rules to 
an even better effect. Since there is some overlap in these methods, when combining the 
two methods we eliminate any redundant rules. 

Note that having more phrasal rules is not the only advantage of composed rules. 
Here, combining both composed and SPMT model 1 rules, our gain in useful phrases is 
not very large, but we do gain additional, larger syntax rules. As discussed by Galley et 
al. (2006), composed rules also allow the learning of more context, such as - 

Handbook of Natural Language Processing and Machine Translation 215



 

 
This rule is not learned by SPMT model 1, because it is not the smallest rule that can 

explain the phrase pair, but it is still valuable for its syntactic context. 
 
Restructuring Trees. Table 2.41 updates the causes of missing ATS-useful phrase 

pairs. Most are now caused by syntactic constraints, thus we need to address these in 
some way. 

Category of ATS-useful phrase pairs Chinese Arabic 
Too large 12 9
Extra target words in GHKM rules 218 27 
Extra source words in GHKM rules 424 792 
Other (e.g.  parse failures) 9 7 
Total missing useful phrase pairs 663 835 

Table 2.41: Reasons that ATS-useful phrase pairs are still not extracted as phrasal rules, with composed and 
SPMT model 1 rules in place 

 
Figure 2.23: Head-out binarization in the target language: S, NPB and VP are binarized according to the head 

word 

GHKM translation rules are affected by large, flat constituents in syntax trees, as in 
the prime minister example earlier. One way to soften this constraint is to binarize 
the trees, so that wide constituents are broken down into multiple levels of tree structure. 
The approach we take here is head-out binarization (Wang et al. 2007), where any 
constituent with more than two children is split into partial constituents. The children to 
the left of the head word are binirized one direction, while the children to the right are 
binarized the other direction. The top node retains its original label (e.g. NPB), while the 
new partial constituents are labeled with a bar (e.g. NPBതതതതതത). Figure 2.23 shows an example. 

Table 2.42 shows the effect of binarization on phrasal coverage, using both 
composed and SPMT rules. By eliminating some of the syntactic constraints we allow 
more freedom, which allows increased phrasal coverage, but generates more rules. 

216 Chapter 2: Machine Translation from Text 

 



 

 

Category of missing ATS-useful phrase pairs Chinese Arabic 
Too large 16 12
Extra target words in GHKM rules 123 12
Extra source words in GHKM rules 307 591
Other (e.g.  parse failures) 12 7
Total missing useful phrase pairs 458 622

Table 2.42: Reasons that ATS-useful phrase pairs still could not be extracted as phrasal rules after 
binarization 

2.4.4.2.4 Effect of Coverage Improvements on Translation 

 Dataset # of lines 
Chinese Arabic

Development set NIST 2002 MT eval 
(sentences < 47 tokens) 925 696

Test set NIST 2003 MT eval 919 663

Table 2.43: Development and test corpora 

To evaluate translation quality of each of these models and methods, we ran the ATS 
decoder using its extracted phrase pairs and the syntax-based decoder using all the rule 
sets mentioned above. Table 2.43 describes the development and test datasets used, along 
with four references for measuring BLEU. 
 

Experiment Chinese Arabic
Dev Test Dev Test 

Baseline ATS 34.94 32.83 50.46 50.52
Baseline GHKM (minimal only) 38.02 37.67 49.34 49.99
GHKM composed size 2 40.24 39.75 50.76 50.94
GHKM composed size 3 40.95 40.44 51.56 51.48
GHKM composed size 4 41.36 40.69 51.60 51.71
GHKM minimal + SPMT model 1 39.78 39.16 50.17 51.27
GHKM composed + SPMT model 1 42.04 41.07 51.73 51.53
With binarization 42.17 41.26 52.50 51.79

Table 2.44: Evaluation results (reported in case-insensitive NIST BLEU4) 

Table 2.44 shows the case-insensitive NIST BLEU 4 scores for both our development 
and test decodings. The BLEU scores indicate, first of all, that the syntax-based system is 
much stronger at translating Chinese than Arabic, in comparison to the phrase-based 
system. We believe this is due to the difference in reordering models. While the phrase-
based system's reordering comes primarily through the monolingual language model, the 
syntax rules themselves contain structural reordering decisions learned from the bilingual 
corpus. Thus syntax-based translation is better able to model the large amount of long-
distance reordering required to translate between Chinese and English. The smaller 
improvements on Arabic-to-English translation reflect the fact that less large scale 
reordering is necessary. 

The BLEU scores also show that syntax-based translation quality benefits from 
improved phrasal coverage. In addition, rule composition is not only helpful in 
comparison to minimal rules, but even in addition to SPMT model 1. This indicates that 

Handbook of Natural Language Processing and Machine Translation 217



 

the size 4 composed rules of Galley et al. (2006) bring more than just improved phrasal 
coverage. 

2.4.4.2.5 Discussion 

Both the ATS model for phrase-based machine translation and the GHKM model for 
syntax-based machine translation are state-of-the-art methods. Each extraction method 
has strengths and weaknesses as compared to the other, and there are surprising 
differences in phrasal coverage; neither is merely a superset of the other. We have shown 
that it is possible to gain insights from the strengths of the phrase-based extraction model 
to increase both the phrasal coverage and translation accuracy of the syntax-based model. 

However, there is still room for improvement in both models. For syntax models, 
there are still holes in phrasal coverage and other areas need progress, such as decoding 
efficiency. For phrase-based models, incorporating syntactic knowledge and constraints 
may lead to improvements as well. 

2.4.4.3 Improving Hiercrachical MT with Dependency Trees 

A dependency tree is an alternative grammatical representation to capture long-
distance relations between words. For a given sentence, each word has a parent word 
which it depends on, except for the root word. Figure 2.24 shows an example of a 
dependency tree. Arrows point from children to their parent. In this example, the word 
find is the root. 

 
Figure 2.24: The dependency tree for sentence the boy will find it interesting 

Dependency trees are simpler in form than CFG trees since there are no constituent 
labels. Furthermore, dependency relations directly model the semantic structure of a 
sentence. Their simplicity and expressive power make dependency trees a desirable prior 
model on MT output. 

Standard hierarchical phrase-based MT (Chiang 2007) can be viewed as a 
hierarchical string-to-string model. It does not require explicit syntactic representation on 
either side of the rules: both the source and target are strings with NTs. Decoding are 
solved as chart parsing. 

We extend this model by adding dependency trees to the target side of the model. 
Our SMT system uses a linear model on a log scale to rank translation hypotheses. To 
simplify this discussion, we assume a translation model has three dimensions and selects 
the best hypotheses S′e for input Sf according to: 

 ܵԢ ൌ argmaxௌ ܲ(ܵ| ܵ)௪భ ܲ( ܵ|ܵ)௪మܲ(ܵ)௪య 

218 Chapter 2: Machine Translation from Text 



 

 

 
where w1, w2 and w3 are weights. P(Se) is the prior probability of the English string Se 
using a string language model (LM). In this work we use the terms n-gram LM and string 
LM interchangeably. 

Our decoder uses a dependency LM as the prior. The selecting function becomes 
Ԣܦ  ൌ argmax |ܦ)ܲ ܵ)௪భ ܲ( ܵ|ܦ)௪మܲ(ܦ)௪య  

where P(D) is the dependency LM score of an English dependency tree D. 
In practice, we use both a dependency LM and a string LM, as well as several other 

features in our decoder. Later in this section, we will list the full set of features in our 
decoder. 

2.4.4.3.1 Transfer Rules  

A string-to-dependency grammar G is a 4-tuple G =⟨R, X, Tf , Te ⟩, where R is a set 
of transfer rules. X is the only non-terminal, similar to the Hiero system (Chiang 2007). Tf 
is a set of terminals in the source language and Te is a set of terminals in the target 
language.14 

A  string-to-dependency  transfer  rule  R ∈ R is  a 4-tuple R =⟨ Sf , Se, D, A⟩, where Sf ∈ (Tf  ∪ { X})+ is a source string, Se ∈ (Te ∪ { X})+ is a target string, D represents the 
dependency structure for Se and A is the alignment between Sf and Se. Non-terminal 
alignments in A must be one-to-one. 

In order to exclude undesirable structures and reduce search space, we only allow 
dependency structure D's that are either single-rooted (e.g., a complete constituent) or 
multi-rooted consisting of several sibling dependency trees. We will call such 
dependency structures well-formed in the rest of the work. In addition, the same well-
formedness requirement will be applied to partial decoding results. We operate over well-
formed structures in a bottom-up style in decoding. See the work of Shen et al. (2008) for 
details.15 

 
Figure 2.25: single-rooted well-formed structures 

                                                      
 
14 We ignore the left hand side here because there is only one non-terminal X. Of course, this formalism can 
be extended to have multiple NTs. 
15 Single-rooted structures were called fixed structures and multi-rooted structures are called floating 
structures by Shen et al. (2008). 

Handbook of Natural Language Processing and Machine Translation 219



 

 
Figure 2.26: multi-rooted well-formed structures 

Now we show some examples of single-rooted and multi-rooted well-formed 
structures. We represent dependency structures with graphs. Figure 2.25 shows some 
examples of single-rooted structures and Figure 2.26 shows some examples of multi-
rooted structures. 

2.4.4.3.2 Rule Extraction  

Now we explain how we get string-to-dependency transfer rules from training data. 
The procedure is similar to that used by Chiang (2007), except that we maintain tree 
structures on the target side, instead of strings. 

We first use GIZA++ (Och and Ney 2003) to generate forward and backward word 
level alignment. We take a union of the alignment in both directions. We use a statistical 
CFG parser to parse the English side of the training data and extract dependency trees 
with Magerman's rules (Magerman 1995). Then we use heuristic rules to extract transfer 
rules recursively based on word alignments and target dependency trees. The rule 
extraction procedure is as follows: 

 
 
1. Initialization:  

All the 4-tuples ( ܲ,, ܲ,, ,ܦ  are valid phrase alignments, where source (ܣ
phrase ܲ, is aligned to target phrase ܲ, under alignment A. 16 D is a well-
formed dependency structure for ܲ,. All valid phrase templates are valid rules 
templates.  

2. Inference:  
Let ( ܲ,, ܲ,, ,ଵܦ ) be a valid rule template and  (ܣ ܲ,, ܲ௦,௧, ,ଶܦ  a valid   (ܣ
phrase alignment, where [p, q] ⊂ [i, j], [s, t] ⊂ [m, n], D2 is a sub-structure of D1 
and at least one word in ܲ, but not in ܲ, is aligned. We create a new valid rule 
template (ܲ′ , ܲ′ , ,′ܦ  where we obtain P′f by replacing ܲ, with label X in ܲ, and obtain P′e  replacing by replacing ܲ௦,௧ with X in ܲ,. Furthermore, we ,(ܣ
obtain D′ by replacing sub-structure ܦଶ with X in D1. 

                                                      
 
16 By ܲ, aligned to ܲ,, we mean all words in ܲ,  are either aligned to words in ܲ, or unaligned and 
vice versa. Furthermore, at least one word in ܲ,is aligned to a word in ܲ,  . 

220 Chapter 2: Machine Translation from Text 



 

 

 
An example is shown in Figure 2.27. 

 

  
Figure 2.27: Replacing it with X  in D1 

To make the grammar size manageable, each transfer rule can have at most two NTs 
and at most seven elements (words and NTs) in the source side. 

2.4.4.3.3 Decoding  

Following previous work on hierarchical MT (Chiang 2005; Galley et al. 2006), we 
decode using as chart parsing. We view the target dependency as a hidden structure of the 
input string. The task of decoding is then to find the best hidden structure for the input 
given the transfer grammar and the language models. 

The parser scans all source cells in a bottom-up style and checks matched transfer 
rules according to the source side. Once there is a completed rule, we build a larger 
dependency structure by substituting component dependency structures for their 
corresponding NTs in the target side of the rule. 

Hypotheses, i.e., candidate dependency structures, are organized in a shared forest, or 
AND-OR structures. An AND-structure represents an application of a rule over 
component OR-structures and an OR-structure represents a set of alternative AND-
structures with the same state. 

 
Figure 2.28: An example of AND-OR structures 

For example, Figure 2.28 shows part of the AND-OR structures to generate 
translation take a visit. The top OR structure for the whole translation can be built from 

Handbook of Natural Language Processing and Machine Translation 221



 

one of the three AND structures, which in turn share OR structures as building blocks. 
The text within the parentheses of the OR structures represent the states. 

A state keeps the necessary information about hypotheses under it, which is needed 
for computing scores for higher level hypotheses during dynamic programming. For 
example, with an n-gram string LM in decoding, a state keeps the leftmost n − 1 word 
and rightmost n − 1 words shared by hypotheses in that state. Due to the use of a 
dependency LM in decoding, the state information also includes boundary information 
about dependency structures for the purpose of computing dependency LM scores for 
larger structures. 

2.4.4.3.4 Dependency Language Model  

For the dependency tree in Figure 2.24, we calculate the probability of the tree as 
follows, which is sometimes called a 3-gram sibling model. 

 
Prob  =  PT (find) 

× PL (will|find-as-head) 
× PL (boy|will, find-as-head) 
× PL (the|boy-as-head) 
× PR (it|find-as-head) 
× PR (interesting|it, find-as-head) 

 
Here PT(x) is the probability that word x is the root of a dependency tree. PL and PR 

are left and right side generative probabilities respectively. Let ݓ  be the head and ݓభ, ,మݓ … ,   be the children on the left side from the nearest to the farthest. Supposeݓ
we use a 3-gram dependency LM, 

 ܲ(ݓభ, ,మݓ … , (-as-headݓ|ݓ ൌ ܲ(ݓభ|ݓ-as-head) × ܲ(ݓమ|ݓభ, × (-as-headݓ … × ܲ(ݓ|ݓషభ,  (షమݓ
In the above formulas, ݓ-as-head represents the event that w is used as the head, 

while ݓ represents the event that ݓ is a sibling word. This subtle difference is very 
important, because we need to distinguish a head word from sibling words in context. PR 
is similarly computed. 

 
Dependency Decoder Implementation Details  
 
The features in the decoder include: 
 
1. Probability of the source side given the target side of a rule  
2. Probability of the target side given the source side of a rule  
3. Forward and backward lexical translation probability  
4. Number of target words  
5. Number of concatenation  rules used  
6. String LM score  

222 Chapter 2: Machine Translation from Text 



 

 

7. Dependency LM score  
8. Discount on ill-formed dependency structures  

 
The values of the first four features depend on the rules only and therefore are 

computed offline. Following Chiang (2005), we also use concatenation rules like X → XX 
for backup. The 5th feature counts the number of concatenation rules used in a 
translation. In decoding, we also allow dependency structures that are not well-formed by 
treating them as phrasal structures. However, such ill-formed structures are penalized 
with a discount. 

We tune the weights with several rounds of decoding optimization. Following Och 
(2003), the k-best results are accumulated as the input to the optimizer. Powell's method 
is used for optimization with 20 random starting points around the weight vector of the 
last iteration. For improved results, we rescore 1000 best translations, generated using the 
technique described by Huang and Chiang (2005), by replacing 3-gram string LM scores 
in the output with 5-gram string LM scores. The algorithm for tuning rescore weights is 
similar to the one for tuning decoder weights. 

2.4.4.3.5 Experiments 

 We experimented with two translation models: 
 
• baseline: hierarchical string to string translation, using our own replication of the 

Hiero system (Chiang 2007)  
• str-dep: string-to-dependency system. It uses rules with target dependency 

structures and a dependency LM in decoding.  
 
We use the Hiero model as our baseline because it is the closest to our string-to-

dependency model. They use similar rule extraction and decoding algorithms. Both 
systems use only one non-terminal label in rules. The major difference is that our model 
represents target translations as dependency structures while Hiero represents them as 
strings. Thus, the comparison will show the contribution of using dependency 
information in decoding. 

All models were tuned on BLEU (Papineni et al. 2001) and evaluated on BLEU, TER 
(Snover et al. 2006) and METEOR (Banerjee and Lavie 2005) so that we could detect 
over-tuning on one metric. For both Arabic-to-English and Chinese-to-English MT, we 
tuned on NIST MT02-05 and tested on MT06 and MT08 newswire sets. 

The training data for Arabic-to-English MT contains 29M Arabic words and 38M 
English words. The training data for Chinese-to-English MT contains 107M Chinese 
words and 132M English words. 

The dependency LMs were trained on the same parallel training data. For that 
purpose, we parsed the English side of the parallel data. Two separate models were 
trained: one for Arabic from the Arabic training data, and the other for Chinese from the 
Chinese training data. Traditional 3-gram and 5-gram string LMs were trained on the 
English side of the parallel data as well as the English Gigaword corpus V3.0 in a way 
described by Bulyko et al. (2007). 

 

Handbook of Natural Language Processing and Machine Translation 223



 

Model Arabic-English Chinese-English
baseline 337,542,137 193,922,173
str-dep 35,801,341 41,013,346

Table 2.45: Number of transfer rules 

Table 2.45 shows the number of transfer rules extracted from the training data. The 
transfer rules were filtered on the tuning and test sets. The constraint of well-formedness 
greatly reduced the size of the rule set. The size of the string-to-dependency rule set is 
about 10% to 20% of the baseline rule set size. 

 
 MT06 MT08
Model BLEU TER METEOR BLEU TER METEOR 

 Lower mixed lower mixed  lower mixed lower mixed  
Decoding (3-gram LM) 

Baseline 47.50 45.48 44.79 46.97 66.17 48.41 46.13 43.83 46.18 67.45 
str-dep 48.75 46.74 43.43 45.79 67.18 49.58 47.46 42.80 45.08 68.08 

Rescoring (5-gram LM) 
baseline 50.38 48.33 42.64 44.87 67.25 50.50 48.35 42.78 44.92 67.98 
str-dep 51.24 49.23 42.08 44.42 67.89 51.23 49.11 42.01 44.15 68.65 

Table 2.46: BLEU, TER and METEOR percentage scores on Arabic-English newswire test sets. 

Table 2.46 and Table 2.47 show the BLEU, TER and METEOR scores on MT06 and 
MT08 for Arabic-English and Chinese-English translation respectively. 

For Arabic-to-English MT, our string-to-dependency decoder improved BLEU by 1.3 
on MT06 and 1.2 and MT08 before 5-gram rescoring. For Chinese-to-English MT, the 
improvements in BLEU were 1.0 on MT08 and 1.4 on MT08. After rescoring, the 
improvements became smaller, but still noticeable, ranging from 0.8 to 1.3. TER and 
METEOR scores were also improved for all conditions, suggesting there was no metric 
specific over tuning. 

 
 MT06 MT08
Model BLEU TER METEOR BLEU TER METEOR 

 Lower mixed lower mixed  lower mixed lower mixed  
Decoding (3-gram LM) 

Baseline 36.40 34.79 54.98 56.53 57.25 31.64 29.56 57.35 59.37 54.93 
str-dep 37.44 35.62 54.64 56.47 57.42 33.05 31.26 56.79 58.69 55.18 

Rescoring (5-gram LM) 
baseline 37.88 36.18 53.80 55.45 57.44 33.06 31.21 55.84 57.71 55.18 
str-dep 38.91 37.04 53.65 55.45 57.99 34.34 32.32 55.60 57.60 55.91 

Table 2.47: BLEU, TER and METEOR percentage scores on Chinese-English newswire test sets. 

Table 2.48 shows the interaction between string and dependency LMs. With a tri-
gram string LM, a bigram dependency LM is almost as good as a trigram dependency 
LM. This shows that dependency relations, even in bigram, provide useful prior 
knowledge unavailable in a larger string n-gram LM. If we use a weaker (bigram) string 
LM in decoding, the improvement given by a dependency LM is more significant. 

224 Chapter 2: Machine Translation from Text 



 

 

  Arabic-English Chinese-English
String LM Dep LM MT06 MT08 MT06 MT08

2 - 39.92 39.87 29.83 26.35 
2 2 43.96 43.93 32.87 28.48 
3 - 46.64 47.37 36.02 31.26 
3 2 48.55 49.43 37.59 32.64 
3 3 48.75 49.58 37.44 33.05 

Table 2.48: Lower-cased Bleu scores with various n-gram LMs  

2.4.4.3.6 Discussion  

Here is an example in the tuning set which may provide some insight how the 
dependency LM helps to improve translation quality.  

 
• Reference: Meriam is a member of the Gulf country Bahrain’s royal family 
• Baseline: Mei-Li-an is the Gulf state of Bahrain ’s royal family members 
• Str-dep: Mei-Li-an is a member of the Gulf state of Bahrain’s royal family 

 
In the baseline translation, is ... members is not a valid combination. However, they 

are not in a local string window, so the decoder cannot rule it out. However, members 
directly depends on is in a dependency structure, so that the decoder uses an alternative 
rule and obtains a better translation. 

2.4.4.3.7 Related Work  

The well-formed dependency structures defined here are similar to the data structures 
in previous work on mono-lingual parsing (Eisner and Satta 1999; McDonald et al. 
2005). Charniak et al. (2003) described a two-step string-to-CFG-tree translation model. 
It first built a target parse forest for the input and then used a syntax-based language 
model to select the best translation. Unlike our work, the syntax LM was not used in 
forest generation, possibly due to the complexity of the syntax-based LM. In contrast, the 
simplicity of dependency LMs makes one step decoding possible in our decoder. 

2.4.4.4 Conclusions 

This section presents two string-to-tree machine translation models, each using trees 
to guide large-scale sentence structure changes when translating between languages. One 
model is based on target-side constituency trees and is improved through a careful 
comparison with a phrase-based MT model. The other model uses target-side dependency 
trees to exploit long-distance word relations not captured by traditional n-gram language 
models, improving on a hierarchical phrase-based MT model. While differences exist in 
both models, they both succeed by learning a better, more syntactic model to structure the 
target language output. 

 

Handbook of Natural Language Processing and Machine Translation 225



 

Authors: Zhifei Li and Sanjeev Khudanpur 

2.4.5.1 Introduction  

Discriminative training has been attempted for the task of statistical machine 
translation (SMT) both in a small-scale setting (i.e., finding optimal weights among a 
small set of generative models) and in a large-scale setting (i.e., training optimal weights 
for thousands/millions of features). In this section, we focus on the large-scale 
discriminative training. 

In the small-scale setting, minimum error rate training (Och et al. 2003) has become 
the de facto standard in SMT systems. Smith and Eisner (2006) propose an annealed 
minimum risk approach, while Zens et al. (2007) give a systematic experimental 
comparison for different training criteria. Shen et al. (2004) use perceptron-inspired 
algorithms to tune weights for tens of features. Chiang et al. (2008) use an online max-
margin method to tune tens of syntax features for a hierarchical system. 

Large-scale discriminative training for SMT is nontrivial due to several reasons. 
Learning a discriminative model normally involves in running an iterative training 
algorithm, which may require decoding the training data at each iteration. The decoding 
process is computationally expensive. In particular, the decoding of a single sentence 
often takes several CPU-seconds and the parallel corpora available for discriminative 
training typically contain millions of sentence pairs. Therefore, a single decoding pass 
over the training data may take tens of CPU-days. Another reason that makes 
discriminative training nontrivial for a SMT task is that the number of features needed to 
improve MT performance is enormous. For example, the number of phrase pairs 
extractable from the training bitext alone runs into the tens of millions. 

To address these problems, previous approaches have resorted either to an n-best 
approximation (e.g., Watanabe et al. (2007)), to a computationally cheap baseline system 
(e.g., a monotone translation system as assumed in Liang et al. (2006a)), or to a small-
scale setup (e.g., only sentences less than fifteen words are used as by Blunsom et al. 
(2008)). 

In this section, we present a scalable discriminative re-ranking framework, which 
discriminatively re-ranks hypotheses on a hyper-graph, instead on an n-best list. 
Specifically, for each sentence, we generate a hyper-graph using a baseline SMT system 
and save it to disk. In each iteration of the discriminative training, the learning algorithm 
updates towards an oracle tree in the fixed hyper-graph. The re-ranking approach has the 
advantage of being simple and scalable (since it does not require re-decoding the training 
data at each iteration of training). 

Our hyper-graph-based discriminative re-ranking approach is particularly appealing 
since a hyper-graph compactly encodes exponentially many hypotheses, representing a 
much larger hypothesis space than an n-best. In this respect, the hyper-graph-based re-
ranking occupies an intermediate position between re-ranking on a fixed n-best and 
redecoding the training data at each iteration. To support the hyper-graph-based 
discriminative training for SMT, we use an oracle extraction algorithm that is able to 

226 Chapter 2: Machine Translation from Text 

2.4.5. Forest Re-ranking for Machine Translation Using the 
Direct Translation Model 



 

 

efficiently extract oracle trees from hyper-graphs and a hyper-graph pruning algorithm 
that substantially reduces the required disk space for saving hyper-graphs without 
degrading the hyper-graph quality. 17 The scalability of our approach is also due to our 
simple yet effective data selection and feature selection algorithms, by which an equally 
good or better model is obtained using a fraction of the training data and features. 18 Our 
hyper-graph-based discriminative re-ranking approach is analogous to a lattice-based 
discriminative training approach for speech recognition (Woodland and Povey, 2002) and 
a forest re-ranking approach to monolingual parsing (Huang, 2008), both of which have 
been shown to be quite effective for their respective tasks. 

We report experimental results for both the n-best and hyper-graph-based 
discriminative re-ranking on Hiero (Chiang, 2007), showing that our approach is able to 
improve over a full-scale state-of-the-art hierarchical machine translation system. 

2.4.5.2 Hiero and Hyper-graphs 

In Hiero (Chiang 2007), a synchronous context-free grammar (SCFG) is extracted 
from automatically word-aligned corpora. An illustrative grammar rule for Chinese-to-
English translation is 

 
X   →  〈 X0 的 X1 , X1 of X0 〉 
 

where the Chinese word 的 means of and the alignment, encoded via subscripts on the 
nonterminals, causes the two phrases around 的  to be reordered around of in the 
translation. Given a source sentence, Hiero uses a CKY parser to generate a hyper-graph, 
encoding many hypotheses (derivation trees along with the translation strings). 

Formally, a hyper-graph is a pair 〈V,E〉, where V is a set of nodes (vertices) and E is 
a set of hyper-edges, with each hyper-edge connecting a set of antecedent nodes to a 
single consequent node. In parsing parlance, a node corresponds to an item in the chart 
(which specifies aligned spans of input and output together with a nonterminal label). The 
root node corresponds to the goal item. A hyper-edge represents an SCFG rule that has 
been “instantiated” at a particular position, so that the non-terminals on the right and left 
sides have been replaced by particular antecedent and consequent items; this corresponds 
to storage of back pointers in the chart. 

We write T(e) to denote the set of antecedent nodes of a hyper-edge e. We write I(v) 
for the set of incoming hyper-edges of node v (i.e., hyper-edges of which v is the 
consequent), which represent different ways of deriving v.  

 
 
 
 
 

                                                      
 
17 The details of the oracle extraction algorithm have been presented in Li and Khudanpur (2009). 
18 The details of the data selection method have been discussed in Li and Khudanpur (2008). 

Handbook of Natural Language Processing and Machine Translation 227



 

Hyper-graphs 

 

Figure 2.29: A toy hyper-graph in Hiero. When generating the hyper-graph, a trigram language model is 
integrated. Rectangles represent items, where each item is identified by the non-terminal symbol, source span 

and left- and right-side language model states.  An item has one or more incoming hyper-edges. A hyper-
edge consists of a rule and a pointer to an antecedent item for each non-terminal symbol in the rule. 

2.4.5.3 Discriminative Modeling 

We first describe a general discriminative re-ranking framework, inspired by Roark 
et al. (2007) for n-gram language modeling in speech recognition. 

 
Global Linear Models 
A linear discriminant aims to learn a mapping from an input x ∈ X to an output y ∈ Y, 

given 
 
1. training examples (xi, yi), i = 1∙∙∙N, 
2. a representation Φ : X × Y → Rd mapping each possible (x, y) to a feature vector,  
3. a function GEN(x) ⊆ Y that enumerates putative labels for each x ∈ X and  
4. a vector α ∈ Rd of free parameters.  
 
In general, for a SMT task, x is a sentence in the source language; GEN(x) 

enumerates possible translations of x into the target language and can be the set of strings 
in an n-best list or hyper-graph. y is the desired translation: either a reference translation 
produced by a bilingual human or a so-called oracle translation in GEN(x) that is most 
similar to such a human reference. In our training, y is an oracle tree (which contains a 

228 Chapter 2: Machine Translation from Text 



 

 

translation string as well) since we use the perceptron algorithm, which, unlike the 
conditional random field used by Blunsom et al. (2008), cannot easily treat the derivation 
trees as latent variables. 

 
Given an input x, the model assigns every hypothesis y ∈ GEN(x) a score, 
,ܠ)ܛ  (ܡ ൌ  (ܠ, (ܡ · હ ൌ ∑ ܠ)ܒ, ܒ(ܡ હ(2.31)     ,ܒ 

 
where j indexes the feature dimensions. 

The learning task is to obtain the “optimal” parameter vector from training 
examples, while the decoding task is to search over GEN(x) to obtain the y that has the 
maximum score s(x,y). These tasks are discussed in the next sections.  

 
Parameter Estimation 

Given a set of training examples, a parameter estimation algorithm is used to find an 
optimal by maximizing a certain objective function of the training data. Different 
algorithms use different objective functions, e.g., maximum conditional likelihood 
(Blunsom et al. 2008), minimum risk (Li and Eisner 2009), or max-margin (Chiang et al. 
2008). We use the averaged perceptron algorithm (Collins 2002) due to its simplicity and 
suitability to large data settings. Given a set of training examples, the algorithm 
sequentially iterates over the examples and adjust the parameter vector, as illustrated 
below:  

 
Perceptron(x, GEN(x ), y) 
 
ߙ .1 ՚ 0 ሬሬሬറ   ►initialize as zero 2. for tൄ 1 to T 3.    for iൄ 1 to N 4.       ݖ ՚ argmax௭∈GEN(୶) Φ൫ݔ , ൯ݖ · ݔif (zi ≠ yi) 6.          α ൄ α + Φ൫       .5 ߙ , ݕ ൯ − Φ൫ݔ , ݖ ൯ 
7. return α 
 
After iterating over the training data a few times, an averaged model, ଵ் ∑ ଵே ∑ ௧ேୀଵ௧்ୀଵߙ , is computed and is used for testing, where αt

i represents the parameter 
vector after seeing the i-th example in the t-th iteration, N represents the size of the 
training set and T is the number of iterations of the perceptron algorithm. 
 
Decoding/Inference 

During the perceptron training-time (see line-4 in the perceptron iteration loop) as 
well as the test time, the following decision rule is normally used to select the optimal 
output y*, 

Handbook of Natural Language Processing and Machine Translation 229



 

כ࢟ ൌ (ܠ)ۼ۵۳∋࢟ܠ܉ܕܚ܉ ,࢞)ܛ  (2.32)      (࢟

This is called Viterbi decoding. Other decision rules like minimum risk (Tromble et 
al. 2008) or variational decoding (Li et al. 2009b) can also be used. The decoding 
complexity depends on the size and structure of GEN(x) (e.g., n-best or hyper-graph). 

2.4.5.4 Discriminative Forest Re-ranking 

Discriminative Re-ranking 
The above framework (models, parameter estimation and decoding) is quite general 

and can be applied in many structured prediction tasks. We use it as a re-ranking 
framework: train a discriminative model to re-rank the hypotheses (encoded either in an 
n-best list or a hyper-graph) produced by a baseline SMT system. The re-ranking 
approach has the advantage of being simple and scalable (as we do not need to re-decode 
the training data following each iteration of training). 

Each component Φj(x,y) of the feature vector can be any function of the input x and 
the output y. To facilitate re-ranking, we first define a baseline feature Φ0(x,y), which is 
the score assigned to y by the baseline SMT system.19 We then need to define many 
additional re-ranking features. For example, an n-gram feature might be: 

 Φ1(x,y) = Count of the bigram “the of” in y. 
 
Given the feature- and the parameter-vectors, the total score assigned to an output y ∈ GEN(x) for a given input x is ࢞)࢙, (࢟ ൌ ,࢞)ࢼ (࢟  ∑ ,࢞)ࢻ ሿࡲ,ሾࣕ(࢟ ,    (2.33) 

where ߚ is the weight for the baseline feature and F is the number of discriminative re-
ranking features. To find the optimal weight ߚ for the baseline feature, one could simply 
treat Φ0 as a feature in the discriminative re-ranking model and set the value of via the 
perceptron algorithm. This, however, may lead to undertraining (Sutton et al. 2006) of 
the discriminative re-ranking features in the re-ranking model: the baseline feature is 
strongly indicative of the overall goodness of y for x, relative to any single discriminative 
re-ranking feature which indicates the local goodness of y. Therefore, we use a fixed 
value for during the discriminative training, as suggested by Roark et al. (2007). 

In the general framework described so far, two algorithms are specific to the size and 
structure of GEN(x):   decoding and oracle extraction. When GEN(x) is an n-best list as 
in Li and Khudanpur (2008), these two algorithms are straightforward as we can simply 
perform a brute-force linear search over the n-best list to obtain the Viterbi or oracle 
translation. It will be more complex when GEN(x) is a hyper-graph, which encodes 
exponentially many hypothesis. We will present the decoding algorithm and review the 
oracle extraction algorithm (Li and Khudanpur, 2009) in the following sections. 
                                                      
 
19 This score itself is often a linear combination of several models, with the relative weights among these 
models obtained via a minimum error rate training procedure (Och et al., 2003). 

230 Chapter 2: Machine Translation from Text 



 

 

Decoding on Hyper-graphs 
The decoding algorithm that finds y* on a hyper-graph, as defined in 2.4.5.2, is 

outlined below: 
 
Decoding-on-Hyper-graph(GEN(x)) 
 
1. For v in topological order     ►each node 
ݏ̂ .2 ՚ negative infinity 
3. For e∈I(v)   ►each incoming hyper-edge 
(݁)ݏ           .4 ՚ (݁)ߔߚ  ∑ Φ(݁)∈ሾଵ,ிሿߙ  
(݁)ݏ           .5 ՚ (݁)ݏ  ∑ ∈்()(ݑ)ݏ̂  
6.           If   ݏ(݁)   ?better derivation ►    (ݑ)ݏ̂
7.                        መ݀(ݒ) ՚ 〈݁, 1〉 
(ݒ)ݏ̂                        .8 ՚  (݁)ݏ
9. return  መ݀   (goal) 
 
Recall that the total score assigned to an output y∈GEN(x) for a given input x is 

defined in 2.4.5.3. For each node v, the algorithm adjusts its Viterbi derivation መ݀(ݒ) and 
Viterbi score ̂(ݒ)ݏ  by applying the discriminative model ߙ . To update the Viterbi 
derivation መ݀(ݒ), the algorithm processes each in-coming hyper-edge e∈I(v). A hyper-
edge e’s score s(e) is the model score on that hyper-edge (see line-4 above) plus the 
Viterbi scores of all its antecedent nodes u∈T(e) (see line-5). If e leads to a better 
derivation, መ݀(ݒ) is updated with 〈݁, 1〉, the best derivation along the hyper-edge e. The 
algorithmic complexity is linear with the hyper-graph size, that is, O(|E|). 

 
Oracle Extraction on Hyper-graphs 

 
While a hyper-graph represents a very large set of translations, it is quite possible that 

the reference translations are not contained in the hyper-graph, due to pruning or inherent 
deficiency of the translation model. In this case, we want to find the translation in the 
hyper-graph that is most similar to the reference translations, with similarity computed by 
BLEU (Papineni et al. 2002). Such maximally similar translation will be called oracle 
translation and the process of extracting them oracle extraction. As mentioned, we use 
oracle tree (instead of oracle string) in our training. In Hiero, many distinct derivation 
trees may yield the oracle string. This is called spurious ambiguity. Among all the trees 
yielding the oracle string, we define the one with the best baseline model score as the 
oracle tree. 

Oracle extraction on a hyper-graph is a nontrivial task because computing the 
similarity of any one hypothesis requires information scattered over many items in the 
hyper-graph and the exponentially large number of hypotheses makes a brute force linear 
search intractable. Therefore, efficient algorithms that can exploit the structure of the 
hyper-graph are required. We present an efficient oracle extraction algorithm (Li and 
Khudanpur 2009), which involves two key ideas. Firstly, we view the oracle extraction as 

Handbook of Natural Language Processing and Machine Translation 231



 

a bottom-up model scoring process on a hyper-graph, where the model is an n-gram 
model “trained” on the reference translation(s) and the score is the BLEU value. This 
algorithm, however, requires maintaining a separate dynamic programming state for each 
distinguished sequence of “state” words and the number of such sequences can be huge, 
making the search very slow. Secondly, therefore, we present a novel look-ahead 
technique, called equivalent oracle-state maintenance, to merge multiple states that are 
equivalent for similarity computation. Our experiments show that the equivalent oracle-
state maintenance technique significantly speeds up (more than 40 times) the oracle 
extraction. 

2.4.5.5 Supporting Algorithms for Scalable Discriminative Training 

In this section, we present several supporting algorithms in the hyper-graph-based 
discriminative training framework, to make it scalable to big training sets and to a large 
number of features. 

 
Hyper-graph Pruning 

Saving the hyper-graphs on the disk requires a lot of storage space and also incurs 
I/O overheads. Therefore, we adopt a hyper-graph pruning algorithm, which substantially 
reduces the required disk space without degrading the hyper-graph quality too much. 
Specifically, we run an inside-outside algorithm to compute the Viterbi inside score β(v) 
and the Viterbi outside score α(v) for each node v and then compute the merit αβ(e) for 
each hyper-edge e. A hyper-edge e gets pruned if its merit is worse than the score of the 
best derivation in the hyper-graph by a relative threshold p. A node v gets pruned if all its 
incoming hyper-edges get pruned. We use a development set to find the optimal p in 
terms of the tradeoff between disk space and hyper-graph quality (as measured by oracle 
BLE BLEU). Our algorithm is similar to that used by Huang (2008) for monolingual 
hyper-graphs. 

 
Feature Selection 

The perceptron algorithm previously described itself can be thought as a feature 
selection algorithm as it incrementally adds features into the model whenever they are 
activated. Due to this, however, the model size can grow arbitrary large, which imposes 
difficulty in our SMT task as the number of possible features is enormous. For example, 
the number of phrase pairs extractable from the parallel corpora can easily run into tens 
of millions. On the other hand, one can employ a dedicated feature selection algorithm 
and constrain the perceptron algorithm such that it updates only on the selected features. 

We propose to use only the features that are present in the test sets. Specifically, 
before the discriminative training, we traverse all the hyper-graphs in the test sets and 
collect all the features present in these hypergraphs.20 This method is extremely simple 
and computationally cheap. In machine learning terminology, it is called directed ad hoc 
inference, inference that occupies an intermediate position between inductive-deductive 
                                                      
 
20 Of course, this does not peek at the reference translations. 
 

232 Chapter 2: Machine Translation from Text 



 

 

inference and transductive inference (Vapnik 2006). Intuitively, we can view this as an 
intermediate learning paradigm between the regular supervised training and the 
unsupervised clustering (e.g., k-nearest neighbors). 

 
Data Selection 

We can present all the training examples (i.e., hyper-graphs together with the 
corresponding oracle trees) to the discriminative training algorithm. Alternatively, we can 
carry out a data selection procedure that selects a subset of these examples. Data selection 
is useful for speeding up the training procedure as most training algorithms require 
computational time proportional to the size of training data. It also has potential to 
improve the model quality. We adopted the data selection procedure proposed by Li and 
Khudanpur (2008). 

2.4.5.6 Feature Functions 

Baseline  Model  Feature:    The  baseline  feature Φ0(x,y) is the score assigned to y 
by the baseline SMT system, which is a linear combination of several models, with the 
relative weights among these models obtained via a minimum error rate training 
procedure (Och et al. 2003). 

Language Model Features: The count of each n-gram in the English yield of the 
derivation tree y constitutes a feature. 

Translation Model Features: The count of each rule in the derivation tree y 
constitutes a feature. The rule can be any flat/hierarchical phrase in Hiero. 

Boundary n-gram Features: In Hiero, a hierarchical rule combines small 
translation units into a larger one. The combination creates n-grams that cross the 
boundary between the terminal words in the hierarchical rule and the LM state words in 
the antecedent items. Some of these boundary n-grams may never appear in monolingual 
corpora including the English side of the bitext. Clearly, the boundary n-gram features 
form a strict subset of the general n-gram features defined before. For example, all the n-
grams inside a flat rule and all the unigrams do not belong to the set of boundary n-
grams. 

2.4.5.7 Experimental Results 

We report results using an open source MT toolkit, called Joshua (Li et al. 2009a), 
which implements Hiero (Chiang 2007). 

 
Data Resources 

We compile a parallel dataset (about 4M sentence pairs) consisting of corpora 
distributed by LDC for the NIST Chinese-English MT evaluation, from which we select 
about 1M sentences pairs (about 28M words in each language) as the parallel training 
data using a sampling method based on the n-gram matches between training and test sets 
in the foreign side. The language model training data consists of a 130M words subset of 
the English Gigaword (LDC2007T07) and the English side of the parallel corpora. 

 
 

Handbook of Natural Language Processing and Machine Translation 233



 

Baselines and Discriminative Training Data 
One could train a single baseline SMT system on the entire parallel corpus and 

decode all the source language sentences using this system, for discriminative training. 
However, this may lead to a significant mismatch during actual test conditions. In 
particular, the hyper-graphs generated on the training data will have better translation 
quality than on unseen test data. To avoid this pitfall, we partition the parallel data into 30 
disjoint sections and train 30 baseline SMT systems. To decode sentences from a 
particular section, we use a baseline system that excludes that section. We carry out this 
jackknife training for both the TM and LM training. 

For each baseline system, we use the GIZA toolkit (Och and Ney 2000), a suffix-
array architecture (Lopez 2007), the SRILM toolkit (Stolcke 2002), and minimum error 
rate training (MERT) (Och et al. 2003) to obtain word alignments, translation models, 
language models and the optimal weights for combining these models, respectively. The 
baseline LM is a trigram LM with modified Kneser-Ney smoothing (Chen and Goodman 
1998). 21 The MERT is performed on the NIST MT’03 evaluation data set. 

 
Goodness of the Oracle Translations 

Table 2.49 reports the BLEU scores of the oracle translations on four NIST evaluation 
data sets on which we will report performance later. This table sets an upper bound on 
improvements possible using the discriminative model. In general, the oracle BLEU score 
in a hyper-graph is much better than that in a 500 unique n-best strings (corresponding to 
thousands of distinct derivation trees). This shows that a hyper-graph provides a much 
better basis for re-ranking than an n-best. Moreover, the oracle BLEU score increases very 
slowly along with the increase of n for the n-best derivation trees. Huang (2008) observed 
a similar trend for monolingual parsing. 

 
Task 1-best Oracle

500-unique-best Hyper-graph
MT’03 35.0 40.7 47.1
MT’04 35.7 44.0 52.8 
MT’05 32.6 41.2 51.8
MT’06 28.3 35.1 37.8

Table 2.49: Oracle and 1-best Bleu Scores (4-gram Bleu with four references) on MT Sets. 

Goodness of Hyper-graph Pruning 
Figure 2.30 shows the tradeoff between disk space (in terms of number of hyper-

edges needed to be stored) and hyper-graph quality (in terms of the oracle BLEU score) on 
a dev set. Clearly, as the threshold p increases, less number of hyper-edges are pruned 
and the oracle BLEU score decreases less. We choose p = 7 for the remaining experiments. 

 

                                                      
 
21 We use a trigram LM because the decoding of the whole training set (about 1M sentences) is too 
computationally expensive if we use a larger order LM. 
 

234 Chapter 2: Machine Translation from Text 



 

 

 
Figure 2.30: Tradeoff between Disk Space and Hyper-graph Quality by varying threshold p. 

Results on NIST MT Benchmark Tests  
For the experiments reported here, we perform data selection as described in Li and 

Khudanpur (2008) and select 610K sentence pairs from about 1M for training various 
perceptron models. The optimal β for the baseline feature is found using MT04 as a 
tuning set. 

Table 2.50 reports the BLEU results for one baseline system, two discriminative n-best 
re-ranking systems and five discriminative hyper-graph re-ranking systems. BLM means 
the boundary n-gram language model feature set. In n-best re-ranking, we consider only 
the regular language model features.22 Clearly, the n-best discriminative training is able 
to improve the baseline significantly. Also, the “WFS” (with feature selection) model, 
containing about 160K features, achieves comparable performance to “NFS” (no feature 
selection) that contains about 1444K features. 

 
System MT04 MT05 MT06 

Baseline Joshua 35.7 32.6 28.3 

N-best NFS 36.6 33.2 29.3 
WFS 36.5 33.5 29.2 

Hyper-
graph 

LM 35.9 33.0 28.2 
BLM 35.9 33.0 28.4 
TM 36.1 33.2 28.7 

TM+LM 36.0 33.1 28.6 
TM+BLM 36.1 33.0 28.6 

Table 2.50: BLEU Scores for MT Sets under Various Models. The MT04 set is used for tuning some hyper-
parameters in the re-ranking model. 

                                                      
 
22 We consider only unigram and bigram for language model features. Adding trigram features does not lead 

Handbook of Natural Language Processing and Machine Translation 235

to much improvement. Roark et al. (2007) observed a similar trend for a speech recognition task. 

 



 

In the hyper-graph-based discriminative re-ranking, we always carry out feature 
selection. From the test sets (MT03-MT06) we SELECTED 1.5M features for LM and 
BLM and 1.8M for TM. As is clear in Table 2.50, while the hyper-graph-based 
discriminative training outperforms the baseline on all three test sets, the improvements 
in BLEU are slightly less than that from n-best based training. This may be due to 
overfitting in hyper-graph based training as it yields many more features than n-best 
based training. Also, all our features so far are “local” and Huang (2008) also observes 
that forest-based re-ranking in monolingual parsing does not outperform n-best based re-
ranking when only local features are used. We propose to investigate these issues in the 
near future. 

 
In this section, we present a scalable discriminative training framework for statistical 

machine translation. The framework can be used both for n-best and hyper-graph-based 
re-ranking. In the context of hyper-graph-based re-ranking, we employ an oracle 
extraction algorithm to efficiently extract an oracle trees from a hyper-graph. To make 
the hyper-graph-based method scalable, we adopt several efficient algorithms: hyper-
graph pruning, data selection and feature selection. We show that both n-best and hyper-
graph-based re-ranking improve over a full scale state-of-the-art hierarchical machine 
translation system (Chiang 2007). However, the hyper-graph-based re-ranking under 
performs the n-best re-ranking, which is quite surprising and the reasons remain to be 
investigated. 

Our framework forms a solid basis for feature engineering and incorporating better 
machine learning methods in statistical machine translation. 

 

2.4.6. Lexical Semantics for Statistical Machine Translation 
Authors: Dekai Wu, Pascale Fung, Marine Carpuat, Chi-kiu Lo, Yongsheng Yang, Zhaojun Wu 

2.4.6.1 Introduction 

Error analysis shows statistical machine translation models to continue to be prone to 
errors that are likely to benefit from stronger models of semantics. Lexical semantics, in 
particular, is the obvious first target, given the lexical orientation inherent to SMT 
approaches. There are two main aspects of lexical semantics — senses and roles — both 
of which bear exploration in the context of SMT: 

Sense disambiguation uses clues in the input context to predict the correct meaning of 
input lexemes that are ambiguous, thus making or influencing decisions on translation 
lexical choice.  

Semantic role labeling identifies a sentence's shallow semantic predicate-argument 
frames, independent of syntax or language: who did what to whom, for whom or what, 
how, where, when and why, which generally should be preserved in translation.  

In both these areas of lexical semantics, a large body of work exists, not only in the 
linguistic tradition, but also, more recently, in extensive empirical and machine learning 

236 Chapter 2: Machine Translation from Text 

2.4.5.8 Conclusions 



 

 

oriented evaluations. Yet surprisingly, the application of semantic modeling to SMT has 
received little or no attention. Leveraging such modeling approaches to improve the 
adequacy of translation would seem highly desirable in the face of the types of semantic 
errors made by today's more n-gram based, fluency-oriented SMT systems. 

We approach this promise with caution, however, given the painful lessons learned 
through the historical difficulty of making syntactic models contribute to improving SMT 
accuracy. The past decade has at last seen increasing amounts of evidence that SMT 
accuracy can indeed be improved via tree structured and syntactic models (Wu 1997; Wu 
and Wong 1998; Wu and Chiang 2007; Chiang and Wu 2008; Wu and Chiang 2009) 
despite numerous disappointing attempts (Och et al. 2004). Improving SMT accuracy 
ultimately required making major adaptations to the original linguistic models. We, 
therefore, anticipated it would be at least as difficult to successfully adapt even more 
abstract types of semantic modeling to SMT, and indeed, it has turned out to be 
remarkably challenging to improve SMT using either kind of lexical semantics, as we 
will discuss in the respective following sections. 

Sense disambiguation: We describe a generalized Phrase Sense Disambiguation 
approach, the first successful model to incorporate the predictions of a word sense 
disambiguation system within a typical phrase-based SMT model. The model yields 
consistent improvement in translation quality across multiple test sets, according not only 
to BLEU, but to all eight most commonly used automatic evaluation metrics. While 
preserving the exact structure and feature engineering of state-of-the-art word sense 
disambiguation (WSD) modeling, success required a simultaneous combination of three 
other critical adaptations to traditional WSD sense inventories, lexeme definitions and 
task integration.  

Semantic role labeling: We describe results from a series of empirical studies 
designed to assess more precisely the realistic utility of semantic roles in improving SMT 
accuracy. The experiments reported study several aspects key to success: (1) the 
frequencies of types of SMT errors where semantic parsing and role labeling could help, 
and (2) if and where semantic roles offer more accurate guidance to SMT than merely 
syntactic annotation, and (3) the potential quantitative impact of realistic semantic role 
guidance to SMT systems, in terms of BLEU and METOR scores.  

2.4.6.2 Semantic SMT:  Senses 

2.4.6.2.1 Phrase Sense Disambiguation 

Phrase Sense Disambiguation (PSD) is a task-driven definition of Word Sense 
Disambiguation (WSD) modeling for SMT. Most SMT systems make little use of 
contextual information in translation lexical choice. In contrast, WSD research has 
established that rich context features are useful in stand-alone translation disambiguation 
tasks. However, early attempts at using context-rich approaches from WSD methods in 
standard SMT systems surprisingly did not yield the expected improvements in 
translation quality (Carpuat and Wu 2005). 

PSD leverages the feature engineering and learning models developed for standalone 
WSD, while building on key modeling strengths of current SMT systems. Phrasal SMT 
architectures directly integrate lexical collocation preferences into lexical choice by the 

Handbook of Natural Language Processing and Machine Translation 237



 

means of phrasal translation lexicons. The PSD approach argues that disambiguation 
targets must be exactly the same phrases as in the SMT phrasal translation lexicon, so 
that the sense disambiguation task is identical to lexical choice for SMT. 

As a result, PSD constrasts with the conventional standalone WSD perspective. We 
present comparative empirical evidence and data analysis showing why PSD succeeds 
where its predecessors failed, via a combination of three critical modeling changes: 

 
1. The sense disambiguation model must be trained to predict observable senses 

that are the direct lexical translations of the target lexeme being disambiguated. PSD 
sense inventories are exactly the phrasal translations learned in the SMT translation 
lexicon. In contrast, most conventional WSD models are instead trained to predict hidden 
senses drawn from an artificially constructed sense inventory. This differs even from 
previous WSD approaches that make use of word translations as a source of WSD labels, 
but use manually-defined word-based translation lexicons rather than learned phrasal 
translations (Dagan and Itai 1994; Gale et al. 1992) and still make a distinction between 
sense labels and SMT translation candidates (Brown et al. 1991).  

2. Sense disambiguation must be redefined to move beyond the particular case of 
single word targets and instead to generalize to multi-word phrase targets. PSD targets 
are permitted to be phrasal lexemes composed of smaller lexemes, while standalone 
WSD targets are typically defined as single words, as in Senseval tasks (Kilgarriff and 
Rosenzweig 1999; Kilgarriff 2001; Mihalcea et al. 2004).  

3. The sense disambiguation model must be fully integrated into the runtime 
decoding. Unlike earlier models attempting to utilize single-word sense disambiguation 
(e.g., Carpuat and Wu 2005), it is not possible to represent phrasal sense predictions as 
input annotations since they cover overlapping spans in the input sentence. PSD is fully 
integrated into the decoding search itself, as opposed to preprocessing or post-processing 
stages. 

 
Unlike the static, pre-trained context-independent translation probability models 

found in nearly all current SMT models, the Phrase Sense Disambiguation approach 
delivers dynamically-computed, context-dependent, phrasal translation probabilities to 
the decoder. Whereas, current SMT systems make very little use of contextual 
information to select a translation candidate for a given input language phrase, PSD 
employs a rich array of lexical, collocational and syntactic context features from the input 
source-side sentence, drawing upon the feature engineering of the Senseval WSD 
evaluations. We present analysis confirming that the most important predictive context 
features are not available in conventional phrase-based SMT models. Further empirical 
analysis shows that PSD enables the SMT system to make use of more and longer 
phrases, including phrases that were not seen very frequently in training. Even when the 
segmentation is identical, the context-dependent lexicons yield translations that match 
references more often than conventional lexicons. 

2.4.6.2.2 PSD uses the same training data as the SMT system  

PSD training does not require any other resources than SMT training, or any manual 
sense annotation. We employ supervised WSD classifiers, since Senseval results have 

238 Chapter 2: Machine Translation from Text 



 

 

amply demonstrated that supervised models significantly outperform unsupervised 
approaches (see for instance the English lexical sample tasks results described by 
Mihalcea et al. (2004)). 

Training examples are annotated using the phrase alignments learned during SMT 
training. Every input language phrase is sense tagged with its aligned output language 
phrase in the parallel corpus. The phrase alignment method used to extract the PSD 
training data, therefore, depends on the one used by the SMT system. This presents the 
advantage of training PSD and SMT models on exactly the same data and eliminates 
domain mismatches between SMT parallel corpora and conventional WSD training data. 
In addition, this allows PSD training data to be generated entirely automatically, since the 
parallel corpus is automatically phrase aligned in order to learn the SMT phrasal bi-
lexicon. 

2.4.6.2.3 PSD generalizes conventional WSD features to phrasal targets  

The PSD models are based on the machine learning classifiers and context features 
used in the conventional WSD models developed for the Senveval-3 Chinese Lexical 
Sample Task. However, generalizing the PSD target to multi-word phrases requires 
generalizing some of the context features as well. 

In order to formally define the PSD feature set, consider the input sentence: ݓଵݓଶ…ݓିଶݓିଵݓܓܟ…ܑܟାଵݓାଶݓே where ݓ, for any j, is a single word, pj is the part 
of speech of ݓ,  ܓܟ…ܑܟ is the PSD phrasal target (a single word if i=k or a multi-word 
phrase if k > i). 

The feature set for the PSD phrasal target ܓܟ…ܑܟ is defined as: 
• part of speech of target phrase, which is defined as the POS sequence of its single 

word components: …  
• part of speech of previous word: ିଵ;  
• part of speech of next word: ାଵ 
• identity of previous word: ݓିଵ;  
• identity of next word: ݓାଵ  
• bag of word sentence context: {ݓ for j = 1, …, N| = noun, verb or adjective} 
• if the target is a single word and a verb, identity of the first noun at the right of 

the target (approximation for verb-object dependency)  
• if the target is a single word and a noun, identity of the next word if it is a noun, 

i.e., ݓାଵ if ାଵis a noun (approximation for head noun)  
• if the target is a single word and a noun, POS of the next word if it is a noun, i.e., ାଵ if ାଵ is a noun (note that there are several possible POS for nouns)  
• if the target is a single word and an adjective, identity of the first noun at the right 

of the target (approximation for modified noun).  
 
The WSD provenance makes this a significantly richer feature set than previous 

lexical choice models employed in SMT. Note that some of these features were 
engineered for Chinese WSD. Shallow parse features can similarly be defined for other 
specific languages. 

Handbook of Natural Language Processing and Machine Translation 239



 

2.4.6.2.4 PSD is fully integrated into the SMT decoding  

Conventional phase-based SMT systems are designed to use static phrasal translation 
lexicons since all translation probabilities and related scores are not dependent of context. 
In contrast, the PSD context-dependent translation lexicon needs to be dynamically 
computed as scores for each phrase-pair change for each occurrence of the input language 
phrase. It is therefore non-trivial to incorporate PSD into an existing phrase-based 
architecture, since the decoder is not set up to easily accept multiple translation 
probabilities that are dynamically computed in context-sensitive fashion. 

Using PSD scores, therefore, requires making significant changes in the 
implementation of translation candidate scoring. Note that a generic strategy to overcome 
this obstacle in any phrasal SMT system is to use a calling architecture that reinitializes 
the decoder with dynamically generated lexicons on a per-sentence basis. 

In practice, in a given input sentence, we may replace each word by an identifier 
which uniquely represents the occurrence of the word in context. A new translation 
lexicon is created for these input identifiers using the standard context-independent 
scores augmented with the new context-dependent PSD score. 

2.4.6.2.5 Evaluation 

We evaluate the impact of PSD in translation quality within a standard phrase-based 
SMT architecture. 
 
Experimental setup 

The evaluation is conducted on two standard Chinese to English translation tasks. We 
follow standard machine translation evaluation procedure using automatic evaluation 
metrics. Since our goal is to evaluate translation quality, we use standard MT evaluation 
methodology and do not evaluate the accuracy of the WSD model independently. 

Preliminary experiments were conducted using training and evaluation data drawn 
from the multilingual BTEC corpus, which contained sentences used in conversations in 
the travel domain and their translations in several languages. A subset of this data was 
made available for the IWSLT06 evaluation campaign (Paul 2006); the training set 
consists of 40000 sentence pairs and each test set contained around 500 sentences. We 
used only the pure text data and not the speech transcriptions, so that speech-specific 
issues would not interfere with our primary goal of understanding the effect of integrating 
WSD in a full-scale phrase-based model. 

A larger scale evaluation was conducted on the standard NIST Chinese-English test 
set (MT-04), which contained 1788 sentences drawn from newswire corpora and, 
therefore, of a much wider domain than the IWSLT data set. The training set consisted of 
about 1 million sentence pairs in the news domain. 

Basic preprocessing was applied to the corpus. The English side was simply 
tokenized and case-normalized. The Chinese side was word segmented using the LDC 
segmenter. 

 
 
 

240 Chapter 2: Machine Translation from Text 



 

 

A standard baseline SMT system 
Our aim is to lay out an approach that can be expected to work in any reasonably 

common phrase-based SMT implementation. Since our focus is not on a specific SMT 
architecture, we chose the widely-used, off-the-shelf, phrase-based, decoder Moses 
(Koehn 2004a). Moses implements a beam search decoder for phrase-based statistical 
models and presents the advantages of being freely available and widely used. 

The phrase bi-lexicon was derived from the intersection of bidirectional IBM Model 
4 alignments, obtained with GIZA + + (Och and Ney 2003). A trigram language model 
with Kneser-Ney smoothing was trained on the English side of the corpus using the SRI 
language modeling toolkit (Stolcke 2002). 

The log-linear model weights were learned using Chiang's implementation of the 
maximum BLEU training algorithm (Och 2003), both for the baseline and for the WSD-
augmented system. 

 
PSD consistently helps translation quality  

Table 2.51 shows that, remarkably, PSD consistently improves translation quality as 
measured by all eight metrics on both the IWSLT and on the NIST data sets. Examples of 
actual translations are given in Figure 2.31. 

 
Test Exper. BLEU NIST METEOR METEOR TER WER PER CDER 
Set     (no syn)     

IWSLT06 
Test 1 

SMT 42.21 7.888 65.40 63.24 40.45 45.58 37.80 40.09 
SMT+PSD 42.38 7.902 65.73 63.64 39.98 45.30 37.60 39.91 

IWSLT06 
Test 2 

SMT 41.49 8.167 66.25 63.85 40.95 46.42 37.52 40.35 
SMT+PSD 41.97 8.244 66.35 63.86 40.63 46.14 37.25 40.10 

IWSLT06 
Test 3 

SMT 49.91 9.016 73.36 70.70 35.60 40.60 32.30 35.46 
SMT+PSD 51.05 9.142 74.13 71.44 34.68 39.75 31.71 34.58 

NIST 
SMT 20.41 7.155 60.21 56.15 76.76 88.26 61.71 70.32 

SMT+PSD 20.92 7.468 60.30 56.79 71.34 83.87 57.29 67.38 

Table 2.51: results on the IWSLT06 & NIST dataset: integrating the WSD translation predictions improves 
all metrics across all different available test sets. 

PSD integrates useful context in translation decisions  
PSD modeling improves lexical choice even in the IWSLT data set. Even in this 

single domain task, there are genuine sense ambiguities in translation that are addressed 
by context modeling. Even in a corpus where sentences are only about 10 words long, 18 
features per occurrence of a Chinese phrase are observed and used in training PSD 
models on IWSLT data.  

Examining the weights learned by the maximum entropy classifiers for each feature 
class showed that among the highly useful contextual features are the context-dependent 
POS and full-sentential bag-of-word context. 
 

Handbook of Natural Language Processing and Machine Translation 241



 

IN 没有任何议会投票反对 
GLOSS not any congressmen vote against he/him 
SMT Without any congressmen voted against him. 
SMT+PSD No congressmen voted against him. 
 
IN 俄在军臣实行的政策以及对独联体邻国的态度更是令美国担忧。 
GLOSS Russia in Chechnya implement [de] policy and towards CIS neighbor [de] attitude 
even more cause US anxiety. 
SMT Russia’s policy in Chechnya and CIS neighbors attitude is even more worried that the 
United States. 
SMT+PSD Russia’s policy in Chechnya an its attitude toward its CIS neighbors cause the 
United States still more anxiety. 
 
至于美国的人权状况呢? 
GLOSS as for the U.S. [de] human rights condition? 
SMT As for the U.S. human rights conditions? 
SMT+PSD As for the human rights situation in the U.S.? 
 
我参拜是为了祈求日本的和平与繁荣 
GLOSS my visit is for pray for Japan [de] peace and prosperity. 
SMT The purpose of my visit to Japan is pray for peace and prosperity. 
SMT+PSD The purpose of my visit is to pray for peace and prosperity for Japan. 

Figure 2.31: Examples of the impact of PSD modeling on actual translations, drawn from the NIST test set 

PSD modeling improves phrasal segmentation for translation  
Since automatic evaluation metrics aggregate the effects of very different factors, we 

also conducted additional data analysis to better understand the contribution of context-
dependent PSD modeling (Carpuat and Wu 2008). Interestingly, improvements in 
translation quality are not only due to better lexical choice for a given target, which could 
be expected given improvements in metrics such as BLEU, NIST and METEOR, but also 
due to better phrasal segmentation of the input sentences and better use of the input 
phrases available in the lexicon. Specifically: 

 
• For the exact same parallel training data, more and longer phrases are used in 

decoding, including phrases that were seen only few times in training: this 
suggests that context modeling help better exploit the available vocabulary. 

• After compensating for differences in phrasal segmentation, the decoder selects 
better translations with context-dependent PSD modeling than with conventional 
context-independent translation probabilities.  

 
These observations are consistent with previous contrastive studies which showed 

that generalizing to fully phrasal PSD as opposed to conventional single-word WSD is 
crucial to obtain reliable improvements in translation quality (Carpuat and Wu 2007a). 

242 Chapter 2: Machine Translation from Text 



 

 

2.4.6.3 Semantic SMT:  Roles 

With the encouraging successes in applying sense disambiguation modeling to SMT, 
we now turn to the other major area of lexical semantics: semantic roles. The most 
glaring errors made by statistical machine translation systems continue to be those 
resulting in confusion of semantic roles. These sorts of translation errors often result in 
serious misunderstandings of the essential meaning of the source utterances — who did 
what to whom, for whom or what, how, where, when and why. 

It has been widely observed that the negative impacts of such errors on the utility of 
the translation are inadequately reflected by evaluation metrics based on lexical criteria. 
The accuracy of translation lexical choice has reached increasingly satisfactory levels, at 
least for largely literal genres, such as newswire, which helps boost lexically oriented 
scores like BLEU (or METEOR, NIST, or numerous others) despite serious role confusion 
errors in the translations. 

It has also often been noted that precision-oriented metrics such as BLEU tend to 
reward fluency more than adequacy (in particular, BLEU’s length penalty is only an 
indirect and weak indicator of adequacy). Today’s SMT systems produce translations that 
often contain significant role confusion errors, but nevertheless read quite fluently. Thus, 
while recent years have seen continued improvement in the accuracy of statistical 
machine translation systems as measured by such n-gram based metrics, this 
underestimates the effect of the persistent errors of role confusion upon the actual 
translation utility. 

This situation leads us to consider the potential application of shallow semantic 
parsing and semantic role labeling models to SMT, in ways that might reduce role 
confusion errors in the translation output. Within the lexical semantics community, 
increasingly sophisticated models for shallow semantic parsing are being developed. 
Such semantic parsers, which automatically label the predicates and arguments (roles) of 
the various semantic frames in a sentence, could automatically identify inconsistent 
semantic frame and role mappings between the input source sentences and their out-put 
translations. This approach is supported by the results of Fung et al. (2006), which 
showed that (for the English-Chinese language pairs) approximately 84% of semantic 
role mappings remained consistent cross-lingually across sentence translations. 

However, cautionary lessons come not only again from the difficulty of improving 
SMT accuracy via syntactic and tree-based models, but also even from the above lexical 
semantics models for sense disambiguation, which have only finally been successfully 
applied to increasing SMT accuracy (Carpuat and Wu 2007a; Chan et al. 2007; Gimenez 
and Marquez 2007a) after surprising initial failures (e.g., Carpuat and Wu (2005)). We 
anticipate at least as much difficulty with semantic role models. 

Avoiding the many potential blind alleys calls for careful analysis and evaluation of 
(1) the frequencies of types of SMT errors where semantic parsing and role labeling 
could help, (2) if and when semantic roles offer more accurate guidance to SMT than 
merely syntactic annotation, and (3) the potential quantitative impact of realistic semantic 
role guidance to SMT systems, at least in terms of scores such as BLEU and METEOR. We 
now discuss a series of four experiments designed to address each of these questions, 

Handbook of Natural Language Processing and Machine Translation 243



 

using English-Chinese parallel resources, a typical representative SMT system based on 
Moses and shallow semantic parsers for both English and Chinese. 

2.4.6.3.1 Related work 

While this is a new avenue of inquiry, the background relevant to the experiments 
described here includes: (1) a broad body of work on shallow semantic parsing and 
semantic role labeling, the majority of which has been performed on English, (2) a 
relatively small body of work specific to semantic parsing and semantic role labeling of 
Chinese, and (3) a proposal to measure semantic role overlap as one of the key factors in 
new MT evaluation metrics. 

 
Shallow semantic parsing 

Semantic parsers analyze a sentence with the aim of identifying the “who did what to 
whom, for whom or what, how, where, when and why.” Shallow semantic parsing 
extracts the predicate argument structure of verbs in a sentence based on the syntactic tree 
of that sentence. For example, the predicate argument structure of the verb hold in Figure 
2.32 specifies a “holding” relation between both sides (who) and meeting (what) on 
Sunday (when). For a sentence with multiple verbs, there can be multiple predicate 
argument structures. 

Shallow semantic parsing systems are mostly based on classifiers that learn from a 
manually annotated semantic corpus (Gildea and Jurafsky 2002; Pradhan et al. 2005). 
Following the publication of the Proposional Bank (PropBank) (Palmer et al. 2005) first 
in English, then in Chinese, it has been possible to train these classifiers to perform 
semantic analysis on news wire type of texts. 

 
Figure 2.32: Chinese shallow semantic parsing example. 

244 Chapter 2: Machine Translation from Text 



 

 

 
Chinese shallow semantic parsing 

Systems that perform shallow semantic parsing on Chinese texts are likewise based 
on classifiers and trained on the Chinese PropBank and the bilingual English-Chinese 
Parallel PropBank (Sun and Jurafsky 2004; Xue 2006; Fung et al. 2006). It is interesting 
to note that, despite the very different characteristics of Chinese verbs (Xue and Palmer 
2005) from those in English, the core algorithm of a shallow semantic parser remains the 
same. As was found to be the case in English, SVM classifiers have been found to 
outperform maximum entropy classifiers for this task (Fung et al. 2006). The primary 
difference lies in the feature set chosen to represent semantic information. 

In experiments carried out on PropBank data using gold standard syntactic parse 
trees, extended syntactic features such as Path Trigram and Path Abbreviations were 
found to have the highest contribution to system performance (Fung et al. 2006). Another 
feature, Verb Cluster, was also found to be most useful by Xue and Palmer (2005). 

 
MT evaluation metrics based on semantic role overlap  

Gimenez and Marquez (2007b, 2008) introduced and refined a set of new MT 
evaluation metrics employing rich assortments of features reflecting various kinds of 
similarity at lexical, shallow syntactic, deep syntactic, shallow semantic and deep 
semantic levels. 

Under a number of scenarios,  particularly the out-of-domain scenarios, measuring 
the overlap of shallow semantic roles between the source and target language sentence 
pairs contributes to improved correlation with human judgment of translation quality. 
Unsurprisingly, measuring the overlap of manually annotated deep semantic relations 
contributes even more in some scenarios. However, given the state of automatic semantic 
parsing technology, realistically, we are today still much closer to being able to 
incorporate automatic shallow semantic parsing into working SMT systems, and thus, we 
focus on shallow semantic parsing and semantic role labeling for the present. 

2.4.6.3.2 Semantic frames in SMT output 

The first of the experiments aims to provide a more concrete understanding of one of 
the key questions as to the role of semantic parsing in SMT: how well do typical current 
SMT systems already perform on semantic frames? 

The annotated example in Figure 2.33 shows, from bottom to top, (IN) a fragment of 
a typical Chinese input source sentence that is drawn from newswire text, (REF) the 
corresponding fragment from its English reference sentence, and (MT) the corresponding 
fragment of the output sentence from a state-of-the-art SMT system. 

A relevant subset of the semantic roles and predicates has been annotated in these 
fragments. In the Chinese input and its corresponding English reference there are two 
main verbs marked PRED. The first, (arrived), has two arguments: one in an ARG0 agent 
role, (Kerry), and another in an ARG4 destination role, (Cairo). The second verb, 
(engaged), has four arguments: one in an ARG0 agent role, again (Kerry), one in an 

Handbook of Natural Language Processing and Machine Translation 245



 

ARG1 role, (discussions), and two others in ARGM-MNR manner roles, (with Mubarak) 
and (on topics).23 
 

 
Figure 2.33: Example of semantic frames in Chinese input and English MT output. Lit is the literal 

translation where PART stands for particle. 

In contrast, in the SMT translation output, a very different set of predicates and 
arguments is seen. While the PRED arrived still has the same correct ARG0 Kerry and 
ARG4 Cairo, now the ARGM-MNR manner role with President Mubarak is incorrectly 
modifying the arrived, instead of an engaged predicate. In fact, the engaged predicate has 
erroneously been completely dropped by the SMT system, so there is no verb to which 
the arguments of engaged can be attached. 

Figure 2.34 shows another typical example. Again, PRED marks the main verb in the 
Chinese input source fragment and its corresponding English reference, (taking). It has 
two arguments: an ARG1 (battle examples), and an ARG2 (analysis and study). 

The SMT translation output, however, not only lacks the main verb, but includes 
many incorrect predicates and roles. Such spurious predicate-argument structures are 
clearly seriously detrimental to even cooperative readers straining to guess the meaning 
of the original Chinese. 

 

                                                      
 
23 Minor variations on the role labeling in these examples are possible, but not central to the present point. 
 

246 Chapter 2: Machine Translation from Text 



 

 

 
Lit: [Kerry] arrive Cairo with [President Mubarak] [PART Iraq issue Lebanon issue Sudan Darfur 
issue as well as bilateral relation etc.] [engaged in] PART active [discussion]  

Figure 2.34: Example of semantic frames in Chinese input and English MT output. 

Experimental setup 
  To assess the above sorts of phenomena quantitatively, we designed an experiment 

making use of 745 bi-sentences extracted from the Parallel Prop-Bank with gold standard 
annotations of both syntactic and semantic roles. 

We use the Chinese sentences as system input and their corresponding English 
translations as the reference translations. We use the open source statistical machine 
translation decoder Moses (Koehn et al. 2007) for the experiments, translating the 
PropBank Chinese sentences into English with the same model trained for our 
participation in the IWSLT 2007 evaluation campaign (Shen et al. 2007).The English 
translations generated by the decoder are the system output. Based on the system input 
and the reference translation, we intend to investigate whether the predicate verbs are 
correctly translated and their predicate argument structures preserved in the system 
output. 

We first randomly select 50 bi-sentences, without any constraint on the translation 
accuracy of the predicate verbs, to form the first observation data set (data set A). 

 
Experimental results 

Human evaluation of these results show that, for all 138 predicate verbs in the system 
input (Chinese sentences), only 79 (around 57%) of them are correctly translated in the 
system output; and given such correctly translated predicate verbs, the translation of their 
semantic arguments can only achieve around 51% overall F-measure. The detailed results 
are shown in Table 2.52, data set A. 

43% of the Chinese predicate verbs are either not translated at all into English or are 
translated into a different part-of-speech category such as nouns or adjectives. As shown 
in Figure 2.35, the predicate verb 位 / located in the input Chinese sentence is not 
translated in the system output. 

 

Handbook of Natural Language Processing and Machine Translation 247



 

 Data set A Data set B 
P-A 

Structure Precision Recall F-measure Precision Recall F-measure 

Predicate 0.98 0.57 0.72 1.00 1.00 1.00 
ARG0 0.74 0.38 0.50 0.83 0.66 0.74 
ARG1 0.73 0.41 0.53 0.84 0.78 0.81 
ARG2 0.82 0.32 0.46 0.80 0.78 0.38 
ARG3 1.00 0.67 0.80 0.00 0.00 N/A 
ARG4 1.00 0.33 0.51 0.50 1.00 0.66 

All ARGs 0.74 0.39 0.51 0.84 0.68 0.75 

Table 2.52: Predicate-argument structure translations from Chinese to English in data sets A and B. 

IN [ARG0 上述开发区] 基本[PRED 位]于[ARG1 福建经济最为活跃的东南部地区]。 
LIT: [Above mentioned development zone] basically [located] in [Fujian economy 
most active PART southwestern area]. 
MT: The basic development zones in the southeastern region of Fujian’s economy is 
the most active.  
REF: The above-mentioned development zones are basically [PRED located] in the 
Southeastern area of Fujian whose economy is most active.

Figure 2.35: Example of semantic frames in Chinese input and English MT output. 

2.4.6.3.3 Semantic roles in SMT output 

In the previous experiment, the semantic role accuracy in output translations was 
negatively affected by errors in identifying the central verb in the first place, as we have 
seen in both introductory examples of Section 2.4.6.3.2, as well as, the example of Figure 
2.32. Without the verb, properly identifying the arguments becomes meaningless. It is, 
therefore, worth asking a secondary version of the question: providing the verb is 
correctly translated, then how well do typical current SMT systems perform on semantic 
roles? 

 
Experimental setup 

Since nearly half of the predicate verbs in the system input are not translated or 
wrongly translated in the system output in the previous experiment, we construct another 
data set (data set B) by randomly selecting 50 bi-sentences under an additional constraint 
that all predicate verbs are correctly translated. We carry out the same analysis on data set 
B and the result is shown in the data set B portion of Table 2.52. 

 
Experimental results 

For data set B, the overall F-measure of the translation of the semantic arguments is 
about 75%, which is 24 points higher than that in data set A. In this data set B, we also 
find that some of the semantic roles are missing in the system output. 

248 Chapter 2: Machine Translation from Text 



 

 

IN: 去年四月，C R 公司开始了其破产程序, [ARG0 其所有资产的偿债率]仅[PRED 为] [ARG1 百分之五] 。 
 
LIT: Last year April, CR company begin PART its bankruptcy procedure, [its all of assets PART 
compensation rate] only [5 percent]. 
 
REF: In April of last year, the CR company began bankruptcy procedures and [ARG0 the debt 
compensation rate of all its assets] [PRED was] only [ARG15%] 
 
MT: In April of last year, the company began bankruptcy procedures, all of its debt rate [PRED was] only 
[ARG1 five percent][ARG0 of the assets] of the CR.

Figure 2.36: Example of semantic frames in Chinese input and English MT output 

IN: [ARG0 缅甸和泰国政府] 今天下午在此间[PRED 签订]了 [ARG1 两国边境贸易协定]。 
 
LIT: [Burma and Thailand government] today afternoon at here [sign] PART [two country 
border trade agreement]. 
 
REF: This afternoon [ARG0 the Myanmaran and Thai governments] [PRE signed] [ARG1 
an agreement on border trade between their two countries] here.  
 
MT:[ARG? Myanmar and Thailand’s government] of [ARG? The two countries border 
trade 

Figure 2.37: Example of semantic frames in Chinese input and English MT output. 

A common type of translation error occurs when a group of words that together have 
a single semantic role in the source language (Chinese) are split into separate groups in 
the translation (English) often in the wrong word order. In the example of Figure 2.36, 
the phrase 其所有资产的偿债率 (Its all of capital PART compensation rate) in the input is 
translated into two separate phrases in the output: its debt rate and of the assets, creating 
different semantic relationships compared to the original semantic role of the source 
phrase. Finally, even though all the words in the arguments of a certain predicate verb are 
correctly translated into English, their semantic roles are found to be confusing in the 
translation leading to ambiguity in the interpretation of the translated sentences. As 
shown in the example of Figure 2.37, although words in both ARG0 and ARG1 are 
correctly translated into English, we still cannot understand the final translated sentence, 
because the semantic roles of these two phrases are confused. We cannot tell which 
semantic roles Myanmar and Thailand's government and the two countries border trade 
agreements are supposed to play. This confusion arises from the incorrect position of the 
predicate verb signed. 

As we can see, the types of translation errors shown in the examples of Figure 2.35 to 
Figure 2.37 lead to ambiguity in the final understanding of the translation even though 
the system output still reads fluently. This is caused by the fact that current n-gram based 
SMT systems are not designed to take semantic roles into consideration. 

2.4.6.3.4 Semantic vs. syntactic roles 

The third experiment aims to answer another key question: if we favor semantic role 
consistency across both the source input sentence and the output translation, would this 

Handbook of Natural Language Processing and Machine Translation 249



 

outperform merely favoring syntactic role consistency across the bi-sentence? In other 
words, does incorporating semantic role analysis contribute anything beyond the current 
work on syntactic SMT models? 

 
Experimental setup 

To address this question, we perform a different analysis of the previously described 
set of 745 bilingual sentence pairs with manually annotated syntactic and semantic roles 
from the Parallel PropBank. 

The syntactic roles are manually annotated according to Treebank guidelines. 
Whereas, the Chinese sentences are annotated with both “subject” and “object” syntactic 
roles, their English counterparts are only annotated with “subject” roles without the 
“object” roles. 

Furthermore, we manually align the predicate argument structures across the bi-
sentences for our experiment. The experiment is done as follows: 

 
1. We first extract all predicate argument structure mappings from the manually 

annotated and structurally aligned corpus. We compute the statistics of direct 
semantic role mappings (ARGi to ARGi) based on the translation. 

2. From the output of step 1, we further look at the syntactic roles associated with 
each bilingual argument mapping. We use the semantic role boundaries from the 
annotated corpus to find the syntactic roles. 

3. The corresponding Chinese/English syntactic roles are then constructed as 
syntactic role mappings. 

 
Experimental results 

Given all the direct semantic role mappings from Chinese to English, the proportion 
of syntactic role mappings for the syntactic subject is listed in Table 2.53. We can see 
that only 84.26% of direct semantic role mappings result from direct syntactic role 
projections. More than 15% of the subjects are not translated into subjects, even though 
their semantic roles are preserved across language. 

This result shows that semantic roles enforce cross lingual translation patterns than 
can be done purely by projecting syntactic roles. Whereas syntactic roles vary for each 
language, semantic roles that convey the meaning of a sentence are translingual. 

 
 

Syntactic role mapping Freq Pct
ZH subject ↔ EN subject 514 84.26% 

ZH subject ↔ EN NP 44 7.21% 
ZH subject ↔ EN PP 31 5.08% 
ZH subject ↔ EN S 15 2.46% 

ZH subject ↔ EN other 6 0.98% 

Table 2.53: Among gold standard Chinese (ZH) to English (EN) semantic role argument translations, the 
degree of correspondence of syntactic role mappings. 

250 Chapter 2: Machine Translation from Text 



 

 

2.4.6.3.5 Improving SMT with semantic frames 

In the fourth experiment, we aim to assess the potential quantitative impact of 
realistic semantic role guidance to SMT systems, in terms of BLEU and METEOR scores. 
This is done by simulating the effect of enforcing consistency between the semantic 
predicates and arguments across both the input source sentence and the translation output. 
 
Experimental setup 
For this experiment, we return to data set B, as described in Section 2.4.6.3.3. For each 
sentence, two types of semantic parse based corrections are permitted to the output 
translation.  

First, the constituent phrases corresponding to either the predicates or the arguments 
for any labeled semantic role are permitted to be reordered such that a semantic parse of 
the reordered translation consistently matches the role label on the corresponding phrase 
in the input source sentence. 

Second, if the translation of a predicate in the input source sentence is missing in the 
output translation, then a translation of that predicate may be added to the output 
translation such that, again, a semantic parse of the translation consistently associates it 
with the corresponding arguments for that predicate. 

 
Experimental results 

The results, as shown in Table 2.54, show that favoring semantic frame and role 
consistency across the source input sentence and the output translation improves BLEU 
and METEOR scores. The accuracy improves on the order of two points, for both 
metrics. The example of Figure 2.38 shows how two of the constituent phrases are 
reordered. 

It is worth noting that both BLEU and METEOR are still n-gram based metrics, which 
are of limited accuracy at evaluating fine-grained semantic distinctions in the translations. 
We suspect that the enhancement in translation quality would be even more obvious 
under utility-based MT evaluation strategies; this is one main direction for future 
research. 

Metric 
Baseline 

translation

Enforcing 
consistent 
semantic parses 

BLEU 34.76 36.62 
METEOR 63.5 65.9 

Table 2.54: SMT performance improvement with semantic predicate and role consistency constraints. 

2.4.6.4 Conclusions 

Our experiments indicate that statistical machine translation can indeed benefit from 
lexical semantics, with respect to both sense disambiguation and semantic roles. 

With respect to sense disambiguation, we have presented a new Phrase Sense 
Disambiguation that is the first model to successfully incorporate WSD predictions into 
phrase-based SMT. The experiments show that three adaptations from traditional WSD 
configurations are necessary: (1) PSD sense inventories must be the phrasal translations  

Handbook of Natural Language Processing and Machine Translation 251



 

 
IN: 加工贸易在广东外经贸发展中占有举足轻重的地位,  同时也是粤港澳台经贸合作的 重要内容。 
 
LIT: Processing trade in Guangdong foreign trade development PART has decisive PART 
position, same time also is Guangdong Hong Kong Macao Taiwan economy trade cooperation 
PART important content. 
 
REF: The processing trade occupies a crucial position in the development of foreign economy 
and trade in Guangdong and at the same time is important content in the economic and trade 
cooperation between Guangdong, Hong Kong, Macao and Taiwan 
 
MT: In the processing trade in Guangdong’s foreign trade and economic development in 
Guangdong, Hong Kong, Macao, Taiwan occupies a decisive position at the same time, it is an 
important content of the economic and trade cooperation.

Figure 2.38: Example of semantic frames in Chinese input and English MT output. 

learned in the SMT translation lexicon, rather than traditional WSD senses that come 
from arbitrary sense inventories, (2) PSD targets must be phrases, rather than traditional 
WSD targets that are single words, and (3) PSD must be fully integrated into the 
decoding search itself, as opposed to preprocessing or postprocessing stages. 

With respect to semantic roles, we have presented a series of experimental studies 
that illuminate more precisely the likely contribution of semantic roles in improving 
statistical machine translation accuracy. The experiments reported studied several aspects 
key to success: (1) the frequencies of types of SMT errors where semantic parsing and 
role labeling could help, (2) if and where semantic roles offer more accurate guidance to 
SMT than merely syntactic annotation, and (3) the potential quantitative impact of 
realistic semantic role guidance to SMT systems, in terms of BLEU and METEOR scores. 
All sets of results support the utility of shallow semantic parsing and semantic role 
labeling for improving certain limited but important aspects of SMT accuracy. 

These results suggest that lexical semantics has an important role to play in the future 
of statistical machine translation. Significant adaptations of existing, traditionally 
configured models will be necessary, however and this should be a major focus of further 
research. 

2.5 Language Modeling for SMT 

2.5.1. Distributed Language Modeling  
Authors: Ying Zhang, Stephan Vogel, Ahmad Emami, Kishore Papineni, Jeffrey Sorensen and Jerry Quinn 

2.5.1.1 Introduction  

Statistical language models have a major role in applications such as Automatic 
Speech Recognition (ASR) (Bahl et al. 1983), Statistical Machine Translation (SMT) 
(Brown et al. 1990) and Information Retrieval (Ponte and Croft 1998). 

In conventional n-gram language models, the frequencies of all (or a subset of) the n-
grams in a corpus are counted, from which the conditional probabilities ܲ(ݓ|ݓିାଵିଵ ) of 

252 Chapter 2: Machine Translation from Text 



 

 

a word given its history of n-1 words are computed. Conventional n-gram models have a 
large number of parameters which need to be reliably estimated. These models are 
plagued by the high dimensionality problem; in order to estimate their parameters, a large 
amount of training data is required. In general, the number of unique n-grams increases 
very fast as the training data size or the n-gram order increases and this makes it very 
difficult, if not impossible, to scale up standalone n-gram language models (Goodman 
2001). Table 2.55 shows the number of n-gram types and tokens in a 600M word English 
corpus. Training a 5-gram language model for this data will require estimating 
probabilities and storing the information for 677,159,302 n-grams This LM will then 
require several gigabytes of RAM to be loaded into the memory to be used by the SMT 
or ASR decoders. 

 
n Type Token n Type Token 
1 1,607,516 612,028,815 6 387,342,304 562,604,106 
2 23,449,845 595,550,700 7 422,068,382 562,612,205 
3 105,752,368 579,072,585 8 442,459,893 562,632,078 
4 221,359,119 562,595,837 9 455,861,099 562,664,071 
5 324,990,454 562,598,343 10 465,694,116 562,718,797 

Table 2.55: of n-gram types and tokens in a corpus of 600M words. 

There are techniques that can reduce the size of a language model, for example using 
count cut-offs or employing the entropy-based pruning of (Stolcke, 1998). However these 
methods have their own limitations and it is not possible to keep the size of language 
models built on ever increasing data without sacrificing some performance. 

During the GALE project, Carnegie Mellon University (CMU) and IBM T.J. Watson 
Research Center independently developed Distributed Language Modeling systems 
(DLM) to make use of training data in the scale of billions of words. The key idea DLM 
is to split the large training corpus into manageable chunks and distribute them among a 
cluster of computers. Each computer hosts a chunk of the training corpus and provides on 
the fly services to language model queries. In distributed language models, the 
probability of a word given its history is calculated on the fly based on statistics 
estimated (also on the fly) from the distributed training corpus. Also, retaining the corpus 
in its original (split among many computers) brings about the advantage of being able to 
compute, on the fly, not just the conditional probabilities, but also other type of statistics 
(e.g. co-occurrence, skip n-gram probabilities, etc). This is not possible with traditional n-
gram models where all the statistics (probabilities) are pre-computed and hence fixed.  

The CMU approach and IBM approach have many common features in their 
underlying research ideas and overall system design. However, being independently 
developed at two separate institutions, they differ in architecture and implementation and 
are used in different applications. Both systems use Suffix Arrays to store the split 
corpora. Using suffix array allows for efficient computation of different statistics (e.g., n-
grams, co-occurrence counts, etc.) from a given corpus. IBM also developed a CountTree 
data structure that allows for much more compact storage of the corpora, but at the 
disadvantage of being able only to store n-gram type counts, which are the most common 
used corpus statistics in language modeling. 

Handbook of Natural Language Processing and Machine Translation 253



 

While the main purpose of developing distributed language model systems was to 
make building very large language models possible, there are additional advantages of 
using the proposed distributed architectures. First, these systems are easily scalable; more 
data can be incrementally added without the need to change or recompute any of the pre-
existing modules, and the model can be easily grown as more data becomes available. 
Second, each part of the corpus can be dynamically assigned a different weight based on 
the application. Different clients can simultaneously use the distributed corpora with 
different weights on the corpora. This is done at runtime without any need to rebuild any 
part of the system. For example, CMU used this flexibility of the architecture to 
experiment with an online language model adaptation. 

The IBM system was used with MT decoders, where all the decoder LM queries were 
submitted to the distributed system. The system was efficient and responsive enough to 
keep the decoding times short (at most a few times slower than using traditional 
standalone LMs) while answering queries from multiple decoders simultaneously. All 
CMU and IBM’s ASR experiments were carried out in the N-best rescoring framework. 
Both IBM and CMU report significant improvement in BLEU scores for the MT 
experiments and IBM reports gains from using the distributed LM in ASR experiments. 

2.5.1.2 Distributed Architecture 

The IBM and CMU architectures are very similar. Figure 2.39 illustrates the 
architecture of the IBM distributed language model. The data is divided among several 
machines, which we refer to as the LM workers. There is no training data stored on the 
server machine; its sole job is to facilitate communication between the clients and the 
workers and to compute the language model probabilities.  

The communication between the server and the workers is implemented using the 
Message Passing Interface (MPI) library (Gropp et al. 1999). Communication between 
the clients and the server is implemented via TCP/IP socket networking. This allows a 
more flexible architecture where clients can connect to and disconnect from the server at 
will and independently. Clients usually send queries in large batches so as to minimize 
the TCP/IP communication overhead. 

 

 
Figure 2.39: Distributed Architecture. Clients can have different weight vectors 

Each worker is capable of storing either a whole corpus or a stand-alone, smoothed n-
gram language model. Section 2.5.1.3 details the use of suffix arrays for storing a corpus 

254 Chapter 2: Machine Translation from Text 

 



 

 

and for efficient lookups of n-gram counts. A client can request any mixture of the 
workers, specifying arbitrary weights for each of the component corpora or language 
models. 

2.5.1.3 Suffix arrays 

Suffix array was introduced as an efficient method to find instances for a string in a 
large text corpus. It has been successfully applied in many natural language processing 
areas (Yamamoto and Church 2001; Ando and Lee 2003). In this section, we will 
introduce the basic concepts and functions of suffix array. 

 
Indexing the Corpus with Suffix Array 

For a monolingual text ࣛ with N words a1a2 … aN, we denote the suffix of ࣛ that 
starts at position i as Ai. Ai is aiai+1 … aN . ࣛ has N suffixes: {A1, A2, …, AN}. Sort these 
suffixes according to their lexicographical order and we will have a sorted list, such as 
[A452, A30, A1, A 1511, …, A 7]. The starting positions of the suffixes in the sorted list form a 
new array X with N elements, for example, X = [452, 30, 1, 1511, … , 7]. We call X the 
suffix array of corpus ࣛ. 

Formally, suffix array X is a sorted array of the N suffixes of ࣛ, where X[k] is the 
starting position in ࣛ of the kth smallest suffix. In other words, A X[1] < A X[2] < ⋯ < A X[N], where “<” denotes the lexicographical order. 

The sorting of set {A1, A2, ..., AN} can be done in log2(N +1) stages and requires O(N 
log N) time in the worst case (Manber and Myers, 1993). The fast sorting algorithm 
requires additional data structure to keep track of the partially sorted suffixes and thus 
requires additional memory in indexing. In most of our applications, suffix array only 
need to be built once and speed is not a major concern. We would rather use a O(N log N) 
algorithm which is relatively slower but could index a much larger corpus given the 
limited amount of memory. 

In our implementation, each word ai is represented by a 4-byte vocId and each suffix 
is a 4-byte pointer pointing to the starting position in ࣛ. Thus 8N bytes memory is 
needed in order to index the corpus ࣛ.  

 
Searching a Corpus Indexed by its Suffix Array  

We need to search the suffix array of ࣛ to find all instances of an n-gram ሚ݂ in ࣛ 
either to measure the frequency of ሚ݂ or to retrieve the actual location of each occurrence. 

Definition: For a string u, let ࢛u be the prefix consisting of the first p words of u if 
u contains more than p words and u otherwise. Define the relation <p to be the 
lexicographical order of p-word prefixes; that is, u <p v iff ࢛࢜ > v. Relations ≤p, =p, >p, 
and ≥p are defined in a similar way. 

Let l = min(k : ሚ݂ ≤n AX[k] or k = N + 1) and r = max(k : AX[k] ≤n ሚ݂ or k = 0).  If  l ≤ r, 
then for any k ∈[l, r] both ሚ݂≤n AX[k] and ሚ݂ ≥n AX[k] are true, meaning that ∀k ∈ [l, r], AX[k] =n ሚ݂. 

Using a simple binary search in X, we can find l and r using O(log N) comparisons of 
strings of size at most n. Each such string comparison requires O(n) single word 

Handbook of Natural Language Processing and Machine Translation 255



 

comparisons. Thus the suffix array allows us to find all instances of a string ሚ݂ in ࣛ in 
O(n log N) time. With l and r found, the number of occurrences of ሚ݂ is r -l + 1 and ሚ݂ is 
located (starting) in ࣛ at positions X[l], X[l + 1], …, X[r]. 

 
Frequencies of all the substrings in a sentence  

In a sentence f = f1, f2, ..., fi, ..., fm, there are m unigram, m − 1 bigram, m − 2 trigram, 
..., and one m-gram in f. Based on the original algorithm described by Manber and Myers 
(1990), locating one n-gram in ࣛ requires O(n log N) in time. For each n-gram, there are 
total O(n) single-word comparisons for each of the log N binary searches.  

A naive algorithm of locating all substrings in f thus requires ݈ܰ݃ · ∑ (݉ − 2 ୀଵ1)݊ ൌ యୀଷమାଶ log ܰ, which is O(m3 log N) in time. 
Zhang and Vogel (2005) introduce a faster algorithm for locating frequencies of all 

substrings in a sentence in O(m2 log N) time. It executes m naive searches for the exact 
substring ࢌ (i = 1, ..., m) and along the trace of the binary search, bookkeeping the suffix 
array ranges for its prefixes. Each search uses O(log N) comparisons and each such 
comparison requires only one word comparison. Thus the search fim is of complexity O(m 
log N). The time complexity is O(m2 log N) for searching all the substrings in sentence f. 

 
n since 2001 after the incident of the terrorist 
1 2.19x104 7559 4.43x104 1.67x106 2989 6.9x105 1.67x106 6160 
2  165 105 1.19x104 1892 34 2.07x105 807 
3   6 56 106 6 3 162 
4    0 0 0 1 0 
5     0 0 0 0 
6      0 0 0 
7       0 0 
8         

 
attacks On the united states 
9278 2.7x105 1.67x104 5.1x104 3.78x104

1398 1656 5.64x104 3.72x104 3.29x104 
181 216 545 605 2.58x104 
35 67 111 239 424 
0 15 34 77 232 
0 0 10 23 76 
0 0 0 7 23 
0 0 0 0 7 

 
Figure 2.40: Frequencies of all the embedded n-grams in sentence “since 2001 after the incident of the 

terrorist attacks on the united states.” 

Figure 2.40 shows the frequencies of all the embedded n-grams in sentence “since 
2001 after the incident of the terrorist attacks on the united states” matched against a 26 
million words corpus. For example, unigram “after” occurs 4.43·104 times, trigram “after 
the incident” occurs 106 times. The longest n-gram that can be matched is 8-gram “of the 
terrorist attacks on the united states”, which occurs 7 times in the corpus. 

256 Chapter 2: Machine Translation from Text 



 

 

 
Locating the sentence IDs of the n-gram occurrences  

The frequency of an n-gram in the training corpus can be used to derive statistics 
about this continuous n-gram. Sometimes we also want to know the frequency of 
discontinuous n-grams. A discontinuous n-gram such as “take ··· by surprise” is 
composed from several words or phrases that are not adjacent to each other. These words 
and phrases have strong dependency with each other and together they form a meaningful 
unit. One way to estimate the co-occurrences of the discontinuous n-grams is to find out 
how often all parts of the noncontiguous n-gram occur in the same sentence. To calculate 
that, we need to know all the sentence IDs for sentences in which n-grams appear. 

Given a testing sentence f of m words, we can use the algorithm described above to 
find the range [l,r] for an embedded n-gram ሚ݂  of f. For any k∈ [l,r], the suffix X[k] starts 
with ሚ݂ in the corpus. In other words, we could find all the locations of ሚ݂ in F as {pos | 
X[l], X[l + 1], ...,  X[r]}. 

A naive way to facilitate the conversion from location to sentence ID is to add the 
sentence ID information in the original corpus before the suffix array indexing. Treat the 
augmented corpus as a normal text and index it using the suffix array. For a location pos 
in the corpus, scan towards left of the corpus until a word 〈ݏ〉 is seen. The next left word 
contains the sentence ID information and the number of steps taken during scanning is 
the offset value. For each occurrence, the conversion requires ܱ( ഥ݉) steps of scanning, 
where ഥ݉  is the average length of sentences in F. 

To speed up the conversion, we introduce an additional array Δ to record the offset 
information. Δ[pos] has the offset value of word apos with respect to the sentence start of 
fs where apos lies in. Given a location  pos,  word  apos  is  located  as  the Δ[pos]-th word 
in fs where s = apos-Δ[pos]. This operation takes only O(1) in time. Assuming that all the 
sentences in F are shorter than 255 words, we only need one byte to represent the offset 
of each word, which means N additional bytes are needed for the Δ array. 

Overall, we use 4 bytes to represent each word, 4 bytes for each suffix pointer and 1 
byte for the offset value of each word. In total, we need in total 9N bytes to index a 
corpus of N words. 

2.5.1.4 CountTree 

Language models constitute that largest static data structures used in our systems, and 
language model lookups comprise typically 30% or more of our processing time.  We 
designed a new data structure, called the CountTree to facilitate our experiments.  This 
data structure is designed to be space efficient and is organized in a manner that provides 
efficient access on a single processor, but it is also capable of being partitioned by n-gram 
prefix in a distributed fashion. 

 
CountTree has the following features: 
• Raw 64 bit count representation 
• Node compression techniques for reduced memory usage 
• Hash tables for fast child node access  

Handbook of Natural Language Processing and Machine Translation 257



 

• Cache-aware node data layout  
• Easily partitionable  
 
By using 64 bit raw counts, different forms of smoothing techniques could be tried 

while using the same data structure. 64 bit counts are important as the size of data sets 
head beyond Gigaword corpora. 

The basic design of the CountTree LM is a depth-first tree of nodes. The root node is 
a flat table of arcs to child nodes. Word ids are implicit. Each arc contains a 64 bit 
unigram count and 64 bit byte offset to the child bigram node. 

Basic internal nodes have a 32 bit header storing the number of arcs in the header 
with several flags. All word IDs are stored in a hash table array following the header. 
After the word ids, arcs are stored containing a 32 bit count and 32 bit relative address. 

To compress a node, the IDs are stored using 16 bits if all are small enough. Counts 
are also stored in 16 bits if possible. If a child leaf node contains 1 arc, it will be 
compressed and stored into relative offset of the parent arc. Leaf nodes can implicitly 
represent count 1 arcs, saving more space. 

By storing the word identifiers first, contiguously, the table to be searched is made 
more compact, reducing the number of CPU cache entries (or cache lines) that must be 
used during search.  Using a cache table prevents the cache misses associated with the 
probes of a binary search.  If an entry is found, only a single data arc needs to be read, 
using only one additional CPU cache entry. 

Because searching is almost always performed in a depth-first manner, it is natural to 
store the tree data in a similar fashion.  Thus, when descending a tree, child nodes are 
nearby, often in the same memory page.  As one moves down the tree, average number of 
child nodes decreases fast and the search becomes more efficient. 

Depth-first storage also makes partitioning easy. Each partition gets one or more sub- 
trees of the LM, starting with bigram nodes. Each sub-tree is contiguous in the LM data-
file, simplifying the job of loading only a subset of the data. The root node is stored in the 
client. Each unigram arc stores a pointer to the appropriate partition in the offset node. 
When looking up an LM value, the client looks up the root node unigram count, and then 
sends the n-gram to the partition stored in the offset. When the remaining counts come 
back, they are combined with the unigram data to compute the final value. 

2.5.1.5 Language Modeling 

Nativeness of Complete Sentences 
We introduce the concept of nativeness Q to quantify how likely a sentence e is 

generated by a native speaker. A correct sentence should have higher nativeness score 
than an ill-formatted one. Unlike the sentence likelihood, which is defined as the 
probability of this sentence generated by a language model, nativeness is only a score of 
real value and is not necessarily probability. Since we cannot ask a native speaker to 
assign scores to a sentence for its nativeness, we need to estimate this value based on 
statistics calculated from a collection of sentences E which resembles what a native 
speaker would generate. 

258 Chapter 2: Machine Translation from Text 



 

 

Before we describe how nativeness is estimated, we first introduce the related 
notation used in the following discussions. An English sentence e of length J is a 
sequence of J words: e1, ..., ei, ..., ej, ..., eJ , or ݁ଵfor short. ݁ denotes an n-gram eiei+1 … ej 
embedded in the sentence. We use ẽ to represent a generic n-gram when n is unspecified. 
C(ẽ| E) is the frequency of ẽ in corpus E and Q(e|E) denotes the nativeness of e estimated 
based on E. 24 When there is only one corpus, or the identity of E is clear from the context, 
we simply use C(ẽ) and Q(e) instead of their full form. 

We propose four methods to estimate Q(e) from the data. 
 
• Qc: Number of n-grams matched.  

The simplest metric for sentence nativeness is to count how many n-grams in this 
sentence can be found in the corpus. 

 ܳ൫݁ଵ൯ ൌ ∑ ∑ ୀଵߜ ൫݁൯ୀଵ       (2.34) 

൫݁൯ߜ ൌ ൝1: (݁)ܥ  00: (݁)ܥ ൌ 0   

 
For example, Qc for sentence in Figure 2.40 is 52, because 52 n-grams have non-
zero counts. 

• Ql(n): Average interpolated n-gram conditional probability. ܳ()൫݁ଵ൯ ൌ ൫∏ ∑ ܲ(݁|ୀଵୀଵߣ ݁ିାଵିଵ )൯ଵ/
  (2.35) 

ܲ(݁|݁ିାଵିଵ ) ൎ (షೖశభ )(షೖశభషభ )    

ܲ(݁|݁ିାଵିଵ )is the maximum-likelihood estimation based on the frequency of n-
grams. ߣ is the weight for the k-gram conditional probability, ∑ ߣ ൌ   canߣ .1 
be optimized by using the held-out data or simply use some heuristics to favor 
long n-grams.  
Ql(n) is similar to the standard n-gram LM except that the probability is averaged 
over the length of the sentence. This is to prevent shorter sentences being unfairly 
favored. 

• Qnc: Sum of n-grams’ non-compositionality. Unlike Qc where all matched n-
grams are equally weighted, Qnc weights each n-gram by their non-
compositionality (Zhang et al. 2006).  

                                                      
 
24 English is used here for the convenience of description. Most techniques developed in this section are 
intended to be language-independent. 

Handbook of Natural Language Processing and Machine Translation 259



 

For each matched n-gram, we consider all possible ways of cutting/decomposing 
it into two short n-grams, for example “the terrorist attacks on the united states” 
could be decomposed into (“the”, “terrorist attacks on the united states”) or (“the 
terrorist”, “attacks on the united states”), ... , or (“the terrorist attacks on the 
united”, “states”). For each cut we calculate the point-wise mutual information 
(PMI) between the two short n-grams. The one with the minimal PMI is the most 
“natural” cut for this n-gram. The PMI over the natural cut quantifies the non-
compositionality Inc of an n-gram ݓ  . The higher the value of Inc(ݓw) the more 
likely ݓw is a meaningful constituent, in other words, it is less likely that ݓ is 
composed from two short n-grams just by chance (Yamamoto and Church, 
2001). Define Qnc formally as:  ܳ൫݁ଵ൯ ൌ ∑ ∑ ୀାଵܫ ൫݁൯ୀଵ      (2.36) 

൫݁൯ܫ ൌ ൝min ;݁)ܫ ݁ାଵ )   (݁)ܥ                              00 (݁)ܥ ൌ 0    (2.37) 

;൫݁ܫ ݁ାଵ ൯ ൌ log ቀೕቁ൫ೖ൯ቀೖశభೕ ቁ   (2.38) 

 
The n-gram probabilities in Equation 2.37 are estimated by the maximum-
likelihood estimation. 

• Qt: Sum of pointwise mutual information of the distant n-gram pairs Qnc 
calculates the PMI of two adjacent n-grams and uses the sum to measure the non-
compositionality of the sentence. Qt calculates the PMI of any non-adjacent n-
gram pairs based on the co-occurrence of these two n-gram in the same sentences 
in the training data. The co-occurrences is calculated from the intersection of 
sentence IDs where each n-gram appear. Sentence IDs are retrieved using 
methods described in Section 2.5.1.3. We use the sum of all non-adjacent n-gram 
pairs’ PMI value to measure the coherence inside a sentence. This is inspired by 
the single-word trigger model developed by Rosenfeld (1994). We extend the 
concept from word-triggers to phrase-triggers in this section. Instead of 
considering each trigger as a feature and combining all features in a log-linear 
model, we sum up PMI values of all triggers.  
Define Qt as:  ܳ௧൫݁ଵ൯ ൌ ∑ ∑ ∑ ∑ ܫ ቀ݁భభ; ݁మమቁమୀమమୀభశశభିିଵభୀభିିଵభୀଵ             (2.39) 

where g is the minimum “gap” length between two n-grams. 
 
 
 

260 Chapter 2: Machine Translation from Text 



 

 

Smoothing 
n-gram language models require many parameters to be estimated before the model 

can be used. These parameters include estimates of word string probabilities, as well as, 
the parameters used for smoothing. Smoothing is one of the most important issues in 
language modeling. The key idea of smoothing is to discount some probability mass of 
observed events so that there is a little bit of probability mass left for unseen events. For 
example, in backoff language models, the weights for backing-off from higher order to 
lower order n-grams need to be estimated. Similarly, in linearly interpolated models, 

 ܲ௧൫ݓหݓିାଵିଵ ൯ ൌ ௪షశభషభߣ ܲ൫ݓหݓିାଵିଵ ൯  (1 − ௪షశభషభߣ ) ܲ௧൫ݓหݓିାଶିଵ ൯   (2.40)  

where the maximum likelihood estimate Pml is interpolated with the lower order 
smoothed model Pintp, which is defined in a similar fashion. A model is typically built 
iteratively starting with the lowest order probabilities (Frederick and Mercer 1980). 
Estimating a distinct ߣ௪షశభషభ  for each ݓିାଵିଵ  is not practical; in practice the ߣ௪షశభషభ  

values are grouped into bins based on the word counts C(ݓିାଵିଵ ), where the final weight 
in each bin is assumed to be equal (Bahl et al. 1983). 

 
CMU Model 

Three nativeness metrics proposed in section the beginning of this section (Ql(n), Qnc, 
and Qt) are based on the maximum likelihood estimation of n-gram probabilities. Ql(n) 
interpolates the conditional probabilities using different history length and thus has some 
smoothing. Other metrics do not have explicit smoothing built in. 

 
Model-best 31.44

Ql(4), equally weighted interpolation 32.16
Ql(6), equally weighted interpolation 32.41
Ql(6), favor long n-grams,  λk= k/21 32.40
Ql(6), equally weighted + GT 32.35

Table 2.56: Comparing different smoothing approaches in N-best list re-ranking. 

We suspect that smoothing may not be so important for the N-best list re-ranking task 
as compared to the LM used in the ASR and SMT decoder. If an n-gram is unseen in the 
training data, assigning 0 as its probability is not acceptable. In a generative probabilistic 
LM all n-grams have some positive probabilities, no matter how bizarre the n-gram. For 
us, assigning 0 as the nativeness score to an n-gram is fine because the score is only used 
to discriminate between two sentences. To test the impact of smoothing on N-best list re-

Handbook of Natural Language Processing and Machine Translation 261

Normally, in linearly interpolated models, the interpolation weightş ௪షశభషభߣ  are 
estimated on some held-out data using the EM algorithm (Dempster et al. 1977). In a 
similar fashion, backoff models use ad-hoc discounting and backoff parameters that are 
estimated, or assigned manually, before the language model is used. 



 

ranking, we implemented the Good-Turing smoothing (Good 1953) in the Ql(n) metric. 
Good-Turing (GT) smoothing is easy to implement and the count-of-count information 
can be obtained on the fly by scanning the suffix-array indexed corpus (Zhang, 2006), 
which fits our online model set up well. The implementation was validated on a SMT 
decoder and showed some small improvements over the MLE estimation. However, 
when applied on the N-best list re-ranking task, GT-smoothing performed slightly worse 
than using MLE only. Table 2.56 shows the re-ranking results using different smoothing 
methods. The N-best list is a 10K-list generated by Hiero (Chiang, 2005) on the Chinese 
MT03 data. Here we used only a 270M word corpus for the re-ranking experiment. 
 
IBM Model 

For simplicity, we have decided to use linear interpolation as the smoothing method 
for our distributed LM architecture. It is also possible to use a backoff smoothing 
framework, at the cost of a bit more involved lookups and computations. However, we 
carried out some simple experiments with different smoothing techniques and decided 
that the choice of smoothing method is less relevant as we move to very large corpora.  

Noting that the  ߣ௪షశభషభ  are functions of only the counts C(ݓିାଵିଵ ),  we have instead 
opted for a closed-form heuristic formula for computing ߣ௪షశభషభ . After plotting the 

weights ߣ௪షశభషభ  estimated using EM on a held-out set against counts C(ݓିାଵିଵ ) we 
noticed that the plot can be approximately fitted to a log-linear curve, from which we 
estimated the interpolation weights for the distributed language model: 

௪షశభషభߣ  ൌ 0.1 logଵ ିାଶିଵݓ)ܥ )  0.3   (2.41)  

from which all the n + 1 interpolation weights for the model in Equation 2.40 are 
computed in an iterative manner starting from the highest order n-gram. 

The clear advantage of this heuristic formula is that ߣ௪షశభషభ 1 is directly computable 
from word counts in the training data. It should also be noted that there is no lookup 
overhead here, since the count ݓ)ܥିାଶିଵ )  needs to be extracted to estimate the 
probability ܲ൫ݓหݓିାଵିଵ ൯. 

 
Training λ estimation Perplexity 

I EM 193 
I heuristic 216 
II EM 128 
II heuristic 137 

Table 2.57: Perplexities for different interpolation weight estimation methods 

Table 2.57 shows perplexities of linear interpolated 5-gram models using both the 
bucketed EM estimate and heuristic interpolation weights. There are two different 
training data sets used, denoted by I and II in the table and consisting of approximately 
200M and 2.9G words respectively. The held-out data used for EM estimation of the 

262 Chapter 2: Machine Translation from Text 



 

 

weights is a corpus of 35M words. The vocabulary size is 128K and the perplexities are 
reported on an unseen test set of 58M words. 

As can be seen in the table the linearly interpolated model with heuristic interpolation 
weights has comparable perplexity to those estimated using the EM algorithm. It should 
also be noted that EM maximizes the performance of the model for likelihood and hence, 
the perplexity. We expect the difference between the heuristic and EM estimated weights 
to be smaller when used for a practical task such as ASR or SMT where the performance 
is measured by metrics, which are not fully correlated with perplexity. 

 
Smoothed LM workers 

It is possible to have LM workers that store an already smoothed language model 
instead of a corpus. These workers do not provide the server with counts and can only 
send smoothed probabilities for the queries n-grams. In case the collection of LM 
workers contains both corpora (suffix arrays) and smoothed LMs; the server must 
somehow combine all the information from the workers to compute a final smoothed 
probability. Assume there are m1 workers with suffix array corpora and m2 standalone 
smoothed n-gram models for a total of k = m1 + m2 workers. Assuming that the jth  client 
is using the worker mixture vector (ݏଵs, ݏଶs, ∙∙∙ ݏs), then the aggregate count is simply ܥ( ଵܹ) ൌ ∑ భୀଵݏ )ܥ ଵܹ)  where ܥ( ଵܹ) is the count of n-gram ଵܹ  for the corpus 
stored at client i. 

In case the client requested probabilities, the aggregate probability  ܲ(ݓ| ଵܹିଵ) 
(for workers 1 through m1) is computed according to Equation 2.40 and Equation 2.41 
above, F using the aggregate statistics Cj. Taking into account the standalone smoothed 
LM workers, the final probability is defined as follows: 

 ܲ(ݓห ଵܹିଵ) ൌ ߙ ܲ(ݓห ଵܹିଵ)  ൫1 − ൯ߙ ∑ ௦ೕ∑ ௦ೕమసభమୀଵ ௪ܲ หݓ) ଵܹିଵ)     (2.42)  

 
where ௪ܲ หݓ) ଵܹିଵ)  is the probability from the ith standalone worker and ߙ ൌ ∑ ௦ೕభసభ∑ ௦ೕభశమసభ  . 

2.5.1.6 Experiments and Results 

We carried out experiments using our distributed language model for both speech 
recognition and machine translation tasks. In the machine translation experiments, the 
distributed language model was used by CMU to re-rank the N-best list and experiment 
with online language model adaptation. IBM directly integrated the distributed LM into 
the decoder. In the speech recognition experiments, the distributed model was used only 
in re-ranking N-best lists created by a speech recognition decoder using standard 
language models. 

Handbook of Natural Language Processing and Machine Translation 263



 

CMU N-best List Re-ranking Results 
CMU uses the distributed language model on very large data to re-rank the N-best 

list. 
Table 2.58 lists results of the re-ranking experiments under different conditions. The 

re-ranked translation improved the BLEU score from 31.44 to 32.64, significantly better 
than the model-best translation. 

 
# of Relevant Chunks per. Sent 1 2 5 10 20 150 

offline 3-gram KN 32.22     32.08 
offline 4-gram KN 32.22     32.53 

Qc 32.27 32.38 32.40 32.47 32.51 32.48 
Ql(3) 32.00 32.14 32.14 32.15 32.16  
Ql(4) 32.18 32.36 32.28 32.44 32.41  
Ql(5) 32.21 32.33 32.35 32.41 32.37  
Ql(6) 32.19 32.22 32.37 32.45 32.40 32.41 
Ql(7) 32.22 32.29 32.37 32.44 32.40  
Qnc 32.29 32.52 32.61 32.55 32.64 32.56 

Table 2.58: BLEU scores of the re-ranked translations. Baseline score = 31.44 

Different metrics are used under the same data situation for comparison. Qc, though 
extremely simple, gives quite nice results on N-best list re-ranking. With only one corpus 
chunk (the most relevant one) for each source sentence, Qc improved the BLEU score to 
32.27. We suspect that Qc works well because it is in line with the nature of BLEU score. 
BLEU measures the similarity between the translation hypothesis and human reference by 
counting how many n-grams in MT can be found in the references. 

Instead of assigning weights 1 to all the matched n-grams in Qc, Qnc weights each n-
gram by its non-compositionality. For all data conditions, Qnc consistently gives the best 
results. 

Metric family Ql(n) is close to the standard n-gram LM probability estimation. 
Because no smoothing is used, Ql(3) performance (32.00) is slightly worse than the 
standard 3-gram LM result (32.22). On the other hand, increasing the length of the 
history in Ql(n) generally improves the performance. 

 
System LM Size LM Type BLEU NIST 

Baseline 200 M 3-gram 31.44 9.01 
 

2900 M 
3-gram 32.08 9.14 

 4-gram 32.53 9.19 
 20M Qnc 32.34 9.20 

Re- per sent. Qt: 32.46 9.21 
ranked  Qnc + Qt 32.60 9.24 

  Qnc 32.60 9.23 
 200M Qt 32.79 9.25 
 per sent. Ql(6) + Qt 32.90 9.28 

Table 2.59: Re-ranking N-best list using distributed language model. 

264 Chapter 2: Machine Translation from Text 



 

 

Table 2.59 compares re-ranking results using standard 3-gram and 4-gram language 
model with using Qnc, Qt features. For each testing sentence, most relevant corpus chunks 
of 20M/200M words are used as the training data to calculate the nativeness scores for re-
ranking. From this result, we can see that by considering long distance dependencies of n-
grams in a sentence (Qt) improves the discriminative power of the language model. 

 
CMU Online Language Model Adaptation 

Although statistical systems usually improve with more data, performance can 
decrease if additional data does not resemble the test data. We would prefer to use data 
that is more “relevant” to the testing data than using all data in a bag. 

The concept of “relevance” depends on the application. In Information Retrieval (IR), 
a document is considered to be “relevant” to a user’s search intention if it contains the 
query words. For this purpose, features like TF-IDF score which capture the key words of 
a document work well in estimating the “relevance” and are widely used in IR. For 
statistical machine translation, however, a relevant corpus chunk is the one on which we 
can train a better language model that helps the decoder to generate a better translation. 
The quality of the translation is evaluated by calculating the n-gram precision and recall 
against human generated reference translations. To be consistent with the evaluation 
methods, we consider using n-gram based features to predict the relevance of a corpus 
chunk to a testing sentence. 

 
Relevance measurements 

Here we study several simple statistics to select relevant corpus chunks to build LM 
for each testing sentence f. These relevance statistics are calculated over the N-best 
translations of f. 

 
Perplexity 

The standard measurement for language model quality is perplexity. Considering the 
N-best list as a document of N English sentences, we can calculate the standard language 
model perplexity of the N-best list using the language model trained on each of the 
corpus chunk E. Denote the N-best translation list of f as T. T contains |T| English words 
from all N translations. The perplexity of language model trained on E is measured on T = 
e1 … e|T |: ܲܲ(ܶ| E) ൌ exp  (− ଵ|்| ∑ log ିାଵିଵݓ|ݓ) ))|்|ୀଵ         (2.43) 

The pitfall here is that two perplexities are not directly comparable if two language 
models are trained from different corpus. Perplexities are only comparable when two 
corpora have the same vocabulary size which is most likely not true as we only split the 
corpora into chunks of similar size without considering the resulting vocabulary size. 

 

Handbook of Natural Language Processing and Machine Translation 265



 

Bag-of-n-gram Coverage Rate 
Define the bag-of-n-gram coverage rate of corpora Ed to sentence ft as: 

R(Ed; ft)=∑ ܳ(ࢋ௧()ேୀଵ |Ed)       
 
For hypothesis ࢋ௧()e, the rth hypothesis in the N-best list, Qc( ࢋ௧()|Ed) is the number of 

n-gram tokens in the hypothesis that can be found in Ed (see Eqn.  ܳ൫݁ଵ൯ ൌ ∑ ∑ ୀଵߜ ൫݁൯ୀଵ    

Informally, R(Ed; ft) estimates how well Ed covers n-grams (tokens) in the N-best list of ft. 
The higher the coverage, the more relevant Ed is to ft. 

 
Weighted n-gram Coverage Rate 

Unlike the bag-of-n-gram coverage rate where n-grams of different orders are 
considered equally, weighted n-gram coverage rate applies different weights on n-gram 
coverage rates of different orders. Intuitively, we should predict a corpus chunk to be 
more relevant than another if it has a higher high-order n-gram coverage rate. 

Define M(E,f), the weighted n-gram coverage rate of corpus E for a sentence f as: 
where Coveragek(E,f) is the kth order n-grams coverage rate of the corpus on f’s N-best 
list: 

M(E,f)ൌ ∑ ୀଵߣ Coverage(E,f)  (2.45) 

where Coverage(E,f) is the kth order n-grams coverage rate of the corpus on f’s N-
best list:  

Coverage(E,f)=
∑ ቀశೖషభቁః(శೖషభ,Ԫ)శೖషభ∈{(భ)…(ಿ)ሽ∑ ൫శೖషభ൯శೖషభ∈{(భ)…(ಿ)ሽ      (2.46) 

 ൫݁ାିଵ൯ is the frequency of n-gram type ݁ାିଵ’s occurrences in the N-best listܥ
and ߔ൫݁ାିଵ, Ԫ൯ ൌ ൜1, if ݁ାିଵ exists in Ԫ0, otherwise.  (2.47) 

 
Informally, we predict a corpus chunk Ed to be most “relevant” to a testing sentence f 

if n-grams in f’s N-best translations can be most covered by Ed. 
 
 

Experiments 
The experiment is set up as follows. The LDC Gigaword corpus (both version 2 and 

version 3) of 4,916,610,128 words is split into 104 chunks based on their natural order 
(news source and time released). The N-best list used in this experiment is a list of 1000-
best translations of 191 testing sentences (20 documents) extracted from the Chinese 

266 Chapter 2: Machine Translation from Text 

.)
(2.44) 



 

 

MT04 test set by the Hiero system (Chiang 2005). For each one of the 191 testing 
sentence, we use each individual corpus chunk to re-rank its N-best list using the Qnc 
feature. The difference of the re-ranked-best hypothesis and the model-best hypothesis in 
BLEU score is the gain of the corpus chunk denoted as G(t;d). G(t;d) can be negative if 
the re-ranked-best hypothesis has lower BLEU score than the model-best baseline 
translation. 

Table 2.60 shows the predicted BLEU gain and the actual BLEU scores of using single 
features to select the most relevant corpus chunk for re-ranking. In general, higher order 
k-gram coverage rate predicts relevance better than lower-order coverage rate. However, 
from 5-gram coverage rate to 6-gram coverage rate we see a slight drop in predicted gain. 
Our explanation is that given the current SMT quality, 6-gram coverage rate is very low 
and a few “lucky” 6-gram hits are not representative of the corpus chunk. Results also 
show that k-gram coverage rate outperforms perplexity in predicting corpus relevance. 

 
Relevance Feature Gain BLEU ∑ ܳ(݁()ேୀଵ E) 0.97 30.17 

Coverage1(E; f) 0.20 29.53 

Coverage2(E; f) 1.40 29.89 

Coverage3(E; f) 1.52 30.14 

Coverage4(E; f) 1.33 30.20 

Coverage5(E; f) 2.07 30.34 

Coverage6(E; f) 1.97 30.42 ଵே ∑ ܳ()(݁()ேୀଵ E) 1.06 30.37 ଵே ∑ ܳ(݁()ேୀଵ E) 0.00 29.89 

PP(f |E) 0.44 30.14 

Table 2.60: Predicted BLEU gain and actual BLEU scores of using single LM feature to re-rank the N-best list. 

Relevance features can be combined in a linear function to predict the relevance of a 
corpus chunk to a sentence. Table 2.61 shows the gain in BLEU score after re-ranking the 
N-best list using the most relevant corpus chunk selected based on manually set feature 
weights. 

 
IBM Speech Recognition Results 

We carried out experiments re-ranking the N-best lists output by a speech recognizer. 
The system description is similar to that given by Saon et al. (2005). The lattices are 
generated using a two-pass speech recognition system that performs a speaker-
independent recognition pass; then a series of speaker adaptation steps, including vocal 
tract length normalization, feature-space MLLR and MLLR; and concludes with a 
speaker-adapted recognition pass. The speaker-independent and speaker-adapted acoustic 
models are trained on a 450-hour corpus comprising the 1996 and 1997 English 
Broadcast News Speech collections and the English broadcast audio from TDT-4. The 
language model used by the decoder was a 4-gram modified Kneser-Ney model trained 
on 192M words and interpolated with five other 4-gram models trained on topic specific 
subsets of the original 192M words data. The final merged model was pruned to a total of 

Handbook of Natural Language Processing and Machine Translation 267



 

3.2M n-grams. The final speaker-adapted recognition pass performed in-memory lattice 
re-scoring using a larger, 30M n-gram language model that differed from the one used to 
produce the decoding graph only in the degree of pruning. 
 

Feature Combinations
Weights of k-gram Coverage Rate 

BLEU Gain1 2 3 4 5 6 
1, 2-gram coverage rate 1.0 2.0     0.73 
1, 2-gram coverage rate -1.0 2.0     0.77 
1, 2-gram coverage rate -2.0 1.0     1.12 

1, 2, 3-gram coverage rate -2.0 1.0 2.0    0.74 
1, 2, 3, 4-gram coverage rate -2.0 1.0 2.0 3.0   1.27 

1, 2, 3, 4, 5-gram coverage rate -2.0 1.0 2.0 3.0 4.0  1.30 
2, 3, 4, 5-gram coverage rate  2.0 3.0 4.0 5.0  1.11 
2, 3, 4, 5-gram coverage rate  4.0 9.0 16.0 25.0  1.54 

2, 3, 4, 5, 6-gram coverage rate  2.0 3.0 4.0 5.0 6.0 1.07 
2, 3, 4, 5, 6-gram coverage rate  4.0 9.0 16.0 25.0 36.0 1.14 
1, 2, 3, 4, 5, 6-gram coverage rate -2.0 2.0 3.0 4.0 5.0 6.0 1.09 
1, 2, 3, 4, 5, 6-gram coverage rate 1.0 4.0 9.0 16.0 25.0 36.0 1.14 

Table 2.61: Feature weights set following the heuristic that higher order k-gram coverage rates have more 
discriminative power in choosing relevant corpus chunks. 

 
 RT-03 Dev-04 RT-04 
baseline 9.5 17.7 15.0 
5-gram DLM 9.0 17.4 14.5 

Table 2.62: ASR N-best re-ranking 

Table 2.62 shows the results of using the distributed language model, in this case a 5-
gram trained on 4 billion words, for re-ranking the 500-best lists from two DARPA’s 
EARS program English Broadcast News evaluation sets (RT-03 and RT-04) and one 
development set (Dev-04). As can be seen, using the larger distributed LM results in 
considerable improvements in Word Error Rate across all three sets. It should be noted 
that out of the 500 hypotheses per utterance in average only 9.5 were unique word strings 
and the distributed model achieved the shown reduction by effectively only re-raking 
these remaining few hypotheses. 

 
IBM Machine Translation Results 

The phrase decoder we use is inspired by Tillmann and Ney (2003). It is a multi-
stack, multi-beam search decoder with as many stacks as the length of the source 
sentence and a beam associated with each stack. It is described in more details by Al-
Onaizan (2005). The training data for the Arabic translation system consisted of 4.6M 
sentence pairs, totaling 124M Arabic and 143M English words. The MT-03 and MT-05 
test sets consist of 663 and 1056 segments, respectively. We also used a different decoder 
based on the Maximum Entropy (MaxEnt) approach. The MaxEnt decoder is a novel 
method of using simple translation blocks, which allows the translation problem to be 
cast into a classification problem where instead of encoding the context in long phrasal 
blocks, it is cast as feature function on simple blocks (Ittycheriah and Roukos 2007). 

268 Chapter 2: Machine Translation from Text 



 

 

For the Chinese translation system CE Training data there were about 8.4M sentence 
pairs, totaling 212.5M Chinese and 241.2M English words. We only used the phrase-
based decoder for the Chinese to English translation experiments. It should be noted that 
the training data was sampled for each test set; the actual training data being used is in 
average 400K sentences in size. The test sets MT-03, MT-04 and MT-05 are 919, 1788 
and 1082 sentences long, respectively. 

The results for the Arabic-English and Chinese-English experiments are given in 
Table 2.63. The 3-gram LM is a linearly interpolated model trained with a vocabulary 
size of 128K on about 2.8 billion words with bigram and trigram with less than 3 n-grams 
pruned. The 5-gram distributed model was trained on 2.3 billion words with a vocabulary 
size of just over a million. As can be seen, using the distributed model that allows for 
larger corpus and higher order n-gram with no pruning (not to mention larger vocabulary 
size) results in significant improvements across all systems and test set. For example, in 
the case of the Arabic-English system, the phrase-based decoder achieves a 3.3 BLEU 
point improvement in using a 5-gram language model over a 3-gram for both MT-03 and 
MT-05 test sets. 

 
Model Language MT-03 MT-04 MT-05 
Phrase-based Decoder 3gm 

Arabic 

48.84 - 46.92 
Phrase-based Decoder 5gm DLM 51.10 - 50.25 
MaxEnt Decoder 3gm 48.95 - 48.02 
MaxEnt Decoder 5gm DLM 51.35 - 51.30 
3-gram Chinese 26.93 28.72 26.10 
5-gram DLM 29.10 30.09 29.18 

Table 2.63: BLEU Results 

When compared with the ASR experiments, it is clear that we achieve better 
improvements with the distributed LM for the SMT task. One explanation is that for the 
SMT experiments, the distributed language model was directly integrated into the 
decoder, whereas in the ASR experiments the distributed model was used only to re-rank 
very shallow (N ൎ 9.5) N-best lists. Another explanation is that the tokenization and 
vocabulary selection for the distributed language model were optimized with only the 
SMT tasks in mind. 

2.5.1.7 Related work 

On using LM to re-rank the N-best list, Kirchhoff and Yang (2005) used a factored 3-
gram model and a 4-gram LM (modified KN smoothing) together with seven system 
scores to re-rank an SMT N-best. They improved the translation quality of their best 
baseline (Spanish-English) from BLEU 30.5 to BLEU 31.0. 

On large language model work, Brants et al. (2007) use the MapReduce 
programming model to train on terabytes of data and to generate terabytes of language 
models. The trained n-gram information is distributed in a distributed cluster. New 
decoder architecture is implemented to access the n-gram information efficiently by first 
queuing certain number of LM requests (e.g., 1,000 or 10,000) and sends them in a batch 
to servers. 

Handbook of Natural Language Processing and Machine Translation 269



 

On language model adaptation work, Iyer and Ostendorf (1999) selected and weighed 
data to train language modeling for ASR. The data was selected based on its relevance for 
a topic or the similarity to the in-domain data. Each additional document is classified to 
be in-domain or out-of-domain according to cosine distance with TF-IDF term weights, 
POS-tag LM and a 3-gram word LM. n-gram counts from the in-domain and the 
additionally selected out-of-domain data are then combined with an weighting factor to 
estimate a LM with standard smoothing. Hildebrand et al. (2005) use information 
retrieval to select relevant data to train adapted translation and language models for an 
SMT system. 

2.5.1.8 Conclusion 

In this section we presented novel distributed architectures from IBM and CMU for 
storing large scale and scalable corpora and language models. The distributed architecture 
is capable of handling arbitrarily large corpora, while placing no restrictions on either the 
n-gram order or vocabulary size. Computing n-gram counts of arbitrary order was made 
possible by storing the original corpus in the suffix array format. 

Three key features make these systems different from the traditional n-gram language 
models. First, the underlying suffix array language model allows them to use arbitrarily 
long history; second, the distributed computing architecture makes it possible to use 
arbitrarily large training data; and finally, the on-the-fly language model estimation 
facilitates the client to dynamically adapt the language model for each testing sentence. 
Furthermore, as more data becomes available it is quite straightforward to add them to 
the model as only the new data needs to be processed. In traditional n-gram models the 
entire counting and smoothing steps for all the training data needs to be repeated anytime 
one wished to add more data to the model. 

Several different uses of the distributed architecture were discussed. IBM introduced 
a simple, but powerful heuristic smoothing algorithm to compute language model 
probabilities on-the-fly from the counts aggregated form the suffix array corpora. This 
heuristic algorithm was used in MT decoding and ASR N-best re-ranking experiments. 
CMU experimented with different sentence-level nativeness scores. They also exploited 
the flexibility of the distributed architecture, in terms of dynamically changing the 
weights on different corpora, to implement an online adaptive language model. 

IBM applied the distributed language model in both MT decoding and N-best list re-
ranking of a state-of-the-art ASR system. In both scenarios, consistent and considerable 
improvements in translation quality (for MT experiments as measured by the BLEU score) 
and transcription accuracy (WER in ASR experiments) were achieved. Similarly, CMU 
experiments have shown that the distributed suffix array language model can be used 
reliably and effectively for re-ranking the N-best list of the statistical machine translation 
system and significantly improves the translation quality. 

270 Chapter 2: Machine Translation from Text 



 

 

2.6 Search and Complexity 

Authors: Oliver Bender, Richard Zens and Hermann Ney 

2.6.1.1 Introduction  

In statistical machine translation (SMT), search (or decoding or generation) is the 
task of finding the target language sentence e1I that maximizes the posterior probability 
given the source sentence f1J . Here, we are considering a phrase-based approach with a 
segmentation s1K into K phrases (Och et al. 1999; Zens and Ney  2004; Koehn et al. 
2003). Assuming a log-linear model with component models hm(·) and scaling factors λm, 
m = 1,…,M, we obtain the decision rule: ݁̂ଵூመ ൌ argmaxூ,భ൛max,௦భ಼ ∑ ெୀଵߣ ݄(݁ଵூ, ;ଵݏ ଵ݂ൟ.   (2.48) 

We have to carry out a maximization over all possible target sentences e1I and over 
all possible segmentations s1K. As enumerating all target sentences is infeasible, we are 
facing a hard optimization problem. In particular, we have to decide on: 

 
• the number of phrases K,  
• the phrase segmentation s1K of the source sentence and  
• the phrase translations ݁ for each source phrase  ݂ ෩ . 
  
However, we can exploit the structural properties of the models. We can interpret the 

search as a sequence of decisions (݁̃, ܾ, ݆) for k = 1,…, K. At each step, we decide on a 
source phrase ሚ݂ identified by its start and end positions sk = (bk,jk) and the corresponding 
translation ݁̃. To ensure that there are no gaps and no overlap, we keep track of the set of 
source positions that are already translated (‘covered’). We call this the coverage set ܥ ⊆  {1, … ,  ሽ and refer to the number of covered source positions of a hypothesis as itsܬ
cardinality ܿ. Furthermore, the search space can be regarded as a graph where the arcs are 
labeled with the decisions (݁̃, ݆, ݆Ԣ ) and the states are labeled with the coverage sets C. 
The initial state is labeled with the empty coverage set, i.e., no source word is yet 
translated and the goal state is labeled with the full coverage C = {1, …, J}. Each path 
through this graph represents a possible translation of the source sentence, simply by 
concatenation of the target phrases ݁̃ along the path. Hence, the search problem can also 
be looked at as finding the optimal path through this graph. 

Except for the language model (LM) and a distortion penalty model (DM), all the 
models of our decoder are defined on the level of single phrases, i.e., they have no 
dependencies across phrase boundaries and can, therefore, be computed for each phrase 
pair without context information. We group these models together and call them phrase 
models. With respect to the sequence of decisions (݁̃, ܾ, ݆), the phrase models do not 
depend on the decisions taken so far. According to Zens and Ney (2008), we use 

Handbook of Natural Language Processing and Machine Translation 271

2.6.1. Improvements for Beam Search in Statistical Machine 
Translation  



 

qTM(݁̃, ܾ, ݆)  to denote the weighted sum of all phrase model scores for this decision 
(also called state). The LM on the other hand depends on the last (n-1) words of the target 
sentence and the DM depends on the end position of the previous phrase. Nevertheless, 
we want to compute the scores of individual states and therefore introduce state copies 
and distinguish them according to the history. We use ݁̃Ԣ ٔ  ݁̃ to denote the LM history 
after expanding the given history ݁̃Ԣ  with the phrase ݁̃. The corresponding expansion 
score weighted with the LM scaling factor is denoted as qLM(݁̃|݁̃ᇱ). Accordingly, we use 
qDM(j,j’) to denote the weighted score of a jump from source position j to source position 
j’. Obviously, (݁̃, ݆, ݆Ԣ) can occur multiple times in the search space. To avoid repeated 
computations, we determine the set of possible target phrases for all source phrases 
before the actual search and store the target phrases along with their scores in a table 
E(j,j’). 

Summing up, the states in the search space can be identified by a triple (ܥ, ݁̃, ݆), 
where C denotes the coverage set, ݁̃  denotes the LM history and j denotes the end 
position of the last source phrase. During search, a translation hypothesis is expanded by 
computing the successor states for the current state (ܥ, ݁̃, ݆). The expansion with a phrase 
pair ( ݁̃Ԣ, ݆ԢԢ, ݆Ԣ ) yields the successor state (ܥ ∪ {݆ᇱᇱ, … , ݆ᇱሽ, ݁̃ ٔ ݁̃ᇱ, ݆ᇱ)  and the 
corresponding score is calculated as: 

 
qTM(݁̃Ԣ, ݆ԢԢ, ݆Ԣ) + qLM(݁̃ᇱ|݁̃) + qDM(݆, ݆ԢԢ) . 

 
We have to ensure that there is no overlap, i.e. ܥ ∩ {݆ᇱᇱ … , ݆ᇱሽ ൌ ∅. 

2.6.1.2 Beam Search 

As the size of the search graph is exponential in the source sentence length, we have 
to use approximations to find a solution efficiently. In fact, it has been shown by Knight, 
(1999) that the search problem is NP-hard. A recent exposition to the search problem was 
proposed by Jelinek (1998). Here, we resort to dynamic programming (Bellman 1957) 
and beam search (Jelinek, 1998) to address this problem. Using dynamic programming 
(DP), i.e., first computing small sub-problems and then assembling the solution for the 
whole problem from these sub-problems, we reduce the number of paths that we have to 
explore in the search graph. The idea of beam search is to keep the promising candidates 
and to discard hypotheses that are unlikely to yield the optimal solution. Thereby, beam 
search may generate suboptimal solutions. In the following, we make an explicit 
distinction between reordering and lexical hypotheses: 

 
• Coverage hypothesis C. We use the term coverage hypothesis to refer to the set 

of all lexical hypotheses with the same coverage C.  
• Lexical hypothesis (ܥ, ݁̃, ݆). A lexical hypothesis is identified by a coverage C, a 

language model history ݁̃ and a source sentence position j.   
The number of coverage or more intuitive reordering hypotheses indicates how many 

alternative reorderings per cardinality are investigated during the search. The number of 
lexical hypotheses per reordering hypothesis indicates the lexical alternatives that are 
taken into account. 

272 Chapter 2: Machine Translation from Text 



 

 

2.6.1.2.1 Monotone Search ܳ(0, $) ൌ 0         
  ܳ(݆, ݁̃) ൌ max ᇲ: ିೞ ஸ ᇲழ ̃ᇲᇲ , ̃ᇲ   ̃ᇲ ۩ ̃ᇲᇲ ୀ ̃{ܳ(݆ᇱ, ݁̃ᇱ)  ,TM(݁̃ᇱᇱݍ ݆ᇱ  1, ݆)    LM(݁̃ᇱᇱ|݁̃ᇱ) ሽݍ

 
           ܳ ൌ max̃{ܳ(ܬ, ݁̃)    LM($; ݁̃)ሽݍ 

Figure 2.41: Dynamic programming recursion for monotone search. 

If we prohibit phrase rearrangements during translation, both source and target 
sentence are processed in monotone order. There is no reordering of the phrases and the 
distortion penalty model becomes unnecessary. As a consequence, the monotone search 
problem can be solved efficiently using DP. For the decision rule given in Section 
2.6.1.1, we define the quantity ܳ(݆, ݁̃) as the maximum score of a phrase sequence that 
ends with the language model history ݁̃ and covers positions 1 to j of the source sentence 
and obtain the DP recursion as shown in Figure 2.41. The $ symbol denotes the sentence 
boundary marker and Ls denotes the maximum phrase length in the source language. 
During the search, we store back-pointers to the previous best decision B(·,·) and to the 
maximizing arguments A(·,·). After the search, the back pointers are used to trace back 
the best decisions and generate the translation. The resulting complexity is linear in the 
length of the source sentence, and thus, allows for a very efficient implementation.  

The drawback is that reordering is only possible within the phrases (solely the 
sequence of phrases is enforced to be monotone). However, the monotone search 
algorithm is suitable for language pairs which have a similar word order, e.g., Arabic-
English, as can be seen in Section 2.6.1.4. 

2.6.1.2.2 Non-Monotone Search 

If we tackle the translation problem for language pairs with a different word order, 
such as Chinese-English, the monotone search is inappropriate. Instead, we need to 
explicitly permit reordering. Tillmann and Ney (2003) described a non-monotone search 
algorithm for single word based translation. The idea is that the search proceeds 
synchronously with the number of already translated source positions. Therefore, they 
call their algorithm source cardinality synchronous search. Here, we use a phrase-based 
version of their method. We generate the translation phrase by phrase, i.e., the search is 
monotone in the target language. To permit reordering, we are allowed to jump back and 
forth within the source sentence. As one constraint of the phrase-based approach is that 
each source position is translated by exactly one target phrase, we have to keep track of 
the source positions already translated. Recapitulate that this corresponds to the coverage 
C ⊆ {1,…, J}. 

In contrast to the monotone search, the auxiliary quantity for the DP recursion now 
also depends on the coverage set. ܳ(ܥ, ݁̃, ݆) denotes the maximum score of a path leading 
from the initial state to the state (ܥ, ݁̃, ݆). The corresponding DP recursion for the non-
monotone search is given in Figure 2.42. 

 
 

Handbook of Natural Language Processing and Machine Translation 273



 

,ߠ)ܳ $, 0) ൌ 0 
,ܥ)ܳ   ݁, ݆) ൌ maxᇲᇲ,ᇲ:ᇲஸ ழᇲା ೞר{ᇲ,…,ሽ ⊆ ̃ᇲ , ̃ᇲᇲ   ̃ᇲ ۩ ̃ᇲᇲ ୀ ̃

ܥ)ܳ} ך {݆ᇱ, … , ݆ሽ, ݁̃ᇱ, ݆ᇱᇱ)  ,TM(݁̃ᇱᇱݍ ݆ᇱ, ݆)  LM(݁̃ᇱᇱ|݁̃ᇱ)ݍ  ,DM(݆ᇱᇱݍ  ݆ᇱ) ሽ 

 
               ܳ ൌ max̃,{ܳ({1, … , , ሽܬ ݁̃, ݆)  (̃݁|$)LMݍ   ,݆)DMݍ  ܬ  1)ሽ 

Figure 2.42: Dynamic programming recursion for non-monotone search. 

Figure 2.43: Illustration of the (non-monotone) search process. For each cardinality, we have a list of 
coverage hypotheses (boxes). For each coverage hypothesis, we have a list of lexical hypotheses (circles). 

As for the monotone search, we store back pointers B(·) to the previous best decision 
as well as the maximizing arguments A(·). For each cardinality c, we have to iterate over 
all possible source phrase lengths l. Then, we have to account for all the possible 
predecessor coverages C’ with cardinality c − l. Next, we have to select a source phrase ሚ݂  ൌ  ݂, … , ݂ା  by choosing the start position j. Eventually, we consider all existing 
predecessor states ݁̃Ԣ, ݆Ԣ and all translation options ݁̃ԢԢ ∈ ,݆)ܧ ݆  ݈) to compute the score 
of the expansion. In Figure 2.43, we illustrate the (non-monotone) search. For each 
cardinality, we have a list of coverage hypotheses, here represented as boxes. For each 
coverage hypothesis, we have a list of lexical hypotheses, here represented as circles. We 
generate a specific lexical hypothesis (the black circle) with cardinality c by expanding 
shorter hypotheses. The hypotheses with cardinality c − 1 are expanded with one-word 
phrases, the hypotheses with cardinality c − 2 are expanded with two-word phrases, etc. 
Consequently, all generated hypotheses have the same cardinality which allows for very 
efficient recombination and pruning. In contrast, e.g., Koehn et al. (2007) and Tillmann 
(2006) expand hypotheses with cardinality c into higher cardinalities. 

In principle, we have to loop over all possible coverage sets which yields an 
exponential complexity of the non-monotone search algorithm, taking into account that 

274 Chapter 2: Machine Translation from Text 



 

 

∑ ቀܿܬቁୀ ൌ 2. To make the translation process manageable, we resort to a beam search 
strategy and apply pruning at several levels. 

2.6.1.2.3 Pruning 

Our decoder implements two variants of pruning: threshold pruning (or beam 
pruning) and histogram pruning (Steinbiss et al. 1994). Threshold pruning secures that 
only hypotheses are kept whose scores are close to the best one. A drawback is that 
threshold pruning effects the beam size only indirect and that there is no upper limit on 
the number of hypotheses in the beam. Histogram pruning on the other hand means that 
only the best N hypotheses are kept and is thus, a very simple way of limiting the beam 
size. In this work, we mainly use histogram pruning. Threshold pruning is only partially 
applied, e.g., to tune the system in terms of translation speed. 

The novel contribution of this work is that we make an explicit distinction between 
reordering and lexical pruning: 
 
Reordering pruning:  

The number of reordering hypotheses per cardinality c is limited. If we prune a 
reordering hypothesis, we remove all associated lexical hypotheses.  
Lexical pruning:  

The number of lexical hypotheses per reordering hypothesis is limited.  
 
To be specific, we use the following pruning strategies. 

 
Observation Pruning  

Here, we limit the number of phrase translation candidates per source phrase. This is 
actually done before search. We apply observation histogram pruning with parameter No. 
Thus, if there are more than No target phrases for a particular source phrase, we keep only 
the top No candidates. In practice, No = 50 already achieves good results while keeping 
the phrase tables manageable, in particular for large-scale tasks such as GALE. 

 
Lexical Pruning Per Coverage  

Here, we consider all lexical hypotheses that share the same coverage C, differing for 
instance in their language model history ݁̃ or the end position of the last phrase j. During 
pruning, we compare hypotheses which cover different parts of the source sentence. 
Hence, it is important to use a rest score estimate for completing these hypotheses. 
Without such a rest score estimate, the search would first focus on the easy-to-translate 
part of the source sentence. In this work, we deploy a rest score estimate R(C, j) including 
translation, language and distortion model computed on sequences of source positions. A 
detailed description of the rest score estimate is given by Zens and Ney (2008). The rest 
cost estimate is of special importance for smaller beam sizes. Let τL denote the pruning 
threshold and let Q(C) denote the maximum score of any hypothesis with coverage C: 

(ܳ)ܥ  ൌ max̃,{ܳ(ܥ, ݁̃, ݆)  ,ܥ)ܴ ݆)ሽ.  

Handbook of Natural Language Processing and Machine Translation 275



 

 
Then, we keep a hypothesis with score if: ܳ(ܥ, ݁̃, ݆) 
,ܥ)ܳ  ݁̃, ݆)  ,ܥ)ܴ ݆) τL ≥ ܳ(ܥ) 
 
Generally, we apply histogram pruning with parameter NL. Thus, if there are more 

than NL hypotheses for a particular coverage ܥ, then we keep only the top NL candidates. 
In practice, NL = 500,…, 20 000 are typical values. 

 
Coverage Pruning per Cardinality 

Here, we consider all coverage hypotheses with a given cardinality c. ܳ(ܥ) is defined 
as the maximum score of any hypothesis with coverage C and is used here as score of the 
coverage hypothesis C. Let τc denote the pruning threshold, then we keep a coverage 
hypothesis with score ܳ(ܥ) if: 

(ܥ)ܳ  τc  max:||ୀ,̃,{ܳ(ܥ, ݁̃, ݆)  ,ܥ)ܴ ݆)ሽ. 
 

Generally, we apply histogram pruning with parameter NC . Thus, if there are more 
than NC coverage hypotheses for a particular cardinality c, we keep only the top NC 
candidates. Keep in mind that if we prune a coverage hypothesis C, we remove all lexical 
hypotheses with coverage C. In practice, NC is in the range of 5 to 50. 

2.6.1.3 Search Algorithm 

Due to histogram pruning, the computational complexity of the non-monotone search 
is now also linear in the sentence length (although encountering a rather large constant 
factor). On the other hand, the search is now no longer guaranteed to find the (global) 
optimal translation candidate. However, the experimental results show that the pruning 
strategies almost cause no loss in translation quality. Section 2.6.1.4 also stresses the 
importance of the coverage pruning to adjust the balance between hypotheses 
representing different reorderings (coverage hypotheses) and hypotheses with different 
lexical representations. 

Putting everything together, the resulting pseudo code for the non-monotone search 
algorithm including pruning is: 

 
INPUT: source sentence ଵ݂ translation optionsܧ(݆, ݆ᇱ) for 1  ݆  ݆ᇱ   ,ܬ
 models qTM(·), qLM(·) and qDM(·) 
0 Q(∅,$, 0) = 0; all other Q(·,·,·) entries are initialized to −∞ 
1 FOR cardinality c = 1 TO J DO 
2    IF c > Ls THEN purgeCardinality c − Ls – 1 
3    FOR source phrase length l = 1 TO min{Ls, c} DO 
4       FOR ALL coverages C’ ⊂ {1,…, J} : | C’| = c-l  DO 
5          FOR ALL start positions j ∈ {1,…, J} :  C’∩{j,…, j + l} = ∅ DO 
6             coverage C = C’ ∪{j,…, j + l} 
7             FOR ALL states ݁̃ᇱ, ݆ᇱ ∊  DO (·,·,ᇱܥ)ܳ

276 Chapter 2: Machine Translation from Text 



 

 

8                 partial score ݍ ൌ ,ᇱܥ)ܳ  ݁̃ᇱ, ݆Ԣ) + qDM(j’, j) 
9                 IF q + R(C, j + l) + qTM (j, j + l) isTooBadForCoverage C 
10                 THEN CONTINUE 
11                 FOR ALL phrase translations ݁̃ᇱԢ ∊ E(j, j + l) DO 
12                    partial score q’ = q + R(C, j + l) + qTM (݁̃ᇱԢ, j, j + l) 
13                    IF q’ isTooBadForCoverage C THEN BREAK 
14                    score = q + qTM(݁̃ᇱԢ, j, j + l) + qLM(݁̃ᇱᇱ|݁̃ᇱ) 
15                    IF score+R(C,j+l) isTooBadForCoverage C THEN CONTINUE 
16                      language model state ݁̃ ൌ ݁̃ᇱ ٔ ݁̃ᇱԢ  
17                    IF score > ܳ(ܥ, ݁̃, ݆  ݈)  
18                    THEN ܳ(ܥ, ݁̃, ݆  ݈)  = score 
19                           B (ܥ, ݁̃, ݆  ݈) ൌ ൫ܥᇱ, ݁ᇱ෩ , ݆ᇱ൯ 
20                           A (ܥ, ݁̃, ݆  ݈) ൌ ݁̃ 
21         pruneCardinality c 
 
The basic concept of the algorithm is the same as for the monotone search. A key 

challenge is to perform as much computations outside the inner loops as possible and to 
apply pruning wherever applicable. The function 'pruneCardinality c' applies coverage 
and cardinality pruning after all hypotheses with the current cardinality c have been 
generated (line 21). In the function 'purgeCardinality c', we free the memory (except trace 
back information) of all hypotheses with cardinality c. For example, the coverage sets 
and the LM histories are not needed anymore, and thus, the memory can be reused. 
Furthermore, we can stop the expansion whenever it is clear that the resulting hypotheses 
would be pruned anyway. This is done via the 'x isTooBadForCoverage C' function. As 
the translation options E(·,·) are sorted once before the search, we can process the 
hypotheses according to their score and check: 

 
• if the partial score plus rest cost estimate plus an optimistic estimation for the 

translation model score is too bad, we can skip all of the possible phrase 
translations (line 9),  

• if the partial score without LM is already too bad, we can omit the LM score 
computation (line 13),  

• if the score of the expansion is too bad, we can ignore to check for recombination 
(line 15).  

 
The presented algorithm is comparable with the cube pruning approach of Chiang 

(2005) and Huang and Chiang (2007). We observed that there is virtually no difference 
between cube pruning and our implementation, but the benefits of cube pruning, i.e., 
fewer LM expansions, can be achieved by simpler means as shown in this work. Early 
discarding of likely weak translation candidates and the effect of including the distortion 
rest score is equivalent to the method presented by Moore and Quirk (2007). 

 

Handbook of Natural Language Processing and Machine Translation 277



 

2.6.1.4 Experimental Results 

We carried out experiments on the Chinese-English and Arabic-English GALE MT 
from text tasks (2007 development sets), i.e. translating texts out of the newswire (NW) 
and web domain (WT). The corpus statistics are shown in Table 2.64. Additional 
monolingual data, e.g. GigaWord v2, TDT, etc., were used for LM training. We applied 
modified Kneser-Ney discounting as provided by the SRILM toolkit (Stolcke 2002). For 
both tasks, translation results in terms of BLEU (Papineni et al. 2002) and TER (Snover et 
al. 2006) scores are reported in Table 2.65. These scores were calculated case insensitive 
and w.r.t single references. The reordering limit in all experiments was 10 words. 
 

 Chinese English Arabic English 

Train 
Sentence pairs 8.7M 7.4M 
Running words 230 M 230 M 186 M 188 M 
Vocabulary size 242K 242K 565K 506K 

Test 
NW Sentences 554 686 

Words 19K 21K 27K 30K 

WT Sentences 657 907 
Words 18K 20K 23K 28K 

Table 2.64: Corpus statistics of the Chinese-English and Arabic-English GALE MT from text task (2007 
development sets). 

 BLEU TER 
CE NW 18.66 68.29 
CE WT 15.62 73.01 
AE NW 29.60 54.75 
AE WT 18.92 73.88 

Table 2.65: Translation performance for GALE MT from text tasks (2007 development sets)

In Figure 2.44 and Figure 2.45, we separate the effect of the number of lexical and 
reordering hypotheses on the translation quality. The plots demonstrate that already a 
small number of lexical alternatives is sufficient to achieve good translation quality. For 
each curve, we limited the number of reordering hypotheses and varied the maximum 
number of lexical hypotheses per reordering hypothesis. Thus, along the x-axis we 
increased the search space by allowing for more lexical choice, whereas from curve to 
curve we allowed for more reordering. The overall search space is limited by the product 
of the two numbers, i.e. we varied the beam size from 1 to 64K. Both figures point out 
that there is no benefit from increasing the number of lexical choices beyond 16 
candidates per reordering hypotheses. If we look at the maximum number of reordering 
choices, we see that reordering seems to be only a minor problem for the Arabic-English 
language pair. In combination with the implicit within phrase word reorderings, just 4 
reordering alternatives times 16 lexical hypotheses for each of them are sufficient to 
exhaust the search space. By contrast, the maximum number of coverage hypotheses has 
a much bigger effect on the BLEU score for the Chinese-English translation direction. 
There is a considerable improvement by increasing the number of coverage hypotheses 

278 Chapter 2: Machine Translation from Text 



  

 

 

up to 64. Furthermore, the improvement achieved by taking more reordering alternatives 
into account exceeds the improvement due to more lexical choices. 

 
Figure 2.44: Effect of the number of lexical and 
reordering hypotheses for the Chinese-English 

newswire task. 

 
Figure 2.45: Effect of the number of lexical and 

reordering hypotheses for the Arabic-English 
web text task. 

Finally, we performed a comparison with Moses (Koehn et al. 2007), a publicly 
available decoder. We used identical settings (TM, LM, λm, etc.) to translate the test data 
with varying beam sizes and measured the BLEU score and the speed of the two decoders. 
We observed that we can achieve the same BLEU score as Moses at a higher translation 
speed. Since we used a different subset of our MT development data drawn from the 
newswire domain, the numbers are not directly linked to the ones of Table 2.65 and 
Figure 2.44. Nevertheless, by looking at Figure 2.46, we found out that our decoder is 
faster by a factor of 10 to 20, e.g., if we look at the BLEU score level of 36.9%, our 
decoder (225.3 words per sec) is even 23 times faster than Moses (9.8 words per sec). 
These numbers indicate that our decoder is significantly more efficient than Moses, 
which makes our decoder appealing for online translations. 

 

 
Figure 2.46: Comparison with Moses. 

2.6.1.5 Conclusion 

We presented an efficient search algorithm for phrase-based SMT. At first, we 
analyzed the search problem in detail and then developed the algorithm resorting to 
dynamic programming and beam search. The experimental results pointed out that it is 
important to keep alternative reordering hypotheses in the beam for the Chinese-English 

Handbook of Natural Language Processing and Machine Translation 279



 

language pair. On the other side, already a small number of lexical alternatives per 
reordering yields translations of good quality. A comparison with Moses emphasized the 
efficiency of the presented implementation, as our decoder is significantly faster at the 
same level of translation quality. 

2.6.2. Handling Complexity in Decoding  
Author: Christoph Tillmann 

2.6.2.1 Introduction  

This section presents several extensions of a commonly used phrase-based decoder 
for SMT (Koehn 2004a; Och and Ney 2004).25 Such decoders are widely used within the 
GALE project and this section demonstrates ways of making these decoders more 
efficient in a principled way. It follows work by Tillmann and Ney (2003), in which the 
word reordering problem in SMT is linked to the traveling salesman problem (TSP). In 
that paper, a DP-based (dynamic programming-based) optimization algorithm to solve 
the TSP (Held and Karp 1962) serves as a starting point to handle the word reordering 
problem efficiently. The Held-Karp algorithm is a special case of a shortest path finding 
algorithm in a directed acyclic graph (DAG) (Dreyfus and Law 1977). Following this line 
of argumentation, this section spells out an approach that handles SMT decoding as a 
shortest path finding problem in dag's in some detail. 

The translation model used in this section is a so called block-based model. A block 
is a pair of phrases which are translations of each other. During decoding, we view 
translation as a block segmentation process, where the input sentence is segmented from 
left to right and the target sentence is generated one phrase at a time. For some language 
pairs, close to state-of-the-art performance can be obtained by generating a largely 
monotone block sequence. A block sequence is scored as follows: ݏ௪(ܾଵ) ൌ ∑ ்ݓ ·ୀଵ ݂(ܾ, ܾିଵ).     (2.49) 

We try to find a block sequence b1n that minimizes ݏ௪(ܾଵ) under the restriction that 
the concatenated source phrases of the blocks bi yield a segmentation of the input 
sentence. We use the following block bigram scoring: a block pair (b; b′) is represented 
as a feature vector f(b; b′)  ∈ ℜN. w is the feature weight vector which is trained on some 
development set. The feature vector components are the negative logarithm of some 
probabilities. Under this view, SMT becomes quite similar to sequential natural language 
annotation problems such as part-of-speech tagging, phrase chunking and shallow 
parsing.26 

                                                      
 
25 The work presented in this section is a compilation of work that has been published previously by Tillmann 
(2001, 2006, 2008) and Tillmann and Ney (2003). 
26 Since standard phrase-based decoders rely mostly on locally computed feature functions, the decoding 
algorithms presented in this section are applicable to them as well. 

280 Chapter 2: Machine Translation from Text 



 

 

2.6.2.2 Beam-Search Decoder 

In DP-based decoders for SMT, the search space is dynamically constructed: suitably 
defined lists of path hypotheses are maintained. This section focuses on some details how 
these path hypotheses are managed: using two stacks or multiple stacks. The standard 
phrase-based decoder by Koehn (2004a) uses J hypotheses stacks, one stack for each 
source position in the input sentence. The algorithm finds the Viterbi block translation for 
the model defined in Equation 2.49. Search states are 3-tuples of the following type: 

[ C , h ; d ] .       (2.50) 

h = ([j, j’], [u, v]) is the state history, where ([j, j’]) is the interval where the most 
recent source phrase matched the input sentence and [u, v] are the final two target words 
of the partial translation produced so far. d is the partial translation cost. Here, we use a 
coverage vector C to ensure that each source position is covered exactly once. That way, 
we make sure that a consistent alignment is produced. By including a coverage vector C 
into the search state definition we obtain an inherently exponential complexity: for an 
input sentence of length J there are 2 coverage vectors (Koehn 2004a). By restricting the 
coverage vector appropriately, the decoding can be carried out efficiently as shown in 
Section 2.6.2.3. When a state of the type in Equation 2.50 is extended by some additional 
phrase match, a local transition cost Δ is computed. The partial cost d′ of the new state is 
computed as d′ = d + Δ. If the original state covers k source positions and the latest 
source phrase match is l words long, the new hypothesis is added into the (k + l)-th stack. 

The second implementation uses two stacks to keep a single beam of active states. 
This corresponds to a beam-search decoder in speech recognition, where path hypotheses 
that correspond to word sequences are processed in a time-synchronous way. At a given 
time step the decoder keeps only hypotheses within some percentage of the best 
hypothesis (Lowerre and Reddy 1980; Ney et al. 1992). The state definition in Equation 
2.51 includes an additional field l that keeps track of how much of the most recent source 
phrase match has been covered. 

[ C, l, h; d ] .      (2.51) 

When a phrase is matched to the input sentence, the pointer l is set to position j where 
the most recent block match starts. As long as the pointer l is not yet equal to the match 
end position j′, it is increased: l′ := l + 1. Here, the single-beam decoder processes 
hypotheses cardinality-synchronously, i.e., states that cover k source positions generate 
new states that cover k + 1 positions. The local transition cost Δ′ is spread evenly over 
the span of the latest match of length l: Δ′ = Δ/l . The algorithm stores the states in only 
two stacks Γ and Γ′: Γ contains the most probable hypotheses that were kept in the last 
beam pruning step all of which cover k source positions. Γ′ contains all the newly 
generated hypotheses before they are pruned in the next pruning step. 

Before expanding a state set, states are pruned based on their coverage vector and the 
path cost: two different pruning strategies are used that have been introduced by Tillmann 
and Ney (2003) coverage pruning prunes states that share the same coverage vector C, 2) 
cardinality pruning prunes states according to the number of covered positions k: all 

Handbook of Natural Language Processing and Machine Translation 281



 

states in the beam are compared with each other. The size of the beam depends locally on 
the number of hypotheses whose score is close to the top scoring one. In particular the 
cardinality pruning becomes an efficient pruning strategy in the case of the two-stack 
decoder: all active hypotheses are compared against each other. Adding a state to a stack 
includes adding the state if it is not yet present or updating its shortest path cost d if the 
state is already in that stack. This operation is also called recombination. It is a way to 
prune the stack safely without the risk of additional search errors. The recombination 
becomes very efficient if the coverage vector is restricted as shown in the next section. 
The multiple stack and two stack algorithm search slightly different search graphs where 
the single-beam algorithm with the more ‘regularly’ structured search graph results in a 
more efficient pruning strategy. The results of Tillmann (2006) show that using two 
stacks results in a runtime reduction of a factor of two when compared to a standard 
decoder for phrase-based SMT that uses a single stack for each source position. 

2.6.2.3 Shortest Path Algorithm for Directed Acyclic Graphs (DAG) 

This section compares the phrase decoding algorithms to a shortest path finding 
algorithm for Directed Acyclic Graphs (DAG). A DAG G = (V, E) is a weighted graph for 
which a topological sort of its vertex set V exists: all the vertices can be enumerated in 
linear order. For such a weighted graph, we can compute the shortest path from a single 
source in O(|V| + |E|) time, where |V| is the number of vertexes and |E| number of edges in 
the graph. 

Here, vertices in the DAG correspond to the states defined in Equation 2.50 and 
edges correspond to transitions between states. The vertex set is finite since there is only 
a finite number of states. The corresponding graph contains no loops by definition: state 
transitions exist only from a state that covers fewer source positions to a successor state 
that covers additional (more) source positions. The fact that states are generated by 
increasing coverage cardinality can be understood as computing a topological sort of the 
vertices on the fly. The analysis in terms of a DAG shortest path algorithm can be used 
for a simple complexity analysis of the proposed algorithms. Local state transitions 
correspond to an edge traversal in the DAG search algorithm. These involve costly look-
up operations, e.g., language, distortion and translation model probability lookup. 
Typically the computation time for update operations on lists Γ is negligible compared to 
these probability lockups’. That way, the search algorithm's complexity is simply 
computed as the number of edges in the search graph: O(|V| + |E|) ≈ O(|E|). Such an 
analysis has been presented by Tillmann (2001) for a series of reordering restrictions. In 
the case that the number of holes in the coverage vector for a left-to-right traversal of the 
input sentence is bounded by a constant k, e.g. k = 3, Tillmann (2001) gives a proof that 
the complexity for the resulting search algorithm is bounded by Jk+1 where J is the length 
of the input sentence (the complexity due to the use of a language model or distortion 
model is ignored).27 It is interesting to note that these complexity bounds are achieved 
                                                      
 
27 Tillmann’s analysis (2001) is carried out for a word-based search where search states are of the form [C, j] 
and j denotes the last covered source position j. The search state definition for a phrase-based decoder might 
result in a slightly higher complexity bound, but a dag complexity analysis remains feasible. 

282 Chapter 2: Machine Translation from Text 



 

 

without the typical reordering window size restriction. Designing algorithms with 
provable upper complexity bounds might be a way to obtain more efficient decoding 
algorithm in the future. 

The stack-based decoding algorithms can also be compared to an Earley-style parsing 
algorithm that processes lists of parse states in a single left-to-right run over the input 
sentence. That parsing algorithm can also be analyzed in terms of a DAG (Jurafsky and 
Martin 2000). Furthermore, the use of the pointer l in the state definition in Equation 2.51 
is related to the use of the so-called dotted rules in the Earley parser states. 

2.6.2.4 POS-based Re-order Rules 

The section sketches an extension of the beam-search decoder introduced in Section 
2.6.2.2, where POS-based reorder rules (Crego and Marino 2006) are tightly integrated 
into a single-beam left-to-right search. Reorder rules are typically applied to the source 
and/or target sentence as a preprocessing step (Xia and McCord  2004; Collins et al. 
2005; Paulik et al. 2007) A few dozen reorder rules generate a so-called reordering graph. 
In comparison, the novel rule-driven decoder can handle about 30,000 rules efficiently. 
The algorithm described in this section uses an intermediate data structure called an edge 
that represents a source phrase together with its target phrase translation (A similar data 
structure is called translation option by Koehn (2004a)). For each input interval that is 
matched by some source phrase, we store a list of possible target phrase translations as 
edges in a chart. Additionally, we replace the reorder graph generation by a simpler edge 
generation process which involves only local computation. To formalize the approach, 
the search state definition in Equation 2.50 is modified as follows: 

[ s;  [i, j], r,  sr ,  e  ∈ {false, true}]     (2.52) 

Here, the coverage vector C is replaced by a single number s: a monotone search is 
carried out and all the source positions up to position s (including s) are covered. [i, j] is 
the coverage interval for the last source phrase translated (the same as in Equation 2.50). 
r is the rule identifier, sr is the starting position for the match of the rth rule in the input 
sentence and e is a flag that indicates whether the hypothesis h has covered the entire 
span of rule r  yet.28 

States are extended by finding matching edges: simple or rule edges. We illustrate the 
generation of these edges in Figure 2.47 for the use of two overlapping rules on a source 
segment of four words a0, · · · , a3. The two rules correspond to matching POS sequences, 
i.e., the input sentence has been POS tagged and a POS tag pj has been assigned to each 
word aj . Edges are shown as rectangles. In the top half of the picture, six simple edges 
which correspond to six phrase-to-phrase translations are enumerated. In the bottom half 
of Figure 2.47, we show the newly generated rule edges. A rule edge is generated from a 
simple edge via a reorder rule application and we add it into the chart. Here, rule 1 

                                                                                                                                                 
 
 
28 For technical details, see the work of Tillmann (2008). 
 

Handbook of Natural Language Processing and Machine Translation 283



 

Figure 2.47: Addition of rule edges to a chart containing 6 simple edges. Rule application results in the 
generation of special rule edges. These edges are processed in an order consistent with the rule. 

It is important to point out that the coverage vector component has been removed 
altogether from the search state definition in Equation 2.52. This way, the rule-driven 
search results in an essentially linear time decoding algorithm by 'indexing' the search 
space according to the rules and making extended use of the basic edge data structure. 
The rule-driven decoder uses the two stack implementation shown in Section 2.6.2.2. 
Here, we use an additional probabilistic feature, which is derived from the rule unigram 
count N(r). Tillmann (2008), compares the rule-driven decoder to a standard phrase-
based decoder. It is shown that decoding can be carried out efficiently and reliably with a 
large reordering window of 15 words: a small improvement in terms of BLEU is reported 
for a standard Arabic-English translation task. In addition, the rule-driven decoder 
handles a huge set of about 30,000 rules efficiently. 

2.6.2.5 Efficient Block Segmentation Algorithm 

A common approach to phrase-based SMT is to learn phrasal translation pairs from 
word-aligned training data. In this case, one uses a symmetrization step (Och and Ney 
2004) and a word-alignment is computed for both translation directions source-to-target 
and target-to-source and the intersection of these two alignments is computed to obtain a 
high-precision word alignment. Here, we note that if this intersection covers all source 

284 Chapter 2: Machine Translation from Text 

generates two new edges and rule 2 generates four new edges. For a consistent processing 
of the rule edges within the rule match interval, they are assigned one out of three 
positions: BEGIN, INTER(mediate) and END. We carry out the edge generation process 
in the following way: for each source interval [k, l] all the matching phrase pairs are 
found and added into the chart as simple edges. In a second run over the input sentence 
for each source interval [k, l], all matching POS sequences are computed and the 
corresponding source words ak, · · ·, al are reordered according to the rule permutation. On 
the reordered word sequence phrase matches are computed and added into the chart. This 
edge generation is computationally ‘light-weight’ and typically takes only a few percent 
of the overall decoding time. Finally, the rule-driven decoder searches through the DAG 
defined by both simple and rule edges to find the best scoring block translation sequence. 

 



 

 

and target positions, then it constitutes a bijection between source and target sentence 
positions.29 Additionally, Och and Ney (2004) define the notion of consistency for the set 
of phrasal translations that are learned from word-aligned training data; when projecting 
source intervals to target intervals and target intervals to source intervals no alignment 
link may lie outside the resulting phrase link. In Figure 2.48, we show examples of 
consistent and inconsistent phrase pairs. The word alignment for that sentence pair links J 
= 4 source and I = 4 target words. The alignment links that yield a bijection are shown as 
solid dots. When the alignment A is a bijection, by definition each target position i is 
aligned to exactly one source position j and vice versa and source and target sentence 
have the same length. 
 

 

 
Figure 2.48: The left picture shows three consistent phrase pairs while the right picture shows three non-
consistent phrase pairs. 

We show that an efficient DP-based phrase alignment algorithm exists if the phrase 
pairs involved are consistent with an underlying alignment bijection. Without an 
underlying alignment A, each pair of source interval S and target interval T defines a 
possible phrase link and this unrestricted phrase alignment problem has been shown to be 
NP-complete (De Nero and Klein 2008). The consistency restriction drastically reduces 
the number of phrase pair links. Source and target sentence segmentations are linked in a perfect way. Because of the bijection and the consistency restriction, target interval segmentation alone is sufficient to determine the source interval segmentation and the phrase alignment simultaneously. This close link is illustrated in Figure 2.49. The DP algorithm that makes use of the observation above uses the following auxiliary quantity: 

 

                                                      
 
29 Tillmann (2003) reports an intersection coverage of about 65 % for Arabic-English data and a coverage of 40 
% for Chinese-English data under real conditions. 
 

Handbook of Natural Language Processing and Machine Translation 285



 

 
Figure 2.49: Four block segmentations of a sentence pair if the intersection is a bijection. The segmentation 
that covers the whole sentence pair with a single block is not shown. 

Qb(i) := score of the best partial segmentation that covers the target interval [1, i] and 
ends in block b. The DP-based algorithm to compute Qb(i) is: 

 
input: Parallel sentence pair and alignment A . 
initialization : Qb(i) = −∞ for all i = 0, · · · , I and blocks b . 
Sentence initial cost ܳ(0) = 0.0. 
for each i = 1, 2, · · · , I do 
      for each i ′  =  0, 1, 2, · · · , i − 1 do 
           Project interval T = [i ′ + 1, i] and check block link (T, S) for consistency. 
           if (T, S) is CONSISTENT 
               Set block b  =  (words in T, words in S) 
               ܳ(݅) ൌ maxᇱ Δ(b,b’)+ܳᇱ(݅Ԣ) 
recover optimal segmentation b1n  : 
     - find best end hypothesis:   max ܳ (ܫ)

 
A block segmentation is guaranteed to be found: the block that covers all source and 

target position is consistent by definition. Target intervals are processed from bottom to 
top. A target interval T = [i′, i] is projected using the word alignment A, where a given 
target interval might not yield a consistent phrase pair, e.g. in Figure 2.49, out of all eight 
possible target segmentations, only five yield segmentations with consistent block links. 
For the initialization, we set Qb(i) = −∞ for all target positions i = 0, · · · , I and blocks b 
and cost ܳ (0) = 0.0, where ܾ  is a special starting block positioned at the sentence 
beginning. The final score is obtained as QFinal = maxb Qb(I ), where I is the length of the 
target sentence. Δ(b, b′) denotes a transition cost for placing consecutive blocks which 
might use the same baseline features as in Section 2.6.2. Depending on the features that 
are being used, the auxiliary quantity in ܳ(݅)  needs to be adjusted, e.g., by including 
source matching intervals to handle distortion features. The complexity of the algorithm 

286 Chapter 2: Machine Translation from Text 



 

 

is O(|B|· I2) assuming that the transition cost Δ(b, b′) between adjacent blocks can be 
computed in constant time. Here, |B| denotes the number of blocks that can be extracted 
from the aligned sentence pair. The presented DP-based algorithm is interesting 
theoretically because it solves a NP-complete problem efficiently (under the consistency 
restriction) for arbitrary long sentence pairs and unrestricted phrase-level reordering. 

2.6.2.6 Discussion 

Future work might bring the DP algorithms in Section 2.6.2.2 and Section 2.6.2.5 
together: if the alignment intersection covers a source and target sentence only partially, 
the number of consistent phrase pairs is increased significantly. A stack-based search can 
be used to find a phrase alignment efficiently under the consistency restriction. Such an 
algorithm might be helpful in training a phrase-based system discriminatively. The 
single-pass, left-to-right beam search algorithms presented in Section 2.6.2.2 and Section 
2.6.2.4 might be extended to decode with hierarchical model parameters. Under 
appropriate restrictions, this might result in a more efficient decoding algorithm when 
compared to a standard chart-based decoder. 

2.6.3. Lattice Decoding for Hierarchical Models  
Authors: Philip Resnik, Chris Dyer and Smaranda Muresan 

2.6.3.1 Introduction 

In any machine translation system, a number of choices are made at the outset. 
Typically these include aspects of source language representation such as segmentation, 
morphological analysis and orthographic normalization and are categorized as decisions 
about preprocessing. It is natural to ask which choices lead to better translations. Is it 
better to separate Arabic clitics into distinct tokens? How aggressive should the Chinese 
segmenter be? Unfortunately, the answer to questions like these is, fairly universally, “it 
depends”. For example, Habash and Sadat (2006) show that the optimal Arabic 
preprocessing approach is highly dependent on the amount of training data available. As 
a result, in the absence of useful generalizations, experimenters must resort to labor- 
intensive experimentation on development data, make a choice and hope that it is the 
right choice when the test data come along. 

In this section, we describe a new approach that replaces static preprocessing 
decisions with dynamic representational decisions taken at runtime. The intuition is 
straightforward: the input representation to the decoder should capture all the possible 
decisions, rather than committing to a single resolution of preprocessing ambiguity and 
the decoder should be equipped to make relevant choices taking into account all the 
information available to it. In principle (and, as we will show, in practice), the “right 
choice” might in fact vary from word to word within a sentence being translated. The 
algorithms we present are inspired by recent developments in speech translation, where 
preserving ambiguity about the words that were spoken yields better performance than 
translating the 1-best transcription. We show how decoding with hierarchical phrase-
based models (Chiang  2007) can be extended first to handle confusion networks, which 

Handbook of Natural Language Processing and Machine Translation 287



 

admit particularly efficient dynamic programming algorithms at the cost of some over 
generation (Dyer  2007a), and then to handle weighted lattices in the general case (Dyer 
et al. 2008). We briefly summarize relevant GALE experimentation, demonstrating 
significant improvements in translation quality and we close by discussing the promise of 
the approach for future work. 

2.6.3.2 Preprocessing and Ambiguity 

Because state-of-the-art statistical MT methods focus on learning source/target 
mappings from parallel text, the quality of translation depends heavily on language-
specific processing. In any MT system, such preprocessing turns out to be surprisingly 
important, sometimes bearing as much responsibility for system performance (or lack 
thereof) as the scale of the training data or the cleverness of the models. 

Preprocessing issues need to be addressed for any source and target languages and 
conceptually, these issues bear a strong family resemblance to problems associated with 
index term extraction in cross language information retrieval (Levow et al., 2005). For IR 
systems, the goal is to characterize a document’s content as a collection of discrete units 
that map sensibly to query terms. For MT systems, the goal is to represent the source and 
target sentences as token sequences for which correspondences of meaning are captured 
well by means of token-level alignments. Examples pointed out by Levow, Oard and 
Resnik are just as pertinent for MT as for IR: splitting clitics in Romance languages 
(m’aidez ⇒ m’ aidez ⇒ me aidez), bound morpheme segmentation in Arabic (wktAbAn ⇒ 
w ktAb An [and two books]), Chinese word segmentation and German decompounding 
(finanzminister ⇒ finanz minister [minister of finance]). And, of course, for all 
languages, particularly in the newswire genre, the quality of translation can depend 
heavily on the treatment of numbers, dates and named entities. 

A common approach, really the path of least resistance, is to preprocess the source 
sentence via 1-best analysis and if multiple analyzers are available, to run experiments on 
development data in order to select a single best analyzer whose 1-best output will be 
used. For example, Habash and Sadat (2006) explore a variety of approaches to Arabic 
morpheme splitting for MT. Each segmentation scheme is applied to the full training data 
and test data and the one performing best on the full test set is identified. However, this 
approach fails to take into account the fact that different analyzers may perform well on 
different subsets of the data. 

One could therefore imagine treating different subsets of the data differently in terms 
of their preprocessing. This could include distinctions at the document level,  e.g., 
training different systems, with different preprocessing approaches  for newswire versus 
Web materials. Or, one could imagine going further, taking a supervised classification 
approach and directing different input sentences to MT system variants that use the 
preprocessing choices most likely to lead to good translations. 

In this work, we have taken that intuition a step further, in keeping with the logical 
question it raises: why should the selection of the best preprocessing path even be made 
at the sentence level? It might well be that the quality of preprocessing choices varies 
across individual phrases within a single sentence. This motivates an approach in which 
sub-sentential preprocessing alternatives are preserved in the representation of the source 

288 Chapter 2: Machine Translation from Text 



 

 

sentence, with statistical modeling/learning enabling the best possible combination of 
choices spanning the entire sentence. 

2.6.3.3 Preserving Ambiguity Using Confusion Networks 

Confusion networks are a compact representation of ambiguity that were introduced 
in speech recognition (Mangu et al. 2000) and have proven useful in phrase-based 
statistical machine translation (Bertoldi et al. 2007). In this section, we briefly 
characterize confusion networks in formal terms, then show how they can be handled as 
input to a hierarchical phrase-based decoder and finally summarize some experimental 
results that demonstrate their value. 

2.6.3.3.1 Definition 

A confusion network G is a weighted directed acyclic graph with words labeling its 
edges, a single start node and a single end node. Unlike conventional word lattices, which 
can describe any finite set of strings, CNs are constrained such that every path in G goes 
through every node in the same order. This allows G to efficiently represent a very large 
number of sentences and permits the definition of very efficient dynamic programming 
algorithms for decoding. 

Formally, G can be described as a tuple of a word matrix F and a posterior probability 
matrix p, where pi,j=P(Fi,j|i, o). Traditionally, o represents observations of the acoustic 
signal in a speech recognizer, but in our setting it arises from preprocessing ambiguity. 
We refer to the column of words at Fi as the alternatives at position i.30 

 
1 2 3 4 5 6 7 

sAfr 0.8 Al- 0.9 r}ys 0.9 l- 0.5 Amryky 0.9 ElY 0.3 bgdAd 1.0 
sfyr 0.2 ε 0.1 ε 0.1 Al- 0.4 AmrykA 0.1 lA 0.3 

 
 

  
    

ε 0.1 
  

AlY 0.2   

  
        

fy 0.1 
 

 

  
        

ε 0.1 
 

 

Table 2.66: Example confusion network. A CN has a fixed length and each column has a distribution over 
words that may appear in that position. This example shows some ambiguities typical of an ASR system for 
the Arabic sentence sAfr Alr}ys AlAmryky AlY bgdAd (in English, the American president traveled to 
Bagdad). 

Table 2.66 illustrates a confusion network that would be typical as output from an 
Arabic ASR system. Arabic words are given in the Buckwalter convention.  In this 
artificial example, the 1-best transcription hypothesis (top row) contains two mistakes. 
The first mistake is at position 4, where the correct word, the definite article Al, has lower 

                                                      
 
30 In order to describe sentences that are arbitrarily shorter than the length of the paths through the network, 
Fi can also contain a special symbol ϵ that indicates a word skip. 

Handbook of Natural Language Processing and Machine Translation 289



 

probability than the preposition li. The second, at position six, misidentifies the 
preposition AlY (to) as ElY (on). 

2.6.3.3.2 Decoding confusion networks with hierarchical models 

Bertoldi et al. (2007) demonstrated that phrase-based translation systems can be 
adapted to efficiently translate ambiguous input represented as a confusion network. 
Given the promising performance of the hierarchical translation models introduced by 
Chiang (2007), which enable MT systems to capture hierarchical structure without the 
necessity of appealing to treebank-derived parsing, we found it natural to extend 
decoding for such models in a similar way, in order to defer the resolution of 
preprocessing ambiguity (Dyer 2007a). 

Following Shieber et al. (1995), Goodman (1999) and Chiang (2007), we 
characterize hierarchical analysis, i.e., parsing, as a deductive proof system. In an 
inference rule ܫଵ: ଵݓ ⋯ :ܫ :ܫݓ ݓ ߶ 
 
when antecedents ܫଵ ⋯ ଵݓ  are true with weightsܫ ⋯  ,  then consequent I is provableݓ
with weight w. Axioms are inference rules with no antecedents. ߶ is any number of side 
conditions that must be true for the inference to be made. 

Traditional CKY-style parsing of an input sequence ଵ݂ ⋯ ݂ is captured concisely by 
inference rules (1) and (2), where item [X, i, j] : w indicates that a subtree of category X 
has been recognized spanning ݂ ⋯ ݂ with weight w. The classic dynamic programming 
version of CKY is merely a systematic search for a proof of [S, 0, n] involving 
memoization of inferred items. →శభ:௪ሾ,,ାଵሿ:௪                                                     (2.53) 

→:௪భ   ሾ,,ሿ:௪మ   ሾ,,ሿ:௪యሾ,,ሿ:௪భ×௪మ×௪య                                       (2.54) 

Extending the algorithm to parse a confusion network G rather than single best 
preprocessing analysis ଵ݂ ⋯ ݂  requires two straightforward modifications. 31  First, 
inference rule Equation 2.53 is changed to allow generation of multiple neighbor 
inferences in the search space by “scanning” any token in column Fi. →Fశభ,ೖ:௪ሾ,,ାଵሿ:௪×୮శభ,ೖ                                                   (2.55) 

Second, to properly handle ϵ - words, we add: 
                                                      
 
31 Using dynamic programming, the resulting algorithm runs in time O(n3d), where d is the maximum number 
of preprocessing alternatives in any column. 

290 Chapter 2: Machine Translation from Text 



 

 

ሾ,,ሿ:௪ሾ,,ାଵሿ:௪×୮ೕశభ,ೖ Fାଵ, ൌϵ                                                    (2.56) 

We employ standard log-linear modeling for hierarchical translation (Och and Ney 
2002; Chiang 2007); the probability P(D) for a synchronous derivation D is modeled as 

(ܦ)ܲ  ן ∏ ∏ ݄ூೖ∈ ఒ(ܫ)      (2.57) 

 
where the Ik are inferred items [X, i, j] in the derivation, hi are model features and the λi 
are log-linear parameters tuned on held-out development data. 

2.6.3.3.3 Experimental results 

Dyer (2007a) established the utility of confusion network input for hierarchical 
decoding by demonstrating significant performance improvements in Czech-English 
translation. These experiments used the standard feature set for hierarchical translation 
modeling (Chiang 2007) and confusion networks were constructed by lemmatizing each 
word in the test set and having two alternatives at each position in the confusion network: 
the surface form, and the lemmatized form. Significant improvements over baseline 
surface and lemma systems were observed. Furthermore, our experiments showed that 
previous results, indicating that lemmatizing input before translating it yielded better 
performance, did not generalize to our systems (which used much more training data), 
suggesting that deferring decisions about the proper level of morphological simplification 
until decoding time has value. 

Another source of ambiguity that is well-suited for representation in a confusion 
network concerns the proper amount of diacritization that should be used when 
translating from Arabic. Arabic orthography does not capture all the phonemic 
distinctions that are made in the spoken language since optional diacritics are used to 
indicate consonant quality as well as the identity of short vowels. When these diacritics 
are absent (as is the case in virtually all text genres), a single orthographic form will 
correspond to several phonemically distinct words. This insight was the motivation for a 
study by Diab, Ghoneim and Habash, who used SVMs to predict missing diacritics as a 
preprocessing step for MT (Diab et al. 2007). Although a variety of different 
diacriticization schemes were attempted, the study failed to find any set of diacritics that 
consistently improved translation quality on an Arabic-English task. The authors 
conclude that the fragmentation of training data resulting from the proliferation of 
distinctive forms resulted in poorly estimated translation models. However, confusion 
networks offer the possibility of using the more precise diacritized forms when adequate 
training data is available but backing off to less exact forms when this is not the case. 
Table 2.67 shows the results of our Arabic diacrtization lattice experiments.32 For each 
test set, corresponding to the same test sets used by Diab et al. (2007), we see 
                                                      
 
32 For descriptions of the training data, alignment and language models used, refer to the work of Diab et al. 
(2007). 

Handbook of Natural Language Processing and Machine Translation 291



 

improvements in translation quality as measured by both BLEU and TER. 33  Using 
bootstrap resampling, all improvements are estimated to be significant at p < .05. 

 
Condition MT03 MT05 MT06 

BASELINE (BLEU) 45.0 42.2 44.2 

CN (BLEU) 45.9 43.1 45.1 
BASELINE (TER) 48.3 47.6 46.5 

CN (TER) 47.6 46.7 45.7 

Table 2.67: Results of Arabic diacritization confusion network experiments. 

2.6.3.4 Preserving Ambiguity Using Lattices 

 Many forms of preprocessing do not produce alternatives in one-to-one 
correspondence with the original sequence of input tokens.  Chinese word segmentation 
and Arabic affix splitting are notable examples. It is always possible to approximate more 
general correspondences using ϵ-transitions. For example, a deferred decision about 
whether to preserve the surface form of AlktAb or to represent it as Al ktAb can be 
represented in a confusion network by using an arc ϵ, so that AlktAb+ϵ has the same span 
as Al+ktAb. However, this use of ϵ-transitions creates two problems. First, the resulting 
confusion network overgenerates; that is, it permits paths that would not be possible if a 
single arc for AlktAb could be placed in direct correspondence with two arcs representing 
the distinct tokens Al and ktAb. Second, it can be difficult to decide where the ϵ-transition 
should be deployed: why AlktAb+ϵ and not ϵ+AlktAb? 

These problems disappear if alternative analyses are allowed to use any number of 
arcs necessary to span the same portion of the original input, i.e., if the ambiguous 
alternatives are represented using a lattice structure. In 2008, Dyer et al. introduced 
decoding of lattices within hierarchical phrase-based modeling frameworks, which we 
briefly summarize here. 

2.6.3.4.1 Definition  

A word lattice G = ⟨V, E⟩ is a directed acyclic graph that formally constitutes a 
weighted finite state automaton (FSA) and we will stipulate that exactly one node has no 
outgoing edges and is designated the ‘end node’. It is worth noting that because of these 
restrictions, the FSA is guaranteed to describe a finite set of strings. An edge ei ∈ E is 
labeled with a word f(ei) (in the case of our model, in the source language) or to indicate 
an empty transition. Each edge is associated with a cost, which for present purposes we 
assume is scalar.34 

Two special classes of restricted word lattices deserve mention. First, an FSA 
generating a single sentence is the most basic restricted lattice possible. Second, 
confusion networks are a special case where the linear structure of a sentence is preserved 
and alternative arcs between adjacent nodes permit the encoding of a multitude of paths. 
                                                      
 
33 TER is translation edit rate so lower scores are better. 
34 We have implemented vector-valued edge costs, as well, but do not describe those here. 

292 Chapter 2: Machine Translation from Text 



 

 

 
0 1 2 

         

F0,j p 0,j R 0,j F1,j p 1,j R 1,j F2,j p 2,j R 2,j
         

a 1 1 b 1 2 c 1 3 
         

a 1/3 1 b 1 2 c 1/2 3 
x 1/3 1    d 1/2 3 ϵ 1/3 1       

         

x 1/2 1 y 1 2 b 1/2 3 
a 1/2 2    c 1/2 3 

Table 2.68: Topologically ordered chart encoding of the three lattices in Figure 2.50. Each cell ij in this 
table is a triple ⟨Fi,j, pi,j, Ri,j ⟩ 

For translation, we will find it useful to encode a lattice G in a chart based on a 
topological ordering of the nodes, as described by Cheppalier et al. (1999). The chart 
representation of the graph is a triple of two dimensional matrices ⟨F, p, R⟩, which can be 
constructed from the topologically numbered graph. ࡲ,  is the word label of the jth 
transition leaving node i. The corresponding transition cost is , ,ࡾ .  is the node 
number of the node on the right side of the jth transition leaving node i. Note that ࡾ,  > i 
for all i, j. Table 2.68 shows the word lattice from Figure 2.50 represented in matrix form 
as ⟨F, p, R⟩. 

 
Figure 2.50: Three examples of word lattices: (a) sentence, (b) confusion network and (c) non-linear 

word lattice. Nodes are numbered according to a topological ordering. 

2.6.3.4.2 Decoding lattices with hierarchical models 

We again describe hierarchical phrase-based analysis via inference rules in a 
deductive proof system. Although there are a variety of context-free parsers that can 
parse a word lattice, we present a bottom-up algorithm for parsing general word lattices 
with unrestricted (i.e., non-binarized) context-free grammars, since the synchronous 
grammars learned in typical modeling are not in Chomsky-normal form. The parser we 
present here is a generalization of a CKY parser for lattices presented by Cheppalier et al. 
(1999). 

 
Axioms: ሾܺ →• ,ߛ ݅, ݅ሿ: ݓ ቀܺ ௪→ ,ߛ〉 ቁ〈ߙ ∈ ,ܩ ݅ ∈ ሾ0, |ܸ| − 2ሿ 

Handbook of Natural Language Processing and Machine Translation 293



 

 
Inference rules: ൣܺ → ߙ • ۴,ߚ, ݅, ݆൧: ܺൣݓ → ۴,ߙ • ,ߚ ݅, :,൧܀ ݓ ×  ,ܘ

 ሾܺ → ߙ • ,ߚ ݅, ݆ሿ: ܺൣݓ → ߙ • ,ߚ ݅, :,൧܀ ݓ × ,ܘ ۴, ൌ ߳ 

 ሾܼ → ߙ • ,ߚܺ ݅, ݇ሿ: ଵ ሾܺݓ → ߛ •, ݇, ݆ሿ: ଶሾܼݓ → ܺߙ • ,ߚ ݅, ݆ሿ: ଵݓ × ଶݓ  

 
Goal state: 

 ሾܵ → ߛ • ,0, |ܸ| − 1ሿ 
 
Briefly, the three inference rules, which are shown above are as follows: (1) match a 

terminal symbol and move across one edge in the lattice; (2) move across an ϵ-edge 
without advancing the dot in an incomplete rule; (3) advance the dot across a non-
terminal symbol given appropriate antecedents. The first of these applies when the next 
symbol in the grammar rule is a terminal that matches the label on the jth transition out of 
node i, i.e. a “scan” operation. The second is used to advance across any null transitions 
in the word lattice. The third rule applies when it has been proven that a non-terminal of 
type X starting at node i exists, i.e. a “completer” step. 

The parser we have just described generalizes a standard sentence parser to accept 
word lattices. Note that any derivation in the translation forest picks out a distinct path 
through the source lattice in addition to a translation. For more information on the issues 
associated with decoding, refer to the work of Dyer et al. (2008). 

2.6.3.4.3 Experimental results  
Both Chinese and Arabic orthography concatenate morphemes that are separated by 

whitespace in English. This situation results in large vocabularies in these languages 
which can lead to poor estimations of translation models. To address this, some kind of 
segmentation preprocessing is necessary. However, as we have indicated, the appropriate 
level of segmentation may depend on a variety of factors and vary even within a single 
sentences. Furthermore, the process of generating a segmentation for Chinese is 
inherently ambiguous: not even native speakers can agree on the appropriate 
segmentation granularity. Word lattices represent a very compact way of encoding 
segmentation alternatives and enabling their resolution to be deferred until during 
decoding. In this section, we report results showing the effect of using segmentation 
lattices when translating from Arabic and Chinese into English.  

In our experiments we used two state-of-the-art Chinese word segmenters: one 
developed at Harbin Institute of Technology (Zhao et al. 2001), and one developed at 
Stanford University (Tseng et al. 2005). In addition, we used a character-based 

294 Chapter 2: Machine Translation from Text 



 

 

segmentation. In the remainder of this section, we use cs for character segmentation, hs 
for Harbin segmentation and ss for Stanford segmentation. We built two types of lattices: 
one that combines the Harbin and Stanford segmenters (hs+ss) and one which uses all 
three segmentations (hs+ss+cs). The systems used in these experiments were trained on 
the NIST MT06 Eval training corpus, without the UN data. The Chinese portion of the 
corpus was analyzed with the three segmentation schemes. For the systems using word 
lattices, the training data contained the versions of the corpus appropriate for the 
segmentation schemes used in the input. Table 2.69 summarizes the results for Chinese-
English translation using a standard hierarchical phrase-based translation model. On both 
test sets, there were significant gains for using segmentation lattices over any single-best 
segmentation and as more segmentations were added, the further the quality of the 
translation improved. Results are reported using case-insensitive BLEU with 4 reference 
translations. 

 
(Source Type) Language MT05 MT06 
Cs 

Chinese 

29.0 28.2 
Hs 30.0 29.1 
Ss 30.7 29.6 
hs+ss 31.3 30.1 
hs+ss+cs 31.8 30.4 
SURFACE 

Arabic 
52.5 39.9 

MORPH 53.8 41.8 
MORPH+SURFACE 54.5 42.9 

Table 2.69: Chinese word segmentation  and Arabic morpheme segmentation results in BLEU. 

Arabic orthography, although it uses spaces to delimit many more morphemes than 
Chinese, is nevertheless problematic for MT since a large class of functional elements 
(prepositions, pronouns, tense markers, conjunctions, definiteness markers) are attached 
to their host stems. Thus, while the training data may provide good evidence for the 
translation of a particular stem by itself, the same stem may not be attested when attached 
to a particular conjunction. We, therefore, conjectured that Arabic-English translation 
might also benefit from deferring segmentation decisions until decoding. To test this, we 
created lattices from an unsegmented version of the Arabic test data and generated 
alternative arcs where clitics (mostly prepositions), as well as, the definiteness marker 
(Al-) and the future tense marker (s-) were segmented into tokens. 35  We used the 
Buckwalter morphological analyzer and disambiguated the analysis using a simple 
unigram model trained on the Penn Arabic Treebank. Table 2.69 summarizes the results 
for lattices versus two baseline systems and we again can see that there are advantages 
for including multiple segmentation alternatives in a lattice. 

                                                      
 
35 This corresponds approximately to the D3 segmentation described by Habash and 
Sadat (2006). 

Handbook of Natural Language Processing and Machine Translation 295



 

2.6.3.5 Conclusions 

By introducing the decoding of source lattices, we have opened up a new avenue of 
inquiry based on a key insight that is absent from most current MT research: the given 
source language sentence is not the only way an author’s meaning could have been 
expressed. This is true for low-level preprocessing phenomena of the kind we have 
discussed so far: if you give several Chinese speakers the same written sentence, they 
may disagree on the correct word segmentation even if they agree on the meaning! It is 
also clear for other issues such as morphological analysis. But we would argue that one 
can take this idea even further. 

Consider, for convenience, an example using English as the source: The Democratic 
candidates stepped up their attacks during the debate. Current syntax-based statistical 
MT systems would decode based on analysis of this sentence’s structure, with particular 
treatment of constituents, dependencies, morphological pre-analysis, etc. varying from 
approach to approach. However, the same basic meaning could have been expressed in 
many different ways. 

 
• During the debate the Democratic candidates stepped up their attacks.  
• The Democratic contenders ratcheted up their attacks during the debate.  
• The Democratic candidates attacked more aggressively during the debate.  
• The candidates in the Democratic debate attacked more vigorously.  
 
Some variations are lexical (candidates versus contenders, attacks versus attacked) 

and others reflect syntactic alternatives for packaging up the combination of attacking 
and increasing, e.g., whether the attacking or the increasing serves as the main verb. 
However, the observation underlying the work we have reported here holds at all levels: 
given the available training data, some parts of the sentence’s meaning may be better 
translated when expressed one way, while other parts may be better translated when 
expressed another way and we want to employ the power of the entire model in order to 
make those choices in a fine-grained way. 

We plan, therefore, to use source-sentence lattices to further investigate the power of 
encapsulating source-sentence expression alternatives, now tackling a whole range of 
variations from those closer to the surface (segmentation, morphology) all the way up to 
variations at the level of meaning (lexical choice, syntactic alternations, paraphrase). 
Source lattices are the key to attacking these problems in a unified setting and, crucially, 
exploiting generalizations about the source language while still maintaining the surface-
to-surface orientation, trainability and decoding paradigm that characterizes the statistical 
state of the art. 

296 Chapter 2: Machine Translation from Text 



 

 

2.7 Adaptation and Data Selection 

2.7.1. BiTAM: Bilingual Topic AdMixture Models for 
Bilingual Topic Exploration, Word Alignment and 
Translation  

Authors: Bing Zhao and Eric P. Xing 

2.7.1.1 Introduction 

 Most SMT systems view parallel data as independent sentence-pairs whether or not 
they are from the same document-pair. As a result, translation models are learned only at 
sentence-pair level and sentences are translated indifferently, because the document 
context and structure – for translating documents – are generally ignored. In fact, 
translating documents differs considerably from translating a group of unrelated 
sentences. A sentence, when taken out of the context from the document, is generally 
more ambiguous and less effective for translation. One should avoid destroying a 
coherent document by simply translating it into a group of sentences which are unrelated 
to each other and detached from the context. 

Developments in statistics, genetics and machine learning have shown that the latent 
semantic aspects of complex data can often be captured by a model known as the 
statistical admixture (or mixed membership model of Erosheva et al. (2004)). 
Statistically, an object is said to be derived from an admixture if it consists of a bag of 
elements, each sampled independently or coupled in a certain way, from a mixture model. 
In the context of SMT, each parallel document-pair is treated as an object. Depending on 
the chosen modeling granularity, all sentence-pairs or word-pairs in a document-pair 
correspond to the basic elements constituting the object and the mixture from which the 
elements are sampled can correspond to a collection of translation lexicons and 
monolingual word frequencies based on different topics (e.g., economics, politics, sports, 
etc.). Variants of admixture models have appeared in population genetics, as published by 
Pritchard et al. (2000) and text modeling, as published Blei et al. (2003) and Erosheva et 
al. (2004). 

Recently, we proposed a Bilingual Topic-AdMixture (BiTAM) means (Zhao and 
Xing 2006) of modeling the topical aspects of SMT; this enables word-pairs from a 
parallel document-pair to share one topic-specific translation lexicons, with proper 
document-specific weights. BiTAMs, generalizations over IBM Model-1, are efficient to 
learn and scalable for large training data. However, they do not capture locality 
constraints of word alignment, i.e., words “close-in-source” are aligned to words “close-
in-target”, under document-specific topical assignments. To incorporate such constraints, 
we integrate the strengths of both HMM and BiTAM and propose a Hidden Markov 
Bilingual Topic-AdMixture model, or HM-BiTAM as used by Zhao and Xing (2007), for 
word alignment to leverage both locality constraints and topical context underlying 
parallel document-pairs. Related works of Saiz (2008), skipping the Bayesian part of the 
mixtures priors, showed limited improvements on using mixtures of translation models of 
IBM Model-1 IBM Model-2 and HMMs. Improvements are also reported on adapting the 

Handbook of Natural Language Processing and Machine Translation 297



 

language models using topical mixtures defined over bilingual data (Tam et al. 2007) and 
adapting translation models using mixtures with mixture-weights assigned using 
empirical methods based on empirical text distance defined on data partitions. This 
section focuses on Bayesian learning to mix the underlying translation models in various 
hierarchical structures. 

In the BiTAM framework, a topic corresponds to a point in a conditional simplex: 
each source word invokes a simplex, in which each dimension corresponds to a bilingual 
translation candidate. The hidden topics are leveraged in learning topic-specific bilingual 
translation lexicons, to enrich the emission distributions in IBM models or HMM, and 
thereby, improve their modeling expressiveness. Under this framework, bilingual 
statistics are shared more effectively across different topics. Constrained by the hidden 
topics, a word will have only limited translation candidates. The translation models, 
therefore, are expected to be smaller and sharper. 

In this work, we start from the simplest BiTAM, drawn upon IBM Model-1, to 
introduce the basics. We examine HM-BiTAM, integrating HMM, to estimate topic-
specific word-to-word translation lexicons (lexical mappings), as well as the monolingual 
topic-specific word-frequencies for both languages, via variational learning from the 
document-level context in parallel document-pairs. HM-BiTAM models offer a 
principled way of inferring optimal translation from a given source language in a context-
dependent fashion. We report an extensive empirical analysis of HM-BiTAM, in 
comparison with the related methods. The results show our model’s effectiveness on the 
word-alignment task. We also demonstrate two application aspects: the utilization of 
HM-BiTAM for bilingual topic exploration and its ap-plication for improving translation 
qualities. 

2.7.1.2 Notations and Terminologies 

To identify the latent variables to capture the abstract notations of bilingual topics, 
we start from a revisit to the parallel data to introduce the entities in our BiTAM models 
including “word-pair”, “sentence-pair” and “document-pair” following the notations used 
in Brown et al. (1993): 

 
• A word-pair (fj, ei) is the basic unit discrete data for machine translation, where fj 

is a French word and ei is an English word. j and i are the positions in the 
corresponding French sentence f and English sentence e.  

• A sentence-pair (f, e) contains the source sentence f with a length of J: f = ଵ݂ , ଶ݂ , ⋯ ݂ , ⋯ ݂ ; a target sentence e with a length of I: e = ݁ଵ , ݁ଶ , ⋯ ݁ , ⋯ ݁ூ . 
The two sentences f and e are translation of each other. 

• A document-pair (F, E) contains two documents: source document: F and the 
target E, which are mutual translations of each other. F has N sentences: F = 
{fn|n = 1, ⋯, N}. For simplicity, let’s assume the sentence-level alignment is one-
to-one mapping. Therefore, a document-pair has a sequence of N parallel 
sentence-pairs {(fn, en)|n = 1, ⋯, N}, where (fn, en) is the nth parallel sentence-
pair. 

298 Chapter 2: Machine Translation from Text 



 

 

• A parallel-corpus C is a collection of M parallel document-pairs, indexed by d: 
{(F, E)d|d = 1, ⋯, M}. For notations used in the noisy channel model, we denote 
the French part monolingual corpus as CF and English part as CE. We are using 
the end-user terminology: French is the source language and English is the target 
language; we are translating foreign language (e.g., French) into English. 
  

Traditional statistical machine translation uses a noisy-channel model to describe the 
translating process: כ܍ ൌ argmax{܍ሽ  (2.58)                                                        (܍)ܲ(܍|)ܲ

where e is a English sentence, decoded as the translation of the source sentence f; P(f|e) is 
the translation model, for example, the traditional IBM Model 1 ~ 5 and HMM; P(e) is a 
language model, such as a trigram. 

Now, the translation model can be extended to the document-level using the notations 
given in the above. Instead of translating at the sentence-level, we are able to translate at 
the document-level, shown in Eqn. 2.59. ۱ாכ ൌ argmax{Cಶሽ ܲ(۱ி|۱ா)ܲ(۱ா)                                              (2.59) 

where ܲ(۱ி|۱ா) is a document-level translation model: a generative model for the whole 
document of CF as one entity. In this model, we are able to introduce the topics for each 
document-pair to improve the model’s expressive power. Rather than being translated 
into unrelated segments and then pieced together later on, as presented in traditional 
approaches, the sentences in the new model can meaningfully be threaded and integrated 
during translation by the topics in the documents. As a result, the translation is more 
coherent since the document is treated as a whole entity. 

A document-pair (F, E) is treated as an admixture of topics, which is induced by 
random draws of a topic, from a pool of topics, for each sentence-pair. A unique 
normalized and real-valued vector θ, referred to as a topic-weight vector, captures the 
contribution of different topics and is instantiated for each document-pair, so that the 
sentence-pairs with their alignments are generated from topics mixed according to these 
common proportions. Marginally, a sentence-pair is word aligned according to a unique 
topic-specific bilingual model given the hidden topical assignments. Therefore, the 
sentence-level translations are coupled, rather than being independent as assumed in the 
IBM or HMM models and their extensions. 

We will introduce the proposed document-level translation models, starting from 
extending IBM Model-1 to BiTAM Model-1 and then moving to HMM, with similar 
derivations, to finalize HM-BiTAM. 

2.7.1.3 Bilingual Topic Admixture Model-1 

The first model BiTAM-1, proposed within this BiTAM framework, generalizes over 
the simplest IBM Model-1 style word alignment. BiTAM-1 is a generative model: each 
parallel document-pair is represented as a random mixture over a set of latent topics, in 
which each topic is characterized by a distribution over aligned word pairs. 

Handbook of Natural Language Processing and Machine Translation 299



 

2.7.1.3.1 Sampling Scheme for BiTAM Model-1  

The generative process (i.e., sampling process) for a parallel document-pair (F, E) is 
described as below: 

 
1. Sample number of sentence-pairs N from a Poisson(γ). 
2. Sample topic assignment θd from a Dirichlet (α).  
3. For each sentence-pair (f, e) in the document,  

(a) Sample source sentence length J from a Poisson(δ).  
(b) Sample a topic zi from Multinomial(θd);  
(c) Sample a word alignment link aj from a Dirichlet (ζ).  
(d) Sample a foreign word fj according to p(fj|e, aj, zj, ߚ௭ೕ). 

 
The parameters of this model are: K topic indicator variables for each parallel 

document-pair: t1, t2, ⋯, tK ; A K-dimensional Dirichlet random variable θd, which takes 
values in the (K−1)-simplex and has the following probability density on this simplex: ߠ), (ߙ ൌ ൫∑ ఈೖೖ಼సభ ൯∏ ೖ಼సభ (ఈೖ) ଵఈభିଵߠ ⋯  ఈ಼ିଵ  (2.60)ߠ

where the parameter α is a K-dim vector with each component α k > 0 and Γ(x) is the 
Gamma function. The alignment vector is a={a1, a2, ⋯, aJ }, with aj=i maps the French 
word fj to the English word ei. To be more specific, word alignment link aj is a selector, 
which selects the English word at position aj to be aligned to the French word fj at the 
position j in the French sentence. The word-level topic-specific translation lexicon 
probabilities are parameterized by a k × |VF| × |VE| table: β, where |VE| is the size of 
English vocabulary and |VF| is the size of French vocabulary. ߚ,, ൌ ݂) ൌ ݂|݁ ൌ݁, ݖ ൌ ݇) is a corpus-level parameter:  topic-specific translation lexicon. In practice, this 
table is very sparse: one French word f has on average a few candidate English word e 
translations given the topic assignment of z; this table is usually much smaller than the 
standard IBM Model-1: p(f|e), which does not consider topical context at all. 

The last two sub-steps in the sampling scheme define a translation model: an 
alignment link aj is proposed and an observation of fj is generated according to the 
proposed topic-specific distributions and the word alignment. In this BiTAM-1, the 
generative scheme is simplified starting from as simple as the one in IBM Model-1: aj is 
sampled independently and uniformly. 

The number of sentence-pairs N is independent of the other data generating variables 
θ, z and a. Thus, its randomness is generally ignored in our modeling. The same 
assumption applies to the variable of J from a Poisson(δ) and we choose the same 
uniform distribution as used in IBM models and ignore the prior for aj from a Dirichlet 
(ζ) in this section. Also, we do not consider the modeling of E in the translation model 
within the noisy-channel paradigm. The graphical model describing this generative 
model of BiTAM-1 is shown in Figure 2.51. 

 
 

300 Chapter 2: Machine Translation from Text 



 

 

 
Figure 2.51: Graphical Model representations for (a) IBM Model-1 and (b) BiTAM Model-1. Model 
parameter for IBM Model-1 in figure (a) is B = p(f|e), which is a simple word-to-word translation lexicon; 
Model parameters for BiTAM Model-1 (in (b) ) are topic-specific lexicons: B = p(f|e, z) and a Dirichlet prior 
parameter α. All the plates represent replicates. The outmost plate (M-plate) represents M bilingual document-
pairs, while the inner N-plate represents the N repeated choice of topics for each sentence-pairs in the 
document; and the inner J-plate represents J word-pairs within each sentence-pair. Shaded nodes are 
observations; unshaded nodes are hidden variables. α and β are the corpus level parameters. B, for BiTAM, is 
a three-dimensional matrix, representing the topic-specific translation lexicons: p(f|e,z). 

Note, for BiTAM models within one parallel document-pair, the sentence-pairs are 
connected by the hidden node θd. Therefore, the sentence-pairs are no longer independent 
of one another as in the traditional IBM Models; they are conditionally independent given 
the topic mixture assignment of θd. In this model, the simplified assumption is that each 
sentence-pair has a topic. Therefore, the word-pairs within a sentence-pair are not 
independent as in the traditional IBM Model-1; they are conditionally independent given 
the sentence-pair’s topic z. 

Given the parameters of α, β and a set of N alignment vectors A = {an|n = 1, ⋯, N}, 
the conditional distribution of a topic mixture θ, a set of N topics z and a set of N bag-of-
word observations f is given by: 

,۴)  ,ۯ ,ߠ ,۳|ܢ ,ߙ (ߚ ൌ p(ߙ|ߠ) ∏ ேୀଵ(ݖ) ,)ܲ ,܍|܉  ,(௭ߚ
 

where p(zn|θ) = θi is the probability for sampling a topic z, such that zni = 1, where i is a 
unique topic index. Marginalizing out θ and z, we can obtain the marginal distribution of 
generating F from E for each parallel document-pair, as shown below: ۴), ,۳|ۯ ,ߙ (ߚ ൌ  p(ߙ|ߠ)൫∏ ∑ p(z୬|ߠ)௭ேୀଵ ,) ,܍|܉ ௭)൯ߚ  (2.61)  ,ߠ݀

where )|܍, ,܉ (௭ߚ  is a topic-specific sentence-level translation model under the 
topic assignment of zn. After marginalizing out the hidden topic assignments z, we have: )|܍, ,܉ (ߠ ൌ ∑ ௭) ,܍ห൫(ߠ|ݖ ,܉  ௭൯,                                 (2.62)ߚ

where (ݖ|ߠ) ൌ ߠ  is topic weight for choosing topic-i and this reveals that the 
proposed sentence-level alignment model is, in essence, an additive mixture of topic-
specific translation models. 

According to the simplified model shown in Figure 2.51, the French words fj’s are 
conditionally independent of each other, the alignment variables aj’s are independent of 

Handbook of Natural Language Processing and Machine Translation 301

 



 

other variables and further more we assume all alignments are equally probable for 
simplicity reason. Now the probability distribution for each sentence-pair is further 
simplified: ), ,܍|܉ (௭ߚ ൎ ଵூ ∏ ) ݂|ୀଵ ݁ೕ, ߚ௭).                                        (2.63) 

The translation model for the whole parallel corpus is given by taking the product of 
the marginal probabilities of each single document as shown in the following equation: 

,ࡱ۱|ࡲ۱)  ,ߙ (ߚ ∏ ן  ∑    (ߙ|ௗߠ) ቀ∏ ∑ ୀࢊࡺࢊࢠ(ௗߠ|ௗݖ) ∏ ,ௗ) ,ௗ܍|ௗ܉ ௭ୀଵߚ )ቁ{۱ሽௌୀଵ   (2.64)ߠ݀

 
Overall, in this generative model, the model parameters are at different levels. The 

parameters of α and β are corpus-level parameters; θd is the document-level parameter, 
sampled once per document-pair; the variable ߚ௭  is the sentence-level parameter, 
sampled once per sentence-pair in the document-pair; the variables of fdnj and adnj are 
word-pair level variables, sampled for each word-pair in the sentence-pair. 

2.7.1.3.2 Inference and Learning for BiTAM Model-1  
For inference and learning, the posterior distribution of the hidden variables given a 

document-pair is: ۯ), ,ߠ ,۴|ܢ ۳, ,ߙ (ߚ ൌ (۴,ۯ,ఏ,۳|ܢ,ఈ,ఉ)(۴|۳,ఈ,ఉ) .    (2.65) 

 

 
Figure 2.52: Graphical Model representation of the variational distribution to approximate the posteriors in 

Bilingual AdMixture Model-1. 

Due to the hybrid nature of the “V” structure (explain-away structure) in the 
graphical model in Figure 2.51, the hidden variables of A, θ and z are all coupled 
together. This makes the joint posterior distribution intractable to compute. We resort to 
the generalized mean field approximation as used by Xing et al. (2003) and carry out the 
variational inference. The variational inference is essentially to use Jensen’s inequality to 
obtain an adjustable lower bound on the log-likelihood, which is easier to optimize. 

λ

ࣵऊ
 ߛ߶

θ 
N M

K

302 Chapter 2: Machine Translation from Text 



 

 

Shown in Figure 2.52, a simple way to obtain a tractable family of lower bounds is to 
break the graphical model into smaller isolated pieces and decouple the estimation of the 
posteriors with additional free variational parameters introduced. The family is indexed 
by the following variational distributions. For a given document-pair, the approximated 
posterior inference is shown below. ߠ)ݍ, ,ܢ (܉ ൌ (ߛ|ߠ)ݍ ∏ (|߶ݖ)ݍ ∏ ୀଵேୀଵ(ߣ|ܽ)ݍ      (2.66) 

where the Dirichlet parameter γ and the multinomial parameters (߶1,⋯, ߶n) and the 

parameters are document specific. 
The estimation of the parameters is variational EM. In the E-step, for each document-

pair, find the optimal values for the variational parameters; in the M-step, maximize the 
resulting lower bound on the log-likelihood with respect to the model parameters of α 
and β. 

For machine translation, the inference algorithm we want should be fast and efficient. 
We use variational EM with deterministic annealing (Smith and Eisner 2004) to 
overcome the local optimum.  

According to the assumption of exchangeability for document-pairs, the overall log 
likelihood of a parallel corpus is the sum of the log likelihood of each individual 
document-pair; moreover, the overall variational lower bound is the sum of each 
individual variational bounds. The updating equations for the variational parameters are 
straightforward to compute via a fix-point algorithm, as listed as below: ߛ ൌ ߙ  ∑ ߶ௗேୀଵ                                                                          (2.67) ߶ௗ ן exp൫Ψ(ߛ) − Ψൣ∑ ᇱᇱߛ ൧൯ exp ቀ∑ ∑ ߶ௗ log ,,ೕூߚ ቁ   (2.68) 

ௗߣ ן exp ቀ∑ ߶ௗ log ,,ೕୀଵߚ ቁ                                                    (2.69) 

To update the topic-specific lexicons βk,e,f , we have: 
,,ߚ  ן ∑ ∑ ∑ ∑ ߶ௗூୀଵ ,݂)ߜ ݂)ߜ(݁, ݁)ୀଵேୀଵௌ ௗߣ                    (2.70) 

The true prior of the observed document-pair is unknown, but it can be learned 
iteratively. To learn the parameter of Dirichlet prior α, one can use gradient ascent 
approach (Sjölander et al. 1996). At each iteration, αk > 0 is updated using the sufficient 
statistics of γk collected from the whole corpus. 

2.7.1.4 Hm-BiTAM: Hidden Markov Bilingual Topic AdMixture Model 

In this section, we generalize over HMM, a key component for most of the state-of-
the-art SMT systems, within BiTAM framework, using similar derivations as described 
in the previous section for BiTAM Model-1, to formulate Hidden Markov Bilingual 

Handbook of Natural Language Processing and Machine Translation 303

conditional multinomial parameters (ߣn1,⋯, ߣnJn) are the free parameters. These 

Topic AdMixture (HM-BiTAM) models.  



 

2.7.1.4.1 Hidden Markov Model for Sentence-Pairs  

Within a sentence-pair, Vogel et al. (1996) implement the “proximity-bias” 
assumption, that words “close-in-source” are aligned to words “close-in-target”, which is 
effective for improving word alignment accuracies, especially for linguistically close 
language-pairs.  

A graphical model representation for such an HMM is illustrated in Figure 2.53(a).  
Specifically, we introduce the mapping j→ aj, which assigns a French word fj in position j 
to an English word ei in position i = aj denoted as eaj. Each (ordered) French word fj is an 
observation and it is generated by an HMM state defined as [eaj, aj], where the alignment 
indicator aj for position j is considered to have a dependency on the previous alignment 
aj-1. Thus, a first-order HMM for an alignment between e ≡e1:I and f ≡f1:J is defined as: ൫ ଵ݂:൯|݁ଵ:ூ) ൌ  ෑ ൫ ݂൯ ቚ݁ೕቁ

ୀଵ ൫ ଵ݂:൯|݁ଵ:ூ)భ:ೕ  

where p(ajjaj¡1) is the state transition probability; J and I are sentence lengths of the 
French and English sentences, respectively. The transition model enforces the proximity 
bias.  
 

 

 
Figure 2.53: The graphical model representations of (a) HMM and (b) HM-BiTAM, for parallel corpora. 
Circles represent random variables, hexagons denote parameters and observed variables are shaded. 

Much of HMM’s success relies on the transition probability of ܶ,ᇲ ൌ ൫ ܽ ൌ ݅ห ܽିଵ ൌ ݅ᇱ൯which considers only the positions of the source and target 
tokens. The emission probability  ቀ ݂ቚ݁ೕቁ, however, totally ignores the lexical context 
either from sentence-pairs, or document-pairs. Overall, HMM is less sensitive in training 
toward a better lexicon due to the ignorance to the adjacent lexical context. Systems rely 
on higher-order IBM models to refine the lexical choices. 

In HM-BITAM, we not only incorporate the transition probability of HMM, but also 

304 Chapter 2: Machine Translation from Text 

introduce an emission probability which is sensitive to the lexical context:ܤ ൌ ,݁|݂) ݇), 

 

 



 

 

abstracted in the choice of a topical mixture k, which is inferred via variation learning 
with a Dirichlet prior. Each observation f is generated by a vector and each weighted 
dimension is defined by a tuple: (e, k), inferred from the context as in BiTAM-1.  Given a 
document-pair (F, E) containing N one-to-one sentence-level aligned pairs (en, fn), HM-
BiTAM implements the following generative scheme.  

2.7.1.4.2 A Generative Scheme for HM-BiTAM  

 
Similar to BiTAM-1, with a conjugate prior Dirichlet(α), the topic-weight vector 

(TWV), θm for each document-pair (Fm, Em), is sampled independently from each other. 
Let the non-underscripted θ denote the TWV of a typical document-pair (F, E), a 
collection of topic-specific translation lexicons be B ≡ {Bk}, where ۰,, ൌ ܲ (݂ ൌ݂|݁ ൌ ݁; ݖ  ൌ ݇) is the conditional probability of translating e into f under a given topic 
indexed by z; the topic-specific monolingual model β≡{βk}, which can be the usual LDA-
style monolingual unigrams. The sentence-pairs {fn, en} are drawn independently from a 
mixture of topics. Specifically (as illustrated also in Figure 2.53(b)): 

 
1. θ ∼ Dirichlet(α)  
2. For each sentence-pair (fn, en),  

(a) zn ∼ Multinomial(θ)   sample the topic  
(b) ݁,ଵ:ூ|ݖ ∼  ܲ(݁|ݖ;  sample all English words from a monolingual    (ߚ

topic model (e.g., a monogram model), 
(c) For each position ݆ ൌ 1, … ,  in fn  i. ܽܬ ∼  ܲ൫ ܽห ܽିଵ; ܶ൯ sample an alignment link ܽ  from a first-order 

Markov process, ii. ݂ ∼  ܲ൫ ݂ห݁, ܽ, ;ݖ ۰൯ sample a foreign word ݂  according to a topic specific translation lexicon.  
From the sampling scheme above, a sentence-pair consists of a mixture of latent 

bilingual topics; words within the sentence-pair shares the same set of topics; each topic 
(a point in a conditional simplex) is associated with a distribution over bilingual word-
pairs. Overall in HM-BiTAM, a word f is generated by two hidden factors: a latent topic z 
drawn from a document-specific distribution over K topics and the English word e 
identified by the hidden alignment variable a, as summarized in ܲ൫ ݂ห݁, ܽ , ;ݖ ۰൯. 
Both hidden factors will be inferred in a mean-field approximation setup as detailed in the following section. 
2.7.1.5 Learning and Inference for HM-BiTAM 

 
The graphical model in Figure 2.53(b) and the sampling scheme in Section 2.7.1.4 

describe the conditional dependencies among the variables. For models like HM-BiTAM, 
one has to resort to approximate methods to exploit conditional independence 

Handbook of Natural Language Processing and Machine Translation 305

as shown in the graphical model representation in Figure 2.53(b). The lexical context is 



 

relationship for estimating posteriors, which are closely related to mean-field methods in 
statistical physics. A generalized mean-field approximation scheme is presented here for 
infering latent variables in HM-BiTAM and a variational EM algorithm for estimating the 
model parameters. All the algorithms could be easily extended to various HM-BiTAMs 
where a topic is sampled at a deeper level for each word-pair, or a higher level at 
document-pair. Please refer to the work of Zhao (2007) for detailed derivations. 

2.7.1.5.1 Variational Inference  

The complete likelihood of a document-pair (F, E) under HM-BiTAM can be 
expressed as follows: ܲ(۴, ۳, ,ߠ ,Ԧݖ ,ߙ|Ԧߙ ,ߚ ܶ, ۰) ൌ )ܲ(ߠ|Ԧݖ)ܲ(ߙ|ߠ) Ԧܽ|ܶ)ܲ(۴| Ԧܽ, ,Ԧݖ ۳, ,Ԧݖ|۳)ܲ(۰  (2.71)        ,(ߚ

where ܲ( Ԧܽ|ܶ) ൌ ∏ ∏ ܲ( ܽ|ୀଵேୀଵ ܽିଵ; ܶ)  represents the probability of a sequence of 
alignment jumps;   ܲ(۴| Ԧܽ, ,Ԧݖ ۳, ۰) ൌ ∏ ∏ ܲ( ݂|ୀଵேୀଵ ܽ, ,ࢋ ,ݖ ۰)  is the document-
level translation probability; and ݖ|۳)ࡼԦ, (ߚ  is the topic-conditional likelihood of the 
English document based on a topic-dependent monogram model as used in LDA. 

To approximate the posterior ( Ԧܽ, ,ߠ ,Ԧ|۴ݖ ۳)  we employ a generalized mean field 
approach and adopt the following factored approximation to the true posterior: ߠ)ݍ, ,Ԧݖ Ԧܽ) ൌ )ݍ(Ԧ|߶ሬԦݖ)ݍ(Ԧߛ|ߠ)ݍ Ԧܽ|ߣԦ), where ݍ(ߛ|ߠԦ), (Ԧ|߶ሬԦݖ)ݍ   and ݍ൫ ԦܽหߣԦ൯  are 
reparameterized Dirichlet, multinomial and HMM, respectively, determined by some 
variational parameters that correspond to the expected sufficient statistics of the 
dependent variables of each factor as shown by Xing et al. (2003). 

As well known in the variational inference literature, solutions to the above 
variational parameters can be obtained by minimizing the Kullback-Leibler divergence 
between ߠ)ݍ, ,Ԧݖ Ԧܽ) and ߠ), ,Ԧݖ Ԧܽ|۴, ۳), or equivalently, by optimizing the lower bound of 
the expected (over q(·)) log likelihood defined by Equation 2.68, via a fixed-point 
iteration. Due to space limit, we forego a detailed derivation and directly give the fixed-
point equations below: 

ොߛ  ൌ ߙ  ∑ ߶,ேୀଵ ,                                                                                                    (2.72) 

 ߶, ן exp ቀ(Ψ(ߛ) − Ψൣ∑ ୀଵߛ ൧ቁ ×  exp ቀ∑ ∑ ,,ߣ log ,ୀଵூୀଵߚ ቁ ×  exp ቀ∑ ∑ ∑ 1∈ಶ ( ݂∈ಷ , ݂)1(,ூ,ୀଵ ݁, ,,ߣ(݁ log መ,,ߣ ,,ቁ,                         (2.73)ܤ ן  exp൫∑ ,ିଵ,ᇲߣ log ܶ,ᇲூᇱୀଵ ൯ × exp൫∑ ”,ାଵ,ߣ log ܶ”,ூᇱୀଵ ൯ ×                   exp൫∑ ∑ 1∈ಶ ( ݂∈ಷ , ݂)1(݁, ݁) ∑ ߶, log ,,ୀଵܤ ൯ ×                 exp ቀ∑ ߶, log ,ୀଵܤ ቁ                                                                                (2.74) 

306 Chapter 2: Machine Translation from Text 



 

 

where 1(·,·) denotes an indicator function and Ψ(·)represents the digamma function. 
The vector ߶ ≡ ൫߶,ଵ, … , ߶,൯ given by Equation 2.74 represents the approximate 

posterior of the topic weights for each sentence-pair (fn, en). The topical information for 
updating ߶ is collected from three aspects: aligned word-pairs weighted by the 
corresponding topic-specific translation lexicon probabilities, topical distributions of 
monolingual English language model and the smoothing factors from the topic prior. 

Equation 2.75 gives the approximate posterior probability for alignment between the 
j-th word in fn and the i-th word in en. Intuitively, the first two terms represent the 
messages corresponding to the forward and backward passes in HMM; the third term 
represents the emission probabilities and it can be viewed as a geometric interpolation of 
the strengths of individual topic-specific lexicons; and the last term provides further 
smoothing from monolingual topic-specific aspects. 
 
Inference of optimum word-alignment One of the translation model’s goals is to infer 
the optimum word alignment: a* = argmaxa P(a|F, E). The variational inference scheme 
described above leads to an approximate alignment posterior ݍ( Ԧܽ,  Ԧ), which is in fact aߣ
reparameterized HMM. Thus, extracting the optimum alignment amounts to applying an 
Viterbi algorithm on ݍ( Ԧܽ,  .(Ԧߣ

2.7.1.5.2 Variational EM for parameter estimation 

To estimate the HM-BiTAM parameters, which include the Dirichlet hyperparameter 
α, the transition matrix T, the topic-specific monolingual English monogram {ߚሽሬሬሬሬԦ and the 
topic-specific translation lexicon {Bk}, we employ an variational EM algorithm which 
iterates between computing variational distribution of the hidden variables (the E-step) as 
described in the previous subsection and optimizing the parameters with respect to the 
variational likelihood (the M-step). Here are the update equations for the M-step: ܶ”,ᇲ ן ∑ ∑ ,ିଵ,ᇲୀଵேୀଵߣ”,,ߣ ,,ܤ (2.75)                                                  , ן ∑ ∑ ∑ ∑ 1൫ ݂, ݂൯1(݁, ݁)ୀଵ ,,ூୀଵߣ ߶,ୀଵேୀଵ ,ߚ (2.76)          , ן ∑ ∑ ∑ 1,ୀଵ ,,߶,ூୀଵேୀଵߣ .                                           (2.77) 

For updating Dirichlet hyperparameter α, which is a corpus-level parameter, we 
resort to gradient accent as used by Sjölander et al. (1996). The overall computation 
complexity of the model is linear to the number of topics.  

2.7.1.5.3 Exploring Bilingual Topics using HM-BiTAM 

HM-BiTAM can be used as a bilingual topic explorer in the LDA-style and beyond. 
Given paired documents, it can extract each topic in both languages in a consistent 
fashion, which is not guaranteed otherwise when topics are extracted independently from 
each language using two separate LDAs. 

Handbook of Natural Language Processing and Machine Translation 307



 

The topics of English and the foreign language will share similar semantic meanings 
because of the parallel nature of the training data for machine translation. Shown in 
Figure 2.53(b), both the English and foreign topics are sampled from the same 
distribution θ, which is a document-specific, topic-weight vector. 

Although there is an inherent asymmetry in the bilingual topic representation in HM-
BiTAM (that the mono-lingual topic representations β are only defined on English and 
the foreign topic representations are implicit via the topical translation models), it is not 
difficult to retrieve the monolingual topic representations of the foreign language via a 
marginalization over hidden word alignment. For example, the frequency (i.e., 
monogram) of foreign word fw under topic k can be computed by ܲ( ௪݂|݇) ∼  ∑ ܲ( ௪݂|݁௪ᇲ, ′)௪ܤ ܲ(݁௪′|ߚ)                                        (2.78) 

As a result, HM-BiTAM can actually be used as a bilingual topic explorer in the 
LDA-style and beyond. Given paired documents, it can extract the representations of 
each topic in both languages in a consistent fashion (which is not guaranteed if topics are 
extracted separately from each language using, e.g., LDA), as well as the lexical 
mappings under each topics, based on a maximal likelihood or Bayesian principle. In 
Section 2.7.1.5, we demonstrate outcomes of this application. 

2.7.1.6 Experiments  

We investigate three main aspects of the HM-BiTAM model: word alignment, 
bilingual topic exploration and machine translation. The Chinese-to-English data was 
used for experiments. We implemented BiTAMs based on the implementations of IBM 
Models and HMM in GIZA++ (Och and Ney 2004), which includes refinements such as 
special a treatment of the jump to a NULL word. 
 

Train #Doc. #Sent. # tokens
English Chinese 

     

TreeBank 316 4172 133,598 105,331 
Sinorama04 6367 282176 10,321,061 10,027,095 
Sinorama02 2373 103252 3,810,664 3,146,014 
Chnews.2005 1001 10317 326,347 270,274 
FBIS.BEIJING 6111 99396 4,199.030 3,527,786 
XinHua.NewsStory 17260 98444 3,807,884 3,915,267 
     

Parallel translation 33,428 597,757 22,598,584 20,991,767 

Table 2.70: Training data statistics 

Our training data is a collection of parallel document-pairs, with document 
boundaries explicitly given. As shown in Table 2.70, the corpora used are mainly general 
newswire, covering various topics, such as economics, politics, educations and sports. 
For word alignment evaluation, our test set consists of 95 document-pairs, with 627 
manually-aligned sentence-pairs and 14,769 alignment links in total, from NIST 
MTEval’01 dry-run data. Word segmentations and tokenizations were also fixed 
manually for optimal word-alignment decisions. This test set contains relatively long 

308 Chapter 2: Machine Translation from Text 



 

50
52
54
56
58
60
62
64
66

6M 11M 22.6M

HMM

BiTAM

IBM-4

HM-BiTAM

 

 

sentence-pairs, with an average sentence length of 40.67 tokens. The long sentences 
introduce more ambiguities for alignment tasks. 

For testing translation quality, NIST MTEval’02 MT evaluation data is used as 
development data and ten documents from NIST MTEval’04 MT evaluation are used as 
the unseen test data. BLEU scores are reported to evaluate translation quality with HM-
BiTAM models. More experimental setups for several BiTAM conditions are 
documented by Zhao (2007). 

2.7.1.6.1 Empirical Validation  

Word Alignment Accuracy We trained HM-BiATM using parallel corpora of sizes 
ranging from 6M to 22.6M words and we used the F-measure, the harmonic mean of 
precision and recall, to evaluate word alignment accuracy. The baseline IBM models 
were trained using an 18h543 scheme. 36  Refined alignments are obtained from both 
directions of baseline models in the same way as described by Och and Ney (2004). 

 

Figure 2.54: Alignment accuracy (F-measure) of different models trained on corpora of different sizes. 

Figure 2.54 shows the alignment accuracies of HM-BiTAM, in comparison with that 
of the baseline-HMM, the baseline BiTAM and the IBM Model-4. Overall, HM-BiTAM 
gives significantly better F-measures over HMM, with absolute margins of 7.56%, 5.72% 
and 6.91% on training sizes of 6M, 11M and 22.6M words, respectively. In HM-BiTAM, 
two key factors contribute to narrowing down the word-alignment decisions: the position 
and the lexical mapping. The position part is the same as the baseline HMM, 
implementing the “proximity-bias”. Whereas the emission lexical probability is different, 
each state is a mixture of topic-specific translation lexicons, of which the weights are 
inferred using document contexts. The topic-specific translation lexicons are sharper and 
smaller than the global one used in HMM. Thus, the improvements of HM-BiTAM over 
HMM essentially resulted from the topic-admixture lexicons adjusted to a particular 
document-pair. Not surprisingly, HM-BiTAM also outperforms the baseline BiTAM 
significantly, because BiTAM captures only the topical aspects and ignores the proximity 
bias. 

Notably, HM-BiTAM outperforms IBM Model-4 by a margin of 3.43%, 3.64% and 
2.73%, respectively. IBM Model-4 already integrates the fertility and distortion 
                                                      
 
36 Eight iterations for IBM Model-1, five iterations for HMM and three iterations for IBM Model-4 with 
deficient EM. 

Handbook of Natural Language Processing and Machine Translation 309



 

submodels on top of a HMM, which already narrows down the word-alignment choices. 
However, IBM Model-4 does not have a scheme to adjust its lexicon probabilities 
specific to document topical-context as in HM-BiTAM. HM-BiTAM wins over IBM-4 
by leveraging topic models that capture the document context.  

 
Likelihood on Training and Unseen Documents:  

Figure 2.55 shows comparisons of the likelihoods of document-pairs in the training 
set under HM-BiTAM with those under IBM Model-4 or HMM. Each point in the figure 
represents one document-pair; the y-coordinate corresponds to the negative log-likelihood 
under HM-BiTAM and the x-coordinate gives the counterparts under IBM Model-4 or 
HMM. Overall the likelihoods under HM-BiTAM are significantly better than those 
under HMM and IBM Model-4, revealing the better modeling power of HM-BiTAM. 

 
Figure 2.55: Comparison of likelihoods of data under different models. Top: HM-BiTAM 

vs. IBM Model-4; bottom: HM-BiTAM vs. HMM. 
 
We applied HM-BiTAM to ten document-pairs selected from MT04, which were not 

included in the training. These unseen document-pairs contain long sentences and diverse 
topics. As shown in Table 2.71, the likelihoods of HM-BiTAM on these unseen data 
dominates significantly over HMM, BiTAM and IBM Models in every case, confirming 
that HM-BiTAM indeed offers a better fit and generalizability for the bilingual 
document-pairs. 

 
 
 
 
 
 
 
 

310 Chapter 2: Machine Translation from Text 



 

 

 
Publisher Genre IBM-1 HMM IBM-4 BiTAM HM-

BiTAM 
AgenceFrance(AFP) news -3752.94 -3388.72 -3448.28 -3602.28 -3188.90 
AgenceFrance(AFP) news -3341.69 -2899.93 -3005.80 -3139.95 -2595.72 
AgenceFrance(AFP) news -2527.32 -2124.75 -2161.31 -2323.11 -2063.69 
ForeignMinistryPRC speech -2313.28 -1913.29 -1963.24 -2144.12 -1669.22 

HongKongNews speech -2198.13 -1822.25 -1890.81 -2035 -1423.84 
People’s Daily editorial -2485.08 -2094.90 -2184.23 -2377.1 -1867.13 
United Nation speech -2134.34 -1755.11 -1821.29 -1949.39 -1431.16 
XinHua News news -2425.09 -2030.57 -2114.39 -2192.9 -1991.31 
XinHua News news -2684.85 -2326.39 -2352.62 -2527.78 -2317.47 
ZaoBao News editorial -2376.12 -2047.55 -2116.42 -2235.79 -1943.25 

Avg. Perplexity  123.83 60.54 68.41 107.57 43.71 

Table 2.71: Likelihoods of unseen documents under HM-BiTAMs, in comparison with competing models. 

2.7.1.6.2 Application 1: Bilingual Topic Extraction  

Monolingual topics: HM-BiTAM facilitates inference of the latent LDA-style 
representations of topics made by Blei et al. (2003), in both English and the foreign 
language (i.e., Chinese), from a given bilingual corpora. The English topics (represented 
by the topic-specific word frequencies) can be directly read-off from the HM-BiTAM 
parameters β. As discussed in Section 2.7.1.3, even though the topic-specific distributions 
of words for the Chinese corpora are not directly encoded in the HM-BiTAM, we can 
marginalize over all possible alignments of the parallel data to synthesize them based on 
the monolingual English topics and the topic-specific lexical mapping from English to 
Chinese. 

Table 2.72 shows five topics, in both English and Chinese, learned via HM-BiTAM. 
The top-ranked frequent words in each topic exhibit coherent semantic meanings; and 
there are also consistencies between the word semantics under the same topic indexes 
across languages. Under HM-BiTAM, the two respective monolingual word distributions 
for the same topic are statistically coupled due to sharing of the same topic for each 
sentence-pair in the two languages. Whereas, if one merely apply LDA to the corpora in 
each language separately, such coupling can not be exploited. This coupling enforces 
consistency between the topics across languages. However, like general clustering 
algorithms, topics in HM-BiTAM, are not necessarily to present obvious semantic labels. 

For instance, Topic-”sports” is about the sports-meetings for handicapped people and 
Topic-”energy” is about the resources needs for the quick economic development in 
China. Secondly, the semantic labels are highly parallel between English and Chinese:  
the exact parallel nature on topic assignment captured by our HM-BITAM. 
 
Topic-Specific Lexicon Mapping: Word-to-word translation lexicons (lexical 
mappings) between languages are invaluable resource for multilingual natural language 
processing. IBM Models, however, do not exhibit enough power to disambiguate the 
translation candidates, because they solely rely on the cooccurrence counts from the 
training data. Once the topic/subject is changed, IBM models can not adjust accordingly 
for choices for word translations. Contrary to IBM models, our proposed BiTAM models 

Handbook of Natural Language Processing and Machine Translation 311



 

present a very natural way to handle switching topics and subjects via topic mixtures. 
 

“sports” “housing” “takeover” 
English Chinese English Chinese English Chinese 
teams 人(people) house 住房(house) Chongqing 国家(countries) 

sports 残疾(handicapped) construction 房(house) company 重庆(Chongqing) 
disabled 体育(sports) government 九江(JiuJiang) takeover 厂(factory) 
games 事业(career) employee 建设(construction) Shenzhen 天津(Tianjin) 

members 水(water) living 澳门(macao) Tianjin 政府(government) 
people 世界(world) provinces 元(Yuan) City 项口(project) 
cause 区(region) Macau 职工(workers) national 国有(national) 
water 新华社(Xinhua) Anhui 口前(current) government 深圳(Shenzhen) 

national 队员(team memeber) yuan 国家(national) project 兼并(take over) 
handicapped 记者(reporter)   省(province) companies 收购(buy) 

 
“stocks” “energy”

English Chinese English Chinese 
Shenzhen 深圳(shenzhen) gas 公司(company) 
Singapore 深(shen) company 天然气(gas) 
HongKong 新(Singapore) energy 两(two) 

Stock 元(Yuan) usa 国(countries) 
National 股(stock) Russia 美(U.S.) 

Investment 香港(Hongkong) France 记者(reporters) 
Yuan 国有(state-owned) Chongqing 关系(relations) 

options 外资(foreign investment) resource 俄(Russian) 
million 新华社(Xinhua) China 法(France) 
dollar 融资(refinancing) economy 重庆(Chongqing) 

Table 2.72: Monolingual topics of both languages learned from parallel data. It appears that the English 
topics are highly parallel to the Chinese ones (annotated with English gloss). 

Topics TopCand “meet” Meaning Probability TopCand “power” Meaning Probability 
Topic-1 运动会 sports meeting 0.5085 电力 electric power 0.5657 
Topic-2 满足 to satisfy 0.1602 电厂 electricity factory 0.6560 
Topic-3 适应 to adapt 0.9211 涉及 to be relevant 0.9853 
Topic-4 调整 to adjust 0.9969 力量 strength 0.4105 
Topic-5 会见 to see someone 0.6937 力量 strength 0.9976 
Topic-6 - - - - - - 
Topic-7 满足 to satisfy 0.4676 瓦 Electric watt 0.6137 
Topic-8 运动会 sports meeting 0.4877 实力 power 1.0000 
Topic-9 - - - 输 to generate 0.5046 
Topic-10 会见 to see someone 0.5515 力量 strength 1.0000 

IBM Model-1 运动会 sports meeting 0.5903 电厂 power plant 0.3143 
HMM 运动会 sports meeting 0.7220 力量 strength 0.5149 

IBM Model-4 运动会 sports meeting 0.6084 力量 strength 0.5063 

Table 2.73: Topic-specific translation lexicons learned by HM-BiTAM. We show the top candidate 
(TopCand) lexicon mappings of “meet” and “power” under ten topics. (The symbol “-” means nonexistence 
of significant lexicon mapping under that topic.) Also shown are the semantic meanings of the mapped 
Chinese words and the mapping probability p(f|e, k).  

Table 2.73 shows two examples of topic-specific lexicon mapping learned by HM-
BiTAM. Given a topic assignment, a word usually has much less translation candidates 
and the topic-specific translation lexicons are generally much smaller and sharper. 

312 Chapter 2: Machine Translation from Text 



 

 

Different topic-specific lexicons emphasize different aspects of translating the same 
source words, which cannot be captured by the IBM models or HMM. This effect can be 
observed from Table 2.73.  
 
Empirical Measures of Lexicon Distributions: We can further investigate the 
translation lexicons by looking into three measures.  First, each English word invokes a 
simplex and the entropy can be defined for each English word, as in the following 
equiation.  The entropy reflected how confident the lexicon p(f|e, k) is on the translations 
of a given English word e. 
(݁|݂)ܪ  ൌ  ∑ (݁|݂) · ∈ಷ.(݁|݂)݈݃       (2.80) 

The second measure we use if the L-2 Norm.  This measure is to describe the shape 
of the lexicon’s distribution.  It describes the probability mass allocated for the top-
ranked translation candidates for a given English word e. Id rhw top-ranked candidates 
occupy large probability mass, the L-2 Norm will also be large. The large L-2 Norm 
value indicates the distribution peaks around the top-ranked candidates and the lexicon is 
considered to be sharp.  To compute the L-2 Norm, we have: 
 ܵ(݂|݁) ൌ ∑ ଶ.∈ಷ(݁|݂)      (2.81) 
  

The third measure we take is the “epsilon-95%”, which is an empirical measure of 
the “fuzziness” of a lexicon. For a given English word, we count how many of the 
proposed translation candidates are above the threshold of p(f|e, k)  0.05. This is a 
rough measure to tell how skewed the lexicon’s distribution is.   

,݁|݂)  ݇) topics entropy L2-Norm epsilon-95% 
IBM-1 - -2.20 0.2051 6.10 
HMM - -1.17 0.3979 3.66 
IBM-4 - -0.92 0.4820 2.99 

HM-BiTAM 

1 -0.759 0.5740 2.51 
2 -0.754 0.5764 2.48 
3 -0.792 0.5615 2.56 
4 -0.817 0.5491 2.61 
5 -0.834 0.5398 2.65 
6 -0.837 0.5381 2.65 
7 -0.856 0.5299 2.68 
8 -0.879 0.5212 2.74 
9 -0.878 0.5215 2.73 
10 -0.848 0.5338 2.66 

Table 2.74 Measuring Translation Lexicons’ Size, Distribution shape and Sharpness for IBM Model-1, 
HMM, IBM Model-4 and HM-BiTAM models. 

Table 2.74 shows the average entropy, L2-Norm, epsilon-95% and lexicon’s size for 
baseline IBM models, HMM and HM-BiTAM. 

Handbook of Natural Language Processing and Machine Translation 313



 

2.7.1.6.3 Application 2: Machine Translation  
The parallelism of topic assignment between languages modeled by HM-BiTAM, as 

shown in Section 2.7.1.4 and exemplified in Table 2.72, enables a natural way of 
improving translation by exploiting semantic consistency and contextual coherency more 
explicitly and aggressively. Under HM-BiTAM, given a source document DF, the 
predictive probability distribution of candidate translations of every source word, 
P(e|f,DF), must be computed by mixing multiple topic-specific translation lexicons 
according to the topic weights p(z|DF) determined from monolingual context in DF. That 
is: ܲ(݁|݂, (ிܦ ן ܲ(݂|݁, (ிܦ ൌ ∑ ܲ(݂|݁, ݖ ൌ ݖ|݁)ܲ(݇ ൌ ݖ)ܲ(݇ ൌ ி)ୀଵܦ|݇ .    (2.82) 

We used (݁|݂,  ி) to score the bilingual phrase-pairs in a state-of-the-art GALEܦ
translation system trained with 250M words. We kept all other parameters the same as 
those used in the baseline. Then decoding of the unseen ten MT04 documents in Table 
2.75 was carried out. 

Figure 2.56 shows the inferred topic-assignments for the oracle experiments and the 
documents paired with their hypotheses, respectively. There are obvious differences 
between the two types of data. First, the document paired with its translations has more 
small topics inside. The documents paired with human translation usually have less noisy 
topics. In this sense, the model predictions are closer to human intuitions. The first and 
the last topics (topic-1 and topic-10) play larger role in the topic-assignment from oracle 
experiments. Topic 6 is everywhere when we use the translation hypothesis from the 
baseline system. This is because the errors introduced from the baseline hypothesis are 
mostly content words and they can change the topic assignment significantly. 
 

Systems 1-gram 2-gram 3-gram 4-gram BLEU r4n4 NIST BLEUm4r4c

Baseline SMT 75.63 42.71 25.00 14.30 32.78 7.8749 31.31 
Ground Truth 76.10 43.85 26.70 15.73 34.17 7.9333 32.46 

Hyp-Doc 76.14 42.74 25.41 14.74 32.95 7.8268 31.46 
HM-BiTAM 76.77 42.99 25.42 14.56 33.19 7.8478 31.67 

Table 2.75: Decoding MT04 10-documents: Gale systems’ output from CMU; Experiments using the topic 
assignments inferred from oracle document-pairs (Ground Truth); testing monolingual document paired with 
its English translations (Hyp-Doc); the topical assignments inferred via HM-BITAM; case-insensitive BLEU 

score (BLEUn4r4), NIST scores and case-sensitive BLEU score (BLEUn4r4c) are reported. 

Table 2.75 shows the state-of-the-art phrase-based SMT Gale-baseline and the HM-
BiTAM model, on the NIST MT04 test set. If we know the ground truth of translation to 
infer the topic weights, the improvement is from 32.78 to 34.17 BLEU points. With 
topical inference from HM-BiTAM using monolingual source document, improved N-
gram precisions in the translation were observed from 1-gram to 4-gram. The largest 
improved precision is for unigram: from 75.63% to 76.77%. Intuitively, unigrams have 
potentially more ambiguities for translations than the higher order ngrams, because the 
later ones encode context information. The overall BLEU score improvement of HM-
BiTAM over other systems including the then state-of-the-art is from 32.78 to 33.19. 

314 Chapter 2: Machine Translation from Text 



 

 

 

 
Figure 2.56 Topic-assignment for the 10 testing documents for both oracle scenario (left side: oracle) and 

LDA scenario using translation hyps(right side: Hyp-Doc).  

2.7.1.7 Discussion and Conclusion 

In this section, we present a novel framework, BiTAM, for exploring hidden 
bilingual topical aspects given document-level context. In particular, we propose HM-
BiTAM to integrate HMM’s proximity constraints for improved word-alignment 
accuracies and translation qualities. Graphical model representations, variational 
inference and learning for BiTAMs have been developed for efficient model training and 
applications in translation. Our experimental results show significant improvement of 
word-alignment accuracies over related methods; we also demonstrate the capability of 
HM-BiTAM to explore synchronously coherent bilingual topics for parallel data. 
Encouraging improvement of translation qualities are obtained using admixture of topics 
inferred via HM-BiTAM. Although the margin is modest, it is noteworthy that the current 
HM-BiTAM offers more training perplexity reduction across genres. As the parallel data 
released by LDC become to have richer labels for genre information, we expect further 
improvements to use the available lightly supervised labels directly in our proposed 
BiTAM framework. 
 

Authors: Arindam Mandal, Dimitra Vergyri, Dilek Hakkani-Tür, Wen Wang, Jing Zheng Andreas Stolcke, 
Gokhan Tür and Necip Fazil Ayan 

2.7.2.1 Introduction  

Statistical machine translation (SMT) models (Brown et al. 1990; Koehn et al. 2003; 
Chiang  2007) rely on the availability of parallel data to estimate probabilities of target 
language sentences given source language sentences. The “goodness” of the estimated 
probabilities depends on the quality, size and coverage of the parallel corpus. The 
conventional approach for improving performance of SMT systems is to increase the size 
of the parallel corpus by adding new training data. Therefore, a significant amount of 
work has been put into collecting source data and manually translating them into the 
target language. For instance, within the GALE program (Olive 2005), thousands of 

Handbook of Natural Language Processing and Machine Translation 315

2.7.2. Active Learning Based Data Selection for Machine 
Translation  

  

 

 

 



 

words from different genres have been manually translated each year, with the goal of 
improving the performance of the SMT systems. However, obtaining large amounts of 
high quality parallel training data is an expensive process, since human involvement is 
needed to generate reliable translations. 37 Therefore, it is an important issue for the SMT 
community to be able to select the most beneficial data to be translated, and thus, use the 
human resources in the most efficient way. 

In this study, we propose two new methods to select new source data for manual 
translation to improve the performance of SMT systems that already achieve reasonable 
translation performance levels. Our first approach is motivated by active learning 
techniques (Seung et al. 1992) and uses a measure of disagreement between SMT 
systems to select the most informative training sentences to translate and add to the 
training corpus. The second method is similar to the n-gram coverage-based selection 
approach (Eck et al. 2005) and uses a perplexity measure to select sentences that seem 
more different from examples already observed, but robustly avoids selecting rare 
examples in the domain of interest. Our approaches are intended to choose the best 
source data from a pool of available source sentences and they do not rely on information 
from the target side. The selected data is not specific to any test set and is intended to 
generalize to all test sets by choosing data that is different from what is already available. 
Our experiments show that using either the disagreement-based approach or the 
perplexity-based approach, translation models trained using only one-fifth of the 
additional training corpus are able to achieve the same or better performance as those 
trained using all available additional parallel data, across multiple domains and 
evaluation sets. 

2.7.2.2 Related Work  

Prior research on parallel data collection or data selection can be categorized into 
three groups: automatic data collection, domain/test-set adaptation, and data selection for 
translation.  

Under automatic data collection methods, Resnik et al. (2003) identified web pages 
with similar content that appear in two or more languages, and extracted sentences that 
are translations of each other from these web pages. Munteanu et al. (2005) mined 
comparable corpora in two languages to identify sentences that are translations of each 
other. However, these automatic methods are not perfect and generate errorful parallel 
training data. 

The most widely explored area in data selection for SMT is the adaptation of 
translation models or the language models to a given test set or domain. Hildebrand et al. 
(2005) use information retrieval techniques to select parallel training data that is most 
similar to a given test set. Lu et al. (2007) use an information retrieval system to assign 
weights to each training sentence pair according to their similarity to the sentences in a 
given test set, prior to estimating the translation model. Ittycheriah and Roukos (2007) 
employ a data “sub-sampling” method by choosing the most similar sentences from the 
                                                      
 
37 Eck et al. (2005) report that it costs up to 250,000 USD to translate 1 million words into English from a 
new language. 

316 Chapter 2: Machine Translation from Text 



 

 

training data that have the highest n-gram overlap with a given test set. Adaptation can be 
performed at the level of the target language model (Zhao et al. 2004; Eck et al. 2004) by 
selecting data using information retrieval techniques and using it to adapt the language 
model.  

A final group of prior work focuses on “smart” selection of new source sentences to 
be translated by humans to improve performance of SMT systems. To our best 
knowledge, the only work in this area is n-gram coverage-based data selection method 
proposed by Eck et al. (2005), where sentences that have the highest number of 
previously unobserved n-grams are selected since these would have the greatest impact 
on coverage. In this study, we follow the third approach and propose two new methods to 
select data for translation by humans. Our goal is to improve SMT systems by selecting 
data that is different from what is already available rather than choosing sentences that 
are similar to a given test set. Thus, our methods are general enough to improve 
performance on all test sets. 

2.7.2.3 Inter-System Disagreement 

As mentioned in Section 2.7.2, our approach to selecting parallel training data is 
motivated by active learning techniques. Active learning has been used in a wide range of 
applications including spoken language processing (Tür et al. 2005), parsing (Hwa 2004) 
and automatic speech recognition (Hakkani-Tür et al. 2002; Kamm and Meyer  2002). 
One class of active learning approaches introduced by Seung et al. (1992) uses a set of 
distinct learners, each trained with a small number of annotated examples, to label new 
training examples. The training examples for which the distinct learners agree the least 
(in labeling) are chosen for careful labeling and used as training data for the learner. This 
ensures that the learner is provided with the most informative training examples. Such 
approaches are referred to as query-by-committee methods and form the basis of our 
study. A detailed theoretical analysis of query-by-committee methods for neural networks 
is reported in Freund et al. (1997). 

First, we start with a set of N different SMT systems S, which are trained using the 
same (or similar) initial source language training data corpus Di and use them to translate 
a held-out corpus Dh. Thus, the SMT systems in S differ only in the algorithms they use 
in generating hypothesized translations. Next, we estimate the intersystem disagreement 
described in Algorithm 1. 

Finally, we learn a function f (linear regression in this study) that can predict the 
actual translation performance on new (and untranslated) source language data, D

u
, using 

measures of intersystem translation disagreement, as described in Algorithm 2. A 
threshold on the predicted translation performance on sentences in Du is used to select 
candidate sentences for careful translations that can be used as additional parallel training 
data. We will refer to Du as the corpora of interest for the rest of this article. 

 
 
 

 

Handbook of Natural Language Processing and Machine Translation 317



 

Algorithm 1: Computing SMT system disagreement 
1: Start with a set of S≡{S1, S2, …, SN} of N distinct SMT systems. The translation 

model for each system in S is trained using the same (or similar) set of initial 
source language sentences Di. Given a set of held-out source language 
sentences Dh: Dh ⊈ Di. 

2: Translate the source sentences in Dh using each system in S to obtain a set of N 
translations {T1, T 2,…, T N} 

3: Compute the translation error X : Xj∀Tj ∈ T using as translation references the 
translation in each T k : ∀k ∈ {1, …, N}; k 6= j. Each translation error Xj 
reflects the degree of disagreement between system Sj and remaining 
systems in S. These error metrics are referred to as inter-system translation 
errors.  

4: Also, evaluate the translation error Y :  Yj∀Tj  ∈ T using as translation 
references the target language side of Dh (this step is required for Algorithm 
2).  

 
 

Algorithm 2: Data selection based on predicted SMT error 
1: Start with a set S of N distinct SMT systems (Step 1 of Algorithm 1) and a 

set of source language sentences Du: Du ⊈ Di. Given a set of inter-system 
translation disagreement metrics X and a set of actual translation error 
metric Y (Steps 3 and 4 of Algorithm 1 respectively)  

2: Learn a function f : X → Y  
3: Obtain a set of translations for Du using each system in S and inter-system 

translation disagreement metricsU (same as Steps 3 and 4 of Algorithm 1)  
4: Use the function f and disagreement metrics U to predict translation error V  
5: Use a threshold on predicted translation error metrics V to choose the most 

informative sentences from Du  
 

2.7.2.4 Perplexity-Based and Hybrid selection 

We also explored an n-gram-based approach for selecting new parallel corpora. This 
approach required the prior availability of two language models: Li, which is trained on 
source sentences in corpora Di and Li+u, which is trained on source sentences in both Di 
and Du. The data selection approach is described in Algorithm 3. The aim of the 
perplexity ratio metric of Algorithm 3 is to avoid selecting sentences that are rare 
(outliers) in the corpora of interest Du. Sentences that are rare in both Di and Du, will 
have high perplexity values (for both Li and Li+u) and a low ratio, while sentences of 
interest, i.e., the ones with high perplexity (and hence rare) according to Li and low 
perplexity according to Li+u (not rare in the domain of interest), will have high perplexity 
ratios. Using a predetermined threshold on perplexity ratio of sentences, candidates for 
careful translation can be selected from Du and subsequently used as additional parallel 
training data. 

 

318 Chapter 2: Machine Translation from Text 



 

 

Algorithm 3: Data selection based on perplexity 
1. Start with a language model Li trained on the source 

language sentences Di and a language model Li+u trained on 
source sentences in Du and Di  

2. Compute the set of perplexities Pi of the sentences in Du 
using Li and the perplexities Pi+u of the sentences in Du 
using Li+u  

3. Compute the ratio α= Pi / Pi+u for each sentence in Du. Use 
a threshold on to choose informative sentences from Du  

  
To leverage potential benefits of complementary data sets selected by the intersystem 

disagreement-based and perplexity methods, we considered an approach that combines 
the two. In this approach, we select equal amounts of additional training data using each 
of the previous approaches. 

2.7.2.5 Systems and Data Sets 

For this study, we focused on Mandarin-to-English translation and used N = 3 
different SMT systems, each developed independently and achieving competitive 
translation performance in recent NIST benchmark evaluations. System S1 (Zheng et al. 
2008) is based on hierarchical phrase-based translation (Chiang 2007). System S2 
(LanguageWeaver 2005) and System S3 (Zens 2008) are phrase-based translation 
systems. For all three systems both translation models and target language models were 
trained on Mandarin-to-English parallel newswire and web text data sets released by 
LDC prior to 2005 comprising about 29 million English words.38 These sets correspond 
to the set Di. The corpora of interest for data selection, Du consisted of the Mandarin-to-
English parallel data released by LDC after 2005, also including both newswire and web 
text sources and comprised approximately 16 million English words.39 Since the focus of 
this study was selecting training data for translation models, we kept the target-language 
model fixed in all experiments. It was trained using the English side of the corresponding 
parallel data of Di corpora, the English Gigaword third edition corpus comprising 3.62 
billion words with a vocabulary size 163,941. It used modified Kneser-Ney smoothing 
(Chen and Goodman 1998) and was trained using the SRILM toolkit (Stolcke 2002). 

The proposed data selection methods were evaluated by retraining one of the three 
systems, S1 and translating four test sets in use by the GALE program (number of English 
words in parentheses): Dev 2007 Newswire (18,784), Dev 2007 Web Text (17,556), Eval 
2006 Newswire (10,565) and Eval 2006 Web Text (9,953).The log-linear optimization 
(Och 2003) of the translation models was performed using held-out data comprising 1576 

                                                      
 
38 The following LDC catalog items were included: DC2002E27, LDC2003E07, LDC2003E14, 
LDC2004T08, LDC2005E47, LDC2005T06. 
39 The following catalog items were included: LDC2006E24, LDC2006E34, LDC2006E85, LDC2006E92, 
LDC2006G05, LDC2007E08, LDC2007E101, DC2007E103, LDC2007E46, LDC2007E87. 

Handbook of Natural Language Processing and Machine Translation 319



 

sentences drawn from Dev 2007 Newswire and Dev 2007 Web Text using SRILM tools. 
All systems are evaluated with the IBM BLEU metric using a single reference. 

2.7.2.6 Baseline Systems  
 Di Du+ Di 

Dev 2007 Newswire 15.2 16.4 
Dev 2007 Web Text 12.6 13.5 
Eval 2006 Newswire 16.9 17.2 

Table 2.76: Potential lower and upper bounds from including additional parallel data (numbers are Bleu 
scores) 

Our data selection pool Du consisted only of parallel corpora released by LDC. Since 
Du has been translated manually, we were able to evaluate the effect of including all of 
Du as training data in addition to Di. The results, shown in Table 2.76, can be considered 
an approximate upper bound on potential performance improvements from data 
selection.40 

2.7.2.7 Data Selection Experiments 

The next step was to apply the various data selection methods and evaluate their 
impact on SMT performance. We first describe our experimental configuration for each 
method. 
 
Inter-System Disagreement 

First, we used the three systems in S to translate the sentences in Du. The translation 
performance of each of the three systems is shown in Figure 2.57. As can be seen, the 
performance of the three systems is quite similar across the different subsets of Du, 
though they disagree, which allows us to learn the function f (Step 2 of Algorithm 2) that 
predicts translation performance based on inter-system disagreement. Since data selection 
is performed at the sentence level (and BLEU is not robust for individual sentences), we 
decided to use Translation Error Rate (TER) (Snover et al. 2006) as the target variable to 
estimate for f. We applied Algorithm 1 by using a rotating subset of Du as our held-out 
set Dh for estimating f and then applying f on the complement subset, in a jack-knifing 
fashion. The function f learned was a linear regression over two input variables: the 
sentence level inter-system TER and the inter-system BLEU score. The linear regression 
function thus estimated performed better than predicting the mean sentence level TER of 
Du by 10% relative in root mean square error, which was statistically significant at the 
level of p = 105. 41 Since we wanted to select certain targeted amounts of data, we did not 
perform selection by a given threshold (Step 5 of Algorithm 2). Instead, we ranked all 

                                                      
 
40 Assuming that translation performance does not improve by excluding all available data. In practice this 
might not be true if “bad” or unrepresentative data is included. 
41 This quantifies the margin by which the linear regression is better than predicting chance. 

320 Chapter 2: Machine Translation from Text 



 

 

sentences by their predicted TER and chose the sentences with the highest TER up until 
the desired amount of data was reached. 
 

 
Figure 2.57: Comparison of SMT systems when translating Du (Each point corresponds to 15000 sentences) 

 
Perplexity-Based Selection 

For the perplexity-ratio-based selection approach, we needed two source-side 
(Mandarin) language models, Lu and Li+u , as described in Section 2.7.2.4. Li was trained 
on 33 million words with a vocabulary size of 60,453 and Li+u was trained on 55 million 
words with a vocabulary size of 93,134, both using modified Kneser-Ney smoothing. We 
followed the steps outlined in Algorithm 3 for selecting parallel training data. Similar to 
agreement-based selection, all sentences in Du were ranked according to their perplexity 
ratios and the sentences with the highest values were chosen up to the desired training 
corpus size. 

 
Hybrid Selection 

For the combined selection method, equal amounts of data (in terms of number of 
English words) were selected using the agreement-based and the perplexity-based 
approaches. Sentences selected by both methods were included only once in training. 

 
Random Selection 

This approach involves selecting source language sentences from the corpora of 
interest Du at random as candidates for careful translation and subsequent inclusion in 
the parallel training corpus. This is equivalent to the chance condition and allows us to 
determine the effectiveness of our proposed approaches. For the purpose of estimating 

Handbook of Natural Language Processing and Machine Translation 321

 



 

robust translation performance metrics, random sampling of parallel training data was 
repeated several times (four in our experiments) and a translation model was built using 
each sample. The translation performance metrics were then averaged over all random 
selection trials to obtain the final performance estimate. 

Using the four data selection approaches, we selected varying amounts of additional 
parallel training data to add to our existing hierarchical phrase-based SMT system. 42  For 
each training set, we recomputed phrase alignments, retrained the translation models and 
reestimated the parameters for log-linear model combination, while keeping the target 
language model fixed. We compared three sizes of additional data: 4%, 10% and 20% of 
the available selection pool Du, corresponding to approximately 640,000, 1.6 million and 
3.2 million English words, respectively. The results for the four evaluation sets are shown 
in Figure 2.58 and Figure 2.59. Each figure includes the result with only initial data set 
(“Initial”) and with all additional data (“+100%”). Results with increasing intermediate 
amounts of additional data are shown from left to right. Different shading patterns 
correspond to different selection methods. The hybrid approach is denoted “agree+ppl”. 

 

 
Figure 2.58: BLEU scores for Eval2006 news wire & web text 

                                                      
 
42 Manual translations of selected sentences were available and are used in training. 
 

322 Chapter 2: Machine Translation from Text 



 

 

At 20% additional data, one or more of the proposed selection methods perform 
better than the putative upper bound (“+100%”), for all four test sets. The perplexity-
based approach performs best for Dev 2007 Newswire (by 0.2 BLEU over “+100%”) and 
for Eval2006 Web Text (by 0.3 BLEU over “+100%”). Hybrid selection performs best for 
Eval 2006 Newswire (by 1.0 BLEU over “+100%”) and Dev2007 Web Text (by 0.1 BLEU 
over “+100%”). In addition, it can be observed that with only 10% of additional data, one 
of the proposed methods still outperforms the all-data system for two of the four 
evaluation sets. The hybrid method performs best for Eval 2006 Newswire (by 0.6 BLEU 
over “+100%”) and perplexity-based selection matches the performance of the “+100%” 
case for Eval 2006 Web Text. 
 

 
Figure 2.59: BLEU scores for Eval2007 news wire & web text 

The pattern in these results, achieving better performance with fewer training 
samples, agrees with previously reported results using active learning techniques by 
Schohn et al. (2000) and Tür et al. (2005). When comparing the different selection 
methods, a broad generalization that emerges is that the perplexity-based method works 
better on web text, while the disagreement-based method works better on newswire. As 
might be expected, the hybrid approach avoids problems in cases where one of the 
methods alone has relatively poor results; in some cases it gives substantial gains over 
each of the simpler methods. 

Handbook of Natural Language Processing and Machine Translation 323



 

2.7.2.8 Conclusions and Future Work 

We have proposed three approaches for selecting parallel training data for translation 
models. The first approach is based on using a measure of inter-system translation 
disagreement to select data that is most difficult for existing SMT systems. The second 
approach uses a source-side language model perplexity measure to select sentences that 
have novel information while avoiding outliers with respect to the domain of interest. 43 
The third approach combines the first two by selecting equal amounts of data using both 
methods. In our experiments, these approaches are able to select 20% of available data to 
achieve Mandarin-to-English translation accuracy that is similar or better than training on 
the full data set. 

The inter-system translation disagreement-based approach suggests some interesting 
research directions. In particular, we intend to retrain the distinct SMT systems (used for 
measuring disagreement) with the additional parallel training data (selected using our 
approach) and using the retrained systems for further data selection. This procedure 
would be closer to traditional active learning techniques. 

2.8 System Combination  

2.8.1. Combination of Machine Translation Systems via 
Hypothesis Selection 

Authors: Almut Silja Hildebrand and Stephan Vogel 

2.8.1.1 Introduction  

In the field of machine translation, systems based on different principles for the 
generation of automatic translations such as phrase based, hierarchical, syntax based or 
example based translation have advanced to achieve similar translation quality. The 
different methods of machine translation lead to a variety of translation hypotheses for 
each of the source sentences. This diversity can be leveraged by system combination 
methods to improve translation quality. 

Our method combines n-best lists from all input systems and then selects the best 
hypothesis according to several feature scores on a sentence to sentence basis. Our 
method is independent of internal translation system scores. Besides the n-best list, no 
further information from the input systems is needed, which makes it possible to also 
include non-statistical translation systems in the combination. 

2.8.1.2 Features  

All features described in this section are calculated based on the translation 
hypotheses only. We calculate all feature scores for all hypotheses from all systems in a 
                                                      
 
43 When translating data selected using our approaches, human translators have to perform translation at the 
sentence-level. This may result in additional effort since the standard practice is to translate entire documents. 
 

324 Chapter 2: Machine Translation from Text 



 

 

consistent manner. In preliminary experiments we added the system scores to our set of 
features in the combination. This did not improve the combination result and in some 
cases even hurt the performance, probably because the scores and costs used by the 
individual systems are generally not comparable. 

Using only system independent features enables our method to use the output of any 
translation system, no matter what method of generation was used there. The system 
independence of our features also leads to a robustness regarding varying performance of 
the individual systems on the different test sets used for tuning the feature weights and 
the unseen test data. 

The particular features are: 
 
1. Language Models 
2. Statistical Word Lexica 
3. Position Dependent N-best List Word Agreement 
4. Position independent N-best List N-gram Agreement  
5. N-best List N-gram Probability 
6. Sentence Length Features 
7. System Bias 

 
The first five features are described in Hildebrand and Vogel (2008). We will 

describe the remaining two here. 
 

Sentence Length Features 
To enable the system to avoid selecting too short, as well as, too verbose translations 

we added a set of three sentence length features. 
The length ratio between the source and the target sentence length, the deviation from 

the overall source-target token count ratio in the bilingual training corpus and the 
deviation of the sentence length from the average hypothesis length of all hypothesis in 
the n-best list for this source sentence. 

Adding the plain sentence length as feature did not prove useful in preliminary 
experiments. 

 
System Bias 

We also trained global weights to bias the individual systems. We used tuning data from 
the exact same systems we combine for the unseen data. We use a simple binary feature 
indicating which system each hypothesis came from and determine the weights in MERT 
(Och 2003) together with the other feature weights. 

2.8.1.3 Experiments  

2.8.1.3.1 Evaluation 

In this section we report results using BLEU (Papineni et al. 2002) and TER (Snover et 
al. 2005) metrics. In the MER training (Och 2003) we optimize for maximum BLEU. 

For the Chinese to English task the test sets from the NIST MT evaluations in 2003 
and 2006 were used as development and unseen test data. The MT03 test set contains 919 

Handbook of Natural Language Processing and Machine Translation 325



 

sentences of newswire data with four reference translations. From the 2006 NIST 
evaluation we used the text translation portion of the NIST part of the test data, which 
consists of 1099 sentences with four references of newswire and weblog data. The test 
sets for Arabic-English, GALE-DEV07 (tuning) and NIST-MT08 (unseen) both contain 
newswire as well as weblog data. For each result reported in the following sections we 
used MER training to optimize the feature weights on an n-best list for the respective 
tuning set. These always contained the same set of systems and were combined under the 
same conditions as for the unseen data. 

2.8.1.3.2 Models  

In all of the following experiments we used two language models trained from 
different sources, six features from a pair of statistical word lexica, three features from 
the position dependent n-best list word agreement and six features each from the n-best 
list n-gram agreement as well as the n-best list n-gram probability, 23 features in total. 

The language models were trained on the data from all sources in the English 
Gigaword Corpus V3, which contains several newspapers of the years between 1994 to 
2006, observing the blackout dates for all NIST test sets. We also included the English 
side of the bilingual training data, resulting in a total of 2.7 billion running words after 
tokenization. 

From these corpora we trained two language models. A 500 million word 4-gram LM 
from the bilingual data plus data from the Chinese Xinhua News Agency and an 
interpolated 5-gram LM from the complete 2.7 Gigaword corpus. 

For the latter we trained separate open vocabulary language models for each source 
and interpolated them using the SRI Language Modeling Toolkit (Stolcke 2002). Held 
out data for the interpolation weights was comprised of one reference translation each 
from several NIST-MT test sets. Table 2.77 shows the interpolation weights for the 
different sources. Apart from the English part of the bilingual data, the newswire data 
from the Chinese Xinhua News Agency and the Agence France Press have the largest 
weights. This reflects the makeup of this development test data, which comes in large 
parts from these sources. Other sources, for example the UN parliamentary speeches or 
the New York Times, differ significantly in style and vocabulary from the test data and, 
therefore, get small weights. 

 
Source Weight Source Weight Source Weight Source Weight 
xin 0.30 Bil 0.26 afp 0.21 un  0.07 
cna 0.06 Apw 0.05 nyt 0.03 ltw 0.01 

Table 2.77: LM interpolation weights per source (source ids as listed in the LDC catalog) 

The statistical word lexica were trained respectively on the Chinese-English or 
Arabic-English bilingual corpora relevant to GALE available through the LDC.44 After 
sentence alignment and data cleaning for Chinese these sources add up to 10.7 million 
sentences with 260 million running words on the English side and for Arabic we used 7.7 
                                                      
 
44 http://projects.ldc.upenn.edu/gale/data/catalog.html  

326 Chapter 2: Machine Translation from Text 



 

 

million sentences with 217 million running words on the English side. The lexica were 
trained with the GIZA++ toolkit (Och and Ney 2003). 

The research groups who provided the system outputs all had access to the same 
training data, there is no additional data used in the combination step. 

2.8.1.3.3 Chinese-English  

Systems 
We used the output from six different Chinese-English machine translation systems 

trained on large data for the GALE evaluation in the beginning of 2008. They are based 
on phrase based, hierarchical and example based translation principles, trained on data 
with different Chinese word segmentations, built by three translation research groups, 
running four MT decoders. The systems A to F are ordered by their performance in 
BLEU on the unseen Chinese MT06 test set (see Table 2.78).  

 
system MT03 MT06 BLEU / TER 

A 34.68 31.45 / 59.43 
B 35.16 31.28 / 57.92 
C 34.98 31.25 / 57.55 
D 34.70 31.04 / 57.20 
E 33.50 30.36 / 59.32 
F 28.95 26.00 / 62.43 

Table 2.78: Individual Chinese systems sorted by BLEU on unseen data 

Feature Impact 
For the Chinese-English combination tasks we used following feature groups: 
 
• language models  
• word lexicon  
• word agreement  
• n-gram agreement 
• n-gram probability 

 
For comparison to this set of 23 features we ran our setup with the two language 

models only as a simple baseline. In Och et al. (2004) word lexicon features were 
described as the most useful features for n-best list rescoring. Thus, we added those to the 
language model probabilities as a second baseline (LM+Lex). The results in Table 2.79 
show that a hypothesis selection, which uses these models alone cannot improve over the 
BLEU score of 31.45 of system A. This probably is the case, because the statistical 
systems among the input systems are already using this type of information and in fact 
share the training data which was used to build those models. 

To explore the question which feature group contributes the most to the improvement 
in translation quality and to avoid testing all possible combinations of features, we 
removed one feature group at a time from the complete set. Table 2.79 shows that 
although adding the word lexicon features to the language models did not improve the 
result for the LM+Lex baseline, the overall result still drops slightly from 33.72 BLEU for 

Handbook of Natural Language Processing and Machine Translation 327



 

all features to 33.61 BLEU for noLex. The combination result decreases insignificantly, 
but consistently when removing any feature group. 

 
 

Features MT03 MT06 BLEU / TER 
LM only 35.13 31.17 / 59.34 
LM+Lex 36.96 30.97 / 59.41 
no LM 39.10 32.83 / 56.23 
no Lex 39.62 33.61 / 56.88 
no WordAgr 39.59 33.67 / 57.25 
no NgrAgr 39.45 33.47 / 56.58 
no NgrProb 39.69 33.65 / 57.40 
LM+NgrAgr 39.45 33.58 / 57.15 
All 39.76 33.72 / 56.79 

Table 2.79: Impact of feature groups on the combination result 

The biggest drops are caused by removing the language model (-0.89 for no LM) and 
the n-gram agreement (-0.25 for no NgrAgr) feature groups. Using only those feature 
groups, which have the biggest impact brings the combination result up to 33.58 BLEU, 
which is close to the best, but using all features still remains the best choice. 
 
N-Best List Size 

 

 
Figure 2.60: Combination results for different n-best sizes for two and four systems for MT06 in BLEU 

To find the optimal size for the n-best list combination, we compared the results of 
using list sizes from 1-best up to 1000-best for each individual system. Hasan et al. 
(2007) investigated the impact of n-best list size on the rescoring performance. They 
tested n-best list sizes up to 100,000 hypotheses. They found, that using more than 10,000 
hypotheses does not help to improve the translation quality and that the difference 
between using 1000 and 10,000 hypotheses was very small. Based on their results we 
decided not to go beyond 1000-best. 

328 Chapter 2: Machine Translation from Text 



 

 

Because unique 1000-best lists were only available from the systems A, B, D and E, 
we ran two series of experiments using the top two systems as well as these four systems. 
In the combination of two systems the n-best list sizes of 25 and 50 hypotheses achieve 
virtually the same score (See Figure 2.60). The same is true for sizes 50 and 100 in the 
combination of four systems. 

The optimal size of the n-best list seems to be around 50 and also we only had unique 
50-best lists available for one of the six systems, we chose the n-best list size of 50 
hypotheses for all our following experiments. 

The reason why the optimal n-best list size is rather small could be due to the fact 
that the input lists are ordered by the producing systems. Including hypotheses lower in 
the list introduces more and more bad hypothesis along with some good candidates. The 
restriction of the n-best list to the small size of 50 could be interpreted as indirectly using 
the knowledge of the decoder about the quality of the hypotheses, which is represented in 
the rank information. 

 
Combination of All Systems 

 
 

Table 2.80: Combination results for adding in all systems progressively for MT06 in BLEU/TER 

2.8.1.3.4 Arabic-English  

Systems 

System baseline combined BLEU/TER 
A 31.45 31.76 / 58.95 

+ B 31.28 32.86 / 57.90 
+ C 31.25 33.32 / 56.87 
+ D 31.04 33.51 / 56.77 
+ E 30.36 33.72 / 56.79 
+ F 26.00 33.63 / 56.45 

Handbook of Natural Language Processing and Machine Translation 329

We achieved the best result of 33.72 BLEU by combining five systems, which is a 
gain of 2.27 points over the best system. The BLEU score on the tuning set MT03 for this 
combination was 38.63, which is 3.2 points higher than the best score on MT03 of 35.16 
by system B. Adding the weakest system, with more than 5 BLEU points distance to the 
best system, does not improve the combination in the BLEU metric. However, even 
though system F also has the highest TER, the combination including all six systems 
could reduce TER by -0.75 over the best baseline TER of 57.20 by system D (see  
Table 2.80). TER is consistently reduced with adding more systems, even though all 
individual systems as well as the combination were optimized to maximize BLEU. Further 
results for recent GALE systems and additional test data can be found in Section 2.8.2. 

We used the output from seven different large scale Arabic-English machine 
translation systems trained in October 2008 for the GALE project. The automatic 
evaluation scores for the systems (see Table 2.81) span 5 BLEU points and about 4 TER 
points for DEV07 as well as MT08, which were both unseen test sets for the individual 

Starting with rescoring the n-best list of system A by itself, we progressively added 
all systems to the combination. The results in Table 2.80 show, that adding systems one 
by one improves the result with smaller impact for each additional system. 



 

 
system DEV07 MT08 MT08-NW MT08-WB 

A 50.18 / 43.07 47.47 / 45.21 54.34 / 40.20 38.06 / 51.64 
B 49.07 / 45.95 46.33 / 47.59 52.61 / 42.52 37.27 / 54.08 
C 47.46 / 45.82 44.50 / 48.09 50.78 / 43.02 36.15 / 54.59 
D 47.26 / 46.22 45.07 / 48.17 51.15 / 43.06 36.30 / 54.74 
E 45.82 / 44.97 44.42 / 47.54 51.01 / 41.42 35.82 / 55.40 
F 45.76 / 46.52 43.35 / 49.35 48.41 / 45.28 35.66 / 54.58 
G 45.42 / 47.76 42.49 / 49.65 48.67 / 44.89 33.80 / 55.76 

Table 2.81: Individual Arabic-English systems BLEU/TER, sorted by BLEU on unseen data 

Combination Result 
 

system DEV07 MT08 MT08-NW MT08-WB 
combi 7sys 52.43 / 42.39 48.79 / 45.16 55.79 / 39.79 39.47 / 52.05 
+ length 52.96 / 42.20 49.15 / 45.20 56.01 / 39.69 39.99 / 52.26 
+ system bias 53.01 / 41.85 49.40 / 45.01 56.14 / 39.38 40.39 / 52.22 

Table 2.82: Hypothesis Selection results for Arabic-English in BLEU/TER 

We combined all seven Arabic-English translation systems and achieved the best 
result of 49.40 BLEU using all feature groups, which is an improvement of +1.93 BLEU 
over the best single system. The combination is most successful on the harder web log 
genre with an improvement of +2.33 BLEU over the best system (see Table 2.82). 

The two new feature groups we introduced for the Arabic-English task each improve 
the combination result insignificantly, but the cumulative improvement of +0.6 BLEU on 
the whole unseen test set, and especially the +0.92 BLEU on the web log genre is positive. 
Further results with improvements of up to 3.1 BLEU for recent GALE systems and 
additional test data can be found in Section 2.8.2. 
Hypothesis Length 

For the Arabic-English combination task we added the sentence length feature group 
to the features used for Chinese-English. Table 2.82 shows, that adding these features 
improves translation quality slightly by +0.36 BLEU, with the slightly bigger contribution 
of +0.52 BLEU coming from the web log part of the MT08 data. 

 
translation MT08-NW MT08-WB 
shortest 52.34 / 0.975 40.41 / 0.942 
longest 48.41 / 1.000 36.16 / 0.986 
combi 7 sys 56.07 / 0.995 40.49 / 0.975 
+ length 56.13 / 0.998 40.86 / 0.979 

Table 2.83: BLEU Precision/Length penalty for MT08 

330 Chapter 2: Machine Translation from Text 

systems. The systems A to G are ordered by their performance in BLEU on the GALE 
DEV07 test set, which was unseen data for the systems and was used as tuning set for the 
combination. 



 

 

A look at the BLEU precision and length penalty in Table 2.83 reveals that the 
improvement in BLEU for the combination using the sentence length feature group is not 
simply due to a better length penalty. 

Simply longer hypotheses usually hurt n-gram precision. The length penalty is in fact 
only changed by less than half a percent, while the BLEU n-gram precision improves 
slightly. The sentence length features seem to be able to avoid the selection of simply 
longer hypothesis just to lower the length penalty. 
 
System Bias 

Table 2.82 shows that the system bias improves translation quality slightly by +0.25 
BLEU compared to the experiment including the sentence length features. There is a more 
visible improvement of +0.4 BLEU on the more difficult web log genre. This might be the 
case because this data is out of domain for the statistical models, therefore, the model 
scores are not as reliable for this data and the combination is more dependent on the 
system bias. 

Figure 2.61 shows the percentile contributions of hypotheses to the combined 
translation. The diagrams show clearly how radically the composition of the combined 
translation changes with the use of the system bias, but surprisingly this does not affect 
the automatic MT metrics much at all. 

 

 
Figure 2.61: Contribution of each system to the combination with and without system bias, MT08-NW and  

MT08-WB 

2.8.1.3.5 Cross Combination  

Within the collaboration of the GALE project a reranked n-best list from the 
hypothesis selection system was made available to a confusion network based system 
combination (see Section 2.8.2) as additional input system. As unseen test data we used 
part of the Chinese GALE Phase 3 development set, combined with the Chinese test set 
of the 2008 NIST MT evaluation, consisting of 1350 segments of text and 1480 speech 
utterances. 

Handbook of Natural Language Processing and Machine Translation 331



 

The hypothesis selection output was chosen as skeleton for the CN generation. The 
choice of the skeleton influences the word order of the combined translation. The results 
in Table 2.84 show, that the hypothesis selection cannot outperform the CN based 
approach, especially if you take the TER results into consideration. The CN based system 
clearly benefits from the hypothesis selection as additional input system, all results, but 
one, improve for both metrics in the cross combination. 

 
system NW WB BN BC 
Best system 31.37 / 56.01 23.21 / 58.69 30.36 / 56.86 24.10 / 61.00 
Hyp. Sel. 34.46 / 55.67 25.50 / 59.99 32.39 / 56.23 26.83 / 62.56 
CN-based 34.21 / 53.77 25.36 / 56.56 31.85 / 53.52 27.38 / 58.71 
Cross-comb 36.16 / 52.56 26.88 / 57.15 33.61 / 53.15 28.40 / 58.69 

Table 2.84: Cross-combination results for Chinese-to-English text and ASR on DEV+MT08 in BLEU/TER. 

2.8.1.4 Conclusions  

We introduced a system combination method for machine translation systems. In our 
approach we select hypotheses from a joint n-best list of all input systems, using sentence 
level features calculated independently from the individual systems internal features. We 
combine n-best lists from several machine translation systems for the large scale Chinese 
to English and Arabic to English translation tasks of the GALE project in 2008 and 
achieve an improvement of +2.3 BLEU in Chinese and +1.9 BLEU in Arabic over the best 
individual system.  

The language model and n-best list n-gram agreement feature groups have the biggest 
impact on the performance of the system combination. Removing any feature group 
decreases the BLEU score. 

In our experiments the optimal n-best list size lies between 25-best and 100-best. 
Adding more systems to the combination improves the result progressively as long as the 
original system performance is not too much below the best system.  

The two feature groups we introduced for the Arabic-English task each improve the 
combination result insignificantly, but the cumulative improvement of +0.6 BLEU on the 
whole unseen test set and especially the +0.92 BLEU on the web log genre is positive. 

Even though the translation quality for the two language pairs is in a very different 
range, the hypothesis selection technique works for both. The hypothesis selection output 
proved useful as skeleton for the CN based system combination, improving the result by 
one BLEU point or more for all genres. 

Our method can easily be extended to use more feature scores, for example additional 
models like phrase tables, class based language models and distortion models. 

 
 
 
 

332 Chapter 2: Machine Translation from Text 



 

 

2.8.2. Confusion Network Decoding for MT System 
Combination 

Authors: Antti-Veikko I. Rosti, Evgeny Matusov, Jason Smith, Necip Fazil Ayan, Jason Eisner, Damianos 
Karakos, Sanjeev Khudanpur, Gregor Leusch, Zhifei Li, Spyros Matsoukas, Hermann Ney, Richard 
Schwartz, Bing Zhang, and  Jing Zheng 

2.8.2.1 Introduction 

Confusion network decoding has been very successful in combining speech-to-text 
(STT) outputs (Fiscus 1997; Evermann and Woodland, 2000; Mangu et al., 2000) from 
diverse systems using different modeling assumptions. Several modeling paradigms have 
been introduced in machine translation (MT) including rule-based, phrase-based, 
hierarchical, syntax-based and even cascades of rule-based and statistical MT systems. 
Building confusion networks from MT system outputs is more challenging compared to 
STT system outputs since the translations may have very different word orders and 
varying lexical choices without affecting the meaning of the sentence, whereas, the words 
and the word order of speech transcriptions are strictly defined by the utterance. 

A confusion network is a linear graph where all paths travel via all nodes. There may 
be one or more word arcs between two consecutive nodes. These arcs may be viewed as 
alternative choices of words in a hypothesis. Thus, a confusion network may encode an 
exponential number of hypotheses. A word arc may also contain a NULL word which 
represents an empty word or a deletion. Fiscus (1997) aligns the STT outputs 
incrementally to form a confusion network. The vote count of each word arc is increased 
by one for each matching word in the alignment. The path with the highest total number 
of votes through the lattice defines the consensus output. Simple edit distance is sufficient 
in building confusion networks from STT system outputs since the outputs should follow 
a strict word order defined by the actual utterance. The most common STT quality metric, 
word error rate, only considers exact matches as correct. The order in which the STT 
system outputs are aligned does not significantly influence the resulting network. In 
machine translation, there may be several correct outputs with different word orders, as 
well as, different words or phrases with identical meaning. Two problems not relevant to 
combining STT system outputs arise: how to align outputs with different word orders and 
how to choose the word order of the final output. Many alignment algorithms for building 
confusion networks from MT system outputs have been proposed including edit distance 
based multiple string alignment (Bangalore et al. 2001), hidden Markov model based 
alignments (Matusov et al. 2006; He et al. 2008), inversion transduction grammar (ITG) 
(Wu  1997) based alignments (Karakos et al. 2008) and translation edit rate (TER) 
(Snover et al. 2006) based alignments (Sim et al. 2007; Rosti et al. 2007a; Rosti et al. 
2007b; Rosti et al. 2008; Ayan et al. 2008; Rosti et al. 2009). Alignment algorithms 
based on TER approximations using both TERCOM and ITGs and symmetric word 
alignment from a hidden Markov Model (HMM) are detailed in this section. One MT 
hypothesis must be chosen to be the “skeleton” against which all other hypotheses are 
aligned. The final word order and the quality of the decoding output depend on the 
skeleton selection. 

Handbook of Natural Language Processing and Machine Translation 333



 

of the following steps: 
 

1. Collect  N-best  list  outputs  from  MT  systems and  optionally  perform  some  
preprocessing (lower case, re-tokenize, etc.); 

2. Choose one or more skeleton translations for each segment;  
3. Align all other hypotheses against the skeleton/skeletons;  
4. Build confusion network/networks from the alignments for each segment;  
5. Decode confusion networks using arc features and sentence-level scores (LM 

score, word insertion score, etc.);  
6. Optimize feature weights on a development set;  
7. Optional post-processing (true casing, detokenization, etc.).  

 
In incremental hypothesis alignment algorithms, steps 3 and 4 are performed in a single 
process.  

The following three sections describe the confusion network decoding approaches 
used by all three teams participating in the most recent DARPA GALE evaluations. 
Three TER based alignment algorithms and various skeleton selection methods developed 
by the AGILE team are presented in Section 2.8.2.2. Section 2.8.2.3 presents a 
comparison of two alignment algorithms developed by the NIGHTINGALE team. 
Finally, an alternative alignment algorithm for TER scoring and hypothesis alignment 
based on ITGs developed by the Rosetta team is described in Section 2.8.2.4. 

2.8.2.2 AGILE Team Approach 

Three TER based MT hypothesis alignment algorithms and how to build confusion 
networks from these are described in this section. The method used to assign scores for 
paths given system and language model weights and how to choose the skeleton 
hypothesis are presented. Weight tuning algorithm based on Powell’s method is briefly 
reviewed. Experiments combining outputs from up to nine systems on Arabic newswire, 
web and audio sets are presented. 

2.8.2.2.1 Pair-wise TER Alignment 

The TER alignment may be used in building confusion networks from MT hypotheses 
(Sim et al. 2007). The availability of TERCOM has made it easy to create a high 
performance confusion network decoding baseline (Rosti et al. 2007a).45 Since TERCOM 
was developed for automatic evaluation of MT outputs, it can only align two strings, the 
reference and the hypothesis. Assuming one output has been chosen to be the confusion 
network skeleton, all hypotheses may be aligned independently using the skeleton as the 
reference translation. These pair-wise alignments may be consolidated to form a 
confusion network. 

                                                      
 
45 http://www.cs.umd.edu/~snover/tercom/ (current version 0.7.25) 
 

334 Chapter 2: Machine Translation from Text 

The MT system combination approaches based on confusion network decoding consist 



 

 

pair-wise alignments may be generated. The alignment between the first and second 
hypotheses is: 

NULL    twelve    NULL       cars 
NULL    twelve    big blue    cars 

 
The initial NULLs were inserted to help forming the confusion network with the 

alignment below. This alignment has two insertion errors from the string “big blue”. The 
alignment between the first and third hypotheses is: 

 
NULL     twelve    NULL     cars 
dozen         blue     NULL     cars 

 
This alignment has one insertion from the word “dozen” and one substitution from 

the word “blue”. The NULLs before the word “cars” were inserted to help forming the 
confusion network with the previous alignment.  

 
Figure 2.62: Confusion network using pair-wise TER alignment and “twelve cars” as the skeleton. 

A confusion network generated from these two alignments is shown in Figure 2.62. 
The number of votes for each word is denoted by the number in parentheses. The path 
with the highest vote count is “twelve cars”, but there are some undesirable paths due to 
alignment errors. Since the pair-wise alignments are independent, there is no guarantee 
that the word “blue”, which is not present in the skeleton, will align correctly from the 
other two hypotheses. Multiple insertions “big blue” are aligned with a single NULL arc 
from the other hypotheses. Aligning multiple insertions from several alignments is non-
trivial requiring an additional round of alignments and skeleton selection. Finally, the 
TER algorithm does not know that words “twelve” and “dozen” are semantically 
identical. 

Using the second string as the skeleton yields the following two alignments: 
 

twelve     big         blue         cars 
twelve    NULL     NULL     cars 

 
with two deletion errors and 
 

twelve     big         blue         cars 
NULL   dozen       blue         cars 

 
with one deletion and one substitution error. A confusion network generated from these 
two alignments is shown in Figure 2.63.  

Handbook of Natural Language Processing and Machine Translation 335

Given three strings: “twelve cars”, “twelve big blue cars” and “dozen blue cars”, six 



 

 
Figure 2.63: Confusion network using pair-wise TER alignment and “twelve big blue cars” as the skeleton. 

There are three paths with equal number of votes resulting in hypotheses: “twelve big 
blue cars”, “twelve dozen blue cars” and “twelve blue cars”. Obviously, the second path 
is undesirable, although as likely as the other two. 

Using the third string as the skeleton yields the following two alignments: 
 

NULL   dozen       blue         cars 
NULL   NULL      twelve     cars 

 
with one deletion and one substitution and 
 

NULL   dozen       blue         cars 
twelve    big           blue         cars 

 
with one insertion and one substitution error.  A confusion network generated from these 
two alignments is shown in Figure 2.64. Again, there are three paths with equal number 
of votes resulting in hypotheses: “big blue cars”, “dozen blue cars” and “blue cars”. 
However, there are some very bad paths such as “twelve dozen twelve cars”, as a result 
of alignment errors. 

 
Figure 2.64: Confusion network using pair-wise TER alignment and “dozen blue cars” as the skeleton. 

2.8.2.2.2 Incremental TER Alignment 

Confusion networks from MT outputs may be built incrementally. Bangalore et al. 
(2001) used a multiple string alignment (MSA) software package to build the networks. 
MSA (Durbin et al. 1998) is based on edit distance alignment and does not perform 
reordering. An incremental TER alignment allowing shifts was proposed by Rosti et al. 
(2008). First, a trivial confusion network is generated from the skeleton by creating a 
word arc for each skeleton token. Each hypothesis is aligned against the current network 
at a time. All words, including the NULL word, on the arcs connecting two consecutive 
nodes are available for matching with a zero edit cost. A new node and two new arcs are 
created for each insertion. One of these arcs represents the NULL with votes from all 
hypotheses aligned so far and the other arc represents the inserted word from the new 

336 Chapter 2: Machine Translation from Text 



 

 

hypothesis. A deletion will either create a new NULL arc or increase the vote of an 
existing NULL arc if one already exists at that position. A substitution will always create 
a new word arc. Insertions and deletions have a unit edit cost and a substitution cost of 1 
+ ߳ (߳ = 0.0001 in the experiments) was found to improve the quality of the decoding 
outputs. 

Unlike in the pair-wise TER alignment, the order in which the hypotheses are added 
influences the resulting confusion network. As in MSA, the alignment order may be 
determined by the edit distance from the current confusion network. The hypothesis 
closest to the network is aligned first. The TER between the current confusion network 
and all remaining unaligned hypotheses is computed. This requires a total of 0.5( ௦ܰଶ −௦ܰ) alignments per segment to be computed for building a network from ௦ܰ  outputs. 
Given outputs ℰ ൌ ,ଵܧ} … , ࣝ ேೞሽ, an algorithm to build a set of Ns confusion networksܧ ൌ ,ଵܥ} … ,  :ேೞሽ may be written asܥ

 
for n = 1 to Ns do 

Cn ⇐ Init(En) {initialize confusion network from the skeleton} ℰ' ⇐ℰ −En {set of unaligned hypotheses} 
while ℰ' ് ∅ do 

Em ⇐ argminE∊ℰ'  Dist(E, Cn) {compute edit distances} 
Cn ⇐ Align(Em, Cn)  {align closest  hypothesis} ℰ' ⇐ ℰ'−Em  

end while 
end for 
 
Using the same strings from the examples in Section 2.8.2.2.1 and the first string as 

the skeleton, yields the following alignment: 
 

twelve    NULL     NULL      cars 
twelve    big           blue         cars 
dozen    NULL      blue         cars 

 
where the third hypothesis is an ߳ farther from the initial network compared to the second 
hypothesis. The confusion network is shown in Figure 2.65. The path with the highest 
number of votes yields “twelve big blue cars” and there are no undesirable paths. Using 
the second string as the skeleton yields the following alignment: 
 

twelve    big           blue         cars 
twelve    NULL     NULL      cars 
dozen    NULL      blue         cars 

 
where again the third hypothesis is an ߳ farther from the initial network compared to the 
first hypothesis. The confusion network is identical to the one in Figure 2.65. 
 

Handbook of Natural Language Processing and Machine Translation 337



 

 
Figure 2.65: Optimal confusion network from incremental TER alignment using “twelve cars” and “twelve 

big blue cars” as skeletons. The same network results from the incremental alignment with flexible matching 
described in Section 2.8.2.2.3 using any hypothesis as the skeleton. 

Using the third string as the skeleton yields the following alignment: 
 

NULL      dozen     blue         cars 
NULL    NULL     twelve      cars 
twelve    big           blue         cars 

 
where both hypotheses are an equal distance from the initial network and were aligned in 
the arbitrary order they were listed. The word “twelve” in the first hypothesis is aligned 
with the word “blue” since the algorithm does not know that it is synonymous with 
“dozen”. The string “blue cars” from the second hypothesis is matched exactly with the 
network, “twelve” appears as an insertion and “big” as a substitution. A confusion 
network generated from this alignment is shown in Figure 2.66. There are three 
hypotheses with equal number of votes: “dozen blue cars”, “blue cars” and “big blue 
cars”. Some undesirable, lower cost paths also exist; for example, “twelve dozen twelve 
cars”. 

 
Figure 2.66: Confusion network using incremental TER alignment and “dozen blue cars” as the skeleton. 

The incremental TER alignment may be used to extract an approximate TER oracle 
translation from a confusion network. This can be achieved by aligning a reference 
translation with the confusion network and finding a path with the lowest edit cost with 
respect to the aligned reference through the network. This may be repeated for multiple 
reference translations and the lowest cost path among all reference translations will be the 
oracle translation. 

2.8.2.2.3 Incremental Alignment with Flexible Matching  

Ayan et. al (2008) and  He et al. (2008) have proposed improved pair-wise alignment 
algorithms by trying to match semantically equivalent words. Snover et al. (2009) 
similarly extended the TER algorithm to produce an evaluation metric called TER-plus 
(TERp). Rosti et al. (2009) modified incremental TER alignment to allow matching 
synonyms and words with identical stems with a lower cost. Semantically equivalent 
words may be collected from the individual system outputs using WordNet (Fellbaum 

338 Chapter 2: Machine Translation from Text 



 

 

1998). During the alignment, substitutions between equivalent words are assigned an edit 
cost of 0.2. In the above example, there are two equivalent words “twelve” and “dozen” 
which do not always align when using the incremental TER alignment. Using the first 
string as the skeleton, the incremental alignment with flexible matching yields the 
following alignment: 

 
 

twelve    NULL     NULL      cars 
dozen    NULL      blue         cars 
twelve    big           blue         cars 

 
where the distance of the third hypothesis is 1.2 and second hypothesis is 2 from the 
initial network. Therefore, the third hypothesis is aligned first creating a new node and 
two arcs with a NULL from the skeleton and “blue” from the third hypothesis. Aligning 
the second hypothesis also creates a new node and two arcs with a NULL from the other 
two hypotheses and “big” from the second hypothesis. Using the second string as the 
skeleton, yields the following alignment: 
 

twelve    big           blue         cars 
dozen    NULL      blue         cars 
twelve    NULL     NULL      cars 

 
where the  word  “dozen”  aligns  correctly  with  the skeleton word “twelve”. Using the 
third string as the skeleton, yields the following alignment: 
 

dozen    NULL      blue         cars 
twelve    NULL     NULL      cars 
twelve    big           blue         cars 

 
where again the words “dozen” and “twelve” are correctly aligned. Each hypothesis used 
as the skeleton yields the same confusion network shown in Figure 2.65 with the same 
total edit costs. 
 

 
(a)  Alignment using the standard TER shift heuristics. 

 
(b)  Alignment using the modified shift heuristics. 

Figure 2.67: Confusion networks using different shift heuristics in alignment. 

Handbook of Natural Language Processing and Machine Translation 339



 

The heuristic shift constraints of TER are not reasonable when using the flexible 
matching since there may be a block of tokens in the reference with some matching 
words and some synonyms. Snover et al. (2009) relaxed the shift constraints in 
computing the TERp score by considering synonyms and words with identical stems as 
exact matches while using the TER shift heuristics, but using tuned edit costs for these 
when computing the edit distance. The shift heuristic may be modified to consider any 
block shifts that do not increase the edit cost.46 This increases the complexity of the 
algorithm considerably, but has some desirable influence on hypothesis alignment. 
Karakos et al. (2008) showed an example where the TER yields a poor alignment. The 
hypotheses were “thomas jefferson says eat your vegetables” and “eat your cereal thomas 
edison says”. The TER shifts two blocks “eat your” and “thomas” and the final alignment 
has three substitution, a total of five edits. The modified algorithm shifts only one block 
“eat your cereal” resulting in only two substitution errors, a total of three edits. Confusion 
networks resulting from these alignments are shown in Figure 2.67 a) and b), 
respectively. Since TERp requires exact, synonym, stem matches, or phrase matches, it 
would not find the optimal shift in this example unless there are some unlikely phrase 
pairs in the TERp phrase table. The modified shift heuristics yield clearly a better 
confusion network for this artificial example. However, it is hard to quantify whether it 
yields better system combination performance (Karakos et al. 2008). 

2.8.2.2.4 Word Posteriors and LM Features 

As seen in the previous sections, the confusion networks may often contain several 
paths with an equal number of votes. Also, some MT systems may consistently produce 
better translations in which case their vote should count more. This may be achieved by 
introducing system weights. The diversity of the confusion networks may also be 
increased by aligning N-best hypotheses from the MT systems. In addition, a language 
model may be able to break any remaining ties by giving a higher score to more fluent 
hypotheses. 

 
J =3  S =2  E =3  SC =(0.76,0.00,0,0.66,0.10,0.46,0.24,0,0)  W=head  
J =4  S =2  E =3  SC =(0.24,0.05,0,0.00,0.00,0.00,0.00,0,0)  W=NULL  
J =5  S =2  E =3  SC =(0.00,0.95,1,0.15,0.90,0.41,0.70,1,1)  W=president  
J =6  S =2  E =3  SC =(0.00,0.00,0,0.19,0.00,0.00,0.06,0,0)  W=chief  
J =7  S =2  E =3  SC =(0.00,0.00,0,0.00,0.00,0.13,0.00,0,0)  W=chairman 

Figure 2.68: Example lattice snippet showing five word arcs with word posteriors between nodes 2 and 3. 
Here J is the arc index, S is the start node index, E is the end node index, SC is a vector of nine system 
specific word posteriors and W is the word label. 

If 1-best outputs are used in the incremental alignment algorithm, a total of 0.5( ௦ܰଶ −௦ܰ)  alignments are performed, where Ns is the number of MT systems. The N-best 
                                                      
 
46 Snover et al. (2009) investigated relaxing the shift heuristics in the same way. This resulted in lower TERp 
scores, similarly to using ITGs to estimate TER in section 2.2.1.4 but the correlations with human judgment 
were worse. 

340 Chapter 2: Machine Translation from Text 



 

 

hypotheses from a MT system are usually very similar, so it may be reasonable to align 
all hypotheses from one system in the rank order and determine the order in which the N-
best lists from different systems are aligned by the distance of the 1-best from the current 
confusion network. This will add at most ௦ܰ(ܰ − 1) alignments. 

An ad hoc weighting of 1/(1 + n) where n is the hypothesis rank is used to give a 
lower vote for words from lower ranking hypotheses. These votes are collected for each 
system separately, so that each word arc has Ns scores. After all hypotheses are aligned, 
the Ns vote counts are scaled to sum to one across all word arcs between two consecutive 
nodes. An example lattice snippet is shown in Figure 2.68. There are five word arcs 
between nodes 2 and 3 with the words head, NULL, president, chief and 
chairman. Nine system specific scores are shown in parentheses. Each score may be 
viewed as a posterior probability of the system generating the word in that position. For 
example, the probability that system 1 generated the word head between nodes 2 and 3 
is 0.76, the probability for NULL is 0.24 and zero for other words.  

Given system weights wn, which sum to one and system specific word posteriors snj for 
each arc j, the weighted word posteriors are defined as: ݆ݏ ൌ ∑ ൌ1݊ݏܰ݊ݓ  (2.83)       ݆݊ݏ

The hypothesis score is defined as the sum of the log-posteriors along the path which is 
linearly interpolated with a log-LM score and a non-NULL word count: ܵ(ܨ|ܧ) ൌ ∑ log ∈ࣤ(ா)ݏ  (ܧ)ெܵߛ   (2.84)     (ܧ)௪ܰߜ

where ࣤ(ܧ) is the sequence of arcs generating the hypothesis E for the source sentence F, 
SLM(E) is the Log-LM score and Nw(E) is the number of non-NULL words. The set of 
parameters ߠ ൌ ,ଵݓ} … , ,ேೞݓ ,ߛ  ሽ can be tuned so as to optimize an evaluation metric onߜ
a development set as described later in Section 2.8.2.2.6. Decoding with an n-gram 
language model requires expanding the lattice to distinguish paths with unique n-gram 
contexts before assigning the LM scores to each arc. 

2.8.2.2.5 Skeleton Selection 

As seen in Sections 2.8.2.2.1 and 2.8.2.2.2, the decision of which skeleton to use may 
affect the quality of the resulting confusion network. If the alignment algorithm yields 
better alignments, the decision is less important. The optimal alignment was found for all 
skeletons in the example in Section 2.8.2.2.3. However, the incremental alignment with 
flexible matching cannot always find the optimal alignment for longer hypotheses with 
different word orders. 

Sim et al. (2007) proposed using the minimum Bayes risk (MBR) criterion with TER as 
the loss function and a uniform posterior distribution:47 
                                                      
 
47 MBR (Kumar and Byrne, 2004) is measured as the minimum expected loss L(E, E ') over the posterior 
probability distribution P(E |F) of all possible translations: ܧ ൌ argminாᇲ ∑ ,ܧ)ܮ(ܨ|ܧ)ܲ ᇱ)ாܧ . Since the 
posterior probability distributions P(E |F) for translations from different MT systems are usually not 
comparable, a uniform distribution is assumed in skeleton selection. 

Handbook of Natural Language Processing and Machine Translation 341



 

ܧ ൌ argminா ∑ TE Rேೞୀଵ ,ܧ) (ܧ
where the MBR hypothesis ܧ  has the minimum expected TER with respect to other 
hypotheses Ej. Using the example in Section 2.8.2.2.1, the total number of edits for each 
hypothesis as the skeleton is four but the second hypothesis is longer than the other two 
and yields a lower MBR score. Therefore, the hypothesis “twelve big blue cars” would be 
chosen to be the skeleton. The MBR skeleton is chosen before tuning the system weights, 
so the weights do not influence the decision. 

Matusov et al. (2006) proposed selecting the skeleton as late as possible by building 
Ns confusion networks with the 1-best outputs as skeletons and connecting these 
networks into a joint lattice with a common start and end node. The system weight was 
used as a prior probability for each sub-network in the lattice. Rosti et al. (2007a) 
extended this by estimating priors from the MBR scores by treating the expected TER 
score percentages as negative log-probabilities which were scaled so as to define a prior 
distribution. These priors were also multiplied by the system weights, so that a skeleton 
with a high MBR score, but a low system weight would less likely be selected. 

2.8.2.2.6 Weight Tuning 

The optimization of the system and LM feature weights may be carried out using N-
best lists as in the work of Ostendorf et al. (1991). Standard tools may be used to 
generate N-best hypotheses including word confidence scores and language model scores 
from the lattice representing multiple confusion networks. The N-best list is reordered 
based on the sentence-level scores S(Em,k|Fm) from Equation 2.84 for the mth source 
sentence Fm and the corresponding kth hypothesis Em,k.  The current 1-best hypothesis ܧ 
given a set of weights  ߠ ൌ ,ଵݓ} … , ,ேೞݓ ,ߛ (ߠ|ܨ)ܧ :ሽ may be represented as followsߜ ൌ argmaxா,ೖ ܵ(  )       (2.85)ܨ|,ܧ

The objective is to optimize the 1-best score on a development set given a set of 
reference translations. For example, estimating weights to minimize TER between a set of   
1-best hypotheses ℰመ  and reference translations ℰ can be written as: ߠ ൌ argminఏ ∑ TE Rேೞୀଵ (ℰመ, ℰ)       (2.86) 

  
This objective function is not differentiable, so gradient-based optimization methods 

may not be used. In this work, Powell’s method, as described in the work of Press et al. 
(2007), is used. The algorithm explores better weights iteratively starting from a set of 
initial weights. First, each dimension is optimized using a line minimization algorithm 
utilizing bracketing and parabolic interpolation. Then, the direction of largest decrease is 
replaced with a new direction based on the old directions weighted by the change in the 
objective function value. This procedure is iterated until the change in the objective 
function value becomes small. To improve the chances of finding a global optimum, 19 
random perturbations of the initial weights are used in parallel optimization runs. Since 
the N-best list represents only a small fraction of all hypotheses in the confusion network, 
the optimized weights from one set of optimization runs may be used to generate a new 

342 Chapter 2: Machine Translation from Text 

( 2.84a) 



 

 

N-best list from the lattice for the next optimization iteration. The N-best lists are merged 
between these iterations. Similarly, weights to optimize other evaluation metrics such as 
BLEU (Papineni et al. 2002) or METEOR (Lavie and Agarwal  2007) may be tuned. 

Och (2003) proposed a more efficient algorithm for log-linear models where an exact 
minimum may be computed in the line minimization. Since the system weights are not 
log-linear interpolation weights in Equation 2.84, the exact line minimization may not be 
used. 

2.8.2.2.7 Experimental Evaluation 

The Agile team ran system combination experiments on Arabic Newswire 
development sets to contrast the effects of different design decisions. Outputs from nine 
systems covering rule-based, phrase-based, hierarchical, syntax-based and a cascade of a 
rule-based and a hierarchical MT systems were used. All outputs had up to 10-best 
hypotheses, were lower cased and used identical tokenization. Unpruned bigram and 5-
gram language models, trained on about 8 billion words of English text, were used in 
confusion network decoding and N-best list rescoring. 48 A development set of 2118 
segments was used in tuning the system combination weights to maximize the BLEUscore 
and a set of 1031 segments was used as a test set. 49 The development sets consisted of 
documents from the newswire portion of NIST MT04, MT05, MT06 and MT08 
evaluation sets, the GALE P1 and P2 evaluation sets and GALE P2 and P3 development 
sets. Four reference translations were available for both sets. All individual statistical MT 
systems were tuned to maximize the BLEU score on a separate tuning set. 

 
 dev test 

System TER BLEU TER BLEU 
A 48.73 38.38 49.52 38.29 
B 41.41 51.08 42.14 49.41 
C 40.57 53.03 40.97 51.37 
D 40.10 53.64 40.91 51.58 
E 38.10 54.79 39.61 52.39 
F 37.76 54.96 38.70 52.56 
G 38.25 55.21 39.47 52.89 
H 37.59 55.69 38.92 53.91 
I 37.46 56.25 38.53 54.33 
Pair-wise 34.87 59.80 36.08 57.33 
Incremental 34.10 61.06 35.00 58.85 
Flexible 34.13 60.90 35.25 58.66 

Table 2.85: Case insensitive TER and BLEU scores on the Arabic Newswire development and test sets. 

Table 2.85 shows the scores for the individual system outputs (systems A through I 
sorted according to increasing BLEU score), as well as, the system combination outputs 
using the three different alignment algorithms on the tuning and test sets. The 

                                                      
 
48 Using a trigram LM in decoding did not yield improvements after 5-gram rescoring. 
49 The brevity penalty was calculated using the original formula in the work of Papineni et al. (2002), rather 
than the definition implemented in the NIST mteval-v11b.pl script. 

Handbook of Natural Language Processing and Machine Translation 343



 

combination using pair-wise TER alignment yields significant gains over the best 
individual system scores (system I) on both sets. The incremental TER alignment yields 
significant gains over the pair-wise TER alignment and similar scores with the 
incremental alignment with flexible matching. Table 2.86 shows the average number of 
nodes and arcs per segment in the confusion networks and the scores for the oracle 
hypotheses extracted from the confusion networks built using the incremental alignment 
algorithms on the test set. The oracle scores are better when no flexible matching is used. 
This may be explained by the fact that the flexible matching yields more compact 
networks which contain fewer paths. The average number of tokens in the test set outputs 
was 37.83 and the maximum length of a hypothesis that can be generated from a 
confusion network is equal to the number of nodes minus one. 
 

System #nodes #arcs TER BLEU
Incremental 57.45 122.87 14.71 78.30 
Flexible 53.31 111.48 15.46 76.97 

Table 2.86: Average number of nodes (#nodes) and arcs (#arcs) per segment and case insensitive TER and 
BLEU scores for the oracle outputs on the Arabic Newswire test set. 

The pair-wise TER alignments were obtained using the Java TER software and the 
incremental confusion network building software was written in C++. The average time 
to build the confusion networks was about 3.58 seconds per segment when using the pair-
wise TER alignment, 10.19 seconds per segment when using the incremental TER 
alignment and 101.72 seconds per segment when using the incremental alignment with 
flexible matching. The N-best lists had on average 8.92 hypotheses per segment. Using 
the N-best lists slowed down the alignment by about a factor of two compared to using 
only 1-best outputs. The gain from using the N-best lists was about 0.4 BLEU points on 
the development set and the scores on the test set were practically identical. 

 
 

 dev test 
System TER BLEU TER BLEU
Pair-wise 35.77 58.20 36.48 56.06
Incremental 34.58 58.79 35.45 56.89
Flexible 34.67 58.87 35.68 56.62

Table 2.87: Case insensitive TER and BLEU scores on the Arabic Newswire development and test sets without 
system weights or language model; i.e., voting. 

Table 2.87 shows the scores obtained with equal system weights without using a 
language model. This corresponds to simple voting. Comparing these scores to those in 
Table 2.85 shows that the system weights, as well as, the bigram decoding and 5-gram 
rescoring yield about 1.3 to 2 BLEU point gains. The BLEU score differences between the 
pair-wise and incremental alignment algorithms are greater after tuning. The confusion 
networks built using the incremental alignment algorithms probably have paths with 
more fluent hypotheses and the language model helps to find these. 

Table 2.88 shows the influence of the skeleton choice on the quality of the decoding 
output. If only a single system is always chosen as the skeleton, the best scores are 

344 Chapter 2: Machine Translation from Text 



 

 

achieved by using system I. The MBR skeleton yields a small, but consistent gain in both 
TER and BLEU scores on both development and test sets. The following three results are 
obtained using all 1-best outputs as skeletons and connecting the resulting confusion 
networks with common start and end nodes. The initial NULL arcs connecting the start 
node to the confusion networks have unit system specific scores in the first case, no 
weights. In this case, the system weights do not influence the skeleton selection. In the 
second case weights, the system specific scores are set to zeros apart from that for the 
system used as the skeleton. This corresponds to using the system weights as the prior 
distribution. In the third case MBR priors, a MBR based prior estimate is placed as the 
system specific score. The TER and BLEU scores on both sets improve consistently from 
MBR to MBR prior in the order listed. The oracle skeleton was selected by choosing the 
systems with the lowest TER when used as the skeleton for each segment. This gives an 
estimate of the upper bound for any skeleton selection method. 

 
 dev test 

Skeleton TER BLEU TER BLEU
system I 34.47 60.13 35.64 57.86
MBR 34.30 60.47 35.51 58.25
no weights 34.46 60.58 35.40 58.31
weights 34.25 60.62 35.32 58.48
MBR priors 34.13 60.90 35.25 58.66
oracle 31.41 62.59 32.51 60.19

Table 2.88: Case insensitive TER and BLEU scores for different skeleton choices. 

 WB  BN  BC 
System TER BLEU TER BLEU TER BLEU
Best 48.38 42.00 46.62 33.26 50.18 30.12 
Pair-wise 46.95 43.81 44.63 34.20 48.04 31.18 
Incremental 45.84 46.06 43.92 35.10 47.47 31.76 
Flexible 45.14 46.15 44.14 34.89 47.19 32.15 

Table 2.89: Case insensitive TER and BLEU scores on the Arabic web, BN and BC test sets. 

Finally, results on test sets for web, broadcast news (BN) and broadcast 
conversations (BC) are shown in Table 2.89. The web test set had mostly four reference 
translations whereas the audio sets (BN and BC) had only a single reference translation. 
The BN and BC system outputs were generated by running MT on the 1-best output of 
the AGILE P3 Arabic STT system. Separate development sets were used to tune the 
individual MT systems and the system combination weights for newswire, web and 
audio. Tuning separate system combination weights for BN and BC did not yield any 
improvements. The system combination weights for the web and audio sets were tuned to 
minimize 0.5TER + 0.5(1 − BLEU) since it yielded significantly lower TER scores without 
a significant impact on the BLEU scores. 

2.8.2.3 NIGHTINGALE Team Approach 

The NIGHTINGALE team developed two confusion network system combination 
approaches that differ in the methods for alignment of individual system hypotheses. The 

Handbook of Natural Language Processing and Machine Translation 345

two alignment strategies will be described and directly compared in this section. 



 

The first method is a statistical alignment framework first described by Matusov et 
al. (2006) in which the alignment between words in the target (English) language is 
learned statistically using a Hidden Markov alignment model (HMM). The context of a 
whole corpus of parallel system translations rather than a single sentence is considered in 
this iterative, unsupervised procedure, yielding a more reliable alignment. The second 
alignment algorithm of Ayan et al. (2008) is a two-pass approach: In the first pass, all 
hypotheses are aligned to the skeleton independently using a TER-based alignment with 
word synonym matching and a confusion network is built. Next an intermediate reference 
sentence is created from the confusion network generated in the first pass via majority 
voting for each position in the network. The second pass uses this intermediate reference 
as the skeleton translation to generate the final confusion network. 

Although the system combination approaches of these two methods differ in the word 
alignment algorithms used, they share the same CN structure, so that the alignment 
component can be easily interchanged. Therefore, the differences of the two approaches 
in scoring the CNs and their dependency on a particular alignment type can be 
investigated experimentally. We will show that both alignment approaches perform 
similarly well, resulting in high-quality system combination translations on GALE 
Chinese-to-English text and speech translation tasks (2008 evaluation). 

2.8.2.3.1 RWTH Hypothesis Alignment Approach  

The alignment approach of RWTH is a statistical one. It takes advantage of multiple 
translations for a whole corpus to compute a consensus translation for each sentence in 
this corpus. It also takes advantage of the fact that the sentences to be aligned are in the 
same language. 

The network is created by the pair-wise method (Section 2.8.2.2.1). The word 
alignment is trained in analogy to the alignment training procedure in statistical MT. We 
use the IBM Model 1 (Brown et al. 1993) and the Hidden Markov Model (Vogel et al. 
1996) to estimate the alignment model.  The alignment training corpus is created from a 
test corpus of effectively ܯ · ܯ) − 1) · ܰ  sentences translated by the involved MT 
engines. 50   The single word based lexicon probabilities (݁|݁ᇱ)  are initialized from 
normalized lexicon counts collected over the sentence pairs (ܧ ܧ , ) on this corpus.  
Since all of the hypotheses are in the same language, we count co-occurring identical 
words; i.e. if ݁,  is the same word as ݁, for some i and j. In addition, we add a fraction 
of a count for words with identical prefixes.  

The model parameters are trained iteratively using the GIZA++ toolkit (Och and Ney 
2003). The training is performed in the directions ܧ ܧ  andܧ →   . The updatedܧ → 
lexicon tables from the two directions are interpolated after each iteration. The final 
alignments are determined using a cost matrix C for each sentence pair  (ܧ, ܧ). The 
elements of this matrix are the local  costs  C (j, i) of  aligning  a  word ݁, from ܧ to a 
word ݁,  from ܧ.  Following Matusov et al. (2004), we  compute  these  local  costs  by  
                                                      
 
50 A test corpus can be used directly because the alignment training is unsupervised and only automatically 
produced translations are considered. 

346 Chapter 2: Machine Translation from Text 



 

 

interpolating the negated logarithms of the state occupation probabilities from the 
“source-to-target” and “target-to-source” training of the HMM model.  Two different 
alignments are computed using the cost matrix C. The first alignment ܽ is a function of 
words in ܧ. It is used to reorder the words in ܧ so that the resulting alignment of the 
reordered ܧ with the skeleton ܧ  becomes monotonic Then, this alignment is modified 
to alignment തܽ  that includes only one-to-one connections. In case of many-to-one 
connections in ܽ of words in ܧ to a single word from ܧ, we only keep the connection 
with the lowest alignment costs. The  use  of  the  one-to-one  alignment തܽ a implies that  
some  words  in  the  secondary  translation  will not have a correspondence in the 
skeleton translation and vice versa.  We consider these words to have a null alignment 
with the empty word ε.  In the corresponding confusion network, the empty word will be 
transformed to an epsilon arc. Given the  M − 1  monotonic  one-to-one  alignments a 
between ܧ  as the skeleton translation and ܧ, ݉ ൌ 1, … , ;ܯ ݉ ് ݊,  we construct a 
confusion network following the approach of Bangalore et al. (2001) with an extension 
that improves the alignment of the words which are insertions with respect to the skeleton 
hypothesis (Matusov et al. 2008). 

2.8.2.3.2 SRI Hypothesis Alignment Approach  

Another   alignment   strategy   pursued   within   the Nightingale  team  by  SRI  is  
based  on  TER  alignment  extended  by  matching  of  synonyms,   as  described in 
Section 2.8.2.2.3. In natural language, it is possible to represent the same meaning using 
synonyms in possibly different positions.  For example, in the following sentences, “at 
the same time” and  “in the meantime”, “waiting for” and “expect” and “set” and 
“established” correspond to each other, respectively: 

 
Skeleton: at the same time expect Israel to abide by the 
deadlines set by. 
Hypothesis: in the meantime, we are waiting for Israel to 
abide by the established deadlines. 

 
To incorporate matching of word synonyms into the alignment and for better 

alignment of similar words at different word positions, we employ the following steps:  
The first step is to use WordNet to extract synonyms of each word that appear in each 

hypothesis regardless of their POS tag in the given translation.51 We should note that 
WordNet contains only open-class words; i.e., nouns, verbs, adjectives and adverbs. 
There are no entries for determiners, prepositions, pronouns, conjunctions and particles. 
For better matching of these additional POS tags, we manually created a different 
equivalence class for each POS tag that is not included in the WordNet so that words with 
the same POS tag can be considered synonymous. 

                                                      
 
51 Our goal is to add as many synonyms as possible to increase the chances of a word aligning to one of its 
possible synonyms rather than to any other word. Therefore, we do not distinguish between the synonyms of 
the same word according to their confidence value or their POS tag. 
 

Handbook of Natural Language Processing and Machine Translation 347



 

After extracting the synonyms of each word in the given translations, the next step is to 
augment each reference word with its synonyms. To avoid over generation of synonyms, 
we make the assumption that words w୧ and w୨ are synonyms of each other only if w୧appears in the synonym list of w୨ and w୨ appears in the synonym list of w୧. In our 
running example, the augmented (extended) skeleton according to the second hypothesis 
is as follows:  
 

Extended skeleton: at the [same time \ meantime] [expect \ 
waiting] Israel to abide by the deadlines [set \ 
established] by. 

  
The final step is to modify the TER script to favor matching of a word to its 

synonyms rather than to any other word (see Section 2.8.2.2.3). 
 
Two-Pass Alignment Strategy 

When building a confusion network, the usual strategy is first to align each 
hypothesis to the skeleton separately and reorder them so that the word ordering in the 
given hypothesis matches the word ordering in the skeleton translation. Next a confusion 
network is built between all these reordered hypotheses. This approach, however, is 
problematic when the hypotheses include additional words that do not appear in the 
skeleton translation. In such cases, two hypotheses other than the skeleton may not align 
perfectly since the alignments of two different hypotheses are done independently. 

To overcome this issue, we employ a two-pass alignment strategy. In the first pass, 
we align all hypotheses to the skeleton independently and build a confusion network. 
Next an intermediate reference sentence is created from the confusion network generated 
in the first pass. To create this intermediate reference, we find the best position for each 
word that appears in the confusion network using majority voting. The second pass uses 
this intermediate reference as the skeleton translation to generate the final confusion 
network. 

When we create the intermediate reference, the number of positions for a given word 
is bounded by the maximum number of occurrences of the same word in any hypothesis. 
It is possible that two different words are mapped to the same position in the intermediate 
reference. If this is the case, these words are treated as synonyms when building the 
second confusion network and the intermediate reference looks like the extended 
reference above.  

2.8.2.3.3 Confusion Network Scoring  
In the approaches of RWTH and SRI, given a single skeleton hypothesis, a confusion 

network is created using one of the two alignment strategies described above. In the 
RWTH approach, the system combination lattice is a union of several CNs, which were 
built by considering each of the system translations as the skeleton. The single-best path 
is determined after summing the probabilities of identical paths which originate from 
different CNs. This is done through determinization of the lattice. The sum over the 

348 Chapter 2: Machine Translation from Text 



 

 

identical hypotheses in the decision criterion can help to reach consensus not only on the 
word level, but on the level of sentence structure: the word order preferred by the 
weighted majority of the systems most probably will be used in the system combination 
translation. 

As described above, SRI generates a single confusion network based on a two-pass 
alignment strategy. Beyond the system prior weights and LM scores, SRI uses two 
additional features to control the number of epsilon arcs and number of words during the 
confusion network scoring. The number of words feature is also included in the RWTH 
system. 

The system prior weights and the scaling factors of additional statistical models such 
as the language model need to be tuned to produce good consensus translations. At 
RWTH, these parameters are optimized using the publicly available CONDOR 
optimization toolkit (Vanden Berghen and Bersini 2005). For the GALE evaluation, we 
selected a linear combination of BLEU and TER as optimization criterion, Θ ؔargmaxΘ(2 · BL E U − TE R ).  In each iteration of the optimization, we extract a new 
hypothesis directly from the system combination lattice. System combination at SRI was 
optimized using an in-house implementation of minimum-error-rate training (MERT) 
(Och 2003) to maximize BLEU score.  

2.8.2.3.4 Experimental Evaluation  
We present the results of system combination experiments on the Chinese-to-English 

GALE data which was used by the Nightingale team to prepare for the December 2008 
evaluation. The results in the tables below are reported in terms of the well-established 
automatic MT evaluation measures BLEU and TER; the evaluation was case insensitive, 
but considered punctuation marks. We used the closest reference length for computation 
of brevity penalty. 

 
Development and Test Sets 

For the experiments, we used all of the available GALE-related data with multiple (4) 
translations. It includes (parts of) the GALE 2006 and 2007 evaluation sets, the official 
GALE 2007 development set, as well as the GALE part of the NIST MT 2008 evaluation 
data. The data was provided by LDC under the catalog numbers LDC2008E08, 
LDC2008E09, LDC2008E19. To define the development and the blind test sets from this 
data, we firstly separated all the documents into 4 genres: newswire text (NW), webtext 
(WT), broadcast news (BN) and broadcast conversations (BC). Then, in each genre the 
documents were divided in two more or less equally-sized parts with the same 
distribution of sources. In the following, we refer to these two parts (for all genres) as the 
NIGHTINGALE test sets A and B. 

We combined up to 8 system outputs in our experiments as described below. The 
systems which produced those outputs followed phrase-based, hierarchical, and syntax-
based translation paradigms. One of the systems was a serial combination of a rule-based 
and a phrase-based MT system. Table 2.90 gives an overview of the number of sentences 
in the test sets A and B that had to be translated by these systems, as well as, the number 
of words they have produced. The test set A was used for individual system tuning, 

Handbook of Natural Language Processing and Machine Translation 349



 

whereas, the test set B was used for tuning the weights of the features in the system 
combination algorithms. Thus, the test set A can be considered as “blind” test set for 
judging the performance of the system combination approaches presented here. 

 
  NW  WT BN BC 
 test set A    

Sentences  485  533 529 1134 
Running words (K)  15.8  13.7 14.7 16.7 
Distinct words (K)  5.5  5.2 4.6 3.7 

 test set B    
Sentences  480  490 483 937 
Running words (K)  15.9  13.1 13.1 14.2 
Distinct words (K)  5.5  5.0 4.5 3.4 

Table 2.90: Corpus statistics for the hypotheses of the 8 individual systems used in system combination on 
the NIGHTINGALE test sets. The number of running words is averaged over the 8 systems. 

Combination of Variants of a System 
Table 2.91 presents BLEU and TER scores for 3 input systems (hierarchical phrase-

based system (HPBT) and its two syntax-based extensions, denoted by SAMT and S2D) 
and their combination using SRI’s system combination approach. All three input systems 
were trained on the same training data but with different word segmentations and the n-
best lists were reranked using different subsets of seven additional LMs. The input 
systems were optimized on test set A newswire and webtext (text) using minimum error 
rate training (MERT) to maximize BLEU score. System combination was also optimized 
on the same test set on 2000-best lists generated from the confusion network decoding, 
using MERT to maximize BLEU score. As inputs to the system combination, we used 10-
best hypotheses from each of the reranked n-best lists. For language model scores during 
system combination, we used the same 4-gram LM that we used during decoding of the 
individual systems. 

The results indicate that the system combination yields better translations even when 
the input systems are very similar to each other in terms of their performance: on 
newswire and webtext data, system combination yields an absolute improvement of up to 
1.3 BLEU point and up to 1.3 TER point over the best individual system. These results 
validate the results reported in an earlier paper using three variants of SRI’s hierarchical 
system on different test sets (Ayan et al. 2008). 

 
 

System test set A test set B test set A test set B 
 BLEU  TER BLEU TER BLEU TER BLEU TER 
 Newswire Webtext 

HPBT 34.2 57.6 33.7 58.2 26.2 63.4 27.2 62.5 
S2D 34.5 59.0 34.3 58.7 26.9 63.7 26.6 64.2 
SAMT 34.3 59.5 33.0 59.4 26.9 63.8 27.4 62.5 
SysComb 35.6 56.9 34.5 56.9 28.2 63.6 28.7 62.9 

Table 2.91: scores (in %) for three SRI systems and their combination. System combination was optimized on 
test set A and tested on test set B. 

350 Chapter 2: Machine Translation from Text 



 

 

 
General vs. Adapted LM Rescoring 

By Matusov et al. (2008), it was proposed to rescore the system combination CNs 
with a trigram LM trained on the outputs of the systems involved in system combination. 
The LM training data in this case were the system hypotheses for the same test corpus for 
which the consensus translations were to be produced. Using this “adapted” LM for 
lattice rescoring, thus, gives bonus to n-grams from the original system hypotheses, in 
most cases from the original phrases. Presumably, many of these phrases have a correct 
word order, since they are extracted from the training data. We compared the 
performance of the SRI’s system combination approach using the “adapted” trigram LM 
or a 4-gram LM trained on large amounts of English text. For this experiment, we used 
single best outputs from all eight systems and tested the impact of two LMs on four 
different genres. The system optimization was performed on the text portion of test set B 
for newswire and webtext and audio portion of test set B for broadcast conversations and 
news.  

Table 2.92 presents the results on the test sets A for each genre. Our results validate 
the previous finding about the usefulness of “adapted” LMs, yielding an absolute 
improvement of up to 0.6 BLEU point and up to 1.0 TER point over using the general 
higher-order LMs. We explain these improvements in part by the fact that the number of 
n-grams in a system combination CN can be very large and may include those n-grams 
which have high general LM probability, but are not in any way related to the source 
sentence. With the absence of any other model that links words and phrases in the CN to 
the source sentence, the influence of the general LM may be overestimated. The 
“adapted” LM does not seem to have this problem, since it only gives high probabilities 
to a limited number of “good” n-grams preselected by the individual systems based on 
phrase-to-phrase translation scores and general LM scores. 

 
Genre general LM adapted LM 

 BLEU TER BLEU TER 
NW 38.1 55.1 38.3 54.5 
WT 29.2 60.1 29.8 59.2 
BN 31.4 60.0 31.9 59.0 
BC 28.8 62.5 29.3 61.3 

Table 2.92: Comparison of SRI’s system combination approach with eight input systems and 2 different LMs 
on test set A (the scores are in %). System combination was optimized on test set B. 

Combination of Structurally Different Systems  
In the following experiments, we compared the alignment approaches of RWTH and 

SRI using both the RWTH and SRI CN scoring procedures. In these experiments, we 
combined single-best outputs of eight systems and the “adapted” LMs were used. The 
parameter tuning on test set B was genre specific for the RWTH system and was 
performed separately for text and audio in the SRI system. 

Table 2.93 compares the automatic MT evaluation measures BLEU and TER on the 
“blind” test set A. Both system combination approaches significantly improve translation 
quality with respect to the best individual system being combined; in some cases, the 
improvements exceed three points in BLEU and four points in TER. 

Handbook of Natural Language Processing and Machine Translation 351



 

 
 

Alignment CN scoring BLEU TER BLEU TER BLEU TER BLEU TER 
 Newswire Webtext Broadcast News Broadcast Conversations 

best single system 35.3 58.5 27.2 62.6 29.7 63.6 28.0 63.3 
RWTH RWTH 38.7 54.2 30.3 59.0 32.5 59.2 29.9 61.8 

SRI RWTH 37.0 55.7 29.7 60.0 32.4 59.5 29.8 61.3 
RWTH SRI 37.6 54.1 29.1 59.0 31.9 59.3 29.1 61.2 

SRI SRI 38.3 54.5 29.8 59.2 31.9 59.0 29.3 61.3 

Table 2.93: Comparison of word alignment and CN scoring approaches on test set A (the scores are in %). 
“Best single system” refers to the individual system with the highest BLEU score among eight systems. 

System combination was optimized on test set B. 

On the audio data, SRI and RWTH alignments perform similarly well, but the RWTH 
CN scoring algorithm has slightly better BLEU scores than the SRI scoring algorithm. For 
Newswire and Webtext data, the results are inconclusive: the RWTH system combination 
approach performs best using the RWTH alignment algorithm, the SRI approach exhibits 
better scores with the SRI alignment algorithm. Also, there are some discrepancies 
between BLEU and TER: on Newswire, the RWTH approach is better than the SRI 
approach in BLEU, but worse in TER. A subjective analysis of the differences between 
SRI and RWTH approach on the Newswire data has shown that the system combination 
of SRI is more often able to make the right lexical choice, especially of content words. 
This is most probably due to the explicit matching of synonyms performed in the 
construction of confusion networks. In contrast, the RWTH approach often produces 
better sentence structures and has fewer reordering and missing word errors than the SRI 
approach. 

 
best single system ... why not have the money to spend, an important reason. 
system combination ... there is one important reason why did not dare to spend money. 
reference translation ... there is an important reason why people have money but don’t dare spend it. 
best single system For the reader, a good story is a strong life again. 
system combination For the reader, a good novel is a powerful reappearance of life. 
reference translation As for readers, a good novel is a powerful reproduction of life. 
best single system They kneel on a chair beside the edge, to pray together. 
system combination They knelt down at the edge of a chair beside him, praying together. 
reference translation They then kneeled down on the edge of a chair beside them and prayed together. 

Table 2.94: Examples of improved translation quality after system combination (test sets A and B).  

Table 2.94 shows some examples of improved translation quality due to system 
combination in comparison with the translations of the individual system that had overall 
best translations on this corpus. The examples were drawn from test sets A and B. 

2.8.2.4 Rosetta Team Approach  
The Rosetta Team developed a system combination approach based on alignments 

computed using inversion transduction grammars (ITGs). A pair-wise alignment strategy, 
similar to the one described in Section 2.8.2.2.1, appeared in the work of Karakos et al. 

352 Chapter 2: Machine Translation from Text 



 

 

(2008) and was later improved in three ways: (i) the pair-wise alignment strategy was 
replaced by an incremental alignment strategy, similar to the one described in Section 
2.8.2.2.2, but with some crucial differences; (ii) the original ITG-based algorithm was 
sped up significantly with an A* heuristic that uses a finite-state reordering method for 
computing a lower bound to the ITG alignment cost, and (iii) the same algorithm was 
extended to allow ITG alignments between confusion networks, instead of strings. 

2.8.2.4.1 Approximate Methods for Computing TER  
Since computation of TER is an NP-complete problem, TERCOM uses some 

heuristics to constrain the space of permutations and, thus, compute an approximation to 
TER in polynomial time. The block shifts which are allowed in TERCOM have to adhere 
to the following constraints: (i) A block cannot be moved if it has an exact match in its 
current position, and (ii) for a block to be moved, it should have an exact match in its new 
position. These constraints sometimes lead to counterintuitive sequences of edits, as 
shown in Section 2.8.2.2.3. 

We have modified the TERCOM code to relax the above constraints in the following 
way: the requirement of a perfect match between the words in a block and the words it 
gets aligned to was replaced by a user-specified bound on the (normalized) number of 
edits in the new position. This roughly means that a block which does not have a perfect 
match in its original position and does not differ in its new (candidate) position by more 
than x% of its length, is allowed to move to that position. These constraints revert to the 
original TERCOM constraints when x = 0. As is described later, this modification was 
done in order to allow alignments between confusion networks and the use of a more 
flexible cost function than the binary (match/no-match) cost of the original TERCOM. 
 
Inversion Transduction Grammars 

The inversion transduction grammar (ITG) formalism (Wu 1997) allows one to view 
the problem of alignment as a problem of synchronous parsing. Specifically, ITGs can be 
used to find the optimal edit sequence under the restriction that block moves must be 
properly nested, like parentheses. That is, if an edit sequence swaps adjacent substrings A 
and B of the original string, then any other block move that affects A or B must stay 
completely within A or B, respectively. An edit sequence with this restriction 
corresponds to a synchronous parse tree under a simple ITG that has one non-terminal 
and whose terminal symbols allow insertion, deletion and substitution. 

The minimum-cost ITG tree can be found by dynamic programming. This leads to 
invWER (Leusch et al. 2003), which is defined as the minimum number of edits 
(insertions, deletions, substitutions and block shifts allowed by the ITG) needed to 
convert one string to another. As described in Section 2.8.2.4.2, the minimum-invWER 
alignments are used for generating confusion networks. 

 
Using TERCOM and invWER to Approximate TER 

In this section, we compare TERCOM and invWER in terms of how well they 
approximate TER. Specifically, the two competing alignment procedures were used to 
estimate the TER between reference (human) translations and machine translation system 
outputs submitted to NIST for the GALE evaluation in June 2007. The references are the 

Handbook of Natural Language Processing and Machine Translation 353



 

post edited translations for each system (i.e., these are “HTER” approximations). As can 
be seen from Table 2.95, for all systems and all language and genre conditions, invWER 
gives a better approximation to the true TER than TERCOM.52 In fact, out of over 16,000 
total segments in all languages/genres, TERCOM is lower in less than 1% of the 
segments, while invWER is lower in over 10%. This is a clear indication that ITGs can 
explore the space of string permutations more effectively than TERCOM. 
 

  System 1 System 2 System 3 
Lang. / Genre  TERCOM invWER TERCOM invWER TERCOM invWER 

Arabic BC  18.4% 18.0% 24.6% 24.1% 20.6% 20.4% 
Arabic BN  17.8% 17.5% 23.2% 22.8% 19.0% 18.7% 
Arabic NW  12.1% 12.0% 14.8% 14.6% 15.4% 15.2% 
Arabic WB  22.0% 21.7% 23.6% 23.2% 25.6% 25.3% 
Chinese BC  30.7% 29.9% 32.0% 30.9% 33.6% 32.7% 
Chinese BN  22.9% 22.4% 25.5% 24.8% 29.5% 28.8% 
Chinese NW  20.8% 20.5% 24.3% 23.6% 25.9% 25.2% 
Chinese WB  26.2% 25.9% 27.2% 26.5% 30.3% 29.9% 

Table 2.95: Comparison of average per-document TERCOM with invWER on the EVAL07 GALE Broadcast 
Conversation (“BC”), Broadcast News (“BN”), Newswire (“NW”) and Weblogs (“WB”) data sets. 

2.8.2.4.2 Incremental System Combination  
This section describes the incremental alignment method used in our experiments. 

We have been inspired by the work of Rosti et al. (2008), but we have modified their 
incremental algorithm to improve speed (without loss in performance). 

 
1. The n-best list of each system is aligned together incrementally into a confusion 

network using regular edit distance alignments, which are roughly 50 times faster 
than the TERCOM alignments described later. Thus, several per-system 
confusion networks are created.53 

2. One system (usually the one with the best performance) is chosen as the skeleton. 
Its confusion network bins are used as anchors for aligning all other confusion 
networks together.  

3. One-by-one, the per-system confusion networks are aligned with the partially 
generated confusion network. We have experimented mainly with TERCOM and 
ITG-based alignments during this step.  

4. The final probability of each arc is set to the relative frequency of its label in the 
bin.  

5. The final confusion network is then rescored with a 5-gram language model; this 
results in a reassignment of arc costs according to a loglinear combination of the 
costs (as computed above) and the probability assigned by the language model. 
The weights in the linear combination are determined through a development set. 

                                                      
 
52 Both tercomTER and invWER are upper bounds to true TER, so lower is better. 
53 The n-best list of a single system will usually only contain local reorderings; we have found that using 
monotone alignments in this step does not degrade performance. 

354 Chapter 2: Machine Translation from Text 



 

 

 
To extend pair-wise string alignment algorithms to confusion networks, we treat the 

confusion network bins as “words” and use the probability of mismatch between bins as 
the word substitution cost. More precisely, the formula for computing the substitution 
cost between two bins b1; b2 is54 1|ܾ1||ܾ2| ∑ 2ܾ∋ݒ1ܾ∋ݓ(ݓ)1݊ ݓ)(ݒ)2݊ ്  (2.87)     (ݒ

where ݊(ݔ) is the number of times word x appears in bin j (x can also be the empty 
word, epsilon). The cost of inserting/deleting a bin is similarly computed as the 
substitution cost between the bin and an empty bin. When two bins are aligned together 
to form a new merged bin, the counts of their words get added together. If a bin gets 
inserted into, or deleted from, the confusion network, a NULL arc is also added in the 
appropriate place. 
 
Combinations Using TERCOM 

To handle confusion network bins, we performed the following modifications to 
TERCOM: 

 
1. It can take as input a pair-wise cost matrix, which determines the cost of 

substituting one confusion network bin with another. This allows the use of 
Equation 2.87 when aligning confusion networks.  

2. The modification mentioned in Section 2.8.2.4.1 was extended to confusion 
network bins and the threshold x was applied to the normalized sum of bin 
substitution costs, as computed by 2.8.2.4.1. We used a value of x = 50% in our 
experiments as a compromise between performance and tractability.  
 

Combinations with Inversion Transduction Grammars 
The work on ITG-based incremental alignment is a follow-up on the work of Karakos 

et al. (2008), where ITGs were used for aligning together MT outputs based on the pair-
wise alignment procedure of Rosti et al. (2007a). Originally, an 11-rule Dyna program 
(Eisner et al. 2005) was used to compute ITG alignments, which we replaced by an 
optimized C++ code that significantly reduced the execution time. This implementation 
was sped up 10-fold by an A* search heuristic, whose details appear below. When 
comparing this new implementation with the modified TERCOM code described above, 
ITG alignments are roughly five times faster.  However, for computing TER on the 
dataset described in Section 2.8.2.4.1, the ITG code takes three times longer than the 
unmodified version of TERCOM. 

In order to speed up the O(n6) synchronous parse under the inversion transduction 
grammar used for alignments, we use best-first chart parsing (Charniak et al. 1998). 

                                                      
 
54 This formula can be easily modified to use alternate word substitution costs in place of the exact matching 
given by 1(w ≠ v). We have experimented with the surface similarity of the work of He et al. (2008) and 
character edit distance, but did not see any improvements. 

Handbook of Natural Language Processing and Machine Translation 355



 

Rather than filling in the chart in a fixed order, we create an agenda of edges and process 
them in an order based on some measure of “goodness”. To ensure that the first parse we 
find is optimal, the “goodness” measure must be an optimistic estimate of the total cost of 
any parse containing that edge. This approach is known as A* parsing (Klein and 
Manning 2003). 

Let c1 and c2 be the confusion networks that we are synchronously parsing with the 
ITG grammar, where |ܿଵ| ൌ ݊ଵ and |ܿଶ| ൌ ݊ଶ (|ܿ| refers to the number of bins in c). Let e 
be an edge in the ITG chart which spans the intervals (݅ଵ, ݆ଵ) in ܿଵ and (݅ଶ, ݆ଶ) in ܿଶ. The 
estimate of the total cost is divided into an inside estimate (the cost of aligning the 
intervals (݅ଵ, ݆ଵ)  to (݅ଶ, ݆ଶ)) and an outside estimate (the cost of aligning (0, ݅ଵ) · (݆ଵ, ݊ଵ)     
to (0, ݅ଶ) · (݆ଶ, ݊ଶ)). The inside cost is already known in bottom-up parsing, so we focus 
on the outside estimate. Let ܿଵᇱ be the confusion network created by concatenating (0, ݅ଵ) 
and (݆ଵ, ݊ଵ), and similarly, let ܿଶᇱ  be the concatenation (0, ݅ଶ) and (݆ଶ, ݊ଶ). The outside 
estimate can be reformulated as a lower bound of the cost of parsing ܿଵᇱ  and ܿଶᇱ . Also, 
recall that invWER is an upper bound to TER, so any lower bound of TER will also be a 
lower bound of invWER. We now describe a finite state reordering scheme which acts as 
a lower bound to TER. 

As mentioned earlier, the TER between two strings is defined as the minimum 
number of word insertions, deletions, substitutions and block moves required to 
transform one string into the other. If block moves were not allowed, computation would 
be simple and in fact equivalent to edit distance. To allow the possible reorderings 
introduced by block moves, we add “jump” arcs to the edit distance machine which allow 
free movement in the input string (shown in Figure 2.69). Shapira and Storer (2002) show 
that a sequence of n block moves splits a string into at most 3n + 1 contiguous blocks. 
Since one “jump” arc is needed to account for each of the 3n discontinuities between 
these blocks, we set the costs of these arcs to one third the cost of a block move. This 
model is not only used for the A* estimate in the previous section, but also for alignment 
itself.55 

 

                                                      
 
55 When generating confusion networks with this model, we modify the machine to ensure there are as many 
insertions or substitutions as there are words in the hypothesis.  In our experiments with ITGs, this cheaper 
model is used when we are aligning confusion networks longer than 150 bins. 

356 Chapter 2: Machine Translation from Text 



 

 

 
Figure 2.69: Finite state alignment model. The basic edit distance machine has been augmented with “jump” 
arcs which model the discontinuities introduced by block moves. While only two are pictured for space, there 

are jump arcs to and from each state in a row. 

Oracle Computation with ITGs 
By setting the cost function between a word and a confusion network bin equal to a 

0/1 value (i.e., depending on whether the word is in the bin or not) we were able to easily 
compute the oracle invWER in a path using our ITG code: once an alignment between a 
confusion network and the reference sentence is obtained through a permutation of bin 
blocks, computing the TER simply entails counting the number of bins, which do not 
contain the aligned reference word, plus the number of block shifts. 

This computation of the oracle path in a confusion network is much more efficient 
than through the Dyna code used for the oracle experiments of Karakos et al. (2008); the 
Dyna code is more general, though, because of its applicability to any kind of lattice. 
Oracle results appear in Section 2.8.2.4.3. 

2.8.2.4.3 Experimental Setup and Results  

We report results on three sets of system combination experiments: (i) a controlled 
comparative study of the alignment procedures described above in terms of combination 
performance on Arabic speech, (ii) a large-scale experiment with the ITG-based 
combination applied to Arabic speech (automatic recognition output) and text (newswire 
documents and weblogs), and (iii) a similar ITG-based experiment on Chinese speech 
and text. In the rest of this section we will refer to these as experiment 1, 2 and 3, 
respectively. 

Because GALE measures performance on a per-document basis, the TER, BLEU 
results reported here are document averages. Furthermore, to better understand the impact 
of the combination on the performance of the worst translated documents, we also report 
“tail” results, such as tailBL E U   1|ܹ|  BL E U (D∈ௐ ݀) 

Handbook of Natural Language Processing and Machine Translation 357



 

 
where W is a window of documents “around” the GALE target consistency level (e.g., 
90% for Arabic Newswire). In more mathematical terms, W is defined as 
 ܹ ൌ ൜݀: ฬrank(݀) − ܿ100ݕܿ݊݁ݐݏ݅ݏ݊ × ܰඈฬ   ൠݐ

 
where N is the total number of documents, rank(d) is the rank of document d (with the 
best document having rank 1) and t is a threshold chosen so that |W| is equal to a desired 
value. The value of |W| for each genre/condition was set to 11. Tail TER is defined 
similarly. 

The corpora used are the following: 
1. Development sets: These are used to tune the parameters of the LM rescoring, that 

is, the mixture weight for the confusion network and LM and the NULL transition 
penalty. For experiment 1, the development set is part of Arabic MT06, consisting 
of roughly 260 segments (utterances) of speech. For experiment 2, the development 
set is Arabic DEV-07, that was made available under Phase 2 of the GALE 
program, consisting of roughly 580 segments of newswire text, 650 segments of 
weblog text, 620 utterances of broadcast news and 260 utterances of broadcast 
conversations. For experiment 3, the development set is the Chinese DEV-07 Blind 
set, containing 270 segments of newswire text, 300 segments of weblog text, 320 
utterances of broadcast news and 680 utterances of broadcast conversations. 

2. Test sets: For experiment 1, the test set is Arabic DEV-07 (speech part) described 
above. For experiments 2 and 3, the test set is part of the development set under 
Phase 3 that was made available under the GALE program, combined with the test 
set of the 2008 NIST MT evaluation. We refer to this set as DEV+MT08. For 
Arabic (experiment 2), this set consists of roughly 800 segments of newswire text, 
500 segments of weblog text, 600 utterances of broadcast news and 500 utterances 
of broadcast conversations. For Chinese, (experiment 3), it contains 690 segments 
of newswire text, 660 segments of weblog text and 1480 utterances of combined 
broadcast news and broadcast conversations. 

3. Language models: We experimented with two fixed (non-adaptive) language 
models in the rescoring of the confusion networks: one trained on roughly 180 
million words of the English side of the parallel data used in GALE for training the 
Arabic systems (used in experiment 1) and one which also included the AFP and 
Xinhua sources of the English Gigaword (used in experiments 2 and 3). The 
models were standard 5-gram LMs using modified Kneser-Ney smoothing. 

 
All of the above datasets have four references, except the speech portions of Chinese 

and Arabic DEV-07, which have one reference. 
In the case of speech, an ASR system by IBM was used to generate the automatic 

transcriptions that were subsequently translated by the three systems. The ASR system 
had a cross-adapted architecture between unvowelized and vowelized speaker-adaptive 
trained (SAT) acoustic models. The distinction between the two comes from the explicit 
modeling of short vowels, which are pronounced in Arabic, but almost never transcribed. 

358 Chapter 2: Machine Translation from Text 



 

 

Both sets of models were trained discriminatively on approximately 500 hours of 
supervised data and 2000 hours of unsupervised data. 

Nine MT systems were made available for the combination, seven of which were used 
for Experiment 1. Three of these systems were hierarchical, following the work of 
Chiang (2005), one was based on the Direct Translation System of Ittycheriah and 
Roukos (2007), one was example-based (Brown 1996), three were phrase-based 
statistical MT systems and one was rule-based. 

The hypothesis selection technique of Hildebrand and Vogel (2008) was applied to 
the above systems and its output was made available to us as a separate system. In all 
experiments, we used it as the skeleton in our combination. 

 
Results 

We show results on the two sets of experiments. 
 

Experiment 1 
 

  Broadcast News   Broadcast Conversation  
 Average Tail Oracle Average Tail Oracle 
 TER BLEU TER BLEU TER TER BLEU TER BLEU TER 

Best system 48.62 30.44 55.73 23.66 - 53.86 25.14 58.60 20.01 - 
Hyp. Selection 47.53 32.47 55.26 25.57 - 53.05 27.03 57.48 21.97 - 

TERCOM (0/1) 46.30 33.73 53.86 26.71 24.17 51.72 27.28 56.73 22.04 30.16 
TERCOM  46.23 33.27 53.89 26.16 23.81 51.66 27.40 56.59 21.95 29.69 
ITG-based 46.26 33.37 53.63 26.06 23.79 51.71 27.36 56.73 21.98 29.66 
Finite State 46.50 32.93 54.24 25.98 25.84 52.25 26.75 57.23 21.42 31.86 

IHMM-based 46.51 33.54 54.38 26.49 27.25 51.94 27.63 56.67 22.36 33.50 

Table 2.96: Combination results for Arabic ASR to English translation on DEV07 speech (Experiment 1). 
The best result in each column and any results which are not significantly different from it (p = 0:05) are 

shown in bold. Statistical significance was not measured for the “tail”, since the documents included in the 
tail will vary by system. 

In Table 2.96, we report the average and tail TER, BLEU for two genres (broadcast 
news and broadcast conversations), for the following setups: (i) TERCOM-based 
combination using the 0/1 cost function of  Rosti et al. (2008) (ii) TERCOM-based 
combination using the bin cost of Equation 2.87; (iii) ITG-based combination using 
Equation 2.87; (iv) finite-state reordering as described in Section 2.8.2.4.2; and (v) 
incremental IHMMbased combination, using the settings mentioned by He et al. (2008) 
(but excluding the semantic similarity). For the TERCOM and ITG combinations, the 
order with which the systems were incrementally aligned to the skeleton was determined 
by the edit distance from the incremental confusion network, as described above. For 
comparison, the results obtained with only the hypothesis selection method of Hildebrand 
and Vogel (2008) are also mentioned. The “Oracle” TER column shows the value of the 
minimum-invWER path (as computed by our ITG code) in the confusion networks. 

 
 
 

Handbook of Natural Language Processing and Machine Translation 359



 

Experiments 2 and 3 
Table 2.97 and Table 2.98 show average and tail results for the four genres of both 

languages: newswire and weblogs (text), broadcast news and broadcast conversations 
(ASR). As can be seen from these results, in all conditions, the combination gives an 
improvement of 2-4% points compared to the best individual system. 

 
 NW Average NW Tail BN Average BN Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 39.01 54.60 45.39 45.05 39.73 51.85 45.06 42.26 
Hyp. Selection 39.29 56.56 48.85 46.23 37.70 56.02 43.80 47.05 

ITG-based 37.49 57.81 45.23 47.20 37.30 56.36 42.43 48.01 
 WB Average WB Tail BC Average BC Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 49.70 38.02 54.95 30.12 40.78 47.15 44.06 42.58 
Hyp. Selection 49.28 41.08 53.01 34.86 41.78 49.64 44.40 45.58 

ITG-based 46.70 41.86 51.38 35.40 39.26 51.20 42.75 47.09 

Table 2.97: Combination results for Arabic text and ASR translation to English on DEV+MT08 (Experiment 
2). The best result in each column is shown in bold. 

 NW Average NW Tail BN Average BN Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 56.01 31.37 64.37 19.09 56.86 30.36 61.87 24.27 
Hyp. Selection 55.67 34.46 64.17 23.26 56.23 32.39 60.82 26.43 

ITG-based 52.56 36.16 61.13 23.16 53.15 33.61 56.85 27.28 
 WB Average WB Tail BC Average BC Tail 
 TER BLEU TER BLEU TER BLEU TER BLEU 

Best system 58.69 23.21 61.44 18.26 61.00 24.10 63.77 19.46 
Hyp. Selection 59.99 25.50 62.99 20.86 62.56 26.83 65.30 22.22 

ITG-based 57.15 26.88 60.53 21.46 58.69 28.40 61.23 24.18 

Table 2.98: Combination results for Chinese text and ASR translation to English on DEV+MT08 
(Experiment 3). The best result in each column is shown in bold. 

2.8.2.5 Conclusions 

Confusion network decoding may be used to combine outputs from multiple MT 
systems. The combination output was shown to yield significantly better TER and BLEU 
scores than the output of any individual MT system included in the combination. Three 
alignment algorithms based on the translation edit rate and how they are used in building 
confusion networks were first presented by the Agile team. The incremental alignment 
algorithms were shown to outperform the pair-wise TER alignment. There does not seem 
to be a significant improvement from using the flexible alignment. The results have been 
mixed on other test sets too; for example, the system combination experiments presented 
at the Fourth Workshop on Statistical Machine Translation (Rosti et al. 2009). The choice 
of the skeleton determines the word order of the output and may also help in choosing a 
network with fewer alignment errors. The best results were obtained by allowing all 1-
best system outputs act as skeletons and assigning each confusion network a prior 
probability estimated from the expected alignment statistics. 

360 Chapter 2: Machine Translation from Text 



 

 

Different edit costs may influence the alignment quality in the TER based alignment 
algorithms. Finding optimal edit costs may be time consuming as the outputs have to be 
realigned every time the costs change. Faster implementation of the alignment and more 
computing capacity may allow optimization of these edit costs. Direct optimization of the 
system combination weights without relying on N-best lists may also be helpful. 

The NIGHTINGALE team compared two established approaches used in by the team 
to align translation hypotheses for the word-level MT system combination. The first 
method is a statistical alignment algorithm that learns alignment connections on a whole 
corpus of parallel system translations. The second method is a two-pass approach that is 
based on translation edit rate and explicitly considers synonyms. On the GALE text and 
audio data, we showed that both approaches result in highly significant translation quality 
improvements when combining up to eight state-of-the-art MT systems. A notable 
improvement can be also obtained when combining three relatively similar systems. 

The Rosetta team showed that although previous approaches to system combination 
use TERCOM to align hypotheses, invWER is a more accurate approximation to TER 
(Table 2.95). The team also investigated a number of novel system combination methods 
for machine translation based on confusion network construction. Specifically, they 
compared confusion networks constructed using TERCOM-based alignments, ITG-based 
alignments and Indirect-HMM-based alignments. The results on Arabic text and speech 
demonstrated that combination methods almost always result in significant improvements 
compared to the best system output with gains of up to 4% absolute. 

Authors: Roland Kuhn, Jean Senellart, Jeff Ma, Antti-Veikko Rosti, Rabih Zbib, Achraf Chalabi, Loïc 
Dugast, George Foster, John Makhoul, Spyros Matsoukas, Evgeny Matusov, Hazem Nader, Rami Safadi, 
Richard Schwartz, Jens Stephan, Nicola Ueffing and Jin Yang 

2.8.3.1 Introduction  

With the recent remarkable success of statistical machine translation (SMT) systems, 
the question arises: how can the linguistic knowledge locked up in older, rule-based 
machine translation (RBMT) systems most conveniently be incorporated in these systems? 
In many cases, RBMT systems represent an investment of several man-years of applied 
expertise; even if one is an ardent proponent of the SMT approach, it makes sense to 
capitalize on this investment.  

Inside the GALE project, two teams looked at the problem of incorporating RBMT 
systems into SMT ones. Surprisingly, though the teams were working completely 
independently and on two different language pairs (Chinese-English and Arabic-English), 
they reached almost identical conclusions as to the best approach to pursue and attained 
remarkably good experimental results with this approach.  

Figure 2.70 illustrates the difference between two ways of combining MT systems: 
parallel system combination and serial system combination. In parallel system 
combination, each MT system independently generates one or more translations of a 
source-language sentence into the target language. The target-language outputs are then 

Handbook of Natural Language Processing and Machine Translation 361

2.8.3. Serial System Combination for Integrating Rule-Based 
and Statistical Machine Translation  



 

combined in some way to generate the final target-language output. Serial system 
combination works in a less intuitively obvious way. A first MT system generates one or 
more initial translations of the source-language input into the target language. The second 
MT system receives these target-language translations as input and generates new target-
language output from them. This second system is called the “automatic post-editor”. 
Thus, in serial system combination the automatic post-editor “translates” target-language 
input to target-language output. The automatic post-editor is typically a statistical 
machine translation (SMT) system.  

 

Figure 2.70: Parallel and Serial System Combination 

Serial system combination was first tried in a setting where human post-editors had 
corrected a large quantity of translations generated by an RBMT system (Simard et al. 
2007a). Using the RBMT system as the first system for serial combination, these 
researchers trained the automatic post-editor on translations from the RBMT system 
aligned with manually corrected versions of these same translations. The rationale is that 
the automatic post-editor learns how to correct certain systematic errors made by the 
RBMT system. In the work of Simard et al. (2007a), this approach was shown to produce 
large improvements in translation performance for the English-French language pair 
(both directions) compared to both to the RBMT system and the SMT system alone. 
Moreover, it yielded a large reduction in human post-editing effort. 

A less obvious setting for serial system combination is that in which no corrections of 
the output of the first MT system are available. Instead, one trains the automatic post-
editor on translations from the first MT system aligned with independently generated 
human reference translations of the same source sentences. In this setting, it is much less 
obvious that the automatic post-editor will learn useful rules for transforming the output 
of the first MT system. However, Simard et al. (2007b) carried out SMT Workshop 
experiments in which this approach was very successful. In these English-French (both 
directions) experiments the serial system combination consistently outperformed the pure 
RBMT system (SYSTRAN). The serial combination ties with the pure SMT system 
(PORTAGE) on a domain with large amounts of training data but outperforms it on a 
small domain. These results suggest that with little training data, serial combination of 

362 Chapter 2: Machine Translation from Text 



 

 

RBMT and SMT is the best strategy, while with more training data, either serial 
combination or the use of a pure SMT system yields good results. Finally, human 
evaluation results for this workshop (Callison-Burch et al. 2007) seem to show that 
humans have an even higher opinion of the serial system combination than its BLEU 
scores suggest.  

Inside the GALE project’s NIGHTINGALE team, researchers at Systran and the 
National Research Council of Canada (NRC) put together a serial combination in which 
Systran’s RBMT system translates Chinese to English and the NRC’s system 
(PORTAGE) then “translates” SYSTRAN English into even better English. This serial 
combination yielded acceptable BLEU and TER scores compared to those of the other MT 
systems participating in NIGHTINGALE. However, the really interesting results were 
obtained when the serial combination participated in a parallel combination of five 
Nightingale MT systems organized by RWTH. Addition of the serial system yielded the 
biggest improvement obtained for any of the component systems in the parallel 
combination (about 0.9 BLEU). By contrast, adding SYSTRAN (by itself, not in a serial 
combination) to the parallel combination yielded no improvement and adding pure 
PORTAGE yielded only a modest improvement. It appears that the RBMT (in this case, 
SYSTRAN) contains valuable information that is only accessible to the parallel system 
combination if the RBMT’s output has undergone automatic post-editing by an SMT. 

Similar results were obtained by members of the Agile team inside GALE. They 
created a serial combination (called by them a “cascade system”) in which Arabic text 
was translated by the Sakhr RBMT into an initial English version, which was then 
translated into better English by BBN’s HierDec SMT system. Again, the performance of 
this cascade was quite good (considerably better than that of the Sakhr system on its 
own). Just as with the NIGHTINGALE experiments described in the previous paragraph, 
however, the most interesting results were obtained when the cascade system was put into 
a parallel system combination, containing eight systems in all. Here, inclusion of the 
cascade system in the combination yielded an improvement of around 1.0 BLEU. 

The Agile work went further than the NIGHTINGALE work in one respect. They 
also tried a new version of serial combination they call “Noun-Phrase Based 
Combination” (NP-comb). In this version, the Sakhr RBMT system also produces an 
initial translation from Arabic into English; the boundaries of noun phrases (NPs) in the 
Arabic source and the English translation are preserved. In a second step, each of the 
Arabic NPs is translated by an SMT system (BBN’s HierDec system). A word lattice is 
constructed for each input sentence, with the non-NP backbone of the sentence being 
provided by the RBMT system and the NP portions by the SMT system. A set of features 
that includes a language model score is used to find the best path through the lattice. As 
with the other serial system combinations described above, NP-comb yielded better 
scores than the pure RBMT system, but not (in general) better scores than the SMT 
system in the combination. However, just as in the other cases, the serial combination 
(here, NP-comb) made a remarkable contribution to a parallel combination. In the 
experiments by these Agile researchers, addition of NP-comb to a parallel system 
combination yielded more than 1 BLEU point improvement for Web data (no 
improvement was seen for newswire data).  

Handbook of Natural Language Processing and Machine Translation 363



 

We believe that the experiments described here are among the most interesting that 
resulted from the GALE project. Carried out by two completely different teams on two 
different language pairs, they show that the information carried by RBMT systems can be 
exploited within the SMT framework. The best way to do this is to build a serial 
combination made of RBMT followed by SMT. If desired, the serial combination system 
can then be incorporated in a parallel combination with other systems. The experiments 
reported here show that the information contributed by the serial combination is often 
extremely valuable (presumably, because it is complementary to information contributed 
by the other components).  

2.8.3.2 Chinese-English Experiments  

This section describes experiments carried out in the context of both the GALE project 
and the 2008 NIST Chinese-to-English MT evaluation. The system that generated the 
initial translations was SYSTRAN and the automatic post-editor was PORTAGE. The 
integration of the two components of the serial combination was deepened by passing 
confidence information from SYSTRAN on to PORTAGE. 

The SYSTRAN Chinese-English system is described extensively by Yang et al. 
(2003). In particular, it uses a rule-based word-boundary module and a bilingual lexicon 
with about 1.2M entries, containing words, expressions and rules. This system is 
specifically geared to translation in the domain of science and technology. Recent 
evolution of this system has focused on developing structured markup making it possible 
to monitor rule application and to interact with the rule engine (Attnäs et al. 2005). 

The PORTAGE system is a standard phrase based system that carries out beam 
search decoding using a loglinear model. Major features in this loglinear model include 
phrase tables derived from symmetrized IBM2 and HMM word alignments (with a phrase 
length limit of seven words) and a static 4-gram language model (LM) trained on the 
Gigaword corpus using the SRILM toolkit (Stolcke 2002). An important feature is an 
adapted 4-gram LM derived from the parallel corpus using the technique of Foster and 
Kuhn (2007); it is a linear mixture of N-gram models trained on parallel sub-corpora 
(Hong Kong Hansard, FBIS, UN, etc.). Other features are word count and phrase-
displacement distortion. Parameter tuning of this loglinear combination is performed 
using Och's max-BLEU algorithm (Och 2003) with a closest match brevity penalty. 
Decoding uses the cube-pruning algorithm of Huang and Chiang (2007) with a seven-
word distortion limit. 

2.8.3.2.1 GALE System Combination  

Recent work on parallel system combination includes that of Matusov et al. (2006, 
2009) and Rosti et al. (2007a). This approach to system combination was applied to 
Chinese-English data available within the DARPA-sponsored GALE project by 
researchers at RWTH (Matusov et al. 2009). One of the systems in the RWTH parallel 
system combination is itself a combination: our hybrid SYSTRAN→PORTAGE system. 
This version of the hybrid system had loosely coupled components (confidence 
information isn’t output by SYSTRAN). The other systems in this parallel combination 
were all pure SMT systems. In earlier experiments, an attempt had been made to include 

364 Chapter 2: Machine Translation from Text 



 

 

SYSTRAN by itself, but it always received a negligible weight in the parallel system 
combination.  

Although the SYSTRAN→PORTAGE hybrid system is not the best among the 
systems combined, as measured either by BLEU score or TER score, it is often assigned 
the heaviest weight by the system combination algorithm. Since the heavy weights 
assigned to the SYSTRAN→PORTAGE system could be dismissed as an artifact, 
experiments were also done (using 554 newswire sentences as test data) in which one 
system at a time was dropped from the five-way system combination. The results are 
shown in Table 2.99 for case-sensitive BLEU and TER (high BLEU and low TER are 
desirable). Here “PORTAGE” denotes a “direct” Chinese-English system from NRC, 
“HKUST” denotes the system provided by the Hong Kong University of Science and 
Technology, “RWTH PB” denotes Aachen University’s phrase-based system and “SRI” 
denotes the system provided by Stanford Research Institute. 

 
Description BLEU TER 
All (system comb). 17.0 65.4 
drop PORTAGE 17.0 64.9 
drop HKUST 17.2 65.0 
drop RWTH PB 17.2 65.6 
drop SRI 16.6 65.4 
drop SYSTRAN→PORTAGE 16.1 68.0 

Table 2.99: “drop-one” in GALE system combination. 

2.8.3.2.2 Participation in NIST MT 2008 

Both the pure statistical system PORTAGE and the serial combination 
SYSTRAN→PORTAGE participated in the 2008 NIST Chinese-English MT evaluation. 
In the serial combination, the SYSTRAN component passed confidence information on to 
the PORTAGE component. Both systems were trained on data from the constrained data 
track (thus, to create the SYSTRAN→PORTAGE system all the Chinese constrained-
track training data was translated by SYSTRAN and the English output aligned with the 
English references was then used to train PORTAGE). Both systems placed roughly in 
the middle of competing systems according to BLEU score, with PORTAGE obtaining a 
score of 24.6 and SYSTRAN→PORTAGE obtaining a score of 25.2. (Internal tests of 
SYSTRAN alone on the same data give 18.2). However, SYSTRAN→ PORTAGE 
excelled according to an important human evaluation metric. In cases where human 
evaluators had ranked a translated sentence sufficiently highly, they were asked an 
additional question as to whether the translation captured all the needed information. 

Handbook of Natural Language Processing and Machine Translation 365

When SYSTRAN→PORTAGE is dropped, the system combination performs worse 
by 0.9 BLEU and 2.6 TER. This performance drop is worse than that caused by dropping 
any other single system. One may infer that despite its unremarkable BLEU and TER 
scores taken in isolation (typically, these are close to the median scores of the other 
systems in the combination), the SYSTRAN→PORTAGE serial combination provides 
information that complements that of the other systems (which were all SMT systems). 



 

SYSTRAN→PORTAGE obtained the highest number of “yes” answers among all 14 
Chinese-English systems evaluated: 35.82% of all sentences.  

The mechanism by which confidence information is passed from the SYSTRAN to 
the PORTAGE component is of interest. The output of the SYSTRAN component is 
broken into annotated “chunks”; some of these chunks have confidence values assigned 
to them. We experimented with different methods of transmitting the confidence 
information; for details, see the work of Ueffing et al. (2008). In each of these methods, a 
source chunk is assigned a translation into the target language and a probability for this 
translation. The SMT decoder hypothesizes both the translation provided in the RBMT 
output and translations provided by the phrase tables. The translation yielding the highest 
overall sentence score will be the one chosen. In the method we decided to use for the 
NIST evaluation, confidence values for chunks output by the SYSTRAN system are 
plugged directly into PORTAGE’s phrase table. Table 2.100 shows the results of this 
method as assessed on NIST test data. We ran a 1000-fold pair-wise BLEU bootstrap 
comparison, which indicates that the with-confidence version is better at the 95% 
confidence level for both the NIST04 and NIST08 data sets. Thus, transmission of 
confidence information from the SYSTRAN component to the PORTAGE component 
improves the hybrid system significantly. 

 
Description NIST04 NIST08 
Baseline  34.0  25.0  
System with confidence 
information 35.0 25.8 

Table 2.100: Translation quality (BLEU score) 

In addition to the automatic evaluation, we had an English native speaker manually 
assess the translations of the first 100 sentences of the 2004 NIST test set for the baseline 
system and the system with confidence information. Outputs were shuffled for each 
sentence to get reliable blind evaluation of the two systems. Fluency and adequacy were 
judged on a scale of 0-5 (0=worst, 5=best). The results are shown in Table 2.101 and they 
support the outcome of the automatic evaluation: the system which uses confidence is 
significantly preferred to the baseline. For instance, in a third of all cases for both 
measures, the system with confidence is judged better than the baseline system. 

 
 Fluency Adequacy 
Baseline 1.9 2.2 
System with confidence 2.1 (+10%) 2.5 (+13%) 
Comparison baseline vs. system with 
conf: worse/equal/better 

10/58/32 6/64/30 

Table 2.101: NIST04 – Qualitative human evaluation 

2.8.3.3 Discussion of Chinese-English Experiments  

In the work presented above, RBMT→SMT serial system combination typically 
yielded much better BLEU scores than those obtained by the RBMT component on its 
own and slightly better scores than the SMT component on its own; it was awarded much 

366 Chapter 2: Machine Translation from Text 



 

 

better scores by human evaluators than either RBMT or SMT on its own. According to 
one important human metric, the serial combination described here was ranked first of 14 
systems participating in the 2008 Chinese-English NIST evaluation. Furthermore, serial 
combination seems to contribute valuable complementary information in a parallel 
system combination where the other systems are pure SMT ones. 

Why does a serial combination of the form RBMT→SMT yield superior translations 
to those produced by either component on its own? Our perception is that the syntactic 
rules in the RBMT component preserve syntactic structure and allow long-distance 
movement of constituents. However, the RBMT component has a weak model of the 
target language, yielding disfluencies. Post-editing by the SMT component preserves 
syntactically motivated rearrangements while correcting disfluencies in the output and 
making more appropriate lexical choices. We have observed this behavior in several 
examples, such as the one shown in Table 2.102. 

 
Description Sentence 
Chinese 欧盟 官员 现在 最 担心 的 是即将 从 非洲 飞回 的 候鸟。 
Systran What the EU officials most were worried now is soon the 

migratory bird which flies back from Africa.  
PORTAGE EU officials are most concerned about is coming from Africa 

flew back to the migratory birds. 
Systran→ 
PORTAGE 

The EU officials are most worried about the migratory birds 
that fly back from Africa. 

Table 2.102: three translations of a Chinese sentence. 

In theory, the serial combination technique has serious limitations; it can only 
cumulate information loss coming from both systems. Though the SMT system may 
benefit from the RBMT system’s syntactic analysis of the source sentence, the gain is 
indirect, since the SMT system is not directly informed of this analysis - this situation is 
not optimal. We can see the combination of the two engines as cooperation between two 
expert agents; the more information they exchange about their analysis of the problem, 
the better their combined result. The improvement gained in NIST08 by the passing of 
confidence information from the RBMT system to the SMT system demonstrated the 
potential for further improvements in combination techniques.  

We can classify the problems in the current combination technique as follows: A. 
many2ones, B. lack of access by SMT to the RBMT lattice, C. morphology, D. 
constituent boundaries, as shown in Figure 2.71. 

A. Many2ones 
“Many2ones” are classes of source words having a common translation through 

RBMT. The SMT engine will see the class as a single word: having less information than 
the RBMT engine or a direct SMT engine for properly retranslating/post-editing these 
words. For French to English, we have seen many examples of these many2ones that are 
prepositions, but nouns can also be involved in many2ones.  

Handbook of Natural Language Processing and Machine Translation 367



 

 
 
 
 
 
 

Figure 2.71: Typical example of many2one : words S1 and S2 share a common meaning. Without any 
context, the SMT engine cannot “correct” the RBMT output. 

Not all many2ones are equally critical. For instance, for most prepositions, the 
context will allow the SMT engine to recapture the difference between the different 
source words. To deal with these words, we can allow the RBMT engine to annotate 
these words with their source equivalent. For instance, for French to English, the RBMT 
engine could annotate occurrences of the word “in” in its English output with the French 
word each was translated from: e.g., “in.à Paris”, “in.dans Paris”. Annotation with the 
source word should be performed selectively on frequent target words; if it is performed 
on rarer words, it may interfere with word alignment and phrase table building for the 
SMT system. 

 
B. Lack of Access by SMT to the RBMT Lattice 

In the serial combination technique described previously, a single RBMT translation 
is passed to an SMT engine, which carries out post-editing. Post-editing involves 
considering alternative lexical choices (by phrase substitution) and alternative word 
orders, letting a language model decide on the best hypothesis. Human evaluation of the 
type of substitution performed by this mechanism shows that an important part of these 
substitutions is the choice of an appropriate meaning, or the choice of preposition or right 
determiner. In most cases, most of these alternatives were already known to the RBMT 
engine. Thus, the SMT engine performs an unnecessarily complicated task, 
reconstructing from a single RBMT translation a set of alternative constructions and 
meanings for a given source sentence that were originally available inside the RBMT 
system. 

S1 

S2 

T1b, T2a 

T 1a 

T 2b 

 

RBMT SPE 

368 Chapter 2: Machine Translation from Text 



 

 

 
Figure 2.72: a) Represents the internal choices in the RBMT generation module, b) the unique solution 

selected, c) the option lattice rebuilt by the SMT engine – most of the original generation alternatives are 
rebuilt. 

Direct use of this RBMT lattice by the SMT system is, however, not simple. Our 
current approach is to apply a first lattice decoding in the last phase of RBMT output to 
produce N-best translations and to use this N-best list as an input to SMT decoding. 

 
C. Morphology  

RBMT systems are much better at handling morphology than SMT systems are. In 
the serial combination setup described previously, the SMT engine sometimes degrades 
morphological choices or gender/case agreement while improving meaning selection. 
Another problem is that when translating into a language with a richer morphology than 
the source language, the larger vocabulary of the target language dilutes the information 
contained in the SMT models, causing the SMT in the serial combination setup to 
perform less well than an SMT trained to translate directly from the source language. A 
possible workaround would be to let linguistically motivated rules select valid sequences 
in the SMT N-best list or to postpone morphology generation to a further stage of the 
process.  

 
D. Constituent Boundaries 

One particularly frustrating class of post-editing error observed in a typical serial 
combination occurs when the SMT component carries out word reordering to improve 
fluency without respecting the logic of constituents as analyzed by the RBMT engine. 
While some reordering (most often restricted to local reordering) carried out by the SMT 
component is valid and corrects invalid word order choices made by the RBMT 
component, erroneous transformations can break the desired sentence structure and may 
lead to very bad mistranslations. One could argue that the quality of the constituents 
recognized by RBMT might not be good enough to rely on. It seems likely that one could 
get performance improvements for serial combination by constraining the reordering 
carried out by the SMT component to respect the constituent boundaries defined by the 
RBMT component. 

In our future work, we plan to explore deeper integration of the two systems in the 
serial combination. The work we have already done on passing confidence information 
from the first system to the second shows that this approach can yield important 
dividends. We believe that it will be possible to attain a deeper integration of the two 

Handbook of Natural Language Processing and Machine Translation 369



 

tools, which will allow each of them to constrain the other and allow both of them to 
operate simultaneously instead of in sequence. 

2.8.3.4 Arabic-English Experiments  

In this section we describe in detail experiments conducted by the Agile team on the 
Arabic-English serial combination, which we refer to as cascade experiments. As 
mentioned above, these experiments use the Sakhr Arabic-English translation system for 
the rule-based component and BBN’s HierDec system (Shen et al. 2008) for the 
statistical component. The BBN system is trained on 53 million words of Arabic-English 
parallel data from the GALE training corpus. The baseline SMT system to which the 
cascade results are compared is also the BBN HierDec system trained on the same data. 
A 3-gram language model is used for decoding and 5-gram language model is used for N-
best rescoring for both setups. Both systems were tuned to maximize IBM BLEU. 

The data sets on which the experiments we run are composed of subsets of NIST MT 
evaluation and GALE development and evaluation data sets. For newswire data, the set 
Test.nw consists of 1194 segments, SysCombTune.nw consists of 2118 segments, and 
Test.nw consists of 1031 segments. For the web data, the set Tune.web contains 3278 
segments, SysCombTune.web contains 3132 segments, and Test.web 1293 segments. It is 
worth noting that when a certain data set is divided, the division always respects 
document boundaries, so that no two sentences from the same document end in two 
different sets. 

For the Sakhr-BBN cascade combination experiments, the system parameter weights 
were tuned on Tune.nw. The two sets SysCombTune.nw and Test.nw were used as test 
sets. The scores from these experiments are shown in Table 2.103. These results are for 
lower case output. The cascade system scores show a significant improvement over the 
scores of the Sakhr system for newswire. They have about 10 points lower in TER and 15 
points points higher in IBM BLEU points. This is consistent with the results obtained by 
the NIGHTINGALE team on Chinese-English, which are described in Section 2.8.3. In 
this case also, it appears that the SMT system is able to learn useful post-editing rules that 
make the output of the RBMT system better. The use of a language model in the SMT 
component of the cascade architecture contributes significantly to obtaining a more fluent 
output. It should also be noted that the scores of the cascade system are slightly lower 
than those of the baseline HierDec data trained on the same data. 
 

newswire Tune.nw SysCombTune.nw Test.nw 
 TER BLEU TER BLEU TER BLEU 

Sakhr RBMT 44.22 39.69 48.73 38.38 49.52 38.29 
BBN Hierdec 38.56 55.79 39.24 53.52 40.17 51.64 

Cascade System 38.31 55.53 38.84 53.94 40.25 51.56 

Table 2.103: Results of cascade combination of Sakhr RBMT and BBN HierDec systems for Arabic 
newswire 

 
 
 

370 Chapter 2: Machine Translation from Text 



 

 

newswire Tune.nw Test.nw 
 TER BLEU METEOR TER BLEU METEOR 

With Cascade Output 34.71 60.09 71.41 35.65 57.86 70.21 
Without Cascade Output 34.21 61.10 71.86 35.23 58.85 70.57 

Table 2.104: Results of word-level system combination of 8 MT systems, with and without the output of the 
Sakhr+BBN cascade system for newswire data. 

 
web Tune.nw Test.nw 

 TER BLEU METEOR TER BLEU METEOR 
With Cascade Output 54.65 28.86 53.37 46.20 45.50 61.82 

Without Cascade Output 54.13 30.05 54.35 45.81 46.42 62.78 

Table 2.105: Results of word-level system combination of 8 MT systems, with and without the output of the 
Sakhr+BBN cascade system for web data. 

Next, we ran experiments to measure the effect of adding the output of the Sakhr-
BBN cascade system as an additional system to parallel word-level system combination. 
The baseline, shown in the first row of Table 2.104 and Table 2.105, consists of the 
combination of the outputs of 8 different systems from the GALE Agile team. These 
include the BBN HierDec system and the Sakhr rule-based system, in addition to six 
other statistical systems that use a variety of translation models, including phrase based 
and syntactic models. The outputs of the systems are combined at the word level by 
building a word lattice from the aligned outputs of the different systems and searching for 
the best path through that lattice using language model scores and other features. The 
details of this method can be found in the work of Rosti et al. (2007a and 2008). To 
determine whether there is a benefit from adding the output of the Sakhr-BBN cascade 
system, we performed another parallel system combination experiment in which the 
output of the cascade system is also added as another system. In this case, we tune on the 
sets SysCombTune.nw and SysCombTune.web and test on Test.nw and Test.web 
respectively. The results in Table 2.104 and Table 2.105 show that there is an 
improvement of about one BLEU point on both Test.nw and Test.web. The improvement 
suggests that the cascade system produces an output that is significantly different from 
the two baseline output and which the parallel combination benefits from. 

2.8.3.5 Noun Phrase Based Combination  

2.8.3.5.1 Procedure  

The method described in this section is also inspired by the insight that RBMT 
systems are more likely to produce a correct sentence structure, while SMT systems are 
more likely to correctly translate phrases that the RBMT system would translate literally. 
This is especially true when the SMT system uses a phrase-based model. 

In this method, the Arabic source is translated using the Sakhr rule-based system. 
Two outputs are then produced: an English translation of that sentence and indices of the 
boundaries for each noun phrase in the Arabic source, and the indices of the 
corresponding translation for that noun phrase in the English output. Indices for nested 

Handbook of Natural Language Processing and Machine Translation 371



 

noun phrases are also produced together with those of the containing noun phrases. The 
mapping to the corresponding indices on the target side can be also obtained in a 
straightforward manner, since the translation process is deterministic. Noun phrases are 
extracted from the Arabic source and translated through an SMT system (BBN’s 
HierDec), then a word lattice is constructed for each input sentence, consisting of: 

 
1. A base chain of arcs containing the base noun phrases (i.e., noun phrases that 

don’t contain other noun phrases), as well as non-NP spans in the original 
sentence, such that there are non-consecutive noun phrase arcs. 

2. For each non-base noun phrase, an arc that spans that noun phrase is added to the 
lattice, such that the edges of the added arc coincide with the start and end nodes 
of the span in the base chain constructed in 1. 

3. For each noun phrase in the lattice (both base and non-base), a set of parallel arcs 
is added. The arcs are labeled with the N-best SMT translations of the noun 
phrase. 

4. Each arc is labeled with the following features in addition to the translation 
output words: 
(a) SLM: The language model score. 
(b) SMT_ARC: Feature with value 0 if the arc translation is from the RBMT 

system, 1 if it is from the BBN SMT system. 
(c) W_NUM: Number of words on the arc label. 
(d) A_NUM: Constant. This contributes to a path-level feature, whose value is 

the number of arcs in the path. 
(e) IS_NP: Feature with value 1 if the arc corresponds to a noun-phrase span, 0 

otherwise.  
(f) IN NON BASE NP: Feature with value 1 if the noun phrase contains nested 

noun phrases, 0 otherwise (i.e., is base noun phrase). 
 

All feature values can be straightforwardly added to the lattice when it is being built, 
except for the language model score (SLM). Assigning the language model properly 
requires the additional step of expanding the lattice (Odell 1995). Briefly, the sequence of 
translation words on an arc can have as many different word histories as there are 
incoming arcs into the starting node of that arc. In order to compute the language model 
score for a given arc string, the lattice has to be expanded such that the arc string has a 
unique N-gram history. The language model score at each new arc can now be computed 
based on the unique word history of that arc. 

After the language model scores are computed, each link has a vector of feature 
scores. The total score of a given arc is the dot product of the vector of feature scores 
with the vector of feature weights. The path with the highest such score is selected. 

The set of feature weights are tuned on a tuning data set to maximize the BLEU score. 
The objective function is minimized using Powell’s method (Brent 1973) since it is not 
differentiable. The A* algorithm is used to get an N-best list of translations from the 
lattice. Finally, the N-best is re-ranked using a 5-gram language model. 

372 Chapter 2: Machine Translation from Text 



 

 

2.8.3.5.2 Noun Phrase Based Experiments 

In these experiments, we also used the BBN HierDec system (Shen et al. 2008), 
trained on 200 million words of Arabic-English parallel from the P2 GALE training data 
and the UN data. The same statistical system is used to translate the full segments in the 
standalone HierDec system and the noun phrases used in the noun phrase combination 
system. 

The newswire data used in the experiments described in this section are from the 
NIST MT02-MT05 test sets. For the web data, we used two test sets, ng_y1_q4 Tune 
containing 2079 segments and ng_y1_q4 Test containing 2128 segments, all taken from 
the GALE year 1 quarter 4 LDC web parallel data. The web data has one reference, 
which partly explains the lower scores. All experiments were tuned to maximize the 
BLEU score. For newswire, we tune on NIST_02_05 Tune and test on NIST_MT02_05 
Test. For the web experiments, we tune on ng_y1_q4 Tune and test on ng_y1_q4 Test. 
All scores are for lower case English output. 

The first experiment uses the top translation produced by the HierDec system for 
each noun phrase. The noun phrase combination system improves over the scores of the 
RBMT system significantly. For the newswire test set, there is an increase of 9 BLEU 
points and a decrease of about 7.5 TER points, as Table 2.106 shows. But the scores 
remain noticeably lower than the standalone HierDec system. Table 2.107 shows the 
results for the web test set. In this case, noun-phrase combination also shows an 
improvement of 2 BLEU points and 4.5 TER points. In this case, the noun phrase 
combination system shows an improvement of about 0.45 points over the standalone 
HierDec system. The improvement in scores is due to the better translation of the noun 
phrases and the use of the language model in the rescoring of the lattice. We also 
experimented with using the top 50 translations for each NP in the lattice. This provides a 
small improvement over using the top translation for newswire and no improvement for 
the web. 

  
newswire NIST_MT02_05_Tune NIST_MT02_05_Test 

 TER BLEU METEOR TER BLEU METEOR 
Sakhr RBMT 51.74 36.86 65.66 51.42 37.13 56.83 
BBN Hierdec 38.73 55.42 72.02 38.95 55.48 71.44 

NP Comb 1-best 44.20 45.79 69.32 44.20 46.07 69.25 
NP Comb 50-best 43.45 46.80 68.87 43.48 46.92 68.97 

Table 2.106: Results of noun-phrase based combination for Arabic newswire data. 

web ng_y1q4_Tune ng_y1q4_Test 
 TER BLEU METEOR TER BLEU METEOR 

Sakhr RBMT 69.02 15.69 45.11 67.96 15.65 44.65 
BBN Hierdec 60.41 19.76 47.06 61.72 17.03 44.15 

NP Comb 1-best 62.93 18.98 48.07 63.39 17.48 46.10 
NP Comb 50-best 62.64 18.84 47.92 63.37 17.19 45.84 

Table 2.107: Results of noun phrase based combination for Arabic web data. 

 
 

Handbook of Natural Language Processing and Machine Translation 373



 

web ng_y1q4_Tune ng_y1q4_Test 
 TER BLEU METEOR TER BLEU METEOR 

RBMT+Hierdec 62.72 20.17 50.53 63.40 18.30 48.34 
RBMT+Hierdec+

NPcomb 61.28 21.28 51.26 61.87 19.25 49.23 

RBMT+ NPcomb 64.06 19.25 50.56 63.96 18.11 49.24 
Hierdec+NPcomb 61.14 21.26 51.20 61.95 18.86 49.19 

Table 2.108: Results of adding noun phrase system combination output to the word level combination of 
Sakhr's  RBMT system and BBN's HierDec system. 

As in the case of the cascade system experiments in this section, we also 
experimented with using the output of the noun phrase combination system in word level 
system combination experiments. Table 2.108 shows the results of adding the output of 
the noun phrase combination system (NP-comb) to outputs of the rule-based system 
(RBMT) and the hierarchical decoder SMT system (HierDec) for the web data. As the 
results show, adding the output of the noun-phrase noun phrase system results in a gain of 
1.1 BLEU points over only combining the outputs of the rule based and the hierarchical 
SMT system. However, no similar gains were observed with the newswire data. 

2.8.3.6 Conclusions 

374 Chapter 2: Machine Translation from Text 

We have investigated two methods for integrating the Sakhr rule-based machine 
translation system and BBN statistical machine translation system with hierarchical 
decoding: the cascade combination method and the noun phrase combination method. We 
have shown that both methods improve the scores of the rule-based system considerably. 
And, that it improves over the score of the SMT system in the case of the cascade 
combination. We have also shown that the addition of the output of these systems to 
word-level system combinations beneficial. Future work on the cascade system can 
investigate additional features that incorporate the Arabic source within the statistical 
model of the SMT system. Additional work similar to the noun phrase combination work 
could target other linguistic structures and different choices for the skeleton on which the 
translation lattice is built. 



 

 

References 
Aldous, D.  1985.  Exchangeability and related topics.  École d’été de probabilites de 
Saint-Flour XIII-1983, pp. 1–198. Springer: Berlin. 
Al-Onaizan, Y. 2005. IBM Arabic-to-English MT Submission. Presentation given at 
DARPA/TIDES 
Al-Onaizan, Y., J. Curin, M. Jahr, K. Knight, J. Lafferty, I. D. Melamed, N. A. Smith, 
F.J. Och, D. Purdy and D. Yarowsky. 1999. Statistical Machine Translation. CLSP 
Research Notes No. 42, Johns Hopkins University. 
Ando, R. K. and L. Lee. 2003. Mostly unsupervised statistical segmentation of Japanese 
kanji sequences. Journal of Natural Language Engineering, 9, pp. 127–149. 
Andrew, G. 2006. A Hybrid Markov/Semi-Markov Conditional Random Field for 
Sequence Segmentation. Proceedings of EMNLP, Sydney, Australia. 
Attnäs, M., P. Senellart and J. Senellart. 2005. Integration of SYSTRAN MT Systems in 
an Open Workflow. Proceedings of MT Summit X. 
Avramidis, E. and P. Koehn. 2008. Enriching Morphologically Poor Languages for 
Statistical Machine Translation. Proceedings of ACL/HLT, pp.763–770, Columbus, Ohio. 
Ayan, N.F., J. Zheng and W. Wang. 2008. Improving Alignments for Better Confusion 
Networks for Combining Machine Translation Systems. Proceedings of Coling , pp. 33-
40.   
Badr, I., R. Zbib and J. Glass. 2008. Segmentation for English-to-Arabic Statistical 
Machine Translation. Proceedings of ACL/HLT, Short Papers, pp.153–156, Columbus, 
OH. 
Bahl, L.R., F. Jelinek and R.L. Mercer. 1983. A Maximum Likelihood Approach to 
Continuous Speech Recognition. IEEE Transactions on Pattern Analysis and Machine 
Intelligence, PAMI-5(2): pp. 179–190. 
Banerjee, S. and A. Lavie. 2005. Meteor: An automatic metric for MT evaluation with 
improved correlation with human judgments. Proceedings of the 43th Annual Meeting of 
the Association for Computational Linguistics (ACL). 
Bangalore, S., G. Bordel and G. Riccardi. 2001. Computing Consensus Translation from 
Multiple Machine Translation Systems. Proceedings of ASRU, pp. 351-354. 
Bellman, R. 1957. Dynamic Programming. Princeton University Press: Princeton, NJ. 
Bender, O., R. Zens, E. Matusov and H. Ney. 2004. Alignment Templates: the RWTH 
SMT System. Proceedings of IWSLT, pp.  79–84, Kyoto, Japan. 
Berger, A.L., V.D. Pietra and S.D. Pietra. 1996. A Maximum Entropy Approach to 
Natural Language Processing. Computational Linguistics, 22(1), pp. 39–71. 
Bertoldi, N., R. Zens and M. Federico. 2007. Speech Translation by Confusion Network 
Decoding. Proceedings of ICASSP, Honolulu, Hawaii. 
Bilmes, J. and K. Kirchhoff. 2003. Factored Language Models And Generalized Parallel 
Backoff. Proceedings of HLT. 

Handbook of Natural Language Processing and Machine Translation 375



 

Birch, A., M. Osborne and P. Koehn. 2007. CCG Supertags in Factored Statistical 
Machine Translation. Proceedings of the Second Workshop on Statistical Machine 
Translation, pp. 9–16, Prague, Czech Republic. 
Blackwood, G. A. de Gispert and W. Byrne. 2008. Phrasal Segmentation Models for 
Statistical Machine Translation. Proceedings of Coling, Manchester, UK. 
Blackwood, G. A. de Gispert, J. Brunning and W. Byrne. 2008a. Large-scale Statistical 
Machine Translation with Weighted Finite State Transducers. Proceedings of  Finite-
State Methods and Natural Language Processing. 
Blei, D., A. Ng and M.I. Jordon. 2003. Latent Dirichlet Allocation. Journal of Machine 
Learning Re-search 3:  pp. 1107-1135. 
Blunsom, P. and T. Cohn. 2006. Discriminative Word Alignment with Conditional 
Random Fields. Proceedings of Coling/ACL,  pp.  65– 72, Morristown, NJ.  
Blunsom, P., T. Cohn and M. Osborne. 2008. A Discriminative Latent Variable Model 
for Statistical Machine Translation. Proceedings of ACL. 
Bod, R., R. Scha and K. Sima’an, eds. 2003. Data-Oriented Parsing. CSLI Publications. 
Bojar, O. 2007. English-to-Czech Factored Machine Translation. Proceedings of the 
Second Workshop on Statistical Machine Translation,  pp.  232–239, Prague, Czech 
Republic. 
Bonneau Maynard, H., A. Allauzen, D. D´echelotte and H. Schwenk. 2007. Combining 
morphosyntactic enriched representation with n-best reranking in statistical translation. 
Proceedings of NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in 
Statistical Translation, pp.  65–71, Rochester, NY. 
Brants, T., A. C. Popat, P. Xu, F.J. Och and J. Dean. 2007. Large Language Models in 
Machine Translation. Proceedings of EMNLP-CoNLL, pp.  858–867. 
Brent, R. 1973. Algorithms for Minimization Without Derivatives. Prentice-Hall. 
Brown, P. F., V.J.D Pietra, S.A.D Pietra and R.L. Mercer. 1993. The Mathematics of 
Statistical Machine Translation: Parameter Estimation. Computational Linguistics 19(2), 
pp. 263–311. 
Brown, R.D. 1996. Example-Based Machine Translation in the Pangloss System. 
Proceedings of Coling,  pp.169-174. 
Brown, P.F., S. A. Della Pietra, V. J. Della Pietra and R. L. Mercer. 1993. The 
Mathematics of Statistical Machine Translation: Parameter Estimation. Computational 
Linguistics 19(2):  pp. 263–311.  
Brown, P., S. Della Pietra, V. Della Pietra and R. Mercer. 1991. Word-sense 
Disambiguation Using Statistical Methods. Proceedings of ACL,  pp.  264-270, Berkeley, 
CA. 
Brown, P.F.,  J. Cocke, S.A. Della Pietra, V. J. Della Pietra, F. Jelinek, J. D. Lafferty, R.L. 
Mercer and P.S. Roossin. 1990. A Statistical Approach to Machine Translation. 
Computational Linguistics, 16(2):  pp. 79–85. 

376 Chapter 2: Machine Translation from Text 



 

 

Linguistic Data Consortium, University of Pennsylvania. LDC Catalog No.: 
LDC2002L49. 
Bulyko, I., S. Matsoukas, R. Schwartz, L. Nguyen and J. Makhoul. 2007. Language 
Model Adaptation in  Machine Translation from Speech. Proceedings of IEEE-ICASSP. 
Callison-Burch, C., C. Fordyce, P. Koehn, C. Monz and J. Schroeder. (Meta-) Evaluation 
of Machine Translation. 2007. Proceedings of 2nd ACL Workshop on Statistical Machine 
Translation,  pp. 136-158. 
Callison-Burch, C., M. Osborne and P. Koehn. 2006. Re-evaluating the Role of BLEU in 
Machine Translation Research. Proceedings of EACL, pp.  249–256, Trento, Italy. 
Carpuat, M. and D. Wu. 2008. Evaluation of Context-dependent Phrasal Translation 
Lexicons for Statistical Machine Translation.  Proceedings of LREC. European Language 
Resources Association (ELRA): Marrakech. 
Carpuat, W. and D. Wu. 2007. How Phrase Sense Disambiguation Outperforms Word 
Sense Disambiguation for Statistical Machine Translation. Proceedings of the Conference 
on Theoretical and Methodological Issues in Machine Translation,  pp.  43-52. Skovde, 
Sweden. 
Carpuat, M. and D. Wu. 2007a. Improving Statistical Machine Translation using Word 
Sense Disambiguation. Proceedings of EMNLP-CoNLL, pp.  61-72. Prague, Czech 
Republic. 
Carpuat, M. and D. Wu. 2005. Word Sense Disambiguation vs. Statistical Machine 
Translation. Proceedings of ACL,  pp.387-394. Ann Arbor, MI.  
Cettolo, M., F. Marcello, D. Pighin and N. Bertoldi. 2008. Shallow-syntax Phrase-Based 
Translation: Joint Versus Factored String-to-Chunk Models. Proceedings of AMTA. 
Chang, P., M. Galley and C.D. Manning. 2008. Optimizing Chinese Word Segmentation 
for Machine Translation Performance. Proceedings of the Third Workshop on Statistical 
Machine Translation. pp. 224-232, Columbus, Ohio. 
Chan, Y.S., H.T. Ng and D. Chiang. 2007. Word Sense Disambiguation Improves 
Statistical Machine Translation. Proceedings of ACL. Prague, Czech Republic. 
Chappelier, J. –C., and M. Rajman. (1998) A Generalized CYK Algorithm for Parsing 
Stochastic CFG. ftp://ftp.inria.fr/INRIA/Projects/Atoll/TAPD98/chappelier.ps.gz  
Charniak, E., K. Knight and K. Yamada. 2003. Syntax-based Language Models For 
Statistical Machine Translation. Proceedings of MT Summit IX. 
Charniak, E., S. Goldwater and M. Johnson. 1998. Edge-based Best-first Chart Parsing. 
Proceedings of the Sixth Workshop on Very Large Corpora,  pp.127-133. 
Chen, B., M. Cettolo and M. Federico. 2006. Reordering Rules for Phrase-based 
Statistical Machine Translation. Proceedings of IWSLT. Kyoto, Japan. 
Chen, S.F. and J. Goodman. 1998. An Empirical Study of Smoothing Techniques for 
Language Modeling. Technical Report TR-10-98, Harvard University Center for 
Research in Computing Technology.  

Handbook of Natural Language Processing and Machine Translation 377

Buckwalter, T.  2002.  Buckwalter Arabic Morphological Analyzer Version 1.0. 



 

Cheppalier, J., M. Rajman, R. Aragues and A. Rozenknop. 1999. Lattice Parsing for 
Speech Recognition.  Proceedings of Conference sur le Traitement Automatique du 
Langage Naturel,  pp.  95–104. 
Cheppelier, J.C. and M. Rajman. 1998. A Generalized CYK Algorithm for Parsing 
Stochastic CFG. Proceedings of the First Workshop on Tabulation in Parsing and 
Deduction (TAPD98),   pp.  133–137. 
Cherry, C. and D. Lin. 2003. A Probability Model to Improve Word Alignment. 
Proceedings of ACL,  pp.88–95, Sapporo, Japan. 
Chiang, D. and D. Wu, eds. 2008. Proceedings of Second Workshop on Syntax and 
Structure in Statistical Translation, at ACL/HLT. Columbus, OH. 
Chiang, D., Y. Marton and P. Resnik. 2008. Online Large-margin Training of Syntactic 
and Structural Translation Features. Proceedings of EMNLP, pp.  224–233. Hawaii. 
Chiang, D. 2007. Hierarchical phrase based translation. Computational Linguistics, 33(2), 
pp. 201–228. 
Chiang, D. 2005. A Hierarchical Phrase-based Model for Statistical Machine Translation. 
Proceedings of ACL,  pp.  263–270. Ann Arbor, MI. 
Collins, M. 2002. Discriminative Training Methods for Hidden Markov Models: Theory 
and Experiments with Perceptron Algorithms. Proceedings of EMNLP. 
Collins, M. 2003. Head-driven Statistical Models for Natural Language Parsing. 
Computational Linguistics 29(4):  pp. 589–673. 
Collins, M., P. Koehn and I. Kucerova. 2005. Clause Restructuring for Statistical 
Machine Translation. Proceedings of ACL pp.531–540. Ann Arbor, MI. 
Corston-Oliver, S. and M. Gamon. 2004. Normalizing German and English Inflectional 
Morphology to Improve Statistical Word Alignment. Proceedings of AMTA, pp.  48–57. 
Costa-Jussa, M. R. and J.A.R. Fonollosa. 2006. Statistical Machine Reordering. 
Proceedings of EMNLP,  pp. 70–76, Sydney, Australia.  
Costa-Jussa, M. R. and J.A.R. Fonollosa. 2007. Analysis of Statistical and Morphological 
Classes to Generate Weighted Reordering Hypotheses on a Statistical Machine 
Translation System. Proceedings of the Second Workshop on Statistical Machine 
Translation,  pp.  171–176. Prague, Czech Republic.  
Cowan, B., I. Kucerova and M. Collins. 2006. A Discriminative Model for Tree-to-Tree 
Translation. Proceedings of EMNLP,  pp.  232–241. Sydney, Australia. 
Crego, J. M. and N. Habash. 2008. Using Shallow Syntax Information to Improve Word 
Alignment and Reordering for SMT. Proceedings of the Third Workshop on Statistical 
Machine Translation,  pp.  53–61, Columbus, Ohio. 
Crego, J. M. and J.B. Marino. 2007. Syntax-enhanced Ngram-based SMT. Proceedings 
of the MT Summit XI. 
Crego, J. M., A. de Gispert, P. Lambert, M.R. Costa-Jussa, M. Khalilov, R.E. Banchs, J.B. 
Marino and J.A.R. Fonollosa. 2006. N-gram-based SMT System Enhanced with 

378 Chapter 2: Machine Translation from Text 



 

 

Reordering Patterns. Proceedings of the Workshop on Statistical Machine Translation 
pp.162–165. New York, NY. 
Crego, J.M. and J.B. Marino. 2006. Integration of POStag-based Source Reordering into 
SMT Decoding by an Extended Search Graph. Proceedings of AMTA, pp.  29–36. 
Cambridge, MA. 
Dagan, I. and A. Itai. 1994. Word Sense Disambiguation Using a Second Language 
Monolingual Corpus. Computational Linguistics 20(4):  pp. 563-596. 
de Gispert, A., S. Virpioja, M. Kurimo and W. Byrne. 2009. Minimum Bayes Risk 
Combination of Translation Hypotheses From Alternative Morphological 
Decompositions. Proceedings of NAACL-HLT. 
de Gispert, A. and J.B. Marino. 2008. On the Impact of Morphology in English to 
Spanish Statistical MT. Speech Communication 50:  pp. 1034–1046. 
de Gispert, A. 2006. Introducing Linguistic Knowledge into Statistical Machine 
Translation. Ph.D. thesis, Dept. Signal Theory and Communications, Universitat 
Politecnica de Catalunya. 
De Nero, J. and D. Klein. 2008. The Complexity of Phrase Alignment Problems. 
Proceedings of ACL-08, Companion volume, pp.  25–28. Columbus, OH. 
Della Pietra, S., V. Della Pietra and J. Lafferty. 1995. Inducing Features of Random 
Fields. Technical Report, Department of Computer Science, Carnegie-Mellon University, 
CMU-CS-95-144. 
Dempster, A.P., N. M. Laird and D. B. Rubin. 1977. Maximum Likelihood from 
Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society. Series B 
(Methodological), 39(1):  pp. 1–38. 
DeNeefe, S., K. Knight, W. Wang and D. Marcu. 2007. What Can Syntax-based MT 
Learn from Phrase-based MT? Proceedings of EMNLP-CoNLL. 
Deng, Y. and W. Byrne. 2008. HMM Word and Phrase Alignment for Statistical Machine 
Translation. IEEE Transactions on Audio, Speech and Language Processing 16(3):  pp. 
494–507. 
Deng, Y. and W. Byrne. 2006. MTTK: An Alignment Toolkit for Statistical Machine 
Translation. Presented in the HLT-NAACL Demonstrations Program. 
Denoual, E. 2007. Analogical Translation of Unknown Words in a Statistical Machine 
Translation Framework. Proceedings of the MT Summit XI. 
Diab, M., M. Ghoneim and N. Habash. 2007. Arabic Diacritization in the Context of 
Statistical Machine Translation. Proceedings of the Machine Translation Summit. 
Ding, Y. and M. Palmer. 2005. Machine Translation using Probabilistic Synchronous 
Dependency Insertion Grammars. Proceedings of ACL,  pp.  541–548. Ann Arbor, MI. 
Dorr, B. J. 1994. Machine Translation Divergences: a Formal Description and Proposed 
Solution. Computational Linguistics 20(4). 
Dreyfus, S.E. and A.M. Law. 1977. The Art and Theory of Dynamic Programming 
(Mathematics in Science and Engineering; vol. 130). Academic Press: New York, N.Y. 

Handbook of Natural Language Processing and Machine Translation 379



 

Dugast, L., J. Senellart and P. Koehn. 2009. Statistical Post Editing and Dictionary 
Extraction. Proceedings of EACL,  pp.110-114.  
Dugast, L., J. Senellart and P. Koehn. 2007. Statistical Postediting on SYSTRAN’s Rule-
based Translation System. Proceedings of ACL, Workshop on Statistical Machine 
Translation,  pp. 220-223. 
Durbin, R., S.R. Eddy, A. Krogh and G. Mitchison. 1998 Biological Sequence Analysis: 
Probabilistic Models of Proteins and Nucleic Acids. Cambridge University Press. 
Durgar El-Kahlout, I. and K. Oflazer. 2006. Initial Explorations in English to Turkish 
Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine 
Translation,  pp.  7–14. New York, NY.  
Dyer, C. J., S. Muresan and P. Resnik. 2008. Generalizing Word Lattice Translation. 
Proceedings of ACL/HLT pp.1012–1020. Columbus, OH.  
Dyer, C. J. 2007a. The “Noisier Channel”: Translation from Morphologically Complex 
Languages. Proceedings of the Second Workshop on Statistical Machine Translation, pp.  
207–211. Prague, Czech. 
Dyer, C. J., 2007b. The University of Maryland Translation System for IWSLT 2007. 
Proceedings of IWSLT. 
Eck, M., S. Vogel and A. Waibel. 2005. Low Cost Portability for Statistical Machine 
Translation Based on N-gram Coverage. Proceedings of MT Summit X,  pp.227-234. 
Eck, M., S. Vogel and A. Waibel. 2004. Language Model Adaptation for Statistical 
Machine Translation Based on Information Retrieval. Proceedings of LREC,  pp.327-330. 
Eisner, J., E. Goldlust and N.A. Smith. 2005. Compiling Comp Ling: Weighted Dynamic 
Programming and the Dyna Language. Proceedings of HLT/EMNLP,  pp.281-290. 
Eisner, J. 2003. Learning Non-isomorphic Tree Mappings for Machine Translation. 
Proceedings of ACL, companion volume,  pp.205–208. Sapporo, Japan. 
Eisner, J. and G. Satta. 1999. Efficient Parsing for Bilexical Context-free Grammars and 
Head Automaton Grammars. Proceedings of ACL. 
El Isbihani, A., S. Khadivi, O. Bender and H. Ney. 2006. Morpho-syntactic Arabic 
Preprocessing for Arabic to English Statistical Machine Translation. Proceedings on the 
Workshop on Statistical Machine Translation,  pp.  15–22. New York, NY.  
Elming, J. 2008a. Syntactic Reordering Integrated with Phrasebased SMT. Proceedings 
of Second Workshop on Syntax and Structure in Statistical Translation, at ACL/HLT.  pp.  
46–54. Columbus, OH.  
Elming, J. 2008b. Syntactic Reordering Integrated with Phrasebased SMT. Proceedings 
of Coling, pp.209–216. Manchester, UK.  
Emerson, T. 2005. The Second International Chinese Word Segmentation Bakeoff. 
Proceedings of the Fifth SIGHAN Workshop on Chinese Language Processing,  pp. 123–
133. 
Erosheva, E., S. Fienberg and J. Lafferty. 2004. Mixed Membership Models of Scientific 
Publications. Proceedings of the National Academy of Sciences volume 101 of Suppl. 1. 

380 Chapter 2: Machine Translation from Text 



 

 

Evermann, G. and P.C. Woodland. 2000. Posterior Probability Decoding, Confidence 
Estimation and System Combination. Proceedings of Speech Transcription Workshop. 
Fellbaum, C. ed. 1998. An Electronic Lexical Database. MIT Press. 
Fiscus, J.G. 1997. A Post-Processing System to Yield Reduced Word Error Rates: 
Recognizer Output Voting Error Reduction (ROVER). Proceedings of ASRU,  pp.347-
354. 
Foster, G. and R. Kuhn. 2007. Mixture-Model Adaptation for SMT. Proceedings of 2nd 
ACL Workshop on Statistical Machine Translation,  pp. 128-135. 
Fraser, A. and D. Marcu. 2007. Measuring Word Alignment Quality for Statistical 
Machine Translation. Computational Linguistics 33(3):  pp. 293–303. 
Fraser, A. and D. Marcu. 2006a. Semisupervised training for statistical word alignment. 
Proceedings of ACL/Coling,  pp.769-776. Sydney, Australia. 
Fraser, A. and D. Marcu. 2006b. Measuring Word Alignment Quality for Statistical 
Machine Translation. Technical report, ISI-University of Southern California. 
Frederick, J. and R.L. Mercer. 1980. Interpolated Estimation Of Markov Source 
Parameters From Sparse Data. Proceedings of Workshop on Pattern Recognition in 
Practice. Amsterdam, The Netherlands. 
Freund, Y., H.S. Seung, E. Shamir and N. Tishby. 1997. Selective Sampling Using the 
Query by Committee Algorithm. Machine Learning 28(2-3):  pp. 133.168. 
Fung, P., W. Zhaojun, Y. Yang and D. Wu. 2006.  Automatic Learning of Chinese-
English Semantic Structure Mapping. Proceedings of IEEE/ACL Workshop on Spoken 
Language Technology.  
Gale, W. and G. Sampson. 1996. Good-Turing Frequency Estimation without Tears. 
Journal of Quantitative Linguistics 2(3). 
Gale, W.A., K.W. Church and D. Yarowsky. 1992. A Method for Disambiguating Word 
Senses in a Large Corpus. Computers and the Humanities 26:  pp. 415-439. 
GALE. 2008. NIST Machine Translation Evaluation for GALE Home Page. 
http://www.nist.gov/speech/tests/gale.  
Galley, M., J. Graehl, K. Knight, D. Marcu, S. DeNeefe, W. Wang and I. Thayer. 2006. 
Scalable Inference and Training of Context-rich Syntactic Translation Models. 
Proceedings of ACL/Coling,  pp.  961–968. Sydney, Australia. 
Galley, M., M. Hopkins, K. Knight and D. Marcu. 2004. What’s in a Translation Rule? 
Proceedings of HLT/NAACL 4:  pp. 273–280.  
Gao, J., M. Li, A. Wu and C. Huang. 2005. Chinese Word Segmentation and Named 
Entity Recognition: A Pragmatic Approach. Computational Linguistics 31(4). 
Gao, Q. and S. Vogel. 2008. Parallel Implementations of Word Alignment Tool. Software 
Engineering, Testing and Quality Assurance for Natural Language Processing, pp. 49–
57. 
Ge, N. 2004. Improvement in Word Alignments. Presentation given at DARPA/TIDES 
MT workshop. 

Handbook of Natural Language Processing and Machine Translation 381



 

Geman, S. and D. Geman. 1984. Stochastic Relaxation, Gibbs Distribution and The 
Bayesian Restoration of Images. IEEE Transactions on Pattern Analysis and Machine 
Intelligence 6(6):  pp. 721–741.  
Gildea, D. 2003. Loosely Tree-based Alignment for Machine Translation. Proceedings of 
the ACL companion volume, pp. 80–87. Sapporo, Japan. 
Gildea, D. and D. Jurafsky. 2002. Automatic Labeling of Semantic Roles. Computational 
Linguistics 28(3):  pp. 256--288. 
Gimenez, J. and L. Marquez. 2008. A Smorgasbord of Features for Automatic MT 
Evaluation. 3rd ACL Workshop on Statistical Machine Translation, pp. 195-198. 
Columbus, OH. 
Gimenez, J. and L. Marquez. 2007a. Context-aware Discriminative Phrase Selection for 
Statistical Machine Translation. Proceedings of the Workshop on Statistical Machine 
Translation. Prague. 
Gimenez, J. and L. Marquez. 2007b. Linguistic Features for Automatic Evaluation of 
Heterogenous MT Systems. Proceedings of the Second Workshop on Statistical Machine 
Translation,   pp. 256-264. Prague, Czech Republic. 
Goldwater, S., T. L. Griffiths and M. Johnson. 2006. Contextual Dependencies. 
Unsupervised Word Segmentation. Proceedings of ACL/Coling. Sydney, Australia. 
Goldwater, S. and D. McClosky. 2005. Improving Statistical MT through Morphological 
Analysis. Proceedings of HLT/EMNLP, pp.  676–683. Vancouver, Canada.  
Good, I.J. 1953. The Population Frequencies of Species and the Estimation of Population 
Parameters. Biometrika 40(3 and 4):  pp. 237–264. 
Goodman, J.T. 2001. A Bit of Progress in Language Modeling (extended version). 
Technical Report MSRTR-2001-72, Machine Learning and Applied Statistics Group, 
Microsoft Research: Redmond, WA. 
Goodman, J. 1999. Semiring Parsing. Computational Linguistics 25:  pp. ,573–605. 
Graehl, J. and K. Knight. 2004. Training Tree Transducers. Proceedings of HLT/NAACL. 
Gropp, W., E. Lusk and A. Skjellum. 1999. Using MPI: Portable Parallel Programming 
with the Message-passing Interface. MIT Press: Cambridge, MA. 
Gupta, D. and N. Chatterjee. 2003. Identification of Divergence for English to Hindi 
EBMT. Proceedings of the MT Summit IX. 
Habash, N., A. Soudi and T. Buckwalter. 2007. On Arabic Transliteration. A. van den 
Bosch and A. Soudi, eds., Arabic Computational Morphology: Knowledge-based and 
Empirical Methods. Springer. 
Habash, N. 2007a. Arabic Morphological Representations for Machine Translation. A. 
van den Bosch and A. Soudi, eds., Arabic Computational Morphology: Knowledge-based 
and Empirical Methods. Springer. 
Habash, N. 2007b. Syntactic Preprocessing for Statistical Machine Translation. 
Proceedings of the MT Summit XI. 

382 Chapter 2: Machine Translation from Text 



 

 

Habash, N. and F. Sadat. 2006. Arabic Preprocessing Schemes for Statistical Machine 
Translation. Proceedings of HLT-NAACL,  pp.  49–52. New York, NY. 
Habash, N. and O. Rambow. 2005. Arabic Tokenization, Part-of-Speech Tagging and 
Morphological Disambiguation in One Fell Swoop. Proceedings of ACL, pp.  573–580. 
Ann Arbor, MI. 
Habash, N. 2004. Large Scale Lexeme Based Arabic Morphological Generation. 
Proceedings of Conference sur le Traitement Automatique du Langage Naturel,  pp. 271–
276. Fez, Morocco. 
Hakkani-Tur, D., G. Riccardi and A. Gorin. 2002. Active Learning for Automatic Speech 
Recognition. Proceedings of IEEE - ICASSP. 
Hasan, S., R. Zens and H. Ney. 2007. Are Very Large N-best Lists Useful for SMT? 
Proceedings of HLT/NAACL Companion Volume, Short Papers, pp.  57–60. Rochester, 
NY. 
Hassan, H., K. Sima’an and A. Way. 2007. Supertagged Phrase-based Statistical Machine 
Translation. Proceedings of ACL, pp.  288–295. Prague, Czech Republic. 
He, X., M. Yang, J. Gao, P. Nguyen and R. Moore. 2008. Indirect-HMM-based 
Hypothesis Alignment for Combining Outputs from Machine Translation Systems. 
Proceedings of EMNLP, pp. 98-107. 
Held and Karp. 1962. A Dynamic Programming Approach to Sequencing Problems. 
SIAM 10(1):  pp. 196–210.  
Hewavitharana, S., A. Lavie and S. Vogel. 2007. Experiments with a Noun-Phrase 
Driven Statistical Machine Translation System. Proceedings of the MT Summit XI. 
Hildebrand, A.S. and S. Vogel. 2008. Combination of Machine Translation Systems via 
Hypothesis Selection from Combined N-best Lists. Proceedings of AMTA, pp. 254–261. 
Waikiki, Hawaii. 
Hildebrand, A.S., M. Eck, S. Vogel and A. Waibel. 2005. Adaptation of the Translation 
Model for Statistical Machine Translation Based on Information Retrieval. Proceedings 
of EAMT, pp.  133–142, Budapest, Hungary. 
Hoang, H. and P. Koehn. 2009. Improving Mod-range Reordering using Templates of 
Factors. Proceedings of EACL. Athens, Greece.  
Huang, C. R. and K. J. Chen. 1995. Academic Sinica Balanced Corpus. Technical Report 
95-02/98-04, Academic Sinica. Taipei, Taiwan. 
Huang, F. 2009. Confidence Measure For Word Alignment. Proceedings of ACL/AFNLP, 
pp.  932–940. 
Huang, L. 2008. Forest Reranking: Discriminative Parsing with Non-local Features. 
Proceedings of ACL.  
Huang, L. and D. Chiang. 2007. Forest Rescoring: Faster Decoding with Integrated 
Language Models. Proceedings of ACL pp.  144-151. Prague, Czech Republic. 
Huang, L. and D. Chiang. 2005. Better K-best Parsing. Proceedings of the 9th 
International Workshop on Parsing Technologies. 

Handbook of Natural Language Processing and Machine Translation 383



 

Huang, L., K. Knight and A. Joshi. 2006. Statistical Syntax-directed Translation with 
Extended Domain of Locality. Proceedings of AMTA. Boston, MA. 
Huang, Z., D. Filimonov and M. Harper. 2008. Accuracy Enhancements for Mandarin 
Parsing. Technical report, University of Maryland. 
Hwa, R. 2004. Sample Selection for Statistical Parsing. Computational Linguistics 30(3). 
Ittycheriah, A. and S. Roukos. 2005. A Maximum Entropy Word Aligner for Arabic-
English Machine Translation. Proceedings of HLT/EMNLP,  pp.  89–96. 
Ittycheriah, A. and S. Roukos. 2007. Direct Translation Model 2. Proceedings of 
HLT/NAACL,  pp.  57-64. Rochester, New York. 
IWSLT. 2007. International Workshop on Spoken Language Translation Home Page. 
http://www.slt.atr.jp/IWSLT2007.    
Iyer, R. and M. Ostendorf. 1999. Relevance Weighting for Combining Multi-domain 
Data for N-gram Language Modeling. Computer Speech and Language 13(3):  pp. 267–
282. 
Jayaraman, S. and A. Lavie. 2005. Multi-Engine Machine Translation Guided by Explicit 
Word Matching. Proceedings of EAMT, pp.143-152. 
Jelinek, F. 1998. Statistical Methods for Speech Recognition. MIT Press: Cambridge, MA. 
Jiang, W., J. Zhao, Y. Guan and Z. Xu. 2005. Chinese Word Segmentation Based on 
Mixing Model. Proceedings of the Fourth SIGHAN Workshop on Chinese Language 
Processing. 
Jurafsky, D. and J.H. Martin. 2000. Speech and Language Processing. Prentice Hall. 
Kamm, T.M. and G.G.L. Meyer. 2002. Selective Sampling of Training Data for Speech 
Recognition. Proceedings of HLT. 
Karakos, D., J. Eisner, S. Khundanpur and M. Dreyer. 2008. Machine Translation System 
Combination using ITG-based Alignments. Proceedings of ACL/HLT. 
Kashioka, H., T. Maruyama and H. Tanaka. 2003. Building a Parallel Corpus for 
Monologue with Clause Alignment. Proceedings of the MT Summit IX. 
Kilgarriff, A. 2001. English Lexical Sample Task Description. Proceedings of Senseval-2, 
The Second InternationalWorkshop on Evaluating Word Sense Disambiguation Systems, 
pp.  17-20. Toulouse, France.  
Kilgarriff, A. and J. Rosenzweig. 1999. Framework and Results for English Senseval. 
Computers and the Humanities 34(1):  pp. 15-48. Special issue on SENSEVAL. 
Kirchhoff, K. and M. Yang. 2005. Improved Language Modeling for Statistical Machine 
Translation. Proceedings of the ACL Workshop on Building and Using Parallel Texts, pp. 
125–128, Ann Arbor, MI. 
Klein, D. and C.D. Manning. 2003. A* Parsing: Fast Exact Viterbi Parse Selection. 
Proceedings of ACL/HLT,  pp.40-47. 
Kneser, R. and H. Ney. 1995. Improved Backing-off for M-gram Language Modeling. 
Proceedings of ICASSP, pp.  181–184. 

384 Chapter 2: Machine Translation from Text 



 

 

Knight, K. 1999. Decoding Complexity in Word Replacement Translation Models. 
Computational Linguistics 25(4):  pp. 607-615. 
Knight, K. and J. Graehl. 2005. An Overview of Probabilistic Tree Transducers for 
Natural Language Processing. Proceedings of CICLing. 
Koehn, P. 2009. Statistical Machine Translation. Cambridge University Press. 
Koehn, P. and H. Hoang. 2007. Factored Translation Models. Proceedings of EMNLP-
CoNLL,  pp.  868–876. 
Koehn, P., H. Hoang, A. Birch, C. Callison-Burch, M. Federico, N. Bertoldi, B. Cowan, 
W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantin and E. Herbst. 2007. 
Moses: Open Source Toolkit For Statistical Machine Translation. Proceedings of ACL 
pp.177-180, Prague, Czech Republic. 
Koehn, P., A. Axelrod, A.B. Mayne, C. Callison-Burch, M. Osborne and D. Talbot. 2005. 
Edinburgh System Description for the 2005 IWSLT Speech Translation Evaluation. 
Proceedings of IWSLT. 
Koehn, P. 2004a. Pharaoh: a Beam Search Decoder for Phrase-based Statistical Machine 
Translation Models. Proceedings of AMTA, pp.  115–124. Washington, DC 
Koehn, P. 2004b. Statistical Significance Tests for Machine Translation Evaluation. 
Proceedings of EMNLP. Barcelona, Spain. 
Koehn, P. and K. Knight. 2003. Feature-rich Statistical Translation of Noun Phrases. E. 
Hinrichs and D. Roth, eds. Proceedings of ACL, pp.  311–318. 
Koehn, P., F.J. Och and D. Marcu. 2003. Statistical Phrase-based Translation. 
Proceedings of HLT-NAACL,  pp.  127–133, Edmonton, Canada.  
Koehn, P. and K. Knight. 2002. ChunkMT: Machine Translation with Richer Linguistic 
Knowledge. Unpublished. 
Komachi, M., M. Nagata and Y. Matsumoto. 2006. Phrase Reordering for Statistical 
Machine Translation Based on Predicate-argument Structure. Proceedings of IWSLT. 
Kyoto, Japan. 
Kumar, S. and W. Byrne. 2004. Minimum Bayes-risk Decoding for Statistical Machine 
Translation. Proceedings of HLT/NAACL, pp.169-176. 
Langlais, P. and A. Patry. 2007. Translating Unknown Words by Analogical Learning. 
Proceedings of EMNLP-CoNLL, pp.  877–886. 
LanguageWeaver. 2005. Language Weaver Inc.'s Chinese-to-English MT System, release 
v4.0. http://www.languageweaver.com.  
Lavie, A. and A. Agarwal. 2007. METEOR: An Automatic Metric for MT Evaluation 
with High Levels of Correlation with Human Judgments. Proceedings of the Second 
Workshop on Statistical Machine Translation,  pp.228-231. 
LDC. 2003. Linguistic Data Consortium Chinese Resource Home Page. 
http://www.ldc.upenn.edu/Projects/Chinese.  

Handbook of Natural Language Processing and Machine Translation 385



 

Lee, J., D. Lee and G.G. Lee. 2008. Transformation-based Sentence Splitting Method for 
Statistical Machine Translation. Proceedings of the Workshop on Technologies and 
Corpora for Asia-Pacific Speech Translation.  
Lee, Y.S. 2004. Morphological Analysis for Statistical Machine Translation. Proceedings 
of HLT-NAACL, pp.  57– 60. Boston, MA. 
Lee, Y.S., K. Papineni and S. Roukos. 2003. Language Model Based Arabic Word 
Segmentation. Proceedings of ACL, pp.  399–406. Sapporo, Japan. 
Leusch, G., N. Ueffing and H. Ney. 2003. A Novel String-to-String Distance Measure 
with Applications to Machine Translation Evaluation. Proceedings of MT Summit IX, pp. 
240-247. 
Levow, G. A. 2006. The Third International Chinese Language Processing Bakeoff: 
Word Segmentation and Named Entity Recognition. Proceedings of the Fifth SIGHAN 
Workshop on Chinese Language Processing. 
Levow, G.A., D. Oard and P. Resnik. 2005. Dictionary-based Techniques for Cross-
Language Information Retrieval. Information Processing and Management 41(3):  pp. 
523–547. 
Li, C. H., M. Li, D. Zhang, M. Li, M. Zhou and Y. Guan. 2007. A Probabilistic Approach 
To Syntax-Based Reordering for Statistical Machine Translation. Proceedings of ACL, pp.  
720–727. Prague, Czech Republic.  
Li, Z. and J. Eisner. 2009. First- and Second-order Expectation Semirings with 
Applications to Minimum-Risk Training on Translation Forests. Proceedings of EMNLP. 
Li, Z. and S. Khudanpur. 2009. Efficient Extraction of Oracle-best Translations from 
Hypergraphs. Proceedings of NAACL. 
Li, Z., C. Callison-Burch, C. Dyer, J. Ganitkevitch, S. Khudanpur, L. Schwartz, W. 
Thornton, J. Weese and O. Zaidan. 2009a. Joshua: An Open Source Toolkit for Parsing-
based Machine Translation. Proceedings of the Fourth Workshop on Statistical Machine 
Translation.  
Li, Z., J. Eisner and S. Khudanpur. 2009b. Variational Decoding for Statistical Machine 
Translation. Proceedings of ACL. 
Li, Z. and S. Khudanpur. 2008. Large-scale Discriminative n-gram Language Models for 
Statistical Machine Translation. Proceedings of AMTA. 
Liang, P., A. Bouchard-Cote, D. Klein and B. Taskar. 2006a. An End-to-end 
Discriminative Approach to Machine Translation. Proceedings of Coling/ACL. 
Liang, P., B. Taskar and D. Klein. 2006b. Alignment by Agreement. Proceedings of 
HLT/NAACL,  pp.104-111, New York, NY. 
Lopez, A. 2007. Hierarchical Phrase-based Translation with Suffix Arrays. Proceedings 
of EMNLP/CoNLL. 
Lowerre, B. and R. Reddy. 1980. The Harpy Speech Understanding System. Trends in 
Speech Recognition, W.A. Lea, ed. Prentice Hall: Englewood Cliffs, NJ. 

386 Chapter 2: Machine Translation from Text 



 

 

Lu, Y., J. Huang and Q. Liu. 2007. Improving Statistical Machine Translation 
Performance By Training Data Selection And Optimization. Proceedings of EMNLP-
CoNLL,  pp.  343-350. 
Maamouri, M. and A. Bies. 2004. Developing an Arabic Treebank: Methods, Guidelines 
Procedures and Tools. Proceeding of Coling.  
Magerman, D. 1995. Statistical Decision-tree Models for Parsing. Proceedings of ACL. 
Manber, U. and G. Myers. 1993. Suffix Arrays: a New Method for On-Line String 
Searches. SIAM J. Comput. 22(5), pp. 935–948. 
Manber, U. and G. Myers. 1990. Suffix Arrays: a New Method for On-line String 
Searches. SODA ’90: Proceedings of the first annual ACM-SIAM symposium on Discrete 
algorithms, pp.  319–327. Society for Industrial and Applied Mathematics. 
Mangu, L., E. Brill and A. Stolcke. 2000. Finding Consensus in Speech Recognition: 
Word Error Minimization and Other Applications of Confusion Networks. Computer 
Speech and Language 14(4):  pp. 373-400. 
Marcu, D., W. Wang, A. Echihabi and K. Knight. 2006. SPMT: Statistical Machine 
Translation with Syntactified Target Language Phrases. Proceedings of EMNLP,  pp.  
44–52. Sydney, Australia. 
Marcus, M.P., B. Santorini and M.A. Marcinkiewicz. 1993. Building a Large Annotated 
Corpus of English: The Penn Treebank. Computational Linguistics 19(2):313–330. 
Marton, Y. and P. Resnik. 2008. Soft Syntactic Constraints for Hierarchical Phrased-
Based Translation. Proceedings of ACL/HLT,  pp.  1003–1011. 
Matusov, E., G. Leusch and H. Ney. 2009. Learning to Combine Machine Translation 
Systems. Learning machine translation (NIP Series), pp. 257-276. MIT Press. 
Matusov, E., G. Leusch, R.E. Banchs, N. Bertoldi, D. Dechelotte, M. Federico, M. Kolss, 
Y.S. Lee, J.B. Marino, M. Paulik, S. Roukos, H. Schwenk and H. Ney. 2008. System 
Combination for Machine Translation of Spoken and Written Language. IEEE 
Transactions on Audio, Speech and Language Processing 16(7):  pp. 1222-1237. 
Matusov, E., N. Ueffing and H. Ney. 2006. Computing Consensus Translation from 
Multiple Machine Translation Systems Using Enhanced Hypotheses Alignment. 
Proceedings of EACL, pp. 33-40. 
Matusov, E., R. Zens and H. Ney. 2004. Symmetric Word Alignments for Statistical 
Machine Translation. Proceedings of Coling, pp. 219-225. 
McDonald, R., K. Crammer and F. Pereira. 2005. Online Large-margin Training of 
Dependency Parsers. Proceedings of ACL. 
Melamed, I.D. 2004. Statistical Machine Translation by Parsing. Proceedings of ACL, pp.  
653–660, Barcelona, Spain. 
Melamed, I.D., G. Satta and B. Wellington. 2004. Generalized Multitext Grammars. 
Proceedings of ACL. Barcelona, Spain. 
Mellebeek, B., K. Owczarzak, D. Groves, J. van Genabith and A. Way. 2006. A Syntactic 
Skeleton For Statistical Machine Translation. Proceedings of EAMT. Oslo, Norway. 

Handbook of Natural Language Processing and Machine Translation 387



 

Mihalcea, R., T. Chklovski and A. Killgariff. 2004. The Senseval-3 English Lexical 
Sample Task. Proceedings of Senseval-3. pp. 25-28. Barcelona, Spain. 
Miller, G. 1990. Wordnet: An On-line Lexical Database. International Journal of 
Lexicography 3(4):  pp. 235–244. 
Minkov, E., K. Toutanova and H. Suzuki. 2007. Generating Complex Morphology For 
Machine Translation. Proceedings of ACL, pp.  128–135. Prague, Czech Republic.  
Minkov, E., R. Wang, A. Tomasic and W. Cohen. 2006. NER Systems that Suit Users’ 
Preferences: Adjusting the Recall-Precision Trade-Off for Entity Extraction. Proceedings 
of NAACL-HLT, Companion Volume: Short Papers, New York, NY.. 
Moore, R.C. 2005. A Discriminative Framework for Bilingual Word Alignment. 
Proceedings of HLT/EMNLP,  pp. 81-88. Morristown, NJ. 
Moore, R.C. and C. Quirk. 2007. Faster Beam-search Decoding for Phrasal Statistical 
Machine Translation.  Proceedings of the Machine Translation Summit XI. Copenhagen, 
Denmark. 
Munteanu, D.S. and D. Marcu. 2005. Improving Machine Translation Performance By 
Exploiting Comparable Corpora. Computational Linguistics 31(4):  pp. 477-504. 
Murata, M., K. Uchimoto, Q. Ma and H. Isahara. 2001. Using a Support-vector Machine 
For Japanese-to-English Translation of Tense, Aspect and Modality. Proceedings of ACL. 
Ney, H., D. Mergel, A. Noll and A. Paeseler. 1992. Data Driven Search Organization for 
Continuous Speech Recognition in the SPICOS System. IEEE Transaction on Signal 
Processing 40(2):  pp. 272–281. 
Ng, H.T. and J.K. Low. 2004. Chinese Part-of-speech Tagging: One-at-a-time or All-at-
once? Word-Based or Character-based? Proceedings of EMNLP. 
Nguyen, T. P. and A. Shimazu. 2006. Improving Phrase-based Statistical Machine 
Translation with Morpho-syntactic Analysis and Transformation. Proceedings of AMTA. 
Boston, MA. 
Niehues, J. and S. Vogel. 2008. Discriminative Word Alignment via Alignment Matrix 
Modeling. Proceedings of the Third Workshop on Statistical Machine Translation, pp. 
18–25. Columbus, OH. 
Nießen, S. and H. Ney. 2004. Statistical Machine Translation with Scarce Resources 
using Morpho-syntactic Information. Computational Linguistics 30(2). 
Nießen, S. and H. Ney. 2001. Toward Hierarchical Models For Statistical Machine 
Translation Of Inflected Languages. Proceedings of ACL, pp.  47–54. 
Nikoulina, V. and M. Dymetman. 2008. Experiments in Discriminating Phrase-based 
Translations on the Basis of Syntactic Coupling Features. Proceedings of ACL/HLT, the 
Second Workshop on Syntax and Structure in Statistical Translation,  pp.  55–60. 
Columbus, OH. 
Och, F. J., D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser, S. Kumar, L. Shen, 
D. Smith, K. Eng, V. Jain, Z. Jin and D. Radev. 2004. A Smorgasbord of Features for 
Statistical Machine Translation. Proceedings of HLT-NAACL. 

388 Chapter 2: Machine Translation from Text 



 

 

Och, F.J. and H. Ney. 2004. The Alignment Template Approach to Statistical Machine 
Translation. Computational Linguistics 30(4):  pp.  417–450. 
Och, F.J. 2003. Minimum Error Rate Training in Statistical Machine Translation. 
Proceedings of ACL, pp.  160–167. Sapporo, Japan. 
Och, F. J. and H. Ney. 2003. A Systematic Comparison of Various Statistical Alignment 
Models. Computational Linguistics 29(1):  pp. 19–51. 
Och, F. J. and Ney, H. 2002. Discriminative Training and Maximum Entropy Models for 
Statistical Machine Translations. Proceedings of ACL, pp. 295–302. Philadelphia, PA. 
Och, F. J. and H. Ney. 2000. Improved Statistical Alignment Models. Proceedings of 
ACL.  
Och, F.J., C. Tillmann and H. Ney. 1999. Improved Alignment Models for Statistical 
Machine Translation. Proceedings of the Joint SIGDAT Conf. on Empirical Methods in 
Natural Language Processing and Very Large Corpora,  pp.  20-28. College Park, MD. 
Odell, J. 1995. The Use of Context in Large Vocabulary Speech Recognition. Ph.D. 
Thesis, Cambridge University Engineering University. 
Oflazer, K. and I. Durgar El-Kahlout. 2007. Exploring Different Representational Units 
in English-to-Turkish Statistical Machine Translation. Proceedings of the Second 
Workshop on Statistical Machine Translation,  pp.  25–32. Prague, Czech Republic.  
Olive, J. 2005. Global Autonomous Language Exploitation (GALE). DARPA/IPTO 
Proposer Information Pamphlet. 
Ostendorf, M., A. Kannan, S. Austin, O. Kimball, R. Schwartz and J.R. Rohlicek. 1991. 
Integration of Diverse Recognition Methodologies through Reevaluation of N-best 
Sentence Hypotheses. Proceedings of the Fourth DARPA Speech and Natural Language 
Workshop,  pp. 83-87. 
Owczarzak, K., B. Mellebeek, D. Groves, J. van Genabith and A. Way. 2006. Wrapper 
Syntax For Example-based Machine Translation. Proceedings of AMT.  
Palmer, M., D. Gildea and P. Kingsbury. 2005. The Proposition Bank: an Annotated 
Corpus of Semantic Roles. Computational Linguistics 31(1):  pp. 71-105 
Papineni, K., S. Roukos, T. Ward and W.J. Zhu. 2002. Bleu: a Method For Automatic 
Evaluation Of Machine Translation. Proceedings of ACL, pp.  311-318, Philadelphia, PA. 
Papineni, K., S. Roukos and T. Ward. 2001. Bleu: a method for automatic evaluation of 
machine translation. IBM Research Report, RC22176. 
Papineni, K., S. Roukos and R.T. Ward. 1997. Feature-based Language Understanding. 
Proceedings of EUROSPEECH,  pp.  1435–1438. Rhodes, Greece. 
Paul, M., E. Sumita and S. Yamamoto. 2002. Corpus-based Generation of Numeral 
Classifiers Using Phrase Alignment. Proceedings of Coling. 
Paul, Michael. 2006. Overview of the IWSLT06 Evaluation Campaign. Proceedings of 
IWSLT. Kyoto, Japan.  

Handbook of Natural Language Processing and Machine Translation 389



 

Paulik, M., K. Rottmann, J. Niehues, S. Hildebrand and S. Vogel. 2007. The ISL Phrase-
based MT System for the 2007 ACL Workshop on SMT. Proceedings of ACL Second 
Workshop on SMT. 
Pearl, J. 1988. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible 
Inference. Morgan Kaufmann, Publishers. 
Ponte, J.M. and W.B. Croft. 1998. A Language Modeling Approach to Information 
Retrieval. Research and Development in Information Retrieval,  pp.  275–281. 
Popovic, M., D. Vilar, H. Ney, S. Jovicic and Z. Saric. 2005. Augmenting a Small 
Parallel Text with Morpho-syntactic Language. Proceedings of the ACL Workshop on 
Building and Using Parallel Texts,  pp.  41–48. Ann Arbor, MI. 
Pradhan, S., K. Hacioglu, V. Krugler, W. Ward, J.H. Martin and D. Jurafsky. 2005. 
Support Vector Learning for Semantic Argument Classification. Machine Learning 60(1-
3):  pp. 11--39. 
Press, W.H., S.A. Teukolsky, W.T. Vetterling and B.P. Flannery. 2007. Numerical 
Recipes: the Art Of Scientific Computing. Cambridge University Press. 3rd Edition. 
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. 2002. Numerical 
Recipes in C++. Cambridge University Press: Cambridge, UK. 
Pritchard, J., M. Stephens and P. Donnell. 2000. Inference of Population Structure Using 
Multilocus Genotype Data. Genetics 155:  pp. 945–959. 
Quirk, C., A. Menezes and C. Cherry. 2005. Dependency Treelet Translation: 
Syntactically Informed Phrasal SMT. Proceedings of ACL,  pp.  271–279. Ann Arbor, MI. 
Ramanathan, A., J. Hegde, R.M. Shah, P. Bhattacharyya and M. Sasikumar. 2008. Simple 
Syntactic And Morphological Processing Can Help English-Hindi Statistical Machine 
Translation. Proceedings of the International Joint Conference on Natural Language 
Processing. 
Resnik, P. and N. A. Smith. 2003. The Web as a Parallel Corpus. Computational 
Linguistics 29(3):  pp. 349-380. 
Riesa, J. and D. Yarowsky. 2006. Minimally Supervised Morphological Segmentation 
with Applications to Machine Translation. Proceedings of AMTA. Boston, MA. 
Roark, B., M. Saraclar and M. Collins. 2007. Discriminative N-gram Language Modeling. 
Computer Speech and Language 21(2):  pp. 373-392. 
Rosenfeld, R. 1994. Adaptive Statistical Language Modeling: A Maximum Entropy 
Approach. Ph.D. thesis, Computer Science Department, Carnegie Mellon University, 
Pittsburgh, PA, April. TR CMU-CS-94-138. 
Rosti, A.V.I., B. Zhang, S. Matsoukas and R. Schwartz. 2009. Incremental Hypothesis 
Alignment with Flexible Matching for Building Confusion Networks: BBN System 
Description for WMT09 System Combination Task. Proceedings of the Fourth Workshop 
on Statistical Machine Translation,  pp.61-65. 
Rosti, A.V.I, B. Zhang, S. Matsoukas and R. Schwartz. 2008. Incremental Hypothesis 
Alignment for Building Confusion Networks with Application to Machine Translation 

390 Chapter 2: Machine Translation from Text 



 

 

System Combination. Proceedings of the Third Workshop on Statistical Machine 
Translation,  pp.183—186. 
Rosti, A.V.I., S. Matsoukas and R. Schwartz. 2007a. Improved Word-Level System 
Combination for Machine Translation. Proceedings of ACL, pp.312-319. 
Rosti, A.V.I., B. Xiang, S. Matsoukas, R. Schwartz, N.F. Ayan and B.J. Dorr. 2007b. 
Combining Outputs from Multiple Machine Translation Systems. Proceedings of 
HLT/NAACL,  pp.228-235. 
Sadat F. and N. Habash. 2006. Combination of Arabic Preprocessing Schemes for 
Statistical Machine Translation. Proceedings of Coling/ACL,  pp.  1–8, Sydney, 
Australia. 
Sadat, F., H. Johnson, A. Agbago, G. Foster, R. Kuhn, J. Martin and A. Tikuisis. 2005. 
Portage: A Phrase-based Machine Translation System. Proceedings of the ACL 2005 
Workshop on Building and Using Parallel Texts. Ann Arbor, MI.. 
Saiz, J.C. 2008. Novel Statistical Approaches to Text Classification, Machine Translation 
and Computer-Assisted Translation. Ph.D. thesis, Universidad Poltecnica de valencia. 
Saon, G., D. Povey and G. Zweig. 2005. Anatomy of an Extremely Fast LVCSR Decoder. 
Proceedings of Interspeech. 
Schafer, C. and D. Yarowsky. 2003a. Statistical Machine Translation Using Coercive 
Two-Level Syntactic Transduction. Proceedings of EMNLP, pp.  9–16. 
Schafer, C. and D. Yarowsky. 2003b. A Two-level Syntax-Based Approach to Arabic-
English Statistical Machine Translation. Proceedings of the MT Summit IX Workshop on 
Machine Translation for Semitic Languages: Issues and Approaches. 
Schiehlen, M. 1998. Learning Tense Translation From Bilingual Corpora. Proceedings of 
ACL. 
Schohn, G. and D. Cohn. 2000. Less Is More: Active Learning with Support Vector 
Machines. Proceedings of 17th International Conference on Machine Learning, pp.  839-
846. 
Seung, H.S., M. Opper and H. Sompolinsky. 1992. Query by Committee. Computational 
Learning Theory,  pp.  287-294. 
Shapira, D. and J.A. Storer. 2002. Edit Distance with Move Operations. Proceedings of 
the 13th Annual Symposium on Combinatorial Pattern Matching,  pp. 85-98. 
Shen, L., J. Xu and R. Weischedel. 2008. A New String-to-Dependency Machine 
Translation Algorithm With a Target Dependency Language Model. Proceedings of ACL. 
Shen, L., A. Sarkar and F.J. Och. 2004. Discriminative Reranking for Machine 
Translation. Proceedings of HLT/NAACL. 
Shen, W., R. Zens, N. Bertoldi and M. Federico. 2006. The JHU Workshop 2006 IWSLT 
System. Proceedings of IWSLT. Kyoto, Japan. 
Shen, Y., C. Lo, M. Carpuat and D. Wu. 2007. HKUST Statistical Machine Translation 
Experiments for IWSLT 2007. Proceedings of IWSLT,  pp. 84-88. Trento, Italy. 

Handbook of Natural Language Processing and Machine Translation 391



 

Shi, Y. and M. Wang. 2007. A Dual-layer CRFS Based Joint Decoding Method For 
Cascaded Segmentation and Labeling Tasks. Proceedings of the International Joint 
Conference on Artificial Intelligence. 
Shieber, S., Y. Schabes and F. C. N. Pereira. 1995. Principles and Implementation of 
Deductive Parsing. Journal of Logic Programming 24:  pp. 3–36. 
Shieber, S. and Y. Schabes. 1990. Synchronous Tree Adjoining Grammars. Proceedings 
of COLING The 13th Int. Conferemce on Computational Linguistics.  
Sim, K.C., W.J. Byrne, M.J.F. Gales, H. Sahbi and P.C. Woodland. 2007. Consensus 
Network Decoding for Statistical Machine Translation System Combination. Proceedings 
of IEEE ICASSP,  pp.105-108. 
Simard, M., C. Goutte and P. Isabelle. Statistical Phrase-based Post-Editing. 2007a. 
Proceedings of HLT-NAACL, pp. 508-515. 
Simard, M., N. Ueffing, P. Isabelle and R. Kuhn. 2007b. Rule-based Translation with 
Statistical Phrase-based Postediting. Proceedings of the 2nd ACL Workshop on Statistical 
Machine Translation,  pp. 203-206. 
Sjolander, K., K. Karplus, M. Brown, R. Hughey, A. Krogh, I.S. Mian and D. Haussler. 
1996. Dirichlet Mixtures: A Method for Improving Detection of Weak but Significant 
Protein Sequence Homology. Computer Applications in the Bio-sciences 12. 
Smith, D.A. and J. Eisner. 2006. Minimum Risk Annealing for Training Log-linear 
Models. Proceedings of ACL. 
Smith, N.A. and J. Eisner. 2004. Annealing Techniques for Unsupervised Statistical 
Language Learning. Proceedings of ACL. 
Snover, M., N. Madnani, B. Dorr and R. Schwartz. 2009. Fluency, Adequacy, or HTER? 
Exploring Different Human Judgments with a Tunable MT Metric. Proceedings of the 
Fourth Workshop on Statistical Machine Translation, pp.259-268. 
Snover, M., B. Dorr, R. Schwartz, L. Micciula and J. Makhoul. 2006. A Study of 
Translation Edit Rate with Targeted Human Annotation. Proceedings of AMTA,  pp. 
223—231. 
Snover, M., B. Dorr, R. Schwartz, J. Makhoul, L. Micciula and R. Weischedel. 2005. A 
Study of Translation Error Rate with Targeted Human Annotation. Technical Report 
LAMPTR- 126, CS-TR-4755,UMIACS-TR-2005-58, University of Maryland, College 
Park and BBN Technologies. 
Steinbiss, V., B.H. Tran and H. Ney. 1994. Improvements in Beam Search. Proceedings 
of ICSLP,  pp.  2143-2146. 
Stolcke, A. 2002. SRILM - an Extensible Language Modeling Toolkit. Proceedings of 
ICSLP,  pp.  901–904. Denver, CO. 
Stolcke, A. 1998. Entropy-based Pruning of Backoff Language Models. Proceedings of 
the DARPA Broadcast News Transcription and Understanding Workshop. 
Sun, H. and D. Jurafsky. Shallow Semantic Parsing of Chinese. Proceedings of 
HLT/NAACL,  pp.  249-256, Boston, MA. 

392 Chapter 2: Machine Translation from Text 



 

 

Sutton, C., M. Sindelar and A. McCallum. 2006. Reducing Weight Undertraining in 
Structured Discriminative Learning. Proceedings of HLT/NAACL. 
Suzuki, H. and K. Toutanova. 2006. Learning to Predict Case Markers In Japanese. 
Proceedings of Coling/ACL. Sydney, Australia. 
Talbot, D. and M. Osborne. 2006. Modeling Lexical Redundancy For Machine 
Translation. Proceedings of Coling/ACL,  pp.  969–976, Sydney, Australia.  
Tam, Y.C., I. Lane and T. Schultz. 2007. Bilingual-LSA Based LM adaptation for 
Spoken Language Translation. Proceedings of ACL. Prague, Czech Republic. 
Tanaka, T. and T. Baldwin. 2003. Translation Selection for Japanese-English Noun-noun 
Compounds. Proceedings of the MT Summit IX.  
Tantug, A. C., E. Adali and K. Oflazer. 2007a. Machine Translation between Turkic 
Languages. Proceedings of ACL companion volume:  pp. 189–192. Prague, Czech 
Republic. 
Tantug, A. C., E. Adali and K. Oflazer. 2007b. A MT System from Turkmen to Turkish 
Employing Finite State and Statistical Methods. Proceedings of the MT Summit XI. 
Taskar, B., S. Lacoste-Julien and D. Klein. 2005. A Discriminative Matching Approach 
to Word Alignment. Proceedings of HLT/EMNLP,  pp.  73–80. Morristown, NJ, USA. 
Tillmann, C. 2008. A Rule-driven Dynamic Programming Decoder for Statistical MT. 
Proceedings of Second Workshop on Syntax and Structure in Statistical Translation, at 
ACL/HLT,  pp.  37–45. Columbus, OH. 
Tillmann, C. 2006. Efficient Dynamic Programming Search Algorithms for Phrase-based 
SMT. Proceedings of the Workshop on Computationally Hard Problems and Joint 
Inference in Speech and Language Processing,  pp.  9-16, New York, NY. 
Tillmann, C. 2004. A Unigram Orientation Model for Statistical Machine Translation. 
Proceedings of HLT/NAACL. 
Tillmann, C. and H. Ney. 2003. Word Reordering and a DP Beam Search Algorithm for 
Statistical Machine Translation. Computational Linguistics 29(1):97–133. 
Tillmann, C. 2003. A Projection Extension Algorithm for Statistical Machine Translation. 
Proceedings of EMNLP,  pp.  1–8. Sapporo, Japan. 
Tillmann, C. 2001. Word Re-Ordering and Dynamic Programming based Search 
Algorithm for Statistical Machine Translation. Ph.D. thesis. University of Technology, 
Aachen, Germany. 
Toutanova, K., H. Suzuki and A. Ruopp. 2008. Applying Morphology Generation 
Models to Machine Translation. Proceedings of ACL/HLT, pp.  514–522. Columbus, OH. 
Toutanova, K. and H. Suzuki. 2007. Generating Case Markers in Machine Translation. 
Proceedings of HLT/NAACL, pp.  49–56, Rochester, NY. 
Tromble, R.W. and S. Kumar and F.J. Och and W. Macherey. 2008. Lattice Minimum 
Bayes-Risk Decoding for Statistical Machine Translation. Proceedings of EMNLP. 

Handbook of Natural Language Processing and Machine Translation 393



 

Tseng, H., P. Chang, G. Andrew, D. Jurafsky and C. Manning. 2005. A Conditional 
Random Field Word Segmenter.  Proceedings of the Fourth SIGHAN Workshop on 
Chinese Language Processing.  
Tur, G., D. Hakkani-Tur and R.E. Schapire. 2005. Combining Active and Semi-
supervised Learning for Spoken Language Understanding. Journal of Speech 
Communication 45(2):  pp. 171.186. 
Ueffing, N., J.Stephan, E. Matusov, L. Dugast, G. Foster, R. Kuhn, J. Senellart and J. 
Yang. 2008. Tighter Integration of Rule-based and Statistical MT in Serial System 
Combination.  Proceedings of Coling. Manchester, U.K. 
Ueffing, N. and H. Ney. 2007. Word-level Confidence Estimation for Machine 
Translation. Computational Linguistics 33(1):  pp. 9–40.  
Ueffing, N., M. Simard, S. Larkin and J. H. Johnson. 2007. NRC’s PORTAGE System 
for WMT 2007. Proceedings of 2nd ACL Workshop on Statistical Machine Translation, 
pp. 185-188. 
Ueffing, N. and H. Ney. 2003. Using POS Information for SMT into Morphologically 
Rich Languages. Proceedings of EACL. 
Vanden Berghen, F. and H. Bersini. 2005. CONDOR, A New Parallel, Constrained 
Extension of Powell's UOBYQA Algorithm: Experimental Results and Comparison with 
the DFO Algorithm. Journal of Computational and Applied Mathematics 181:  pp. 157-
175. 
Vapnik, V. 2006. Estimation of Dependencies Based on Empirical Data (Second Edition). 
Springer, 2006. 
Vilar, D., D. Stein and H. Ney. 2008. Analysing Soft Syntax Features and Heuristics for 
Hierarchical Phrase Based Machine Translation.  Proceedings of IWSLT, pp.  190–197. 
Waikiki, HI. 
Vilar, D., J.T. Peter and H. Ney. 2007. Can We Translate Letters? Proceedings of the 
Second Workshop on Statistical Machine Translation,  pp.  33–39. Prague, Czech 
Republic.  
Vilar, D., M. Popovic and H. Ney. 2006. AER: Do We Need to “Improve” Our 
Alignments? Proceedings of IWSLT,  pp.  205–212. Kyoto, Japan. 
Virpioja, S., J.J. Vyrynen, M. Creutz and M. Sadeniemi. 2007. Morphology-aware 
Statistical Machine Translation Based on Morphs Induced in an Unsupervised Manner. 
Proceedings of the MT Summit XI. 
Vogel, S., H. Ney and C. Tillmann. 1996. HMM-based Word Alignment in Statistical 
Machine Translation. Proceedings of Coling, pp.  836–841. Copenhagen, Denmark. 
Wang, C., M. Collins and P. Koehn. 2007. Chinese Syntactic Reordering for Statistical 
Machine Translation. Proceedings of EMNLP-CoNLL, pp.  737–745. 
Wang, W., K. Knight and D. Marcu. 2007. Binarizing Syntax Trees to Improve Syntax-
based Machine Translation Accuracy. Proceedings of EMNLP-CoNLL. 

394 Chapter 2: Machine Translation from Text 



 

 

Watanabe, T., J. Suzuki, H. Tsukada and H. Isozaki. 2007. Online Large-margin Training 
for Statistical Machine Translation. Proceedings of EMNLP-CoNLL . 
Woodland, P.C. and D. Povey. 2002. Large Scale Discriminative Training of Hidden 
Markov Models for Speech Recognition. Computer Speech and Language 16(1):  pp. 25-
47. 
Wu, D. and D. Chiang, editors. 2009. Proceedingsof SSST-3, Third Workshop on Syntax 
and Structure in Statistical Translation, at NAACL-HLT2009.  
Wu, D. and D. Chiang, editors. 2007. Proceedingsof SSST, NAACL-HLT 2007 / AMTA 
Workshop on Syntax and Structure in Statistical Translation.  
Wu, D. and H. Wong. 1998. Machine Translation with a Stochastic Grammatical Channel. 
Proceedings of ACL/Coling, pp. 1408–1415. Montreal, Canada. 
Wu, D. 1997. Stochastic Inversion Transduction Grammars and Bilingual Parsing of 
Parallel Corpora. Computational Linguistics 23(3):  pp. 377-403. 
Xia, F. and M. McCord. 2004. Improving a Statistical MT System with Automatically 
Learned Rewrite Patterns. Proceedings of Coling, pp.  508–514. Geneva, Switzerland.  
Xing, E.P., M.I. Jordan and S. Russell. 2003. A Generalized Mean Field Algorithm for 
Variational Inference in Exponential Families. Meek and Kjaelff, editors, Uncertainty in 
Artificial Intelligence (UAI2003), pp.  583–591. Morgan Kaufmann Publishers. 
Xu, J., J. Gao, K. Toutanova and H. Ney. 2008. Bayesian Semi-supervised Chinese Word 
Segmentation for Statistical Machine Translation. Proceedings of Coling. Manchester, 
UK. 
Xu, J., E. Matusov, R. Zens and H. Ney. 2005a. Integrated Chinese Word Segmentation 
in Statistical Machine translation. Proceedings of IWSLT. 
Xu, J., R. Zens and H. Ney. 2005b. Sentence Segmentation using IBM Word Alignment 
Model 1. Proceedings of EAMT,  pp.  280–287. Budapest, Hungary. 
Xu, J., R. Zens and H. Ney. 2004. Do We Need Chinese Word Segmentation for 
Statistical Machine Translation? Proceedings of the SIGHAN Workshop on Chinese 
Language Learning, pp. 122–128. Barcelona, Spain. 
Xue, N. and M. Palmer. 2005. Automatic Semantic Role Labeling for Chinese Verbs. 
Proceedings of International Joint Conference on Artificial Intelligence, Edinburgh, 2005. 
Xue, N. Semantic Role Labeling of Nominalized Predicates in Chinese. 2006. 
Proceedings of HLT-NAACL,  pp.431-438. New York, NY. 
Yamada, K. and K. Knight. 2002. A Decoder for Syntax-based Statistical MT. 
Proceedings of ACL, pp. 303–310. Philadelphia, PA. 
Yamada, K. and K. Knight. 2001. A Syntax-based Statistical Translation Model. 
Proceedings of ACL. 
Yamamoto, M. and K.W. Church. 2001. Using Suffix Arrays to Compute Term 
Frequency and Document Frequency for All Substrings in a Corpus. Computational 
Linguistics 27(1):  pp. 1–30. 

Handbook of Natural Language Processing and Machine Translation 395



 

Yang, J., J. Senellart and R. Zajac. 2003. SYSTRAN’s Chinese Word Segmentation. 
Proceedings of Second SIGHAN Workshop on Chinese Language Processing. 
Yang, M. and K. Kirchhoff. 2006. Phrase-based Backoff Models for Machine Translation 
of Highly Inflected Languages. Proceedings of ACL. Trento, Italy. 
Ye, Y., K.M. Schneider and S. Abney. 2007. Aspect Marker Generation in English-to-
Chinese Machine Translation. Proceedings of the MT Summit XI. 
Ye, Y., V.L. Fossum and S. Abney. 2006. Latent Features in Automatic Tense 
Translation Between Chinese and English. Proceedings of the Fifth SIGHAN Workshop 
on Chinese Language Processing, pp.  48–55, Sydney, Australia. 
Yedidia, J.S., W.T. Freeman and Y. Weiss. 2003. Understanding Belief Propagation and 
its Generalizations. Exploring Artificial Intelligence in the New Millennium, Chap. 8, pp. 
239-236,  239–269. 
Zens, R. 2008. Phrase-based Statistical Machine Translation: Models, Search, Training. 
Ph.D. thesis, RWTH Aachen University: Aachen, Germany. 
Zens, R. and H. Ney. 2008. Improvements in Dynamic Programming Beam Search for 
Phrase-based Statistical Machine Translation. Proceedings of IWSLT pp.  198-205. 
Honolulu, HI. 
Zens, R., S. Hasan and H. Ney. 2007. A Systematic Comparison of Training Criteria for 
Statistical Machine Translation. Proceedings of EMNLP/CoNLL. 
Zens, R. and H. Ney. 2006. N-gram Posterior Probabilities for Statistical Machine 
Translation. Proceedings on the Workshop on Statistical Machine Translation,  pp.  72–
77. New York, NY. 
Zens, R. and H. Ney. 2004. Improvements in Phrase-based Statistical Machine 
Translation. Proceedings of HLT-NAACL, pp.  257-264. Boston, MA. 
Zens, R., F.J. Och and H. Ney. 2002. Phrase-based Statistical Machine Translation. M. 
Jarke, J. Koehler and G. Lakemeyer, eds., Proceedings of the 25th German Conf. on 
Artificial Intelligence (KI2002), volume 2479 of Lecture Notes in Artificial Intelligence 
(LNAI), pp.  18–32. Springer Verlag: Aachen, Germany. 
Zhang, D., M. Li, N. Duan, C.H. Li and M. Zhou. 2008a. Measure Word Generation for 
English-Chinese SMT Systems. Proceedings of HLT/ACL, pp.  89–96. Columbus, OH.. 
Zhang, H., H. Yu, D. Xiong and Q. Liu. 2003. HHMM-based Chinese Lexical Analyzer 
ICTCLAS. Proceedings of the Second SIGHAN Workshop on Chinese Language 
Learning, pp.  184–187. 
Zhang, H., L. Huang, D. Gildea and K. Knight. 2006. Synchronous Binarization for 
Machine Translation. Proceedings of HLT/NAACL, pp.  256–263. New York, NY. 
Zhang, J., C. Zong and S. Li. 2008b. Sentence Type Based Reordering Model for 
Statistical Machine Translation. Proceedings of Coling, pp.  1089–1096. Manchester, UK. 
Zhang, R., K. Yasuda and E. Sumita. 2008. Chinese Word Segmentation and Statistical 
Machine Translation. ACM Transactions on Speech and Language Processing. 

396 Chapter 2: Machine Translation from Text 



 

 

Zhang, Y., R. Zens and H. Ney. 2007a. Chunk-level Reordering of Source Language 
Sentences with Automatically Learned Rules for Statistical Machine Translation. 
Proceedings of  NAACL-HLT 2007 / AMTA Workshop on Syntax and Structure in 
Statistical Translation, pp. 1–8,  Rochester, NY.  
Zhang, Y., R. Zens and H. Ney. 2007b. Improved Chunk-level Reordering for Statistical 
Machine Translation. Proceedings of IWSLT. 
Zhang, Y., A.S. Hildebrand and S. Vogel. 2006. Distributed Language Modeling for N-
best List Re-ranking. Proceedings of EMNLP, pp. 216–223. Sydney, Australia. 
Zhang, Y. 2006. Suffix Array and Its Applications in Empirical Natural Language 
Processing. Technical Report CMU-LTI-06-010, Language Technologies Institute, School 
of Computer Science, Carnegie Mellon University, Pittsburgh, PA. 
Zhang, Y. and S. Vogel. 2005. An Efficient Phrase-to-phrase Alignment Model for 
Arbitrarily Long Phrase and Large Corpora. Proceedings of EAMT. Budapest, Hungary.  
Zhao, B. 2007. Statistical Alignment Models for Translational Equivalences. Ph.D. 
thesis, Language Technologies Institute, School of Computer Science, Carnegie Mellon 
University. 
Zhao, B. and E.P. Xing. 2007. HM-BiTAM: Bilingual Topic Exploration, Word 
Alignment and Translation.  Proceedings of the Neural Information Processing Systems 
Conference. Vancouver, Canada. 
Zhao, B. and E.P. Xing. 2006. BiTAM: Bilingual Topic Admixture Models for Word 
Alignment. Proceedings of ACL. 
Zhao, B., N. Ge and K. Papineni. 2005. Innerouter bracket models for word alignment 
using hidden blocks. Proceedings of HLT and EMNLP, pp 177–184. 
Zhao, B., M. Eck and S.Vogel. 2004. Language Model Adaptation for Statistical Machine 
Translation with Structured Query Models. Proceedings of Coling.  
Zhao, T., L. Yajuan, Y. Muyun and Y. Hao. 2001. Increasing Accuracy of Chinese 
Segmentation with Strategy of Multi-step Processing. Journal of Chinese Information 
Processing (Chinese Version), 1:  pp.  13-18. 
Zheng, J., W. Wang and N.F. Ayan. 2008. Development of SRI's Translation Systems for 
Broadcast News and Broadcast Conversations. Proceedings of Interspeech. 
Zollmann, A. and A. Venugopal. 2006. Syntax Augmented Machine Translation via 
Chart Parsing. Proceedings of HLT-NAACL. New York, NY. 
Zwarts, S. and M. Dras. 2007. Syntax-based Word Reordering in Phrase Based Statistical 
Machine Translation: Why Does it Work? Proceedings of the MT Summit XI. 
 

Handbook of Natural Language Processing and Machine Translation 397





Chapter 3:  Machine Translation from Speech 
Editors: Richard Schwartz, Joseph Olive, John McCary, and Caitlin Christianson 
 

 
 

3.1  Introduction  
Author: Lidia Mangu 

 
This chapter describes approaches for translation from speech.  Translation from 

speech presents two new issues.  First, of course, we must recognize the speech in the 
source language.  Although speech recognition has improved considerably over the last 
three decades, it is still far from being a solved problem.  In the best of conditions, when 
the speech comes from high quality, carefully enunciated speech, on common topics 
(such as speech read by a trained news broadcaster), the word error rate is typically on 
the order of 5%.  Humans can typically transcribe speech like this with less than 1% 
disagreement between annotators, so even this best number is still far worse than human 
performance.  However, the task gets much harder when anything changes from this ideal 
condition.  Some of the conditions that cause higher error rate are, if the topic is 
somewhat unusual, or the speakers are not reading so that their speech is more 
spontaneous, or if the speakers have an accent or are speaking a dialect, or if there is any 
acoustic degradation, such as noise or reverberation.  In these cases, the word error can 
increase significantly to 20%, 30%, or higher.  Accordingly, most of this chapter 
discusses techniques for improving speech recognition accuracy, while one section 
discusses techniques for integrating speech recognition with translation. 

The speech recognition process can be divided into three parts: feature computation, 
acoustic modeling, and language modeling.  We compute features related to the short-
term power spectrum on a perceptually warped frequency axis.  However, in order to 
enrich the power of the features, we typically concatenate features over several frames.  
Some methods even look at features over a half second period.  3.2 discusses several 
methods for feature computation.  Several of the sections discuss the use of multi-layer 
perceptrons to map the long concatenated vector of features from many frames into a 
manageable vector size.  They also discuss methods for combining different features. 

Currently, all state of the art speech recognizers use Hidden Markov Models (HMMs) 
as the basic methodology for performing speech recognition.  But there are a large 
number of ways of using HHMs to model the likely acoustic (feature) sequences that 

modeling structures and estimation methods that are used within the basic HMM 
formulation.  For example, since the number of parameters needed to model all possible 
phonetic sequences is potentially extremely large, systems often differ in how they share 
parameters among different models.  There are different estimation criteria that can be 

J. Olive et al. (eds.), Handbook of Natural LanguageProcessing  
DOI 10.1007/978-1-4419-7713-7_3, � Springer ScienceþBusiness Media, LLC 2011

399 and Machine Translation,

correspond to different phonetic sequences. 3.3 discusses several improvements in the 



used, from the most basic maximum likelihood techniques that try to estimate a model 
that maximizes the likelihood of the observed features to models that try to minimize the 
error rate directly in different ways.  In addition, since there are a host of variations on 
each of these methods, we often see that it is possible to improve recognition accuracy by 
implementing different recognition systems that use different techniques and then 
combine their results by different sorts of voting mechanisms. 3.3 discusses some of 
these techniques. 

A key component in the probabilistic formulation for speech recognition is a prior 
model (a “language model”) that provides a measure of the relative probability for each 
possible word sequence out of the near infinite number of possibilities.  Most typically, 
we use a Markov chain model (an “n-gram model”) that estimates the probability of the 
next word given the previous n-1 words.  There are variations on this model and on the 
estimation techniques used to deal with variations in the language. 3.4 discusses some 
improvements in language modeling techniques. 

In general, we try to develop techniques for speech recognition that can be used for 
any language so that all we need to do to implement a new language is to acquire a source 
of text data for a language model and a set of transcribed speech in order to estimate the 
HMM acoustic model.  However, there are often some specific details of different 
languages that must be acknowledged when building a system in order to obtain the 
lowest possible error rates.  For example, Arabic is normally written without the 
diacritics (short vowels, non-vowels, consonant doubling), which means a typical word-
level transcription of speech is missing some phonetic information.  In addition, the 
number of words in Arabic text is very large, because some morphemes that would 
typically be separate words in English (and, in, the, for, to him, my, etc.) are often 
appended to the content words that immediately follow or precede them.  This means the 
number of possible “words” is much larger than in English, resulting in a large 
percentage of new words being outside any particular vocabulary.  In addition, Arabic is 
spoken in a variety of dialects, which different considerably from the formal Modern 
Standard Arabic that is typically used in news reports that are read by a news anchor.  
Thus, some percentage of the speech from field reports or informal discussions contain a 
certain amount of this dialect variation.  Mandarin has different issues.  First, unlike 
English and Arabic, Mandarin uses tone (different pitch and accent patterns) to 
distinguish different words.  This means we must include features that relate to these 
tones.  In addition, unlike Arabic which concatenates some morphemes, Chinese is 
normally written with no spaces between the characters at all.  Thus, we don’t know, for 
sure, where one word ends and another begins. 3.5 and 3.6 deal with specific solutions 
that have been developed for dealing with each of these issues in Arabic and Mandarin.  
Also Chinese has many different dialects that are even more different than the Arabic 
dialects, the GALE Program has only used the Mandarin dialect, so the only variations 
that we see are due to regional accents, partially related to the native dialect of a speaker, 
or simply where they are from. 

Finally, since the goal is ultimately to translate the speech, we must consider the 
effect of speech recognition systems on the translation process.  For example, we must 
acknowledge that there will always be a significant number of speech recognition errors 
that the translation will have to deal with.  In addition, unlike text, which usually has 

Chapter 3: Machine Translation from Speech400



relatively clear sentence breaks and punctuation, which provide additional information, 
speech has no such information.  So a system must either make do without this 
information or try to recreate it. 3.7 deals with methods that have been used to optimize a 
translation system for use together with speech recognition systems. 

Thus, the chapter is divided into seven Chapters:   
 

1. Introduction 
2. Front end feature computation 
3. Modeling techniques for speech recognition 
4. Language modeling for speech recognition 
5. Language-specific techniques for Mandarin 
6. Language-specific techniques for Arabic 
7. Integration of speech recognition and translation 

 
Each of these chapters has a separate introduction that briefly summarizes the 

individual sections in the section.  The casual reader may find that some of the sections 
within a section use somewhat similar techniques, and thus, their descriptions often 
discuss some of the same issues.  However,  this apparent duplication is not accidental.  It 
results from the fact that, as a research community, we learn from each other.  When one 
research site develops and reports a technique that appears to work, a second site will 
often try to replicate that technique, first to validate the method, and then to try to find 
further improvements.  While some might believe that this duplication of effort and 
similarity of approaches is wasteful, it actually is the mechanism that results in rapid 
progress over the years as each of us standards on the shoulders of our colleagues in order 
to reach higher. 

3.2  Front End Features  

3.2.1. Introduction 
Author: Lidia Mangu 

 
Most state-of-the-art speech recognition systems (STT) use a cepstral frontend. One 

of the recent trends is a multi-stream approach, in which different types of features are 
extracted from the speech signal and combined with the classic Mel Frequency Cepstral 
Coefficients (MFCC) or PLP features either at the feature-level, model level or on the 
output of multiple systems. Multi-layer perceptrons (MLPs) provide an effective 
mechanism for the transformation of alternate feature streams into a form that is both 
phonetically discriminative and amenable for HMM-based speech recognition. Since 
MLP features cover a wide temporal content, they could capture different speech 
properties than the cepstral features, therefore, an important question is how to best 
incorporate both in an STT system.  

In this section, we will present the basics of the MLP-based techniques, various 
features of MLP, the most effective way of combining information coming from different 

Handbook of Natural Language Processing and Machine Translation 401



representation of the speech spectral dynamics and combination strategies for speech 
recognition systems using different acoustic frontends. 

Specifically, in addition to a stream based on classic PLP features, we will show the 
use of streams incorporating the temporal trajectory of logarithmic spectral energy in 
each critical band over a long (500ms) window, and describe different combination 
schemes for the two streams. We will also show results incorporating a new stream based 
on Gabor filtering of the input spectrum. 

Next, we will investigate three types of MLP features derived using a 4-layer 
bottleneck MLP architecture, which differ in their input speech representation. Two types 
of raw features are used: 9 frames of PLP based features, and time-warped linear 
predictive TRAP (wLP-TRAP), which are processed by the MLP. The third MLP feature 
set is obtained by combining the two sets of raw features at the input to the MLP. It is 
shown that without adaptation the MLP features perform better than the PLP features, 
and after adaptation they have comparable performance. Different means of combining 
the MLP and cepstral features are explored. The authors found that the best recipe is to 
combine features based on different time spans (e.g., PLP and wLP-TRAP) as they 
provide high complementarity, and feature concatenation is the most efficient 
combination method.  

Combination strategies for speech recognition systems using different acoustic front 
ends, including the Gammatone feature, neural network based toneme posteriors and a 
tonal feature will be described. We will show that the best result is achieved by stacking 
multiple system cross-adaptation and minimum time frame error rate on the different base 
systems. 

Finally, we will investigate the most effective ways of combining information 
coming from different representation of the speech spectral dynamics with a study of two 
types of combinations of multiple streams: one which involves training of multiple MLPs 
in either a parallel or sequential fashion, and another one based on frame-level 
combination. The study shows that combination of classifiers trained on different ranges 
of auditory frequencies is more effective if performed in parallel fashion, while 
hierarchical techniques are more effective for combining information in different ranges 
of modulation frequencies. For the frame-level combination, using Dempster-Shafer 
combination rule that closely relates to observation on how humans recognize speech in 
noisy conditions is proposed. The new method is shown to be effective when there is not 
enough in-domain training data. 

3.2.2. MLP-Based Feature Extraction for Speech Transcription  
Authors: Nelson Morgan, Arlo Faria, Suman Ravuri and Sherry Zhao 

3.2.2.1 Introduction 

Tandem acoustic feature extraction (Hermansky et al. 2000b) was introduced to leverage 
the discriminative power of a multi-layer perceptron (MLP) classifier for automatic 
speech transcription, producing a feature representation based on local estimates of phone 
posterior probabilities. Such MLP-derived features have been used for large vocabulary 
ASR (Morgan 2005; Zhu 2005; Zheng 2007) complementing other discriminative 

Chapter 3: Machine Translation from Speech402



methods such as Minimum Phoneme Error (MPE) parameter estimation (Povey 2002) 
and feature MPE (fMPE) feature transforms (Povey 2005). In our work for DARPA, first 
in the EARS program and then in GALE, we developed a multi-stream feature extraction 
module making use of the Tandem principle. In addition to a stream based on the classic 
Perceptual Linear Prediction (PLP) features, we also made use of streams incorporating 
the temporal trajectory of logarithmic spectral energy in each critical band over a long 
(500 ms) window.   The two streams, both of which used MLPs for discriminant 
transformation, were combined using one of several possible weighting schemes (briefly 
described in Section 3.2.2.3). The combined values, which could be viewed as estimates 
of the posterior probabilities for phonetic classes, were then processed by a logarithm and 
by Principal Component Analysis (PCA) (the latter for orthogonalization and 
dimensionality reduction).  These features were then appended to a vector of MFCCs and 
derivatives (that itself had been processed by Heteroscedastic Linear Discriminant 
Analysis (HLDA)), and the final vector was used for training and recognition of the 
Gaussian-mixture-based HMMs.   

The above paragraph is a very brief description of techniques that have been 
developed over the last 20 years, starting with the interpretation of MLP outputs as 
posterior probabilities in work done with H. Bourlard in the late 1980's  (Morgan 1995), 
the development of Tandem and Temporal Pattern approaches (due largely to H. 
Hermansky and colleagues in the late 1990's, and this decade). In two successive DARPA 
programs, we have done the engineering required to apply these approaches successfully 
to large vocabulary tasks, first for conversational telephone speech (in EARS) and more 
recently to Mandarin broadcast news and conversation (in GALE).  

3.2.2.2 HATs and TRAPS  

As noted above, a key insight from Hermansky (Hermansky and Shamma 1998) was 
that it should be useful to incorporate features extracted from much longer time ranges 
than the typical 25 ms analysis window (e.g., 500 to 1000 ms), and in particular, based on 
temporal properties within narrow bands (e.g., one to three critical bands). We also found 
that such features nicely complemented features extracted from shorter ranges (e.g., 100 
ms or less). Various forms of these narrowband temporal trajectories were explored by 
Hermansky and his colleagues, and were called TempoRAl Patterns, or TRAPs 
(Hermansky and Shamma 1998). In most cases, these features were based on the energy 
trajectories within one or three critical bands. We found that it was useful to train critical 
band MLPs for phonetic classification using a single hidden layer, but then to only 
incorporate the learned input to hidden transformation for each band, and then to train a 
large MLP for phonetic classification, taking as input the hidden layer outputs for all of 
the critical bands. We named this TRAPs variant “Hidden Activation TRAPs”, or 
“HATs”. In later work, we found that similar results could be achieved with a single large 
network that was trained in a single process by having two hidden layers and constraining 
the connections at from the input to the first hidden layer to be isolated to local frequency 
regions. The latter approach has significant practical advantages, as the HATs as 
originally formulated require the storage and retrieval of large intermediate files. HATs 

Handbook of Natural Language Processing and Machine Translation 403



were used in most of our evaluations, but we expect to use the single “tonotopic” network 
for future ones. 

3.2.2.3 Combining Probabilistic Features  

One of the key advantages of using MLP-based feature streams is the property that 
properly trained MLPs can output estimates of posterior probabilities (the probability of 
each class given the network's input). This then suggests a number of ways for combining 
stream outputs. In one approach, independent streams are combined by a product rule. In 
another approach, streams are combined additively with gating weights. A particular 
method for computing these weights makes use of stream entropy estimates. Interpreting 
MLP outputs as a discrete posterior probability distribution, entropy is computed for each 
stream, and is used as an inverse confidence for the stream. The inverse entropy has 
therefore been used both at IDIAP and ICSI for stream combination (Morgan et al. 2005), 
as well as, a related technique derived from Dempster-Shafer theory (see Section 3.2.5) 
for an explanation of the latter technique). Our experience has been that both methods 
work reasonably well. However, when the evaluation data is reasonably well represented 
by the training data, another combination method is simply to train yet another network 
to make optimal use of both streams. Still other combination methods (for instance, 
training a network to generate linear stream weights) are an active area of research in our 
group.  

While it is intellectually pleasing to generate probabilities as features, there are a 
number of pragmatic steps that we have sometimes found to be useful in practice. For 
instance, for our large vocabulary evaluations we have found it necessary to generate a 
log or log-like function of the probabilities, and to orthogonalize the output and reduce its 
dimensionality (typically with PCA). Furthermore, we have sometimes found that it is 
preferable to use the input to a final softmax function in the MLPs rather than the output 
for feature generation. This corresponds to a log probability plus a frame-dependent scale 
constant. This constant (which comes from the magnitude of the input to all of the output 
nonlinearities in a stream MLP) may contain information about the strength of each 
stream.  

3.2.2.4 “Idealized” MLP-based Features  

We have run an experiment in which the MLP was simulated to be at its optimum, 
providing essentially perfect classification of phonetic speech units. The outputs of the 
simulated classifier were replaced with forward-backward probabilities by aligning 
HMM models composed from reference word sequences. We then used the simulated 
classifier exclusively during training and applied the normal MLP on test data. 
Surprisingly, this mismatch did not deteriorate performance, but instead provided 
considerable improvement over the standard Tandem procedure. Inspired by this result, 
we developed a simple technique for preparing corrected Tandem features based on 
linear output activations of an MLP, and demonstrated significant improvement on a 
Mandarin broadcast news ASR task. 

Our experiments are based on the Mandarin broadcast news ASR system described 
by Lei (2006), simpler than our state-of-the art implementation (Hwang et al. 2007) 

Chapter 3: Machine Translation from Speech404



developed as a multi-site collaboration for the DARPA GALE project. SRI's DECIPHER 
recognizer was configured for word-based modeling, although all ASR results are 
reported as character error rates (CER). The training set (Mandarin Hub4) comprised 30 
hours of television shows, carefully transcribed including speaker labels. Test data are 
from the DARPA EARS RT-04 evaluation (eval04) and the DARPA GALE 2006 
evaluation (eval06). Automatically-segmented utterances were clustered and assigned 
pseudo-speaker labels. Standard acoustic features were based on MFCC, warped with 
vocal tract length normalization and mean-and-variance normalization applied on a per-
speaker basis. Since Mandarin is a tonal language, it was useful to additionally include a 
smoothed log-pitch estimate (Lei 2006). Adding two temporal derivatives resulted in a 
42-dimensional acoustic feature vector, which we will simply reference as “MFCC”. 
Within-word triphone HMM models were based on a 72-phone inventory comprising 
consonants and tonal vowels. Parameters were shared across 2000 states clustered with a 
phonetic decision tree, and observation distributions were modeled by a diagonal 
covariance GMM with 32 mixture components. Viterbi realignment of the training data 
was used for maximum likelihood parameter estimation. Recognition networks were 
compiled from trigram language models trained on over one billion words, with a 60K 
lexicon (Hwang et al. 2007). Two decoding passes were separated by 3-class Maximum 
Likelihood Linear Regression (MLLR) speaker adaptation, all operating in under 5 times 
real time. 

  
Feature Train Test Eval04 Eval06 
MFCC - - 19.2 30.6 
Tandem MLP MLP 15.5 24.2 
Tandem Corrected MLP 15.1 23.9 

 
Table 3.1: Comparison of standard and corrected Tandem features derived from an MLP's linear output (pre-
softmax MLP) activations. A somewhat simplified DECIPHER system with 30 hours of training were used 

for these results. 

We used a simple technique for correcting the linear activation outputs of an MLP. 
Using the Viterbi aligned reference labels for the training data, we determined for each 
frame whether the MLP's classification was correct. If the MLP's maximal output 
correctly related to the aligned phone, we left all the outputs unmodified for that frame. If 
the MLP's classification was incorrect, we changed the value at the output unit that 
should have had the maximal activation; we increased it to have the same value as the 
maximal activation over the other output units. This correction was a relatively minimal 
modification to the MLP outputs: it was applied only to frames that were incorrectly 
classified – about 20% of the training set – and affected just one of the MLP output units. 
Table 3.1 shows the experimental results using corrected Tandem features for acoustic 
model training. For both the eval04 and eval06 test sets, the corrected training features 
provided modest improvement over the features from unmodified MLP outputs. Over the 
two sets, the statistical significance of the systems' difference was verified by a two-tailed 
MAPSSWE test (Gillick 1989) p = 0.015 (179 vs. 135 unique errors).  

The system was significantly improved by applying a small correction to the training 
features. The correction procedure is very simple to implement and relies only on having 

Handbook of Natural Language Processing and Machine Translation 405



Viterbi-aligned reference labels for the training data; this information is often readily 
available as it is typically used to prepare the one-hot encoded targets for MLP training. 
Some further details are given by Faria (2008). 

3.2.2.5 Adaptation Methods  

MLPs from one task or genre can often be adapted for another. Analogous to 
adaptation of probability estimators like mixture Gaussians, this can particularly be 
advantageous if one has an MLP trained on a large amount of data that needs to be 
applied to a new task or genre with less available training data. For instance, in the past 
we have adapted MLPs trained on thousands of hours of conversational telephone speech 
to an unrelated conversational meeting task (Janin 2006). More recently we have begun 
experimentation with genre-specific adaptation of MLP weights to reduce errors for 
conversational broadcast Mandarin, which occur much more frequently than is the case 
for Mandarin broadcast news. Show-based adaptation has been unsuccessful, but we are 
now investigating adaptation with a finer granularity. 

3.2.2.6 Ensemble feature selection  

In all of our multi-stream MLP-based approaches, we assess the value of adding a 
stream by including the entire stream. We do wonder, however, if the composition of 
each stream should change when the features in it are added to the overall pool of 
features used. To put this another way, would there be any advantage to put all of the 
features from the multiple streams into a pool and to look for the best elements in each 
stream? This question is sometimes referred to in the machine learning community as 
ensemble feature selection. While we have no answer yet for the specific tests conducted 
in GALE evaluations, one of the students in our group recently completed a PhD 
dissertation (Gelbart 2008) on his topic using a small vocabulary task (recognizing 
Numbers 95 utterances), both with and without significant amounts of additive noises of 
different types. In nearly all experiments, the rearranged multi-streams (obtained by a hill 
climbing procedure) performed significantly better than the original streams (which for 
this case were MFCC, PLP, and the Modulation Spectrogram features developed in the 
‘90's by Kingsbury (1998).  This suggests that there may be some further optimization 
that may be obtained by rearranging the new features in the multi-stream combinations 
that we come up with for tasks like those of interest to GALE. 

3.2.2.7 Parallelization to Enable More Experiments  

Multi-layer perceptrons provide a useful tool for transforming new types of features 
into a form that is both discriminant and is applicable for use as observation variables to 
be modeled by Gaussian-mixture-based acoustic models. Their biggest disadvantage is 
the fairly long training times required. We have found that we can use sampling 
techniques to reduce training time significantly with only small increases in error rate, for 
instance by training with a reduced amount of the data with equally distributed phone 
priors. However, for evaluation systems, we still typically train with all of the available 
data, which requires a significant time to train the MLPs for each change in the feature 

Chapter 3: Machine Translation from Speech406



extraction. In earlier times our group developed our own hardware to help with this 
problem. In recent years, though, commercial products have become powerful enough to 
permit the training of very large MLPs in a reasonable amount of time. However, what is 
“reasonable time” depends on your goal. For evaluation subsystems, current training 
times of a few days to two weeks are acceptable. But, if the goal is to vary the feature 
methodology and test it on a day-to-day basis for research purposes, these training delays 
are obviously too long.   

Because of the recent leveling off of clock rates in CPUs, the industry is now moving 
towards highly parallelized computation. One example of this is the GPU approach, with 
a number of products available for use as an attached processor. There can be significant 
difficulties with the programming of these devices, but once programmed they can 
provide enormous speedups for various parts of the recognition system, but particularly 
for the MLPs. Other products are likely to follow that might be simpler to program. In the 
meanwhile, we are working to parallelize our basic MLP algorithms. For instance on the 
Nvidia GeForce GTX280 we now are showing a significant speedup on an MLP training 
algorithm that was reprogrammed from our legacy code for better parallelization. This 
work is being assisted by our collaboration with the Berkeley Parallel Lab (Asanovic 
2008), an industry-funded effort to crack the problem of writing software for new parallel 
(``manycore'') architectures. 

3.2.2.8 Conclusions 

 Over the years, we have found discriminatively trained features, using MLPs, to be an 
effective augmentation of the more standard observation vectors used for automatic 
speech recognition. They have now become a standard component in the systems 
developed for programs like GALE. However, while progress has been made, a number 
of issues remain open, such as: optimal combination of MLP outputs; training of HMMs 
using blends between actual and idealized MLP outputs; adapting MLPs for differing 
speech genres (e.g., read news vs. conversation); incorporating newer features that are 
more biologically inspired; rearranging features in streams for optimal effect; and 
radically speeding up training and test cycles using newer hardware/software 
architectures so that many more experiments can be run. Finally, although this point is 
not the focus of the current section, we feel that incorporating performance measures 
from later stages in the overall task (e.g., machine translation errors) should ultimately 
used for design choices in the speech recognizer, which will require a tighter coupling 
than is currently feasible. 
 
Acknowledgment: Although many colleagues at ICSI, SRI, and IDIAP have helped us in this work over the 
years, we want to particularly acknowledge the assistance of Andreas Stolcke, without whom we never would 
have been able to run our large vocabulary ASR experiments; and Hynek Hermansky, who was a prime 
contributor to many of the basic ideas that we took advantage of. 
 
 

Handbook of Natural Language Processing and Machine Translation 407



3.2.3. Combining MLP and PLP Features for Speech 
Transcription 

Authors: Petr Fousek, Lori Lamel and Jean-Luc Gauvain 

3.2.3.1 Introduction 

One of the recent trends in speech recognition is using discriminative techniques with 
large corpora for more accurate acoustic modeling. Maximum likelihood training of 
Gaussian mixture HMMs is often replaced by Maximum Mutual Information (MMI),  
Minimum Classification Error (MCE), or MPE criteria and features are being modified 
by discriminatively trained transforms such as feature-level MPE (Povey 2005). There 
has been growing interest in incorporating some discriminative estimation in the feature 
extraction by using discriminative classifiers such as MLP. Since MLP features cover a 
wide temporal context, they can potentially capture different speech properties than are 
captured by the widely used cepstral features. In addition, MLPs can be trained to deliver 
estimates of class posteriors which can be directly used as emission probabilities in 
Hidden Markov Models. Over the years, ICSI, SRI, UW and other groups have 
developed mature techniques for extracting probabilistic MLP features such as TRAPs, 
and have substantial experience incorporating these MLP features in speech-to-text 
systems (Zhu 2005, Stolcke 2006).  While probabilistic features have never been shown 
to consistently outperform cepstral features in LVCSR, they have been shown to improve 
performance when used in conjunction with them.  The MLP and PLP features being 
complementary, an important consideration is determining the best manner to incorporate 
both in an STT system. Different means of multi-stream combination have been 
successfully used for this purpose, four of which were studied in Fousek (2008a). 

3.2.3.2 Task and System Overview  

The speech recognizer was derived from the LIMSI Arabic STT component system 
used in the Agile participations in the Gale evaluations.  The transcription system has two 
main parts, an audio partitioner and a word recognizer (Gauvain 2002). The recognizer 
makes use of continuous density HMMs for acoustic modeling and n-gram statistics for 
language modeling. Each context-dependent phone model is a tied-state left-to-right CD-
HMM with Gaussian mixture observation densities. Word recognition is performed in 
one or more passes, where each decoding pass generates a word lattice with cross-word 
acoustic models, followed by consensus decoding with 4-gram language model (LM) and 
pronunciation probabilities (Gauvain 2002; Lamel 2007). Unsupervised acoustic model 
adaptation is performed for each segment cluster using the Constrained MLLR (CMLLR) 
and MLLR (Leggetter 1995) techniques between decoding passes. 

The manually transcribed Arabic broadcast news (BN) and broadcast conversation 
(BC) data distributed by the Linguistic Data Consortium were used to train the acoustic 
models. There are over 1380 hours of raw data, with roughly 730 hours BN and 550 
hours of BC.  After removing non-speech portions (music, publicity) and portions that 
fail forced alignment, about 1250 hours of data remain for HMM training.  This is 
referred to as the 1200 hour training set, used to train the baseline gender-independent 

Chapter 3: Machine Translation from Speech408



acoustic models, covering 44k word position-dependent contexts with 11.5k tied states 
(32 Gaussians/state) (Fousek 2008).  Some results are reported for a development system, 
using 300 hours of data for acoustic model training. 

Various language models were trained on corpora comprised of 11M words of audio 
transcriptions and 1B words of texts from a wide variety of sources.  The language 
models result from the interpolation of models trained on subsets of the available data, 
with the interpolation weights optimized on the combined GALE development data from 
2006 and 2007. The coefficients associated with the audio transcriptions are assigned 
almost half the LM weight, even though these texts represent only about 1% of the 
available data. Language models were estimated on the normalized texts and 
morphologically decomposed texts (Lamel 2008).  For multi-pass decoding, lattices are 
rescored by a neural network LM (Schwenk 2007) interpolated with a 4-gram back off 
LM. Results are reported for several GALE data sets, where each set contains about three 
hours of broadcast data.  

3.2.3.3 Training MLP Features 

The neural network feature extraction has two steps. The first step is raw feature 
extraction which constitutes the input to the MLP. Typically this vector covers a wide 
temporal context (100-500ms) and, therefore, is highly dimensional. Second, the raw 
features are processed by the MLP followed by a PCA transform to yield the HMM 
features. 

 
Raw Features 

Two sets of raw features are used which cover different temporal contexts: 9 frames 
of PLP (9xPLP) and time-warped linear predictive TRAP (wLP-TRAP) (Fousek 2007).  
The 9x PLP set is based on the PLP features from the baseline system, which are mean 
and variance normalized per speaker. To the best of our knowledge, this was the first 
time that the wLP-TRAP features were incorporated in a state-of-the-art system. Since 
the MLP topology, as well as the speech representations at the MLP input used here 
differ from the better known ones, it is of interest to explore the properties of these 
features and suitable ways of combining them with cepstral ones. 

 
ID Raw features (#) HMM features (#) 
PLP PLP(13) PLP+Δ+Δ2(39) 
MLP9xPLP 9x(PLP+Δ+Δ2)(351) MLP(39) 
MLPwLP wLP-TRAP(475) MLP(39) 
MLPCOMB 9x(PLP+Δ+Δ2)+ wLP-TRAP(826) MLP(39) 

Table 3.2: Naming conventions for MLP features and how the  raw input features relate to the features for 
HMM  

The raw features are formed by 9 neighboring frames of PLP (12 coefficients plus 
energy, with derivatives Δ and Δ2), centered at the current frame. The feature vector has 9 ൈ 39 = 351 values and covers a 150ms window. The wLP-TRAP raw features are 
obtained by warping the temporal axis in the LP-TRAP feature calculation. Linear 
prediction is used to model the Hilbert envelopes of 500~ms long energy trajectories in 

Handbook of Natural Language Processing and Machine Translation 409



auditory-like frequency sub-bands (Athineos 2004). 25 LPC coefficients in 19 frequency 
bands form the raw features, yielding 19 ൈ 25 = 475 values which cover a 500~ms 
window. wLP-TRAPs use a different bank of filters than are used for the PLP and they 
do not apply a short-term FFT, so they have a potential of producing more 
complementary features to PLP than 9-PLP or TRAPs, which should be an advantage for 
feature combination. The adopted naming conventions for the raw features and the HMM 
features derived from them are given in Table 3.2. The last feature set is obtained by 
combining the 9xPLP and the wLP-TRAP features at the input to the MLP and produces 
a 39-parameter feature vector. 
 
MLP Architecture 

 
Figure 3.1: MLP feature computation with a four layer bottleneck network, using phoneme-like training 

targets. 

The MLP architecture is based on a four layer bottleneck network with an input layer, 
two hidden layers and an output layer, as shown in Figure 3.1.  

The input layer distributes the raw features in the second layer, which is large in 
order to provide the necessary modeling power. The third layer is small, its size is equal 
to the required number of features, which in this work was fixed to 39 for easy 
comparison with PLP features.1 The output layer computes the estimates of the target 
class posteriors. The classes are context independent phone states obtained from a HMM 
automatic alignment which were shown to outperform phone targets (Grézl 2008). There 
are 69 three state phones and 3 units with all states merged (silence, filler, breath) 
resulting in 210 target classes. The outputs of the small hidden layer neurons (prior to a 
sigmoid function) are decorrelated by a PCA transform and used as final features. Note 
that this MLP architecture allows the feature vector size to be arbitrarily chosen, 
independently of the number of MLP targets. 
 
MLP Training Data 

The MLP features were trained on the 1200 hour train set. Since the  MLP features 
make use of a temporal context up to 500ms, the frames from first and last 250ms of each 
segment are not used for training (except for providing a context), thus the data available 
to train the MLP is 1168 hours. It is known that more data and/or more parameters in the 
MLP help, but at certain point the gain is not worth the effort. Table 3.3 gives the word 
error rate as a function of the amount of MLP training data for a MLP with a fixed 

                                                 
1 The optimal number of features was explored by Grezl (2008). 

Chapter 3: Machine Translation from Speech410



number (1.4 million) of parameters with 9xPLP raw features. The MLP performance is 
seen to improve with the additional data, and no saturation is observed.  
 
 

MLP train set 17 hrs 63 hrs 300 hrs 1200 hrs PLP baseline 
bnat06 WER % 24.7 24.2 23.4 22.2 25.1 

Table 3.3: Word error rates on the bnat06 data set as a function of the amount of data use to train the 
MLP9xPLP. All HMMs trained on 300 hours of speech. Single decoding pass with 200k gram LM, no 

adaptation, no MLLT,2 no MMIE.3 

Training Process 
Training a MLP on over thousand hours of speech required two modifications to the 

training process performed by QuickNet software.4  First, the storage space requirements 
of the raw features were reduced by almost a factor of four by using linear quantization of 
32 bit float values to 8 bits, with no impact on performance. Once the MLP is trained, 
output features are created using non-compressed raw features. Second, to reduce the 
computation time of MLP training, a simplified training scheme was adopted after (Zhu 
2005). Instead of iterating on all training data about 10 times through the MLP as 
determined by cross-validation performance, a fixed number of 6 epochs with fixed 
learning rates is used with subsets of the data.  The data are randomized and split in three 
non-overlapping subsets of 13%, 26%, and 52% of the frames. First, three epochs are 
trained on 13% of the data, then two subsequent epochs use 26% of the data, the last 
epoch uses 52% of the data, with the remaining data used to monitor the performance. 
This reduced the training time by a factor of 5.4 with a negligible impact on performance 
(in fact, tests with the 300 hour set even improved from 24.4% to 24.2% WER on the 
bnat06 data for the  9xPLP raw features, with unadapted models). All these modifications 
reduced the training time to about one week on the 1200 hour train set using one four-
threaded computer, and the wLP-TRAP) raw training features occupy 200GB of disk 
space. 

 
MLP Size 

To get the most benefit from the larger amount of training data may require using a 
more complex model. An experiment was carried out by enlarging the first hidden layer 
in the MLP in order to raise the number of free parameters. The results show that for the 
small 63 hour train set, the larger MLP degraded performance, while for the full 1168 
hours it brought a 1.6% relative improvement. However, such a gain was not judged to be 
worth the computation cost (almost four times longer to train the MLP), so further 
experiments used the smaller MLP with 1.4 million parameters. 

                                                 
2 Maximum Likelihood Linear Transform 
3 Maximum Mutual Information Estimation 
4 http://www.icsi.berkeley.edu/Speech/qn.html  

Handbook of Natural Language Processing and Machine Translation 411



 3.2.3.4 Using MLP Features  

This section presents contrastive results starting with the baseline system, and going 
to more complex models and decoding strategies. 
 
Experiments with a Small System  

A first series of experiments were carried out to compare the four basic features from 
Table 3.2 without and with unsupervised acoustic model adaptation. The 1-pass results 
use a 4-gram LM, no adaptation, no MLLT, no MMIE.  The MLPs were all trained on 63 
hours of data, and all HMMs were trained on 300 hours of speech. The baseline 
performance of the standard PLP features without adaptation is 25.1% and with 
adaptation is 22.5%.  Without adaptation, the MLP9xPLP features are seen to perform a 
little better (about 4% relative) than PLP, but with adaptation both MLP9xPLP and MLPwLP 
are slightly worse than PLP. This leads to the conclusion that MLLR adaptation is less 
effective for MLP features than for PLP features.  

Different means of fusing the information coming from the cepstral and the MLP 
features were investigated.  The MLPcomb results are for combination at the input to the 
MLP. These models give the best results with 39 parameters.  A simple approach is to 
concatenate together the features at the input to the HMM system (this doubles the size of 
the feature vector, 2 ൈ 39 = 78 features) and to train an acoustic model. Three possible 
pairwise feature concatenations were evaluated.  These concatenated features all 
substantially outperform the PLP baseline, by up to 9% relative, showing that feature 
concatenation is a very effective approach. Given the significantly better performance of 
the PLP+MLPwLP features over the PLP+MLP9xPLP and MLP9xPLP+MLPwLP features, the 
three-way concatenation was not tested as it was judged to be not worth the increased 
computational complexity needed to deal with the resulting feature vector size 3 ൈ 39. 

Two other more computationally expensive approaches were studied, cross model 
adaptation and ROVER (Fiscus 1997). Adapting the PLP models with the hypotheses of 
the MLPwLP system, or the reverse adaptation using the hypotheses of the PLP system for 
MLPwLP produces a 3.6% and 3.1% absolute improvement to the PLP only system 
(25.1% WER). Such cross adaptation using concatenated features such as MLP9xPLP + 
MLPwLP produces 4.4% and 3.9% absolute improvement. Larger gains are obtained when 
the PLP models are used in the second pass, supporting the earlier observation that 
MLLR adaptation is more effective for PLP features than for MLP features. This may be 
because the MLP already removes the variability due to the speaker or because other, 
perhaps non-linear, transformations are needed to adapt MLP features. 

 
 Combined 

systems 
PLP⊗MLP9xplp⊗ MLPwLP 

PLP⊗ 
MLPwLP 

(PLP+MLP9xplp)⊗(PLP+MLPwLP) 
PLP⊗(PLP+MLPwLP) ⊗(MLP9xplp+ MLPwLP) 

Wer 
(%) 

1-pass 22.3 23.3 21.2 21.0 
2-pass 20.6 21.0 19.9 19.7 

Table 3.4: Comparing ROVER for combining multiple systems on bna06 data (PLP only produces 25.1% 
WER). 

Chapter 3: Machine Translation from Speech412



The WERs resulting from ROVER combination is shown in Table 3.4. As is shown 
in the table, ROVER combination of the three basic features performed better than the 
best pair-wise cross-adaptation amongst them however, neither combination 
outperformed the simple feature concatenation of PLP+ MLPwLP with a WER of 20.4. 
ROVER also helps when applied jointly with other combination methods (see the last 
two columns in Table 3.4), beating the baseline PLP system by up to 5.4% absolute 
(12% relative). This best result however requires 6 decoding passes.  

It is interesting to observe that the PLP features are generally best combined with 
MLPwLP, even though the MLP9xPLP gives better score than MLPwLP. This may be due on 
one side to the fact that the MLP9xPLP features are derived from the PLP, and on the other 
side that there is a larger difference in time spans between the standard PLP and the wLP-
TRAP features. 
 
Amount of MLP Training Data  

We can compare performances of the MLP features when used stand-alone and when 
concatenated with PLP features at the input to the HMM system as a function of the 
amount of data used to train the MLP. Note that the concatenated vector has 78 features, 
whereas the stand-alone vector has 39 features. The HMMs were all trained on the 300 
hour data set. For all feature sets there is a significant WER reduction when the MLP 
training data is increased from 63 to 300 hours. The results with the two types of MLP 
features stand-alone are comparable when 300 hours are used to train the MLPs. HMMs 
trained with both MLP features outperform the PLP baseline (25.1%). Concatenating the 
PLP features with the MLP ones gives the best performance, however, the improvement 
from training the MLP on more data is less than for the systems using only MLP features.  
The best results are obtained with the HMM trained on the PLP+MLPwLP features (21.7% 
for 63 hours and 21.3% for 300 hours).  

A system with improved 290k 4-gram LM, improved pronunciation modeling and 
gender-dependent models was tested.  The PLP-based system also has MLLT.  Training 
the both the HMM and the MLP aspects of the system on 1200 hours of speech has 
reduced the WER further to 19.2% for the PLP+MLPwLP features. 

Using standard techniques of Speaker Adaptive Training (SAT), CMLLR and MLLR 
adaptation shows that without adaptation the MLPwLP and concatenated PLP+MLPwLP 
features clearly outperform the PLP ones. However, with adaptation, only the 
concatenated features perform significantly better than the PLP, bringing the WER to 
17.8%. 

The last set of experimental results were produced with a more complete system, 
including gender-dependent SAT, MMIE acoustic models with word duration models and 
MLLT for  PLP, trained on 1200 hours of manually transcribed data. It uses a multiple 
pass decoding with CMLLR and MLLR adaptation, a word- or morph-based 290k 4-
gram neural network (NN) language model, and improved pronunciation models.  NN 
LM results from the interpolation of a connectionist language model with a standard 4-
gram back off LM.  

Handbook of Natural Language Processing and Machine Translation 413



Models  
bnat06 16.7 16.8 15.4 15.0 16.7 15.7 14.5 
bcat06 22.8 22.7 21.1 20.7 23.2 21.9 20.2 
eval06 13.5 14.3 13.0 12.4 13.8 12.9 11.9 

Table 3.5: WER on the broadcast new (BN) and broadcast conversations (BC) data sets from ’06 and the 
evaluation set from 2007. The acoustic models are gender-dependent SA, MMI trained PLP and MLP models 
(also with MLLT for PLP) trained on 1200h of manually transcribed data, with word duration models.  Mul-
tiple pass decoding with CMLLR and MLLR adaptation, a 290k 4-gram NN LM, and improved pronuncia-
tion models. Also show are results for 2-way and 4-way ROVER combinations. 

Table 3.5 gives the word error rates for three acoustic models (PLP, MLPwLP and 
PLP+ MLPwLP) for the BN and BC ‘06 and evaluation ‘07 data sets. It can be seen that 
the PLP and MLPwLP based systems give comparable results. Based on the combination 
experiments reported by Fousek (2007), we selected a 2-way ROVER combining the PLP 
and the PLP+ MLPwLP based systems, which gives a gain of almost 0.5%.  The results 
with the morphologically decomposed LM (Lamel 2008) are seen to be comparable to 
those with the word-based LM.  A 4-way combination gives an additional 0.4% gain over 
the 2-way ROVER. 

The performance of the PLP system has been improved from the baseline of 25.1% to 
16.7% on the bnat06 data set (a relative WER reduction of 33%).  The combined 
PLP+MLPwLP based system is seen to obtain a lower WER for all test sets, with an 
average gain of 1.2% absolute.  ROVER combination of the PLP and PLP+MLPwLP 
based systems gives a gain of over 4% absolute, even though the PLP features are in 
there twice.  

3.2.3.5 Summary  

This section has explored incorporating novel MLP features, derived using the 
bottleneck MLP architecture, in a state-of-the-art Arabic broadcast data transcription 
system. In particular the influence on performance of the amount of data used to train the 
MLP, the number of free parameters in the MLP, and the amount of data used for HMM 
training was assessed. Different means of combining MLP and cepstral features were also 
explored. Experiments were carried out on the GALE Arabic broadcast task using 
multiple data sets. When used without adaption, the MLP features have better 
performance than standard PLP features. However, once SAT training and 
CMLLR/MLLR adaptation are used, both feature types have comparable performance.  
Feature concatenation appears to be the most efficient combination method, providing the 
best gain at the lowest decoding cost. It seems best to combine features based on different 
time spans as they provide high complimentarity. Since the PLP based system improves 
more than the MLP based with unsupervised adaptation, an additional gain is obtained by 
combining a PLP based system with one based on the concatenated features and with 
ROVER combination using different language models. It also seems that gains from 
MMI model training are additive to the gain coming from discriminative MLP features. 

Recently, speech recognizers have been trained using the combined PLP+wLP-TRAP 
features for broadcast data transcription in Dutch, Flemish, French and Mandarin, and 
have observed comparable system behaviors and performance gains. An attempt was 
made to use an MLP developed for one language to produce features for another, but this 

Chapter 3: Machine Translation from Speech

 
Acoust. 
Models 

PLP MLPwLP PLP+ 
MLPwLP 

PLP⊗(PLP
+MLPwLP) 

PLP PLP+ 
MLPwLP 

4-way ROVER 
Combination 

Lang. word word word word morph morph both 

414



was not successful, suggesting that the MLP features are capturing language-specific 
information. These features were also found to improve performance for the transcription 
of conversational telephone speech in Dutch and Flemish (Despres 2008). 

One of the difficulties in carrying out such experiments with a full system is that 
generating the time-warped linear predictive TRAP features and training the MLP are 
quite computationally expensive. Some initial experiments have been carried out with 
other features, Multi-RASTA (MR) and  TRAP-DCT (TD), that are much less costly to 
obtain (Hermansky and Fousek 2005). The TRAP-DCT features are obtained from a 19-
band Mel scale spectrogram, using a 30 ms window and a 10 ms frame step.  A discrete 
cosine transform (DCT) is applied to each band, resulting in 475 raw features, which are 
fed to a 4-layer MLP (bottleneck architecture).  Using the small training, the MLPTD 
features give a word error rate of 24.4% alone and 21.4% when combined with PLP 
features on the bnat06 data set, which are comparable to results for the MLPwLP features. 
With full training on 1200 hours, both feature sets obtain comparable results (13.7%  
PLP+MLPwLP and 3.6% PLP+MLPTD), outperforming standard PLP features (14.5%) on 
the dev08 data. This result is very interesting since the raw TD features are not much 
more costly to compute than the PLP ones. 

3.2.4. Multiple Feature Speech Recognition 
Authors: Christian Plahl, Björn Hoffmeister, Ralf Schlüter, and Hermann Ney 

3.2.4.1 Introduction 

Recently, new acoustic features, such as neural network based phoneme   posterior 
probabilities, and features based on gammatone filterbanks, have been developed for 
automatic speech recognition (ASR).   

  While we continue to investigate new features, the best way to combine different 
feature streams remains an open question. In the last years several approaches for 
combining acoustic features have been proposed.  Schlüter (2006) does combination done 
explicitly on the feature level and Zolnay (2005) does it in an acoustic rescoring 
framework. Even though both approaches achieve reasonable improvements, system 
combination seems to be superior (Zolnay 2006). System combination can be performed 
on different levels. Implemented in the model adaptation step of the system it is referred 
to as cross adaptation and proved to give considerable improvements, (Guiliani 2006). 
Alternatively, lattice or n-best list based system combination is applied to the final output 
of the individual systems (Evermann 2000). 

   We show results on each of the three levels and how the different levels will be 
influenced by each other when the levels are stacked. In addition, we introduce vocal 
tract length normalization (VTLN) for Gammatone (GT) features. Gammatone features 
have been shown to be competitive and complementary to standard features used in large 
vocabulary speech recognition (LVCSR) (Schlüter 2007). 

Handbook of Natural Language Processing and Machine Translation 415



3.2.4.2 Acoustic Modeling 

As described by Hoffmeister (2007) and Plahl (2008), we investigate three systems 
for a Mandarin speech recognition task differing only in the acoustic frontend. The 
acoustic training of these systems is performed independently for each system. The 
toneme set consists of 69 tonemes, a single garbage phone, and silence. The vocabulary 
size of the LM is 60K. The full 4-gram LM is used in lattice rescoring only, while a 
pruned version is applied in all other recognition steps. Overall, we use a 3-pass 
recognition procedure, where the first two passes are realized by a 4-gram Viterbi 
decoder, while the third pass uses lattice based LM rescoring. 

3.2.4.2.1. Acoustic Features 

The different systems use the output of the MFCC, PLP, and Gammatone (GT) 
frontend as base features. A detailed description of the GT features is given in Section 
3.2.4.2.2. The base features are normalized by segment-wise mean and variance 
normalization and fed into a sliding window followed by a linear discriminant analysis 
(LDA). 

In addition, for each system we produce a tonal feature as described by Lei (2006). 
Tonal information is crucial for Mandarin ASR systems, because tonal patterns play an 
important role in distinguishing tonemes and words in the Mandarin language. The most 
common approach to integrate the tonal feature is a simply concatenation to the base 
features. In this section a LDA transformation followed by a dimension reduction step is 
used to improve this approach to feature combination.     

    In order to build the system used in the last GALE evaluations, we have combined 
these features with two kinds of neural network (NN) based phoneme posterior features, 
described in Section 3.2.3 of this book. Neural network posterior features provide 
discriminative phonetic information at frame level. Large performance improvements 
have been reported for systems integrating the NN features (Valente 2007; Plahl 2008). 
The NN features are used for the evaluation systems only. 

3.2.4.2.2.  Gammatone Cepstral Features 

Gammatone (GT) features (Schlüter 2007) have been shown to be competitive to 
standard features like MFCCs or PLPs. We have tested two different GALE data sets 
(dev07 and eval06) and have shown that a system with unwarped GT features achieves 
the same character error rate (CER) as the systems using MFCCs or PLPs.  

GT features are extracted by auditory filter banks realized by Gammatone filters. 
Originally, Gammatone filters were introduced by Aertsen (1980).  

The Gammatone filter is defined in the time domain by the following impulse 
response: 

ሻݐ)݄  = ݇ · ߨିଵexp (െ2ݐ · ܤ · ሻݐ · cos(2ߨ · ݂௧  ߮ሻ  (3.1) 

Chapter 3: Machine Translation from Speech416



Here, k defines the output gain, B defines the bandwidth, n is the order of the filter, ݂ is 
the filter's center frequency, and φ the phase. In this work, 4th order Gammatone filters 
are used. 

The center frequencies of the filters are distributed over the frequency range 
according to the Greenwood function with human parameters (Greenwood 1990) 

ሻݔ)ߩ  = ܣ · (10·௫ െ ݇ሻ(3.2)    ,ݖܪ 

where A=165.4, and a=0.88, and k=2.1. 
The absolute values of the 68 Gammatone filter outputs for a sampling rate of 16 kHz 

are temporally integrated using a 25 ms wide Hanning window and a 10 ms frame shift. 
The spectral integration is followed by a 9-channel window, a 4-channel shift and a 10th 
root compression. Finally, the 15 cepstral coefficients are decorrelated and normalized by 
mean and variance. 

3.2.4.2.3. VTLN for Gammatone Features 

Classical acoustic features like MFCCs or PLPs are normalized by vocal tract length 
normalization (VTLN). In order to transfer VTLN to Gammatone features, the center 
frequencies of the filters have to be scaled explicitly. Similar to the VTLN 
implementation for MFCC and PLP a piecewise-linear transformation function is used. 

After scaling the frequency space using the Greenwood function, the center 
frequencies are equally spaced as described in the previous Section. 

In order to get the warped center frequencies, the following steps have to be applied: 
• transform the minimum (100 Hz) and the maximum (7500 Hz) center frequencies 

to obtain the minimum and maximum warped greenwood scales: ሾݔݔ௫ሿ = ଵ(ሾିߩ ݂ ݂௫ሿሻ,   (3.3) 

 where ݔ,  .௫ are the values of the warped frequencies ݂ and ݂௫ݔ
• transform the equally spaced greenwood values back to the on-warped frequency 

axis, ݂௧ =  ሻሻ,    (3.4)ݔ)ߩ)ଵିݓ

where ݂௧  defines the center frequencies of the Gammatone filters in Hz, ݔ ,ݔሾא  .௫ሿ and w the warping functionݔ
Unlike VTLN for MFCCs or PLPs, VTLN for GT features is carried out in the time 

domain, not in the frequency domain. Due to that, VTLN for Gammatone is done by 
warping the center frequencies of the Gammatone filters, instead of a redistribution in the 
frequency domain. As previously stated, all systems perform equally, achieving a 
character error rate (CER) of 17.8% on dev07 and 24.9% on eval06. When VTLN is 
applied to the GT features, an improvement of about 0.3% absolute for dev07 and 0.2% 
for eval06 is achieved.  

In contrast to VTLN for MFCC or PLP, we have normalized the GT features by 
applying a 2-pass VTLN decoding. The warping factors are estimated by a grid search in 
the range of 0.8-1.2. 

Handbook of Natural Language Processing and Machine Translation 417



Since every filter's center frequency can be modeled independently, we have 
investigated to further improve VTLN in Gammatone feature extraction. 

3.2.4.2.4. Acoustic Training 

The basic setup of the systems used in this section is described by Hoffmeister (2007) 
and (Plahl 2008). The acoustic models are 3-state left-to-right HMMs based on triphones 
with cross-word context. 

For all systems the baseline features are concatenated with the tonal feature. In order 
to compensate for speaker variations, SAT/CMLLR is applied in training and 
recognition.     

The systems trained for the GALE 2008 evaluation use the modified MPE criterion in 
the discriminative training step. Modified MPE is described in Section 3.3.4.2.7 of this 
book. 

3.2.4.2.5. Experimental Setup 

In order to carry out systematic experiments we use a reduced corpus of 230h of 
Mandarin speech data, described by Plahl (2008), to train the models. The complete 
corpus contains up to 1,600h of broadcast news (BN) and broadcast conversation (BC), is 
used to train the evaluation systems only. The two different corpora are used to run 
several detailed experiments and to verify the results on a bigger amount of data. The 
systems are based on the MFCC or PLP frontend and tonal and neural network posterior 
features.     

The GALE 2007 development corpus (dev07) and the GALE 2006 evaluation corpus 
(eval06) are used for tuning and testing the systems. 

3.2.4.3  Multiple feature speech recognition 

3.2.4.3.1. Integration of Acoustic Features 

Several approaches to integrate acoustic features are known. We show results 
integrating the tonal and the NN features, trained on 1600h. The simplest approach to 
integrate the tonal feature, as proposed by Lei (2006), concatenates the tonal feature and 
the first and the second derivatives to the LDA transformed base features. Here, we 
present results where the base feature and the tonal feature streams are concatenate first, 
followed by a LDA, continuing work presented by Hoffmeister (2007). 

Table 3.6 shows that the integration of the tonal features by the LDA approach 
slightly improves the recognition results and we see that the improvements are 
consistently better for all systems. Only for the PLP based system the improvement does 
not transfer to the test set. Nevertheless, the LDA based approach can improve the 
recognition performance compared to the simple concatenation of the tonal features. 

 
     
 
 

Chapter 3: Machine Translation from Speech418



 combination 
method 

CER (%) 
dev07 eval06 

MFCC + tone 
MFCC + tone 

Concatenation 
LDA 

14.6 
14.3 

20.7 
20.3 

PLP + tone 
PLP + tone 

Concatenation 
LDA 

14.6 
14.2 

20.9 
20.9 

GT + tone   
GT + tone   

Concatenation 
LDA 

15.2 
15.0 

21.8 
21.6 

Table 3.6: Combination of the tonal feature and different feature streams based on MFCC, and PLP, and GT 
front-ends after SAT/CMLLR and LM rescoring. 

While the choice of the feature integration method is important to improve the 
recognition performance, integration of additional features and perfecting these features 
can also help to improve the system. As shown by Hoffmeister (2007), neural network 
posterior features improve the system performance by about 5-10% relative. Table 3.7 
summarizes the results for the two different systems build up for the GALE Re-Eval 2007 
and GALE Eval 2008. In contrast to all other experiments the systems are trained on 
1600h of audio data.              

System 
dev07 CER (%) 

MFCC PLP 
Re-Eval 2007 11.7 10.5 

Eval 2008 9.7 10.0 
Table 3.7: Results for the GALE Re-Eval 2007 and Eval 2008 system using MFCCs and PLPs as base 
features, concatenated with tonal and NN posterior features. 
 

The neural network features used by the Eval 2008 PLP system are a slightly 
modified version of the features used in the previous evaluation. In contrast, the neural 
network features of the MFCC system have completely changed. More information about 
the new neural network features can be found in Section 3.2.5 of this book. Another 
major difference is that the Eval 2008 systems use modified MPE, described in 3.3.4.2.7, 
whereas the Re-Eval 2007 system uses standard MPE. Along with some lesser changes 
this explains the performance differences between the Re-Eval 2007 and the Eval 2008 
systems. 

3.2.4.3.2. Cross-Adaptation and Lattice Combination 

The results of Table 3.6 of the three different systems can now further improved by 
applying system combination. Here, we investigate two common combination 
approaches: cross adaptation and minimum frame word error combination (min.fWER) 
on lattices. Finally, both approaches can be stacked resulting in a further improvement. 

     Table 3.8 summarizes the cross-adaptation, min.fWER, and stacked combination 
results. In cross-adaptation we adapt to the two remaining systems using the averaged 
adaptation statistics of the individual systems. For the multiple supervisor cross 
adaptation method, marked as adapt in Table 3.8, the CER of the single systems is 
improved by 0.4% to 0.8% absolute for dev07 and by up to 1.2% for the eval06 corpus. 

 

Handbook of Natural Language Processing and Machine Translation 419



System 

CER (%) 
dev07 eval06 

none adapt none Adap
t 

s1=MFCC 
s2=PLP   
s3=GT 

14.6 
14.6 
15.2 

14.2 
13.8 
14.7 

20.7 
20.9 
21.6 

19.9 
19.9 
20.4 

s1+s2 
s1+s3    
s2+s3    

13.6 
13.6 
13.6 

13.6 
13.5 
13.2 

19.2 
19.2 
19.2 

18.8 
18.9 
18.9 

s1+s2+s3 13.2 13.0 18.9 18.7 
Table 3.8: Results for min.fWER and for cross-adaptation using two supervisors. Systems are based on MFC, 

PLP, or GT frontends after SAT/CMLLR and LM rescoring. 

The lattice-based system combination method applied (min.fWER) is described by 
Hoffmeister (2006). The combinations also have been performed using ROVER and 
confusion network combination (CNC), achieving similar or slightly worse results 
compared to the min.fWER method. The aim of system combination is to minimize the 
expected error rate given multiple systems outputs. Bayes decision rule with a 
Levenshtein cost function L provides the general framework. Replacing the Levenshtein 
cost function with a frame-wise word error cost function leads to the min.fWER method, 
with a resulting algorithm of low computational complexity. 

  There is a substantial difference between CN and min.fWER decoding. In CN 
decoding word boundaries are only used to align words. Once the CN is built, all time 
information is lost and the calculation of the word posterior probabilities depends only on 
the resulting word positions. Time boundaries for the output have to be produced in a 
post-processing step. The min.fWER decoding approach preserves the word graph 
structure, and thus, the output is produced with correct word boundary times. 

In order to compare cross-adaptation and system combination we have combined the 
output of the different systems before and after adaptation, as shown in Table 3.8. Using 
min.fWER reduces the error rates for all references, but the gain for the adapted systems 
are not as high as for the unadapted systems. Combining all three systems improves the 
best combination result of two systems by about 0.2% absolute for both corpora. 

 Overall, the best result is achieved when all three systems are used for system 
combination, instead of two, and the different levels are stacked. 

3.2.4.4  Conclusions and Future Work 
In this Section, we did a comparison of several feature integration and system 

combination methods. While the right feature combination method, such as LDA, could 
improve the system performance, the choice of additional features have also an effect of 
the system performance. Moreover, our experiments show that adding neural network 
posterior features improves the systems significantly and reduce the CER by more than 
10% relative. 

Furthermore, we introduced vocal tract length normalisation for the Gammatone 
features by explicitly modifying the center frequencies of the Gammatone filters. We 
showed that VTLN for Gammatone improves the system performance and achieves 

Chapter 3: Machine Translation from Speech420



almost comparable results to VTLN for MFCC or PLP features. We expect further 
improvements with VTLN for Gammatone features by examining other warping 
function. 

In addition, we conducted several system combination experiments. The best result is 
achieved by stacking multiple-system cross-adaptation and min.fWER lattice 
combination of the different base systems. This combined technique reduces the character 
error rate of the best single systems by 5% to 10% relative. Further experiments to 
combine all of the levels will be performed. 

 

Authors: Fabio Valente and Hynek Hermansky 

3.2.5.1 Introduction 

Typical Automatic Speech Recognition (ASR) features are obtained through short 
term spectrum of 20-30 ms segments of speech signal. This representation only extracts 
instantaneous frequency components of the signal. Power spectrum is then integrated 
using a bank of filters equally spaced on an auditory scale (e.g., Bark scale), thus 
obtaining the auditory spectrum. Spectral dynamics is generally introduced using 
dynamic features (temporal differentials of the spectral trajectory). 

There are two principles that differentiate our work from the conventional feature 
extraction as described above. These principles are: 1. use of relative long (of the order, 
or syllable, or more) segments of the signal for extraction of instantaneous features, 
2. pursuing classification of speech sounds in several parallel streams, and fusing the 
classifier outputs to obtain the final set of features for the subsequent HMM recognition. 
These principles follow an earlier proposal for cross-time processing of Allen (Allen 
1994) as put to practice by Hermansky and Shamma (1998). 

 
Longer temporal intervals for obtaining the evidence about the underlying 
speech sounds  

To our knowledge, this has been first proposed by Kozhevnikov and Chistovich 
(Kozhevnikov 1967). Consistently with this proposal, and arguing that it is hard to 
distinguish between signals with different temporal structure (such as speech and 
stationary noises) from short segments of the signal (Hermansky 1994) proposed filtering 
of temporal trajectories of speech features by filters with relatively long impulse 
responses. Later, to extract information about underlying speech sounds coded in 
coarticulation patterns, (Hermansky 1998) formed inputs to phoneme classifier from 
1001 ms long segments of temporal patterns of spectral energies in critical sub-bands. 
Most recent evolution of this principle is MRASTA (Hermansky and Fousek 2005) that is 
pursued in the work described here. 
 
Multi-stream recognition 

Fletcher and his colleagues (Fletcher 1995) were to our knowledge first to provide 
formal experimental evidence that human perception extracts information in multiple 
streams, fusing the evidence from these streams to arrive to final decision about the 

Handbook of Natural Language Processing and Machine Translation

3.2.5. Data-Driven Extraction of Spectral-Dynamics Based 
Posterior 

421



perceived event. Working with information streams formed by sub-dividing the speech 
spectrum in a number of frequency sub-bands, they also proposed a model that accounted 
for their experimental data in which probabilities of errors in the individual streams 
multiply to yield the probability of the overall error of the classification. The model has 
been recently further verified (Li 2009). 

The model accounts for robustness of human perception where the low-error 
information streams dominate the outcome. The model appears not to be limited to sub-
band information streams, but also to other intra and inter modal streams of human 
perception. It implies conditional independence of errors in the individual information 
streams and requires that the human information processing chain identifies correctly 
recognized items, thus eliminating false alarms, so that the only errors come from the 
lack of sufficient information for making a decision (Pavel 2009). Intuitively, this seems 
reasonable. 

Among first engineering system aiming at emulating Fletchers observations was the 
multi-band recognizer (Hermansky et al. 1996), later extended to multi-stream with 
streams formed by different parts of the modulation spectrum (Tibrewala 1997; Shamma 
1999). The multi-stream recognition, where a new technique is combined with the older 
existing one (e.g., (Fiscus 1997)) is now one of the dominant techniques for improving 
the recognition performance. 

There are three main issues that need to be addressed to emulate the Fletchers model: 
 
• How to form the information streams.  
• How to process signals in the individual streams.  
• How to fuse information from the individual streams for the final decision.  
 
In our first attempts, we formed the streams by dividing carrier frequency of speech 

into several sub-bands, and processed signals in the sub-bands either by classifying them 
into phoneme-like classes using multi-layer perceptrons (MLPs) or by projecting the 
time-frequency planes in the sub-bands on a set of linear basis. Several information 
fusing strategies were tried (Tibrewala 1997), one of more successful being training a 
nonlinear MLP-based classifier to make the final decision on a training subset of the data. 

In this work, we propose forming the streams by dividing the modulation spectrum of 
speech into two bands, and classifying data in the individual streams into phoneme-like 
classes by multi-layer perceptrons. In several schemes, we apply the MLP-based 
information fusion. 

As for techniques for the information fusion, it is fair to say that as of now, it is still 
not entirely clear how to design an engineering system that would emulate the Fletchers 
data. The work on information fusion based on Demster-Shafer Theory of evidence (DS) 
presented below, is one attempt for such emulation. 

 
Information fusion based on Dempster-Shafer theory of evidence 

The goal is to introduce into fusion some notion of reliability of information in the 
individual classification streams. Unlike the classical probability where the probability of 
correct recognition is complementary to the probability of the error in the recognition, 
i.e., it assumes either correct or incorrect decision, the DS theory allows for a no decision 
when the evidence is not conclusive. In our work, the indicator of the reliability of 

Chapter 3: Machine Translation from Speech422



information in the individual information stream is a function of the entropy of class 
probability distribution in the stream. Thus, DS as applied in our work takes two vectors 
of posterior probabilities (pa,i) and (pb,i) with i = 1, …, k from two different classifiers and 
produces the third probability vector pc,i  that combines the information from both (pa,i) 
and (pb,i).  

This is done as follows. First, the confidence of both MLP classifiers is computed as 

a nonlinear function of the entropy of the MLP outputs ߙ = ቀ1 െ ܪ ୫ୟ୶ൗܪ ቁఊ
where ܪ = െ ∑ ,ୀଵ log  , is the entropy of the probability distribution at the output of the

MLP, and ܪ୫ୟ୶ = െ ∑ ଵୀଵ log ଵ is the maximum possible entropy. γ introduces a 

nonlinearity. α is used to define the following three functions: ݉, = , ݊,ߙ = ߙ  ,ஷଵ ,ܯ  = 1 െ ݉, െ ݊, 
where ݉, is the belief that the classifier a has in i-th phoneme, and ݊, is the belief 
that the classifier a has in phoneme that is other than the i-th one. In the conventional 
probability theory, we would have ݉,  ݊, = 1. DS theory allows for representation 
of the ignorance of the classifier that is given by ܯ, . 

The maximal entropy of the classifier ܪ =  ୫ୟ୶ indicates the situation of theܪ
maximal ignorance of the classifier. Then ܯ, = 1, ݉, = 0, and ݊, = 0, implying 
that the classifier has no information about the i-th phoneme i. On the other hand, if ܪ =  0 then ܯ, = 0, implying the highest confidence in the ith  h phoneme. 

Given beliefs ݉,, ݊,, ܯ, and ݉,, ݊,, ܯ,  from two MLPs, they combine 
using the Dempster-Shafer orthogonal sum, yielding a new vector  

 ݉, =  ݉ܽ,ܾ݅݉,݅  ݅,ܾܯ݅,ܽ݉  1݅,ܽܯ݅,ܾ݉ െ ݊ܽ,ܾ݅݉,݅ െ ܾ݊,݅݉ܽ,݅  

 
In the extreme case when the entropy of the classifier a, ܪ  =  0, the ൫݉ܿ,݅൯ =  ,ሻ݅,ܽ)

regardless of what the ,is. This is consistent with the product of errors rule, which 
states that the result is given by the classifier that yields the perfect classification, (i.e. the 
zero error), as indicated by ܪ  =  0. 

Another extreme case arises when the entropy of the first classifier is maximal Ha = ܪ௫ and the entropy of the second classifier is lower then the maximum ܪ ൏  ,௫ܪ
the combined vector ൫݉ܿ,݅൯ =  ሻ, conforming to the product of errors rule where the݅,ܾ)

result is determined by the classifier b since the classifier a yields no useful information 
(indicated by ܪ ൏  .(௫ܪ

Yet another extreme case is ܪ  = ܪ  =   0 but (,ሻ ്  ,ሻ (entirely reliable but)
conflicting information in both streams), or ܪ  = ܪ  =  ௫ (no information in eitherܪ  
stream). In those cases, ݉, =   , i.e. the vector ൫݉ܿ,݅൯ does not have any  ,0

Handbook of Natural Language Processing and Machine Translation 423



probabilistic interpretation, again conforming to the product of errors rule which suggest 
in this case the maximum probability of error. 

For any intermediate values of ܪ and ܪ the ൫݉ܿ,݅൯ represent a weighted average of a 
and b, where the weights are given by the ratio ߙ/ߙ which is a function of ܪ ,   andܪ
the heuristic factor א ሾ0, 1ሿ . 

The values of the belief vector ൫݉ܿ,݅൯ are then used as a combined posterior vector that 
represents the fusion of posterior vectors (,ሻ and (,ሻ from the classifiers a and b. 
For more details of DS see (Valente and Hermansky 2006). 

3.2.5.2 Combination of auditory and modulation frequencies features  

 
Figure 3.2: Parallel processing of two feature sets. 

In conventional multi-band framework (Hermansky et al. 1996) a separate classifier 
(typically an MLP) is trained on each auditory frequency channel. Posterior probability 
estimates from individual MLPs are then merged together using another MLP in order to 
produce a single posterior stream estimates. Such architecture process all different 
auditory frequency channels in parallel and it is depicted in Figure 3.2. Similar 
processing can be applied for training a separate MLP for each modulation frequency 
channel that represent the dynamic of the speech. 
 

 
Figure 3.3: Hierarchical processing of two feature sets. 

Valente and Hermansky (2007) showed that combination of classifiers trained on 
different frequency ranges can also be effective if performed in hierarchical (sequential) 
fashion. 

 In hierarchical processing, an MLP is trained on a first feature set to obtain phoneme 
posteriors. Those posteriors are then concatenated with a second feature set thus forming 
an input to a second phoneme posterior estimating MLP. In such a way, phoneme 
estimates from the first MLP are modified by a second net using evidence from a 
different feature stream (see Figure 3.3). In contrary to parallel processing, the order in 
which frequencies are presented does make a difference.  

We investigate here from an ASR perspective the following issues: 1. whether there 
is any advantage in separate processing of modulation frequencies (similarly to separate 
processing of auditory frequencies); 2. whether this combination should happen in 

Chapter 3: Machine Translation from Speech424



parallel or sequential fashion. We will limit our investigation to only two frequency 
channels. 

Let us describe the technique used to extract the different modulation channels. 

3.2.5.2.1. MRASTA processing 

The findings of Houtgast (1989) and Dau (1997) suggest that human perception of 
modulation frequencies can be modeled using a bank of filters, equally spaced on a 
logarithmic scale. This bank of filters subdivides the available modulation frequency 
range into separate channels with decreasing frequency resolution moving from slow to 
fast modulations.  

The use of such a filterbank for ASR applications has been proposed by Hermansky 
and Fousek (2005) and is referred to as Multiple-RASTA (MRASTA) filterbank, as an 
extension of RASTA filtering. It has been shown being particularly robust to linear 
distortion.  

 
Figure 3.4: Set of temporal filter obtained by first (G1 left picture) and second (G2 right picture) order 

derivation of Gaussian function. G1 and G2 are successively split in two filter bank (G1-low and G2-low, 
dashed line) and (G1-high and G2-high continuous line) that filter respectively high and low modulation 

frequencies. 

 
Figure 3.5: Normalized frequency response of G1 (left picture) and G2 (right picture). G1 and G2 are 
successively split in two filter bank. G1-low and G2-low  (dashed lines) emphasize low modulation 

frequencies while G1-high and G2-high emphasize high modulation frequencies.   

Handbook of Natural Language Processing and Machine Translation 425



Feature extraction is composed of the following parts: critical band auditory spectrum 
is extracted from short time Fourier transform of a signal every 10ms. A 1001ms long 
temporal trajectory in each critical band is filtered by a bank of bandpass filters. 15 
critical bands are used. Those filters represent   first derivatives  (3.5) and second 
derivatives (3.6) of Gaussian functions with variance ߪ varying in the range 8-60 ms (see 
Figure 3.4). In effect, the MRASTA filters are multi-resolution bandpass filters on 
modulation frequency, dividing the available modulation frequency range into its 
individual sub-bands.5   ݃1ఙ ן െ ௫ఙమ exp (െ ௫మଶఙమሻ   (3.5) 

݃2ఙ ן ൬௫మఙర െ ଵఙమ൰ exp (െ ௫మଶఙమሻ   (3.6) 

with ߪ = (0.8, 1.2, 1.8, 2,7, 4, 6ሻ.   
In the modulation frequency domain, they correspond to a filter bank with equally 

spaced filters on a logarithmic scale (see Figure 3.5). Identical filters are used for all 
critical bands. Thus, they provide a multiple-resolution representation of the time 
frequency plane.  

In a similar way to conventional multi-band approaches, filterbanks G1 and G2 (6 
filters each) are separated in two separate filter bank G1-low, G2-low and G1-high and 
G2-high that filter  high and low modulation frequencies respectively. We define M-high 
and M-low as follows: 

 
M-high = [M1-high,M2-high] = ሾ݃1ఙ, ݃2ఙሿ with ߪ = ሼ0.8, 1.2, 1.8ሽ   (3.7) 

M-low = [M1-low,M2-low] = [݃1ఙ, ݃2ఙሿ with ߪ = ሼ2.7, 4, 6ሽ.          (3.8) 
Filters G1-high and G2-high are short filters (Figure 3.4 continuous lines) and they 

process fast modulation frequencies (Figure 3.5 continuous lines). Filters G1-low and 
G2-low are long filters (Figure 3.4 dashed lines) and they process slow modulation 
frequencies (Figure 3.5 dashed lines).  

The cutoff frequency for both filterbanks G-high and G-low is 10Hz. In this study 15 
critical bands are used  after MRASTA, thus filtering the total number of feature is (15 ൈ 6ሻ  (15 ൈ 6ሻ = 180. The fast modulations represent the original auditory 
spectrum with more “details” while  the slow modulations give a coarse representation of 
the spectrum. 

3.2.5.2.2. Experimental Setting 

We pursue the investigation with a Large Vocabulary Continuous Speech 
Recognition task (LVCSR).  As pilot study we use the first pass of the AMI LVCSR 

                                                 
5 Unlike those used by Hermansky (2005), filter-banks G1 and G2 are composed of six filters rather than 
eight, leaving out the two filters with longest impulse responses. 

Chapter 3: Machine Translation from Speech426



system for meeting transcription described by Hain (2005). The training data for this 
system comprises of individual headset microphone (IHM) data of four meeting corpora.  

We tested a 9-frames PLP-TANDEM system (Hermansky 2000a) and the 
MRASTA-TANDEM system (Hermansky and Fousek 2005). In the PLP based system, 9 
consecutive frames of PLP features are concatenated to form the input vector to the MLP. 
In the MRASTA based system, 180 outputs of the MRASTA filters (one for each filter 
and for each critical band) forms the input vector to the MLP. 

3.2.5.2.3. Combination of Modulation Frequency Channels 

We limit the splitting to only two modulation frequency ranges. FilterBanks G1 and 
G2 (6 filters each) are split in two separate bands as described in Section 3.2.5. Observing 
individual performances shows that M-high have the same overall performance as the full 
MRASTA filterbank. However, features obtained using M-low have noticeably worse 
performance.     

   Let us consider now the parallel and hierarchical combination schemes described in 
Section 3.2.5.2. Parallel processing reduces the WER by 4.4% absolute. Moving in the 
hierarchy from low frequencies to high frequencies yields similar performance as a single 
MRASTA MLP. On the other hand, moving from high to low modulation frequencies 
produce a significant reduction of 5.8% in final WER w.r.t. single classifier approach and 
of 1.4% w.r.t. the parallel combination. This is consistent with physiological experiments 
(Miller 2002), in which it is shown that different levels of auditory processing may  
attend to different rates of the modulation spectrum, the  higher levels emphasizing lower 
modulation frequency rates.  

3.2.5.2.4. Combination of Auditory Frequency Channels 

Similarly to conventional multi-band approaches, the auditory spectrum is split into 
two frequency bands composed of lower seven  and upper height critical bands 
respectively. MRASTA filtering is applied to those resulting in two feature set of 84 and 
96 component each. We refer to those two feature set as A-Low and A-High. We 
combine A-Low and A-High according to the combination schemes described in Section 
3.2.5.2. Parallel processing outperforms sequential processing.  Using two separate 
frequency channels reduces the WER by 2% absolute w.r.t. the single classifier approach. 
Those results are consistent with findings of Allen (2005) and with conventional multi-
band processing.    

In conclusion, combination of classifiers trained on different ranges of auditory 
frequencies is more effective if performed in parallel fashion, while combination of 
classifiers trained on different ranges of modulation frequencies is more effective if 
performed in hierarchical fashion.  

Handbook of Natural Language Processing and Machine Translation 427

In order to use different time-frequency representation in a conventional 
HMM/GMM system, the TANDEM approach is used (Hermansky et al. 2000a). The 
initial time-frequency representation is used as input to an MLP which estimates 
phoneme posterior probabilities. MLP output are then modified using a Log/KLT 
transform and used as conventional features for HMM/GMM systems. 



Results reveal that the lowest WER is obtained using the hierarchical combination of 
classifiers trained on separate ranges of modulation frequencies. The improvement 
obtained by splitting the modulation frequency channels is larger than the improvement 
obtained by splitting auditory frequency channels. 

3.2.5.3 Applications in GALE Project  

Those research results have been progressively transferred into RWTH and SRI/ICSI 
feature extraction systems. 

 
 MRASTA Hierarchical 

CER 24.4% 22.3% 
Table 3.9: CER on eval06 using MLP features based on MRASTA and Hierarchical. 

      Tests on 100 hours Chinese Mandarin recognition system with hierarchical 
features appended to MFCC features are reported in Table 3.9. The MLP input is 
augmented with log pitch estimates.  

      Results reveals that hierarchical features outperform conventional MRASTA by 
2% absolute. In the year 3 evaluation, hierarchical features have been trained on 1500 
hours of annotated speech and integrated into RWTH system for Mandarin recognition. 
The use of the hierarchical feature achieved a CER of 12.6% for Dev07 on the RWTH 
system. Details and comparison with other MLP features can be found in Section 3.2.2. 

 
 DS IE 

CER 17.0% 17.6% 
Table 3.10: CER on eval04 using MLP features combined with Dempster-Shafer and Inverse-Entropy. 

      Beside the hierarchical features, other combination frameworks have been 
proposed and applied to GALE data, in particular a multi-stream combination based on 
the Dempster-Shafer theory (Valente and Hermansky 2006). Dempster-Shafer (DS) 
combination has been compared with inverse entropy (IE) combination in the Chinese 
Mandarin recognition system (Hwang et al. 2007). Two MLP-based features (9 frames 
PLP-TANDEM and HATS) have been combined using DS and IE and tested in the 
system proposed by Hwang et al. (2007). Results on eval04 data are reported in Table 
3.10 and show a 0.6% absolute improvement. 

3.3 Improved Speech Acoustic Models 

3.3.1. Introduction 
Author: Katrin Kirchhoff  
 

Recently, the predominant theme in acoustic modeling for speech recognition has 
been the development and refinement of novel discriminative modeling and training 
approaches. Traditional acoustic model training is based on the maximum likelihood 
criterion, i.e., model parameters (the means, variances and mixture component weights of 

Chapter 3: Machine Translation from Speech428



Gaussian mixture models) are trained to maximize the likelihood of the training data. 
This criterion does not directly minimize an acoustic classification accuracy score and is 
only indirectly related to the final system evaluation criterion (word error rate).  

In line with parallel developments in the general machine learning community, 
attention has shifted towards discriminative approaches whose goal is to explicitly 
discriminate good classification hypotheses from bad hypotheses. In the context of 
acoustic modeling, this means that models should be trained such that the scores assigned 
to correct word or phone strings should be maximally distinct from those assigned to 
competing incorrect strings. Early work on discriminative training in speech recognition 
and acoustic modeling includes, e.g., (Bahl 1986; Juang and Katagiri 1992; Reichl and 
Ruske 1995; McDermott 1997). Recently, approaches known as minimum phone error 
(MPE) training (Povey 2002) and minimum phone frame error training (MFPE) (Zheng 
2005), and feature-level MPE (fMPE) (Povey 2005) have become the most popular 
techniques. In MPE training, the model parameters are optimized to maximize the 
posterior probabilities of the best hypothesis for each utterance, weighted by the raw 
phone accuracy of that utterance.  MFPE is similar in nature, except that the frame-level 
phone accuracy is used instead of the simple phone accuracy. fMPE employs a linear 
transformation on the acoustic features that is designed to discriminate between phone 
classes; it thus operates at the feature level rather than at the model level. Additional 
discriminative training procedures include Maximum Mutual Information (MMI) and 
boosted MMI (Povey 2008). 

This section includes four different aspects of discriminative training. One method 
combines fMPE, another discriminative feature transformation (a multilayer perceptron 
trained on the original acoustic feature to estimate posterior phone probabilities), and 
MFPE within a single recognition system for Mandarin speech. The contributions from 
the different approaches are non-redundant, and produce additive gains. Any combination 
of two of the three discriminative modeling methods achieved gains larger than those 
obtained by each method in isolation, and the largest gain was seen when all three 
methods were combined. Compared to a baseline system without any discriminative 
training, a relative reduction in character error rate of 23.3% was achieved. In SRI's state-
of-the-art GALE recognition system for Mandarin, judicious application of discriminative 
training techniques to different subsystems in the overall system led to improvements 
ranging from 20.1% to 33.3%. 

The problem of unsupervised training in combination with discriminative training is 
addressed. Since transcribed training data is rare for certain domains, additional training 
data can be generated by first recognizing the untranscribed data with seed acoustic and 
language models, selecting the most confident automatic transcriptions according to their 
likelihood or confidence scores, and adding them to the pool of transcribed training data 
for re-estimating model parameters. This method is successful to the extent to which the 
automatic transcription is reliable; naturally, recognition errors diminish the gains 
obtained from unsupervised training. It has been observed that discriminative training is 
particularly sensitive to transcription errors – as shown in Yu et al.'s (2007) contribution; 
this effect is particularly severe when the untranscribed data comes from a mismatched 
data type, since the recognition accuracy will be lower. Instead of simple data selection, 
using manually transcribe a small set of the unlabeled data is proposed. This set is 

Handbook of Natural Language Processing and Machine Translation 429



selected from the pool of segments that have low confidence scores since these represent 
mismatches in data type.  Results show that larger improvements on matched, as well as, 
mismatched data types can be obtained using such directed manual transcription instead 
of high-confidence data selection. The amount of additional data to be transcribed ranged 
around 18%, roughly equivalent to roughly 59 hours of speech. 

Another method proposes the integration of a large-margin term into several existing 
discriminative training procedures. This renders discriminative training closer in nature to 
large-margin classification techniques in the machine learning community while being 
able to exploit conventional discriminative training setups. A direct evaluation of the 
importance of the margin term demonstrated that large-margin MMI training 
outperformed conventional MMI training on a small digit recognition task. On a large-
vocabulary continuous speech recognition task, a margin-enriched MPE training 
procedure yielded minor improvements over standard MPE.  

The final method incorporates ideas from speaker recognition into acoustic modeling 
for speech recognition. Two approaches are evaluated: the first applies Maximum A 
Posteriori (MAP) adaptation of a general background Gaussian mixture model (GMM) to 
each clustered phonetic state in the recognition system.  The second explores a subspace 
representation of GMMs and resembles joint factor analysis in speaker recognition. The 
first approach yielded substantial improvements under maximum likelihood training, but 
the authors consider it unpromising for discriminative training since it is computationally 
expensive. The second approach makes use of fewer parameters and was evaluated on 
three different recognition tasks (English broadcast news, the GALE 2009 Arabic 
evaluation task, and the GALE 2009 Mandarin evaluation task). Modest improvements in 
word error rate were obtained. 

 

3.3.2. Combining Discriminatively Trained Features, 
Transforms, and Models for GALE Speech-to-text Task  

Authors: Jing Zheng, Xin Lei, Andreas Stolcke, Wen Wang, Mei-Yuh Hwang, Arlo Faria, Nelson 
Morgan, and Ozgur Cetin 

3.3.2.1 Introduction  

In recent years, discriminative acoustic model training techniques have led to 
significant accuracy improvements on many LVCSR tasks. Among these approaches, the 
following three categories of techniques have seen widespread use because of their 
proven effectiveness. 

 
Discriminatively trained models. This category includes model parameter estimation 

techniques based on maximum mutual information (MMI) (Bahl 1986), minimum phone 
error (MPE) (Povel 2002), minimum classification error (MCE) (McDermott 1997), and 
other relevant criteria. Compared to traditional maximum likelihood (ML) training, 
discriminative training better addresses the model incorrectness problem, which is a clear 
theoretical limitation for the hidden Markov model (HMM)-based recognition systems. 
So far in LVCSR, the MPE criterion has been the most widely used, because of its 

Chapter 3: Machine Translation from Speech430



superior performance and generalization. Several modifications have been proposed to 
further improve MPE criterion, including the one by Zheng and Stolcke (Zheng 2005), 
namely minimum phone frame error (MPFE) criterion, which is employed in this section.  

 
Discriminatively trained features. State-of-the-art LVCSR systems are mostly based 

on phoneme units, and therefore rely on phone discrimination. However, commonly used 
LVCSR features, such as Mel frequency cepstral coefficients (MFCC) and perceptual 
linear prediction (PLP) coefficients, are not explicitly optimized for phone 
discrimination. One approach that has proven effective involved multilayer perceptrons 
(MLPs) estimating some form of posterior phone probabilities at the frame level, to be 
used as HMM observation features. This approach is known as Tandem acoustic 
modeling (Ellis 2001). MLP features are then typically used in combination with regular 
features, such as MFCC and PLP, to obtain maximum benefit. The resulting combined 
feature typically has high dimensionality. 

 
Discriminatively trained transforms. The idea of these approaches is to use 

discriminative criteria to estimate linear feature transforms, which make corrections to 
standard features to improve discriminative power. Typical approaches include fMPE 
(Povey 2005) and MPE-RDLT (region dependent linear transforms) (Zhang 2006). 
Compared to MLP features, which are usually appended to regular features, these 
approaches modify the standard features themselves through transformation based on 
certain conditions. 

   These three categories of discriminative training methods attack the speech 
modeling problem at different levels. Can they work together? Are their contributions 
non-redundant? In the remainder of the section, we answer this question by applying 
MLP features, fMPE transforms, and MPE training to a large vocabulary Mandarin 
recognition task, and by studying how the methods interact. 

3.3.2.2 Combined  Discriminative  Modeling 

We first review the three techniques we used in this study: MLP features, MPE 
models, and fMPE transforms. Then we propose the combined approach and compare 
results between different configurations. 

3.3.2.2.1. MLP Features 

 We built our system following the Tandem approach (Ellis 2001), i.e., features 
generated by the connectionist (MLP) system were used as HMM observation data. This 
approach produced significant word error rate reduction, about 10% relatively in an 
English conversation telephone speech (CTS) system (Zhu 2005), and was shown to 
generalize across domains and even languages, making it even more attractive (Stolcke 
2006). 

We used two types of MLPs to generate features. A PLP/MLP, which focuses on 
medium-term information, was trained on 9 consecutive frames of PLP features, as well 
as, their first and second order differences. Hidden activation temporal pattern-MLPs 
(HATs) (Zhu 2004; Morgan 2004), which focus on long-term information, extracted 

Handbook of Natural Language Processing and Machine Translation 431



information from 500 ms windows of critical band energies. Both PLP/MLP and HATs 
systems generated phone posteriors, which were combined using inverse-entropy 
weighting (Misra 2003) and then projected to 32-dimensional features via a Karhunen-
Loeve transform. 

We appended the 32-d MLP features with the 39-d MFCC features and the 3-d pitch 
features (consisting of log pitch and its first and second order differences) features to 
form a 74-dimensional feature vector, which was then used to train the HMM system. 

3.3.2.2.2. MPFE Models  
MPE model training was first proposed by Povey (2002). Gaussian parameters are 

estimated to optimize the following objective function: ߣ)ܧܲܯܨሻ = ∑ ∑ ݏ݇ܲ ,ݎܱ|ݏ) 1=ݎሻܴݏ݁݅)ݕܿܽݎݑܿܿܣ݄݁݊ܲݓሻܴܽߣ   (3.9) 

where ܲ(ݏ| ܱ,  ሻ is the posterior probability of hypothesis s for utterance r givenߣ
observation ܱ, current parameter set λ, and acoustic scaling factor k. 
RawPhoneAccuracy(ies) is a measure of the number of correctly transcribed phones in 
hypothesis s. So the MPE objective function is the weighted average phone accuracy in 
the lattices generated by a LVCSR system. 

Optimization of the MPE criterion employs an adapted extended Baum-Welch 
algorithm, which was initially used for MMI training. MPE training aims to minimize 
phone error rates, which in turn leads to lower word error rates. MPE training is shown to 
produce more accurate models than MMI training, and also appears to have superior 
generalization from training to test data, compared with direct word error rate 
minimization (MWE) (Povey 2002), and therefore, has been adopted widely. 

In this study, we used a variant of MPE training, optimizing the weighted average of 
frame-level phone accuracies of phone lattices generated from a fast decoding system 
(Zheng 2005). We have shown that this approach, also known as MPFE, had comparable 
or better results than the standard MPE in English and Mandarin CTS system, when 
combined with a MMI model prior and I-smoothing (Zheng 2005). This observation has 
also been confirmed by other researchers (Povey 2007). 

3.3.2.2.3. fMPE  Transforms 
fMPE Transforms were first proposed by Povey (2005). The idea is to use a very 

large linear transform that projects a high-dimensional feature vector into the standard 
feature space, as a correction to the original feature to optimize the MPE objective 
function of Equation (3.9)   ݕ௧ = ௧ݔ     ௧     (3.10)݄ܯ 
where ݔ௧ is the original feature vector at time t; ݄௧ is a high dimensional feature vector; 
M is the transform matrix that needs to be estimated, and ݕ௧  is the corrected feature that 
has improved discriminative power according to the MPE criterion. fMPE optimization 
uses first-order gradient descent, with iterative transform estimation and ML model 

Chapter 3: Machine Translation from Speech432



updates. It has been shown that subsequent MPE training after the fMPE transform is 
fixed can achieve additional word error rate reductions. 

Similar to (Povey 2005), we constructed ht by computing Gaussian posteriors from 
evaluating a Gaussian mixture model (GMM), and with neighboring context expansion, 
which combines posterior vectors of neighboring frames into an extended vector. The 
GMM used for this purpose had 102K Gaussians trained on MFCC+pitch features (Lei 
2006) with 42 dimensions. We also used a second layer of 3210 Gaussians clustered from 
the 102K Gaussians for fast computation. 

3.3.2.2.4. The Combined Approach 
Although both MLP features and fMPE transforms aim at improving the 

discriminative power of ASR input, they have very different implementations and 
internal principles, which leave room for effective combination. In this study, we used the 
74-d MFCC+pitch+MLP features as input, a 102K dimensional posterior vector with 
context width 3, resulting in an fMPE transform M of size 74 x 3 x 102K. We typically 
ran 3-4 iterations of fMPE optimization. Then, with the fMPE transform fixed, we ran 4-
5 iterations of MPFE model updates. Thus, the system would incorporate all three 
discriminative training approaches. 

To have a comparison with the combined approach, we also trained fMPE transforms 
without the MLP features (i.e., with the 42-d MFCC+pitch features only). In this setup, 
because of the lower input feature dimensionality, we increased the context width to 5 to 
have an fMPE transform of size closer to the previous one: 42 x 510K. After the fMPE 
transform was learned, we ran MPFE training. We also tested the other 6 possible 
combinations, such as the MLP features with MPFE training but no fMPE transforms, 
etc. We first ran a comparison with a speakerindependent (SI) single pass bigram system 
built on a within word triphone acoustic model and MFCC+pitch frontend processing. 
The acoustic model was trained on 465 hours of speech, including LDC Mandarin Hub4, 
Mandarin TDT4 closed captions filtered by flexible alignment (Venkataraman 2004), and 
contained about 200K Gaussians. The bigram was highly pruned for fast decoding. 
Testing was performed on the dev06bn test set, which consists of 3.5 hours of Mandarin 
broadcast news. 

Sysid MLP MPFE fMPE WER Rel. 
S0    17.1% - 
S1 X   15.3% -10.5%
S2  X  14.6% -14.6%
S3   X 15.6% -8.8% 
S4 X X  13.4% -21.6%
S5 X  X 14.7% -14.0%
S6  X X 13.9% -18.7%
S7 X X X 13.1% -23.3%

Table 3.11: CERs on dev06bn test set with 1-pass speaker-independent bigram decoding. 

As Table 3.11 shows, the contributions from the three discriminative training 
approaches were nonredundant, and the fully combined approach (S7) worked the best 
among all configurations. Compared to the baseline S0, which used none of the three 

Handbook of Natural Language Processing and Machine Translation 433



discriminative training approaches, the CER reduction was quite significant: 4.0% 
absolute or 23.3% relative.  

3.3.2.3 Applying  to  GALE  STT  System  

 
 

Figure 3.6: System decoding architecture 

A. MFCC-SI: This system was built on a within word triphone model using an 
MFCC+pitch frontend. A pruned bigram language model was used for fast SI 
decoding to generate adaptation hypotheses for later passes.  

B. PLP-SA: This system employed a crossword triphone model trained with a 
PLP+pitch frontend and a pruned bigram language model. The model was first 
adapted to the hypotheses generated by MFCC-SI system using CMLLR-based 
speaker adaptive training (SAT) and MLLR adaptation, and then performed a 
speaker-adapted (SA) decoding to generate lattices, which was rescored with 
adapted language models to generate N-Best lists (See Section 3.5.4). 

C. MFCC-SA: Similar to PLP-SA except that this system was trained with 
MFCC+pitch frontend, and was adapted to hypotheses from PLP-SA decoding. 

Chapter 3: Machine Translation from Speech434

To maximize accuracy performance, most state-of-the-art LVCSR systems employ multi-
pass decoding architecture involving several sub-systems integrated with cross-adaptation 
and system combination. Subsystems are typically designed to be different from each 
other but with similar performance in order to maximize the combination effect. In SRI’s 
latest GALE 2008 STT system, three subsystems using different acoustic and language 
models were employed, as shown in Figure 3.6: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MFCC-SI 
within-word 
bigram lm 

LM adapt & 
rescore 

LM adapt & 
rescore 

confusion network combination 

single hyp 

lattice 

n-best list 

waveform 

segmentation, speaker clustering, 
VTLN, mean/var norm.

MFCC-SA 
xword 

tigram lm 

PLP-SA 
xword 

bigram lm 



The N-Best lists of this system were combined with the one from PLP-SA using 
confusion network combination to generate final output. 

 
All the acoustic models were trained on 1642 hours of speech data from Hub4 and 

GALE program releases. Language models were developed from corpora comprising 1.4 
billion words from various sources. More details can be found in Section 3.5.4.  

Since system combination favors diversified and close quality subsystems, we 
applied MLP feature and MPFE training to MFCC-SI and MFCC-SA, but fMPE and 
MPFE to PLP-SA. This design makes subsystems diversified and balanced, and saves 
significant amount of training and testing time compared with applying the all three 
discriminative training techniques to all the acoustic models. Based on the results of some 
internal experiments, the performance difference between the two approaches was 
minimal. 

We tested this system on two different test sets: GALE 2007 development set 
(dev07), which contains 2.4 hours of speech data from 74 shows, with 1.0 hour broadcast 
news (BN) and 1.4 hour broadcast conversation (BC); and GALE 2008 development set 
(dev08), which has one hour of speech from 44 shows, with 0.5 hours each in BN and 
BC. For comparison, we also ran a system that shared the same search structure but 
without using any of the discriminative training approaches, as the baseline. The CER 
results of these two configurations are compiled in Table 3.12. 

 
  DEV07   DEV08  
       

 bn Bc all bn bc all
Baseline (ML) 3.3 18.7 12.1 3.9 16.9 10.6
Disc. training 2.3 14.2 9.1 2.3 13.5 8.3
-Rel. ∆ (%) 30.3 24.0 24.7 33.3 20.1 21.7

Table 3.12: CER% of the full system on dev07 and dev08. 

As Table 3.12 shows, in all cases the system with discriminative training performed 
significantly better than the baseline, ranging from 20.1% to 33.3% CER reduction. 
Compared with the simple single-pass system experiment, the gain from discriminative 
training did not diminish because of the use of much larger language model and 
adaptation techniques. The fact that the improvements are similar in two different test 
sets also shows the discriminative training techniques generalize well. 

3.3.2.4 Conclusions 

We have presented a discriminative training approach combining MLP features, 
fMPE transforms, and MPFE training. Experimental results showed that the contributions 
from these three individual approaches were nonredundant. Applying the combined 
approach in a state-of-the-art Mandarin GALE STT system led to significant character 
error rate reductions on two different test sets with both broadcast news and broadcast 
conversations data, ranging from 20.1% to 33.3%. 

Handbook of Natural Language Processing and Machine Translation 435



3.3.3. Unsupervised Training and Directed Manual 
Transcriptions for Mandarin Speech-to-Text  

Authors: Kai Yu, Mark J. F. Gales, Lan Wang and Phillip C. Woodland 

3.3.3.1 Introduction 

A recent trend in building large vocabulary speech recognition system is to use very 
large training sets for parameter estimation of the acoustic models. For some tasks, such 
as automatic transcription of Broadcast data, it is fairly easy to obtain thousands of hours 
of audio data from radio and television shows. However, in order to train the acoustic 
models, word level transcriptions are required. Hence, a major cost of using large 
amounts of broadcast data is the provision of accurate manual transcriptions. 
Approximate manual transcriptions, such as closed captions, can be used with lightly-
supervised training (Lamel et al. 2002; Chan and Woodland 2004). This leads to low 
error rate semi-automatic transcriptions which yield good performance for hidden 
Markov model (HMM) parameter estimation using both maximum likelihood (ML) 
(Lamel et al. 2002) and discriminative criteria (Chan and Woodland 2004). However, in 
some cases, for instance broadcast news transcription in Arabic and Mandarin, even 
approximate transcriptions are not available. In these scenarios, unsupervised training 
techniques must be applied, where a seed model is used to recognize the unsupervised 
audio and the automatic transcriptions are used during training. Most previous studies of 
unsupervised training have concentrated on ML estimation techniques (Lamel et al. 2002; 
Kamm and Meyer 2002; Wessel and Ney 2005; Zavaliagkos and Colthurst 1998). 
However, the majority of state-of-the-art speech recognition systems make use of 
discriminative training approaches such as Minimum Phone Error (MPE) (Povey and 
Woodland 2002). This section will describe an in-depth study of how discriminative 
training can be applied to an unsupervised training task and how the various problems 
that arise can be addressed. 

Discriminative training criteria are more sensitive to the accuracy of the 
transcriptions than ML training. This is because discriminative criteria aim to explicitly 
increase the “distance” between the “reference” and all other possible word sequences. 
The quality of the “reference” and the “distance” could be two problems during 
discriminative training. First, transcription errors may limit performance gains especially 
when the nature of the training data is not well matched to that of the seed model. 
Second, the acoustic model used to generate the reference hypothesis is the same as, or 
similar to, the one to be trained. Thus, the ASR derived reference hypothesis tends to be 
the most probable word sequence. This results in better than expected discriminative 
criteria values, which can limit possible discriminative training gains. Data selection can 
help to address the first problem, by identifying regions where the transcriptions are felt 
to be reliable. The second problem can be partly addressed by simplifying the language 
models used during discriminative training compared to the one used to obtain the 
hypotheses. 

Fully unsupervised approaches, even using the above schemes, are shown to yield 
only limited gains with discriminative training compared to fully manually transcribed 
data. This effect is most noticeable where the seed acoustic and language models are not 

Chapter 3: Machine Translation from Speech436



closely matched to the data (Wang et al. 2007). An approach based on active learning 
(Cohn et al. 1994) will then be discussed, directed manual transcription. Here subsets of 
the training data are automatically identified to be manually transcribed. By appropriately 
selecting the “best” subset to transcribe, rather than using an ad hoc selection scheme, the 
optimal balance of transcription cost for the maximum reduction in word error rate may 
be achieved (Yu et al. 2007). 

3.3.3.2 Unsupervised Discriminative Training  

The previous section has given an overall introduction of unsupervised training. This 
section will investigate in detail the issues of unsupervised discriminative training. 

3.3.3.2.1. Training Procedure  

The general procedure of unsupervised training is to first recognize the unsupervised 
audio using the seed acoustic and language models. Data selection approaches may be 
used to filter out poorly recognized data. These data are often discarded. The 
unsupervised audio with the automatic transcriptions are then folded into the original 
training set for acoustic (ML and discriminative) and/or language model training. 

In this work, MPE criterion (Povey and Woodland 2002) was used to train 
discriminative systems. During the decoding of unsupervised audio, a multi-pass 

the state-of-the-art Cambridge multi-pass recognition framework. In this work, the 
Viterbi 1-best recognition result of the adapted decoding system is used as the output 
transcription, as this is felt to give a good balance between deletions and insertions. To 
get confidence scores for data selection, confusion network (CN) decoding (Evermann 
and Woodland 2000) is also performed on the output lattices, yielding another set of 
transcriptions with associated confidence scores. These transcriptions are only used in the 
data selection stage rather than for reference generation, due to the larger deletion rate. 

The first step of data selection on the Mandarin Chinese broadcast task is to remove 
the non-Mandarin shows (Wang et al. 2007). Further data selection is then performed to 
filter out the poorly transcribed unsupervised data (Wang et al. 2007; Ma et al. 2006). 
This selection can be done at segment-level or show-level, both are based on the word 
confidence scores generated from the adapted decoding system. The show or segment 
level confidence scores are calculated by averaging the confidence scores of each word: ܥௌ = ∑ ೈ்ೈೈאೄ∑ ்ೈೈאೄ      (3.11) 

where S can be one show or one segment, CS is the averaged confidence score of S, CW is 
the confidence score of word W within S calculated by the multi-pass decoding system, 
TW is the duration of word W. A threshold on CS is then set to split the unsupervised data 
into two parts. The traditional selection strategy is to simply remove those segments that 
fall below a set threshold (Ma et al. 2006; Wang et al. 2007). 

It is worth noting that the above confidence score based data selection implicitly 
performs data type classification as the seed model will normally recognize the 

decoding system using adapted MPE models is used. The adapted decoding system 

utilizes a similar procedure to (Sinha et al. 2006). This is the lattice generation stage in 

Handbook of Natural Language Processing and Machine Translation 437



 

unsupervised data with matched type better than those data which are mismatched. 
Consequently the confidence scores are higher for the matched data types. For example, 
in this work, the Mandarin broadcast task contains two types, broadcast news (BN) and 
broadcast conversation (BC). Experiments have shown that the two types of data have 
significant differences in both the acoustic and transcription statistics (Wang et al. 2007). 
As the seed models are trained on supervised BN data, the unsupervised BC data will 
have lower confidence scores. Figure 3.7 shows the segment-level confidence score 
distribution of BN and BC data in this work. Two peaks corresponding to BC and BN can 
be observed. As the BC/BN type is defined at the show level, the distinction at segment-
level is smoothed. 

After the data selection stage, a certain amount of unsupervised audio is obtained, 
with the corresponding transcriptions, which is treated as if they are the correct manual 
transcriptions. These data are then folded into the original training set to form a larger 
training set. The acoustic models are then updated on the newly formed training set as 
usual. Initially, maximum likelihood (ML) training is performed, which is then followed 
by MPE training. 

 
Figure 3.7: Segment-level confidence score distribution of BC and BN data 

3.3.3.2.2. Data Summary and Experimental Setup  

Sys. Data Trans.
Size (hour)

BN BC ALL 
S0 baseline

manual
166.7 19.7 186.4

S1 + subset1 363.2 150.8 514.0
S2 + subset1 auto 352.3 152.2 504.5 

Table 3.13: Data summary 

Chapter 3: Machine Translation from Speech438

In this work, the baseline seed model, referred to as S0, was initially trained on 
manually transcribed data. An additional dataset, referred to as subset1, with manual 
transcription was used for unsupervised training experiments. This allows a contrast of 



3.3.3.2.3. Unsupervised Training Issues  

Sys.
BN BC  

ML MPE ML MPE
  

 
 

S0 15.1 13.6 29.3 25.4  
 

S1 12.8 10.5 26.1 21.8  
 

S2 13.8 12.0 27.7 24.8  
 

Table 3.14: Unadapted single pass performance of supervised training and unsupervised training 

The initial performance comparison between supervised and unsupervised training is 
shown in Table 3.14. From this table, it can be seen that, with ML training, using only 
automatic transcriptions (S2) leads to a similar absolute reduction in CERs for both BN 
and BC data: 1.3% for BN and 1.6% for BC compared to the S0 performance. In contrast, 
for MPE training, the gain on BC is only 0.6%, which is less than half of that on BN 
(1.6%). This demonstrates that the higher error rate for BC data can significantly affect 
the performance of unsupervised discriminative training. The second row of Table 3.14 is 
the performance of supervised training, which gives an upper bound of all possible gains 
from unsupervised training. For MPE training, the CER reduction of supervised training 

                                                 
6 It is worth noting that the actual amount of data used for unsupervised training (before confidence score 
based data se-lection) is slightly less due to automatic segmentation and non-Mandarin show removal. 

Handbook of Natural Language Processing and Machine Translation 439

the use of unsupervised training with supervised training.6 S1 is the model trained on the 
combined data set of the S0 training data and subset1 data set with manual transcription. 
S2 is the comparable unsupervised training system to S1. The data is summarized in 
Table 3.13. 

Two test sets were used to evaluate the different systems: bnmdev06 and 
bcmdev05. bnmdev06 comprises 3.6 hours of data taken from a range of BN sources, 
referred to as the BN testset later. It includes some of the standard existing test sets 
described by Sinha et al. (2006), dev04f (0.5 hour), eval03m (0.6 hour) and eval04 (1.0 
hour). In addition, a more recent set of 4 shows (1.6 hour) taken from July - October 2006 
were also used. The bcmdev05, BC test-set, comprises 2.5 hours of data taken from 5 BC 
shows during March 2005. 

In all acoustic systems, base features were 13 PLP Cepstral coefficients with their 1st 
to 3rd derivatives. Cepstral Mean Normalisation (CMN) was applied and HLDA was used 
to project the dimension down to 39. Pitch was then extracted, and appended to the 
features along with its 1st and 2nd order derivatives (Gales et al. 2005). State-clustered 
triphone HMMs, with 6K distinct states and an average of 36 Gaussian components per 
state were used for all systems. The baseline language models were word-based 
interpolated tri-gram and 4-gram models, trained on about 1.2G words with a 51K multi-
character word list (Wang et al. 2007). The baseline acoustic and language 
models were used in recognizing the unsupervised audio within an adapted 
decoding system. In contrast, in all experiments on the test datasets unadapted 
single pass Viterbi decoding using the tri-gram baseline LM was used unless 
explicitly stated. 



compared to S0 is 3.1% on BN and 3.6% on BC. For the S2 MPE system, the proportion 
of the CER reduction from supervised training is 57% on BN, while on BC only 17%. 
This shows that for unsupervised training, if the type of the test data matches the well 
recognized unsupervised data, the performance gain is closer to the gain by supervised 
training, otherwise, it may be greatly limited. 

Data selection may be performed to address the problem. Segment-level selection 
was used in this work unless explicitly stated. The traditional unsupervised discriminative 
training approach is to discard the data with confidence scores falling below a threshold 
and use the rest for training. It is interesting to investigate the impact of the thresholds on 
the unsupervised training data selection performance. Four thresholds 0.7, 0.77, 0.8 and 
0.86 were used. Figure 3.8 shows the relative reduction in CER of unsupervised training 
with automatic transcriptions, versus using supervised training on all of this data. The x-
axis shows the percentage of the data that remained after data selection. The y-axis shows 
the percentage of the unsupervised training gain from supervised training. The relative 
improvement of discriminative training corresponding to the confidence score threshold 
C, GC is calculated using GC = 100 ࣟCିࣟSబࣟSభିࣟSబ     (3.12)  

where EC is the CER of the model trained on unsupervised data selected using confidence 
score threshold C. ES1 is the CER of supervised training and ES0 is the performance of the 
baseline S0 model, which are shown in Table 3.14. 

 

 
Figure 3.8: Reduction in CER (%) from unsupervised MPE training with automatic transcriptions relative to 

that from supervised training 

From Figure 3.8, the relative improvement did not always increase as more data are 
selected. This is expected because if too little data are selected, they will contribute less 
to model training; if too much data are selected, the quality of some of the selected data is 
poor. The threshold should be selected to balance the two issues. Furthermore, it can be 
observed that the relative improvement on BN is always greater (about twice) than the 
gain on BC. There was always a large amount of BN data selected when confidence score 

Chapter 3: Machine Translation from Speech440

 



based selection was used. Hence, the poor MPE gain on BC is also expected. The figure 
again illustrates that the performance improvement on the data set with mismatched type 
is limited for discriminative training. Experiments using more unsupervised data did not 
yield further improvement either (Wang et al. 2007). This shows that the use of only 
automatic transcription does not yield sustainable improvements on the test data with 
mismatched type. 

3.3.3.3 Directed Manual Transcriptions  

An alternative strategy to the pure use of automatic transcription is to manually 
transcribe a small amount of data to improve the acoustic model training. The data with 
manual transcriptions are then used together with the other automatically transcribed data 
for acoustic model training. In order to improve the recognition performance on the data 
with mismatched type, the data with low confidence scores were selected for manual 
transcription. This is referred to as directed manual transcription (Yu et al. 2007). 
Though this method requires some manual effort, it is less costly than manually 
transcribing the complete dataset. The aim is to find a reasonable trade-off between the 
increase in cost and the recognition performance. 

 

Sys.
S0 + (hr) CER (%) 
Man. Auto. BN BC 

S0  0 13.6 25.4 
S2 0 318.1 12.0 24.8 
— 0 251.3 11.7 24.4 
— 58.9 0 12.7 23.4 

S2c 58.9 251.3 11.4 23.3

S1 327.6 0 10.5 21.8 
Table 3.15: Unadapted single pass CER (%) of unsupervised MPE systems trained on subset1 data with 

different amounts of manually or automatically transcribed data 

Table 3.15 shows the performance of unsupervised MPE training with different data 
selection strategies, which vary the amount of data manually transcribed using confidence 
score based selection.7 From  this table,  the  use  of  complete  manual  transcription (S1) 
yielded a 3.1% absolute reduction in CER on BN and a 3.6% absolute gain on BC, 
compared to the baseline S0 system. Using only automatic transcriptions, a 1.6% CER 
reduction on BN and 0.6% on BC was obtained. This is 52% relative for BN and only 
17% on BC with respect to the supervised training CER reduction. From the third row of 
table 3, performing confidence score based data selection increases the gain proportion to 
61% on BN and 28% on BC. Though there are improvements on both test sets, the 
relative improvement on BC is still poor. The fifth row shows the performance of 
directed transcriptions together with automatic transcriptions, which is referred to as S2c. 
By transcribing about 18% of the unsupervised data, the S2c system obtains a 

                                                 
7 The confidence score threshold used was 0.77, which has been shown as a good trade-off in selecting pure 
automatic transcriptions. 

Handbook of Natural Language Processing and Machine Translation 441



significantly larger reduction in CER on BC (2.1%), which is now comparable to the 
improvement on BN (2.2%). The percentage of the supervised training improvement is 
71% on BN and 58% on BC. Therefore, manually transcribing a small amount of poorly 
recognized data can double the relative BC improvements without reducing the 
performance on BN. The fourth row shows the experiment where only the data with 
directed manual transcription was added, i.e., no automatic transcriptions were used. 
Comparing the fourth and fifth rows, purely folding in the data with manual transcription 
yielded significantly poorer performance on BN while better performance on BC. This is 
expected because the data with manual transcription are mostly BC data, while the data 
with automatic transcription are mostly BN data, hence, the model set is heavily tuned to 
BC data. It is also clear that adding the automatic transcription is beneficial for the BN 
data, while for the BC data, it is just slightly better than the use of only manual 
transcriptions. This, again, illustrates the issue of unsupervised discriminative training 
with fairly high error rate transcriptions. 

3.3.3.3.1. Confidence Score Threshold Selection  

As in the previous section, four confidence score thresholds were used. Experiments 
showed that the BC type of data were always dominant in the selected data set for all 
thresholds. This is consistent with Figure 3.7 as BC data normally have lower confidence 
scores. This implicit BC/BN selection may contribute to the improved gain on BC test set. 

 
Figure 3.9: Reduction in CER (%) from unsupervised MPE training with directed manual transcriptions 

relative to that from supervised training 

Figure 3.9 gives the proportion of the MPE training improvements when adding 
varying amount of manual transcriptions. It can be seen that the reductions in CERs 
increase as more data is added at the cost of producing the additional manual 
transcriptions. The increase on BC is faster than on BN when transcribing a small amount 
of data. Transcribing less than 20% of the data can yield over 50% of the complete 
supervised training improvement for BC data because the data selection process tends to 
select BC data. 

Chapter 3: Machine Translation from Speech442



3.3.3.3.2. Comparison to Random Selection  

The previous sections have shown the advantage of adding manual transcriptions for 
lower confidence score segments during unsupervised training. It is also interesting to 
investigate whether this selection approach is preferable to random selection. 

Table 3.16 gives the comparison between confidence score based directed manual 
selection and random selection. The first row in the table is the random selection from all 
unsupervised data, which has similar amount of data as the S2c system in Table 3.15. It is 
clear that confidence score based selection outperforms random selection on both test sets 
for MPE training. In particular, the improvement on BC over random selection is larger 
than on BN since directed selection favors BC data. The second row is the random 
selection on only the BC part of the unsupervised data, which ensures only BC data is 
selected. The confidence score based selection still outperforms the random selection on 
BC data on both test sets for MPE training, though the improvements are smaller. This 
illustrates that selecting lower confidence segments is preferable to selecting segments of 
a specific type during unsupervised discriminative training. This further demonstrates the 
essential issue in unsupervised training is the high error rate transcriptions. 

 

Sys. 
S0 + (hr) CER (%) 

Man. Auto. BN BC 
Rand.  (ALL) 58.9 248.7 11.7 23.9 

Rand.  (BC Only) 58.9 254.6 11.5 23.6 
S2c 58.9 251.3 11.4 23.3 

Table 3.16: Unadapted single-pass CER (%) of MPE trained system trained on subset1 data with directed 
manual selection and random selection 

3.3.3.4 System Refinement  

The previous sections have described the basic systems using directed manual 
transcriptions. This section will discuss some refinements.  

One refinement is to use the additional transcriptions for language model estimation 
as well. The basic procedure is to build separate language model components for the 
added transcriptions and then interpolate among the newly estimated components and the 
old language model components (Wang et al. 2007). However, it was found that, with 
segment-level data selection, rebuilding language model did not give additional gains on 
any of the test sets. Therefore, further discussion wills only concentrate on acoustic 
model training. 

3.3.3.4.1. Multi-Pass Adaptation System  

All previous experiments were using unadapted single pass decoding. It is also 
interesting to know how unsupervised training performs after adaptation. The speaker 
adapted decoding system as in Section 3.3.3, was used to test the adaptation performance. 

 
 
 

Handbook of Natural Language Processing and Machine Translation 443



Sys. 
S0 + (hr) CER (%)

Man. Auto. BN BC 
 S0 0 0 11.7 24.2
 S2 0 318.1 10.8 23.3 
 S2c 58.9 251.3 10.3 22.0 
 S1 327.6 0 9.4 20.4 

Table 3.17: Multi-pass adaptation  system  performance  of unsupervised training and supervised training 

From Table 3.17, after adaptation, the supervised training S1 system yields a 2.3% 
absolute reduction in CER on BN and 3.8% on BC compared to the baseline S0 system. 
Using complete automatic transcription, the S2 system obtains 39% of the supervised 
training improvement on BN, while only 24% on BC. With 18% data manually 
transcribed, the S2c system yields 60% of the gain on BN and 59% on BC. The relative 
improvement on the BC data is even larger than the relative improvement in unadapted 
single pass decoding. This further illustrates the effectiveness of using directed manual 
transcription. 

3.3.3.4.2. Show-Level Data Selection 

The previous experiments are all based on segment-level confidence scores because 
the segment based selection is felt to be finer than show-level selection. However, in 
practice, it is not always convenient to manually transcribe non-contiguous segments, and 
hence often manual transcriptions are produced at show level. Therefore, it is interesting 
to compare the previous results with directed manual transcription at the show level. 

 
Conf S0 + (hr) Unadapted Adapted 

Level Man. Auto. BN BC BN BC 
show 58.9 257.9 11.7 23.6 10.5 22.1 
seg 58.9 251.3 11.4 23.3 10.3 22.0 

Table 3.18: Comparison between show-level and segment-level directed data selections 

Table 3.18 gives the comparison between show-level and segment-level selection of 
directed manual transcriptions. The “unadapted” column was unadapted Viterbi 
decoding, while the “adapted” column was using the multi-pass adaptation system for 
decoding. For the show level selection, a threshold of 0.80 was selected to yield similar 
amount of data for manual transcription as the S2c system (the second row). With a 
similar amount of manual transcription (58.9 hours), segment level selection outperforms 
show level selection on both test sets for MPE training with and without adaptation. 
Comparing show level selection to the baseline S0 performance in Table 3.17 and Table 
3.15, for unadapted decoding performance, the proportions of the supervised training 
improvement are 61% for BN and 50% for BC; for adaptation performance, the 
proportions are 52% for BN and 55% for BC. Those relative improvements are still good 
and just slightly smaller than the segment level selection. This illustrates that show level 
selection can be efficiently used in directed manual transcription. 

Chapter 3: Machine Translation from Speech444



3.3.3.5 Conclusion 

Sensitivity to transcription errors is a significant issue in unsupervised discriminative 
training for LVCSR. Data selection is normally used to filter out poorly transcribed data 
and the high quality automatic transcriptions of unsupervised data are used for 
discriminative training. However, this approach does not yield good performance on data 
of a different genre from the training data of the seed model. To address this, we have 
described an alternative approach based on directed manual transcription. Here, a small 
amount of high error rate data are manually transcribed to supplement the automatic 
transcription. The performance of unsupervised MPE training were evaluated on a 
Mandarin transcription task, where both Broadcast Conversation (BC) and Broadcast 
News (BN) data were used. Experiments showed that incorporating directed manual 
transcription can effectively improve the discriminatively trained system on the BC data 
compared to the traditional unsupervised approach in both unadapted and adapted 
decoding. It was shown that confidence score based data selection outperforms random 
data selection. Though segment-level confidence scores yielded better performance, 
show-level confidence scores can also lead to reasonable improvements and are easier to 
use in practice. 

3.3.4. Integration of Large Margin Concept into Standard 
Discriminative Training Criteria  

Authors: Georg Heigold, Thomas Deselaers, Ralf. Schlüter, Hermann Ney, George Saon, and Daniel Povey 

3.3.4.1 Introduction  
The task of parameter estimation includes two competing terms. The loss function 

accounts for the systems' risk (e.g., phoneme (Povey 2002)) while another term controls 
the model complexity (e.g., I-smoothing (Povey 2003) or margin (Vapnik 1995)). 
Depending on the training conditions, we expect different relative importance of these 
two terms, see Table 3.19. 

 
Loss vs. Margin 
infinite data ↔ sparse data 
many training errors ↔ few training errors 

Table 3.19: Relative importance of loss and margin term under different training conditions. 

In this work, we would like to find out the potential of a margin term in Automatic 
Speech Recognition (ASR). More explicitly, our objectives for this work are: 

 
1. Direct evaluation of the margin term. Ideally, we can turn on/off the margin term 

in the optimization problem. In particular, we want to avoid effects arising from 
different loss functions, optimization algorithms, model parameterizations, 
convergence speed etc. Unfortunately, but similar to (most) other approaches, we 
cannot exclude the effect of spurious local optima.  

Handbook of Natural Language Processing and Machine Translation 445



2. Evaluation on a state-of-the-art LVCSR system. Ideally, we directly improve on 
the best discriminative criterion, e.g., MPE.  

3. Showing a clear relationship to existing large margin classifiers.  
 

For this purpose, we transform the standard large margin optimization problems 
including constraints and slack variables into equivalent optimization problems that 
resemble conventional training criteria, e.g., MMI or MPE. Like for Minimum 
Classification Error (MCE), the loss function is replaced with a smooth approximation 
(Jebara 2002; Zhang 2003). The practical advantage of this approach is that the 
incorporation of the margin term leads only to small modifications of the conventional 
training criteria. In particular, this means that the same efficient algorithms can be used 
with basically the same implementation. Keep in mind that these are modifications of the 
training criteria and do not affect the underlying model. 

3.3.4.2 Common Large Margin Classifiers  

We shall use two different formulations of the large margin optimization problem 
found in the literature. We directly introduce these optimization problems in the form that 
best fits our purpose and refer the reader to the literature for the original formulation. 
Then, we replace the non-smooth loss function by a smooth approximation such that we 
can use standard gradient-based algorithms for optimization, e.g., Extended Baum Welch 
(EBW) or Rprop. 

3.3.4.2.1. Support Vector Machines (SVMs)  

According to (Altun 2003), for C classes and N labeled observations (ݔ ,Թא ܿ א Գሻ, the optimization problem of SVMs w.r.t. the model parameters Λ = ଵߣ) ,Թא … , ߣ א Թሻ can be formulated as follows - 
 Λ = argminஃ ቄଵଶ ԡΛԡଶ  ே ∑ ݈ேୀଵ (ܿ, ݀; 1ሻቅ.   (3.13) 

For SVMs, the distance vector ݀ has the components ݀ ؔ ൫ߣ െ  . Theݔ൯்ߣ
empirical constant J > 0 is used to balance the L2-norm regularization ԡΛԡଶ ؔ ∑ ԡߣԡଶୡ  , 
and the loss term. The hinge loss function is the typical loss function in the context of 
SVMs. The multiclass hinge loss function is defined as - 

 ݈(ሻ(ܿ, ݀; ሻߩ ؔ maxஷ൛ሼെ݀  ,ߩ 0ሽൟ   (3.14) 

In this formulation, ρ is kept fixed and the model parameters Λ are scaled to adjust 
the effective margin. The optimization problem in Equation (3.13) tries to simultaneously 
maximize the margin and minimize the hinge loss. 

 

Chapter 3: Machine Translation from Speech446



 

3.3.4.2.2. Large Margin Classifier  

 
Similar to (Li 2007), an alternative formulation uses the margin parameter ρ directly 

in the objective function (Saon 2008)- Λ = argminஃ minఘ ቄെߩ  ே ∑ ݈ேୀଵ (ܿ, ݀;  ሻቅ.   (3.15)ߩ

The notion of the distance is generalized to ݀ ؔ log ,ஃ(ܿ ሻݔ െ log ,ܿ)ஃ  ሻ inݔ
the usual way. Again, the typical loss function is the hinge loss function, l(hinge). In 
addition to the model parameters Λ, the parameter ρ is optimized in Equation (3.15). For 
the experiments reported below, the parameter was tuned beforehand on some 
development data and then kept fixed, both for training and recognition. This formulation 
is similar to the SVM formulation in Section 3.3.4, with two subtle differences. Equation 
(3.15) allows vanishing margin ρ = 0 while the regularization term in Equation (3.13) 
prevents the margin (which is proportional to ԡΛԡିଶ from becoming zero. In contrast to 
the formulation in Equation (3.13), the margin in Equation (3.15) is not well defined in 
general. For separable data, for instance, ρ can be made arbitrarily large by rescaling the 
generalized distances. This is not considered critical for the experiments in the next 
section because Equation (3.15) is used in combination with I-smoothing. 

3.3.4.2.3. Smooth Loss Functions and Limits  
As mentioned above, we would like to use gradient-based optimization algorithms, 

which require differentiable training criteria. For this reason, we define smooth loss 
functions ݈ఊ with the parameter to control the smoothness of the loss function. In addition 
to the differentiability, we require that ݈ఊ(·ሻ ఊ՜ஶሱۛ ሮۛ ݈ (·ሻ, i.e., the smooth loss function 
converges to the original loss function. 

The hinge loss in Equation (3.14) is replaced with the soft-max approximation - ݈ఊ(ሻ(ܿ, ݀; ሻߩ = ଵఊ log൫1  ∑ ݁ఊ ൣିௗାఘ൫ఋ(,ሻିఋ(,ሻ൯൧ஷ ൯.  (3.16) 

The Kronecker deltas ߜ(ܿ, ܿሻ െ ,ܿ)ߜ ܿሻ = 1 are added for illustration purposes below. 
As required, the approximation in Equation (3.16) converges to the hinge loss in 
Equation (3.14) for ߛ ՜ ∞. 

 
Figure 3.10: Comparison of loss functions for binary classification problem with d = dnc. Left: comparison of 
hinge loss, MMI, and modified MMI (1 = ߛ). Right: comparison of margin error, MPE, and modified MPE (ߛ 
= 3). 

Handbook of Natural Language Processing and Machine Translation 447



We feel that the weak point about the hinge loss in pattern recognition is that it is not 
the measure used to evaluate the recognition systems eventually. This means that there is 
some guarantee regarding the generalization for the hinge loss, but not the recognition 
error. It is not clear how these two quantities are related. In addition, the hinge loss is not 
(optimally) robust against outliers because incorrectly classified observations are 
penalized proportionally to their distance from the decision boundary (see Figure 3.10). 
In contrast to the hinge loss function, error-based loss functions are bounded and thus, are 
expected to be more robust against outliers. 

The ideal margin error is defined as - ݈(݁ݎݎݎሻ(ܿ݊, ݀݊; ሻߩ ؔ ,ሻ݊݀)ߩ൫ොܿܧ ܿ݊൯    (3.17) 

where ܧ(ܿ, ܿᇱሻ stands for some kind of error measure for c given ܿᇱ. Here, the recognized 
class ܿ̂ఘ denotes the class that yields the maximum margin-posterior - ఊఘ(ܿ|݀ሻ ؔ ം(షషഐഃ(,ሻሻ∑ ം(షᇲషഐഃ(ᇲ,ሻሻᇲ     (3.18) 

i.e., ܿ̂ఘ(݀ሻ ؔ max൛ఊఘ(ܿ|݀ሻൟ. In particular, the recognized class does not depend on 
the parameter (monotonic mapping of discriminant function). In the simplest case, this 
loss function counts the errors of the observations, 1 െ ,൫ܿ̂ఘ(݀ሻߜ ܿ൯. 

We shall use this loss function similar to the MPE loss function - ݈ఊ(ሻ(ܿ, ݀; ሻߩ = ∑ ܧ (ܿ, ܿሻఊఘ(ܿ|݀ሻ.    (3.19) 

Observe that for ߛ ՜ ∞, the margin-posteriors ఊఘ converge to the Kronecker delta ߜ൫ܿ̂ఘ(݀ሻ, ܿ൯. This means that the loss function in Equation (3.19) converges to the true 
error ݈(ሻ in Equation (3.17) for ߛ ՜ ∞. 

3.3.4.3 Modified Training Criteria in ASR  
In this section, we apply the ideas from the last section to ASR. The SVM 

whereas the formulation in Section 3.3.4.2.2 is more intuitive for Gaussian HMMs (GH-
MMs). However, the equivalence of GHMMs and Gaussian-like HCRFs (Heigold 2008b) 
directly extends the first approach to GHMMs. 

3.3.4.2.4. Choice of Margin  

In ASR, the data is sequential. A natural extension of the margin from simple to 
sequential observations is to replace the above 1 - 0 margin indicated by the Kronecker 
delta in Equations (3.16) and (3.18) by the string accuracy ܣ(ܿ, ܿሻ between c and ܿ 
(Taskar 2003; Sha 2007). This means that the margin is proportional to the number of 
correct symbols. Unfortunately, there is no natural choice of accuracy. Two convenient 
definitions are the approximate accuracy also used for MPE and the frame-based 
accuracy (cf. Hamming distance). The advantage of these is that they allow for an 
efficient implementation, see (Heigold 2008a; Povey et al. 2008; Saon 2008) for further 

Chapter 3: Machine Translation from Speech

formulation in Section 3.3.4.2.1 better suits Hidden Conditional Random Fields (HCRFs) 

448



details. Experiments suggest that the word error rate is rather insensitive to the choice of 
margin (Heigold 2008a). 

In the remainder of this section, different variants of the smooth optimization 
problem introduced in the last section are described and experimental results are 
presented. The resulting update rules and gradients have the same structure as for 
conventional MMI and MPE, and differ from conventional MMI and MPE only in the 
scores that enter the forward/backward algorithm (Heigold 2009). For this reason, the 
corresponding update rules and gradients are not explicitly stated. 

3.3.4.2.5. Tasks and Experimental Setups  

The different tasks are summarized in Table 3.20. 
RWTH Basic Setup: The basic setups have been described by Heigold (2009). The 

GHMMs use CART-tied triphones and globally pooled variances. This allows us to 
produce rather good Maximum Likelihood (ML) baselines consisting of a fairly high 
number of densities, cf. Table 3.20. The LVCSR tasks use all Vocal Tract Length 
Normalization (VTLN) and Speaker Adaptive Training (SAT). In addition, some setups 
use Multi-Layer Perceptron (MLP) features. Except for EPPS (EBW), Rprop (Riedmiller 
1993) was used for the optimization of the discriminative models. The best training 
iteration was determined on the development corpus. 

IBM Basic Setup: The basic setup is the same as that used by Povey et al. (2008) 
and Saon (2008). All systems have state-specific variances; all systems have quinphone 
cross-word context; all have cepstral mean subtraction and those with VTLN have 
cepstral variance normalization. All setups with fMLLR are SAT trained. Setups that are 
shown as having fMLLR are also tested with regression tree MLLR following fMLLR. 
The optimization of the discriminative models was done with different versions of the 
EBW algorithm (4 iterations). 

 
Identifier Corpus description Train/Test [h] Features/Model #States/#Dns 
SieTill German digit strings 11.3/11.4 25 LDA(MFCC) 215/27k 

EPPSE English parliament 
plenary sessions 90/2.9 (Eval07) 45 LDA(MFCC+voicing) 

+VTLN+SAT 4,500/830k 

CBNBC230 Chinese BN & BC 230/2.9 (Eval06) 45 LDA(MFCC+tone) 
+VTLN+SAT 4,500/1,100k 

CBNBC1500 Chinese BN & BC 1,500/2.9 (Eval06) 45 LDA(PLP+voicing)+3 tones 
+32 MLP+VTLN+SAT 

4,500/1,200k 
 

ABN1400 Arabic BN 1,400/Dev07 VTLN+fMLLR 5,000/400k 
ACTS80 Iraqi conversational

telephone speech 80/2.5 VTLN+fMLLR 3,500/75k 
 

EBN50 English BN 50/RT-04 Unadapted 2,200/50k 
EBN700 English BN 700/RT-04 Unadapted 6,000/250k 

Table 3.20: Corpora and setups, BN (broadcast news), BC (broadcast conversation). 

3.3.4.2.6. Large Margin MMI  

Here, different variants of the large margin optimization problem based on the hinge 
loss are presented. We adjust the notation slightly: W denotes a word sequence and X the 

Handbook of Natural Language Processing and Machine Translation 449



sequence of feature vectors, p(W) represents the language model, and p(X|W) stands for 
the acoustic model (without scaling factors for simplicity). 

This criterion is based on the large margin formulation in Section 3.3.4. Modified 
MMI is defined as 

 ఊ࣠(ெெூሻ(Λሻ = െ log  (Λሻ  െ ܬܰ  ேߛ1
ୀଵ log ൭ )ൣ ܹሻஃ(ܺ| ܹሻ݁ିఘ(ௐ,ௐሻ൧ఊ∑ ሾ(ܹሻஃ(ܺ|ܹሻ݁ିఘ(ௐ,ௐሻሿఊௐ ൱ 

 
For Gaussian-like CRFs, the acoustic model is log-linear and log p(Λሻ stands for the 

L2-norm regularization as in Equation (3.13). For this choice, it can be shown that for γ ՜ ∞, the optimization problem converges to the SVM optimization problem in Section 
3.3.4 using the hinge loss function. 

In a control experiment, modified MMI was applied to the SieTill task (see Table 
3.20). This simple digit string recognition task severely suffers from overfitting. As 
expected, the margin term helps significantly. For the best log-linear HMM, the ML 
baseline digit error rate was 1.81% whereas conventional and modified MMI yielded 
1.77% and 1.59%, respectively. Similar effects were observed on other log-linear setups, 
see (Heigold 2008a). 

Results for conventional GHMMs and the phoneme error as loss function can be 
found in Section 3.3.4.2.7. 

 
Boosted MMI (BMMI):  Boosted MMI (BMMI) is based on the same theoretical 

framework as modified MMI in the previous section. BMMI uses conventional GHMMs 
for the acoustic model and I-smoothing as regularization. The accuracy A for the margin 
is the approximate phoneme accuracy known from standard MPE. 

In practice and in addition to the boosting factor, BMMI differs from standard MMI 
by the way the learning rate constants (Povey 2008) are set (canceling of any shared part 
of the numerator and denominator statistics on each frame, denoted by suffix ‘-c’), and 
the acoustic model chosen for I-smoothing (previous iteration, denoted by suffix →prev). 
Here, we shall focus on the effect of the boosting term. The interested reader is referred 
to (Povey 2008) for more results. The results are summarized in Table 3.21 columns 2 
and 3. These experiments suggest that some improvement is due to the boosting term 
while the greater improvement is probably due to the refined learning rate constants and 
I-smoothing (Povey 2008). The results appear to be rather sensitive to the choice of 
optimization. 

BMMI can also be used for feature-space discriminative training, e.g., fMPE or 
fBMMI (see Table 3.21, column 5). Here, it is not clear what the effect of the boosting 
term is. 

 
 
 
 
 

Chapter 3: Machine Translation from Speech450



Criterion WER [%] Criterion WER [%] Criterion WER [%] 
 EBN50 EBN700  ACTS80  EBN50 ABN1400 

ML 25.3 20.5 ML 43.2 ML 25.3 17.1 
MMI  18.9 fBMMI-c 37.5 MMI-c→prev 22.4 15.2 
MMI-c 22.4  +BMMI-c 35.9 BMMI-c→prev 21.3  
BMMI  18.6 fMPE 40.4 M-BMMI-c →prev 21.2 14.2 
BMMI-c 21.7 17.9      
MPE 21.6 18.1 +MPE 36.8 MPE 21.6  

Table 3.21: Word Error Rate (WER) for EBN50 and EBN700 (RT04), ACTS80, and ABN1400 (see text for 
meaning of suffixes ‘-c’ ‘and →prev’. 

 
Margin BMMI (M-BMMI):  The approach of Saon (2008) is based on the large 

margin formulation in Section 3.3.4.2.2 in combination with the smooth hinge loss - 
 

ఊ࣠(ெିெெூሻ(Λ, ρሻ = െߩ െ ே ∑ ଵఊேୀଵ log ൬ൣ(ௐሻ౻(|ௐሻషഐಲ(ೈ,ೈሻ൧ം∑ ൣ(ௐሻ౻(|ௐሻషഐಲ(ೈ,ೈሻ൧ംೈ ൰ 

 
M-BMMI uses the state-based Hamming accuracy A for the margin term. This is in 

contrast to BMMI (approximate phoneme accuracy, see above). The Gaussian parameters 
Λ are optimized with EBW as described by Povey (2008) and Saon (2008) while is kept 
fixed. Table 3.21, column 7 and 8 compares M-BMMI with some other training criteria. 
The proposed approach to margin-based training is not restricted to the optimization of 
GHMMs. Semi-tied covariance transforms, for instance can be estimated as well in this 
framework (Saon 2009). 
 

Comparison of MMI Variants:  The three variants of large margin MMI are very 
similar. Modified MMI and BMMI are identical on the theoretical side, but differ in the 
optimization procedure (Rprop vs. highly tuned EBW). M-BMMI and BMMI use the 
same optimization strategy. M-BMMI and BMMI/Modified MMI differ in the choice of 
the accuracy for the margin (state based Hamming accuracy vs. approximate phoneme 
accuracy) and the regularization. All three variants tune the margin parameter manually 
(although not necessary from a theoretical point of view). Under these assumptions, M-
BMMI and BMMI are identical except for the choice of accuracy for the margin. 
 

3.3.4.2.7. Modified MPE  
In contrast to the hinge loss, the recognition error is bounded as illustrated in Figure 

3.10. The approximate phoneme error is expected to be closer to the true word error and 
to be more robust against outliers (e.g., imperfect transcriptions). 

We define an MPE-like criterion to be minimized representing a smoothed margin 
phoneme error with regularization according to Section 3.3.4 

 ఊ࣠(ொሻ(Λሻ = െ log  (Λሻ  

Handbook of Natural Language Processing and Machine Translation 451



 ܬܰ  ,ௐ,ܹ)ܧ ܹሻ ൭ )ൣ ܹሻஃ(ܺ|ܹሻ݁ିఘ(ௐ,ௐሻ൧ఊ∑ ሾ(ܹԢሻஃ(ܺ|ܹԢሻ݁ିఘ(ௐᇱ,ௐሻሿఊௐᇱ ൱ 

 
Using log-linear acoustic models and L2-norm regularization, it can be shown that 

for ߛ ՜ ∞ this criterion converges to the SVM optimization problem in Section 3.3.4 
using the associated margin phoneme error (Heigold 2008a). As for boosted MMI, we 
can use GHMMs for ஃ(ܺ|ܹሻ and I-smoothing for regularization. The accuracy A for 
the margin is the same approximate phoneme accuracy as for MPE. 

The results for modified MPE are summarized in Table 3.22. 
 

Criterion WER [%]  
 EPPSE CBNBC 
  230 1500 

ML 12.0 21.9 17.9 
MPE 11.5 20.6 16.5 
Modified MPE 11.3 20.3 16.3 

Table 3.22: Word Error Rate (WER) for EPPSE (Eval07) and CBNBC230/CBNBC1500 (Eval06). 

Justification of MPE Heuristics: Observe that formally, modified MPE is similar to 
conventional MPE. Indeed, modified MPE gives some new insight into several heuristics 
typically used for conventional discriminative training: the smoothing parameter 
corresponds with the scaling factor for the posteriors, I-smoothing is a refined 
regularization term (Povey 2003), and the weak language model can be considered an 
approximation of the margin term. 

3.3.4.4 Discussion 

We discussed approaches to modifying existing training criteria, e.g., MMI and MPE 
to include a margin term. These modified criteria are closely related to standard large 
margin classifiers, e.g., SVMs. This approach to large margin optimization has the 
advantage that it fits into the existing framework used for conventional discriminative 
training and allows for a direct evaluation of the utility of the margin term. As expected, 
modified MMI outperforms conventional MMI on a simple digit recognition task where 
over-fitting is an issue (≥75% of total discriminative improvement). For LVCSR, 
however, the additional margin term is less important, compared with the best state-of-
the-art systems (≤ 25% of total discriminative improvement). Reasons for this outcome 
might be that the loss term dominates for LVCSR, and that the margin concept is already 
well approximated by several heuristics (e.g., weak language model) used for 
conventional discriminative training. 
 
 

Chapter 3: Machine Translation from Speech452



3.3.5. Approaches to Speech Recognition based on Speaker 
Recognition Techniques  

Authors: Daniel Povey, Stephen M. Chu, Jason Pelecanos and Hagen Soltau 

3.3.5.1 Introduction  

A basic approach long used in text-independent speaker recognition is to train a 
Gaussian Mixture Model (GMM) for each speaker and to verify a test utterance based on 
the likelihood of the utterance given that speaker’s GMM compared with a cohort of 
other models or a single “universal background model”. A drawback of this approach is 
that it is hard to robustly estimate the parameters of the speaker-specific GMMs given 
limited data. Therefore, in recent years, approaches have been devised to estimate the 
parameters more robustly based on Maximum A Posteriori (MAP) (Gauvain et al. 1994; 
Reynolds et al. 2000) and subspace methods such as nuisance attribute projection 
(Solomonoff et al. 2005), within-class covariance normalization (Hatch et al. 2006) and 
joint factor analysis (Kenny et al. 2008). This joint factor analysis method in particular 
not only accounts for cross-speaker variability, but also directly addresses the issue of 
within speaker variability such as telephone type and background noise. The same 
problems that exist in speaker recognition, such as estimation given limited data and 
irrelevant sources of variation, also exist in speech recognition so it is natural to try to use 
those speaker recognition techniques in a speech recognition context. We have 
experimented with two different approaches.  

3.3.5.2 MAP-Based Adaptation  

In Boosted MMI for Feature and Model Space Discriminative Training (Povey et al. 
2008), we introduced a speech recognition technique based on MAP adaptation. Note that 
although we use the term “adaptation” it is not a speaker adaptation technique; the term 
refers to the adaptation of models to particular phonetic states. We first train a large 
mixture of Gaussians (e.g., 750 Gaussians), which we refer to as a “Universal 
Background Model” (the term is borrowed from speaker recognition). We then MAP 
adapt this large GMM to each clustered phonetic state. In order to improve the smoothing 
we actually used a modified form of MAP estimation, which took into account the 
phonetic decision tree, so that a phonetic state is adapted first to phonetic states that are 
close in the tree. The adapted models were diagonal covariance Gaussians, but we also 
introduced a separate Semi-tied Covariance (STC) transformation (Gales 1998) for each 
of the 750 Gaussians. This helped our experimental system, and in experiments 
performed later on we were unable to obtain any improvement from this type of 
technique in our baseline setup. In order to make the memory usage manageable, we 
introduced a parameter pruning scheme tied to the tree structure. 

Table 3.23 shows the results; Povey et al. (2008a) present additional details. The 
table shows about 1.5% absolute improvement for all conditions, but the situation is a 
little more complicated than that. The baselines with fMLLR and MLLR are “normal 
size” baselines with 500,000 Gaussians (about the size we would build for a normal 
evaluation system), but the VTLN-only baseline is twice the normal size at one million 

Handbook of Natural Language Processing and Machine Translation 453



Gaussians, which helped by 0.8%. This masks the fact that the MAP based system gave 
much more improvement in the VTLN-only condition. We increased the size of this 
baseline to provide a fairer comparison to the MAP based system which has a very large 
number of (smoothed) parameters, several times more than even the largest baseline 
system. Due to time constraints, we did not rerun the fMLLR and fMLLR+MLLR 
baselines with the larger size, which would have reduced our improvement. Regardless of 
the exact amount of improvement from the MAP based system, we did not pursue this 
approach because we believed that it would be too hard to combine this style of system 
with discriminative training. This is due to its very large number of parameters, which 
does not combine well with discriminative training (Povey 2004). 

 
Adaptation Baseline MAP MAP+STC
VTLN 17.9 17.5 16.6 
+fMLLR 16.6  15.0 
+MLLR 16.2  14.8 

    

Table 3.23: Results from MAP-based adaptation: Mandarin, dev'07. 

3.3.5.3 Subspace Adaptation  

The style of system we are currently working with is related to the joint factor 
analysis approach of Kenny et al. (2008). In this approach, the means of a large mixture 
of Gaussians are concatenated to form a “supervector”, and we allow the parameters of 
our adapted system to vary in a subspace of that vector space, so each phone in context 
would be represented by a vector in our chosen subspace. For example, we have used a 
subspace dimension of 50 in a system with feature dimension 40 and 750 Gaussians in 
the GMM, so we are using 50 out of a possible 30,000 dimensions. We also use a 
separate subspace to represent the nuisance effect of speaker variation, which is 
analogous to the use of a separate subspace to represent the nuisance effect of channel or 
session variation as shown by Solomonoff et al. (2005) and Kenny et al. (2008). We have 
added certain extensions to this basic model. One is to replace the use of a single vector 
to represent each phone in context, with a set of vectors each with their own weights. 
Each vector represents an adapted mixture of Gaussians, so our extended model 
represents a mixture of mixtures of Gaussians. We also make the Gaussian mixture 
weights vary as a function of our subspace vector. The log mixture weights vary linearly 
with the subspace vector, and we normalize them to sum to one. A further feature of our 
model is that each of the e.g., 750 basic Gaussians has a full covariance. The covariances 
are shared between the classes, and are not adapted as in the MAP based approach 
described above. 

3.3.5.3.1. The Model  

 
Here we describe our approach only briefly; see “Subspace Gaussian Mixture Models for 
Speech Recognition” (Povey 2009) for further details.  For each acoustic state j and given 
the speaker s, the probability model ܠ)|݆ሻ is:  

 

Chapter 3: Machine Translation from Speech454



ሻ݆|ܠ) = ∑ ூୀଵݓ ࣨ ቀܠ; ૄ(௦ሻ, ቁ    (3.20) ૄ(௦ሻ = ାܞۻ   ା(௦ሻ        (3.21)ܞۼ

ݓ = ୣ୶୮ (ܟܒܞశሻ∑ ୣ୶୮ (ܟᇲܒܞశሻᇲసభ ,     (3.22) 

so we describe the acoustic state by the vector ܞ and the speaker by ܞ(௦ሻ ; the notation ·+ 
means appending a 1 to the vector (to handle constant offsets). These vectors have a 
dimension of about 50. I is the number of Gaussians in the model being adapted and will 
typically be about 750. The acoustic states 1 ≤ j ≤ J have the normal range, e.g., several 
thousand, although this style of system can give its best results with more states than the 
baseline. The parameters Mi and Ni describe the phonetic subspace and the speaker 
subspace. The weights ݓ are a log-linear function of the model weights, normalized to 
sum to one. The parameters wi control the projection from the model subspace to the 
weights. The covariance matrices Σi are full covariance matrices that are not specific to 
the acoustic state but to the Gaussian index i. Experiments with a subspace representation 
of the inverse (diagonal) covariance matrix, combined with semi-tied covariance 
transform to handle more general rotations, failed to show any improvements. On top of 
the basic model described above, we use the notion of a sub-state so that a state can be 
represented by a weighted sum over the models given by different subspace vectors. 

The speaker adaptation in this model involves training very few speaker-specific 
parameters (we use a subspace dimension of typically about 50), so our speaker 
adaptation is actually done on a per utterance basis. We combine this with conventional 
fMLLR/constrained MLLR, which is straight-forward, and also with MLLR, which is 
less straight-forward because it does not combine well with the efficient model evaluation 
(we have to recompute the normalizing factors for each speaker). For the Arabic results 
that we report here, we also include an extension of the speaker adaptation technique that 
uses more speaker-specific parameters, but we do not describe this here in detail. 

3.3.5.3.2. Likelihood Evaluation  

When we evaluate likelihoods given the model, we can arrange the computation so 
that computing the likelihood for a particular acoustic state j and Gaussian index i 
involves no more than a dot product in the model subspace. We can then prune the 
Gaussian indices i to compute only a small subset of the, say, 750 Gaussians. This 
computation requires us to store a normalizing term for each state j and Gaussian index i, 
and this normalizing term dominates the memory requirements of the model. Explicitly 
constructing the projected means in this model is impractical due to memory constraints. 
The model is about two to four times slower to decode with than a normal system, but 
this gap could easily be eliminated without losing much performance. 

3.3.5.3.3. Training with the Subspace Model  

The process of model training consists of training the global parameters Mi, Ni and wi 
and the state-specific parameters vj. We initialize the vectors vj randomly and then 

Handbook of Natural Language Processing and Machine Translation 455



iteratively optimize the projections Mi and wi and the vectors vj. The speaker subspace is 
trained in a similar way; after training the main model we initialize the projections Ni and 
then iteratively re-estimate the speaker vectors v(S) and the projections Ni. In general, the 
statistics required to re-estimate these parameters are quite compact and the re-
estimations are fairly straightforward; we get an auxiliary function, which is quadratic in 
the parameters we are trying to optimize, and it is easy to optimize. Training requires 
about the same number of iterations as a normal system (about 30), but the first 10 
iterations are done using only one pass over the data because prior to introducing the sub-
states, it is possible to store appropriately pruned statistics, which allow us to do many 
iterations of update, without re-accessing the data.  

The only part of the optimization, which is not absolutely straightforward, is the part 
which relates to the weight projections wi and the effect of the weights on the model 
vectors vj. This is handled with a suitable quadratic approximation and is not a problem 
in practice. 

3.3.5.3.4. Discriminative Training  

We were able to combine discriminative training with this style of system. Model-
space discriminative training is fairly straightforward, as we can use a version of the 
Extended Baum-Welch type of technique using weak sense auxiliary functions (Povey 
2004). We did introduce some details that are specific to this framework. We use a factor 
in the learning rate for the state-specific vectors that slows down learning when the 
discriminative data counts are very small. More importantly, we find that we tend to get 
an instability that is localized to particular Gaussian indices i so we introduced a method 
to detect this via differences in the (appropriately normalized) gradient directions on 
successive iterations; if we detect instability we slow down the learning rates for the 
affected matrices. The discriminative training we implemented is based on Minimum 
Phone Error (MPE) (Povey and Woodland 2002) and Boosted MMI (Povey et al. 2008) 
objective functions. The tuning is quite similar to a normal system, e.g., E = 2, four to six 
iterations required; with E defined by analogy with (Povey 2004). Lattices were 
generated from the ML version of our factor-analyzed system, although this presented 
some challenges due to the slower decoding speed. 

Feature space discriminative training, e.g., fMPE (Povey 2005) is fairly 
straightforward as it only requires the calculation of the model likelihood gradients w.r.t. 
the features. We implemented a simpler version than the one described in Improvements 
to fMPE for Discriminative Training of Features (Povey 2005) as we omitted the 
“indirect differential” and did not perform the ML model update in between each feature-
space update. These two things are related as the “indirect differential” is intended to 
account for the effect of the model update. Our typical setup is to do ML training, then 
model space discriminative training, then feature space discriminative training, although 
for the Arabic system we used a more complicated sequence. Our experience is that 
model space discriminative training works about as well as for a normal type of system, 
but feature space discriminative training gives much less additional improvement. One 
plausible reason for this is that the structure of the transformation used in fMPE is quite 
similar to the model we are using (it is based on a similar sized mixture of Gaussians), so 

Chapter 3: Machine Translation from Speech456



there may be less synergy between the feature and model space than for a normal system. 
Despite this, the improvement at the ML level tends to be large enough to outweigh the 
reduced benefit from discriminative training. 

3.3.5.3.5. Probability Scale  

An interesting aspect of this kind of model (and it also applies to the MAP-adapted 
type of model), is that the optimal acoustic weight is very different from our normal 
system, around 1/12 as opposed to our normal value of 1/19. Because our features consist 
of nine frames spliced together and projected with LDA, and because LDA can be 
interpreted as an ML technique, we can argue that the “true” acoustic weight is (or should 
be bounded in some direction by) 1/9. This is because if we were to skip nine frames each 
time, we would be modeling each un-spliced frame exactly once. It is encouraging that 
this style of model takes us closer to the theoretically motivated acoustic weight. 

3.3.5.3.6. Details and Tuning of Training  

We start training by initializing the un-adapted GMM, which typically has 750 full 
covariance Gaussians and is trained on all speech classes mixed together. We then 
accumulate count and first order statistics using the product of these 750 Gaussians' 
posteriors and the (zero-one) phonetic class posteriors, based on a Viterbi alignment of 
the data using a baseline system. These statistics are compressed to fit in memory by 
discarding small counts. We perform the first 10 or so iterations of training at once 
without re-accessing the data, using these statistics. This is sufficient to get a good initial 
estimate of the model. From this point we can start increasing the number of sub-states 
and doing further passes over the data while computing Gaussian posteriors based on the 
adapted versions of the models. In these iterations of training, we accumulate statistics 
that are the same size as the parameter set (representing the linear term in the objective 
function for each parameter), plus Gaussian-specific counts, which determine the 
quadratic parts of the objective function. These Gaussian-specific counts dominate the 
statistics in terms of memory. 

If we are performing speaker adaptation as part of this approach, we compute on each 
training iteration the speaker-specific (actually, utterance-specific) vectors as we access 
each training file. 

3.3.5.3.7. Results  

English broadcast news, 50h training: 
We first show results on 50 hours of training data, on an English Broadcast News 

task. This 50 hours corpus is a subset of the Hub4 data which we have previously 
published results on (Povey et al. 2008). Testing is on the RT'04 English Broadcast News 
test set. 

The results in Table 3.24 are quite spectacular without discriminative training (top 
row); nearly 20% relative improvement from this approach. However, the improvement 
after discriminative training (bottom row) is only 5% relative. This situation where we 
have relatively little data plays well to the strengths of this system which has relatively 

Handbook of Natural Language Processing and Machine Translation 457



few parameters (about half the baseline). We do not have exactly comparable numbers on 
this testing setup for the MAP-based approach described above, but results on the same 
training and test sets using a slightly different configuration showed an improvement of 
24.6% to 23.6% with only ML training. It seems that with this amount of training data the 
subspace approach does much better than the MAP-based approach.8 However, the 
difference between the MAP and factor analyzed approaches was less clear with the 
larger Mandarin setup, which we used for MAP experiments Table 3.23. Again, we do 
not have exactly comparable numbers, but we estimate that the two systems in their best 
configuration would give about the same results under ML training. 
 

Conditions: Baseline Subspace

VTLN+fMLLR+MLLR 24.3% 19.6% 
+fMMI+MMI 18.2% 17.3%

   

Table 3.24: Subspace-adapt vs normal system on 50 hours English BN (test: RT'04). 

 
Arabic January 2009 Evaluation: 

Table 3.25 shows the word error rate numbers for our Arabic system prepared for the 
January 2009 GALE evaluation. The VxU refers to a vowelized (V) Arabic system cross-
adapted on the output of an unvowelized (U) system. “vfr” refers to “variable frame rate,” 
an experimental technique, which we applied in test time to normalize speaking rate. The 
sub-space (SUB) system is built on top of a vowelized system, so we cross adapt to the 
unvowelized output giving us SUBxU. The results shown are the final numbers, with all 
forms of adaptation plus discriminative training. The discriminative training regime 
applied to the subspace system was rather complicated and involved six iterations of 
model-space boosted MMI training, lattice regeneration, four further passes of boosted 
MMI, five iterations of fMPE and four iterations of MPE. Normally we would expect a 
system to stop improving after so much discriminative training, but this system proved 
quite robust to it. The discriminative training regime was applied ad hoc; we do not 
believe that there is anything special about this particular setup. The improvements 
versus our baseline system were about 1% absolute before discriminative training, i.e., 
larger than our final improvements with discriminative training included. 

 

System: Dev07 Dev08
Eval07 

(unsequestered)
VxU.vfr 10.0% 11.5% 14.4% 
SUBxU.vfr 9.5% 11.1% 14.2%

Table 3.25: Arabic evaluation system, January 2009. 

 
 
 

                                                 
8 Note that these numbers were obtained without MAP-adapting the variances, since the variance adaptation 
hurts on this smaller training set. 

Chapter 3: Machine Translation from Speech458



Mandarin January 2009 Evaluation: 
We also trained this style of system for IBM's Mandarin submission to the January 

2009 evaluation, trained on 1737 hours of data; see Table 3.26 for the results. Here, “T” 
means a tonal system (i.e., with tone feaures) and “N” means a non-tonal system, so the 
TxN baseline is a tonal system adapted (with fMLLR and MLLR) on the text output of a 
non-tonal system. The subspace (SUB) system is built on tonal features, and adapted on 
the non-tonal system. The baseline discriminative training regime was with five iterations 
of feature-space boosted MMI (fBMMI) followed by tree rebuilding and four iterations of 
model-space boosted MMI. The subspace system had five iterations of model-space 
BMMI and five of feature-space BMMI. The results with the subspace are not clearly 
better than the baseline; however, we need to consider the improvement we get from tree-
based MLLR for cross-adaptation, which we implemented for the baseline, but not the 
subspace system. Using our default, non-optimized min-count of 3000 (vs. 1250 in Table 
3.26), our baseline numbers on Dev07 and Eval07(unsequestered) were 9.9% and 9.6% 
respectively, which shows some of the effect of tree-based MLLR. So, if we had 
implemented tree-based MLLR for the subspace system, we believe we would have been 
able to show a clearer improvement over the baseline. 

 

System: Dev07 Dev08
Eval07 

(unsequestered)
TxN.vfr 9.7% 8.6% 9.2% 

SUBxN.vfr 9.7% 8.3% 9.4%

Table 3.26: Mandarin evaluation system, January 2009. 

3.3.5.4 Conclusion  

We have briefly described our work with MAP-based adaptation and subspace 
adaptation (joint factor analysis) for speech recognition. In these techniques we apply 
robust model adaptation techniques originally devised for adapting to speakers, but 
instead apply them to adapting to phonetic states. In both cases we get improvements 
under ML training compared with a conventional system, when trained with both small 
and large amounts of data. The first, MAP-based technique has the drawback that it has a 
very large number of parameters and, therefore, presents problems for discriminative 
training. The second, joint factor analysis based technique is more promising. We have 
demonstrated word error rate improvements on a large task in an evaluation setting; 
however, the improvements are quite modest. In addition to the word error rate 
improvements, the framework is quite useful in terms of allowing new kinds of 
techniques to be introduced. It may also offer the opportunity to improve speaker 
recognition techniques as it represents a kind of “unified model” of speaker and phonetic-
state variation. The main challenge is the complexity of the approach, which may limit its 
uptake. Further work based on these ideas can be found, for example, in “Subspace 
Gaussian Mixture Models for Speech Recognition” (Povey et al. 2010).  

Handbook of Natural Language Processing and Machine Translation 459



3.4 Language Models 

3.4.1. Introduction 

Author: Katrin Kirchhoff  
 

Over the last decade, language modeling has moved from standard generative 
Markov model style n-gram modeling to models incorporating more structure and 
different probability estimation techniques, such as syntax-based language models, neural 
language models, or discriminative language models. These models have been used both 
for speech recognition and for machine translation.  The contributions in this chapter 
address the use of such models in GALE speech-to-text and machine translation systems, 
as well as, the problem of language model adaptation.  

One section in this section is based on the neural network language modeling 
approach. Neural network language models (Bengio 2001) (also called continuous space 
language models) map the discrete word representation commonly used in text 
processing to a continuous representation and estimate n-gram probabilities in this 
continuous space.  The motivation for this approach is that a continuous representation is 
likely to lead to smoother probability estimates, which in turn allows better generalization 
to unseen contexts.  The mapping is performed by a neural network with a dedicated 
architecture that includes a mapping (or projection) layer in addition to the standard 
hidden and output layers. The weights of this layer are shared among all words in the 
vocabulary and are trained jointly with all other network parameters during language 
model training. 

Section 3.4.2 describes the use of neural language models in their GALE Mandarin 
and Arabic speech recognition systems. The section reports on various ways of increasing 
the efficiency of this approach.  

Section 3.4.3, by Tam et al. (CMU), addresses the problem of topic adaptation. 
Starting from the framework of latent Dirichlet allocation (LDA) (Blei 2003) to model 
topic structure, the section proposes several extensions: the basic LDA approach is 
generalized to a tree-based model that takes into account hierarchical correlations 
between different topics, and it is enriched with bigram information. Finally, a bilingual 
topic adaptation technique based on latent semantic analysis is developed to be able to 
adapt different types of models (language models, and   also, translation models) cross-
lingually. The proposed techniques were evaluated within GALE Chinese and Arabic 
speech recognition and translation systems and showed significant improvements. 

3.4.2. On the Use of Continuous Space Neural Network 
Language Models  

Authors: Holger Schwenk, Abdelkhalek Messaoudi, Jun Luo and Jean-Luc Gauvain 

3.4.2.1 Introduction  
Over the last years there has been growing interest in using neural networks for 

language modeling. Instead of relying on a backoff component, the neural network 

Chapter 3: Machine Translation from Speech460



approach attempts to overcome the data sparseness problem by performing the estimation 
in a continuous space. In early work, this type of language model was mostly used for 
tasks for which only a very limited amount of in-domain training data is available. In the 
context of the EARS and GALE programs new algorithms were developed to train a 
neural network language model on very large text corpora. This made possible the use of 
the approach in domains where several hundreds of millions words of texts are available. 
The neural network language model has been evaluated in state-of-the-art continuous 
speech recognizers for several languages and tasks. Word error reductions on the order of 
0.5% to 1% absolute have been obtained. 

The basic idea of the neural network LM, also called continuous space LM, is to 
project the word indices onto a continuous space and to use a probability estimator 
operating on this space (Bengio and Ducharme 2001). Since the resulting probability 
functions are smooth functions of the word representation, better generalization to 
unknown n-grams can be expected. A neural network can be used to simultaneously learn 
the projection of the words onto the continuous space and to estimate the n-gram 
probabilities. This is still an n-gram approach, but the LM posterior probabilities are 
interpolated for any possible context of length ݊ െ 1 instead of backing off to shorter 
contexts. The architecture of this approach is described in detail in Section 3.4.2.2. 

To date, this new language modeling method has been applied to large vocabulary 
speech recognition in six different languages (English, French, Spanish, Arabic, 
Mandarin and Dutch) achieving systematically consistent improvements in the word error 
rate. We describe here the work performed in the framework of the GALE project to use 
this technology in our Arabic and Mandarin speech recognition systems. In addition, the 
continuous space language model was used in a statistical machine translation system 
based on the open-source Moses decoder. Improvements of about one point BLEU were 
observed in a large Arabic/English translation systems (Schwenk and Esteve 2008). 
3.4.2.2 Architecture of the Continuous Space LM  

The basic idea of the continuous space LM (CSLM) is to project the word indices 
onto a continuous space and to use a probability estimator operating on this space 
(Bengio and Ducharme 2001). Since the resulting probability functions are smooth 
functions of the word representation, better generalization to unknown n-grams can be 
expected. A neural network can be used to simultaneously learn the projection of the 
words onto the continuous space and to estimate the n-gram probabilities. This is still a n-
gram approach, but the LM posterior probabilities are “interpolated” for any possible 
context of length n - 1 instead of backing off to shorter contexts.  

Handbook of Natural Language Processing and Machine Translation 461



 
Figure 3.11: Architecture of the continuous space language model. hj denotes the context wj−n+1, ..., wj −1. P is 
the size of one projection and H and N is the size of the hidden and output layer respectively. When shortlists 

are used the size of the output layer is much smaller than the size of the vocabulary. 

 
The architecture of the continuous space n-gram LM is shown in Figure 3.11. A 

standard fully-connected multi-layer perceptron is used. The inputs to the neural network 
are the indices of the ݊ െ 1 previous words in the vocabulary ݄  = ,ିାଵݓ  . . . , ,ିଶݓ  ିଵ and the outputs are the posterior probabilities of all wordsݓ
of the vocabulary: ܲ൫ݓ = ݅ห ݄൯       א ሾ1, ܰሿ     (3.23) 

where N is the size of the vocabulary. The input uses the so-called 1-of-n coding, i.e., the 
ith word of the vocabulary is coded by setting the ith element of the vector to 1 and all the 
other elements to 0. The ith line of the N ×P dimensional projection matrix corresponds to 
the continuous representation of the ith word. Let us denote ck these projections, dj the 
hidden layer activities, oi the outputs, pi their softmax normalization, and ݉, bj, ݒ and 
ki the hidden and output layer weights and the corresponding biases. Using these 
notations the neural network performs the following operations: 
 

Chapter 3: Machine Translation from Speech462



݀ = tanh൫∑ ݉ܿ  ܾ ൯     (3.24)  = ∑ ݒ ݀  ݇  (3.25)      = ݁ ∑ ݁ೖேୀଵൗ      (3.26) 

The value of the output neuron pi corresponds directly to the probability ܲ(ݓ = ݅| ݄ሻ. 
Training is performed with the standard backpropagation algorithm minimizing the 
following error function: ܧ = ∑ ேୀଵݐ log   ∑൫ߚ ݉ଶ  ∑ ݉ଶ ൯   (3.27) 

where ti denotes the desired output, i.e., the probability should be 1.0 for the next word in 
the training sentence and 0.0 for all the other ones. The first part of this equation is the 
cross-entropy between the output and the target probability distributions, and the second 
part is a regularization term that aims to prevent the neural network from over- fitting the 
training data (weight decay). The parameter β has to be determined experimentally. 

It can be shown that the outputs of a neural network trained in this manner converge 
to the posterior probabilities. Therefore, the neural network directly minimizes the 
perplexity on the training data. Note also that the gradient is back-propagated through the 
projection-layer, which means that the neural network learns the projection of the words 
onto the continuous space that is best for the probability estimation task. 

This basic architecture has a quite high complexity. The following methods were 
deployed resulting in processing times of less than 0.1xRT: 

 
1. Shortlists: the neural network is only used to predict the LM probabilities of a 

subset of the whole vocabulary.  
2. Lattice rescoring: speech recognition is done with a standard back off LM and a 

word lattice is generated. The CSLM is then used to rescore the lattice.  
3. Grouping: all LM probabilities needed for one lattice are collected and sorted. By 

these means all LM probability requests with the same context ht lead to only one 
forward pass through the neural network.  

4. Block mode: several examples are propagated at once through the neural network, 
allowing the use of faster matrix/matrix operations.  

5. CPU optimization: machine specific BLAS libraries are used for fast matrix and 
vector operations.  

6. Resampling: instead of cycling sequentially through all the data, we resample 
examples from the large corpora.  

 
The idea behind shortlists is to use the neural network only to predict the s most 

frequent words, ݏ ا |ܸ |, reducing by these means drastically the complexity. All words 
of the word list are still considered at the input of the neural network. The LM 
probabilities of words in the shortlist ( ܲேሻ are calculated by the neural network and the 

Handbook of Natural Language Processing and Machine Translation 463



LM probabilities of the remaining words ( ܲሻ  are obtained from a standard 4-gram 
backoff LM: ܲ(ݓ௧|݄௧ሻ = ቊ ܲே(ݓ௧|݄௧ሻ ௌܲ(݄௧ሻ   if ݓ௧ א shortlistܲ(ݓ௧|݄௧ሻ                                     else    (3.28) 

ௌܲ(݄௧ሻ = ∑ ܲ(ݓ|݄௧ሻ௪א௦௧௦௧(ሻ      (3.29) 

It can be considered that the neural network redistributes the probability mass of all 
the words in the shortlist. This probability mass is precalculated and stored in the data 
structures of the backoff LM. A backoff technique is used if the probability mass for a 
requested input context is not directly available. A detailed description of the speed-up 
techniques is given by Schwenk (2004) and Schwenk and Gauvain (2005b). 

using a standard fully connected multi-layer perceptron, training on very large corpora 
can be time consuming. Therefore, an algorithm was proposed by Schwenk and Gauvain 
(2005b) to enable training the neural network on any arbitrarily large corpus. The basic 
idea is quite simple and consists of selecting small random subsets of the data for each 
epoch rather than using all the available data. This procedure has the advantages that 
there is no limit on the amount of training data; that after several epochs, most of the 
examples have been seen at least once; and that changing the examples after each epoch 
may potentially increase the generalization performance. This procedure has been used 
with more than three billion words of training data. 

3.4.2.3 Experimental Evaluation in ASR  

Word error reductions using a continuous space LM for LVCSR were first reported 
on the EARS conversational telephone speech recognition task (Schwenk and Gauvain 
2002). Since then significant improvements have been reported on many speech 
recognition tasks and languages. Here results are reported on GALE broadcast data for 
both Arabic and Mandarin. 

Continuous space language models were trained using a 290k word list for Arabic 
and a 56k word list for Mandarin. The short list was of size 12k for Arabic and 8k for 
Mandarin. A traditional 4-gram language model was trained on all the available data for 
each language and pruned with high pruning threshold, and used as a short list backoff 
model to calculate the probability masses and to cover the probabilities of words not 
included in the short list. 

Since training the neural network is quite long, the text data was sampled according 
to the size of the corpus and its importance. For Arabic, the manual transcriptions of the 
audio data and the web transcripts are used in their entirety. Across the text sources a 
total of about 26 million contexts are projected, and each training iteration takes about a 
day. Table 3.27 shows the approximate number of contexts by Arabic text source for a 
training iteration. 

 

Chapter 3: Machine Translation from Speech

Although some fast training algorithms were already proposed (Schwenk 2004), 

464



Text source #contexts Text source #contexts Text source #contexts 
trans+webstrans 16.6 M addustour 0.4 M akhbar 0.3 M 
Nhr 2.0 M raya 0.4 M xin 0.3 M 
Albayan 1.5 M levantine 0.3 M al-watan 0.2 M 
Hyt 1.5 M ahram 0.3 M asb 0.1 M 
Aljaz 1.0 M     

Table 3.27: Number of contexts by Arabic text source for a CSLM training iteration 

Several neural networks were trained using different projection sizes, 200, 220 and 
250. The evolution of the perplexity on the training and the full development data set 
(dev06+dev07) with a network having a projection size of 200 is given in Table 3.28. The 
first few iterations result in a large decrease in perplexity of the training data, and to a 
lesser degree on the dev data. After eight or nine iterations, there is still a small gain on 
the training data, but this is not always the case for the dev data, for which the change in 
perplexity is seen to fluctuate. 
 

Iteration Train delta Dev06+
Dev07 delta Iteration Train delta Dev06+

Dev07 delta 

1 364.8 - 791.2 - 7 172.4 4.9 648.7 9.0 
2 236.0 128.8 717.9 73.2 8 168.5 4.0 647.9 0.8 
3 208.0 28.0 686.6 31.4 9 165.0 3.5 640.1 7.8 
4 193.5 14.4 671.3 15.3 10 162.2 2.8 640.7 -0.7 
5 184.2 9.3 662.0 9.3 11 159.8 2.4 638.3 2.4 
6 177.3 6.9 657.7 4.3 12 157.7 2.1 638.0 0.4 

Table 3.28:  Perplexity and change in perplexity of the Arabic training and development data as a function of 
training iteration for the CSLM 

Corpus Size Resampling Coeff.& Size 
audio transcripts 17.3M 1.000 17.3M
giga xin 319.9M 0.006 1.92M
giga cna 2 247.7M 0.008 1.98M
agile bitex ce 178.0M 0.010 1.78M
VOARFA 35.4M 0.056 1.98M
Phoenixtv 88.0M 0.023 2.02M
ibm sina 283.3M 0.007 1.98M
bbn webdata 187.3M 0.010 1.87M

Table 3.29: The Mandarin text corpora used to train the continuous space language model, with the 
resampling coefficient and corpus sizes 

The Mandarin continuous space model was trained on only a portion of the available 
text data as listed in Table 3.29. As for Arabic, all of the available transcripts of audio 
data (17.3M words) were used, as well as, other sources based on their recency and 
relevancy for a total of 1.3 billion words. The resampling coefficients of each individual 
source is also given in the table. It is 100% for the audio transcripts, and varies for the 
other sources in order to have on the order of two million words each at each iteration. 
These can be seen to range from 0.6% to 5% of the corpus size. Three neural networks 
were trained, having 200/250/300 hidden layers respectively. The corresponding 
perplexities on the combined development data set (dev07+eval07+dev08) are given in 

Handbook of Natural Language Processing and Machine Translation 465



Table 3.30. A standard 4-gram language model was formed by interpolating component 
LMs trained on 28 subcorpora. The perplexity on the combined dev07+eval07+dev08 
data with this language model is 192.6. Interpolating this model (interpolation weight 
0.484) with the three continuous space LMs using the weights shown in Table 3.30 
reduces the perplexity of the development data to 171.8. This interpolated language 
model is what is referred to as the 4-gram CSLM. 

A two pass decoding is used with PLP+MLP acoustic models (Fousek et al. 2008). 
The first pass generates a word lattice, followed by consensus decoding with 4-gram LM. 
This output is used for unsupervised acoustic model adaptation using CMLLR and 
MLLR, prior to a second decoding using the LM formed by interpolating the 4-gram LM 
with the 3 component CSLMs for the consensus decoding. 

 
Language Hidden Layer Size 
Model 200 250 300 
CSLM 220.11 219.24 217.29 
Interp. Weight 0.164 0.169 0.183 

Table 3.30: Perplexity of the combined dev07+eval07+ dev08 data and interpolation weights of the 3 
component CSLMs 

Table 3.31 reports recognition error rates for Arabic and Mandarin on three data sets. 
For Arabic, a WER reduction of 0.5 to 0.7% is obtained using the CSLM. The gain in 
Mandarin CER is a bit smaller, 0.4 to 0.5%. Continuous space models have been trained 
for other languages (French, Spanish, Dutch, English) and tasks (Schwenk 2007). In all 
cases one or more CSLMs are interpolated with a standard 4-gram back off language 
model and improvements of the same order of magnitude have been consistently 
obtained. 

Arabic LM eval06 dev07 eval07 
4-gram 19.1 12.1 13.7 
CSLM 18.4 11.6 13.0 
Mandarin LM dev07 evrt07ns dev08 
4-gram 11.3 10.3 10.5 
CSLM 10.8 9.9 10.1 

Table 3.31: Results comparing standard 4-gram backoff LM alone and interpolated with continuous space 
LMs on three data sets. Arabic WER (%) with automatic segmentation (top). Mandarin CER (%) with 

manual segmentation (bottom) 

3.4.2.4 Experimental Evaluation in SMT  

The continuous space LM was also used in a state-of-the-art phrase-based statistical 
machine translation (SMT) system. It is well known that the LM on the target language 
plays a crucial role in phrase-based MT system. It helps choosing among different 
possible translations of a word or phrase, decides whether reordering of the words should 
be performed and assures of course the smoothness of the produced sentence. Here we 
report on results with the CSLM achieved by the first author in an Arabic/English system 
that participated in the 2008 NIST MT evaluation (Schwenk and Esteve 2008). 

The translation model was trained on all provided data (about 165M words) and the 
baseline 4-gram LM on all the texts of the English LDC Gigaword corpus (more than 

Chapter 3: Machine Translation from Speech466



3.5G words). In addition, a large collection of one billion 5-grams were used, obtained 
from texts collected by Google on the Internet. It has been reported that significant 
improvements of the performance of an SMT system can be obtained using all this data 
(Brants et al. 2007), but this requires substantial hardware equipment that exceeded by 
far our possibilities. Therefore, we applied various steps of filtering with the goal to keep 
only the most important n-grams (about 139M 4-grams). The results of this SMT system 
are summarized in Table 3.32. Adding this “Google LM” reduced the perplexity by about 
9% in average, but most of the improvement is obtained on the WEB part of Dev06, 
which is actually not surprising given the source of this data. The CSLM achieved an 
additional perplexity reduction of almost 14% on top of the large LM which includes the 
filtered Google data. The storage requirements of the CSLM are also lower since it use a 
distributed representation of the knowledge. 

 
 Train LM Perplexity Dev06 BLEU Dev06 BLEU Eval08 
System #words size All NW Web All NW Web All NW Web 
Gigaword 
LM 3.4G 3.7G 128.1 104.7 206.5 44.40 47.27 34.90 42.13 

  

+ Google 
LM 

169M  
4-grams 5.5G 114.5 99.0 161.7 44.70 47.22 36.11 41.90 47.20 33.50 

CSLM 3.4G ≈ 1G 98.3 85.3 137.4 45.96 48.56 36.69 42.98 48.30 34.31 
Table 3.32: Result summary for the baseline SMT system, adding parts of the Google n-grams and using the 

CSLM 

The Google LM brought an improvement of 0.3 BLEU on the Dev data, all the 
improvements being again concentrated to the WEB part. Unfortunately, it turned out to 
be not useful on the Eval08 test data. The CSLM achieved an improvement of 1.1 BLEU 
on the test data, on top of this heavily optimized system. This final system achieved a 
very good ranking in the 2008 NIST MT evaluation. The official results of all 
participants have been published by NIST.9 

3.4.2.5 Conclusion 

Continuous space language models were initially developed in order to improve the 
generalization behavior when only a limited amount of in domain language model 
training data is available (Schwenk and Gauvain 2002). They were in particular used in 
the frame work of the DARPA EARS project to improve the modeling of conversational 
language. We have continuously improved the initial approach (Schwenk 2004; Schwenk 
and Gauvain 2005b; Schwenk 2007). Today, it is successfully used in all large 
vocabulary speech recognition systems developed at the LIMSI, consistently obtaining 
reductions of the word error rate of up to 1% absolute. We have developed very efficient 
algorithms to train the system on billions of words of text and to deploy it in real-time 
speech recognition system (Schwenk and Gauvain 2005a). In this work, we have reported 
results obtained in LIMSI’s Arabic and Mandarin speech recognition systems that were 
used in the DARPA GALE Program. Finally, the same technique was successfully ported 
to a large phrase-based Arabic/English statistical machine translation system. 
                                                 
9 http://www.nist.gov/speech/tests/mt/2008/    

Handbook of Natural Language Processing and Machine Translation 467



3.4.3. Rapid Unsupervised Topic Adaptation - A Latent 
Semantic Approach  

Authors: Yik-Cheung Tam, Ian Lane and Tanja Schultz 

3.4.3.1 Introduction  

Topic adaptation is crucial for automatic speech recognition (ASR) and statistical 
machine translation (SMT) as it enables higher-level contextual information to be 
effectively incorporated into a background model to improve performance. Latent 
semantic analysis (LSA) is an effective approach to model topical information in an 
unsupervised fashion. Traditional latent semantic analysis is based on singular value 
decomposition (Deerwester et al. 1990; Bellegarda 2000; Kim 2004; Bellegarda 2005), 
while modern approaches are based on probabilistic modeling, including probabilistic 
LSA (Gildea and Hofmann 1999; Mrva and Woodland 2004; Akita and Kawahara 2004), 
and latent Dirichlet allocation (LDA) (Blei et al. 2003). LDA has drawn significant 
attention in the ASR community, particularly on language model adaptation (Tam and 
Schultz 2005; Tam and Schultz 2006; Hsu and Glass 2006; Heidel et al. 2007; Chien and 
Chueh 2008; Liu and Liu 2008). A related approach also includes topic mixtures at a 
sentence level (Iyer and Ostendorf 1999). 

We propose a unified topic adaptation framework for monolingual and cross-lingual 
adaptation based on LDA. We have made several extensions and contributions to LDA 
within the adaptation framework. For monolingual modeling, our contributions are multi-
folded: we generalize LDA to latent Dirichlet-Tree allocation to model topic correlation 
via a tree-based topic prior; we extend latent Dirichlet-Tree allocation to its N-gram 
version to relax the “bag-of-word” assumption that word ordering is not modeled in 
LDA; we formulate a fractional Kneser-Ney smoothing for N-gram LSA to manage 
fractional counts; we derive a variational Expectation-Maximization (EM) algorithm for 
efficient model training on large data. For cross-lingual modeling, we present a bilingual 
LSA approach which enables using a source text of one language to adapt the models of 
another language. Not only our framework adapts a language model (LM) monolingually 
for ASR, but it also adapts language models of a target language, translation lexicons and 
phrase tables cross-lingually for SMT. 

3.4.3.2 Latent Semantic Analysis  

The goal of latent semantic analysis is to find a set of latent patterns to describe a 
data set in an unsupervised fashion. The idea is similar to dimensionality reduction such 
as principal component analysis (Duda et al. 2001) to find a subset of eigenvectors. 
Latent semantic indexing (LSI) is a traditional vector-space approach for LSA via 
applying singular value decomposition (SVD) on a term-document matrix of document 
corpora. The drawback of a vector-space approach is the difficulty to incorporate prior 
knowledge. On the other hand, probabilistic modeling is a principled way to incorporate 
prior knowledge, such as latent Dirichlet allocation (LDA) for latent semantic analysis. 
For background details, we first review LDA and then describe our extension, latent 
Dirichlet-Tree allocation, to model topic correlation. We present N-gram latent Dirichlet-

Chapter 3: Machine Translation from Speech

Tree allocation and efficient methods for model training and smoothing. 

468



3.4.3.2.1. Latent Dirichlet Allocation  

 
Figure 3.12: Graphical representation of document generation using latent Dirichlet allocation. N and M 

denote number of words in a document and number of documents in training corpora respectively 

One distinctive feature in latent Dirichlet allocation over a SVD-based approach is 
the use of a Dirichlet prior over a topic distribution θ as illustrated in Figure 3.12. The 
figure describes a generative procedure for a document ݓଵே in LDA as follows: 

 
1. Sample θ from Dirichlet(, ሼߙሽሻ.  
2. For each word ݅ݓ in a document ݓଵே ,  

• Sample a latent topic index ݖ from Multinomial(θ).  
• Sample ݅ݓ  from (ݖ|ݓ) (or ߚ௪௭).  

 
The model parameters Λ of LDA are {αk) for a Dirichlet prior, and ሼݓ)|݇ሻሽ for a set 

of topic-dependent unigram language models with k and w denoting a topic index and a 
term index respectively. Intuitively, αk can be interpreted as a prior pseudo count for 
topic k. 

3.4.3.2.2. Latent Dirichlet-Tree Allocation  

One assumption in latent Dirichlet allocation is the use of a Dirichlet prior implying 
topic independence. In other words, knowing the proportion of one topic does not provide 
any information about the proportion of another topic. In reality, this assumption may not 
be true since topics can be correlated. For instance, news articles in a newspaper website 
are usually organized into a topic hierarchy to represent topic correlation. This motivates 
the extension of latent Dirichlet allocation into latent Dirichlet-Tree allocation (Tam and 
Schultz 2007a) to capture topic correlation via a structural Dirichlet-Tree prior. A 
Dirichlet prior employed in LDA is a special case of a Dirichlet-Tree prior since a Dirich-
let prior can be visualized as a flat tree with depth one. Sampling a Dirichlet distribution 
becomes labeling tree branches from a node with probabilities summing to unity. In 
general, a Dirichlet-Tree can have different depths and structures. Figure 3.13 illustrates a 
depth-two Dirichlet-Tree where a root node is represented by a Dirichlet distribution with 
multiple branches and Dirichlet nodes at the bottom allow binary branches only. 

Handbook of Natural Language Processing and Machine Translation 469



 

 
Figure 3.13: A Dirichlet-Tree prior of depth two. 

Figure 3.14 illustrates the effect of the tree structure in terms of training likelihood by 
varying the number of branches in a Dirichlet node. Results show that the training 
convergence is optimal when a balanced binary tree is employed. As the number of 
branches increases, the independence assumption among topics becomes stronger, and 
thus, slowing down the training convergence. In an extreme case in latent Dirichlet 
allocation, the training convergence is the slowest. 

 

 
Figure 3.14: Training log-likelihood of latent Dirichlet-Tree allocation with different number of branches in a 

Dirichlet node using Xinhua News 2002 corpora (13M words). 

It seems that latent Dirichlet-Tree allocation is more complex than latent Dirichlet 
allocation. However, both models have the same graphical model representation, and 
thus, share a similar document generation procedure. The major difference lies in the 
sampling procedure for a topic distribution θ: 

 
1. Sample a vector of branch probabilities bj ~ Dirichlet(.,{αjc}) for each node 

j = 1 . . . J where {αjc} denotes the parameter of a Dirichlet distribution at 

Chapter 3: Machine Translation from Speech

node j, i.e. a pseudo-count of an outgoing branch c at node j. 

470



ߠ  = ∏ ܾఋೕ(ሻ      (3.30) 

where ߜ(݇ሻ is an indicator function, which sets to unity when the cth branch of 
the jth node leads to the leaf node of topic k, and zero otherwise. The kth topic 
weight θk is computed as a product of sampled branch probabilities from a root 
node to a leaf node corresponding to topic k. 

3. For each word ݅ݓ in a document ݓଵே ,  
• Sample a latent topic index ݖ from Multinomial(θ).  
• Sample ݅ݓ  from (ݖ|ݓ)  

 
Our model training employs variational EM similar to latent Dirichlet allocation 

except a difference in the variational E-step to handle a tree-based prior in Equation 
(3.30).  The difference can be understood via the conjugate property as follows: A 
Dirichlet-Tree posterior has the same form as a Dirichlet-Tree prior given a topic 
sequence ݖଵே since: (ܾଵ|ݖଵேሻ ן ଵே|ܾଵሻݖ)  · ;൫ܾଵ ሼߙሽ൯ ן ቀ∏ ∏ ܾఋೕ(௭ሻேୀଵ ቁ · ∏ ܾఈೕିଵ   

                          = ∏ ܾ൫ఈೕା∑ ఋೕ(௭ሻಿసభ ൯ିଵ  
This result suggests that the posterior branch count ߛ can be computed by 

accumulating the expected branch counts from current observations: 
 

E-Steps: ߛ = ߙ  ∑ ேୀଵܧ = ሻ൧     (3.31)ݖ)ߜൣ ߙ  ∑ ∑ ݍ ·ୀଵேୀଵ ݍ (݇ሻ൧           (3.32)ߜൣ ן |݇ሻݓ) · ݁ாൣlog ఏೖ;(ఊೕሻ൧     (3.33) 

where ܧሾlog ሿߠ = ∑ (݇ሻߜ ൣlogܧ ܾ൧ = ∑ (݇ሻߜ ൫Ψ(ߛሻ െ Ψ(∑ ሻୡߛ ൯where ݍ 
denotes ݖ)ݍ = .ݓ ଵேሻ meaning the variational topic posterior of wordݓ|݇  ሻ denotes)ߖ
the derivative of the logarithm of the Gamma function. Equations (3.31) and (3.33) are 
executed iteratively until convergence is reached. Equation (3.31) can be implemented as 
propagation and summation of fractional topic counts ݍ from the leaf nodes to the root 
node in a bottom-up fashion as shown in Figure 3.15. 
 

Handbook of Natural Language Processing and Machine Translation 471

2. Compute a topic distribution as follows:  



 
Figure 3.15: Variational E-step as bottom-up propagation and summation of fractional topic counts. 

M-Step: 

    (3.34) 

Where  

The re-estimation formula for (p(w|k)) is the weighted relative frequency in Equation 
(3.34) where δ(wi,w) denotes a Kronecker Delta function. The {αjc} parameters can be 
re-estimated with an iterative approach such as Newton-Raphson or simple gradient 
ascent. 

3.4.3.2.3. N-gram Latent Dirichlet-Tree Allocation  

 
 

 
 

 

 

 

 

Figure 3.16: Graphical representation of bigram LSA. Adjacent words of a document are connected together 
to form a Markov chain from left to right. 

Latent Dirichlet allocation makes a “bag-of-word” assumption that each word is gen-
erated irrespective of its position in a document. To relax this assumption, bigram LSA 
has been proposed (Wallach 2006) that modifies the graphical structure of LDA.  

 
 
 

θ 

z1 z2 zn 
w1 w2 wN Observed words <s> 

Latent topics 

Prior distribution over topic mixture weights

. . . 
. . . 

. . . 

Chapter 3: Machine Translation from Speech472



Figure 3.16 shows the graphical representation of bigram LSA where adjacent 
words of a document are connected together to form a Markov chain. The representation 
can be extended easily to its N-gram version. With the modified graphical structure, the 
document generation of bigram LSA is similar to LDA except that a previous word is 
taken into consideration to generate a word: 

 
4. Sample θ from Dirichlet(ߠ, ሼ ܾሽሻ. 
5. For each word ݅ݓ in a document ݓଵே ,  

• Sample a latent topic index ݖ~Multinomial(θ).  
• Sample ݅ݓ  given the previous word ݅ݓെ1 and the topic label ݖ: ,ିଵݓ|·)~ݓ   , ሻݖ

 
Instead of using Gibbs sampling (Wallach 2006) for inference, we estimate bigram 

LSA using variational EM. It can be shown that the E-steps are slight modification of 
LSA via replacing the kth unigram LM ݓ)|݇ሻ in Equation (3.34) with the kth bigram 
LM ݅ݓ|݅ݓ)െ1, ݇ሻ. For practical reason, we approximate ݅ݓ|݅ݓ)െ1, ݇ሻ with ݅ݓ)|݇ሻ to 
avoid keeping all topic-dependent bigram language models into memory in the E-steps. 
In the M-step, the accumulated topic-dependent bigram counts ܥ(ݑ, -ሻ are used to reݒ
estimate a new model. With maximum likelihood principle, the estimated model is an 
unsmoothed bigram LSA based on relative bigram counts ܥ(ݑ,  ሻ that assigns zeroݒ
probabilities to unseen bigrams undesirably. In the following section, we investigate 
fractional Kneser-Ney smoothing (Bisani and Ney 2008; Tam and Schultz 2008) to 
handle unseen bigrams and deal with fractional bigram counts. 
 
Fractional Kneser-Ney Smoothing:  The state-of-the-art smoothing algorithm for back 
off language models is based on Kneser-Ney smoothing (Kneser and Ney 1995). The 
belief of its success is due to the preservation of marginal distributions. However, the 
original formulation is defined on integral counts which is not suitable for N-gram LSA 
using fractional counts. Therefore, we have proposed fractional Kneser-Ney smoothing 
as a generalization of the original formulation. 
 

The state-of-the-art smoothing algorithm for backoff language models is based on 
Kneser-Ney smoothing (Kneser and Ney 1995). The belief of its success is due to the 
preservation of marginal distributions. However, the original formulation is defined on 
integral counts which is not suitable for N-gram LSA using fractional counts. Therefore, 
we have proposed fractional Kneser-Ney smoothing as a generalization of the original 
formulation. 

The interpolated form of a bigram LM with the absolute discounting can be expressed 
as follows: 

ܲே(ݒሃݑሻ  = max(ݑ)ܥ, ሻݒ െ ,ܦ 0ሻݑ)ܥሻ   ሻݑ)ߣ ܲே(ݒሻ 

where ܦ א (0, 1ሻ is a discounting factor and ܲே(ݒሻ is treated as a model parameter to 

Handbook of Natural Language Processing and Machine Translation 473



make the above equality holds. Intuitively, the solution for ܲே(ݒሻ can be interpreted as 
the relative frequency over discounts (or heldout counts) as follows:  
 ܲே(ݒሻ  = ರವ(·,௩ሻା·ேಭವ(·,௩ሻ∑ ರವೢ (·,௪ሻା·ேಭವ(·,௪ሻ     (3.35) 

where ܥஸ(·,  ,ܦ and smaller than ݒ ሻ  denotes  the  sum  of  bigram  counts precedingݒ
while வܰ(·,  with bigram counts ݒ ሻ denotes the number of word types precedingݒ
bigger than ܦ. Equation (3.35) generalizes the original formulation since each integral 
count is always bigger than ܦ by definition. Therefore, the term ܥஸ(·,  ሻ vanishes thusݒ
recovering the original formulation. In general, the approach can apply to a backoff N-
gram LM or a factored language model via propagating heldout N-gram counts from a 
higher-order LM to a lower-order LM recursively. 

3.4.3.2.4. Two-Stage Unsupervised LM Adaptation  

Given word hypotheses from the previous decoding pass as adaptation text, we apply 
E-steps (Equations (3.31) – (3.33)) to estimate variational Dirichlet posterior of each 
node in a Dirichlet-Tree. We estimate the topic weights of the adaptation text using the 
following equation: ߠ ן ∏ ൬ ఊೕ∑ ఊೕᇲᇲ ൰ఋೕ(ሻ     (3.36) 

 Then we apply the topic weights to obtain adapted unigram, bigram and trigram 
LSA: (ݓሻ =  ሻୀଵ݇|ݓ) · ሻݒ|ݓ) ߠ = ∑ ,ݒ|ݓ) ݇ሻୀଵ ·                 (3.37)ߠ

,ݑ|ݓ) ሻݒ =  ,ݑ|ݓ) ,ݒ ݇ሻୀଵ ·  ߠ

 
At the first stage of LM adaptation, we integrate the LSA marginals into a 

background LM via marginal adaptation (Kneser et al. 1997): 
ሻ݄|ݓ)(ଵሻ  = ఈ(௪ሻ·್(௪|ሻ∑ ఈ(௩ሻ·್(௩|ሻೡ      (3.38) 

Where ݓ)ߙሻ = ൬ ೌ(௪ሻ್(௪ሻ൰ఢ
 and ߳  is a tuning parameter between 0 and 1. Intuitively, the 

likelihood ratio ݓ)ߙሻ controls when to boost/de-emphasize the probability of an on-
topic/off-topic N-gram entry. Computing the normalization factor in Equation (3.38) 
involves summing over all possible words v which is prohibitive on large vocabulary. 
However, an efficient normalization is described by Kneser et al. (1997) for a back-off 

Chapter 3: Machine Translation from Speech474



LM. At the second stage of LM adaptation, the adapted LM from the first stage of 
adaptation is linearly interpolated with the adapted bigram and trigram LSA as follows: 
ሻ݄|ݓ)(ଶሻ  = ଵߣ · ሻ݄|ݓ)(ଵሻ  ଶߣ · ሻݒ|ݓ)  ଷߣ · ,ݑ|ݓ)  ሻݒ

 
where {ߣ} are interpolation weights tuned using a development set. 

When v is a stopword such as auxiliary verbs, articles, conjunctions, sentence 
boundary markers and punctuations, we do not adapt their N-gram probabilities because 
predicting stopwords mostly relies on the syntactic context, but not the topical context. 

3.4.3.3 Bilingual Latent Semantic Analysis  

The goal of cross-lingual adaptation is to use information of one language to adapt 
the models of another language. Bilingual LSA (bLSA) (Tam et al. 2007b) provides a 
platform for cross-lingual topic adaptation using the fact that topical information are 
language independent, and thus, transferable among languages. To implement this 
property, bilingual LSA enforces a one-to-one topic correspondence between source and 
target LSA models so that an inferred topic distribution can be transferred from a source 
language to a target language. For parallel document pairs that are faithful translations, a 
one-to-one topic correspondence is reasonable. Figure 3.17 illustrates the idea of topic 
transfer between mono-lingual LSA models followed by language model, translation 
lexicon and phrase table adaptation in a speech translation system. Since our approach 
adapts models before translation using a source text, an extra decoding pass to obtain an 
initial translation output for monolingual adaptation is not needed. For the same reason, 
propagation of translation errors can be avoided using a source text for adaptation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.17: Bilingual LSA-based adaptation via transfer of topic distribution from a source language to a 
target language for speech translation. 

Chinese      
N-gram LM 

English      
LSA 

English N-
gram LM 

Chinese      
LSA 

Translation 
Lexicon 

Phrase Table

Chinese-English 

Parallel document corpora

Mandarin audio English sentences Topic distribution 

Chinese ASR Chinese->English SMT 

Handbook of Natural Language Processing and Machine Translation 475



In the following sections, we present an approach for bilingual LSA training. In 
addition, we borrow the LM adaptation techniques from a monolingual setting to a cross-
lingual setting. 

 
 
 

3.4.3.3.1. Bilingual LSA Training  

 
 
 
 
 
 
 
 
 

Figure 3.18: LSA bootstrapping via sharing of variational Dirichlet posteriors for parallel documents. 

 

 
Figure 3.19: Training log likelihood of a bootstrapped English LSA from a Chinese LSA compared to a flat 

monolingual English LSA. 

 
Figure 3.18 illustrates the idea of enforcing a one-to-one topic correspondence of 

parallel document pairs to bootstrap target LSA from source LSA denoted as ܾܣܵܮ(௦,௧௧ሻ. Since the topic transfer can be bidirectional, we can perform bilingual LSA 
training in a reverse manner, i.e., training a target LSA model followed by bootstrapping 

Source LSA Target LSA 
bootstrapping

Chinese document 1 

Chinese document 2 

Chinese document M 

Topic distribution 1

Topic distribution 2

Topic distribution M

English document 1

English document 2

English document M

English LSA model 

. . . . . . ...

Chapter 3: Machine Translation from Speech476



a source LSA model denoted as ܾܣܵܮ(௧௧,௦ሻ. However, previous experiments have 
confirmed that the bootstrapping directions make no difference in cross-lingual LM 
adaptation performance (Tam et al. 2007b). 

3.4.3.3.2. Cross-Lingual LM Adaptation  

Marginal language model adaptation in a cross-lingual setting can be performed in 
almost the same manner as in a monolingual setting as described in Section 3.4.3.2.4. In 
the cross-lingual case, a source text is used for adaptation. First, we estimate the topic 
weights using source LSA and the source text using Equation (3.36). Then we apply the 
inferred source topic weights (ߠ(ுሻ ሻ into target LSA to obtain in-domain LSA 
marginals as follows: ாܲே(ݓሻ = ∑ ாேሻୀଵ) ሻ݇|ݓ) ·  (ுሻ    (3.39)ߠ

Finally, we follow the same marginal LM adaptation procedure described in Section  

3.4.3.3.3. Translation Lexicon Adaptation  

Not only bilingual LSA applies to LM adaptation, but it also extends to translation 
lexicon adaptation (Tam and Schultz 2007b). It is motivated from an observation that a 
source word can be translated into different target words depending on a topical context. 
A popular example is “bank”, which can be related to either a “financial bank” or a “river 
bank”. An adapted translation lexicon can rescore phrase pairs of a phrase table to reflect 
their topical dependency towards a source text. 

Motivated by information theory, we formulate the adaptation problem as marginal 
adaptation. The goal is to minimize the Kullback-Leibler divergence between an adapted 
lexicon (ܿ|݁ሻ and a background lexicon (ܿ|݁ሻ such that the lexical marginals 
computed from the adapted lexicon are equal to in-domain marginals (ܿ|݀ ሻ that are 
estimated from a source text. Thus, an objective function is defined as follows: 

Minimize ∑ (݁ሻ · .)൫ܮܭ |݁ሻ||(. |݁ሻ ൯ such that ܿ: ∑ (݁ሻ · (ܿ|݁ሻ :݁ , ሻ݀|ܿ) = ∑ (ܿ|݁ሻ = 1 
where ݀ is a source text to estimate a unigram distribution. The optimal solution is as 
follows: (ܿ|݁ሻ ן (ܿ|݁ሻ  · ݁ఒ ן (ܿ|݁ሻ · ݁∑ ఒೕೕ ೕ(,ሻ 

 
where ݂(ܿ, ݁ሻ = ቄ1          if ܿ = ݆0     otherwise ݂(ܿ, ݁ሻ is a unigram feature function independent of e. Since the solution of an 
adapted lexicon is in an exponential form, the optimization problem is similar to the 
maximum entropy setting. Therefore, we solve ߣ using generalized iterative scaling 
(GIS) (Darroch and Ratcliff 1972) as follows: ߣ(௧ାଵሻ = (௧ሻߣ  log ா෨ൣೕ(,ሻ൧ாൣೕ(,ሻ൧ ൎ (௧ሻߣ  log (ୀ|ௗ ሻ∑ (ೌሻ(ୀ|ሻ·್ೞೌ(|ௗሻ    (3.40) 

Handbook of Natural Language Processing and Machine Translation 477



where t denotes an index of a GIS iteration with (ሻ(ܿ|݁ሻ = (ሻߣ (ܿ|݁ሻ =  (݁ሻ is .0
approximated by the English LSA marginals ܲ௦(݁|݀ሻ computed from bilingual LSA. 
Since the range of e in Equation (3.40) is limited to the number of possible translation 
pairs (ܿ, ݁ሻ in a lexicon, computing the denominator term is efficient without evaluating 
all possible e. We estimate (ܿ|݀ሻ  using the smoothed relative word frequency of a 
source text with Good-Turing discounting scheme. Since the optimization is convex, a 
global optimal solution of an adapted lexicon is guaranteed. 

3.4.3.3.4. Phrase Table Adaptation  

Ideally, an adapted translation lexicon can be applied directly to phrase extraction. 
But, this involves an extra implementation work into the phrase extraction algorithm. A 
simple approach is to take a background phrase table and assume that good phrase pairs 
are already captured by the table. With an adapted translation lexicon, we can score each 
phrase pair (ܿଵூ , ݁ଵሻ in the background phrase table as follows: ൫ܿଵூ|݁ଵ൯ = ∏ ଵூୀଵ · ∑ |൫ܿ ݁൯      (3.41) 

where 0 ൏ ܬ ൏  denotes the effective number of target word ݆݁ aligned to a source word ܿ݅ after pruning unlikely lexical entry with probability less than 10−4 in the adapted ܬ
translation lexicon. The motivation is to have a “sharper” probability average to make the 
phrase score more discriminative. The NULL model ܮܮܷܰ|ܿ)ሻ or the minimum of ܮܮܷܰ|ܿ)ሻ is used as a backoff model to avoid zero probability of an unseen word 
translation. ൫ܿଵூ|݁ଵ൯ can be defined in the same manner. For phrase table adaptation, 
these two bLSA-adapted phrase scores are simply appended to the background phrase 
table for subsequent minimum error rate training (MERT) and SMT decoding. 

3.4.3.4 Experimental Setup  

The proposed topic adaptation framework was evaluated monolingually for ASR and 
cross-lingually for SMT. 

Chapter 3: Machine Translation from Speech478



3.4.3.4.1. ASR Setup  

Our CMU-InterACT GALE-Phase 3 transcription systems were employed for 
Chinese Mandarin and Arabic evaluation. Chinese and Arabic are very different 
linguistically. Chinese has a compact vocabulary formed via a combination of Chinese 
characters while Arabic has a large vocabulary due to morphology. The sizes of Chinese 
and Arabic vocabulary are 108k and 737k respectively in our GALE Systems. Both 
systems were trained with the public LDC data released from the GALE Program. The 
corpora statistics for acoustic and LM training are shown in Table 3.33. The development 
and test sets are shown in Table 3.34. Dev08 and Dev07 were employed as the tuning set 
for Mandarin and Arabic system respectively while the remaining sets were test sets. 
Please refer to Section 3.5.3 and Section 3.6.4 for detailed descriptions of our Mandarin 
and Arabic systems, respectively. The number of latent topics K in LSA was set to 200 
based on our past knowledge of language model adaptation for ASR. A balanced binary 
Dirichlet-Tree prior was used. A two-stage LM adaptation was performed as described in 
Section 3.4.3.2.4 using the word hypotheses from the final decoding pass. Incremental 
LSA and N-gram LSA based lattice rescoring were then applied to obtain the final word 
hypotheses. Character error rate (CER) and word error rate (WER) were reported for 
Mandarin and Arabic evaluation respectively. Matched pairs sentence-segment word 
error test (Gillick and Cox 1989) was performed for significance test using the NIST 
scoring tool. 

   
 Mandarin Arabic 
 AM LM AM LM 
GALE-Phase  3 1300hr 1.5B 1500hr 962M 

Table 3.33: Size of acoustic model (AM) and language model (LM) training corpora for GALE Phase 3 
Mandarin and Arabic transcription systems in terms of number of hours and word tokens. 

Mandarin Arabic 
Dev08 Eval07u Eval07r Dev07 Dev08 Eval07u 
0.98hr 1.15hr 1.64hr 2.58hr 3.04hr 3.4hr 

Table 3.34: Statistics of development and test sets for transcription evaluation. “Eval07u” and “Eval07r” 
stand for unsequestered and retest portions of Eval07 respectively. 

3.4.3.4.2. MT Setup  
 LM training Parallel training corpora 

SMT System English LM Chinese English 
Development 500M 59M 67M 

GALE-Phase 2 2.7B 232M 260M 
Table 3.35: Size of language model training corpora and parallel training corpora for phrase extraction in 

terms of number of word tokens. 

Our medium-scale SMT development system and the large-scale GALE Phase 2 
SMT system were employed that translate from Chinese to English (Hildebrand et al. 
2008). Phrase extraction was performed using parallel corpora as shown in Table 3.35. 
The table also shows that 4-gram and 5-gram LM were trained using 500M and 2.7B 
English words for the medium-scale and the GALE Systems, respectively. 

Handbook of Natural Language Processing and Machine Translation 479



The SRILM toolkit (Stolcke 2002) was used for language model training with the 
modified Kneser-Ney smoothing. SMT was performed by constructing a translation 
lattice, which contained all possible matched bilingual phrase pairs of an input source 
sentence. In text translation using the GALE Phase 2 system, part-of-speech based word 
reordering (Rottmann and Vogel 2007) was performed on an input sentence to produce 
an input source lattice before building the translation lattice. Search was then performed 
on this lattice using our STTK beam search decoder (Vogel et al. 2003). The word re-
ordering window was set to three for the medium-scale system, while monotonic 
decoding was applied for the GALE System since word reordering was already applied in 
the source lattices. An optimal path was returned with the maximum translation score 
consisting of a log-linear combination of feature functions, such as, language model 
probability, distortion penalty, word-count penalty, phrase count, phrase-alignment scores 
and bilingual LSA-adapted phrase scores. The corresponding feature weights were 
optimized in BLEU (Papineni et al. 2002) using minimum error rate training (Och 2003). 
Table 3.36 shows the development and test sets. All systems were tuned on MT03. The 
test set for text translation was MT06 with four English references. For speech 
translation, the test set was the unsequestered broadcast news portion of Mandarin Eval07 
with confusion-network-like English references to represent multiple translation options 
of an English phrase. The bilingual LSA model was trained using the Chinese–English 
parallel document corpora with statistics shown in Table 3.35. Our bilingual LSA training 
did not take advantage of the large parallel corpora in phrase extraction due to the loss of 
document boundary. However, encouraging results were still achieved. The source and 
target vocabulary in bilingual LSA were limited to words occurred in the phrase table. 
The Stanford Chinese word segmenter (Tseng et al. 2005) was applied to segment the 
Chinese side of the parallel corpora. Monolingual LSA training was first applied on the 
Chinese side followed by LSA bootstrapping on the English side. 

 
Set Sentence Document Reference 
MT03 (dev) 919 100 4 
MT06 1664 79 4 
Eval07u.BN 314 32 CN 

Table 3.36: Statistics of a development set (MT03), a test set (MT06) for text translation, and the 
unsequestered broadcast news (BN) portion of Eval07 for speech translation. Confusion network (CN) is 

used to represent multiple translation options of a target phrase in Eval07 test set. 

Each source test document was used for cross-lingual adaptation before SMT 
decoding. First, marginal adaptation was applied to an English background language 
model. Words on the stop-word list plus punctuation were filtered out from language 
model adaptation. Secondly, translation lexicons were also adapted via marginal 
adaptation. Bilingual LSA-adapted phrase scores on both translation directions were 
added as new feature functions to the background phrase table in an offline fashion 
before MERT and SMT decoding. Thirdly, N-gram LSA was served as an additional 
language model feature that is topic adaptive to each source test document. The MT 
performance was reported using BLEU and NIST (Doddington 2002) scores. Significance 
testing was performed using a bootstrapping approach described by Zhang and Vogel 
(2004). 

Chapter 3: Machine Translation from Speech480



For speech translation, we evaluated the effectiveness of topic adaptation using 
different source inputs on our GALE Phase 2 Mandarin-English SMT system without 
part-of-speech reordering feature. We translated word hypotheses from unadapted and 
LSA-adapted GALE Phase 3 Mandarin transcription systems with character error rates 
5.6% and 5.2% respectively on the unsequestered broadcast news portion of Eval07 test 
set. We also translated manual transcription to serve as an upper bound performance for 
comparison. 

3.4.3.4.3. Recognition Results  

The upper section of Table 3.37 columns 2-4 shows the overall LM adaptation results 
on Mandarin before cross adaptation. To illustrate the effect of LSA during decoding, the 
first background setting is compared to the second background setting that enables LSA 
during decoding. Both settings are then followed by lattice rescoring using LSA and 
bigram LSA (biLSA). Applying LSA during decoding helps on all test sets compared to 
the unadapted baseline. In addition, applying LSA for lattice rescoring yields further CER 
reduction. Bigram-LSA rescoring yields an additional 2.9 - 4.3% relative CER reduction 
compared to LSA rescoring, which is statistically significant at a ≤5% significance level 
in all test cases. Combining bigram and trigram LSA gives a slight gain on Eval07r. 
Comparing to the unadapted baseline, the final relative reduction after LM adaptation is 
between 5% – 7.6%, which is statistically significant at a 0.1% significance level in all 
test cases. The results after cross adaptation follows a similar trend with 3.3% – 6.7% 
relative CER reduction compared to the unadapted baseline. 

 
Mandarin BN (BC) Dev08 Eval07u Eval07r Dev08 Eval07u 
Background 11.6 14.0 11.8 5.4 (17.8) 5.6 (24.8) 
+LSA 11.4 13.9 11.6 5.0 (17.7) 5.6 (24.7) 
+biLSA (Kneser) 11.0* 13.6* 11.1* 5.0 (17.0*) 5.4 (24.3) 
background (LSA) 11.5 13.8 11.7 5.5 (17.4) 5.7 (24.3) 
+LSA 11.2 13.7 11.5 5.2 (17.1) 5.5 (24.2) 
+biLSA (Witten) 10.9* 13.3* 11.1* 5.0 (16.6*) 5.2* (23.9) 
+biLSA (Kneser) 10.8* 13.3* 11.0* 4.9* (16.7) 5.2* (23.8*) 
+triLSA (Kneser) 10.8* 13.3* 11.1* 5.1 (16.3*) 5.2* (23.9) 
+allLSA (Kneser) 10.8* 13.3* 10.9* 5.0 (16.5*) 5.2* (23.9) 

Cross-adaptation with IBM
background 9.0 10.8 9.0 4.2 (13.7) 4.1 (19.6) 
+LSA 8.9 10.6 8.7 4.1 (13.5) 3.9 (19.4) 
+biLSA 8.6* 10.4 8.5* 3.9* (13.3) 3.6* (19.3) 
background (LSA) 9.0 10.6 8.8 4.2 (13.7) 3.9 (19.4) 
+LSA 8.8 10.5 8.6 4.1 (13.6) 3.8 (19.2) 
+biLSA 8.7 10.3* 8.4* 3.8* (13.5) 3.5* (19.1) 

Table 3.37: Lattice rescoring results on overall (columns 2 - 4) and BN (BC) in character error rate 
using the CMU-InterACT Mandarin transcription system for the GALE Phase 3 evaluation. * denotes 

results that are significantly better than LSA at ≤5% level of significance. 

The performance trend is similar on Arabic as shown in Table 3.38 columns 2 - 4. 
LSA gives slight WER reduction compared to the unadapted baseline. Moreover, bigram 

Handbook of Natural Language Processing and Machine Translation 481



LSA achieves additional 3% relative WER reduction compared to LSA on the unseen 
Dev08, which is statistically significant at a 0.1% significance level. 
 

Arabic Dev07 Dev08 Eval07u Dev07 Eval07u 
background 14.3% 16.4 22.7 11.6 (19.4) 20.8 (24.7) 
+LSA 14.2 16.4 22.7 11.5 (19.2) 20.6 (24.8) 
+biLSA (Witten) 13.9 15.9* 22.4* 11.0* (19.0) 20.4* (24.6) 
+biLSA (Kneser) 13.8* 15.9* 22.5 11.0* (18.9) 20.4* (24.7) 

Cross-adaptation with IBM 
background 11.8 13.9 20.3 9.9 (15.1) 18.7 (22.0) 
+LSA 11.8 13.8 20.3 9.8 (15.5) 18.6 (21.9) 
+biLSA (Kneser) 11.7 13.6* 20.1 9.8 (15.2) 18.2* (22.1) 

Table 3.38: Lattice rescoring results on overall (columns 2 - 4) and BN (BC) in word error rate using the 
CMU-InterACT Arabic transcription system for the GALE P3 evaluation. * denotes results that are 

significantly better than LSA at ≤ 5% level of significance. 

The performance breakdown in broadcast news (BN) and broadcast conversation 
(BC) are shown in Table 3.37 and 3.38 columns 5 - 8 for Mandarin and Arabic, 
respectively. Bigram LSA generally works better on BN than BC in terms of relative 
error reduction although the recognition accuracy is much better on BN than BC. One 
possible reason is the mismatch of the LM training data that are mainly newspaper text 
closer to BN than BC. 

Not only fractional Kneser-Ney smoothing is comparable to Witten-Bell smoothing 
in performance, but the model is also more compact. For instance, the size of the 
compressed Arabic model after fractional Kneser-Ney smoothing is 2.4Gb, while the 
model size after Witten-Bell smoothing is 3.7Gb yielding 35% relative reduction in 
model size. 

3.4.3.4.4. Text Translation Results  

English model EN 4-gram (500M) EN 5-gram (2.7B) 
 BLEU NIST BLEU NIST 
Baseline 28.06% 8.71 31.49 9.23 
bLSA-adapted 28.62 8.80 31.94 9.31 
bLSA-adapted lex 28.59 8.92* 32.03 9.34 
bLSA-adapted + lex 28.91* 8.97* 32.09 9.37 
mono LSA-adapted 28.41 8.81 - - 
mono LSA-adapted lex 28.72 8.96* - - 
mono LSA-adapted + lex 28.97* 9.00* - - 
bLSA-adapted + biLSA 29.08* 8.99* - - 

Table 3.39: MT06 evaluation results on BLEU and NIST using 67M-word (260M-word) parallel corpora for 
phrase extraction and 500M-word (2.7B-word) English corpora for language model training. Vocabulary size 

of a target language model is 1.3M (4.1M). Four English references are used for scoring. * denotes results 
that are significantly better than the unadapted baseline at a 95% confidence interval. 

The upper section of Table 3.39 shows the translation performance in BLEU and NIST 
on MT06 using the medium-scale SMT system. 2% relative improvement in BLEU is 
achieved compared to the unadapted baseline after applying bilingual LSA-based 

Chapter 3: Machine Translation from Speech482



language model adaptation and translation lexicon adaptation separately. When both 
techniques are applied simultaneously, the gain is additive giving 3% relative 
improvement in BLEU compared to the unadapted baseline. The improvement is 
statistically significant at the 95% confidence interval [27.29%, 28.84%] with respect to 
the unadapted baseline. The same performance trend in NIST is also observed with 3% 
relative improvement compared to the unadapted baseline. The improvement is 
statistically significant at the 95% confidence interval [8.61, 8.85] with respect to the 
unadapted baseline. 

The middle section of Table 3.39 shows that mono-lingual LSA adaptation using the 
first-pass translated hypotheses achieves similar performance compared to bilingual LSA 
adaptation using the source text. In other words, the source text and the initial MT 
hypotheses are equally effective for LSA adaptation since LSA is robust against 
translation errors in the adaptation text. We conjecture that the quality of translation of 
topical unigrams should be acceptable in the initial translation. However, in terms of 
computation, bilingual LSA is more elegant and requires only a single decoding pass 
compared to monolingual LSA. 

Bigram LSA and trigram LSA show improvement in translation performance in 
addition to the bLSA-adapted language model. However, slight degradation occurs after 
adding the adapted translation lexicons. 

 
 
Table 3.40 shows some sample sentences demonstrating some degree of semantic 

paraphrasing with bilingual LSA, such as people of Denmark versus Danish people, and 
told versus sighed. 

 
Sample output 1 
Baseline To achieve the extensive support from the international community to save 

this problem, the government of Denmark, and Denmark is very important. 
Bilingual LSA To achieve the extensive support from the international community to save 

this problem, the Danish government and people of Denmark is very 
important. 

Reference It  is extremely  important  to  the  Danish government  and the Danish people 
to  obtain the broad support of the international  community to pass through 
this difficulty. 

Sample output 2 
Baseline In an interview Hoffman CBS news magazine “60 minutes” ... 
Bilingual LSA Hoffman told the CBS news magazine “60 minutes” ... 
Reference Hoffman  sighed  when  doing  an  interview  with  America's  CBS  news  

magazine  “60 minutes” 
Table 3.40: Examples demonstrating some degree of semantic paraphrasing with bilingual LSA. 

The right hand of Table 3.39 shows the translation performance using the GALE 
Phase 2 SMT system. The performance trend is similar to the medium-scale system. 
Improvement in BLEU and NIST are observed after applying bilingual LSA-based 
language model adaptation and translation lexicon adaptation. The final gain is additive 
after applying all techniques together, yielding 2.5% relative improvement in BLEU 
compared to the unadapted baseline. The gain after adaptation is reduced and not 

Handbook of Natural Language Processing and Machine Translation 483



statistically significant at a 95% confidence interval [30.70%, 32.34%] confidence 
interval with respect to the unadapted baseline. On the other hand, the improvement in 
NIST follows a similar trend with 1.6% relative improvement compared to the unadapted 
baseline after applying language model adaptation, translation lexicon adaptation and tri-
gram LSA. In addition, the gain is statistically significant at a 95% confidence interval 
[9.147, 9.378] with respect to the unadapted baseline. 

3.4.3.4.5. End-to-End Translation Results  

Table 3.41 shows the development of Mandarin-English speech translation using the 
GALE transcription and translation systems. Translation on the N-gram LSA-adapted word 
hypotheses with lower character error rate translates to better translation performance 
successfully, yielding 0.9% relative improvement in both BLEU and NIST compared to the 
background unadapted word hypotheses. Using manual transcription as inputs gives the best 
translation performance with 5.9% and 4.7% relative improvement in BLEU and NIST, 
respectively, compared to the background unadapted word hypotheses. 

Although the Chinese side of the parallel corpora and the inputs were segmented using 
the Stanford segmenter consistently, the out-of-vocabulary (OOV) rate on the manual 
transcription was 1.7%, which was moderately high due to the ability of the Stanford 
segmenter to hypothesize new vocabulary during segmentation. Unfortunately, the out-of-
vocabulary Chinese words cannot be translated, because of the possible segmentation 
mismatch with a phrase table. Therefore, we attempted to reduce the mismatch via 
segmentation refinement. First, we extracted the Chinese words from the phrase table to form 
a word list. Then, a maximal matching segmenter with this word list was applied on the 
Chinese test inputs that were segmented with a Stanford segmenter. As a result, the OOV 
terms were further segmented into smaller terms which may conform better to the 
segmentation of the phrase table. As shown in the second sub-table of Table 3.41, the OOV 
rate drops significantly to less than 0.1%. In addition, segmentation refinement translates to 
better translation performance, yielding 3% relative improvement in BLEU on the manual 
transcription compared to the corresponding counterpart with Stanford segmentation only. 
Similar results are obtained on the automatic transcription with 2.8% relative improvement in 
BLEU compared to the corresponding counterparts. In other words, the benefit of using N-
gram LSA-adapted word hypotheses is maintained after segmentation refinement. 

 

  

After 
Refining 
Chinese 
Word 
Segmentation

After LM 
Adaptation

After 
Lexical 
Adaptation 

After LM + 
Lexical 
Adaptation 

Source input BLEU NIST BLEU NIST BLEU NIST BLEU NIST BLEU NIST 
ASR hypo (background) 15.92 5.28 16.36 5.28 16.67 5.34 16.52 5.32 16.88 5.37 

ASR hypo (N-gram LSA) 16.07 5.33 16.52 5.34 16.80 5.37 16.90 5.40 17.18 5.43 
Reference (OOV=1.7%) 16.86 5.53 17.37 5.53 17.74 5.59 17.72 5.58 17.99 5.63 

Table 3.41: Speech translation results on the unsequestered broadcast news portion of the Mandarin Eval07 
test set (Eval07u.BN) on BLEU and NIST using the GALE Phase 2 SMT System. Source inputs are word 

hypotheses from an unadapted background ASR (CER=5.6%), an N-gram LSA adapted (CER=5.2%), and a 
manual reference (CER=0%). Confusion-network-like English references are used for scoring. 

Chapter 3: Machine Translation from Speech484



After segmentation refinement, we applied cross-lingual adaptation on target 
language models, translation lexicons and phrase tables incrementally as shown in Table 
3.41. Similar to the results on text translation, language model adaptation and translation 
model adaptation improve the translation performance individually. When both adapted 
models are applied simultaneously, the gain is additive, yielding 3.2 – 3.6% relative 
improvement in BLEU and 1.7 – 1.8% relative improvement in NIST compared to the 
corresponding counterparts of the unadapted SMT systems. However, the improvement is 
not statistically significant at a 95% confidence interval [15.12%, 17.65%] in BLEU and 
[5.100, 5.459] in NIST compared to the unadapted speech translation system. Overall, it is 
beneficial to apply topic adaptation to improve recognition accuracy that translates to 
better translation performance. In addition, the gain from better recognition accuracy and 
sharper translation models after topic adaptation are additive, yielding 1.8% and 1.1% 
relative improvement in BLEU and NIST, respectively, compared to the background 
unadapted word hypotheses. Comparing with the translation results on manual 
transcription, there is still much room for further improvement in speech translation. In 
other words, we expect that improving the upstream recognition accuracy will improve 
the downstream translation performance. 

3.4.3.5 Conclusions 

We have presented a unified unsupervised topic adaptation framework for 
monolingual and cross-lingual adaptation via latent semantic analysis. Our approach 
provides efficient topic inference which requires a small amount of text for rapid 
adaptation. Our contributions include the formulation of latent Dirichlet-Tree allocation 
that generalizes latent Dirichlet allocation for modeling topic correlation. In addition, we 
have extended LSA to N-gram LSA, derived a variational EM algorithm for efficient 
training, and formulated fractional Kneser-Ney smoothing to handle fractional counts. 
We have brought monolingual adaptation to cross-lingual adaptation via bilingual LSA. 
Thanks to a one-to-one topic correspondence, bilingual LSA facilitates cross-lingual 
topic adaptation using a source text to adapt the models on a target language before SMT 
decoding. In large-scale evaluation, we have shown significant performance 
improvement on recognition accuracy and translation performance, and an additive gain 
for end-to-end evaluation where improving the recognition accuracy of input word 
hypotheses has translated successfully to better translation performance in speech 
translation. 

3.5 Language-Specific Models and Systems:  
Mandarin 

3.5.1. Introduction  
Author: Lidia Mangu 

 
The goal of the Global Autonomous Language Exploitation Program is to empower 

the warfighter through the use of language technologies.  In order to accomplish this goal, 

Handbook of Natural Language Processing and Machine Translation 485



the technologies must be integrated into operational engines that meet the needs of both 
warfighters and those who support them.  That integration imperative leads directly to the 
two key parts of this section: how to perform that integration, and assessing how well we 
have met operational needs. 

The speech-to-text (STT) task in the GALE Program commands highly sophisticated 
large vocabulary continuous speech recognition (LVCSR) systems that must integrate the 
latest technical advances in acoustic and language modeling, utilize multiple model sets 
and decoding setups, and optimize for the target languages and domains.  Indeed, the 
development of the GALE Mandarin broadcast transcription systems covered in this 
section has led to the most authoritative Mandarin LVCSR work to date both in terms of 
system architecture and recognition performance. 

There are four sections under this topic, discussing the respective work at IBM, 
Carnegie Mellon University, SRI/University of Washington, and Cambridge University. 

The section by Chu et al. (IBM) presents an advanced multi-pass training and 
decoding framework, representative of the state-of-the-art, and demonstrates its 
application in the Rosetta Mandarin transcription system.  As a distinctive discriminative 
feature in Chinese, tone receives a comprehensive treatment here with respect to feature 
extraction and normalization, information fusion, and phonetic modeling.  In addition, 
they introduce a language model rescoring technique for topic adaptation, combining 
both static topic LMs trained a priori, and dynamic topic LMs trained on demand. 

The section by Hsiao et al. (CMU) gives a detailed account of the speaker clustering 
and system combination techniques used in the Rosetta system.  In particular, the six step 
lattice combination recipe is shown to give clear error reductions over the best single 
system hypotheses.  Various improvements of the CMU Mandarin ASR system are also 
discussed here. 

Lei et al. (SRI/UW) describe the Mandarin transcription system jointly developed by 
SRI and University of Washington.  Moreover, they consider vocabulary expansion in 
Chinese and gives a simplified solution built upon existing work on English compound 
word extraction.  To address word-level pronunciation variations, the authors propose a 
data-driven lexicon expansion method using forced alignment on character-level 
pronunciation networks.  An effective LM adaptation method similar to that described in 
Chapter 3.1 is also implemented. 

Tomalin et al. (CU) aim to quantify the relationship between the performance of 
speech recognition systems and that of a downstream machine translation (MT) system.  
The outputs from five incrementally improved STT systems are put through an MT 
system, and the impact of the incremental STT gains is measured in TER and BLEU 
scores.  The authors show that there is an approximately linear relationship between STT 
and MT performance improvements.  It is further shown that adding a post-STT sentence 
boundary detection stage can lead to additional gain in MT performance. 
 

Chapter 3: Machine Translation from Speech486



3.5.2. Towards the State of the Art in Automatic Mandarin 
Broadcast Speech Transcription 

Authors: Stephen M. Chu, Hong-Kwang Kuo, Lidia Mangu, Qin Shi, Shilei Zhang, Yong Qin, Qin Jin, Ian 
Lane, and Yik-Cheung Tam 

3.5.2.1 Introduction 

This section describes the main development activities for Mandarin STT by the 
GALE Rosetta team.  We introduce an advanced large vocabulary continuous speech 
recognition platform, and highlight technical advances in three areas that have led to 
notable improvement in recognition performance: tone modeling for Mandarin ASR;  
search and classification based language model adaptation; and lattice combination.  The 
effectiveness of the proposed methods is demonstrated on our GALE Phase 2 evaluation 
system.  We show that, combined, these advances lead to 34% and 16% relative 
reduction in character error rate for broadcast news and broadcast conversations, 
respectively.  It is further shown that the resulting system achieves 7.2% and 6.4% CER 
on the two Phase 2 test sets, representing the state of the art in Mandarin broadcast 
speech transcription. 

With the prevalence of discriminatively trained context dependent speaker adaptive 
acoustic models (Chen 2006), and the ever growing availability of training data, 
automatic speech recognition (ASR) systems have seen a significant boost in 
performance in recent years.  In this section, we demonstrate the development of such a 
modern ASR system and its application in Mandarin broadcast speech transcription.  
Moreover, we shall focus on three additional techniques that are especially relevant to the 
GALE Mandarin STT task, and show that further reduction in error rate can be achieved 
over the state-of-the-art baseline. 

First, the tone is a distinctive discriminative feature in Mandarin Chinese.  We take 
the embedded approach to tone modeling and present an effective recipe for feature 
extraction/normalization, information fusion, and phonetic modeling.  Second, compared 
to casual speech, broadcast material is more structured and much likelier to have well 
defined topics.  This work demonstrates that this additional dimension can indeed be 
successfully exploited with topic-adaptive language model (LM) rescoring.  Third, 
because low latency is generally not a critical factor in offline transcription tasks, 
multiple recognition systems can be combined both sequentially using cross-adaptive 
decoding, and in parallel using lattice combination to further reduce the recognition error 
rate.  

3.5.2.2 System Architecture 

The IBM baseline GALE Mandarin broadcast speech transcription system operates in 
multiple passes. Figure 3.20 shows the processing pipeline from the perspective of 
acoustic modeling. 

Handbook of Natural Language Processing and Machine Translation 487



 
Figure 3.20: The IBM Mandarin broadcast speech transcription system consists of speech segmentation, 

speaker clustering, speaker independent (SI) decoding, and speaker adapted (SA) decoding. 

3.5.2.2.1. Front End Processing 

The basic features used for segmentation and recognition are perceptual linear 
prediction (PLP) features.  Feature mean normalization is applied as follows: in 
segmentation and speaker clustering, the mean of the entire session is computed and 
subtracted; for SI decoding, speaker-level mean normalization is performed based on the 
speaker clustering output; and at SA stage, the features are mean and variance normalized 
for each speaker.  Consecutive feature frames are spliced and then projected back to a 
lower dimensional space using linear discriminant analysis (LDA), which is followed by 
a maximum likelihood linear transform (MLLT) (Saon 2000) step to further condition the 
feature space for diagonal covariance Gaussian densities. 

3.5.2.2.2. SI Models 

Phones are represented as three-state, left-to-right HMMs.  With the exception of 
silence and noise, the HMM states are context-dependent conditioned on quinphone 
context covering both past and future words.  The context-dependent states are clustered 
into equivalence classes using a decision tree. 

Emission distributions of the states are modeled using mixtures of diagonal covariance 
Gaussian densities.  The allocation of mixture component to a given state is a function of 
the number of frames aligned to that state in the training data.  Maximum likelihood 
(ML) training is initialized with state-level alignment of the training data given by an 
existing system.  A mixture splitting algorithm iteratively grows the acoustic model from 
one component per state to its full size.  One iteration of Viterbi training on word graphs 
is applied at the end. 

Chapter 3: Machine Translation from Speech488

PLP features 

segmentation 
models 

SI 
models

ML  
SA models

MPE  
SA models

segmentation 

VTLN

MLLR

fMLLR

SI decoding

SA decoding

MLLR

fMPE

SA decoding

VTLN

fMLLR



3.5.2.2.3. SA Models 

The SA acoustic models share the same basic topology with the SI model.  For 
speaker adaptation, a model space method, maximum likelihood linear regression 
(MLLR), and two feature-space methods, vocal tract length normalization (VTLN) and 
feature-space MLLR (fMLLR) (Gales 1998), are used in the baseline system. 

An eight level binary regression tree is used for MLLR, which is grown by 
successively splitting the nodes from the top using soft K-means algorithm.  The VTLN 
frequency warping consists of a pool of 21 piecewise linear functions, or warping factors.  
In decoding, a warping factor is chosen such that it maximizes the likelihood of the 
observations given a voice model built on static features with full covariance Gaussian 
densities. 

In addition to the speaker adaptation procedures, the improved Mandarin 
transcription system also employs the discriminately trained minimum phone error 
(MPE) (Povey 2002) models and the feature-space MPE (fMPE) (Povey 2005) 
transform.  Here the training uses a new 2-stage process slightly different from the 
original recipe demonstrated by Povey.  In the first stage, we estimate an fMPE transform 
from an existing set of models.  In the second stage, we retrain the decision trees for 
context-dependent state clustering and estimate ML models in the new fMPE space.  
MPE training of the acoustic models is subsequently done in the new fMPE space. 

We found that the 2-stage process consistently gives more than 0.5% absolute CER 
improvement in our Mandarin systems.  

3.5.2.3 Tone Modeling 

Treatments of tones in Mandarin ASR can be grouped into two categories: explicit 
tone recognition and embedded tone modeling.  The latter approach, considered in this 
work, inherently allows joint optimization of tonal/atonal parameters in a coherent system 
by incorporating tonal components in both the acoustic models and the feature stream. 

3.5.2.3.1. Tonal Phonetic Units 

A straightforward tonal phone set can be derived directly from the Pinyin system, 
which maps Mandarin phonetics using a set of initials and finals.  It we treat each initial 
and each tonal final as phonemes, the total number of phonemes is ܰ = ܥ  ܶ ൈ ܸ, 
where ܥ is the number of consonant initials, ܶ is the number of tones, and ܸ is the 
number of vowel endings.  This would lead to a large set of 21539520 =×+  phones.  

By grouping the glides with the consonant initials into premes, each syllable can be 
decomposed into demisyllables.  With the demisyllable system, N is reduced to: 

15821553 =×+ , where 53 is the number of premes, and 21 is the number of the second 
demisyllable without glide.  Adding four auxiliary phonemes (undefined, word boundary, 
intra-word silence, and inter-utterance silence) brings the total number of phonemes in 
the set to 162.  This tonal demisyllable system is used as our basic phonetic units for all 
systems described in this section. 

Note that the number of phonemes can be drastically reduced if we assume that the 
pitch information on the main vowel is sufficient to determine the tone of a whole 

Handbook of Natural Language Processing and Machine Translation 489



syllable.  We compared a system built on the resulting 77-phone set and the demisyllable 
system, and found the latter to be superior with large training sets, thus more suitable to 
the GALE scenario. 

Furthermore, the context-dependent phones in our tonal system use decision trees 
grown with tone-specific questions.  This in effect allows syllables that differ only in 
tones to share parameters, and gives a data-driven way to assign the importance of tonal 
identity of a particular context-dependent acoustic unit. 

3.5.2.3.2. Tonal Features 

The frontend described in Section 3.5.2.2.1, which is used in our baseline system, 
does not capture pitch information in speech.  The tonal system augments the standard 
frontend with explicit pitch features extracted using the YIN (de Cheveigné 2002) 
algorithm.  

The pitch tracker gives two outputs: an estimated pitch contour of the audio signal, 
and a frame-level confidence score given by the algorithm, as shown in Figure 3.21 (b).  
The pitch is undefined in unvoiced region and during silences, and can thus cause large 
noise spikes in the estimation, which, if left untreated, will have an adverse effect on 
statistical modeling.  To address this problem, we first use the confidence score to 
classify voiced and unvoiced regions of the speech signal.  Then the pitch values in the 
unvoiced segments are replaced through piecewise cubic Hermite interpolating polynomial using 
samples in the adjacent voiced regions.  The procedure and the result are demonstrated in 
Figure 3.21(a). Further smoothing and normalization are applied using median and 
moving average filtering.   

Because the confidence score provides strong cues for voicing, we also add it as an 
additional feature dimension; together with the smoothed pitch contour, a two 
dimensional tonal feature vector is thus constructed.    

 
 

 

Chapter 3: Machine Translation from Speech490

Figure 3.21: (a) Pitch tracker output, where the green/light-gray line is the estimated pitch value and the red/ 
dark-gray line is the confidence score (lower is more confident). (b) Interpolation and smoothing results. The 
square signal shows the voiced/unvoiced classification, and the dotted line is the pitch feature after interpolation. 



3.5.2.3.3. Feature Fusion 

The five tones in Mandarin are defined by relative pitch movement rather than 
absolute frequency value.  Therefore, the raw pitch features should be processed such that 
the underlying dynamics can be captured.   

One way is to fuse the tonal features with the standard PLP features early, so that the 
subsequent splicing and LDA transforms can extract the dynamics in a data-driven 
manner.  The other is to compute the ∆  and ∆∆  of the pitch first and integrate them 
with the regular feature stream late after the LDA projection. We implemented both 
methods and found that the early fusion approach gained more from the tonal features.  
Results on the tonal system reported in this section are from the first implementation. 

3.5.2.4 Topic-Adaptive LM Rescoring 

Adaptation techniques in language modeling have shown growing potentials in 
improving speech recognition performance.  For topic adaptation, a set of pre-defined 
topic-specific language models are typically used, and adaptation is achieved through 
adjusting the interpolation weights.  However, mismatch between the test data and the 
pre-defined models inevitably exists and is left untreated in the static approach.  Instead 
of tuning the parameters in the existing models, this section presents a method that 
dynamically extracts relevant documents from training sources according to intermediate 
decoding hypotheses to build new targeted language models.  Different from general 
search-based document collection, a new and effective ranking method is used here for 
candidate extraction.  The targeted language models are interpolated with the static topic 
language models and a general language model, and used for lattice rescoring.   

3.5.2.4.1. Corpus Classification Using SVM 

Topic based language modeling relies on the assumption that the usage of content 
words typically depends on the topic of the text.  A key step in constructing topic-specific 
LMs is to cluster the corpus into the appropriate topics.    

The SVM, which has been shown to yield good generalization performance on a wide 
variety of classification problems with large-scale input space, is employed in our system 
to carry out text classification and topic clustering. 

Manually labeled documents are used to train the SVM.  The feature vector 
representing each training sample is a vector of terms given by our Mandarin text 
segmenter.  To reduce the number of nuisance features, words occurring in fewer than 
three documents are omitted, and stop words are deleted from the feature vector.  The 
overall classification accuracy of the topic classifier as measured by the 1F  measure is 
0.8.   Based on the SVM classifier, the entire LM training data was partitioned into 129 
topics, and 129 static topic LMs are built based on the clustered training documents. 

Handbook of Natural Language Processing and Machine Translation 491



3.5.2.4.2. Search-Based LM 

Although static topic language models can help to improve recognition accuracy 
through modeling different distributions of content words among topics, such topic 
models might still be too general for a specific story.  For instance, under the broad topic 
class of politics, there are many sub-topics that are not related to the current story.  In 
order to make sure that the n-grams related to the story are promoted, the ideal scenario is 
that we can find documents whose content is closely matched to the specific story. 

The ranking algorithm used in the search engine is a combination of vector space model 
(VSM), a common information retrieval method, and the Boolean model to determine 
how relevant a given document is to a user’s query.  The motivation of VSM is that the 
more times a query term appears in a document relative to the number of times the term 
appears in all the documents in the collection, the more relevant that document is to the 
query.  The Boolean model is used to first narrow down the documents that need to be 
scored based on the use of Boolean logic in the query specification. 

Note that search here is different from a general information retrieval case in two 
ways.  The first difference is that there are errors in the ASR transcription used to 
generate query terms.  Such errors will misguide the search engine.  The second 
difference is that the search should adhere to similarity at the document level.  Thus, 
special attention must be paid to search key selection, and the scoring method should be 
modified accordingly.  

A topic ܶ is composed of m utterances: (ݑଵ, ,ଶݑ … ,   isݑ ሻ, where an utteranceݑ
expressed as: ݑ = ,ଵݓ) ,ଶݓ … ,    represents a word.  Silence and hesitationݓ ሻ, andݓ
words in the utterance are tagged as potential chop points, thus ݑ can be decomposed 
into word segments at these boundaries.  After discarding very short segments, the word 
list is converted into a search key list (݇݁ݕଵ, ,ଶݕ݁݇ … , ݕ݁݇ ሻ.  For each search keyݕ݁݇ , a large number of documents are typically retrieved, which are first sorted by the 
ranking score, and M documents with the highest scores are kept.  After collecting all the 
documents selected by the keys in one topic, we define another score called the hit-rate 
score for each document, which is defined as the number of keys in the topic that occur in 
the document.  According to this score, the documents are sorted again.  Intuitively, the 
more similar the document is to the topic, the higher the document’s hit-rate score would 
be.  The hit-rate score also helps to reduce/prevent irrelevant documents from being 
extracted due to ASR errors in the search keys.   Finally, a given number of documents 
with the highest hit-rate scores are collected to build a 4-gram LM.  We shall refer this 
LM as the search-based topic LM.  Figure 3.22 shows the re-ranking method. 

 

Chapter 3: Machine Translation from Speech492



 
Figure 3.22: The documents selection algorithm uses the ranking score and the hit-rate score to 

select and prune the relevant documents. 

3.5.2.4.3. Interpolation Method 

 
 
 
 
 
 
 

 

 

 

 

Figure 3.23: The proposed LM adaptation algorithm interpolates static topic-LMs, the search-based topic 
LM, and the general baseline LM for lattice rescoring. 

speech  
data 

lattice  
rescoring 

result 

decoding  
result 

stories topic 
LMs 

database 

related  
documents 

first-pass de-
coding 

story  
segmentation

search   
engine 

search-based 
topic LM 

baseline 
LM 

top N static 
topic LMs 

final LM 

Handbook of Natural Language Processing and Machine Translation 493

ASR output 

selected docs 

chop flag tagging 

search key generation  

searchdatabase 

hit-rate computation 

sort

When decoding a segment of speech that is assumed to be of a single topic, three 
kinds of language models can be combined: (1) the baseline language model, (2) 
static topic language model, and (3) search-based topic language model.  To effi-
ciently interpolate all the models, not all static topic language models are in-
volved.  Using the perplexity of the first pass decoding result with respect to dif-
ferent topic LMs, a subset of the static topic LMs with the lowest perplexity 
scores are selected as the candidates to interpolate with other models.  The inter-
polation weights are chosen to optimize perplexity based on the first pass decod-
ing result.  Figure 3.23 shows the entire topic adaptation process. 



3.5.2.5 Lattice Combination 

To utilize multiple STT systems, we applied an effective lattice combination technique 
developed at the Carnegie Mellon University.  Details of the method can be found in 
Section 3.5.3 (Hsiao et al). 

3.5.2.6 Experiments 

The techniques described above were integrated in the Rosetta Mandarin 
transcription system for the GALE Phase 2 evaluation. 

3.5.2.6.1. System Setup 

For the baseline system, the 16 KHz input signal is coded using 13-dimensional PLP 
features with a 25ms window and 10ms frame-shift; 9 consecutive frames are spliced and 
projected to 40 dimensions using LDA.  For the tonal system, the 2-dimensional tonal 
features are appended to the PLP features to form a 15-dimensional feature vector, and 
the rest of the processing pipeline is unchanged. 

All acoustic model trainings use the same set of 1,737 hours of acoustic training data 
released by LDC for the GALE program.  The SI model has 10K quinphone states 
modeled by 300K Gaussian densities.  The SA model uses a larger tree with 15K states 
and 800K Gaussians. 

The decoding LM is built by interpolating 20 backoff 4-gram models using modified 
Kneser-Ney smoothing.  The interpolation weights are chosen to optimize the perplexity 
of a 364K held-out set.  In total, 5GB of text data is used in training.  The final LM has 
6.1M n-grams and 107K words.  

The topic-adapted LM for lattice rescoring is obtained by interpolating the static 
topic LMs, the search-based topic LM, and the general LM.  

For the static topic LMs, the topics are organized as a manually constructed tree with 
129 leaf nodes.  More than 20,000 Chinese news articles related to the topics are 
collected and annotated.  Using the SVM classifier, the entire LM training data was 
partitioned into 129 topics.  And, 129 language models are built based on the documents 
belong to the topics. 

For the search-based topic LM, an offline database with data collected before the 
GALE specified cut off date (Oct. 31, 2006) is constructed for search in decoding time. 

3.5.2.6.2. Phase 2 Results 

The test set for GALE 2 evaluation contains Mandarin broadcast audio collected 
from TV programs in mainland China, Taiwan, and Hong Kong.  It consists of two 
subsets.  The first is the sequestered part of the Phase 2 evaluation set, referred to as 
eval’07 here.  It contains 1 hour and 11 minutes of audio, and has 20.6K characters in the 
reference transcript.  The second set, denoted brdg’07, covers the additional data defined 
for Phase 2.  This set contains 1 hour and 13 minutes of audio and 21.0K characters in the 
reference.  We further divide the experimental results on eval’07 into broadcast news (bn) 
and broadcast conversations (bc) for more in-depth analyses.  

Chapter 3: Machine Translation from Speech494



The results are summarized in Table 3.42. First, the tonal system shows clear 
improvement over the baseline on both sets.  Especially for bn, the tonal system manages 
to reduce the CER from an already low baseline of 3.8% down to 3.3%.  Clearly, bn 
content benefits more from tone modeling than bc.  One possible reason is that the style 
of speech in bc makes it harder to extract tonal information reliably.  Moreover, the bc 
portion of the data is much more likely to contain accented speakers, and incorrect tone 
pronunciation is often the first degradation of non-standard Mandarin. 

 
 

 
brdg’07 eval’07   bn,   bc 

BASE: 9.0 8.1 3.8, 13.3 
TONE: 8.8 7.8 3.3, 13.2

BASE × TONE: 8.4 7.5 3.3, 12.6 
Xa: 8.4 7.4 3.2, 12.5 
Xb: 8.2 7.4 3.4, 12.3 

Topic LM + Xa: 7.4 6.5 2.5, 11.3 
Topic LM + Xb: 7.4 6.7 2.6, 11.6 

LC: 7.2 6.4 2.5, 11.2 

Table 3.42: Summary of the phase 2 evaluation results. 

Adapting the tonal system from the baseline output leads to further improvement.  
Overall, introducing tone modeling into the pipeline gives 0.6% absolute error reduction 
on both sets. 

Cross-adaptive decoding is subsequently carried out with the two IBM systems and a 
Mandarin STT system developed at CMU.  The description of the CMU system is 
covered by Hsiao et al. in Section 3.5.3. The CERs of the CMU system on brdg’07 and 
eval’07 are 11.6% and 11.5%, respectively.  Two set’s of lattices, ܺ and ܺ are 
produced by the three-way cross-adaptations, as shown in Figure 3.24.  The particular 
combinations are chosen such that: 1. a better CER on the development set is achieved; 
and, 2. the resulting lattices are sufficiently different. 

LM rescoring and topic adaptation on the two sets of cross-adapted lattices give 0.7 
to 1.0 improvements.  To understand how much of the gain can be attributed to topic 
adaptation, a quick comparison is made with non-adaptive lattice rescoring using a large 
LM.  On eval’07, this non-adaptive method gives 0.3% CER reduction.  This suggests 
that at majority of the gain in this step comes from the topic adaptation process.    

Finally, lattice combination reduces the CER further down to 7.2% and 6.4% for the 
two test sets.  Compared with the baseline, 20% and 21% relative error reductions have 
been achieved. 

 

Handbook of Natural Language Processing and Machine Translation 495



 
Figure 3.24: STT pipeline used in the phase 2 Mandarin evaluation.  B: IBM baseline system, C: CMU 

system, and T: IBM tonal system. 

3.5.2.7 Conclusions 

This section considers the Mandarin broadcast speech transcription task in the 
context of the DARPA GALE project.  We present a state-of-the-art Mandarin STT 
architecture and describe the technical improvements made through the Phase 2 
evaluation. 

3.5.3. The CMU-InterACT Mandarin Transcription System for 
GALE 

Authors: Roger Hsiao, Mark Fuhs, Yik-Cheung Tam, Qin Jin, Ian Lane, and Tanja Schultz 

3.5.3.1 Introduction 

We present the 2007 CMU-InterACT Mandarin speech-to-text transcription system. 
Our system employs a 3-pass decoding strategy, incorporating discriminatively trained 
acoustic models trained with over 1300 hours of transcribed audio. To better handle the 
broad domain of topics that occur in broadcast speech, a novel unsupervised language 
model adaptation scheme based on latent semantic analysis was employed. We have also 
developed a novel lattice-combination approach, which was designed specifically for 
spoken language translation. In the GALE Phase 2 evaluation, our system achieved a 
character error rate (CER) of 12.9% on dev07 and 13.3% on the eval07 unsequestered 
test set. 

This section describes our efforts developing the CMU-InterACT Mandarin speech-
to-text (STT) transcription system within the GALE Program. During the first two years 
of the program we explored four specific research areas to improve transcription 
accuracy, specifically; audio segmentation and speaker clustering, discriminative training 
of acoustic models, unsupervised language model adaptation, and STT system 
combination techniques. 

First, we extended our earlier works in audio segmentation and speaker clustering 
(Jin and Schultz 2004) and applied these to the GALE task. Using these approaches 

Chapter 3: Machine Translation from Speech496

 

topic adaptive 
LM rescoring 

topic adaptive 
LM rescoring 

lattice  
combination 

Xఈ 

X 



transcription accuracy degraded only slightly compared to using manually segmented 
input, showing the effectiveness of these techniques. Second, we incorporated 
discriminative training during acoustic model building. We investigated two algorithms; 
maximum mutual information estimation (MMIE) and boosted maximum mutual 
information estimation (BMMIE). Both techniques were found to be effective, and 
discriminative training obtained the largest improvement of any single technique. Our 
final acoustic models were successfully trained on over 1300 hours of transcribed speech, 
showing the effectiveness of these approaches on large scale tasks. Third, to better handle 
the broad domain of topics that occur in broadcast media, we developed a novel 
unsupervised language model adaptation scheme based on latent semantic analysis (LSA) 
(Tam and Schultz 2005; Tam and Schultz 2006). This approach further improved 
transcription accuracy and was successfully applied in both lattice rescoring and 
automatic speech recognition (ASR) decoding. Finally, to better leverage multiple STT 
engines, we developed a novel lattice combination approach which improved 
transcription accuracy while retaining time-coherent hypotheses, which are better suited 
for spoken language translation. 

3.5.3.2 Audio Segmentation and Clustering 

In our speaker segmentation and clustering system, audio segmentation is realized by 
an HMM segmenter with four classes: Speech, Noise, Silence, and Music. The Speech 
features used are 13-dimension MFCCs plus their first and second derivatives. Each class 
is represented by a GMM with 64 Gaussians which were trained on 3 hours of manually 
annotated HUB4 shows. The resulting speech segments are then automatically clustered, 
ideally generalizing a style cluster corresponding to each individual speaker. During 
clustering, a hierarchical, agglomerative clustering technique with Bayesian Information 
Criterion (BIC) stopping criteria is used (Jin and Schultz 2004). A tied Gaussian mixture 
model (TGMM) is built on the whole set of speech segments. A GMM for each cluster is 
then trained by adapting the TGMM. Initially, each segment is considered as a separate 
cluster. We define the distance between two clusters by the Generalized Likelihood Ratio 
(GLR): ܥ)ܦଵ, ଶሻܥ =  െ log (|ఏሻ(భ|ఏభሻ (మ|ఏమሻ    (3.42)  

where X1, X2, and X are feature vectors in cluster ܥଵ, in cluster C2, and in the merged 
cluster of C1 and C2, respectively. θ1, θ2, and θ are statistical models built on X1, X2, and 
X, respectively. At each iteration of agglomerative clustering, the two closest clusters are 
merged and a model of the new cluster is re-estimated. Clustering is repeated until the 
BIC stopping threshold is exceeded. 

 
Model dev07 eval07unseq 
BN-manual 7.3 5.3 
BN-auto 7.7 6.0 
BC-manual 18.0 24.1 
BC-auto 19.5 25.7 
All-manual 13.3 13.5 

Handbook of Natural Language Processing and Machine Translation

All-auto 14.4 14.5 
Table 3.43: Comparison on using manual and automatic segmentation in CER. 

497



In the 2006 GALE evaluation, the test data consisted of one snippet per show with a 
duration of 3 - 5 minutes. However, in the 2007 evaluation, snippets were 1 - 2 minutes 
long, and shows contained multiple snippets. Since it is reasonable to assume that the 
same speakers may occur in different snippets within the same show, we conducted 
clustering at the show level rather than at the snippet level. To ensure that we do not 
underestimate the number of speakers in multiple-snippet shows, two different BIC 
thresholds were used dependent on the number of snippets per show. A comparison of 
our automatic segmentation to the reference segmentation is given in Table 3.43. 

3.5.3.3 Acoustic and Language Modeling 

Feature extraction employs standard 13-dimension MFCC features extracted using a 
16ms window with 10ms frame shift. 15 adjacent feature vectors are concatenated and 
linear discriminant analysis is then applied to reduce the feature dimension to 42. We 
apply cepstral mean and variance normalization as well as vocal-tract length 
normalization per speaker. 

In our legacy RT04 system (Yu et al. 2004), we found that cross adapting an Initial-
Final (I-F) acoustic model on the output of a phone-based decoder improved recognition 
accuracy compared to using multiple systems with the same phonetic units. We apply a 
similar architecture for our GALE system. 

The CMU Mandarin transcription system is a 3-pass system. It consists of three sets 
of acoustic models. The first acoustic model (AM1) is a speaker independent (SI) I-F 
model using multi-style training by uniformly mixing the BN and BC shows together. 
The second acoustic model (AM2) is a phone model using speaker-adaptive training 
(SAT) with feature space adaptation (FSA). AM2 uses hypotheses from AM1 for cross 
adaptation. Instead of using multi-style training as with AM1, AM2 is genre dependent: 
its senone tree considers whether the incoming show is BN or BC which is determined on 
the show name. The third acoustic model (AM3) is also speaker adaptive, based on the 
output of AM2, but AM3 uses I-F models. AM3 is trained using maximum mutual 
information estimation (Valtchev et al. 1997) (MMIE) and boosted maximum mutual 
information estimation (BMMIE). Table 3.44 gives a summary of our acoustic model 
settings. 

 
Model AM1 AM2 AM3 
Unit I-F phone I-F 

model type SI SAT-FSA SAT-FSA 
training ML ML (B)MMIE 

# codebooks 6K 10K 10K 
genre-dep no yes no 

Chapter 3: Machine Translation from Speech

algorithms - STC/VTLN STC/VTLN 
Table 3.44: Acoustic Model Configurations 

498



During acoustic model training, we cluster states using a quinphone decision tree 
with tonal questions incorporated such that a single tree implicitly models all tonal 
variants of the same base phone/syllable. The number of Gaussian mixtures per state is 
determined using merge and split (MAS) training with a maximum of 100 mixtures per 
state. We then apply a global semi-tied covariance (STC) matrix (Gales 1999) on all the 
acoustic models. 

The acoustic model training corpora consist of over 1300 hours of transcribed audio 
data released within the GALE program containing both BN and BC shows. The BN 
sources are mainly from CCTV, NTDTV, PhoenixTV and VOA, while the BC sources 
are mainly from CCTV and PhoenixTV. 

3.5.3.3.1. Discriminative Training on Acoustic Models 

We apply MMIE (Valtchev et al. 1997) and BM-MIE (Povey et al. 2008) on AM3 in 
order to improve recognition accuracy. BMMIE is an extension to MMIE proposed by 
Povey et. al. (2008), which considers the raw phone accuracies of the competing word 
arcs in the lattices. Detailed description of BMMIE and comparison between BMMIE 
and MMIE is available in Section 3.3.4 by Povey et al. In our system, the boosting factor 
of BMMIE is 0.5 and we apply I-smoothing (Povey 2003) with τ = 100 for both MMIE 
and BMMIE training. ML estimate is used for I-smoothing. 

3.5.3.3.2. Language Modeling 

The LM training corpora consists of over one billion word tokens obtained from the 
Mandarin Gigaword V2, audio training transcripts and the web data released within the 
GALE Program. Documents are first divided according to their news sources and a 4-
gram LM is built for each source using the modified Kneser-Ney smoothing scheme 
using the SRI LM toolkit (Stolcke 2002). A background LM is generated by linearly 
interpolating the source-dependent language models using the dev07 development set. 
Dynamic LM adaptation is applied using correlated latent semantic analysis (LSA) (Tam 
and Schultz 2007) to model topic correlation. In LSA training, a set of topic-dependent 
unigram LMs are built. In testing, the topic weights θk are incrementally adapted using 
the previously decoded utterances within the same show via a variational E-step ܲ௦(ݓሻ = ∑ ߠ · ሻୀଵ݇|ݓ)ܲ  with ߠ =  ఊೖ∑ ఊೖೖ಼సభ   where ߛ denotes the fractional 

posterior count of topic k inferred from the word context. The adaptive LSA unigram is 
then log-linearly interpolated with the background LM to decode the next utterance. The 
adaptive LSA unigram works like a cache-based LM. However, instead of caching the 
word counts in the word history, latent topic counts are cached. Thus, this approach is 
shown to be robust against speech recognition errors. 

Marginal LM adaptation (Kneser et al. 1997) is an effective technique grounded by 
information theory where the background LM is adapted so that its unigram marginals 
match the in-domain unigram marginals. In our work, the in-domain marginals are 

Handbook of Natural Language Processing and Machine Translation 499



estimated by Plsa (w). The adapted LM has the form: ܲݎ (ݓ|݄ሻ = ఈ (௪ሻ ·್(௪|ሻ (ሻ   where 
Z(h) is a normalization term to guarantee that the probability sums to unity. α(w) is a 

scaling factor, which is commonly approximated as:ݓ)ߙሻ ൎ ൬ೞೌ(௪ሻ್(௪ሻ൰ఉ .  This technique 

is expensive for decoding due to computing the normalization term Z(h). On the other 
hand, this approach can be easily applied during lattice rescoring since only the outgoing 
word links of the same context node are considered when computing Z(h). The LM score 
of a word link (i, j) can be adapted analogously as follows: ݈݉(݅, ݆ሻ = ሻ݅)ݏݏܽܯ · ఈ൫௪(,ሻ൯ · ್ (,ሻ∑ ೀೠ(ሻא൫௪(,ሻ൯ן  · ್(,ሻ where (݅, ݆ሻ denotes a link from node i  to node j and w(i,j) is 

the word label associated to this link.  Mass(i) denotes the total probability mass of the 
outgoing links in Out(i) coming from the same context node i. Using our GALE-2006 
Mandarin evaluation system, 0.7% absolute reduction in character error rate (CER) is 
observed on the eval06 development set by incorporating LSA-based LM adaptation 
compared to the unadapted LM baseline which obtained CER of 20.4%. 

A recent extension of this approach is bigram LSA which relaxes the “bag-of-word” 
assumption present in LSA. In addition to LSA, bigram LSA is applied during for lattice 
rescoring. 

3.5.3.4 Evaluation Setup 

In the GALE 2 evaluation, dev07 and the unsequestered portion of eval07 were used 
as internal evaluation sets. Dev07 consists of 2.5 hours of audio from various channels, 
including CCTV, NT-DTV, and PhoenixTV. Eval07 unsequestered portion has 1.2 hours 
of audio from CCTV, NTDTV, PhoenixTV and AnhuiTV. Both dev07 and eval07 
unsequestered portion consists of roughly 50% BN and 50% BC shows. Manual 
segmentation was provided, but speaker IDs had to be automatically generated. We 
performed speaker clustering using the procedure described in Section 3.5.3.2. Compared 
with IBM’s speaker clustering procedure, we found our approach lead to better 
recognition accuracy when ASR was performed with a preliminary system developed at 
IBM. Compared to the IBM system, CER was reduced by 0.2% and 0.6% on dev07 and 
eval07, respectively. The results reported in this chapter use CMU clustering. 

 Table 3.43 shows the performance of our system using manual and automatic 
segmentations without bi-gram LSA lattice rescoring for both segmentations, we 
performed speaker clustering using the approach discussed in Section 3.5.3.2. The 
manual segmentation is around 1% absolute better than automatic segmentation, which 
suggests the automatic segmentation of our system performs quite well. If we look at the 
performance break down, we can see that the gap on the BC shows is significantly larger. 
This is expected, since BC shows contain more complicated speaker turns and less fluent 
speech. 

Chapter 3: Machine Translation from Speech500



  

Figure 3.25: CMU Mandarin system performance at different development stages on the dev07 and eval07 
(unsequestered portion) test set. 

Figure 3.25 shows the performance at different stages of our system. Our system 
benefits from cross adapting I-F and genre dependent phone systems. After we obtained 
the ML model, we performed MMIE until the improvement converges on dev07. Due to 
time constraints leading up to the evaluation, we were only able to run one iteration of 
BMMIE on top of the MMIE model. However, BMMIE still improved the system 
slightly. With the addition of LM adaptation using LSA and lattice rescoring using bi-
gram LSA adaptation, our system has a CER of 12.9% on dev07 and 13.3% on the eval07 
unsequestered portion. We expect further improvement by applying BMMIE training 
directly to the ML model. 

3.5.3.5 System Combination 

Combining multiple systems together via cross-adaptation or confusion network 
combination (CNC) are established methods to improve recognition accuracy. We have 
found that the recognition accuracy of a group of STT systems can be improved by 
applying both techniques serially. 

Confusion network combination (CNC) (Mangu et al. 2000) is an established method 
of improving automatic speech recognition accuracy. However, this and related 
approaches discard temporal constraints in the original input. The generated hypotheses 
can, therefore, violate the word order of the original inputs, which may degrade 
downstream natural language processing components. To overcome this limitation, we 
have developed a novel method to directly combine multiple lattices, while retaining 
temporal word order. Thus, the final hypothesis is time-coherent, and is more suited to 
post-STT sentence segmentation, punctuation restoration, and machine translation. 

For a set of speech recognition word-lattices where links denote words and nodes 
indicate word boundaries with time markers, lattice-combination (LC) proceeds in six 
steps: 

 

Handbook of Natural Language Processing and Machine Translation 501



1. Calculate posterior probabilities of links in each lattice for use as 
confidence scores. 

2. Scale confidence scores based on assigned system weights. 
3. Group lattice links from all lattices into equivalence classes (as if for a 

CN). 
4. Agglomeratively cluster lattice nodes in all lattices together by their 

similarity in time. Merge each cluster into a single node. 
5. For links in each equivalence class, combine scores of multiple links 

with the same word. 
6. Find the path that maximizes the minimum confidence over all sub-

paths. 
 
Significant improvements were observed only when the lattice nodes were 

aggressively merged, permitting paths through the combined lattice that were composed 
of links from multiple source lattices. Since the starting and ending times of the same (or 
very similar) words in different lattices invariably differed, nodes with similar times were 
agglomeratively clustered together until any further cluster joins would result in a cluster 
whose temporal span (node with highest time minus node with lowest time) exceeded a 
specified maximum. Increasing the maximum temporal span increases merging of the 
lattices, which permits a larger hypothesis space to be considered, however, it also 
decreases the temporal precision of the resulting hypothesis. For the results presented 
here, a maximum temporal span of 100ms was used, so word boundaries of the resulting 
hypothesis were guaranteed to be within 50ms of their original time in the lattice. 

Very short links (short words, silence tokens, partial words, etc.), i.e., those that 
occupy less time than the clustering procedure’s maximum temporal span, can cause a 
variety of abnormalities in the merged lattice. Most obviously, some form of loop 
detection is required to assure that a very short links start and end nodes are not merged 
together. More generally, the global ordering of links provided by the equivalence classes 
may be violated by the clustering procedure. This often occurs when one node with an 
incoming link in equivalence class i is merged with another node with an outgoing link in 
equivalence class i. To prevent these problems, each cluster is assigned values indicating 
the Latest Equivalence Class Before (LECB) among all incoming links and the Earliest 
Equivalence Class After (EECA) among all outgoing links. In order for two clusters to be 
merged, the following conditions must be satisfied: Cluster 1 LECB < Cluster 2 EECA 
and Cluster 2 LECB < Cluster 1 EECA. When two clusters are merged, the higher LECB 
and lower EECA are adopted for the new cluster. 

 
 CNC LC 

System dev07 eval07 dev07 eval07 
CxTxB 10.32 10.66 10.31 10.68 
BxTxC 9.44 9.74 9.50 9.76 
TxBxC 9.34 9.51 9.34 9.41 
TxBxC BxTxC 9.03 9.28 9.03 9.29 
TxBxC CxTxB 9.07 9.18 8.94 9.17 
TxBxC CxTxB 8.92 9.14 8.86 9.03 

BxTxC     

Chapter 3: Machine Translation from Speech

Table 3.45: Results (CER) of GALE phase 2 comparing various combinations of three Mandarin systems: C 
= CMU, B = IBM non-tonal (base), T = IBM tonal. CxTxB indicates the CMU system cross-adapted on 

output of the IBM tonal system, which was cross-adapted on the output of the IBM non-tonal system; others 
are similar. 

502



In a traditional word lattice, the log acoustic and LM scores of different links are 
treated as (conditionally) independent and summed. In a merged lattice, a link is scored 
with a sum of posterior probabilities, which has a strong mutual dependence with other 
link scores before and after. In a CN, this mutual dependence is leveraged to maximize 
the confidence within each equivalence class independently, sacrificing any temporal 
constraints between classes. To overcome this mutual dependence in a merged lattice, the 
path was selected that maximized the minimum confidence score along all sub-paths. A 
divide-and-conquer strategy was used: 

 
1. Given a start node i and end node j somewhere in the lattice, find the link 

(with start node m and end node n) limiting the single-path max flow of 
confidence from node i to node j.  

2. Recursively call this procedure to find the best path from i to m and n to j.  
3. Return a path consisting of the best path from i to m, the limiting link, and 

the best path from n to j.  
 
This procedure was initiated with the initial and final nodes of the lattice. Table 3.45 

compares the results of CNC and LC on three systems. Two of the systems were built by 
IBM, and all three systems were cross-adapted against one another prior to combination. 
The performance of CNC and LC is very similar, and this parity was observed on Arabic 
language systems as well. 

In the GALE Phase 3 evaluation, ten STT engines were developed within the Rosetta 
team. Individual systems differed by the phonetic unit used in acoustic modeling, the 
explicit modeling of tones, cross-adaptation between systems, and the method of 
language model rescoring applied. LM rescoring techniques investigated included: Bi-
gram LSA based LM rescoring (Tam et al.), Neural Network (NN) based LM rescoring 
(Emami et al.), and Topic-adaptive LM rescoring (Chu et al.). These techniques are 
described elsewhere in this chapter. 
On the dev08 development set these individual systems obtained CERs ranging from 6.7% to 8.7%. A list of 

the top performing systems is shown in  

Table 3.46. In an attempt to improve the transcription accuracy above that obtained by 
the single best system “Xa with NN and bi-gram LSA based LM rescoring”, we applied 
the lattice combination approach described above. 

 
 

Handbook of Natural Language Processing and Machine Translation 503



2 6.9 (60.3) 8.4 (59.0) 6.6 (52.3) 
3 6.9 (59.8) 8.4 (59.0) 6.6 (52.3) 
4 7.0 (59.9) 8.4 (59.4) 6.7 (54.1) 
2 4 6.5 (59.4) 8.1 (56.3) 6.3 (52.6) 
2 4 1 6.5 (59.9) 8.0 (57.1) 6.4 (51.6) 
2 4 1 3 6.5 (59.1) 8.2 (57.3) 6.4 (52.0) 

 

Table 3.46: Results of top performing ROSETTA phase-3 systems and lattice combination of these systems: 
1 = Xa with NN and bi-gram LSA based LM rescoring, 2 = Xa with Topic-adaptive and NN LM rescoring, 3 = 

Xb with Topic-adaptive and NN LM rescoring, 4 = Xb with Topic-adaptive LM rescoring. Xa and Xb, are the 
system outputs defined in Section 3.5.2.6.2 (Chu et al.). 

Due to the large number of STT engines, evaluating all possible n-way combinations 
is computationally expensive, thus, we applied an iterative selection approach. First, all 
pair-wise system combinations are evaluated, and the pair with minimum CER is selected 
as the initial combination-set, in this step n = 2. Next, the remaining systems are 
combined with the current best n-way combination and the n + 1 combination with 
minimum CER is selected. This process is iteratively repeated until the addition of more 
systems does not improve performance. During the selection process, system weights 
were optimized on a tuning set (dev08), and the combination that obtained the best 
performance on unseen data (eval07 and retest07) was selected. 

Using the proposed selection scheme, the best 2, 3 and 4-way system combinations identified in  

Table 3.46 were selected. Although the 4-way combination “2 4 1 3”, obtained a 
slightly lower SER on the tuning set, higher error-rates were obtained on unseen data. 
Thus, iterative selection stopped at the 3-way combination “2 4 1”. Compared to the 
single best system, lattice combination reduced CER on all test-sets between 0.1 to 0.2 
points absolute, a 3% relative reduction in CER. 

3.5.3.6 Conclusion and Future Work 

We present recent developments on the CMU Mandarin BN/BC transcription system. 
Our system achieved good performance on a large-scale evaluation by using MMIE- and 
BMMIE-based discriminative training, unsupervised LM adaptation using LSA and 
lattice-based system combination. Our future development includes feature space 
discriminative training, improved LSA modeling, better system combination and tight 
coupling between the ASR and machine translation systems. 

 

3.5.4. Advances in Mandarin Speech-to-Text Transcription 
for Broadcast News and Conversations 

Authors: Xin Lei, Wen Wang, Arindam Mandal, Andreas Stolcke, Mei-Yuh Hwang, Wei Wu, and Mari 
Ostendorf 

Chapter 3: Machine Translation from Speech

 Character-Error-Rate % 
 (Sentence Error Rate %) 

System Tuning unseen test 
combinations dev-08 eval-07 retest-07 
1 6.7 (59.9) 8.1 (57.6) 6.5 (51.5) 

504



3.5.4.1 Introduction 

This section describes the recent advances in SRI-UW Mandarin broadcast news 
(BN) and conversations (BC) speech-to-text (STT) system, developed under the DARPA 
Global Autonomous Language Exploitation (GALE) Program. It is demonstrated that the 
core technologies for English STT such as discriminative training (Povey and Woodland 
2002) and acoustic adaptation (Gales 1998) are also applicable to the Mandarin language. 
Mandarin specific components can be used to exploit the characteristics of the Chinese 
language. In our previous work, we have investigated pronunciation lexicon designs and 
lexical word segmentation in Hwang et al. (2009), as well as Mandarin tone modeling in 
Lei et al. (2006) to further improve the system performance. In this study, we give an 
overview of our Mandarin STT system and describe recent progress for GALE 2008 
Evaluation. 

3.5.4.2 Speech and Text Corpora 

For acoustic model training, we use about 1642 hours of BN and BC speech data 
collected by LDC, including Mandarin Hub4 (30 hours), GALE Year 1 (747 hours), 
GALE Year 2 (394 hours), GALE Year 3 (317 hours) and GALE Year 4 Release 1 (154 
hours) corpora. The amount of BN data is close to that of BC data. Training data are 
collected from broadcast stations such as CCTV, RFA, NT-DTV and PHOENIX, 
spanning 1997 through April 2008. Comparing to the December 2007 evaluation, we 
have removed 89 hours of TDT4 data that are relatively noisy and hurt performance 
slightly, and added 230 hours of Year 3 and Year 4 data. 

We evaluate our system on two development test sets: DARPA GALE 2007 
development set (dev07) and 2008 development set (dev08). The dev07 test set contains 
2.4 hours of speech data from 74 broadcast shows, with 1.0 hour in BN and 1.4 hours in 
BC. The dev08 test set has 1.0 hour of speech from 44 shows, with 0.5 hour in both BN 
and BC. 

The text corpora for training language models comprise 1.4 billion words, including 
transcriptions of the acoustic training data, the LDC-released Mandarin Gigaword corpus, 
GALE-related web text data, and conversational telephone speech text data. A few passes 
of cleaning are applied to the source text to remove HTML tags, punctuation, corrupted 
GB2312 codes, and to normalize numbers from digits to spoken forms. Word fragments, 
laughter, and background noise transcriptions are mapped to a special garbage word. 

3.5.4.3 Modeling and Decoding Architecture  

Our system uses cross adaptation and system combination between two 
complementary subsystems. In Zheng et al. (2007), it was shown that there were three 
discriminative techniques that were effective in reducing recognition errors: multi-layer 
perceptron (MLP) features, minimum phone error (MPE) training criterion, and feature 
space MPE (fMPE) transform. In practice, we have found that the gains from three 
discriminative techniques are additive, under a speaker-independent (SI) recognition 
setup. However, after unsupervised speaker adaptation (SA), combining all three 
techniques yields minimal further improvement compared with combining only two of 

Handbook of Natural Language Processing and Machine Translation 505



them. Therefore, in designing our two acoustic models (AMs), we decide to choose the 
most effective combinations of two techniques: MLP+MPE and fMPE+MPE, where the 
most effective technique, MPE training, is always applied. To ensure diversity in ASR 
subsystems, we use different cepstral features (MFCC and PLP) for the two systems, and 
design a new pronunciation phone set for the PLP system with the goal of improving 
performance on BC speech. 

Since Mandarin is a tone language, we have adopted embedded tone modeling 
technique in both acoustic systems. Tonal phonetic units are used and 3-dimensional 
smoothed pitch features (Lei et al. 2006) are appended to the cepstral features in the front 
end. For the MFCC system, 32-dimensional MLP features are also appended to the 
feature vector, resulting in a feature vector of 74-dimension. More details of the MLP 
features are discussed in by Hwang et al. (2009). The PLP system uses 42-dimensional 
PLP+F0 features, with fMPE transform applied. Except for the Hub4 data where we use 
the hand-labeled speaker information, automatic speaker clustering is applied to cluster 
utterances in all other training corpora into pseudo speakers. Then vocal tract length 
normalization (VTLN) and cepstral mean and variance normalization (CMN/CVN) are 
applied for each pseudo speaker. 

Triphone HMM models are trained first using ML criterion, with 3500 states 
clustered by decision tree and 128 Gaussian components per state. The Gaussian means 
are then re-estimated using MPE criterion, with phone lattices generated by running 
recognition with an unigram LM and ML-trained AM on the training data. The within-
word models are used for generating initial hypothesis for adaptation and speaker 
adaptive training (SAT) based feature transforms. The crossword models are trained with 
SAT transformed features, and used for decoding in later passes. 

BN and BC LMs are trained with modified Kneser-Ney smoothing on the expanded 
64K-word decoding vocabulary and interpolated to optimize the perplexity on a heldout 
set. Pruned bigram and trigram LMs are used in the first pass decoding. The full trigram 
is used in subsequent lattice rescoring if not applying LM adaptation (LMA), in which 
case BN and BC component trigram LMs are used. We have also tried using higher order 
LMs for rescoring but no significant improvement has been achieved.  

Figure 3.26 illustrates the flowchart of our recognition system. The audio data are 
first segmented into small utterances of a few seconds long. Then speaker clustering is 
applied using Gaussian mixture models of static MFCC features and K-means clustering, 
same as in training. VTLN is performed for each pseudo speaker, followed by utterance-
based CMN/CVN on all features. 

 

Chapter 3: Machine Translation from Speech506



  

Figure 3.26 System decoding architecture. White block arrows represent lattices and shaded block arrows 
represent N-best hypotheses. 

As shown in the three shaded boxes in Figure 3.26 the decoding consists of three 
passes:  

 
1) (MFCC+MLP)-SI: a speaker-independent within-word tri-phone MPE-trained 

MFCC+MLP model and the aggressively pruned trigram LM are used for a fast 
search.  

2) PLP-SA: next we use the top hypothesis from the last step to learn the speaker-
dependent SAT feature transform and perform MLLR adaptation per speaker, on 
the crossword tri-phone SAT+fMPE MPE trained PLP model. The pruned 
bigram is used in decoding to generate lattices. Then LM adaptation is performed 
to rescore the lattices. The top hypothesis and the N-best lists are generated.  

3) (MFCC+MLP)-SA: Similar to PLP-SA, we first run cross adaptation, using the 
top hypothesis from the last stage to adapt the crossword triphone SAT MPE-
trained (MFCC+MLP) model. The same LM adaptation is performed after the 
bigram decoding. 

 
Finally, the N-best lists from PLP-SA and (MFCC+MLP)-SA stages are combined 

using a confusion network to generate the best hypothesis. 

3.5.4.4 Data Driven Lexicon Expansion 

The decoding lexicon for speech recognition often needs to be updated or expanded 
over time, especially for Mandarin broadcast speech where new words are constantly 
being created. We develop a data driven framework to expand the lexicon with multiple 
pronunciations and new vocabulary words to improve Mandarin ASR performance. 

 

Handbook of Natural Language Processing and Machine Translation 507



Pronunciation Learning: 
A Mandarin word may have different pronunciations depending on context. The 

pronunciation differences can be due to surface-form variation, such as neutral tones and 
tone sandhi changes, or because of baseform variation that indicates different meanings. 
For example, the word “同行” can have the meaning of “walk together” when its tonal 
Pinyin pronunciation is, “tong2 xing2”, and can also mean “person in the same 
occupation” when it is pronounced as “tong2 hang2”. Both pronunciation variants are 
frequent for this word and should be explicitly incorporated in the dictionary as 
baseforms. 

 
Figure 3.27 Generation of pronunciation variants for a Chinese word from its character pronunciation 

network (CPN). 

As illustrated in Figure 3.27, for a Chinese word, the pronunciation variants of each 
constituent character are enumerated from a character pronunciation dictionary and 
combined to construct a character pronunciation network (CPN). Note that “tong4” is a 
rare pronunciation of the character “同”. The CPN generates all possible pronunciation 
variants of the word, including neutral tone variants for unstressed characters. After the 
pronunciation variants are enumerated, tone sandhi rules may be applied to explicitly 
encode tone changes within the word. 

All the variants are then added to the dictionary with equal weight and used to 
perform forced alignment of the acoustic training data. The recognizer will choose the 
best pronunciation variant for each word in the sentence. Using the forced alignment 
statistics, we can select the top pronunciation candidates. If several variants have 
significant probabilities, these can be selected as multiple pronunciations. Existing 
dictionary pronunciations can be checked against the estimated pronunciation 
probabilities to spot dictionary errors. 

 
Vocabulary Expansion: 

Extraction of new words or phrases in Chinese has been studied recently in by Zhang 
et al. (2000) and Chang et al. (2003). The task is similar to the extraction of multi-words 
(Finke and Waibel 1997) or compound words (Saon and Padmanabhan 2001) for English 
ASR. Saon and Padmanabhan (2001) and Chang et al. (2003) adopt an iterative approach 
to learn compound words. In each iteration, the top word pairs are merged according to a 
language model based measure. The measure is defined as the geometric mean of the 
forward bigram probability ܲ൫ݓหݓ൯ between two words ݓ and ݓ and the reverse 
bigram probability ܲ൫ݓหݓ൯ 

Chapter 3: Machine Translation from Speech508



ࣦ ଶࣧ൫ݓ, ൯ݓ =  ට ܲ൫ݓหݓ൯ ܲ൫ݓหݓ൯ = ே൫௪_௪ೕ൯ටே(௪ሻே൫௪ೕ൯    (3.43) 

where ܰ(·ሻ represents the frequency count of a word in the training data, and ݓ_ݓ 
denotes the new compound word formed by concatenating two words, ݓ  and ݓ. 

The iterative procedure for new word extraction can be time consuming for large 
corpora, since it requires processing the entire corpus and updating of bigram counts or 
probabilities at every iteration. For Chinese, it additionally involves word segmentation, 
and may, therefore, require retraining of the word segmenter. As an efficient shortcut, we 
can approximate counts for iterated word formations directly from higher order N-gram 
counts, as follows. 

To combine three words ݓ, ݓ and ݓ, we can either combine ݓ  and ݓ first and 
then combine the new word ݓ  . We use the geometric mean of the merging measures of the two options toݓ ݓ  withݓ  first and then combineݓ  andݓ , or combineݓ  withݓ 
create three-word compound words: 

 ࣦ ଷࣧ൫ݓ, ,ݓ ൯ݓ =  ටࣦ ଶࣧ൫ݓ_ݓ, ൯ࣦݓ ଶࣧ൫ݓ, ൯ݓ_ݓ = ே൫௪_௪ೕ_௪ೖ_௪൯ටே൫௪_௪ೕ൯ே(௪ೖ_௪ሻర    (3.44) 

There are many more orderings when combining four words. Again, we could use the 
geometric mean of merging measures of all possible combination orders. However, since 
typical Chinese phrases are of length four characters or less, while each word has at least 
one character, four-word compound words do not appear very often. Hence, we have 
used the following simplified measure: 

 ࣦ ସࣧ൫ݓ, ,ݓ ,ݓ ൯ݓ = ࣦ ସࣧ൫ݓ_ݓ, ൯ݓ_ݓ = ே൫௪_௪ೕ_௪ೖ_௪൯ටே൫௪_௪ೕ൯ே(௪ೖ_௪ሻ    (3.45) 

Based on these merging measures, we can create new compound words with different 
numbers of constituent words. However, there are cases in which both a longer word ݓ_ݓ_ݓ_ݓ and its sub-word ݓ_ݓ are extracted as new words, while the shorter word 
does not appear by itself and should not be a separate new word. Therefore, after the new 
words are learned, we need to remove these subset words if their counts are almost the 
same as those of the corresponding longer words. This is similar to using the context 
variation criterion, as do Chang et al. (2003). 

3.5.4.5 LM Adaptation 

LM adaptation has been applied successfully to improve the performance of our 
Mandarin speech recognition system. LM adaptation is performed at the snippet level: for 
each snippet, the LM is adapted according to the first pass decoding hypothesis to match 
its topic and genre. The adapted LM is used for rescoring the bigram lattices. In our 
system, both static and dynamic LM adaptation are implemented. 

Handbook of Natural Language Processing and Machine Translation 509



In static LM adaptation, a number of static topic LMs are first built to cover different 
topics. Different from the work of Shi et al. (2008), in which a manually constructed 
topic tree is used, we perform unsupervised clustering on the training corpora using the 
open source toolkit CLUTO (Karypis 2002) with TF-IDF features. A cosine distance is 
adopted to measure the similarity between two documents in the training corpora. 
Bisecting k-way clustering is performed to divide the training corpora into k topic 
clusters. A static topic LM is trained for each topic cluster. To make the system more up-
to-date, we only use data from the most recent ten years (1997-2006) in Gigaword XIN, 
Gigaword ZBN and Gigaword AFP news corpora to do unsupervised topic clustering. 
The number of topic clusters is set to 64 (larger number of clusters did not further 
improve the performance). 

Dynamic LM adaptation employs information retrieval technology to search for topic 
matched documents for each snippet to build LMs. The advantage is that it divides the 
language model training corpora into finer granularity than static language model 
adaptation, and thus can build more specific LMs for each snippet. The document ranking 
algorithm in our system is the traditional vector space model (VSM) for information 
retrieval. The bigram decoding hypotheses of all the utterances in each snippet are 
concatenated and used as a query, with stopwords removed. The top n documents with 
the highest ranking are grouped together to train a dynamic topic LM for the 
corresponding snippet. In our experiments, n is set to 120. The corpora for retrieval in 
dynamic LM adaptation include GALE manual transcripts, GALE web data, NTU web 
data, UW web data and data from the most recent ten years (1997-2006) in Gigaword 
XIN and ZBN. 

For each snippet, we put the 64 static topic trigram LMs and the corresponding 
dynamic trigram LM together to form a pool of LMs. To reflect the genre variation 
among different snippets, we also include the component BC LM that is trained with all 
BC style data. The three LMs with the lowest perplexity on the bigram decoding 
hypothesis are selected. They are then linearly interpolated with the component BN LM 
to minimize the perplexity on the corresponding bigram decoding hypothesis. 

3.5.4.6 Experimental Results 

First, we evaluate the data-driven lexicon expansion approach. We start with a 
training lexicon of 71K words or so, and select the most frequent 60K words as the 
decoding lexicon. This 60K-word lexicon is our baseline decoding lexicon, which has 
several hundred multiple pronunciations. For fast turnaround in experiments, we only 
perform first pass decoding with the ML trained within-word models, as in 
(MFCC+MLP)-SI stage shown previously in Figure 3.26. 

Pronunciation variants for the 10K most frequent words in the decoding vocabulary 
are extracted from the expanded CPNs. A single-character dictionary with 6765 
characters and 8095 multiple pronunciations is used, averaging 1.2 pronunciation variants 
per character. After expansion, we replace the pronunciations of these top 10K words in 
the training dictionary with around 19K generated pronunciation variants. The training 
data is forced-aligned with an existing AM. From the alignments, we collect the counts of 
each pronunciation variant and compute their probabilities for each word. If a variant has 
a probability exceeding 0.9 it is chosen as a single pronunciation. It can be compared to 

Chapter 3: Machine Translation from Speech510



the pronunciation in the original dictionary to check for a potential error. Otherwise, if a 
variant has a probability larger than 0.25, it is included as one of multiple pronunciations 
to be added to the lexicon. The expanded pronunciation lexicon is used to train new 
acoustic models. The pronunciation probabilities estimated from acoustic training are 
used to improve recognition by combining them with language model probabilities 
during decoding. In this experiment, we add 800 pronunciation variants selected by word 
frequency. 

New vocabulary words are extracted from BN and BC transcriptions separately, since 
the two genres are quite different lexically. About 1600 two-component, 800 three-
component, and 100 four-component new words are extracted from both BN and BC 
data, resulting in a total of 4245 unique new vocabulary items (with less than 20% 
overlap between BN and BC new words). To generate pronunciations for these new 
words, the CPN-based pronunciation learning procedure described above is used. As in 
the multi-word handling of Stolcke et al. (2000), the new compound words are used to 
replace the corresponding constituent words in the text data. The new words are added to 
the original 60K decoding vocabulary, yielding in a new vocabulary of about 64K. The 
language model is retrained with the expanded vocabulary. 

 

Lexicon 

Dev07 Dev08

BN BC All BN BC All
baseline 4.9 20.6 13.9 6.2 19.2 12.9
+ pron 4.7 20.1 13.5 5.7 19.0 12.6
+ vocab 4.8 19.4 13.2 5.5 18.3 12.1

Table 3.47: Lexicon expansion CER results (%).  

Recognition results in terms of character error rate (CER) are listed in Table 3.47. 
Adding 800 multiple pronunciations (denoted as “+ pron”) brings significant 
improvements on both dev07 and dev08. On top of the dictionary with added 
pronunciations, adding new vocabulary words (denoted as “+ vocab”) achieves 0.7% 
absolute improvement on the BC subset of both dev07 and dev08. We may attribute this 
to the fact that conversational speaking style renders words more confusable, and that 
concatenating words into longer units makes these less confusable again (Saon and 
Padmanabhan 2001). There are very small improvements on BN subsets after vocabulary 
expansion. This means the vocabulary expansion is more beneficial for the BC genre, 
possibly because pronunciations are more affected by co-articulation in that genre. 
Finally, we have native speakers of Mandarin inspect the added vocabulary items in the 
final dictionary, and eliminate those that were not semantically plausible as word units. 
This effort only improves the CER results by 0.1% absolute. 

 

 
dev07 dev08

BN BC All BN BC All
baseline 2.7 14.4 9.4 2.9 13.7 8.5
static only 2.4 14.3 9.2 2.9 13.8 8.6
dynamic only 2.3 14.2 9.1 2.7 13.4 8.3
static + dynamic 2.3 14.2 9.1 2.6 13.5 8.3

Table 3.48: LM adaptation CER results (%).  

Handbook of Natural Language Processing and Machine Translation 511



Then the LM adaptation experiments are performed with our final system for GALE 
2008 evaluation (but without RWTH's systems for combination). Table 3.48 shows the 
results on static and dynamic LM adaptation and their combination. The baseline in the 
experiments uses the full trigram LM for lattice rescoring. It is shown that the combined 
LM adaptation can consistently reduce the CER on both LDC dev07 and dev08 set, and 
on both BN and BC genres. 

We also compare the relative contribution of the static and dynamic LM adaptation.  
Table 3.48 shows that static LM adaptation alone only gives minor improvement on the 
recognition performance, and dynamic LM adaptation is as good as using static and 
dynamic LM adaptation together. This confirms our hypothesis that dynamic LM 
adaptation can provide a finer grained adapted LM for rescoring. There is very little 
improvement or degradation on the BC genre when using static LM adaptation only. This 
may be due to that the majority of the text training corpora are in BN genre. The coverage 
of BC genre is quite limited with static topic LMs. In addition, the relatively higher error 
rate in BC first pass decoding hypothesis makes it more difficult for either type of LM 
adaptation. 

 

 
dev07 dev08 

BN BC All BN BC All 
RWTH only 3.1 13.6 9.2 3.9 13.1 8.7 
SRI-UW only 2.3 14.2 9.1 2.6 13.5 8.3 
SRI-UW + RWTH    
(MFCC+MLP)-SI 4.0 17.4 11.7 4.9 16.0 10.6 
PLP-SA + LMA 2.6 15.0 9.7 3.0 14.2 8.8 
(MFCC+MLP)-SA + LMA 2.5 14.6 9.4 2.8 13.9 8.5 
combine with RWTH 2.2 12.3 8.0 2.6 12.1 7.5 

    

Table 3.49: System combination CER results (%).  

Finally, we perform system combination experiments with RWTH Mandarin STT 
systems. Two systems from RWTH are used. Each system generates an N-best list for 
final confusion network based system combination. In addition, the RWTH top-1 
hypothesis from combining the two RWTH systems is used for AM adaptation in the 
PLP-SA stage in Figure 3.26. The performance results of RWTH and SRI-UW systems 
are shown in Table 3.49. We also show the results of the intermediate stages of the 
combined system. The two systems are comparable on both dev07 and dev08, yet with 
different error rates on BN and BC genres. This diversity in error patterns especially 
helps the combined BC performance. An improvement of 1.1% and 0.8% absolute are 
obtained from combination on dev07 and dev08, respectively. 

3.5.4.7 Conclusions and Future Work 

By porting the successful English ASR technologies, and exploiting Mandarin specific 
characteristics, significant accuracy improvements have been made in our Mandarin 
recognizer. The more recent work on automatic lexicon expansion and LM adaptation 
contribute to the performance improvement. The CER performance of our system on BN 
genre is below 3% on the two development sets. However, although the BN recognition 

Chapter 3: Machine Translation from Speech512



is highly accurate, the error rate in the BC genre is still high due to its more 
conversational style. Future work includes investigating acoustic and LM adaptation 
towards the BC genre to improve BC recognition performance. 

 
Acknowledgements 

The authors would like to thank our RWTH colleagues Christian Plahl and Ralf Schlüter for providing 
the RWTH system output for combination. Thanks also to Dimitra Vergyri and Jing Zheng at SRI for help 
during the system development. 

3.5.5 Improving Speech Transcription for Mandarin-English 
Translation 

C. Woodland, and Kai Yu 

3.5.5.1 Introduction 

This section presents an examination of the impact of Speech-To-Text (STT) 
improvements on the performance of a Statistical Machine Translation (SMT) system in 
the context of a Mandarin-English transcription-translation pipeline. Specifically, the 
outputs generated by five incrementally improved STT systems are input to a constant 
CU-SMT system, and the impact of the incremental STT gains is quantified in terms of 
TER and BLEU scores. In addition, a post-STT Sentence Boundary Detection (SBD) stage 
is added and this further improves the SMT performance. It is shown that, for this 
experimental setup, there is an approximately linear relationship between STT and SMT 
performance improvements. 

In recent years, there has been considerable interest in combining STT and SMT 
technologies as part of the same processing pipeline. If an SMT system takes STT token 
sequences as input, then it is crucial to determine the impact that decisions made at the 
STT stage have upon the performance of the SMT component. 

This section describes the development of the CU-HTK Mandarin STT system as 
part of a transcription-translation pipeline, which converts broadcast Mandarin audio data 
into English text. There are three main components. The STT Component converts 
Mandarin audio into Mandarin text. The Integration Component post-processes the STT 
output by mapping spoken numbers to digits and by re-segmenting the token sequences. 
Finally, the SMT Component translates the post-processed Mandarin text into English. 

Five CU-HTK STT systems are discussed in this section and they were all developed 
as part of the GALE program. They all use a multi-pass, multi-branch framework. Since 
they use different amounts of data and different configurations, they provide examples of 
incremental CU-HTK system development. Overall, the improvements gave gains of 
approximately 45% relative reduction in Character Error Rate (CER) for both Broadcast 
News (BN) and Broadcast Conversation (BC) data. The STT system outputs were post-
processed using an SBD system, which automatically broke the STT segments into 
sentence-like units. This was done by combining a CART-Style Decision Tree Prosodic 
Feature Model (PFM) with a 4-gram LM in a lattice-based Viterbi decoding framework. 

Handbook of Natural Language Processing and Machine Translation 513

Authors: Marcus Tomalin, William Byrne, Adrià de Gispert, Mark J.F. Gales, Xunying Andrew Liu, Phillip 



The re-segmented data was translated into English text using the CU-SMT system. 
The same CU-SMT system was used for all the experiments. The performance of the 
complete transcription-translation pipeline was evaluated using the TER and BLEU 
metrics. It is shown that improving both the STT system and the post-STT segmentations 
can lower the TER scores by up to 1.7% absolute and increase the BLEU scores by up to 
1.0% absolute. Also, it is demonstrated that there is an approximately linear relationship 
between STT and SMT performance improvements. 

3.5.5.2 The CU-HTK Mandarin STT Systems 

For the GALE project, the generic CU-HTK architecture was adapted so that it could 
model Mandarin. The main Mandarin-specific modifications are the following: the front 
end used pitch-based features (plus delta, delta-delta), which were added after 
Heteroscedastic Linear Discriminant Analysis (HLDA); the acoustic models used 
optionally bandwidth-dependent HMMs; tonal questions were added to the decision-tree 
state clustering process, and a dual-language (Mandarin-English) decoding system was 
developed. The LMs were 4-gram word-based models which used character to word 
segmentation based on simple longest match. 

 

 
Figure 3.28: The multi-pass and multi-branch framework for the STT-05 and STT-Jan06 systems. 

Five versions of the CU-HTK Mandarin STT system were compared. The first 
system, STT-05, is described by Sinha (2006) and the multi-pass/multi-branch 
architecture is shown in Figure 3.28. The P1 stage uses gender-independent triphone 
models trained using Minimum Phone Error (MPE) to provide adaptation supervision for 

Chapter 3: Machine Translation from Speech514

 

 

 

 

 

 

 

 

 

 

Segmentation 

P1: Initial Transcription 

Adapt Adapt 

CNC 

Lattices 

P2: Lattice Generation 

. . . .
P3a P3x 

Lattice 
CN 
1-best 

Alignment 



the P2 lattice generation stage (Povey 2002). The P3 stage performs Constrained 
Maximum Likelihood Linear Regression (CMLLR) and lattice-based Maximum 
Likelihood Linear Regression (MLLR) using the 1-best adaptation supervision and 
lattices from the P2 stage. The final system output was derived by combining P3 outputs 
from a Feature Minimum Phone Error (fMPE) system which used 46 phones, and a GD 
38 phone system which used a Gaussianized frontend. These outputs were combined 
using Confusion Network Combination (CNC). The acoustic models were trained using 
158h of BN audio (including 11h of English data), and MPE trained triphone models 
were built using this data. The LM was trained on 366M words of data (including the 
audio data and web-data) and built using a 55k wordlist. 

The second system, STT-Jan06, used exactly the same architecture as the STT-05 
system. The only difference was that the acoustic models were trained using an additional 
19 hours of BC audio data. 

 

Figure 3.29: The multi-pass and multi-branch evaluation framework for the STT-06 system. 

The third system, STT-06, used cross-adaptation rather than 1-best supervision from 
the P2 stage. Specifically, the CU multi-pass system generated test data lattices, and BBN 
provided system output as the supervision to adapt the CU acoustic models. The multi-
pass BBN system produced an alternative acoustic segmentation (Xiang 2005). The BBN 
confidence scores for each recognized word were used when adaptation was performed to 

Handbook of Natural Language Processing and Machine Translation 515

 

 

 

 

 

 

Segmentation 

P1: Initial Transcription 

Adapt Adapt 

CNC 

Lattices 

P2: Lattice Generation 

. . . .
C3a C3x 

Lattice 
CN 
1-best  
+ confidence

Alignment 

BBN 
System 



the single-best hypothesis. The adapted models were used to rescore the lattices and 
generate the final output. The STT-06 system architecture is shown in Figure 3.29. The 
STT-06 system acoustic models were trained on 504 hours of data – the 177 hours used 
by the STT - Jan06 system, plus an additional 356 hours of which 137 hours consisted of 
BC data while the rest was BN. Once again, MPE triphones were built. The STT-06 LMs 
were trained using 1.2G words. The additional LM training data included all the 
transcriptions of the additional acoustic data, plus downloaded webdata collected at CU 
up to the end of January 2006, and newswire GALE data. A 3-way interpolation between 
the BN, BC and Phoenix TV data based component LMs was used to build the final LM, 
and a tuning set consisting of both BN and BC data was used to optimize the 
interpolation weights to obtain a more balanced CER performance for both genres. The 
acoustic and language models used an expanded list of 52k multiple character Chinese 
words for character to word segmentation. The revised recognition vocabulary contained 
a total of about 58k words, which includes an additional 5k single-character Chinese 
words, and 269 frequent English words observed in all the acoustic training 
transcriptions. 

The fourth system, STT-Feb07, also used cross-adaptation from a revised version of 
the BBN output. The acoustic models were trained on 942 hours of audio (of which 432 
hours were BC data), and the LM was trained on 1.3G words. The branches in the P3 
stage were MPE SAT, Gender Dependent (GD) MPE, and Gaussianized SAT, and 
Eval06 models were used for narrowband data processing. 

The final system, STT-Dec07 used an additional 1500M words from a range of 
newswire and web texts. Individual component LMs were built for the 27 sources, and 
these were interpolated and merged as usual. The wordlist was increased from a 58K to a 
63K list (this included 5k of frequently occurring English words). Further, 682 hours of 
additional GALE BN and BC data were used to train the acoustic models.10 

 The five systems all used the same pre-STT segmentation clustering scheme. A 
Gaussian Mixture Model classifier splits the data into wideband speech, telephone 
speech, speech with music, and pure music regions. A GD phone recognizer is then run to 
locate gender-change points and silence, and then a symmetric divergence based change 
point detector and BIC agglomerative clustering stage is used to refine the segmentation 
(Sinha 2006). The purpose of this segmentation stage was to divide the audio data into 
homogeneous acoustic blocks, and a maximum segment length limit of 30 seconds was 
used. 

 bcmdev05 bnmdev06 
STT System CER TER BLEU CER TER BLEU

STT-05 32.9 77.9 10.5 13.4 73.8 15.0
STT-Jan06 25.4 75.3 12.8 11.6 72.8 15.7 
STT-06 17.6 73.7 14.3 7.6 72.1 16.4 
STT-Feb07 16.8 73.1 14.6 7.3 72.0 16.5 
STT-Dec07 15.6 73.4 14.9 6.5 71.8 16.6 

Table 3.50: CERs, TERs, and BLEUs, for the five systems for the bcmdev05 and bnmdev06 test sets. 
The number of segments is constant for each test set (836 for bcmdev05 and 934 for bnmdevv06) 

                                                 
10 Since the Mandarin systems built for the 2008 GALE Evaluation used manual segmentations, these sys-
tems were not included in the experiments reported here. 

Chapter 3: Machine Translation from Speech516



The STT output for two test sets was produced. The bcmdev05 test set consists of 
2.5 hours of Mandarin BC data taken from 5 shows that were broadcast in March 2005. 
The bnmdev06 test set contains 3.5 hours of BN Mandarin data, selected from 14 shows 
that were broadcast between February 2001 and October 2005. The CER results for the 
five CU-HTK systems are given in Table 3.50. These results show that the incremental 
improvement in STT performance from the STT-05 to the STT - Dec07 systems 
produced about a 45% relative reduction in CER for both the bcmdev05 and 
bnmdev06 test sets. The way in which the specific components of these five systems 
contributed to the CER reduction is a topic that will not be discussed here since the 
purpose is simply to compare five systems that achieved incremental CER gains. 
However, it should be noted that roughly 0.5-1.0% absolute of the total CER gain was 
due to cross-adaptation with BBN. Further information about the CER gains for the 
systems discussed here can be found in the cited publications. 

3.5.5.3 The CU-SMT System 

The CU-SMT system used for all the experiments described in this chapter is based 
on the Transducer Translation Model. This is a phrase-based generative model of 
translation that applies a series of transformations specified by conditional probability 
distributions and encoded as Weighted Finite State Transducers (Kumar 2006; Mohri 
2002). The system allows for phrase insertions, and the phrase reordering model is 
implemented by a phrase swap transducer with a flat distribution over all phrases, which 
allows jumps of up to ten words during decoding for a maximum phrase length of five 
(Kumar 2005). Minimum Error Training (MET) is applied to adjust the lexical LM scale 
factor, word and phrase insertion penalties, phrase reordering scale factor, phrase 
insertion scale factor, forward phrase translation model scale factor, backward phrase 
translation model scale factor, forward and backward lexical translation models, and 
three phrase pair count features (Bender 2007). 

The CU-SMT system was trained on all data available for the GALE 2008 Mandarin-
English Evaluation. The training material contains 10.4M parallel sentences, with 
roughly 250M words per language, which was automatically word aligned using the 
MTTK package (Deng 2008). The Tune and Test sets are built including non-overlapping 
sections of various broadcast news and conversation test sets. Each set contains ∼60k 
Mandarin words and one single English reference for SMT scoring. The MET procedure 
was applied to optimize BLEU on the transcribed Tune set, and results are reported on the 
Test set. The English language model is an equal-weight interpolation of three 4-gram 
LMs, estimated over the English side of the parallel text, the AFP and Xinhua portions of 
Gigaword corpus version 2 (850M words), and an archive of news corpora (825M 
words), respectively. 

3.5.5.4 CU-HTK STT System Performance 

The written numbers in the STT output were mapped into digit strings and the output 
produced by the five systems was translated into English using the CU-SMT system 
described previously. The translated output was scored using the standard TER and NIST 

Handbook of Natural Language Processing and Machine Translation 517



BLEU metrics. In all the experiments described here, the texts were converted into lower 
case, and only a single reference was used for the SMT scoring. 

 
CER, TER, and BLEU results are given for the five systems in Table 3.50. The TER 

results for the bcmdev05 and bnmdev06 data show a gradual improvement (with the 
exception of the bcmdev05 result for the STT-Dec07 system). While the TERs for the 
bcmdev05 are lowered by 4.5% absolute in total, while those for the bnmdev06 data 
are lowered by 2.0% absolute. It should be recalled that the CU-SMT system was tuned 
using BLEU, and this may explain the slightly noisy TER results. However, the same basic 
asymmetry between the BC and BN results is observed in the BLEU scores: those for the 
bcmdev05 data increase by 4.4% absolute while those for the bnmdev06 data increase 
by 1.6% absolute. This may simply reflect the fact that the STT systems were improved 
in part by the addition of BC data. Consequently, the gains for the bcmdev05 data are 
greater than those for the bnmdev06 data. 

3.5.5.5 Post-STT Integration 

In recent years it has become desirable to produce STT output that contains 
information concerning sentence boundaries or `Slash Units' (SUs) (Shriberg 2004; Liu 
2005; Tomalin 2006). SUs are `sentence-like' units, not traditional `grammatical' 
sentences. In other words, they do not need to conform to the traditional grammatical 
definitions of a sentence. The pre-STT segmentation clustering scheme does not provide 
this kind of segmentation since it merely divides the audio data into homogeneous 
acoustic blocks. However, there are practical advantages to introducing a post-STT stage 
which re-segments the STT output into SUs. For instance, there are many important 
downstream processes and applications that benefit from having SU-segmented STT 
output. Since SMT systems can function as downstream components in a transcription-
translation pipeline, it is useful to quantify the extent to which they benefit from taking 
sentence-like STT segmentations as input. 

The post-STT segmentation strategy explored in these experiments takes 
automatically segmented transcriptions of Mandarin audio as input and splits the STT 
segments into smaller units using sentence boundary information. Crucially, only the 
segment boundaries are changed; the token sequences remain the same. The guiding 
assumption is that the pre-STT segmenter under segments the data, and therefore, a 
subsequent segment splitting stage is beneficial. These sentence-like segments are then 
passed to the SMT component to be translated into English text. The post-processing 
SBD scheme used here is PFM-NGRAM. This system combines a CART-Style Decision 
Tree Prosodic Feature Model (PFM) and a 4-gram in a 1-Best Viterbi decoding 
framework. It is based on the system discussed by Tomalin (2006). Specifically, a word-
based 4-gram was constructed using 250M words of LM training data that had been 
marked with a binary sentence-boundary token. The PFM was built using pause and 
duration features that had been extracted from 28 hours of acoustic BN data. The PFM 
was created as described by Tomalin (2006). The 4-gram was combined with the PFM in 
a lattice-based 1-Best Viterbi decoding framework with an empirically determined 
grammar scale factor of 0.8. The 1-Best decoder output produced token sequences for 

Chapter 3: Machine Translation from Speech518



each file in the test sets, and these contained the STT lexeme token sequence and SU 
boundary tokens that had been inserted automatically during the decoding process. 

 
 Test SBD #Segs CER TER BLEU
  × 836 15.6 73.4 14.9
 bcmdev05 √ 2197 15.6 71.7 15.6
  × 934 6.5 71.8 16.6
 bnmdev06 √ 2240 6.5 70.6 17.6

Table 3.51: CERs, TERs, and BLEUs, for the STT-Dec07 + SBD output for the bcmdev05 and bnmdev06 
test sets. 

The bcmdev05 and bnmdev06 STT outputs were post-processed using the PFM-
NGRAM scheme and the performance of the five composite transcription-translation 
systems was evaluated. The detailed results for both the STT - Dec07 and STT - 
Dec07+SBD systems are given in Table 3.51. These results show that the PFM-NGRAM 
scheme generate more than double the number of pre-STT segments. Crucially, though, 
the STT-Dec07+SBD system obtains lower TERs and higher BLEU for both test sets (up 
to 1.7% absolute gain in TER and up to 1.0% absolute gain in BLEU). This quantifies the 
extent to which the CU-SMT system benefits from taking post-STT SBD output as its 
input, rather than the unresegmented STT output. 

To examine the relationship between the STT and SMT components, the CER scores 
were plotted against the TER and BLEU values for all systems. The plots are given in Fig-
ure 3.30. These results confirm that the CU-SMT system consistently produces better 
TER and BLEU scores when it uses the STT+SBD output rather than the unresegmented 
STT output. More importantly, the CER improvements for the bcmdev05 data produce 
both TER and BLEU gains for the same SMT system, and the relationship between the 
performance of the STT and SMT systems is roughly linear whether post-STT SBD 
processing is applied or not. Crucially, this pattern is consistent across different data ge-
nres, since the same general trend is observed both for the BC and for the BN test sets. 
The patterns are not quite so clean for the TER results, but, as mentioned above, this may 
simply be due to the fact that the SMT system had been tuned using BLEU. 

3.5.5.6 Conclusions 

A transcription-translation pipeline which converts Mandarin audio into English text 
has been explored. Five CU-HTK STT systems have been contrasted, and it has been 
shown that the overall improvement was a 45% relative reduction in CER for both BN 
and BC data. When TER and BLEU scores are obtained for the five different STT outputs, 
the numbers show an incremental performance improvement. The use of an SBD stage of 
post-STT processing gives further gains. Most importantly, the CER, BLEU, and TER 
results for the five combined STT+SMT systems show that (at least for this set-up) there 
is a roughly linear relationship between the STT and SMT improvements. 

 
 

Handbook of Natural Language Processing and Machine Translation 519



 

Figure 3.30: CER, TER, and BLEU scores for the bcmdev05 and bnmdev06 data 

 

3.6 Language-Specific Models and Systems: Arabic 

3.6.1. Introduction 
Author: Katrin Kirchhoff 

 
The Arabic language poses unique challenges for both automatic speech recognition 

and machine translation, including a highly ambiguous writing system, dialectal 
variation, and morphological complexity.  The resulting problems for automatic speech 
recognition (ASR), particularly as a frontend to a machine translation module, are briefly 
summarized below. 
 
Writing System/Acoustic and Pronunciation Modeling: 

Arabic is written using a script-based alphabet consisting of 28 letters, 25 of which 
represent consonants and 3 of which represent the long vowels /i:/, /a:/, and /u:/. Letters 
may have up to four different shapes, depending on their position in the word.  Short 
vowels are not represented by letters of the alphabet, but are marked by so-called 
diacritics, short strokes placed either above or below the preceding consonant. Several 
other pronunciation phenomena are marked by diacritics, such as consonant doubling 

Chapter 3: Machine Translation from Speech520



(phonemic in Arabic), which is indicated by the “shadda” sign, absence of a vowel 
(marked by the “sukuun”), and the “tanween”, word-final adverbial markers which add 
/n/ to the pronunciation.  Text is normally undiacritized and diacritics are only used in 
ambiguous contexts or for special text types. While the alphabet has an almost one-to-one 
correspondence with phones, the absence of diacritics introduces a high degree of 
phonetic ambiguity. An undiacritized form can have dozens of possible diacritized forms. 

Training data for speech recognition is mostly undiacritized since the manual 
annotation of diacritics is error prone and time consuming. While limited amounts of 
diacritized text may be obtained for model bootstrapping or evaluation purposes, the vast 
majority of training data is deficient in the phonetic information it provides.  Even though 
Arabic speech recognizers typically output undiacritized forms, it has been shown in the 
past that modeling the phonetic information conveyed by diacritics system internally 
improves recognition performance (Kirchhoff 2003; Afify 2005). 

The main research question is how to model the missing phonetic information in the 
acoustic and pronunciation modeling components of the recognizer. The most frequently 
pursued approach is to automatically identify the correct diacritized form for each 
undiacritized base form and to use the diacritized training data for acoustic model 
training. A frequently used tool in this context is the Buckwalter morphological analyzer 
(Buckwalter 2002) that provides all possible morphological analyses of an Arabic word 
along with its possible diacritizations. A forced alignment of the speech signal and 
training transcriptions enriched with the Buckwalter variants can then be performed. The 
variants chosen during forced alignment can then be included in the pronunciation 
dictionary.  Virtually all GALE systems use this approach. The common finding is that 
this procedure results in approximately three to four pronunciation variants per 
undiacritized word form on average, and that enriching variants with probabilities (based 
on counts in the training data) during recognition improves performance. 

However, there is usually some percentage of words (around 5 - 10%) that cannot be 
processed due to spelling errors or dialectal origin of the words. Systems differ as to how 
these words are handled. The IBM system (Soltau et al. 2007) simply backs off to 
unvowelized forms.  Lamel et al.(LIMSI) describe an approach where forms not handled 
by the Buckwalter Analyzer are expanded to include a either single generic short vowel 
or no vowel at all in every possible position. This allows for a better match between 
training transcriptions and acoustic signal, but avoids the effort involved in predicting 
exact vowelizations, or the explosion of pronunciation variants caused by including all 
three short vowels. A comparison of systems where 15% of the training lexicon had the 
correct vowel vs. the generic vowel showed a 5% relative degradation on broadcast news 

phoneme mapping can be applied to generate pronunciation variants for unvowelized 
forms. The section by Bisani and Ney (RWTH Aachen) describes a statistical joint 
sequence model to perform this task, which achieved a phoneme prediction error rate of 
roughly 15% and was used in the SRI Arabic recognition system. Since the different 
approaches (back off to unvowelized form, generic vowel, phoneme prediction) were 
evaluated on different data sets it is not possible to compare the results; moreover, their 
performance is strongly influenced by the overall design of the recognition system. 

Handbook of Natural Language Processing and Machine Translation 521

data, but only 1% on broadcast conversation data. Finally, automatic grapheme-to-



Several systems (Nallasamy et al., Soltau et al.) use both vowelized and unvowelized 
models and combine the results obtained by systems with different models, or they 
perform cross-adapation. Lamel et al. specifically studied the effect of diacritics other 
than vowels, i.e., shadda and tanween, and found that using dedicated phone models for 
these slightly improved performance. 
 
Dialectal Variation: 

Arabic is not a single homogeneous language, but a collection of varieties comprising 
a written language standard, Modern Standard Arabic (MSA), as well as, a multitude of 
regional dialects, e.g., Egyptian Arabic, Levantine Arabic, or Gulf Arabic. Whereas MSA 
is primarily used for written communication and formal discourse, dialectal Arabic is the 
variety of choice for everyday conversation. Dialects differ from MSA at all linguistic 
levels and may be used side-by-side with MSA, resulting in code switching even within 
individual utterances. Dialectal speech can influence recognition performance by causing 
the misrecognition of dialectal words due to gaps in the recognizer vocabulary, or due to 
mismatches in acoustic or pronunciation models caused by dialectal vowel changes or 
omissions. 

The default approach to modeling dialectal characteristics is to simply train acoustic 
models on mixed MSA and dialectal data in the hope that sufficiently powerful acoustic 
models (e.g., with a large enough number of parameters) will be able to accommodate the 
additional variation introduced by dialectal phonetic forms. Of the sections in this 
section, only Soltau et al. (IBM) describe an explicit modeling approach, where dialectal 
questions were included in the decision trees used for clustering acoustic models, 
resulting in consistent word error rate improvements across different evaluation 
conditions. 

Nguyen et al. (BBN) mention including dialectal affixes into their pronunciation 
dictionary, but the effect on system performance has not been reported. To date, 
comparatively little work seems to have been performed on dialectal modeling and future 
work in this area can be expected to show additional gains. 

 
Morphological Complexity: 

Arabic is characterized by rich and productive morphological processes. Arabic 
open-class words consist of a consonantal root interspersed with different vowel patterns, 
plus various derivational affixes and particles.  A given root form can lead to thousands 
of different word forms, which may present a problem for language modeling and 
vocabulary selection.  In ASR, there are generally two ways to handle this problem: (1) 
decomposition of the word form into smaller units, or (2) increasing the vocabulary of the 
speech recognizer as much as possible. Earlier work on Arabic speech recognition, 
particularly dialectal speech recognition, only had limited training resources available 
and, therefore, performed word decomposition to improve recognition performance 
(Vergyri 2004; Choueiter 2006). 

Recent advances in efficient decoder design, as well as, the availability of large 
amounts of (MSA) training data, have permitted systems to simply include all desired 
word forms as separate entries in the vocabulary, and most GALE systems pursue this 
approach now. The vocabulary sizes range between 240k and 740k. However, Nguyen et 

Chapter 3: Machine Translation from Speech522



al. (BBN) explicitly compare recognition systems based on words as recognition 
(language modeling) units with systems based on two different morphemic 
decompositions and demonstrate that a system based on a linguistic decomposition into 
morphemes outperforms a standard word-based system in terms of both out-of-
vocabulary rate and word error rate. At the same time, the morpheme-based systems have 
significantly fewer parameters due to smaller vocabulary sizes and language models. The 
combination of word-based and morpheme-based systems further improves performance.  

The conclusion is that Arabic morphology does not present a genuine problem for 
ASR anymore (provided that a sufficient amount of training data is available). Unlike 
highly agglutinative languages like Finnish or Estonian, Arabic can be handled by a 
standard system based on words as recognition units. Careful morphological modeling 
can yield improvements over the simple word-based approach while yielding a smaller 
and faster system; however, more linguistic resources (such as morphological analyzers) 
are required for this approach.  

Authors: Lori Lamel, Abdelkhalek Messaoudi and Jean-Luc Gauvain 

3.6.2.1 Introduction 

Since Arabic texts are almost always written without diacritics, the main challenge in 
pronunciation modeling is to deal with incomplete information. A strongly consonantal 
language with nominally only three vowels, Arabic is a highly inflected language. There 
are typically multiple possible vocalizations for a given written word. Thus, one of the 
challenges of explicitly modeling vowels in Arabic is to obtain vocalized resources, or to 
develop efficient ways to use non-vocalized data (Vergyri and Kirchhoff 2004). Given a 
properly vocalized form, Arabic grapheme-to-phoneme conversion is (relatively) 
straightforward. The Buckwalter morphological analyzer (Buckwalter 2002) is widely 
used to produce possible vocalizations. However, not all words are successfully 
processed by the Buckwalter Morphological Analyzer, which mainly fails on proper 
names, technical words, and words in Arabic dialects. In the case of a large quantity of 
training data, there can easily be many words without vocalizations and determining 
vocalizations for these words manually or even semi-automatically can be prohibitive. 
Even though most Arabic speech recognizers output a non-vocalized word sequence, it 
has been shown that better recognition performance is obtained by explicitly modeling 
short vowels (Afify et al. 2005) than with a grapheme-based approach (Billa et al. 2002). 

Therefore, in order to simplify the problem of training on non-vocalized audio data, a 
generic vowel model has been introduced to hold the place of short vowels. Rules were 
developed to automatically generate pronunciations from the non-vocalized word form. 
After applying the rules, each word has multiple pronunciations represented with 
consonants, long vowels, and the generic vowel. The absence of a vowel (the Sukoun) is 
modeled by removing a generic vowel. In addition to the explicit modeling of short 
vowels, extending the phone set to explicitly model gemination was found to improve 
recognition performance. The ‘tanwin’ is another grammatical mark which specifies that 

Handbook of Natural Language Processing and Machine Translation

3.6.2. Explicit and Implicit Modeling of Short Vowels for 
Arabic STT 

523



a noun is non-definite. The tanwin causes short vowels in word final position to be 
’doubled’, which is phonetically realized as adding an ‘n’ after the final vowel (also 
called nunation). As for the short vowels, the gemination and tanwin markers may be 
useful for translation or other downstream processing. 

While the original purpose of the generic vowel models was to simplify training, in a 
second phase, the generic vowel was also used in the recognition lexicon. This allowed 
the inclusion in the lexicon of words that were previously excluded since they were not 
handled by Buckwalter. Including them was found to improve lexical coverage and 
reduce perplexity of development data. 

3.6.2.2 Generating Pronunciations with Generic Vowels  

One possibility considered to process words that were not able to be processed with 
the Buckwalter Morphological Analyzer, was to allow all three short vowels or no vowel 
after every consonant. This idea was quickly rejected since there are too many possible 
vocalized forms. For example, with words with 4 consonants generate 512 possible 
pronunciations, and words with 8 consonants have 8192 possible pronunciations. In order 
to reduce the combinatorial explosion, a generic vowel was proposed to serve as a place 
holder for any of the three short vowels (Lamel et al. 2007). This does not pose any 
problem since even though short vowels are represented internally in the system, the 
Arabic recognizer outputs the non-vocalized word form.  

Using a generic vowel offers two main advantages. First, the manual work in dealing 
with words that are not handled by the Buckwalter Morphological Analyzer. These words 
can be automatically processed. Second, the number of vocalizations, and hence 
pronunciations, per word is greatly reduced (one vowel instead of three). 

A set of detailed rules were used to generate pronunciations with a generic vowel 
from the non-vocalized word form. Some rules concern the word initial Alif (support of 
the Hamza), which can be stable or unstable. For the former case a pronunciation is 
generated with a glottal attack (denoted /’/) followed by a generic vowel (denoted /@/). 
These rules also cover word initial letter sequences [wAl, wbAl, wkAl, fAl, fbAl, fkAl], 
which often correspond to a composed prefix ending in “Al”. Different pronunciations 
are generated to represent both situations. For example, the possible pronunciations for 
wAl are: /w@l/, /w’@l/, and /wAl/. In word final position, short vowels can be followed 
by an “n” (tanwin), so two forms are proposed, the generic vowel alone and the generic 
vowel followed by an “n”. 

Specific rules handle the pronunciation of words ending in “wA” and a final letter 
“p” (which symbolizes the ta marbouta). Within a word, a generic vowel is added after 
each consonant with the exception of the semivowels “w” and “y”, which can be realized 
as semivowels or can serve as a support for the long vowels /U/ and /I/, respectively. 
Similarly a word internal Alif can represent the long vowel /A/ or a glottal attack. 

After applying these rules, each word has multiple pronunciations represented with 
consonants, long vowels, and the generic vowel. Since vowels may also be absent 
(written with a Sukoun), additional pronunciations are generated by removing one 
generic vowel at a time. Using the rules the following two generic vowel forms are 
generated for the word “ktb”. 

 

Chapter 3: Machine Translation from Speech524



ktb    k@t@b@ k@t@b@n 
 

which after allowing each generic vowel to be deleted produces: 
 

ktb k@t@b@ k@t@b@n  
kt@b@ kt@b@n  
k@tb@ k@tb@n k@t@b 

 
These generic vowel rules generate a large number of pronunciations per word: on 

average 35, compared to 6 per word with a vocalized form. 
A test was done to assess the impact of using a generic model instead of three short 

vowels. All short vowels in the vocalized lexicon were mapped to a generic vowel. 
Acoustic models were trained by first mapping all short vowels to a single generic vowel 
(@), and training context dependent (CD) models with the standard consonant set and the 
single generic vowel. A pronunciation lexicon was created using the standard 
pronunciations with short vowels for the vocalized words, and automatically generated 
pronunciations with the generic vowel for the non-vocalized words. The audio data was 
then segmented using this lexicon with a combined set of acoustic models formed by 
merging the CD models with short vowels and those with a generic vowel. Note that 
since the basic idea was to use the generic vowel only in training, and not during 
recognition, a number of CD models are never used. 

Two model sets were built with 5k tied states (64 Gaussians per state) and covering 
5k phone contexts, one modeling 37 phones and the other 35 (the three short vowels 
being replaced by a single one). These models were tested using a single pass system 
without acoustic model adaptation. On broadcast news data (bnat06) there was about a 
5% relative performance degradation using only the generic vowel. For broadcast 
conversation (bcat06) data, the relative loss was less than 1%. The smaller degradation on 
broadcast conversations may be due to a higher proportion of dialect or less formal data, 
for which there is a larger variability in the way that vowels are pronounced. These 
results provided an indication the generic vowel could be an effective means for 
facilitating training on non-vocalized data. All acoustic models used in the LIMSI GALE 
systems were built using dictionaries for which about 15% of the words have generic 
vowels in their pronunciation (Lamel et al. 2007). 

3.6.2.3 Generic Vowels in the STT Lexicon 

Since the generic vowel was found to be helpful in acoustic model training, a natural 
second step is to also use it in the recognition lexicon. When typical frequency-based 
methods are used select a recognition word list, a number of words may be excluded if no 
pronunciation is readily available. For example, when selecting a 200k word list, 36k 
words that should have been included, were excluded since they could not be vocalized 
by Buckwalter. As for the training data, these words were mostly proper names, technical 
terms or words in various Arabic dialects. Adding these 36k words to the 200k word list 
reduced the OOV rate by 0.2 to 0.9% absolute for different development data sets, 
showing the interest of including them. A simplified method for generating a limited 
number of vocalized forms (and thus pronunciations) for recognition was developed. The 

Handbook of Natural Language Processing and Machine Translation 525



basic idea is to put a generic vowel after each consonant and to map all semivowels to a 
long vowel. This corresponds to the manner in which foreign names and technical terms 
are spoken. The distribution of the number of pronunciations per word automatically 
generated in this manner is shown in Table 3.52. About 10% of the words have a single 
pronunciation, and over 50% have only one or two. Only 2% of the words have more 
than 10 forms, with the maximum being 16, and all of these words (1.7%) include the 
prefix ’Al’Using the extended 236k wordlist reduced the word error rate by 0.2% 
absolute using a single decoding pass without cluster-based adaptation on the eval06 data 
set. In the reference transcripts, there were 162 occurrences of one of the 36k word forms, 
accounting for 0.6% of all word tokens. Thus, one third of the possible gain was 
obtained. 

.#pronunciations % words 
1 9.6% 
2 42.7% 
3 20.4% 
≤10 98.0% 
16 1.7% 

Table 3.52: Distribution of the number of pronunciations with generic vowels for the 36k words in the 
extended 236k word list. 

3.6.2.4 Modeling Geminates and Tanwin 

The initial phone set for Arabic contained 37 symbols: 28 Arabic consonants, 3 
foreign consonants, and 6 vowels (i,a,u short and long) (Messaoudi et al. 2005). When 
pronunciations were generated with this phone set, all consonants with a gemination 
mark were simply doubled. While this may be a reasonable approximation for some 
sounds, such as fricatives, it is clearly not well adapted to plosives where gemination 
does not result in multiple bursts. Other sources of gemination arise when a contextual 
variant of the definite article ’Al’ (’the’). When the ’Al’ precedes a lunar consonant it is 
usually pronounced as /al/. When the ’Al’ precedes a solar consonant it is usually silent, 
but transforms the following consonant into a geminate. Generally speaking all of the 
Arabic consonants can occur as singletons or geminates. 

The left part of Figure 3.31 illustrates a portion of the phrase “(kaAn)ati AlT aAgirap 
Al$ ir(aAEiyap)”. An aligned approximate phone transcription is shown on the bottom. 
The sukoun indicating that the vowel following the first /t/ is not pronounced is 
transformed to a short /i/, because it precedes an ’Al’. The ’Al’ in turn precedes a solar 
consonant so it is not pronounced, but causes the T (emphatic t) to be geminated. The 
short /i/ (around time 783.8) is realized as a schwa-like vowel. Another geminate ’sh’ 
(SS) is centered at time 784.4. 

In order to more precisely model such phenomena, an alternative phone set was 
explored in which an additional 30 phone symbols were added to represent the geminate 
phones. The frequencies of the consonants in single and geminate form were counted in a 
100 hour corpus of manually transcribed and vocalized Arabic broadcast news data 
(Messaoudi et al. 2005). The right part of Figure 3.31 lists the solar and lunar consonants, 
along with the percentage of occurrences as geminates. It can be observed that the solar 
consonants generally have a higher proportion of geminates than the lunar ones. 

Chapter 3: Machine Translation from Speech526



 

 
    a    t     i         TT     A      ?    i    r     a         SS        i   r 
 
 

Figure 3.31: Left: Spectrogram illustrating gemination. Right: Occurrences (%) of geminates for Solar and 
Lunar consonants. 

Figure 3.32 shows how the geminates are represented in the original pronunciation 
dictionary (top) and the dictionary with specific geminate symbols. The left column gives 
the transliterated lexical entry. Associated with each entry are several pairs of vocalized 
forms and their pronunciations. 

To compare the original phone set and the extended one with geminates, acoustic 
models were trained on a corpus of about 1000 hours Arabic broadcast data using the 
both. They were tested on the broadcast news (bnat06) and broadcast conversation 
(bcat06) data, each containing about three hours of audio data (Lamel et al. 2007). For 
both data types using specific phones to model geminates gave a small performance 
improvement, and a further gain was obtained by combining the two models. Increasing 
the phone set also has the advantage of increasing the number of context-dependent 
phones that are modeled. 

 
Lexical Entry  Pronunciation = Transliteration  
ktAb kitAb=kitaAb kitAba=kitaAba kuttAb=kut˜aAb kuttAba=kut˜aAba 

 kitAbi=kitaAbi kitAbin=kitaAbK kuttAbi=kut˜aAbi kuttAbin=kut˜aAbK 
 kitAbu=kitaAbu kitAbun=kitaAbN kuttAbu=kut˜aAbu kuttAbun=kut˜aAbN

ktAb kitAb kitAba ku+Ab ku+Aba 
(with kitAbi kitAbin ku+Abi ku+Abin 
geminates) kitAbu kitAbun ku+Abu ku+Abun 

Figure 3.32: Sample pronunciations for ktb in the dictionary without (top) and with (bottom) geminate 
symbols. The lexical entry is the non-vocalized word class encompassing all possible vocalized forms. On the 
left of the equal sign is the phonemic form and with the corresponding transliterated graphemic form on the 

right. The transliterated form is not repeated in the bottom part of the figure. 

The ’tanwin’ is a grammatical mark which specifies that a noun is non-definite. The 
tanwin causes short vowels in word final position to be ’doubled’, which is phonetically 

 
Solar Lunar 

Y 50.5% k 6.6% 
$ 26.9% w 4.7% 
S 20.1% m 4.2% 
 P 19.1% q 3.1% 
V 19.0% j 2.7% 
Z 18.4% G 2.5% 
D 15.3% b 2.1% 
S 14.1% x 1.8% 
T 9.2% H 1.2% 
N 8.9% c 0.2% 
T 8.7% J 1.1% 
R 8.3% f 1.7% 
Z 7.4% h 0.5% 
L 6.4% ’ 0.0% 
D 4.9% V 0.0% 
G 2.6%   

Handbook of Natural Language Processing and Machine Translation 527



realized as adding an ’n’ after the final vowel (also called nunation). The tanwin can be 
realized as a vowel-n sequence or a nasalized vowel, or some combination. In an attempt 
to better capture this variability, three phones were added to the phone set representing 
the three tanwin phones (in, an, un) with a single unit. Acoustic models were built using 
this new phone set, and tested on the development data sets. 

Comparable word error rates were obtained with these models and the non-tanwin 
models, and an absolute gain of 0.4% was achieved with system combination. 
Contrastive models were built permitting multiple forms for tanwin, both as a single 
phone and as a short vowel-n sequence. These models had comparable performance as 
the previous model sets. Given the large variability in the realization of tanwin, these 
results are not surprising and suggest that any reasonable, coherent representation for 
tanwin will suffice. 

3.6.2.5 Conclusions 

This section has summarized recent advances in pronunciation and acoustic modeling 
to explicitly take into account some of the specificities of the Arabic language. One of the 
challenges is training with incomplete information since most Arabic texts are written 
without diacritics, yet the diacritics provide useful information for pronunciation 
modeling and higher level processing. Many vocalized word forms can be derived using 
the Buckwalter morphological analyzer and modifications thereof. In order to enable 
training for words that Buckwalter is not able to process, rules to generate pronunciations 
with a generic vowel have been proposed. This method has been used to significantly 
facilitate training on non-vocalized data, and all of the acoustic models used in the LIMSI 
GALE systems were trained with them. Pronunciations for 16% of the words in the 
training dictionary and 11% in the recognition dictionary have a generic vowel. 
Performance gains were also obtained by explicit modeling of geminate consonants and 
pronunciation variants of the definite article ‘Al’. Some other variants have also 
improved performance, such as modeling the g-sound in Egyptian Arabic, the tendency 
for a final /a/ to be realized as a front vowel /i/ in Lebanese data, and the trend to have a 
Sukoun as the final vowel in spoken Arabic, in particular for dialectal speech. 

3.6.3. Statistical Modeling of Pronunciation Lexica 
Authors: Maximilian Bisani and Hermann Ney 

3.6.3.1 Introduction 

Today’s speech recognition systems are able to recognize arbitrary sentences over a 
large, but finite vocabulary. Two key components of such a system are the language 
model, which describes how likely sequences of words are, and the acoustic model which 
estimates the likelihood of a string of phonemic symbols given the observed acoustic 
signal. Both these models are trained using large amounts of text and audio data 
respectively. They are linked by the pronunciation lexicon, which provides phonemic 
transcriptions for each word in the vocabulary. The lexicon is not commonly derived 
from example data, but handcrafted by human experts, which makes it an expensive and 

Chapter 3: Machine Translation from Speech

often limited resource. 

528



Most application domains require very large lexica to achieve satisfactory coverage. 
Typically, on the order of one hundred thousand word forms are needed for English. 
Most languages have a richer morphology than English and require even larger 
vocabularies. Many important speech recognition tasks feature an open, constantly 
changing vocabulary, e.g., broadcast news transcription. Extending the vocabulary of a 
speech recognition system requires, again, human expertise in phonetics. 

In alphabetic writing systems the orthographic form is a conventional representation 
of a word’s pronunciation, which makes it possible in principle to convert the grapheme 
sequence into a phoneme sequence, albeit some margin of error needs to be accepted. The 
difficulty of this conversion problem varies from language to language and so does the 
accuracy achieved on this problem by state-of-the-art techniques. Knowledge-based 
approaches to implement this conversion are rule based pronunciation converters, which 
need to be developed by phonetic experts. A very simple, straight forward approach is to 
use the written form directly as a graphemic representation of the pronunciation of a 
word. The task of learning the relation between a letter in context and its corresponding 
acoustic realization is simply delegated to the acoustic model. While this has been shown 
to work reasonably well (Kanthak and Ney 2001), for many languages, a manually 
created phonetic pronunciation lexicon outperforms this naive graphemic pronunciation 
approach widely. 

A compromise between the knowledge-based and the knowledge-free approach is 
data-driven grapheme-to-phoneme conversion, where a model of the letter-to-sound 
relation is derived automatically from an existing dictionary of example pronunciations. 
Here, we present the results of using such a language independent, fully data-driven 
grapheme-to-phoneme converter, which can be used as a statistical pronunciation lexicon. 
A joint multigram model for pairs of grapheme and phoneme sequences is trained on a 
source pronunciation lexicon. The model can subsequently be used to generate 
pronunciations and estimate pronunciation probabilities for arbitrary words. 

This approach, the software implementation of which is available under an Open 
Source license, has been successfully applied to different languages and tasks:11 
 

• Offline automatic extension of the pronunciation lexicon (lexicon augmentation) 
of the Arabic Nightingale transcription system (Vergyri et al. 2008).  

• Low-cost generation and validation of pronunciation lexica (Bisani and Ney 
2008).  

• Implicit, online automatic extension of the recognition vocabulary on the basis of 
sub-word units derived from grapheme-to-phoneme conversion (open vocabulary 
speech recognition (Bisani and Ney 2005), optionally supported by 
morphological decomposition.  
 

                                                 
11 http://www-i6.informatik.rwth-aachen.de/web/Software/g2p.html  

Handbook of Natural Language Processing and Machine Translation 529



3.6.3.2 Joint Sequence Models  

Statistical problem formulation 
An orthographic form is given as a sequence of letters, also referred to as characters 

or graphemes. We denote the set of graphemes as G. A pronunciation is represented in 
terms of a phonemic transcription, i.e. a sequence of phoneme symbols. The set of 
phonemes is denoted as Φ . The task of grapheme-to-phoneme conversion, or phonetic 
transcription, can be formalized using Bayes’ decision rule as: 

  ߮(݃ሻ = argmaxఝᇲאכ ,݃) ߮ᇱሻ      (3.46) 

  
This means, for a given orthographic form ݃ א  we seek the most likely כܩ

pronunciation ߮ א Φכ. Here ܸכ denotes the set of all strings over symbols in V (Kleene 
star). It should be noted that this decision strategy is optimal with respect to word error, 
i.e., the risk of not getting the correct pronunciation is minimized. 
 
Co-segmentations and graphones  

The fundamental idea of joint-sequence models is that the relation of input and output 
sequences can be generated from a common sequence of joint units which carry both 
input and output symbols. In the simplest case, each unit carries zero or one input and 
zero or one output symbol. This corresponds to the conventional definition of finite state 
transducers (FST). When units may carry multiple input and output symbols, the terms 
co-sequence and joint multi-gram (Deligne et al. 1995) are used. However, it has been 
shown that already the simple FST-like model yields excellent accuracy on the 
grapheme-to-phoneme conversion task (Bisani and Ney 2008). Chen (2003) reports very 
good results with a structurally similar model, a joint maximum entropy M-gram model. 
We describe the simple FST-like model in the following. 

We call a pair ݍ = ,ࢍ) ሻ࣐ א  ܳ = ܩ)  ሼ߳ሽ  ൈ (  ሼ߳ሽሻ of a letter and a phoneme, 
where either of which can be empty, a singular graphone. (“Singular” because of the 
restriction to at most one symbol on each side.) The expressions ݃ and ߮ refer to the 
first and second component of q respectively. For example, the pronunciation of 
“mixing” may be regarded as a sequence of seven graphones: 

 
“mixing”= m i x — i n g 
[mIksIN] [m] [I] [k] [s] [I] — [N]

 
Since there are multiple ways to align a given grapheme and phoneme sequence the 

joint probability ࢍ),  ሻ is determined by summing over all matching graphone࣐
sequences: ࢍ), ሻ࣐ = ∑ ሻ࣐,ࢍ)ௌאሻ)      (3.47)  

where  א ,ࢍ)is a sequence of graphones and S כܳ  is the set of all co-segmentations (࣐
of ࢍ and ࣐:  

Chapter 3: Machine Translation from Speech530



S(ࢍ, ൜ = :(࣐ א ฬכܳ ڮభ ԡࢍ ԡ ࢍ಼ୀ ࣐ࢍభԡڮ ԡ ಼࣐ୀ ࣐ൠ    (3.48) 

Here ԡ denotes sequence concatenation and K = |q| is the length of the graphone 
sequence q. The joint probability distribution ࢍ),  ሻ has thus been reduced to a࣐
probability distribution p(q) over graphone sequences  = ,ଵݍ  … ,  , which can beݍ
modeled using a standard M-gram approximation: 

ଵሻݍ)  ؆  ∏ ,ିଵݍ|ݍ) … , ିெାଵሻାଵୀଵݍ     (3.49) 

Positions i < 1 and i > K are understood to hold a special boundary symbol ݍ  = ٣ which 
allows modeling of characteristic phenomena at word starts and ends. 

 
Model estimation 

Given is a training sample of N words paired with their pronunciations ࣩ1,…, ࣩN = (ࢍଵ, ,ଵሻ࣐ … , ,ேࢍ)  .ேሻ,  but without an alignment on the level of letters and phonemes࣐
First, we note that if we have a joint sequence model we can compute the probability of 
any co-segmentation for each sample, since a co-segmentation ࣭ uniquely defines a joint 
sequence: 

,ࢍ)  ,࣐ ࣭ሻ =  ሻ     (3.50)) 

 
Thus, the log-likelihood of the training data can be formulated as the sum over all 
segmentations: 

 log ࣦ( ࣩଵ, … , ࣩேሻ       =  ∑ log ࣦ(ࣩሻேୀଵ =  ∑ log൫∑ ,ࣩ) ࣭ሻ࣭אௌ(ࣩሻ ൯ேୀଵ          
      

The segmentation ࣭ into joint units is a hidden variable. As first demonstrated by 
Deligne and Bimbot (1995), maximum likelihood training of this model can be 
performed using the expectation maximization (EM) algorithm. To start the iterative 
procedure we initialize the unigram model with a flat probability distribution, i.e., all 
singular graphones have the same initial probability. Higher order M-gram models are 
initialized using the previously generated (M-1)-gram model. 

Handbook of Natural Language Processing and Machine Translation 531



As previously proposed (Bisani and Ney 2008), we use a discounted re-estimation 
equations, using M absolute discounting parameters ݀ଵ, … , ݀ெ :  

;)  ࣖሻ =  ∏ หݍ൫ܯܲ ݄; ࣖ൯|ሻୀଵ  (3.51) 

,ݍ)݁ ݄; ࣖሻ ؔ  ∑ ∑ ,ࢍ|) ;࣐ ࣖሻ݊,(ሻאௌ(,࣐ሻேୀଵ = ∑ ∑ (;ࣖሻ∑ (ᇲ;ࣖሻᇲചೄ൫ࢍ,࣐൯ ݊,(ݍሻఢௌ(ࢍ,࣐ሻேୀଵ    (3.52) 

;݄|ݍ)ܯ ࣖԢሻ =  maxሼ݁,(ݍ,݄ሻെ ݀0,ܯሽ∑ ԢݍԢ,݄ሻݍ)݁   |ݍ)െ1ܯሻ݄)ߣ  ҧ݄ሻ   (3.53) 

݁̂൫ݍ, ത݄൯ ؔ  ∑ min (݁(ݍ, ݄ሻ, ݀ெఢഥ ሻ     (3.54) 

|ݍ)െ1ܯܲ ҧ݄ሻ = ,ݍ)̂݁ ҧ݄ሻ∑ ,Ԣݍ)̂݁ ҧ݄ሻݍԢ       (3.55) 

where  h  denotes  the  sequence  of  preceding  joint units ݄  = ,ିெାଵݍ)  … . , ିଵሻ, and ത݄ and the reduced history ത݄ݍ = ,ିெାଶݍ) … ,  ିଵሻ. The above equations are iterated untilݍ
convergence. The discount parameters ݀ଵ, … , ݀ெ are optimized on a held-out set using 
Powell’s method (Press et al. 1992). 
 
Transcription 

Having estimated the model, equation (1) can be applied to phonemically transcribe 
unseen words. In producing the phonemic transcription from the orthographic form, we 
usually restrict ourselves to approximating the sum in Equation (3.47) by the maximum. ࢍ), ሻ࣐ ൎ maxאௌ(࣐,ࢍሻ  ሻ     (3.56))

This means, we look for the most likely graphone sequence matching the given 
spelling and project it onto the phonemes. 
 ߮(݃ሻ =  ߮ ( argmaxఢொכ|(ሻୀ  ሻሻ     (3.57)ݍ)

 
N-best list generation is a theoretically pleasing way of generating alternative 

pronunciation candidates. We use the relation of alternative pronunciation candidates to 
compute the posterior probability of a translation: 
ሻ݃|߮)  =  ∑ (ሻചೄ(,കሻ(ሻ       (3.58) 

Chapter 3: Machine Translation from Speech532



In practice we find that it is not necessary to carry out the summation in the 
numerator of Equation (3.58). Therefore, we will use the following approximation in our 
experiments: 
 

ሻ݃|߮)  ൎ ୫ୟ୶אೄ(,കሻ (ሻ(ሻ      (3.59) 

3.6.3.3 Experiments 
 

  Many Natural Language Processing applications benefit from a fixed defined 
vocabulary. On the one hand, the vocabulary size should be small for robust estimation of 
the model parameters, but on the other hand, it should be large to cover all task relevant 
words. 

  The vocabulary of a speech recognition system is defined by the language model 
vocabulary and the pronunciation lexicon. The transcription system can only recognize 
words which are modeled in both system dictionaries. 

  This chapter describes the application of the grapheme-to-phoneme converter to 
automatically generate pronunciations for 50,000 undiacritized Arabic words. If manually 
done, this task would have been very time consuming and would have required Arabic 
language expertise. 
 
 
Text data processing 

 The processing of the data was performed by SRI. The text data sources were FBIS, 
TDT-4, GALE BN and BC transcripts (manual transcriptions and web data), Arabic 
GIGAWORD, CMU web data, CU web data, and UN data, for a total of about 1.1B 
words. All text data was processed using the MADA tool from Columbia University 
(Habash and Owen 2005), which uses a statistical morphological tagger to fix common 
errors or ambiguities in the Arabic orthography, like the presence of Hamzas above or 
below the letters Alef, Yeh and Waw, and the marking of final Yeh and Teh Marbuta. 
Other post-processing scripts were used to expand numbers and dates in the text data to 
words, remove non-lexical tags and punctuation marks, and normalize the orthography of 
some frequent names. 
 
Vocabulary selection 
 

vocab. size 64k 128k 256k 500k 600k 
Eval06 5.36 3.09 2.1 1.2 1.07 
Dev07 3.88 2.05 1.34 0.69 0.58 

Table 3.53: Effect of vocabulary size on OOV rate [%]. 

Since Arabic is a morphologically rich language, the setup of the system vocabulary 
is a challenging task. The vocabulary size has to be fairly high compared to other 
languages to achieve a low out-of-vocabulary (OOV) rate. Table 3.53 shows the OOV 

Handbook of Natural Language Processing and Machine Translation 533



rates on the GALE Eval06 and Dev07 sets for different vocabulary sizes. SRI used the 
approach described by Venkataraman and Wang (2003) to choose the vocabulary. 
 
Source lexicon generation 

Diacritics are usually omitted in written Arabic texts. The diacritical marks are used 
for disambiguation and clarify the actual pronunciation. In the NIGHTINGALE system 
the diacritized MADA output was used as basis of the pronunciation lexicon. The 
mapping between the diacritized orthography and the phonemic representation is fairly 
straightforward. It is mostly a 1 - 1 mapping with a few rules that describe the 
pronunciation of Arabic. The pronunciations are constructed using a set of 34 speech 
phonemes. 
 
Automatic lexicon augmentation 
 

M-gram 1 2 3 4 5 6 7 
PER [%] 39.1 28.6 23.7 18.7 16.3 15.35 15.44

Table 3.54: Grapheme-to-phoneme conversion results on held-out set. 

MADA failed to produce output for about 50k words out of the 600k vocabulary. For 
these words we used the automatic pronunciation generation software to obtain their 
pronunciations. We trained the statistical grapheme-to-phoneme conversion model on a 
selected part of the source pronunciation lexicon. We set the length constraints L equal to 
1 and trained up to a 7-gram model. Table 2 presents the grapheme-to-phoneme 
conversion results for different M-gram models on the heldout set. Accuracy of 
grapheme-to-phoneme conversion is measured in terms of phoneme error rate (PER), 
which is the edit distance between the automatic transcription result and reference 
pronunciation divided by the number of phonemes in the reference pronunciation. 

The 6-gram model was used to generate the top five most likely pronunciations for 
words which pronunciations are not covered by the source lexicon. For the 2007 GALE 
evaluation the automatically augmented pronunciation lexicon was used by the 
SRI/NIGHTINGALE Arabic ASR system (Vergyri et al. 2008). The system obtained a 
WER of about 10% on the Eval07 broadcast news (BN) test set. 

 

3.6.3.4 Conclusion 

In developing a grapheme-to-phoneme conversion system for a new language it is 
inconvenient to write and update alignment rules for all words by hand. 

We presented a fully data-driven, language in-dependent grapheme-to-phoneme 
converter and we described its application to generate multiple pronunciations for 
undiacritized words for the Arabic NIGHTINGALE system.  

Chapter 3: Machine Translation from Speech534



3.6.4. CMU-InterACT 2008 Arabic Speech Recognition 
System for GALE  

Authors: Udhyakumar Nallasamy, Ian Lane, Mark Fuhs, Mohamed Noamany, Yik-Cheung Tam, Qin Jin and 
Tanja Schultz  

3.6.4.1 Introduction 

This section discusses the development and improvements in the CMU Modern 
Standard Arabic (MSA) transcription system and cross-site system combination efforts as 
part of Rosetta submission for the 2008 GALE evaluation.  

  Vowels are omitted in Written MSA, thus, native speakers add them during reading. 
Vowels are written only in children books or traditional religious books. We investigate 
predicting the vowels in the transcriptions using a morphological analyzer and Arabic 
Tree-Bank. Vowelized acoustic models give us significant improvement over graphemic, 
unvowelized models. We report the accuracy of the vowelized and unvowelized systems 
independently and cross-adapted systems. Models used in our system were trained using 
more than 1500 hours of transcribed audio data and over a billion words from 12 
different news sources. We report our results on Dev 07 and Dev 08 datasets supplied by 
Linguistic Data Consortium (LDC).  

3.6.4.2 System Overview  

  Our MSA speech recognition system is implemented using the Janus Recognition 
Toolkit (JRTk) (Finke et al. 1997), featuring IBIS decoder (Soltau et al. 2001). 
Automatic speaker clustering of the manually segmented input audio is performed before 
decoding. Segments are clustered into speaker-specific clusters using Bayesian 
Information Criterion (BIC) to enable speaker/cluster-specific adaptation and 

  We extract power spectral features using a FFT with a 10ms frame-shift and a 16ms 
Hamming window from the incoming 16kHz audio signal. We use them to compute 13 
Mel-Frequency Cepstral Coefficients (MFCC) per frame and perform a cepstral mean 
and variance normalization on a cluster basis. To incorporate dynamic features we 
concatenate 15 adjacent MFCC frames (±7) and project 195 dimensional features into a 
42 dimensional space using a Linear Discriminate Analysis (LDA) transform. We use the 
context-dependent codebooks as classes for the LDA transform. In addition to LDA, we 
apply a single maximum likelihood trained Semi-Tied-Covariance (STC) matrix (Gales 
1999).  

  Our STT transcription engine employs a two pass decoding strategy. In the first 
pass, the decoder uses speaker-independent acoustic models without Vocal Tract Length 
Normalization (VTLN) and speaker adaptation. The hypotheses of a cluster from the first 
pass are then used to estimate the warping factors to warp the power spectrum using the 
maximum likelihood approach (Zhan and Westphal 1997). After computing the VTLN 
warping factors, the same hypothesis are used to estimate Feature Space Adaptation 
(FSA) transform using Constrained Maximum Likelihood Linear Regression (CMLLR). 

Handbook of Natural Language Processing and Machine Translation

normalization. A detailed overview of the clustering step is presented by Hsaio et al. 
(Section 3.5.3).  

535



Model space adaptation is then performed using MLLR with multiple regression classes 
(Gales 1998). Regression classes are obtained by clustering the Gaussians in the acoustic 
model. The second pass decoding uses a speaker adaptive acoustic model with feature 
and model space adaption per speaker.  

  For the development of context dependent acoustic models we applied an entropy-
based polyphone decision tree clustering process using context questions of maximum 
width ±2, resulting in shared quinphones. In addition, we included word-boundary tags 
into the pronunciation dictionary, which can be used as questions in the decision tree. 
Both the vowelized and the unvowelized systems use 6000 phonetically-tied quinphones 
with a maximum of 150 gaussians per senone.  

3.6.4.3 Language Modeling  

We used several different sources to train our language model. The Arabic Gigaword 
corpus distributed by LDC is the major text resource for language modeling. As this 
corpus only covers broadcast news, we harvested Arabic talk show transcripts from Al-
Jazeera (www.al-jazeera.net) and BN transcripts from Al-Akhbar and Akhbar Elyom. 
Details of this data collection are explained by Noamany et al. (2007). Acoustic 
transcripts from FBIS, TDT-4, GALE BN and BC were also used. The total number of 
words in the corpus amounted to 1.1 billion.  

To improve coverage and specificity for both BN and BC data, we trained 11 
different 4-gram language models and interpolated them to create the final LM. For 
language model training the SRILM toolkit (Stolcke 2002) was used. Interpolation 
weights were selected based on a heldout data set selected from BN and BC sources. The 
final LM contained 692M n-grams and a vocabulary of 737K words.  

3.6.4.4 Acoustic Modeling  

We trained two different acoustic models which are the basic blocks in a multi-pass 
decoding strategy: Unvowelized models which uses one-to-one letter to sound mapping 
without any short vowels and vowelized models in which short vowels are predicted for 
words in the dictionary and explicit models are trained for these acoustic units.  

 
Unvowelized Acoustic Models 

   
System Dev07 Dev 08 
SI  20.4%  22.8%  
SA  17.0%  19.0%  

Table 3.55: WER of Unvowelized models on Dev 07 and Dev 08. 

Arabic is a phonetic language with a close correspondence between its letters and 
sounds. We used grapheme-to-phoneme rules similar to (Billa et al. 2002) to build the 
pronunciation dictionary. Our unvowelized system contains 37 phones with three  special 
phones for silence, non-speech events and non-verbal effects such as hesitation. We 
preprocessed the text by mapping the three shapes of the grapheme for glottal stops to 
one shape at the beginning of the word since these are frequently mis-transcribed. This 

Chapter 3: Machine Translation from Speech536



preprocessing step gave us improvements in perplexity and the final WER in our 
previous experiments (Noamany et al. 2007). We used a vocabulary of 737K words 
selected by including all words appearing in the acoustic transcripts and the most 
frequent words occurring in the LM. Table 3.55 shows the Word Error Rate (WER) of 
our Speaker-Independent (SI) and Speaker-Adaptive (SA) Unvowelized system on the 
Dev 07 and Dev 08 test set. 
 
Vowelized Acoustic Models  

Arabic is a morphological language in which short vowels are omitted in the written 
form. These vowels carry grammatical case information and influence the meaning of a 
word. To restore vowels for the 737K vocabulary, we performed the following steps:  

 
• Buckwalter morphological analyzer (BMA)  
• If a word is not vowelized by the analyzer, we check for its vowelization in the 

LDC Arabic Tree-Bank  
• If the word did not appear in any of those, we used the same letter-to-sound rules 

used in the unvowelized word form  
 
To reduce the number of pronunciation variants we performed a forced alignment 

and excluded pronunciations that did not occur in the training corpus. The final 
vowelization step resulted in 2.3M pronunciations for the 737k words in our vocabulary 
(an average 3.1 pronunciations per word). The vowelized system uses the same 
vocabulary and training procedure as used in the unvowelized case. Pronunciation 
weights were computed based on frequency of occurrence during forced alignment or the 
Arabic Tree-Bank. Incorporating pronunciation weights reduced WER by 0.9% absolute 
on Dev 07 compared to decoding without them (Table 3.56).  
 

System  Dev07 
Vowelized SA  17.1%  
Vowelized SA +Pronunciation weights  16.2%  

Table 3.56: Effect of pronunciation weights on WER. 

We investigated the use of modified topology for short vowels following (Soltau et 
al. 2007). We found that modeling short vowels using a three state model with additional 
skip transitions improved our results by a further 0.7% absolute on Dev 07 test set, as 
shown in Table 3.57. 

Henceforth, all of our vowelized models use three state skip models for short vowels 
and pronunciation weights during recognition. Table 3.58 shows the performance of the 
final vowelized models in terms of Word Error Rate (WER) on Dev 07 and Dev 08. 

 

Handbook of Natural Language Processing and Machine Translation 537



 System Dev07 
Vowelized SA  
+ Pronunciation Weights  
+ 3-state short vowels  

16.2%  

Vowelized SA  
+ Pronunciation weights  
+ 3-state short vowels with skip  

15.5%  

Table 3.57: Effect of pronunciation weights on WER. 

System Dev07 Dev 08
SI  18.7% 20.4% 
SA  15.5% 16.7% 

Table 3.58: WER of Vowelized models on Dev 07 and Dev 08. 

3.6.4.5 Cross-Adaptation and LSA Rescoring  

We performed cross-adaptation based on three pass decoding with several different 
combinations of our Vowelized (V) and Unvowelized (U) acoustic models. The WER of 
these cross-adapted models are summarized in Table 3.59.  
 

System Dev 07 Dev 08 
V-SI x V-SA x U-SA  14.7%  16.9%  
V-SI x U-SA x V-SA  14.0%  15.8%  
U-SI x U-SA x V-SA  14.3%  15.9%  

Table 3.59: WER of 3-pass cross-adapted models on Dev 07 and Dev 08. 

The lattices of the best system (U-SI x U-SA x V-SA) were then rescored using 
Bigram based correlated Latent Semantic Analysis (LSA), which reduced the WER by 
0.5% absolute on Dev 07 and Dev 08. Detailed information on LSA is explained by Tam 
et al. (Section 3.4.3). 
 

System Dev 07 
2007 models (U-SI x U-SA x V-SA)  
+ LSA Rescoring  

16.3%  

2008 models (U-SI x U-SA x V-SA)  
+ Bigram LSA rescoring  

13.8%  

Table 3.60: Improvement of 2008 best system over 2007 single best system. 

Overall, our 2008 GALE single best ASR reduced the WER by 15% relative (from 
16.3% to 13.8%) on Dev 07 compared to last year’s single best system. The reduction in 
WER stems from using additional training data (~ 1.0-1.3% absolute gain), pronunciation 
weights in the dictionary (~ 0.3-0.6% absolute gain), modified HMM topology (three 
state models with skip transitions) for short vowels (~ 0.3-0.6% absolute gain) and 
improved bigram LSA based lattice rescoring (~ 0.4-0.5% absolute gain). Table 3.60 
illustrates the improvement. 

 
 

Chapter 3: Machine Translation from Speech538



System Dev 07 Dev 08 
IBM x V-SA  + Bigram LSA rescoring  11.8%  13.1%  
IBM x U-SA  + Bigram LSA rescoring  12.8%  14.2%  

Table 3.61: WER of IBMxCMU cross-adapted models on Dev 07 and Dev 08. 

We also employed cross-site adaptation by adapting CMU’s vowelized and 
unvowelized models on IBM’s best system hypothesis followed by Bigram LSA 
rescoring. The results are listed in Table 3.61. 

3.6.4.6 System Selection and Multi-System Combination  

In the GALE-2008 evaluation eight STT (speech-to-text) transcription engines were 
implemented within the Rosetta Team. Individual systems differed by the phonetic units 
used for acoustic modeling (vowelized, unvowelized, and different modeling of short 
vowels), if cross-adaptation between systems had been applied, and the method of 
language model rescoring used. On Dev 07 individual systems obtained WERs ranging 
from 9.1% to 11.8%. Due to the large number of STT engines, the iterative system 

 
optimal n-way combination-set. These systems were then combined using lattice 
combination to produce the final STT output. During the selection process Dev 07 was 
used as the tuning set, to optimize combination weights, and Dev 08 was used for system 
selection. The WERs of the top performing systems and the best n-way system 
combinations are shown in Table 3.62.  
 

System  
Word Error Rate in %  
(Sentence Error Rate in %)  
Dev 07 (tuning)  Eval 07 (test)  

1  9.3 (64.1)  10.6 (64.5)  
2  9.9 (66.4)  11.4 (66.4)  
3  9.9 (65.3)  11.0 (65.4)  
1+2  9.1(64.3)  10.3 (64.1) 
1+2+3  9.0 (59.9) 10.6 (57.1)  

Table 3.62: Performance of Multi-system lattice combination. 1. IBM: Universal Background Model (UBM) 
cross-adapted on Vowelized ASR; 2. IBM: Unvowelized Broadcast News ASR; 3. IBM: Neural Network 

rescored lattices. 

The best two way system combination “1+2” obtained an absolute reduction in WER 
of 0.2 points on Dev 07 and 0.3 points on Dev 08, compared to the single best system 
“1”. A relative reduction in WER of 3% was obtained on unseen data. All three way 
combinations obtained higher WERs on unseen data, thus the pair-wise system was used 
as the final STT output. In addition to improving transcription quality, lattice 
combination was also found to improve translation accuracy. When the IBM phrase-
based SMT system was applied to the combined system output, Translation Error Rate 
(TER) was reduced by 0.5 points (from 51.90% to 51.40%) and BLEU improved by 0.16 
points (from 32.69 to 32.85), compared to the single best system “1” (Dev 07). 

Handbook of Natural Language Processing and Machine Translation

selection approach described by Hsaio et al. (Section 3.5.3) was applied to select the 

539



3.6.4.7 Conclusion  

We presented CMU efforts in the 2008 GALE Arabic STT evaluation within the 
Rosetta team. We achieved an overall relative reduction in WER of 15% for our single 
best system compared to the previous year using techniques like better pronunciation 
modeling and improved Bigram LSA rescoring. Future work includes further 
improvements using discriminative training using MMI and MPE techniques (Povey 
2003) and better coupling between ASR and MT systems. 
 

3.6.5 Arabic Speech Transcription at IBM 
Authors: Hagen Soltau, George Saon, Brian Kingsbury, Hong-Kwang Kuo, Lidia Mangu, and Daniel Povey 

3.6.5.1 Introduction 

The goal of DARPA’s Global Autonomous Language Exploitation (GALE) program 
is to make foreign language (Arabic and Chinese) speech and text accessible to English 
monoglots, particularly in military settings. We focus in this section on Arabic broadcast 
transcription, although many of the techniques we describe have been successfully 
applied to our Chinese and English broadcast transcription systems. 

3.6.5.2 System Overview  

3.6.5.2.1. Acoustic Training Data 

We used the following corpora for acoustic model training in various experiments 
presented here: 
 

• 85 hours of FBIS and TDT-4 audio with transcripts provided by BBN,  
• 51 hours of transcribed GALE data provided by the LDC for the GALE Phase 1 (P1) 

evaluation,  
• 700 hours of transcribed GALE data provided by LDC for the Phase 2,  
• 5.6 hours of BN data with manually vowelized transcripts provided by BBN 

(BNAT-05),  
• 5.1 hours of BN data with manually vowelized transcripts provided by BBN 

(BNAD-05),  
• 500 hours of transcribed Iraqi data (TRANSTAC),  
• 1800 hours of untranscribed audio from the EARS BN-03 corpus, and  
• 10000 hours of untranscribed audio collected at IBM Research (TALES).  

 
 
 

Chapter 3: Machine Translation from Speech540

The IBM system for Arabic Broadcast News consists of unvowelized and vowelized 
acoustic models, cross-adapted to each other. The unvowelized system is strictly 
graphemic, while the vowelized system models diacritics and short vowels. 



Source Hours Source Hours 
Al Arabiya 2455 LBC (Lebanese) Flash News 88 
Al Jazeera Morning News 306 LBC International News 161 
Al Jazeera Midday News 326 Voice of America 184 
Al Jazeera News Bulletin 975 Al Alam 47 
Dubai News 27 NBN News 131 
ESC News 81  

Table 3.63: Source variability in Arabic broadcast training data. 

BNAT-05 and BNAD-05 were used only for a comparison of flat start training to 
manual data for the initialization of vowelized models. The TRANSTAC data was used only 
for experiments on dialect modeling. The TALES data was used only for experiments on 
large scale unsupervised training, including tests of dialect models. The evaluation system 
described in Section 3.6.5.2.2 was trained only on data available to all GALE program 
participants: FBIS, TDT-4, GALE P1 and P2, and EARS BN-03.  Arabic broadcast news 
and conversations are highly variable, coming from many different broadcasters and 
containing a mixture of Modern Standard Arabic (MSA) and dialectical Arabic. To 
illustrate this variability, Table 3.63 provides a breakdown of a sample comprising 130 
hours of GALE transcribed data, 750 hours of untranscribed EARS BN-03 data, and 5600 
hours of untranscribed TALES data by source. Note that only the predominant sources in 
the sample are listed; there is also a long tail containing many additional sources, which 
are represented by smaller amounts of audio. 

3.6.5.2.2. Eval07 System Description 

The operation of our system follows the steps in Figure 3.33: (1) segmentation of the 
audio into speech and non-speech segments, (2) clustering of the speech segments into 
speaker clusters, (3) speaker independent (SI) decoding of the speech segments, (4) esti-
mation of VTLN warp factors based on the SI output, (5a) estimation of FMLLR and 
MLLR for the unvowelized acoustic models based on the SI output, (5b) estimation of 
FMLLR and MLLR for the vowelized acoustic models based on the SI output, (6a) 
speaker-adapted decoding with unvowelized acoustic models (U-SA), (6b) speaker-
adapted decoding with vowelized acoustic models (V-SA), (7a) estimation of FMLLR 
and MLLR for U-SA based on the V-SA output, (7b) estimation of FMLLR and MLLR 
for V-SA based on the U-SA output, (8a) re-decoding with U-SA, (8b) re-decoding with 
V-SA, (9a) rescoring of the lattices from (8a) with a neural-network language model, 
(9b) rescoring of the lattices from (8b) with a neural-network language model, and (10) 
lattice combination of the lattices from (9a) and (9b). The performance of various decod-
ing steps on DEV-07 and EVAL-07-P2 is summarized in Table 3.64. 

 
 
 
 
 
 

Handbook of Natural Language Processing and Machine Translation 541



 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.33: System diagram. Oval boxes represent decoding or rescoring steps. 

Step Decoding pass DEV-07 EVAL-07-P2 
(3) U-SI 24.5% 22.4% 

(6a) U-SA 12.2% 10.1% 
(6b) V-SA 11.4% 9.4% 
(8a) U-SA 11.1% 8.7% 
(8b) V-SA 10.7% 8.6% 
(9a) LM resc.  (8a) 10.4% 8.5% 
(9b) LM resc.  (8b) 10.2% 8.0% 
(10) Lattice comb. 9.9% 8.0% 

Table 3.64: Word error rates of different decoding steps on DEV-07 and EVAL-07-P2. 

SI decoding 

Speech/non-speech 
segmentation 

VTLN 

Lattice combination 

NN-LM rescoring NN-LM rescoring 

MLLR 

FMLLR 

U-SA decoding 

MLLR 

FMLLR 

V-SA decoding 

MLLR 

FMLLR 

U-SA decoding 

MLLR 

FMLLR 

V-SA decoding 

Speech 

(1),(2) 

(3) 

(5a)          (5b) 

(4) 

(6a)           (6b) 

(10) 

(9a)           (9b) 

(8a)           (8b) 

(7a)          (7b) 

Chapter 3: Machine Translation from Speech542



3.6.5.2.3. Acoustic Modeling 

The input speech is represented by VTL-warped PLP features and a context window 
of eight frames. The PLP features are mean and variance normalized on a per speaker 
basis. An LDA transform is used to reduce the feature dimensionality to 40. The 
maximum-likelihood training of the acoustic model is interleaved with an estimation of a 
global semi-tied full covariance (STC) (Gales 1999). 

 
System Nb.  leaves Nb.  Gaussians 
SI 3.5K 150K 
U-SA 5.0K 400K 
V-SA 4.0K 400K 

Table 3.65: GALE P2.5 evaluation system statistics. 

Words in the recognition lexicon are represented as sequences of phones, and phones 
are modeled with three state left-to-right HMMs that do not permit state skipping. All 
models have pentaphone crossword acoustic context. The numbers of context-dependent 
states and Gaussian mixture components used in our GALE P2 evaluation system are 
summarized in Table 3.65. 

The speaker-adapted models are discriminatively trained using a variety of 
techniques operating in both feature and model space. One such technique is a feature-
space transformation called feature-space minimum phone error (fMPE) (Povey et al. 
2005). For model-space training, we experimented with minimum phone error (MPE) and 
boosted maximum mutual information (BMMI) (Povey et al. 2008), a new form of 
discriminative training based on large margin classification. Additionally, we 
experimented with separate training of the transform and the models in two stages. In the 
first stage, we estimate the fMPE transform using the original set of ML-trained models. 
In the second stage, we rebuild the decision trees and new ML models in the resulting 
fMPE space, finishing with model-space discriminative training of the new ML models. 

 
Training style Features Models WER 

– none ML 17.1% 
Integrated fMPE ML 14.3% 
Integrated fMPE MPE 13.0% 
Integrated fBMMI ML 14.4% 
Integrated fBMMI BMMI 13.2% 
Two-stage fMPE ML 14.3% 
Two-stage fMPE BMMI 12.4% 

Table 3.66: Discriminative training results for the unvowelized speaker-adapted models on DEV-07. 

In Table 3.66, we show various discriminative training results on 1400 hours of data, 
comparing MPE and BMMI, and single-stage versus two-stage training for unvowelized 
speaker-adapted models on DEV-07. It appears that fMPE and fBMMI have similar 
performance (14.3% versus 14.4%) and that two-stage training with alternating criteria 
(MPE for feature-space and BMMI for model-space) gives the best results. More 

Handbook of Natural Language Processing and Machine Translation 543



experiments are needed to determine whether this is due to the two-stage training or to 
the different criteria. 

3.6.5.2.4. Recognition Vocabulary 

One challenge in Arabic speech recognition is that the rich morphological structure 
of Arabic induces a large number of word forms. We dealt with this challenge by simply 
increasing the size of our recognition vocabulary. The selection criterion is word 
frequency with source dependent cutoff values (placing emphasis on acoustic transcripts 
and MT vocabulary). Table 3.67 shows out-of-vocabulary (OOV) rates and word error 
rates on DEV-07 for an ML-trained vowelized system (without pronunciation 
probabilities) as a function of vocabulary size. The benefit of increasing the vocabulary 
from 129K to 737K words is 1.2% absolute (10.7% relative). While these vocabularies 
are quite large, the search is still manageable. The memory footprint for a static FSM 
decoder (Saon et al. 2003) is about 2.5GB with a 3M 4-gram LM and 2.5M 
pronunciations, while the memory footprint for a dynamic network decoder similar to 
(Soltau et al. 2001) is 1.6GB with a 490M 4-gram LM (memory mapped) and 2.5M 
pronunciations. With open beams on a Linux server with a 3.6GHz CPU, the static 
decoder runs 2.5 times slower than real time (2.5xRT), while the dynamic decoder runs at 
2.9xRT. 

 
Nb.  words Nb.  pron. OOV Rate WER

129K 599K 3.0% 11.1%
343K 1372K 1.4% 10.2%
589K 2173K 0.9% 10.0%
737K 2563K 0.8% 9.9%

Table 3.67: OOV and word error rates on DEV-07 as a function of vocabulary size. 

3.6.5.3 Unsupervised Training   

 
Posterior thresh. Hours WER 
1.0 (baseline) 0 17.2% 
0.95 751 15.9% 
0.9 1482 15.7% 

Table 3.68: Amount of unsupervised data and word error rates on RT-04 as a function of posterior threshold 
when using 135 hours of supervised data. 

In our first experiments (Soltau et al. 2007), early in the GALE Program, we used 
1800 hours of untranscribed audio from the EARS BN-03 corpus and 135 hours of GALE 

Chapter 3: Machine Translation from Speech

We ran a number of experiments on the use of unsupervised training. Our approach 
is standard (Kemp and Waibel 1998; Zavaliagkos and Colthurst 1998): we decode the 
data using an unvowelized speaker adapted system (left side of Figure 3.33), then select a 
subset of the data based on per utterance average word posteriors, computing the word 
posteriors from confusion networks. 

544



Phase 1 supervised data (cf. Section 3.6.5.2.1). Varying amounts of unsupervised data 
were selected by varying the threshold on the average word posterior. As can be seen in 
Table 3.68, satisfactory performance is obtained with 751 hours of unsupervised data. 
 

Total      Unsup. Gaussians EVAL-07 
848 0 400K 17.7% 

2330 1482 400K 18.3% 
2330 1482 800K 18.0% 
7917 7069 400K 18.5% 
7917 7069 800K 18.3% 

Table 3.69: Effect of unsupervised training data and number of Gaussians using 848 hours of supervised data. 

Over the course of the GALE Program, more supervised data was produced by the 
LDC. Once over 800 hours of supervised training data were available, we again checked 
to see if the additional unsupervised data were still useful. We compared the performance 
of models trained on supervised data only (848 hours) to models trained on additional 
unsupervised data of 1482 hours. While adding 1482 hours of unsupervised data helped 
by 1.5% when only 135 hours of supervised data was available (Table 3.68), we now see 
an increase in error rate between 0.6% (Table 3.69). 

Later, we conducted a third experiment on unsupervised training in which we used a 
significantly larger amount of data: an internal collection of 10,000 hours of 
untranscribed audio from Arabic television channels (TALES data collection). In addition 
to selecting data based on average word posteriors, we also used language identification 
(Navratil 2006) to exclude segments in foreign languages (mostly English). About 5600 
hours of audio remained after selection, which was added to the 848 hours of supervised 
GALE data and the 1482 hours of unsupervised EARS BN-03 data. The results in Table 
3.69 show that the improvement from unsupervised training data disappears completely 
when more supervised training data is available, and that this effect appears to be 
independent of the size of the acoustic model. 

3.6.5.4 Vowelization 

One challenge in Arabic speech recognition is that there is a systematic mismatch 
between written and spoken Arabic. Short vowels and diacritics are normally omitted in 
written Arabic. An excellent discussion of the Arabic language and automatic speech 
recognition can be found in Kirchhoff et al. (2003). 

There are two approaches to handling this mismatch between the acoustics and 
transcripts. In the “unvowelized” approach, words are modeled graphemically, in terms 
of their letter sequences, and the acoustics corresponding to the unwritten diacritics are 
implicitly modeled by the Gaussian mixtures in the acoustic model. In the “vowelized” 
approach, words are modeled phonemically, in terms of their sound sequences, and the 
correct vocalization of transcribed words is inferred during training. Note that even when 
vowelized models are used the word error rate calculation is based on unvowelized 
references. The vowelized forms are mapped back to unvowelized forms in scoring 
(NIST style scoring). 

Handbook of Natural Language Processing and Machine Translation 545



One of the biggest challenges in building vowelized models is initialization: how to 
obtain a first set of vowelized models when only unvowelized transcripts are available. 
One approach is to have experts in Arabic manually vowelize a small training set 
(Messaoudi et al. 2006). The obvious disadvantage is that this process is quite labor 
intensive, which motivates researchers to explore automated methods (Afify et al. 2005). 
Following the recipe of Afify et al. (2005), we discuss our bootstrap procedure and some 
issues related to scaling up to large vocabularies. 

We use the Buckwalter Morphological Analyzer (Version 2.0) (Buckwalter 2004), 
and the Arabic Treebank to generate vowelized variants of each word. The pronunciation 
of each variant is modeled as the sequence of letters in the diacriticized word, including 
the short vowels. For shadda (consonant doubling), an additional consonant is added 
(same phone symbol) , and for sukun (no vowel), nothing is added. We use a phone set of 
47 phones. 

The vowelized training dictionary has 243368 vowelized pronunciations, covering a 
word list of 64496 words. The vowelization rate is about 95%. For the remaining 5% of 
words that are not covered, we back off to unvowelized forms. 

3.6.5.4.1. Flat-Start Training vs. Manual Transcripts 
 

Our flat-start training procedure initializes context independent HMMs by 
distributing the data equally across the HMM state sequence. We start with one Gaussian 
per state, and increase the number of parameters using mixture splitting interleaved 
within 30 forward/backward iterations. Now, the problem is that we have 3.8 vowelized 
pronunciations per word on average, but distributing the data requires a linear state graph 
for the initialization step. To overcome this problem, in the first iteration of training we 
randomly select pronunciation variants. All subsequent training iterations operate on the 
full state graph representing all possible pronunciations. 

We compare this approach to manually vowelized transcripts where the correct 
pronunciation variant is given. BBN distributed ten hours of manually vowelized 
development data (BNAD-05, BNAT-05) that we used to bootstrap vowelized models. 
These models are then used to compute alignments for the standard training set (FBIS + 
TDT4). A new system is then built using fixed alignment training, followed by a few 
forward/backward iterations to refine the models. The error rates in Table 3.70 suggest 
that manually vowelized transcripts are not necessary. The fully automatic procedure is 
only 0.2% worse. We opted for the fully automatic procedure in all our experiments, 
including the evaluation system. 

 
Training Method WER (RT-04) 

Flat-start 23.0% 
Bootstrap 22.8% 

Table 3.70: Comparison of different Initialization methods for vowelized models. 

 

Chapter 3: Machine Translation from Speech546



3.6.5.4.2. Short Models for Short Vowels 

 
Topology RT-04 BCAD-05 

3-state 19.0% 28.9% 
2-state 18.5% 27.4% 

Table 3.71: Comparison of different HMM topologies for short vowels. 

We noticed that the vowelized system performed poorly on broadcast conversational 
speech. It appeared that the speaking rate is much faster, and that the vowelized state 
graph is too large to be traversed with the available speech frames. Recall that the 
acoustic models do not permit state skipping (Section 3.6.5.2.3). One solution is to model 
the three short vowels with a shorter, two state HMM topology. The results are shown in 
Table 3.71. The improvements on RT-04 (broadcast news) are relatively small; however, 
there is a 1.5% absolute improvement on BCAD-05 (broadcast conversations). 

3.6.5.4.3. Vowelization Coverage of the Test Vocabulary  
 

As mentioned before, we back off to unvowelized forms for those words not covered 
by Buckwalter and Arabic Treebank. The coverage for the training dictionary is pretty 
high at 95%. On the other hand, for a test vocabulary of 589K words, the vowelization 
rate is only 72.6%. The question is whether it is necessary to manually vowelize the 
missing words, or whether we can get around that by backing off to the unvowelized 
pronunciations. One way to test this – without actually providing vowelized forms for 
the missing words – is to look at the OOV/WER ratio. The assumption is that the ratio is 
the same for a vowelized and an unvowelized system if the dictionary of the vowelized 
system does not pose any problems. More precisely, if we increase the vocabulary and 
we get the same error reduction for the vowelized system, then, most likely, there is no 
fundamental problem with the vowelized pronunciation dictionary. 

 
 unvowelized Vowelized 

Vocab. OOV WER Variants Vowel.  Rate OOV WER 
129K 2.9% 20.3% 538K 90.4% 2.9% 19.8% 
589K 0.8% 19.0% 1967K 72.6% 0.8% 18.3% 

Table 3.72: OOV/WER ratio for an unvowelized and a vowelized system on RT-04. 

For the unvowelized system, when increasing the vocabulary from 129K to 589K, we 
reduce the OOV rate from 2.9% to 0.8%, and we reduce the error rate by 1.3% (Table 
3.72 columns 2 and 3). For the vowelized system, we see a similar error reduction of 
1.5% for the same vocabulary increase (Table 3.72 columns 6 and 7). The system has 
almost 2 million vowelized pronunciations for a vocabulary of 589K words. The 
vowelization rate is about 72.6%. In other words, 27.4% of our list of 589K words are 
unvowelized in our dictionary. Under the assumption that we can expect the same 
OOV/WER ratio for both the vowelized and unvowelized system, the results in Table 
3.72 suggest that the backoff strategy to the unvowelized forms is valid for our vowelized 

Handbook of Natural Language Processing and Machine Translation

system. 

547



3.6.5.4.4. Pronunciation Probabilities 

Our decoding dictionary has about 3.3 pronunciations per word on average. 
Therefore, estimating pronunciation probabilities is essential to improve discrimination 
between the vowelized forms. We estimated the pronunciation probabilities by counting 
the variants in the 2330 hour training set. 
 

System RT-04 BCAD-05 
Unvowelized 17.0% 25.4% 
Vowelized 16.0% 26.0% 
+ Pron.  Prob 14.9% 25.1% 

Table 3.73: Effect of pronunciation probabilities on WER. 

The setup consists of ML models, and includes all the adaptation steps (VTLN, 
FMLLR, MLLR). The test sets are RT-04 (Broadcast News) and BCAD-05 (Broadcast 
Conversations). Adding pronunciation probabilities gives consistent improvements 
between 0.9% and 1.1% on all test sets (Table 3.73). Also, pronunciation probabilities are 
crucial for vowelized models; they almost double the error reduction from vowelization. 
We investigated several smoothing techniques and longer word context, but did not see 
any further improvements over simple unigram pronunciation probabilities. 

3.6.5.4.5. Vowelization, Adaptation, and Discriminative Training  

In this section, we summarize additional experiments with vowelized models. One 
interesting observation is that the gain from vowelization decreases significantly when 
more refined adaptation and training techniques are used. Table 3.74 shows the error rate 
of unvowelized and vowelized models with and without adaptation. The relative 
improvement from vowelization is more than 15% at the speaker independent level. 
However, after applying several normalization and adaptation techniques, the gain drops 
to 7.7% at the MLLR level. 

 
Decoding pass Unvowelized Vowelized 

SI 29.5% 25.0% 
VTLN 26.2% 23.1% 
FMLLR 23.0% 21.1% 
MLLR 22.1% 20.4% 

Table 3.74: Comparison of vowelized and unvowelized models at various adaptation passes, no 
pronunciation probabilities. RT-04 test set 

Models Unvowelized Vowelized 
ML 17.1% 14.8% 
fMPE+MPE 12.2% 11.4% 

Table 3.75: Comparison of vowelized and unvowelized models before and after discriminative training. 
Vowelized system uses pronunciation probabilities and 2-state HMMs for short vowels. Both systems use 

speaker adaptation: VTLN, FMLLR, and MLLR. DEV-07 test set 

Chapter 3: Machine Translation from Speech548



An even more drastic reduction of the vowelization gain is observed after 
discriminative training (Table 3.75). The vowelized setup includes the two state HMMs 
for short vowels and pronunciation probabilities. While discriminative training reduces 
the error rate by 4.9% for the unvowelized setup, we observed an error reduction of only 
3.4% for the vowelized models. 

It seems that standard adaptation and discriminative techniques can at least partially 
compensate for the invalid model assumption of ignoring short vowels, and the 
improvements from vowelization are subsequently reduced when using better adaptation 
and training techniques. 

3.6.5.5 Modeling of Arabic Dialects in Decision Trees  

As shown in Table 3.63, the training data comes from a variety of sources, and there 
are systematic variations in the data, including dialects (Modern Standard Arabic, 
Egyptian Arabic, Gulf Arabic, etc.), broadcasters (Al Jazeera, Al Arabiya, LBC, etc.), 
and programs (Al Jazeera morning news, Al Jazeera news bulletin, etc.). 

The problem we face is how to build acoustic models on diverse training data. 
Simply adding more training data from a variety of sources does not always improve 
system performance. To demonstrate this, we built two acoustic models with identical 
configurations. In one case, the model was trained on GALE data (2330 hours, including 
unsupervised BN-03), while in the second case we added 500 hours of TRANSTAC data 
to the training set. TRANSTAC data contains Iraqi Arabic (Nadji spoken Arabic and 
Mesopotamian Arabic). Both GALE and TRANSTAC data are Arabic data, but they 
represent very different dialects and styles. The model trained on additional TRANSTAC 
data is 0.4% worse than our GALE model (see Table 3.76). 

  
Acoustic model WER (DEV-07) 
2330h GALE 19.2% 
+ 500h TRANSTAC 19.6% 

Table 3.76: Acoustic models trained without and with additional TRANSTAC data. 

Both acoustic models used 400K Gaussians, a comparatively large number that 
should be able to capture the variability of different data sources. Furthermore, we did not 
find that increasing the number of Gaussians could offset the reduced performance 
caused by the addition of unmatched training data in previous experiments with large 
amounts of diverse unsupervised training data (see Table 3.69). 

Adding more training data will not always improve performance, we need to find 
which part of the training data is relevant. Training separate models for each category or 
dialect requires sufficient training data for each category, significantly more human and 
computational effort, and algorithms that reliably cluster training and test data into 
meaningful categories. We propose instead to model dialects directly in the decision 
trees: a data driven method for building dialect-specific models without splitting the data 
into different categories. 

Similiar approaches to use additional information in decision trees can be found in 
the literature. (Reichl and Chou 1999) used gender information to specialize decision 

Handbook of Natural Language Processing and Machine Translation 549



trees for acoustic modeling. Speaking rate, SNR, and dialects were used by Fugen and 
Rogina (2000), and questions about the speaking mode were used by Soltau and Waibel 
(2000) to build models for hyper-articulated speech. 

3.6.5.5.1. Decision Trees with Dialect Questions 

We extend our regular decision tree algorithm by including non-phonetic questions 
about dialects. The question set contains our normal phonetic context questions, as well 
as, dynamic questions regarding dialect. Dialect questions compete with phonetic context 
questions to split nodes in the tree. If dialect information is irrelevant for some phones, it 
will simply be pruned away during tree training. 

The training of dialect specific trees and Gaussian mixture models is 
straightforward. The decision tree is grown in a top-down clustering procedure. At each 
node, all valid questions are evaluated, and the question with the best increase in 
likelihood is selected. We use single Gaussians with diagonal co-variances as node 
models. Statistics for each unclustered context-dependent HMM state are generated in 
one pass over the training data prior to the tree growing. Dialect information is added 
during HMM construction by tagging phones with additional information. The additional 
storage cost this entails is quite significant: the number of unique, unclustered context-
dependent HMM states increases roughly in proportion to the number of different tags 
used. 

We used this technique to build a dialect-dependent decision tree for the acoustic 
models trained on the combined GALE and TRANSTAC data. We generated a tree with 
15865 nodes, and 8000 HMM states. Approximately 44% of the states depend on the 
dialect tag, so the remaining 56% of the models are shared between two very different 
data sources: GALE and TRANSTAC. 

3.6.5.5.2. Building Static Decoding Graphs for Dynamic Trees  

Training dialect-specific models is relatively easy; however, decoding with such 
models is more complicated if a statically compiled decoding graph is used. The problem 
is that the decision tree contains dynamic questions that can be answered only at run-
time, and not when the graph is compiled. The solution for this problem is to separate the 
decision tree into two parts: a static part containing only phonetic questions, and a 
dynamic part for the dialect questions. The decision tree is reordered such that no 
dynamic question occurs above a static question. The static part of the decision tree can 
be compiled into a decoding graph as usual, while the dynamic part of the tree is replaced 

Chapter 3: Machine Translation from Speech

The questions used for tree clustering are written as conjugate normal forms. Literals 
are basic questions about the phone class or tag for a given position. This allows for more 
complex questions such as: Is the left context a vowel and is the channel Al Jazeera 
(-1=Vowel && 0=AlJazeera). Similarly, more complex questions on the source may be 
composed. For example, to ask for Al Jazeera, one would write (0=AlJazeeraMorning or 
0=AlJazeeraAfternoon). The idea is to allow a broad range of possible questions, and to 
let the clustering procedure select the relevant questions based on the training data. The 
questions cover all the channel and dialect information available from the audio 
filenames. 

550



by a set of virtual leaves. The decoder maintains a lookup table that transforms each 
virtual leaf to a corresponding dialect-specific leaf at run-time. 

 

 
 
 
 
 
 

Figure 3.34: Decision Tree with dialect questions. Each question is of the format ContextPosition = Class. 
Leaves are marked with HMM states A-b-0,.. (phone /A/, begin state). 

In the following, we explain how to reorder the decision tree such that dynamic 
questions do not occur above static questions. Figure 3.34, Figure 3.35, and Figure 3.36 
illustrate the process. In this example, the root of the tree is marked with the question 
0=MSA. If the center phone is marked as Modern Standard Arabic (MSA), the right 
branch will be chosen, otherwise the left branch. 

The reordering algorithm consists of a sequence of transformation steps. In each step, 
a dynamic question node is pushed down one level by replacing it with one of its children 
nodes. Figure 3.35 shows the tree after applying one transformation step. In each 
transformation step, the selected dynamic question node is duplicated together with one 
of its branches. In this example, the right branch starting with +2=SIL is duplicated. The 
node to be moved up (promoted) (-1=Vowel in Figure 3) is separated from its sub-trees 
and moved up one level, with the duplicated sub-trees becoming its children. The sub-
trees that were originally children of the promoted node become its grandchildren. The 
resulting tree is equivalent to the original tree, but the dynamic question is now one level 
deeper. 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.35: Decision Tree after one transformation step. 

 
 

0 = MSA 

A-b-1 A-b-0 A-b-3 A-b-2 

+2 = SIL -1 = Vowel 

0 = MSA 0 = MSA 

-1 = Vowel 

+2 = SIL A-b-0 +2 = SIL A-b-1 

A-b-3 A-b-2 A-b-3 A-b-2 

Handbook of Natural Language Processing and Machine Translation 551



 

 
 
 
 
 
 
 
 

Figure 3.36: Reordered Decision Tree. Dynamic questions are replaced by virtual leaves. The original root 
0=MSA was replaced by the left child -1=Vowel, and a new copy of 0=MSA was created. 

The reordering procedure terminates when no transformation step can be applied. In 
the worst case, this procedure causes the decision tree’s size to grow exponentially; 
however, in practice we observe only moderate growth. Table 3.77 summarizes the tree 
statistics after reordering. The number of internal nodes grew by only a factor of two, 
which is easily managed for decoding graph construction.  The last step is to separate the 
static and dynamic tree parts. The dynamic question nodes are replaced by virtual leaves 
for the graph construction. The virtual leaves correspond to lookup tables that map virtual 
leaves to physical HMM states at run time. The static decoding graph can now be 
constructed using the tree with virtual leaves. At run time, dialect information is 
available, and virtual leaves can be mapped to the corresponding physical HMM states 
for acoustic score computation.12 

 
Number of nodes 15865
Number of leaves 8000
Dialect-dependent leaves 44.3%
Number of reordered nodes 29137
Number of virtual leaves 7085

Table 3.77: Reordered Tree statistics for GALE+TRANSTAC setup. 

3.6.5.5.3. Experiments 

We use our vowelized Arabic model as a baseline in our experiments. The 
vocabulary has about 737K words, and 2.5M pronunciations. The language model is a 4-
gram LM with 55M n-grams. Speaker adaptation includes VTLN and FMLLR. All 
models are ML trained. In addition to the GALE EVAL-06 and DEV-07 test sets, we 
also used a TRANSTAC test set comprising two hours of audio. The dialect labels are 
derived from the audio file names. This information may be used under the rules of the 
GALE evaluation. The file names encode TV channel and program information. Please 
note also that this information is available for deployed systems that commercialize 

                                                 
12 This can be done via a separate dialect ID tool, selecting the dialect with the best likelihood, or other sources of 
information. 

Virtual-1 Virtual-0 Virtual-3 Virtual-2 

MSA : A-b-3 
Else : A-b-0 

MSA : A-b-2 
Else : A-b-0 

MSA : A-b-3 
Else : A-b-1 

MSA : A-b-2 
Else A-b-1 

-1 = Vowel 

+2 = SIL +2 = SIL 

Chapter 3: Machine Translation from Speech

GALE technology, such as IBM’s TALES system. 

552



 
Acoustic Model Regular tree Dialect tree 
2330h GALE 19.2% 18.6% 
+ 500h TRANSTAC 19.6% 18.7% 

Table 3.78: Comparison of regular tree and tree with dialect questions. GALE DEV-07 test set. 

In the first experiment we train four acoustic models. Each model has 8K states and 
400K Gaussians. The models are trained on either 2330 hours of GALE data or on the 
GALE data plus 500 hours of TRANSTAC data. For each training set, we train one 
model using the regular (phonetic context only) question set and one using phonetic and 
dialect questions. The test set is DEV-07. The results are summarized in Table 3.78. For 
the GALE model, we see an improvement of 0.6% WER. The improvement for the 
GALE+TRANSTAC training set is slightly higher, 0.9%. The results suggest that the 
decision tree with dialect questions can better cope with diverse, and potentially 
mismatched, training data.  

In the second experiment (Table 3.79), we use the same set of acoustic models as 
before, but the vocabulary and language model are now TRANSTAC specific and the 
test set is drawn from TRANSTAC data. Adding TRANSTAC data improves the error 
rate from 35.9% to 25.9%. Adding the dialect-specific questions to the tree building 
process improves the error rate by an additional 1.2%. We did not test the dialect tree 
trained on GALE data only. The tree does not contain any TRANSTAC related 
questions, since the models were trained on GALE data only. 
 

Acoustic Model Regular tree Dialect tree 
2330h GALE 35.9% - 
+ 500h TRANSTAC 25.9% 24.7% 

Table 3.79: Comparison of regular tree and tree with dialect questions. TRANSTAC test set. 

 
Test set Regular tree Dialect tree 
EVAL-06 30.2% 29.6% 
DEV-07 20.3% 19.5% 

Table 3.80: Comparison of regular tree and tree with dialect questions with unsupervised training data. 
GALE EVAL-06 and DEV-07 test sets. 

Handbook of Natural Language Processing and Machine Translation 553

In the final experiment, we use a large amount of unsupervised training data from our 
internal TALES data collection (see Section 3.6.5.2.1 for a description of the data, and 
Section 3.6.5.3 for unsupervised training experiments). The acoustic model was trained 
on 2330 hours of GALE data plus 5600 hours of unsupervised training data. The results 
are shown in Table 3.80. The dialect-dependent decision tree reduces the error rate by 
0.6% on EVAL-06 and 0.8% on DEV-07. While adding more unsupervised training 
data does not help if large amounts of supervised training data are available (Table 
3.69), we observe that the dialect tree is able to compensate for adding “unuseful” data 
(Table 3.80). 



3.6.5.6 Conclusion 

We have presented a set of techniques for Arabic broadcast transcription that, taken 
together, lead to word error rates below 10%. Techniques that contribute to this level of 
performance include the use of a very large recognition vocabulary, cross-adaptation 
between unvowelized and vowelized acoustic models, and flat start training to 
automatically vowelize Arabic audio. We have also presented additional results on large-
scale, unsupervised discriminative training, and on the modeling of Arabic dialects using 
dialect questions in the decision tree. 

3.6.6 Recognition Units in Arabic Automatic Speech 
Recognition 

Authors: Long Nguyen, Tim Ng, Kham Nguyen, Rabih Zbib, and John Makhoul 

3.6.6.1 Introduction 

Arabic presents two primary difficulties to automatic speech recognition (ASR) 
systems, both due to the Arabic writing system. The first difficulty is the morphological 
complexity that arises from the attachment of affixes, which renders recognition 
vocabularies very large if one wants to minimize out-of-vocabulary (OOV) words. For 
example, a 65K Arabic vocabulary typically has an OOV rate of 5%, compared to 0.5% 
for the same size English vocabulary. The second difficulty arises due to the fact that the 
short vowels are typically not written. Both difficulties are partially overcome by the use 
of automatic morphological analyzers, which also produce vocalizations, but the resulting 
analysis and vocalization can be errorful at times. 

 

3.6.6.2 System Description 

We describe the use of either words or morphemes as recognition units, and the use 
of either graphemes or phonemes as phonetic units in Arabic ASR to handle the two key 
problems mentioned previously. Specifically, we designed four Arabic ASR systems: two 
word-based systems and two morpheme-based systems. In the first word-based system, 
each word is modeled by one or more sequences of phonemes of its phonetic 
pronunciations. In the second word-based system, each word is modeled by exactly one 
sequence of letters of its spelling. The third and fourth systems use morphemes as 
recognition units. Morphemes are determined by either a simple morphological 
decomposition using a small set of affixes and a few rules or by an elaborate 
linguistically-driven morphological analyzer. Each morpheme is modeled by sequences 
of phonemes of its pronunciations derived from the corresponding word’s pronunciations 
during the decomposition process. 

Experimental results using these four systems (developed for the GALE Phase 3 
evaluation) show that they have comparable state-of-the-art performance individually. 
However, they all seem to complement each other quite well such that the combination of 
the four systems using ROVER provides substantial improvement in performance when 
compared to each single system. At the core of each ASR system is the Byblos multi-pass 

Chapter 3: Machine Translation from Speech554



recognizer. Various acoustic and language models at different levels of sophistication are 
deployed at different passes and/or stages. 

3.6.6.2.1. Recognizer 

The Byblos multi-pass recognizer (Nguyen and Schwartz 1997) first performs a fast 
match of the data to produce scores for numerous word endings using a coarse state-tied-
mixture (STM) acoustic model (AM) and a bi-gram language model (LM). Next, a state-
clustered tied-mixture (SCTM) AM and an approximate trigram LM are used to generate 
lattices. Lattices are then re-scored using a crossword SCTM AM and a 4-gram LM. The 
best path of the rescored lattice is the recognition result. In other words, the decoding 
process is a three-step sequence (fast-match, lattice generation, and lattice rescoring) with 
finer-detailed models being used on narrower search space at later steps (Nguyen et al. 
2002). 

  The decoding process is repeated three times. First, speaker-independent (SI) 
acoustic models are used in the decoding to generate hypotheses for unsupervised 
adaptation. Then, the decoding is repeated but with speaker-adaptively-trained (SAT) 
acoustic models that have been adapted to the hypotheses generated in the first stage. The 
last decoding is similar to the second, but acoustic models are adapted to the second 
stage’s hypotheses using a larger number of regression classes. 

3.6.6.2.2. Acoustic Model Training 

The typical procedure for training acoustic models at BBN can be logically grouped 
into these four sequential stages. 

 
Frontend Processing: 14-dimensional Perceptual Linear Predictive 

(Hermansky 1990) cepstral coefficients are extracted from the overlapping frames of 
audio data with a frame rate of 10ms. Cepstral mean subtraction is applied for 
normalization. The normalized energy is used as the 15th component. Nine successive 15-
component frames centered at the current frame are concatenated and then reduced to a 
60-dimensional feature vector using Linear Discriminant Analysis (LDA) and 
decorrelated using Maximum Likelihood Linear Transformation (MLLT) (Zhang et al. 
2004). The dimension reduction is applied differently for SI and SAT models. 

 
ML-SI Training: The SI AMs are trained using the Maximum-Likelihood (ML) 

criterion. Feature dimension reduction is done via global LDA and MLLT 
transformations estimated from and applied to all training data. These models are to be 
used in the SI decoding stage. 

 
ML-SAT Training: The SAT AMs are then trained using also the ML criterion. 

Each 15-dimensional feature vector is transformed using a speaker-cluster-dependent 
Constraint Maximum Likelihood Linear Regression (CMLLR) transform (Gales 1997) 
before the concatenation of nine successive frames for dimension reduction. Both LDA 
and MLLT transformations are speaker-cluster-specific at this stage. The resulting 60-
dimensional feature vectors are further transformed using new CMLLR transformations. 

Handbook of Natural Language Processing and Machine Translation

These models are used only in the adapted decoding stages. 

555



 
MPFE Training: In the last stage of acoustic model training, all training data is 

decoded using the ML models to generate lattices. Then a new set of AMs, both SI and 
SAT, are estimated using these lattices under the Minimum Phoneme-Frame Error 
criterion (Zheng and Stolcke 2005). 

The total amount of acoustic training data used in this effort is about 1400 hours 
selected through light supervision (Nguyen and Xiang 2004) of all data available to the 
GALE community. Specifically, the data consist of the following corpora: BBN-FBIS 
(43hr), TDT4 (67hr), Iraqi Dialect (50hr), GALE Year 1 (144hr), Phase 2 (603hr), and 
Phase 3 (526hr). 

3.6.6.2.3. Language Model Training 

The language models were estimated through interpolation of several sub-N-Gram 
models trained on disjoint subsets of the 1.7 billion words of Arabic text data available to 
the GALE community as of May 2008. Each individual sub-N-Gram model was trained 
using the modified Kneser-Ney smoothing technique. 

3.6.6.3 Implementation 

Arabic Text Normalization: Due to writing conventions in Arabic, sometimes the 
same word has different written forms. This is especially true for words that start with the 
letter “hamza” (corresponding to the glotal stop). So, for consistency in lexical 
representation for ASR, we map all different forms of “hamza” ( “ <“, “ >“, and “ |” using 
Buckwalter transliteration scheme) at the beginning of the word, or after the common 
Arabic prefixes “Al” and “w”, to “alif” (“A”). Also, for certain frequent words, we map 
the “alif maksura” (“Y”) at the end of the word to “yeh” (“y”) or vice versa. However, for 
scoring of ASR output, all forms of “hamza” are equated to “alif” without the restriction 
above. 

 
Master Phonetic Dictionary: As described by Afify et al. (2005),  Xiang et al. 

(2006) and Ng et al. (2009), we constructed phonetic dictionaries for Arabic by using the 
Buckwalter morphological analyzer and manually-vocalized corpora.13 Minor changes to 
this procedure include the addition of extra affixes used in major Arabic dialects to the 
list of Modern Standard Arabic (MSA) affixes used in the Buckwalter Analyzer. We also 
added all vocalizations found in the manually-vocalized corpora (LDC’s Arabic 
TreeBanks, LDC’s Iraqi dialect lexicon, and the 45-hour BBN-FBIS corpus). As a result, 
our Arabic master phonetic dictionary, as of now, consists of about 1.2 million words, 
each with approximately 3.76 pronunciations on average. This is the master dictionary 
from which we derive phonetic pronunciations for all phonetic word-based and 
morpheme-based Arabic ASR systems. 

                                                 
13 http://www.qamus.org/morphology.htm   

Chapter 3: Machine Translation from Speech556



3.6.6.3.1. Phonetic System (P) 

The design of our word-based phonetic system (P) is a straightforward 
implementation of a typical ASR system. The recognition units are Arabic words and 
each word is modeled by one or more sequences of phonemes of its pronunciation(s). The 
largest AM (i.e., the crossword SCTM model) has about 220K crossword quinphone 
states sharing 7K sets of Gaussians (or codebooks). Note that we use two level Gaussian 
mixture models with several different states having separate sets of mixture weights, but 
sharing the same set of Gaussians (or codebooks, as described in detail by Nguyen et al. 
(2002)). The total number of Gaussians in this model is about 900K. The exact values for 
all four systems can be found in Table 3.81. 
 

Sys. #states #codebooks #Gaussians
P 220694 6882 889146
G 212066 6580 867707
M1 222506 6829 883117
M2 220561 6854 885518

Table 3.81: AM comparison: all four systems use about the same number of model parameters. 

The recognition vocabulary used in this phonetic system consists of 390K words. 
Each word has 4.03 pronunciations on average. This is a subset of the 490K words that 
occur at least 30 times in the language model training data or at least 3 times in the 
transcripts of the acoustic training data. That means 100K words in the list of the 490K 
most frequent words do not exist in our 1.2M-word master dictionary, because they could 
not be analized by the Buckwalter Analyzer, and they do not occur in the manually-
vocalized corpora. This system’s language model consists of 137M trigrams (pruned 
based on entropy) used for decoding and 585M (unpruned) 4-grams used for lattice 
rescoring. The OOV rate of this vocabulary and the size of the LMs of this system are 
compared against those of other systems’ in Table 3.82 and Table 3.83. 
 

Sys. vocab. pron. #3-grams #4-grams 
P 390K 4.03 136,767,904 585,331,357 
G 490K 1.00 140,915,143 617,448,176
M1 289K 4.43 137,586,807 565,474,893
M2 284K 3.69 142,068,884 563,803,750

Table 3.82: LM comparison: all four systems have about the same number of n-grams even though the size of 
the morpheme vocabularies is substantially smaller than that of the word vocabularies. 

Sys. #units at6 ad6 dev07 eval07 dev08
P 390K 4.02 3.39 4.36 2.88 1.44 
G 490K 3.43 2.86 3.78 2.07 0.84
M1 289K 1.31 1.20 2.82 1.89 0.94
M2 284K 0.66 0.68 0.81 0.66 0.56

Table 3.83: OOV rate comparison: morpheme-based vocabularies have better coverage than word-based 
vocabularies for Arabic. 

Handbook of Natural Language Processing and Machine Translation 557



3.6.6.3.2. Graphemic System (G) 

The word-based graphemic system (G) is similar to the phonetic system except that it 
doesn’t use phonetic pronunciations and it has a much larger recognition vocabulary. The 
recognition units are also Arabic words, but each word is modeled by exactly one 
sequence of letters of its spelling. The largest AM of this system has about 210K states 
sharing 7K sets of Gaussians for a total of about 900K Gaussians (as shown in row G of 
Table 1). Since this system doesn’t depend on the real phonetic dictionary, its recognition 
vocabulary uses all 490K most frequent words. Its LM consists of 140M (pruned) 
trigrams and 617M (unpruned) 4-grams. 

3.6.6.3.3. Morphemic System 1 (M1) 

The morphemic system 1 (M1) is a morpheme-based phonetic system. Morphemes 
are determined by a simple morphological decomposition of the words without their 
context using a small set of affixes and a few rules. More details on various 
morphological decomposition strategies and their effect to ASR performance for 
morphemic systems developed in the past can are described by Xiang et al.(2006). In the 
current M1 system, the decomposition process uses 12 prefixes and 34 suffixes. The 
prefixes are: Al, bAl, fAl, kAl, ll, wAl, b, f, k, l, s, w, and the suffixes are: An, h, hA, hm, 
hmA, hn, k, km, kn, nA, ny, t th, thA, thm, thmA, thn, tk, tkm, tm, tnA, tny, tynA, wA, wh, 
whA, whm, wk, wkm, wn, wnA, wny, y, yn. The process also utilizes a list of 128K most 
frequent decomposable words that should not be decomposed (hereafter referred to as a 
blacklist) since it has been shown that this really improved recognition performance. For 
a candidate word to be decomposed, it has to satisfy the following five conditions: (1) it 
doesn’t belong to the blacklist, (2) it consists of at least one of the pre-determined affixes, 
(3) its decomposed affixes’ pronunciations match the pre-determined pronunciations, (4) 
its stem must exist in the master dictionary, and (5) its stem must be at least two letters 
long. 

As shown in Table 3.81, the acoustic models of this system were designed to have 
about the same number of system parameters as all other systems. However, the 
recognition units, i.e., the morphemes, in this system consist of 289K morphemes 
obtained through the decomposition of all 490K most frequent words, including its 
blacklist, and all words occurring in the transcripts of the acoustic training data. Its LM 
also has about the same number of n-grams used in the other systems, as shown in Table 
3.82. 

3.6.6.3.4. Morphemic System 2 (M2) 

Chapter 3: Machine Translation from Speech558

The morphemic system 2 (M2) is another morpheme-based phonetic system, but the 
morphemes in this case were determined by a more sophisticated decomposition process. 
Briefly, the process consists of two steps. First, we use an Arabic morphological analyzer 
to decompose all AM and LM training data consisting of about two billion words. Each 
word, if occurring more than once, can be decomposed into different sequences of 
morphemes depending on its different contexts. Note that each word instance is 
decomposed into exactly one sequence of morphemes of the form [prefix] + stem + 



 
M. if the word is in the blacklist, keep unchanged;  
N. else if no prefix , decompose into stem and suffix ;  
O. else if no suffix , decompose into prefix and stem;  
P. else if prefix+stem is in the blacklist, decompose into prefix+stem and suffix ;  
Q. else if stem+suffix is in the blacklist, decompose into prefix and stem+suffix ;  
R. else decompose into prefix, stem, and suffix.  
 
This decomposition process produced about 284K morphemes to be used in the 

recognition vocabulary in this system. Both the AMs and LMs of this system have about 
the same sizes compared to those of other systems, as shown in Table 3.81 and Table 
3.82. A full description of this system and a comparison to the M1 morphemic system is 
provided by Ng et al. (2009). 

3.6.6.4 Experimental Results 

Development Test Sets: To support the research and development of these four 
systems, we used five Arabic test sets. The first two test sets, at6 and ad6, were 
constructed at BBN at the start of the GALE program. Each is about six hours long, and 
uses Arabic broadcast programs aired in November 2005 and January 2006. These two 
test sets contain long segments of broadcast stretches of about ten to twenty minutes 
long. The remaining three test sets are development or evaluation test sets designed by 
LDC/NIST to be used by all GALE participants. Each of these three test sets is about 
three hours long. They consist of Arabic broadcast programs aired in November 2006 
(dev07), December 2006 (eval07), and May 2007 (dev08). These three test sets contain 
only short snippets ranging from two to four minutes long (to facilitate the research and 
evaluation of the down-stream machine translation task of the GALE program). Each test 
set includes both broadcast news and broadcast conversations with almost equal 
amounts. 

3.6.6.4.1. OOV Comparison 

As shown in Table Table 3.83, both word-based systems (P and G) have high OOV 
rate for all the test sets even though they use rather large vocabulary (400-500K words). 
Except for dev08, the OOV rates are 3% or 4% for all other test sets. The graphemic 
system (G) has a bit lower OOV rate since it uses a larger vocabulary. In contrast to using 
words as recognition units, both morphemic systems (M1 and M2) have much lower 
OOV rate even though their vocabulary sizes are substantially smaller. It is interesting to 
point out that the vocabulary of the M2 system has similar OOV rates across all test sets. 
Note that we scaled the morpheme OOV rate of the morpheme vocabulary by the 

Handbook of Natural Language Processing and Machine Translation 559

[suffix], where either the prefix or the suffix or both can be missing. Then, we collect all 
the decomposed forms of the 490K most frequent words and all words occurring in the 
acoustic training data and pass them through the final decomposition process. Similar to 
the construction of the recognition units in system M1, we also utilize a blacklist of the 
128K most frequent decomposable words. The decomposable words are finally 
decomposed as follows: 



decomposition rate (number of morphemes after decomposition divided by number of 
words before decomposition) to make it comparable to the standard word OOV rate. 

3.6.6.4.2. Individual Results 

Sys. at6 ad6 dev07 eval07 dev08
P 18.8 16.9 10.6 11.6 12.1
G 18.5 16.7 11.6 12.2 12.5
M1 18.1 17.1 10.3 11.1 11.6
M2 17.6 16.3 10.2 10.8 11.8

Table 3.84: Individual system results: the simplest system (G) has the overall highest WER and the most 
sophisticated system (M2) has the lowest WER. 

Table 3.84 shows the WER of the four systems on the five test sets. Overall, systems 
using morphemes as recognition units perform better than systems using words as 
recognition units. Using morphemes derived from the linguistically-driven approach in 
M2 produces the lowest WER among the four systems. Between the two morphemic 
systems, M2 tends to be more robust in terms of both OOV rate and WER. M2 is clearly 
the best system on the two BBN-constructed test sets (at6 and ad6). Between the two 
word-based systems, the phonetic system is better than the graphemic system for the 
three GALE test sets (dev07, eval07, and dev08). However, the graphemic system is 
better than the phonetic system on the two BBN test sets (at6, and ad6). It’s important to 
point out that the two BBN test sets are much more difficult than the three LDC/NIST 
test sets based on WER. 

These four sets of results seem to correlate well with the complexity of the design of 
an Arabic ASR system. The simplest system has the highest WER (G) and the most 
sophisticated system (M2) has the lowest WER among the four systems. This finding 
would probably provide sufficient information for a designer of an Arabic ASR system to 
decide the type of recognition units to use to achieve the best tradeoff required by his/her 
application. For example, even though it has the worst performance among the four 
systems, the word-based graphemic approach is clearly the simplest and easiest to 
implement, based on the fact that it doesn’t require a phonetic dictionary. Furthermore, 
each word would have exactly only one pronunciation and, consequently, the recognizer 
would run faster in comparison to phonetic systems that have four pronunciations per 
word on average. However, if accuracy is the top requirement, the designer must be 
prepared to construct a phonetic dictionary with good quality and coverage. Also, a 
decent morphological analyzer that can decompose words within context into morphemes 
is required. 

3.6.6.4.3. System Combination Results 

In addition to the scientific curiosity to search for the optimal recognition unit for 
Arabic ASR, another goal of this work is to have diverse, but complementary systems to 
be used within the ROVER system combination framework (Fiscus 1997). As shown in 
Table 3.85, the combination of all four systems (P+G+M1+M2) provides the lowest 
WER for all test sets. The relative reduction in WER for all five test sets in comparison 
the best system (M2) is from five to ten percent. Various combinations of two or three 

Chapter 3: Machine Translation from Speech560



systems, starting with the phonetic system (P), are shown in the top two blocks of Table 
5. Generally, combining two systems produces about zero to three percent relative 
reduction in WER. Combining three systems increases the relative WER reduction 
further to about three to six percent. 

 
ROVER at6 ad6 dev07 eval07 dev08 
P+G 17.4 15.8 10.5 10.9 11.6 
P+M1 17.7 16.4 10.1 10.9 11.4
P+M2 17.3 15.9 10.2 10.7 11.5
P+G+M1 16.9 15.6 9.9 10.6 11.0 
P+G+M2 16.7 15.4 9.8 10.4 11.0
P+M1+M2 17.2 15.8 9.8 10.5 11.1
P+G+M1+M2 16.6 15.3 9.7 10.3 10.8 

Table 3.85: Various system combination results: combining two systems (P+*) produces 0-3% in WER 
reduction relative the best single system (M2); combining three systems (P+*+*), 3-6%; and the lowest WER 

obtained by combing all four systems. 

3.6.6.5 Conclusion 

We have described two possible types of recognition units, either words or 
morphemes, and the use of either graphemes or phonemes as phonetic units for Arabic 
automatic speech recognition. The study involves implementation of four different 
Arabic ASR systems. The results of these four systems show that they all have 
comparable state-of-the-art performance. They also show a good correlation to the 
complexity of the design of an Arabic ASR system: the simplest system; the word-based 
graphemic system, has the highest WER; and the most sophisticated system; the 
linguistically-driven morphemic system, has the lowest WER. In addition, even though 
all four systems use the same underlying ASR technology, the use of different 
recognition units seem to be quite complementary to each other such that the combination 
of the four systems produces substantially-improved combined results. 

3.6.7. Development of the SRI/NIGHTINGALE Arabic ASR 
System 

3.6.7.1 Introduction 

In order to achieve the high performance speech translation targets set by the GALE 
program, it has been necessary to drastically improve the accuracy of the first stage of the 
systems, which involve automatic speech recognition (ASR) in the source language. In 
this work we focus on the MSA ASR system developed for broadcast news (BN) and 
broadcast conversations (BC).  

The morphological complexity of Arabic and other language features, like the lack of 
short vowels in standard orthography, introduce new requirements for the design of the 
ASR systems. The characteristics of the Arabic language and the problems they pose for 
ASR are described in detail by Kirchhoff et al. (2003). Previous work that dealt with 

Handbook of Natural Language Processing and Machine Translation 561

Authors: Dimitra Vergyri, Arindam Mandal, Wen Wang, Andreas Stolcke, Jing Zheng, Martin Graciarena, 
David Rybach, Christian Gollan, Ralf Schlüter, Katrin Kirchhoff, Arlo Faria, and Nelson Morgan 



MSA ASR includes that of Afify et al. (2005), Messaoudi et al. (2006) and Soltau et al. 
(2007). 

This section describes the following aspects of system design, and reports their 
impact on the system’s performance: data preprocessing, lexicon and pronunciation 
probability generation, training data size, vocabulary size, sentence segmentation, front 
end features and discriminative training for acoustic models, and system architecture 
including system combination and cross adaptation. Our system includes components 
from two recognition engines: DecipherTM from SRI and the speech recognition system 
from RWTH Aachen. Results are reported for various GALE datasets that include both 
BN and BC speech. 

3.6.7.2 Data 

For acoustic training we used the 16 kHz Arabic data distributed by the Linguistic 
Data Consortium (LDC) with quick transcriptions: 45 hours of FBIS, 85 hours of TDT-4, 
580 hours of GALE BC, and 740 hours of GALE BN data.14 We experimented with 
unsupervised training on an additional 3000 hours of untranscribed data, but these 
experiments showed ultimately no gains and are not included here. We also excluded all 
data sampled at 8 kHz that were distributed by LDC, since experiments showed no 
benefit from its use. All acoustic data was aligned with the transcriptions using the 
flexible alignment procedure described by Venkataraman et al. (2000). Long silences and 
regions with poor alignment confidence were discarded. Eventually, a total of 1120 hours 
was selected for training the acoustic models. 

The language model (LM) data was also provided mostly by LDC, but some data 
came from other sources (under GALE). The total text used for LM included about 1.1 
billion words: 490M of Arabic Gigaword (LDC, 2nd edition), 86M UN-data (LDC), 79M 
GALE data (LDC), 67 M CMU Web news data and 410M Web news data (collected by 
Cambridge University covering the dates between 11/2000 and 10/2006).  

We evaluated the results on three development sets: the 2006 evaluation set (eval06: 
3 hours, 11481 BN and 11243 BC words), the 2007 development set (dev07: 2.5 hours, 
11742 BN and 6495 BC words) and the 2007 evaluation set (eval07: 4 hours, 14355 BN 
and 14187 BC words). 

3.6.7.3 Text Processing and Lexicon Generation 

3.6.7.3.1. Text Data Processing 

All text data was processed using the MADA tool from Columbia University 
(Habash and Owen 2005), which uses a statistical morphological tagger to fix common 
errors or ambiguities in the Arabic orthography, like the presence of Hamzas above or 
below the letters Alef, Yeh and Waw, and the marking of final Yeh and Teh Marbuta.15 
MADA also provides full word diacritization, which was used as a means for developing 
the pronunciation lexicon. Other post-processing scripts were used to expand numbers 

                                                 
14 Data released up to Oct 2007 were used in this work. 
15http://www1.cs.columbia.edu/~rambow/software-downloads/MADA_Distribution.html 

Chapter 3: Machine Translation from Speech562



and dates in the text data to words, remove nonlexical tags and punctuation marks, and 
normalize the orthography of some frequent names.  

  
Text Processing  Eval06 Dev07 
MADA_1  36.3 25.7 
MADA_2  35.7 25.2 
No pron. probs 36.8 26.0 
With pron. probs 35.7 25.2 

Table 3.86: Effect of improved text processing on WER. 

We did not compare our data processing method with that of other GALE sites (e.g., 
some sites do full normalization of Alefs and final Yeh), but we found that improved text 
processing had a significant effect on the accuracy of our models. Table 3.86 compares 
the word error rate (WER) results using MADA_1 (scripts released in 2005) versus 
MADA_2 (released in 2007 as v1.8). MADA_1 was based on the Buckwalter Arabic 
Morphological Analyzer (BAMA) v.1 while MADA_2 used BAMA v.2, and the tagger 
was trained on more training data.16   The acoustic models used for this comparison were 
maximum likelihood (ML), speaker independent (SI) MFCC models trained on 450h. 
The bigram LM used a 400K word vocabulary and was trained on ~500M words of the 
data released before 2007. 

3.6.7.3.2. Lexicon 

Since standard (undiacritized) Arabic orthography lacks the symbols that indicate the 
position of short vowels and the lengthening (doubling) of consonants (Kirchhoff et al. 
2003), all Arabic ASR systems have the problem of representing these in the 
pronunciation lexicon (Afify et al. 2005; Messaoudi et al. 2006; Soltau et al. 2007). In 
our system we used the diacritized MADA output as the basis of our pronunciation 
lexicon. The mapping between the diacritized orthography and the phonemic 
representation is fairly straightforward. It is mostly a 1 - 1 mapping with a few rules that 
describe the pronunciation of Arabic (e.g., the Teh Marbuta is pronounced “at”).  

For acoustic model training the MADA-diacritized word form was used with a single 
pronunciation per word. We found that this improved the acoustic models by about 0.5%, 
compared to using undiacritized orthography and multiple word pronunciations. For the 
test lexicon we used the undiacritized orthography, and all diacritizations found for each 
word in the training data were used as pronunciation variants. This procedure resulted in 
an average of 3.3 pronunciations per word, for the words that MADA could diacritize. 
MADA failed to produce output for about 3% of training word tokens, which account for 
about 20% of the total training data word types (mostly infrequent words). For these 
words we used an automatic pronunciation generation model that was trained on the rest 
of the pronunciation lexicon to obtain their pronunciation, as is described by Bisani and 
Ney (2003).  

The pronunciation probabilities for the words appearing in the acoustic training data 
were obtained using acoustic forced alignment of the data with the phonetic 

                                                 
16 LDC distributions LDC2002L49 and LDC2004L02 

Handbook of Natural Language Processing and Machine Translation 563



pronunciations, and calculating smoothed empirical frequencies of the pronunciations of 
each word. For rare words or words not found in the acoustic training data, we obtained 
the probability for each pronunciation using a phone n-gram model trained on the forced 
alignment phone sequences. The n-gram probabilities were scaled and normalized. The 
effect of pronunciation probabilities in the lexicon used to generate the first-pass ASR 
output is shown in rows 4 and 5 of Table 3.86. The same acoustic models were used as 
for the experiments in upper rows of Table 3.86. 

3.6.7.4 Language Modeling 

3.6.7.4.1. Language Model Training 

The LM was trained using the SRILM toolkit (Stolcke 2002) with the undiacritized 
MADA-processed data. We trained source-specific LMs, each with modified Kneser-Ney 
smoothing, which were then interpolated for the final LM. The training sources were 
FBIS, TDT-4, GALE BN and BC transcripts (manual transcriptions and web data), 
Arabic Gigaword, CMU web data, CU web data, and UN data, for a total of about 1.1B 
words.  Interpolation weights were tuned on a balanced heldout mixture of GALE BN 
and BC manual transcripts, of about 300K words. The final LM used a 600K vocabulary 
and was entropy-pruned to 40M bigrams for lattice generation decoding. For rescoring 
purposes a much bigger 4-gram was used with about 100M bigrams, 73M trigrams, and 
73M 4-grams. These LMs were used in both the SRI and the RWTH systems. 

We also experimented with morphological-class LMs and factored LMs, but as more 
data became available the improvement from these models diminished, and they were not 
used in the final system. 

3.6.7.4.2. Vocabulary Selection 

To deal with the high morphological variability of Arabic, we had to enlarge the 
vocabulary far beyond what is typically used for English ASR. We used the approach 
described by Venkataraman and Wang (2003) to choose the vocabulary, using the same 
held-out set as for LM tuning. Table 3.87 shows the effect of vocabulary size on OOV 
(out-of-vocabulary) rate and WER, using all the available data for LM. 

 
 OOV(%) WER(%) 2gram/4gram  

Vocab. Size Eval06 Dev07 Eval06 Dev07 
64K 5.36 3.88 36.4/33.6 25.3/22.5 
128K 3.09 2.05 35.8/32.7 24.6/21.7 
256K 2.10 1.34 35.6/32.5 24.5/21.6 
500K 1.20 0.69 35.4/32.4 24.3/21.5 
600K 1.07 0.58 35.5/32.5 24.3/21.6 

Table 3.87: Effect of vocabulary size on OOV and WER 

3.6.7.4.3. Effect of LM Training Data Size 

Using about half the available LM data (about 500M words from Gigaword, UN and 
the first two years of GALE) we found that the performance of the LM (after 4-gram 

Chapter 3: Machine Translation from Speech564



rescoring) degrades about 1-1.5% absolute on various test sets. The experiment was 
performed using a 500K vocabulary. 

3.6.7.5 Acoustic Modeling 

3.6.7.5.1. SRI Acoustic Models 

As described in Section 3.6.7.6.3, the SRI system uses multiple models at different 
steps: non-cross-word (non-cw) models are used for first-pass lattice generation, and for 
lattice rescoring. Cross-word (cw) models are used only for lattice rescoring and N-best 
list generation. 

  
Frontends  

We used an MFCC front end with 16 kHz sampling rate and a PLP one with 8 kHz 
sampling rate, to help de-correlate errors  for system combination. (The 8-kHz frontend is 
motivated by the fact that some of the BC data is narrowband and/or noisy.) The MFCCs 
were augmented with multilayer perceptron (MLP) features as described by Zhu et al. 
(2005). The non-cw MFCC and the PLP frontends have 13 cepstral coefficients, while 
the cw MFCC has 19. They all use 1st, 2nd and 3rd order derivatives, with HLDA for 
reduction to 39-dimensional feature vectors. Table 3.88 shows the performance of the 
various models on different test sets. The PLP model without MLP features does not 
perform as well as the MFCC models, but because of the 8-kHz front end it performs 
well on the BC part of the data. 
 

 Eval06 Dev07 
ML models BC    BN all BC    BN all 

Non-cw MFCC+MLP  33.6   21.8 27.6 19.7   11.3 14.3 
cw PLP 32.1   21.4 26.7 18.8   12.0 14.4 
cw MFCC19+MLP 31.8   21.1 26.4 18.2   10.9 13.5 

MPFE models     
Non-cw MFCC+MLP  30.9   20.8 25.8 18.4   10.5 13.3 
cw PLP 30.5   21.1 25.7 18.6   11.2 13.8 
cw MFCC19+MLP 29.8   19.7 24.7 16.5     9.8 12.2 
cw PLP+fMPE 30.1   20.4 25.2 17.8   10.8 13.3 

Table 3.88: Results with different front-ends used at SRI acoustic models, contrasting ML and discriminative 
training conditions.  All results are obtained with SI models after rescoring 4gram lattices created with the 

same non-cw MFCC model. 

Discriminative Training 
All models were trained with discriminative minimum phone frame error training 

(MPFE) (Zheng and Stolcke 2005). We can see the gains over ML training in Table 3.88. 
We also experimented with using feature-level minimum phone error (fMPE) training 
(Povey et al. 2005; Zheng et al. 2007). We found that the MLP features, which are 
already discriminatively trained, do not combine well with fMPE (there was practically 
no improvement from fMPE). That was the reason we decided not to include MLP 
features for the PLP frontend and to use fMPE instead. We see that the PLP+fMPE 

Handbook of Natural Language Processing and Machine Translation 565



models are comparable to the MFCC+MLP non-cw models after discriminative training. 
The crossword MFCC19+MLP models performed the best. 
 
Gender Dependent Models 

Since we did not have data annotated for speaker gender, we used a gender prediction 
GMM trained on English data, to predict speaker gender in both training and test data. 
Then we performed MPE-MAP adaptation on the final discriminatively trained models, 
using the single-gender data only. This gave about 0.3% absolute improvement for 
individual models.  

 
Duration Models 

We used the approach described by Gadde (2000) to train duration models for each 
acoustic model in our system. Single multivariate Gaussians are used to model phone 
frame durations in words and triphones, normalized for a speaker’s average speaking rate. 
We employ these duration models for rescoring all N-best lists used in system 
combination (see Section 3.6.7.6.3). On average, duration modeling contributed a relative 
gain of ~2.5% for each component system. The improvement in the final word error was 
about 0.2% absolute. 

3.6.7.5.2. RWTH Acoustic Models 

The RWTH system consists of two subsystems using two different acoustic models 
that share the same acoustic front end. MFCCs (16 cepstral coefficients) normalized by 
cepstral mean and variance normalization are augmented with a voicing feature. An LDA 
matrix projects the concatenation of 9 consecutive feature vectors in a sliding window to 
45 components. As in the SRI MFCC models, this reduced feature vector is augmented 
with phoneme posterior features estimated by a neural network (Hoffmeister et al. 2007). 
The two acoustic models used differ in their treatment of crossword context; one 
subsystem uses within-word models only. In training, speaker variations are compensated 
by applying VTLN to the MFCC filter bank and speaker adaptive training (SAT) based 
on CMLLR. The models were enhanced by performing discriminative training with the 
MPE criterion. 

3.6.7.6 System Architecture 

3.6.7.6.1. Acoustic Segmentation 

Acoustic segmentation was applied in tasks where no manual transcription was 
available. Our segmentation method operates on the output of a speech recognizer. 
Several segment features are used to optimize the complete segmentation of a recording. 
This method is described in detail by Rybach et al. (2007). In experiments where we used 
the non-cw system without LM rescoring and cross adaptation, we achieved a WER of 
16.1% on Dev07 using the described segmentation. This result is quite close to the 15.9% 
achieved when using manual segmentations. However, there is still potential for 
improvement, which becomes apparent when splitting the manual segmentation before 
and after overlapping speech, yielding an error rate of 15.4%. 

Chapter 3: Machine Translation from Speech566



3.6.7.6.2. RWTH ASR Architecture 

 
 non-cw system cw system 
Pass 1 18.6 - 
Pass 2 14.4 14.4 
Pass 3 13.9 14.2 
Weight Optimization 
and Combination 12.7 

Table 3.89: Intermediate results of the RWTH subsystems on the dev07 corpus. 

Speaker-independent within-word models are used in the initial recognition pass. The 
output of this system is used to estimate the text-dependent CMLLR transforms for both 
subsystems. Segment clusters obtained by generalized likelihood ratio clustering with a 
BIC-based stopping criterion act as speaker labels for the speaker adaptation methods 
applied. The second recognition pass is carried out using the CMLLR transformed 
features and acoustic models trained with SAT. The lattices produced by the two systems 
are rescored using the full 4-gram language model, while a pruned bigram LM is used for 
generating the lattices. The acoustic models of both systems are adapted to this rescored 
output using MLLR on the means. We used a cross-adaptation scheme to benefit from 
having two subsystems. The results of the final recognition pass are again rescored using 
the larger LM. Eventually, the lattices produced are combined by a method based on min-
fWER decoding (Hoffmeister et al. 2007). Intermediate results for both systems are given 
in Table 3.89. 

3.6.7.6.3. SRI ASR Architecture 

Figure 3.37 illustrates the design of the SRI ASR system. We generated lattices with 
the non-cw model twice (before and after adaptation) and cross-adapted all models used 
for final lattice rescoring to outputs of the other systems. The best system 
(MFCC19+MLP) was cross-adapted to the ROVER combination of the other two 
systems. The results for different stages of the system are given in Table 3.90. 

 

Handbook of Natural Language Processing and Machine Translation 567

 

 
Figure 3.37: SRI System Architecture 

MFCC+ICSI 
non-cw

4gram
Lats.

MFCC+ICSI 
non-cw

4gram
Lats.

PLP+FMPE 
cw

MFCC+ICSI 
non-cw

PLP+FMPE 
cw

MFCC19+ICSI 
cw

Nbest-from RWTH

Phone-loop adaptation
Hyps for output or adaptation
Generate or rescore latticesA

B

C

D

E
F

Rover



 Eval06 (manual seg.) Dev07 (manual seg.) 
Output BN   BC all BN    BC All 

A 20.7   33.1 26.7 10.7    19.1 15.3 
B 19.5   31.2 25.2   9.7    16.5 12.2 
C 19.3   31.1 25.1   9.8    15.9 12.0 
D 19.1   29.9 24.4   9.3    15.2 11.4 

E-noncw 19.8   31.1 25.4 10.6    16.7 12.7 
F-cw 20.4   31.8 26.0 10.6    16.7 12.8 

ROVER3 18.8   29.0 23.8   9.2    14.7 11.1 
ROVER5 18.2   27.9 23.0   8.9   14.3 10.8 

Table 3.90: WER results at different system stages. ROVER3 includes SRI-only systems B, C and D, while 
ROVER5 includes also the two RWTH systems E and F. 

3.6.7.6.4. System Combination  

We used N-best ROVER on the three N-best lists obtained from the SRI system, and 
the two N-best lists from RWTH, to obtain the final output. The results are shown in the 
last line of Table 3.89 for the Eval06 and Dev07 test sets, while the final results for the 
latest Eval07 test are shown in Table 3.91. 

 Eval07 
 Manual seg. Automatic seg. 

Output BN  BN    BC all 
ROVER3 10.3 10.1    16.0 13.0 
ROVER5   9.8   9.9     15.5      12.7 

Table 3.91: The final system WER on Eval07. Manual segments were available only for the BN part. 

Cross-adaptation schemes were also explored where the output from an intermediate 
pass from RWTH was used to adapt the SRI models, but since the SRI system was 
already using cross-adaptation among fairly different systems, cross-site adaptation did 
not give any further improvements. 

3.6.7.7 Discussion and Conclusions 

We have described the development process of a large vocabulary ASR system for 
MSA. The system was based on our English ASR experience, but we paid special 
attention to lexicon development and increased vocabulary size to deal with the needs of 
the new language. The different models had different enough features to achieve good 
cross-adaptation and system combination results. Our system obtained a WER of about 
10% on BN and 15-25% on BC on different test sets. Since the goal of the GALE project 
is speech-translation performance, we compared the machine translation (MT) results 
obtained using the output of our system to those obtained using the reference hypotheses 
and found a difference of less than 0.5 point of BLEU or 1.5 TER scores in all the test sets. 
The automatic MT scores for two test sets, using manual sentence segmentation, are 
reported in Table 3.92.   

 
 

 

Chapter 3: Machine Translation from Speech568



  MT results on ASR output and references 
 WER BLEU TER 
Dev07 (asr output) 10.8 30.1 52.2 
 (references) - 30.6 52.6 
Eval06 (asr output) 23.0 21.7 62.6 
 (references) - 21.8 61.3 

Table 3.92: Effect of ASR performance on follow-up MT performance. 

Ongoing work that has not yet been integrated in the system includes improved 
pronunciation generation and modeling, unvowelized acoustic models as an alternate 
system, factored LMs, partial diacritized vocabulary for LM and system optimization for 
MT purposes.   

3.7 Integration of Speech Recognition and  
Translation 

3.7.1. Introduction 

Author: Lidia Mangu 
 

Spoken language translation systems have two parts, a Speech-to-Text (STT) system 
which takes the speech signal and produces a transcript, and a machine translation 
system, which translates the transcript in another language. The two components are 
often developed independently of each other. In order to build speech translation systems, 
it is not enough to just treat the two components as two black boxes and just send the 
output of the STT system to the MT system. A tighter integration is needed for improving 
the overall accuracy of the translation. The STT systems are tuned to minimize word 
error rate (WER) and produce transcripts using automatic segmentation based on voice 
activity detection. These transcripts do not include punctuation; they contain recognition 
errors, and disfluencies, especially in the case of spontaneous speech. In comparison, the 
MT systems are mostly trained on text input containing well formed sentences with 
punctuations, so this is the type of data they are prepared to deal with at test time.   

Each of the three sections in this section attempts to alleviate this mismatch in a 
different dimension. 

The section by Paulik et al. (2008) investigates methods for punctuation recovery, 
disfluency removal and confusion networks (CNs) translation.  The classifier used for 
restoring periods and commas in the STT transcript is a decision tree built with word 
duration, prosody, silence duration and language model scores as features. The section 
uses a noisy-channel approach to remove  three types of disfluencies: fillers, repetitions 
and corrections, and shows improved translation performance. This section also deals 
with improving the MT robustness against STT errors. Instead of using the single best 
hypothesis from the STT system, the MT system receives as input a confusion network 
containing a number of word alternates at each position in time. The authors implemented 
a phrase-based MT decoder of CNs within their beam-search decoder, and showed 
improvements in BLEU scores compared to using the single best STT hypothesis. 

Handbook of Natural Language Processing and Machine Translation 569



The section by Saon (IBM) presents a method for dealing with STT errors which uses 
lattices instead of confusion networks as input to the MT system.  He gives a recipe for 
lattice translation which consists in two steps: a monotone lattice decoding which 
provides the best foreign path, which is then decoded using standard sentence-based MT, 
with reordering. Improvements in TER are reported on a number of test sets. 

The section by Matsoukas et al. (BBN,CU,Limsi)  addresses the issue of optimizing 
STT systems for WER, which is not always the best in terms of MT performance. System 
combination is a standard component of state-of-the-art STT systems;  ROVER, CNC 
and cross-adaptation being the widely used techniques due to the fact that they 
significantly reduce WER. The section investigates the impact of different system 
combination strategies on the MT output. The authors describe a method for optimizing 
the ROVER parameters so as to directly maximize the MT accuracy. 

3.7.2. Improving Machine Translation of Spoken Language  

Authors: Matthias Paulik, Ian Lane, and Tanja Schultz 

3.7.2.1 Introduction  

Most machine translation training data consists of written text corpora with well-
formed sentences and correct punctuation. ASR output, on the other hand, consists of 
non-sentence like ‘chunks’ (utterances) of non-punctuated hypotheses. Recognition errors 
and speech disfluencies like fillers, repetitions and corrections further increase the 
mismatch between ASR output and MT training data. This severe data mismatch leads to 
suboptimal translation performance when applying MT directly to ASR output in the 
context of SLT. One important step to reduce the mismatch is to re-segment ASR 
hypotheses into sentence-like units before performing translation. Punctuation recovery 
in ASR output, punctuation removal in MT training data or a mixed approach can further 
reduce the data mismatch. In addition to improving translation accuracy, sentence 
segmentation and punctuation recovery can significantly increase the readability of SLT 
system output.  

3.7.2.2 Sentence Segmentation and Punctuation Recovery  

In this section, we report results for sentence segmentation and punctuation recovery 
of periods and commas in the context of SLT. We measure the success of our approaches 
in terms of end-to-end translation performance using the BLEU metric on human 
translation references that include correct punctuation. 

3.7.2.2.1. Comma Recovery via Modified Phrase Tables  

Punctuation recovery for SLT can either be performed before, after or implicitly 
during translation. Punctuation recovery during translation can be realized by removing 
punctuation from the source side of the parallel MT training data while retaining 
punctuation on the target side. However, (Al-Onaizan and Mangu 2007) point out that 
this will likely degrade word alignment accuracy as it may not be possible to correctly 
align target punctuation. Instead, they propose to remove punctuation from the source 

Chapter 3: Machine Translation from Speech570



phrases in the phrase table of a phrase-based statistical MT system, while retaining 
punctuation in the target phrases. Punctuation recovery in ASR output can rely on 
acoustic features (prosody, pause duration, etc.) that are extracted from the speech signal. 
We found that such features are especially of value for the recovery of periods. However, 
recovering punctuation in the source can degrade overall translation performance. Errors 
in punctuation recovery can split up long source phrase matches into short phrases and 
these errors  are not recoverable. Punctuation recovery during or after translation does not 
suffer from this problem, as non-punctuated source phrases guarantee a maximal match. 
Further, these approaches are more strongly influenced by the target language model, 
which possibly results in a more 'natural' punctuation of the translation output. We found 
that these considerations are especially important in the context of comma recovery. 

In this work we explicitly distinguish between two separate tasks; sentence 
segmentation, and punctuation recovery. A sentence segment constitutes the unit 
presented to MT; MT processes each unit independently, one after another. A sentence 
segment may include one or more punctuation marks (period, comma) - or none at all. By 
explicitly separating sentence segmentation from punctuation restoration, it is possible to 
fully explore punctuation recovery before, after or during translation. 

First, we examined the effect of performing punctuation recovery before and/or 
during translation on the TC-STAR English-to-Spanish SLT task (Paulik 2008; TC-
STAR 2004). We applied a punctuation recovery approach that inserts periods and 
commas into English ASR output based on local language model (LM) context and pause 
duration between words. A period is explicitly inserted for pause durations p > 0.7 
seconds. For 0.03s < p ≤ 0.7s, the insertion of a period or a comma is determined by LM 
probability. After punctuation recovery, the ASR output was resegmented into translation 
units at each period. We then compared English-to-Spanish SLT performance when: 1) 
retaining automatically recovered periods and commas in the ASR output, 2) removing 
all punctuation marks and applying implicit recovery of periods and commas during 
translation, and 3) retaining periods in the ASR output and recovering commas during 
translation. For 2) and 3) we initially trained phrase tables with punctuation and then 
removed punctuation from the source side as described by Al-Onaizan and Mangu 
(2007). Experiments were conducted on English ASR hypotheses as provided by TC-
STAR during the 2006 and 2007 SLT evaluation tasks. We compared the performance of 
the three methods described above. The 2006 data served as our development set and for 
the test set we used the 2007 data. Both sets have a word error rate (WER) of 6.9%. 

 
full stop comma dev set test set 
source Source 38.70 36.57 
phrase table Phrase table 39.23 38.29 
source Phrase table 40.16 39.00 

Table 3.93: English-to-Spanish BLEU scores for different punctuation recovery schemes. 

Compared to a human reference segmentation of the English source, the described 
automatic sentence segmentation provided an F-measure of 54.79 on the development 
and 52.48 on the test set. Table 3.93 shows the achieved SLT performance. Inserting full 
stops prior to MT, on the source side at each segment end and recovering commas 

Handbook of Natural Language Processing and Machine Translation 571



implicitly during translation using a modified phrase table obtained the best translation 
performance. 

For the GALE SLT tasks we used method 3) which obtained the best performance on 
the TC-STAR English-to-Spanish task. For Chinese-to-English and Arabic-to-English the 
method yielded gains of 2.2 and 1.8 BLEU points, respectively, when using audio 
segmentation and a period at each segment end.17 

3.7.2.2.2. Decision Tree-Based Sentence Segmentation  

To train Arabic and Chinese sentence segmentation systems for the GALE SLT tasks, 
we used four shows from the Arabic BNAD05 data set, six shows from the GALE ‘06 
Chinese development set and half of the GALE ‘07 Chinese development set. Statistics 
for our Chinese and Arabic development and test sets are shown in Table 3.94. These sets 
were extracted from shadow data included in the ROSETTA team GALE 2007 ASR 
evaluation output. The shadow data was comprised of shows from the GALE 2007 
development set and the GALE 2006 evaluation set.18 
 

 Chinese Arabic 
dev test Dev test 

GALE source 07dev 06eval 07dev 06eval 
Running chars/words 23K 8K 8K 9K 
CER/WER 10.5% 17.1% 12.1% 21.7% 

Table 3.94: Data statistics for GALE Chinese and Arabic development and test sets. 

  Chinese-to-English Arabic-to-English 

Segmentation Punctuation rec. dev test dev Test full stop Comma 
audio  yes no 8.31 8.72 19.46 13.51 
Audio yes yes 8.77 10.09 21.25 15.30 
decision tree yes yes 8.92 10.73 21.40 15.53 
Human yes yes 9.38 10.97 21.80 15.96 

Table 3.95: Chinese-to-English and Arabic-to-English BLEU scores using different segmentation schemes. 

 Chinese Arabic 
Segmentation Dev set Test set Dev set Test set 
Audio  30.75 31.59 33.89 37.38 
Decision tree 59.16 53.38 40.97 43.41 

Table 3.96: F-measure of ASR audio segmentation and automatic sentence segmentation. 

The last rows in Table 3.95 show the SLT performance achieved when automatically 
aligning ASR hypotheses to the human reference transcriptions. Human sentence 
segmentation consistently outperforms audio segmentation. Therefore, it is desirable to 
automatically introduce human like sentence segmentation on ASR output before MT. 

                                                 
17 We observed that inserting periods at each segment end leads to improved translation performance, even 
for speech/non-speech audio segmentation. This concurs with the results presented by Yaser (2007). 
18 In all cases separate training, development and evaluation data was used to evaluate decision tree perfor-
mance.  

Chapter 3: Machine Translation from Speech572



Table 3.96 compares the F-measures of the Chinese and Arabic automatic sentence 
segmentation with the F-measures of the respective audio segmentation. The respective 
gains in SLT performance for using automatic sentence segmentation are listed in Table 
3.95. By combining comma recovery during translation via modified phrase tables with 
decision tree based automatic sentence segmentation and marking each segment end with 
a period, we significantly improved SLT performance on both SLT tasks within GALE. 
Chinese-to-English translation performance improved from 8.72 to 10.73 BLEU points 
and Arabic-to-English performance improved from 13.51 to 15.53 BLEU points. 

3.7.2.2.3. Intra-Sentence Segmentation  

In the previous section we showed that human sentence segmentation of ASR output 
consistently outperforms audio segmentation in the context of SLT. However, the 
question arises if another form of segmenting input to MT may not outperform human 
sentence segmentation in terms of translation performance. Rao et al. (2007a) reported 
that introducing intra-sentence segmentation on top of human sentence segmentation can 
obtain an improvement in BLEU score of up to 6% for Arabic broadcast news data and up 
to 11% for Arabic broadcast conversation data.  This additional intra-sentence 
segmentation was tuned towards BLEU metric by manipulating the average segment 
length.  

We conducted experiments to introduce such an additional intra-sentence 
segmentation based on the average segment length (Paulik 2008). However, using the 
English-to-Spanish SLT system described in 3.7, we were not able to reproduce the 
results reported by Rao et al. (2007a). Instead of finding an optimal value for an average 
segment length governing the introduction of intra-sentence segments, we rather 
observed a consistent and ungraceful degradation in BLEU metric when constraining the 
average segment length to successively smaller values. A possible explanation for these 
inconsistent results is provided by Rao et al. (2007a), no separate MT system parameter 
optimization was performed after switching between different segmentations, nor was the 
optimal segment length first estimated on a development set and then tested on a separate 
evaluation set. In future works we intend to investigate this problem, namely, joint 
optimization of MT and sentence segmentation, further. 

3.7.2.3 Speech Disfluency Removal  

Speech disfluencies are generally defined by Tree (1995) as ‘phenomena that 
interrupt the flow of speech and do not add propositional content to an utterance’. In 
other words, disfluencies are those parts of spontaneous speech, which when removed, 
yield the sentence as it was originally intended. Disfluencies can hurt translation quality 
in two different ways. Firstly, disfluencies such as fillers and repetitions make utterances 
longer without adding semantic information. On the other hand, corrections add spurious 
content and, therefore, produce inaccurate translations. Secondly, since SLT systems are 
trained on large amounts of text data that have well-formed sentences, disfluencies cause 
a mismatch between training and evaluation data.  

We investigated the effect of disfluencies on SLT and presented results for automatic 
disfluency removal (DFR) that is applied as a preprocessing step prior to translation (Rao 

Handbook of Natural Language Processing and Machine Translation 573



et al. 2007b). Although several different types of disfluencies have been defined 
(Shriberg 1994), we handle only three: fillers, repetitions and corrections. 
 

 
 shows sentences words disfl. precision recall F-measure 
Training 19 6370 46.3K 6.5%    
BCAD05 5 691 10.6K 3.48% 88.77 90.21 89.48 
GALE06 5 256 4.5K 5.86% 95.59 57.57 71.86 

Table 3.97: Training and evaluation data statistics for automatic DFR and performance of automatic DFR on 
manual transcriptions in terms of precision and recall. 

The disfluency removal (DFR) system (Honal 2005) uses a noisy-channel approach 
where DFR is modeled as the translation of disfluent speech to clean speech. Translation 
during DFR involves only deciding which source words are to be deleted. No word 
insertions or reorderings are permitted. Five translation models are used capturing 
features such as; 1) position in sentence, 2) position within the current disfluent region, 3) 
words in the context of a disfluency, 4) distance from a fragment, and 5) information 
about previous deletions. These models are combined log-linearly using weights learned 
via gradient descent. Gradient descent maximizes disfluency removal accuracy on a 
development set. The five translation models were trained on Arabic broadcast news 
transcriptions (19 Al Jazeera shows), which had been annotated for disfluencies by a 
native Arabic speaker. Two additional shows were used as the development set to 
estimate model weights. Table 3.97 shows the corpus characteristics for the training and 
evaluation data. 

First, we tested the DFR system on two distinct data sets; BCAD05 and GALE06 
(compare Table 3.97). For a first assessment of the DFR system, we used the manual 
transcriptions of both evaluation sets as input to the DFR system. The performance of 
DFR in terms of precision and recall is shown in Table 3.97. A disfluency is correctly 
deleted if every constituent word is deleted and no other surrounding words are affected. 
While BCAD05 consists of Al Jazeera shows, GALE06 data is comprised of shows from 
TV channels that are not represented in the training data. We believe that this explains the 
relatively lower recall on GALE06 data. 

Next, we evaluated the effectiveness of DFR on translation quality. DFR was applied 
as a preprocessing step to the manual transcriptions before performing translation with 
the CMU GALE-P2 Arabic-English SMT system. The impact of DFR on translation 
quality in terms of BLEU metric, is shown in Table 3.98. Both manual removal of 
disfluencies, as well as automatic DFR improved translation performance. Although the 
bitext used to train the SMT models included transcripts and translations of broadcast 
conversations, which contain disfluencies, this is only a fraction of the training corpora. 
The majority consists of written text that contains no disfluencies, thus DFR reduces the 
mismatch with the models applied during translation and improves translation accuracy. 
It is noted that both data sets include a large number of sentences that do not contain 
disfluencies. In particular, 48% of sentences in GALE06 data and 76% of sentences in 
BCAD05 contained no disfluencies. A more detailed analysis revealed that, due to the 
high precision of the automatic DFR system, no deterioration in translation performance 
was observed for sentences without disfluencies. Of the three types of disfluencies 

Chapter 3: Machine Translation from Speech574



considered in this work, fillers were the most common. Almost 20% of BCAD05 
sentences contain fillers while less than 5% of the sentences contain repetitions or 
corrections.  

 
DFR none automatic manual 
BCAD05 11.13 11.55 11.68 
GALE06 12.16 12.36 12.30 

Table 3.98: DFR on manual transcriptions and its effect on translation performance (BLEU). 

Thus far, we presented results for DFR on manual transcriptions. However, in SLT 
we apply MT on error-prone ASR output. ASR systems use acoustic models that detect 
non-verbal speech events such as hesitations and other non-human noise events. These 
acoustic models are explicitly used to recognize fillers. In order to show the effect of 
DFR in general, we compare two types of first best ASR output; 1) unmodified first best 
(UFB) retains filler words hypothesized by the ASR decoder, and 2) modified first best 
(MFB) removes these filler words. Results for applying automatic DFR to modified and 
unmodified, first best output, are listed in 
Table 3.99.  A gain of 0.89 BLEU is obtained by merely removing fillers hypothesized by 
ASR. However, automatic DFR mostly fails to yield any gains, even when applied to the 
unmodified first best.  

 
 

Table 3.99: Translation results in BLEU using ASR first best output. 

The ASR system introduces errors in transcribed output which can be classified as 
deletion, substitution or insertion type errors. Each of these errors makes DFR 
challenging; they either distort the lexical context of a DF or altering the DF itself. For 
example, during ASR decoding the LM gives a low probability to word repetitions and 
fillers and hence is likely to cause either a substitution or deletion error. In order to 
quantify the effects of recognition errors, we aligned the ASR first best unmodified 
output to the DF annotated transcripts and observed what exactly happens to disfluent 
regions after ASR. 
 

 data set Del % Sub % Ret % 

c & r BCAD05 33.33 24.50 42.10 
GALE06 40.60 50.00 9.40 

fillers BCAD05 39.80 40.40 19.80 
GALE06 37.73 27.35 34.90 

Table 3.100: Recognition errors on corrections and repetitions (c & r) and fillers. 

Table 3.100 shows recognition errors pertaining to different disfluencies types on 
BCAD05 and GALE06 data. For both data sets, the majority of filler words were either 
substituted or deleted although the exact proportion depends on specific set. In the case of 

 data set no DFR automatic DFR 

UFB BCAD05 10.45 10.58 
GALE06 9.86 9.76 

MFB BCAD05 11.54 11.47 
GALE06 10.22 10.18 

Handbook of Natural Language Processing and Machine Translation 575



repetitions and corrections, a large majority are substituted or deleted. For GALE06 data, 
fewer than 10% (24 out of 320) were retained. Thus, when presented with ASR output 
containing word errors involving both disfluent words and their non-disfluent context, 
disfluency models trained on manually transcribed data perform poorly on the DF 
removal task.  

3.7.2.4 Improving Machine Translation Robustness for SLT  

In addition to the problem areas described in the previous sections, one major 
challenge in spoken language translation is to realize MT that is robust against speech 
recognition errors. Traditionally, automatic translation of spoken language is 
implemented by cascading the single best hypothesis from ASR to MT. Translation is 
then performed as if the input was error free. As ASR output may contain transcription 
errors and a more accurate recognition hypothesis may be contained in competing 
hypotheses, this interface should be extended to enable MT to consider multiple ASR 
hypotheses. 

Previous works have investigated numerous approaches to enrich the interface 
between ASR and MT, these include; translation of N-best lists (Zhang 2004), translation 
of ASR word-graphs (Matusov 2005), translation of confusion networks (Bertoldi 2005), 
and joint search of ASR and MT (Amengual 1997). Of these approaches, translation of 
confusion networks has been shown to be an efficient integration strategy (Bertoldi 2008) 
which readily scales to large tasks, such as those encountered in the GALE project.  

3.7.2.4.1. Statistical Machine Translation of Confusion Networks  

In statistical MT (Brown 1993) a foreign language sentence ࢌ is translated into 
another language ࢋ by searching for the hypothesis with maximum likelihood ࢋො where: 

ොࢋ  = argmaxࢋ  ሻ       (3.60)ࢌ|ࢋ)ܲ

In the maximum entropy framework the conditional probability ܲ(ࢌ|ࢋሻ can be 
realized as a log-linear combination of feature functions ݄(ࢋ, ,ଵߣ) ሻ  and scaling factorsࢌ ,ଶߣ … ,  :ெሻ  givingߣ

ොࢋ  = argmaxࢋ ௫൫∑ ఒ(ࢌ,ࢋሻಾసభ ൯∑ ௫൫∑ ఒ(ࢌ,̀ࢋሻಾసభ ൯̀ࢋ      (3.61) 

 
During search the denominator is dropped since it is constant for a given the input ࢌ. 

When translating text input, feature functions including: target language model 
likelihood, multiple translation model scores (based on lexical translation probabilities), 
number of words and phrases in the hypothesis, and a distance based reordering penalty, 
are applied. Scaling factors (ߣଵ, ,ଶߣ … ,  ெሻ are optimized via MERT (minimum error rateߣ
training) (Och 2003) for a specific translation metric such as BLEU. 

Chapter 3: Machine Translation from Speech576



For spoken language translation the SMT formalism can be extended to consider the 
uncertainty inherent in speech recognition output. Given a set of transcription hypotheses ࣠(ሻ for an observed foreign language utterance : 

ොࢋ  = argmaxࢋ ∑ ,ࢋ)ܲ ሻ)࣠ אࢌሻ|ࢌ = argmax ∑)ݔ݁ ,ࢋ)݄ߣ ,ࢌ ሻெୀଵ ሻ   (3.62) 

 

 
The likelihoods of ASR hypotheses are incorporated by including additional feature 

functions for acoustic likelihood ܲ(ࢌ|ሻ, word-sequence probability ܲ(ࢌሻ, or a 
normalized confidence measure. For translation of confusion networks the ASR posterior 
probability is used. 

A confusion network (CN) (Mangu 2000), is a compact representation of a subset of 
recognition hypotheses. CNs are weighted directed graphs, where each arc contains a 
word label, (or a null word, typically notated as ߝ) and a posterior probability. Each path 
from the start-node to the end-node goes through all other nodes. Confusion networks are 
an efficient structure for SMT decoding as word sequences that occur in the same 
temporal span on multiple paths in a word lattice, appear only once in the CN. This 
minimizes redundancy during phrase match and significantly reduces the translation 
search space. 

We implemented phrase-based SMT decoding of CNs within our beam search 
decoder, STTK (Vogel 2003). Decoding is performed in two explicit stages. First, a 
translation-lattice is build by adding arcs to the input CN for all phrase-pairs in the 
translation phrase table where the source-side word-sequence matches the word-labels on 
the CN (ߝ arcs are skipped when performing this match). The ASR posterior probability 
of a phrase pair is calculated as the product over the individual arcs it covers on the CN. 
Beam-search is then performed allowing limited reordering. The final hypothesis is that 
with maximum score, summed over all feature functions. 

3.7.2.4.2. Experimental Evaluation 

We evaluated the effectiveness of CN translation on the GALE Chinese-to-English 
broadcast-news translation task. Details of the experimental setup are shown in Table 
3.101. To mitigate the effects of audio segmentation and punctuation, manual utterance 
boundaries were used to segment the input audio and punctuation was removed from the 
SMT training corpora. ASR was performed with our Janus decoder using a development 
version of our Mandarin STT system. Word lattices were generated via ASR and 
converted to CNs using an enhanced version of the SRILM toolkit. Phrase-based SMT 
was then applied to the resulting CNs using monotonic decoding. For each input type: 
manual transcripts, 1-best ASR input and CNs, MT parameters were optimized (via 
MERT) on the development set. 

 
 
 
 

Handbook of Natural Language Processing and Machine Translation 577



 

ASR Evaluation System 
Segmentation manually defined boundaries 

Training Corpora AM: 500hours, LM: 100M words 
vocabulary: 107K 

Decoding 1-pass speaker-independent AM 
SMT Evaluation System 

Phrase  Extraction Alignment: IBM4 (GIZA)   Max. 
Phrase Length: 7 

Training Corpora TM: 100M words                LM: 600M 
words 

Development Set RT-04, 4 shows, 292 utterances 
Evaluation Set RT-04, 3 shows, 652 utterances 

Table 3.101: CN translation experimental setup. 

First, we evaluated the translation accuracy when MT was applied to manual 
transcripts and 1-best ASR output. On manual transcripts a BLEU score of 15.50 (single 
reference, non-punctuated) was obtained on the evaluation set. Applying MT to the 1-best 
ASR output (which had a WER of 37.2% and a CER of 24.8%) resulted in a BLEU score 
of 12.76. This large degradation in BLEU is a direct result of recognition errors in the 
input transcripts. 

 
Figure 3.38: Translation accuracy (BLEU) of CN translation compared to average CN density. Dashed lines 

indicate the average minimum and maximum word error paths through the set of CNs. 

Next, we investigated the role of CN density on translation performance. Here, 
density is defined as the number of non-epsilon edges over the number of nodes in a CN. 
CNs of varying densities were generated from the original ASR word lattices by pruning 
lattices with a posterior threshold before generating CNs. CN translation was performed 
using parameters optimized via MERT for that specific set. 

Figure 3.38 shows the BLEU scores obtained when our phrase-based SMT system 
was applied to CN input. For all densities CN translation obtained higher BLEU compared 
to using the 1-best ASR input. As the average density of CNs increased, translation 
performance also initially improved, but then stagnated at higher densities. As density 
increases it is more likely that a CN contains the correct transcript as a hypothesis path. 
However, the number of incorrect competing hypotheses also increases exponentially. 

Chapter 3: Machine Translation from Speech578



Thus, increased CN density does not guarantee improved translation performance. In this 
work, the best performance was obtained with an average CN density of 1.4, resulting in 
a BLEU score of 13.96. The improvement in BLEU level compared to the 1-best ASR case 
(12.76) is significant at the 99% confidence level. 

Finally, we analyzed the effectiveness of CN translation for specific ranges of 
recognition accuracy. Utterances were clustered based on the WER of their 1-best ASR 
hypothesis. Translation performance was then evaluated on each set. BLEU scores for 
each input type: manual transcripts, 1-best ASR input and CNs, are shown in Figure 3.39. 

It was observed that CN translation was most effective for utterances where the 1-
best ASR-WER was between 10% and 50%. For utterances where the WER was greater 
than 50% CN translation did not significantly outperform the 1-best ASR system. For 
these utterances the large number of speech recognition errors may make it difficult for 
translation to effectively leverage surrounding context. Similar results were obtained 
when reordering was applied during SMT decoding rather than monotonic decoding. 
Using a reordering window of 4 (RW=4) the performance of all systems improved, and 
CN translation obtained a BLEU-score of 14.28 on the evaluation set, this compares to 
12.90 for the 1-best ASR case. Again, the difference is significant at the 99% level. 

 

 
Figure 3.39: Effectiveness of CN translation for different word error rates. Entire Set indicates the 

performance over the entire evaluation set. RW=4 indicates that a reordering window of 4 was used during 
SMT decoding. All other results use monotonic decoding. 

3.7.2.5 Conclusions 

 
We investigated a number of approaches to overcome the inherent mismatch 

between automatic speech recognition (ASR) and machine translation (MT) 
components in spoken language translation (SLT).  Specifically, we investigated 
three problem areas that degrade performance in end-to-end SLT: 1) sentence 
segmentation and punctuation recovery, 2) speech disfluencies, and 3) MT 
robustness against ASR errors. 

For 1), we proposed a decision tree-based approach that incorporates both, linguistic 
and acoustic features to automatically segment ASR output. This approach improved 

Handbook of Natural Language Processing and Machine Translation 579

 

0

5

10

15

20

<10% 10%-30% 30%-50% 50%> Entire Set Entire Set 
(RW=4)

BL
EU

1-best ASR hyp. CN Translation Transcripts

1-best ASR-WER (of Utterance)



BLEU score by up to 10% compared to using boundaries defined by pause length and 
speaker change alone. We also determined that generation of end-of-sentence punctuation 
before translation and generation of intra-sentence punctuation during translation was the 
most effective scheme to recover punctuation. For 2), we showed that speech disfluencies 
degrade SLT quality and introduced an Automatic Disfluency Removal scheme which is 
applied as a preprocessing step prior to translation. And finally, for 3), we implemented 
phrase-based SMT of confusion networks which improved translation quality (BLEU) 
compared to using the single best ASR hypothesis. We also found that confusion network 
translation was most effective for segments with moderate recognitions errors 
(WER<50%).  

 

3.7.3. Lattice-Based Viterbi Decoding Techniques for Speech 
Translation 

Author: George Saon 

3.7.3.1 Introduction 

Current research in speech translation focuses on augmenting the interface between 
ASR and MT to more than 1-best hypotheses, the idea being that the MT component 
should have the freedom to select paths whose translations are more likely. We 
distinguish between the cascaded approach to speech translation, where the system is 
comprised of a series of individual engines that are applied in sequence, and the 
integrated approach, where the SMT component accepts multiple ASR hypotheses as 
input. In increasing order of generality, these hypotheses can be presented in various 
forms: n-best lists, confusion networks (Shen et al. 2006) and arbitrary lattices (Mathias 
and Byrne 2006; Zhou et al. 2007; Dyer et al. 2008; Matusov et al. 2008). The maximum 
degree of generality (or the tightest coupling) is attained by performing a joint ASR and 
MT search, which has only been possible, so far, for limited domain tasks (Matusov et al. 
2005). 

There is no guarantee, at the outset, that lattice-based SMT is bound to improve 
translation performance. This is because ASR lattices contain paths, which are worse than 
the 1-best in terms of word error rate in addition to the paths, which are better. This is an 
often overlooked aspect of lattice processing and researchers tend to focus only on the 
oracle word error rate (i.e., the error rate of the path of lowest WER). It can happen, 
however, that a weak MT component prefers paths which result in worse overall 
performance. Therefore, care has to be taken on how to combine the ASR and MT scores 
when doing lattice decoding. 

While lattice-based SMT decoding has been studied previously already (Mathias and 
Byrne 2006; Zhou et al. 2007; Matusov et al. 2005; Dyer et al. 2008; Matusov et al. 
2008), the work presented here exhibits differences along several axes. Firstly, compared 
to the prior art, we discuss how to deal with exhaustive word reordering on a lattice 
during decoding. To the best of our knowledge, this is only explored by Dyer et al. 
(2008) and, recently, by Matusov et al. (2008). The work described by Dyer et al. (2008) 

Chapter 3: Machine Translation from Speech580



is in the context of non-Viterbi decoding for non-ASR lattices such as Chinese word 
segmentation lattices. Matusov et al. (2008) propose a shortcut to deal with word 
reordering: word links in the lattice are augmented with position (or slot) information 
from a confusion network processing of that lattice and distortions are computed relative 
to those positions. In contrast, we are advocating the use of path-dependent distortions, 
which has the advantage of being theoretically more sound at the expense of increased 
computational complexity. 

Secondly, we propose a decoding strategy which breaks the search into two 
independent sub-problems: (1) lattice-based monotone search with tracing of the best 
foreign path, and (2) sentence-based decoding with reordering of that path. Thirdly, we 
apply lattice MT decoding to a truly large scale speech translation task.  

3.7.3.2 Problem Formulation 

We are given x = ଵݔ … , ,ܶݔ ݐݔ א Թ݀, a sequence of acoustic feature vectors 
corresponding to a foreign speech utterance which is to be translated into a target string ܍ = ݁ଵ … , ,ܫ݁ ݁݅ א  ො with the܍ The goal of speech translation is to find the target string .ܧ
highest posterior probability given the acoustics x: 

 eො = argmaxୣכܧא ܲ(e|xሻ      (3.63) 

The difference with text translation is that the foreign sequence is not given, instead 
we have to sum up over all possible realizations  = ଵ݂ … , ,ܬ݂ ݂݆ א  as suggested by Ney ܨ
(1999): ܲ(e|xሻ = ∑ ܲ(e, f|xሻאிכ      (3.64) 

By applying Bayes rule to the term on the right side of Equation (3.64), we get: ܲ(e, f|xሻ = (୶|ୣ,ሻ(ୣ,ሻ(୶ሻ = (୶|ሻ(ୣ,ሻ(୶ሻ      (3.65) 

where in the last Equation (3.65) we made the (reasonable) assumption that the acoustic 
sequence does not depend on the target word sequence when conditioned on the foreign 
word sequence. 

By combining (3.63), (3.64) and (3.65) and by taking into consideration that ܲ(ܠሻ is 
constant with respect to the max operation, we obtain: eො = argmaxୣכܧא ∑ ܲ(x|fሻאிכ  ܲ(e, fሻ = argmaxୣכܧא ∑ ܲ(x|fሻאிכ  ܲ(f|eሻ ܲ(eሻ  (3.66) 

with ܲ(x|fሻ being the likelihood of the acoustic feature vectors given the foreign word 
sequence, ܲ(f|eሻ the likelihood of the foreign word sequence given the target words and ܲ(eሻ, the prior probability of the target word sequence (given by the English language 
model). In Equation (3.66) we have applied the source-channel model for machine 
translation (Brown et al. 1993) to separate the two knowledge sources: the LM term 
which controls the well-formedness of the target word sequences and the translation 
model. Alternatively, it is also common, especially when modeling the translation 

Handbook of Natural Language Processing and Machine Translation 581



problem with WFSTs, to reason directly in terms of joint probabilities as do Kanthak et 
al. (2005) and Zhou et al. (2007). 

3.7.3.2.1. Lattice-Based Decoding 

ASR lattices are word graphs, which compactly encode the word sequences with the 
highest likelihood given the acoustics. An example of a word lattice is shown in Figure 
3.40. 

Lattice-based decoding simply means that we restrict the summation in Equation 
(3.66) only to the paths occurring in a lattice, that is: eො = argmaxୣכܧא ∑ ܲ(x|fሻܲ(f|eሻ ܲ(eሻא(୶ሻ     (3.67) 

where ܮ(xሻ denotes the set of paths that occur in the ASR lattice corresponding to the 
acoustics x. 

 
Figure 3.40: Example of a word lattice (SIL stands for silence) 

3.7.3.2.2. Phrase-Based SMT 

In phrase-based translation (Koehn et al. 2003), we segment the foreign input 
sentence into a sequence of 1 ≤ ≥ ܭ  ҧ phrases ܬ = ݂ҧଵ … ݂ҧ. We assume a uniform 
distribution over all possible segmentations. Each foreign phrase ݂ҧ in ҧ is translated into 
a target phrase ҧ݁with probability ߶(݂ҧ| ҧ݁ሻ. The conditional probability ܲ(܍|ሻ can be 
expressed as: ܲ(f|eሻ = ∑ ܲ(fҧ|eതҧ,തୣ ሻ = ∑ ∏ ߶(݂ҧ| ҧ݁ሻୀଵҧ,തୣ     (3.68) 

where the summation is performed over all the segmentations which are consistent with f 
and e. 

3.7.3.2.3. Source Word Reordering 

Let ߪ: ሼ1, … , ሽܬ ՜ ሼ1, … , ,ሽܬ ߪ א ܵ, be a permutation of the set ሼ1, … ,  ሽ with ܵ beingܬ
the symmetric group of order J . We define the permuted foreign sequence as ఙ ؔఙ݂(ଵሻ … ఙ݂(ሻ. 

Chapter 3: Machine Translation from Speech582



by using the chain rule of conditional probabilities as follows: ܲ(܍, ሻ  = ∑ ,܍)ܲ , ௌאఙߪ ሻ = ∑ ,܍|)ܲ ௌאఙߪ ሻܲ(ߪ|܍ሻܲ(ߪሻ = ∑ ௌאሻఙ܍|ఙ)ܲ  ሻ      (3.69)ߪ)ሻܲ܍)ܲ

with ܲ(ߪሻ being given by the distortion model. The distortion model used in this work is 
based on the window/skip model introduced by Tillmann and Ney (2003) and operates at 
the word level. Note that the derivation in Equation (3.69) assumes that the distortion 
does not depend on the foreign word sequence (i.e., the model is not lexicalized). More 
powerful distortion schemes such as the inbound-outbound distortion proposed by Al-
Onaizan and Papineni (2006) are lexicalized and can be written as: ߪ)ܲሻ ؔ ∏ ݆)ߪ)ܲ  1ሻ െ |ሻ݆)ߪ ఙ݂(ሻሻିଵୀଵ     (3.70) 

which simply means that we model the probability of the length of the jump to the next word 
conditioned on the identity of the current word.  

Putting Equations (3.67) and (3.69) together, we can formulate the lattice-based SMT 
decoding problem with reordering in the following way: ܍ො = argmaxכܧא܍ ∑ ሻܠ)אሻ|ܠ)ܲ ∑ ௌאሻఙ܍|ఙ)ܲ  ሻ   (3.71)ߪ)ሻܲ܍)ܲ

3.7.3.2.4. Two-Pass Strategy 

Implementing Equation (3.71) directly can be computationally expensive because of 
the double summation. The idea then is to divide the problem into two subparts in the 
following manner: 

 
1. Lattice-based monotone decoding of best foreign path: fመ = argmaxא(୶ሻ maxୣכܧא ܲ(x|fሻ ܲ(f|eሻܲ(eሻ    (3.72) 

2. Sentence-based non-monotone decoding of best English path: eො = argmaxୣכܧא ∑ ܲ(fመ|eሻאSJ ܲ(eሻܲf(ߪሻ     (3.73) 

This strategy has the obvious advantage of factoring the search into sub-problems of 
lower complexity. In the next section, we discuss how to implement Equations (3.71) – 
(3.73) efficiently with WFSTs. 

3.7.3.3 Decoder Description 

3.7.3.3.1. WFST Interpretation 

Finite state machines offer a convenient formalism to represent, access and 
manipulate heterogeneous knowledge sources in a uniform way. Knowledge sources can 
be combined through the composition operation and the resulting automata can be 
“shrunk” to an optimal size via determinization and minimization and efficiently 
searched. It is no wonder then that WFSTs have lately become the formalism of choice in 
both ASR (Saon et al. 2005) and SMT (Zhou et al. 2007; Mathias and Byrne 2006; 
Kanthak et al. 2005) and we shall make no exception here. 

Handbook of Natural Language Processing and Machine Translation

The translation model can be expressed by marginalizing over the permutations and 

583



Similarly to (Kanthak et al. 2005), Equation (3.71) can be rewritten using finite state 
terminology as follows: 

 ݁̂ =   best െ path(ܫ ל ל ܴ ל ܯ   ሻ    (3.74)ܮ 

where the component FSMs represent: 
 

I : input lattice acceptor. Encodes f with weight ܲ(x|fሻܲ(fሻ. Theoretically, ܲ(fሻ 
should not be included, however, it does help with pruning in practice.  

R: reordering transducer. Maps f to f with weight ܲ(ߪሻ.  
M : translation transducer. Maps f to e with weight ܲ(f|eሻ.  
L: language model acceptor. Encodes e with weight ܲ(eሻ.  

3.7.3.3.2. Decoding Approaches 

Computing the entire composition in Equation (3.74) offline is usually intractable for 
a larger scale task. The alternative is to have a decoder which implements on-demand (or 
on-the- fly) composition during the search. This approach has been favored by Kanthak et 
al. (2005) and Zhou et al. (2007). Both authors opt for using general FSM decoders. This 
has the advantage that the same decoder can be used for different FSM configurations 
and the disadvantage that the decoder is oblivious to special FSMs (e.g., R). We take a 
different approach and design a specialized decoder which has an efficient 
implementation for the reordering FSM (but, cannot support arbitrary FSM 
configurations). 

3.7.3.3.3. Search Space Construction 

The starting point for creating the M FSM is a bilingual phrase table with scores. 
Next, we carry out the following steps in sequence which are illustrated in Figure 3.41 
for a French-to-English example: 

 
1. Add one path per phrase from the start to the final state with the phrase cost on 

the first arc.  
2. Determinize resulting acceptor.  
3. Minimize previous acceptor.  
4. Connect final states to start state with epsilon arcs and mark foreign/English arcs. 

 
We encoded the phrase table as an acceptor (instead of a transducer) because the 

determinization and minimization operations are much simpler on acyclic acceptors and 
we rely on the decoder to differentiate between the foreign and the English arcs. This is 
done by having two sets of arcs for each state of the phrase-table acceptor: a set of 
foreign arcs, which can only be traversed when the decoder “consumes” an input word, 
and a set of English arcs which, when traversed, produce output words. 

 

Chapter 3: Machine Translation from Speech584



 Figure 3.41: Steps for constructing a phrase-table acceptor: (a) phrase table, (b) acceptor with one path per 
phrase, (c) determinized acceptor, (d) minimized acceptor and (e) cyclic acceptor. 

Handbook of Natural Language Processing and Machine Translation 585

la maison bleue the blue house .3
la maison rouge the red house .2 
une maison bleue a blue house .2 
une maison rouge a red house .3 

(a)



3.7.3.3.4. Viterbi Decoding 
for (l,f,mask,m,n,score) in active tuples 
rightmost covered := -1 
for i from 0 to window size-1 

if mask[i] != 0 
rightmost covered := i 
continue 

endif 
if i-rightmost covered > skip size+1 

break 
endif 
successors = LatticeDistantSuccessorArcs(f, i) 
for larc in successors 
if larc.word in ForeignSuccessorArcs(m) 

marc := ForeignSuccessorArc(m, larc.word) 
score' := score+larc.score*lat weight 
+marc.score+dist score*dist weight 
l' := larc.dest state 
m' := marc.dest state 
mask' := mask 
mask'[i] := l' 

while mask'[0] != 0 
f' := mask'[0] 
mask' := ShiftOnePositionLeft(mask') 

endwhile 
active successor tuples.append( 
(l',f',mask',m',n,score')) 

endif 
endfor 

endfor 
endfor 
Prune(active successor tuples) 
active tuples := active successor tuples 
for (l,f,mask,m,n,score) in active tuples 
for marc in EnglishSuccessorArcs(m) 
score' := score+LangModelScore(n, marc.word) 
n':= LangModelExtend(n, marc.word) 
active tuples.append((l,f,mask,m,n',score')) 

endfor 
endfor 

Figure 3.42: One step of the Viterbi algorithm for lattice decoding with reordering. 

The search proceeds in the following way. For each input word ݂, we take 
simultaneous transitions which are labeled by the same word in pairs of automata: first, 
we take one pair of transitions labeled by ݂ in (ܫ,  ሻ and then, if possible, we take aܯ
sequence of transitions labeled by ݁భ , … , ݁ೖ  in (ܯ, ,ܫ) ሻ. Transitions inܮ  ሻ are used toܯ
“consume” input words whereas transitions in (ܯ,  ሻ “produce” English words. Theܮ
search algorithm is described in more detail in Figure 3.42. Note that this requires the 
“English” section of the phrase-table FSM to be sorted in topological order. The search 
stops when we reach the final states in all component FSMs. Figure 3.43 shows an 
example of component FSMs for a French-to-English translation task. 

 
 

 

Chapter 3: Machine Translation from Speech586

All hypotheses which compete at a given step cover the same number of input words 
which is commonly referred to as cardinal synchronous decoding. These hypotheses are 
pruned using a combination of beam and histogram (or rank) pruning as explained by 
Saon et al. (2005) for ASR. 



 
Figure 3.43: Example of component FSMs: ASR lattice I, phrase table FSM M and English language model 

L. Filled states denote current active states. 

3.7.3.3.5. Monotone Decoding 

For monotone decoding, we keep track of tuples of active states (݈, ݉, ݊ሻ, where ݈ is a 
state in the input lattice, ݉ is a state in the phrase table FSM and ݊ represents a target 
language model state which is similar to (Zhou et al. 2007). 

In addition, we keep track of the following component scores, which are combined 
with independent weights: acoustic and foreign language model scores from the ASR, 
translation scores, and English LM scores. 

3.7.3.3.6. Non-monotone Decoding 

In the case of search with reordering, there are a couple of additional complications. 
First, we have to be able to access distant successors in a lattice from any given node, 
(e.g., immediate successors have distance 1, their immediate successors have distance 2, 
and so on). Second, we have to keep track of more information during the search for each 
hypothesis: 

 
 

Handbook of Natural Language Processing and Machine Translation 587



Current state in input lattice (l),  
First state in input lattice from which reorder-ing window applies (f)  
State vector for reordering window (mask) State in translation FSM (m)  
State in LM FSM (n)  
Jump distance from previous word (used for reordering)  
 
The state vector for the reordering window is an extension of the coverage bit vector 

(Kanthak et al. 2005) except that, instead of bits, we have lattice states. It can be 
represented as a 64 bit integer if we limit ourselves to a maximum window size of 4 and 
if each lattice has less than 64K nodes. This elegantly solves the problem of path 
recombination i.e., hypotheses which have identical window values can be merged. 
Compared to monotone decoding, there is an additional distortion score, which is also 
combined with an independent weight. 

In order to provide a more precise description of lattice decoding with reordering, we 
give some details in Figure 3.42 of the algorithm for advancing on one input word. 

3.7.3.4 Experiments and Results 
Name Genre Nb. segments Nb. words 
BNAD05 BN 8 15.0K 
DEV07 BN+BC 110 19.6K 
EVL06bn BN 24 6.0K 
EVL06bc BC 14 6.7K 

Table 3.102: Testset description. Nb. of segments refers to the number of shows or “snippets”. Nb. of words 
represents the number of decoded Arabic words. 

The experiments were conducted on a large scale Arabic-to-English broadcast news 
and broadcast conversations speech translation task, which is part of the GALE DARPA 
program. We report results on four test sets which vary by collection time and by genre. 
Table 3.102 summarizes the characteristics of these various test sets. 

The speech recognition system used in this work consists in the first two decoding 
passes of our 2006 GALE evaluation system (which had three passes/models). The first 
pass search is done with speaker independent acoustic models and the second pass with 
speaker-adaptive trained (or SAT) models. Both sets of models are trained 
discriminatively on 135 hours of supervised data and 1800 hours of un-supervised data 
(i.e., without reference transcripts). The models are unvowelized (or graphemic) in the 
sense that short Arabic vowels are not explicitly represented. More details about the 
training of the Arabic models are described by Soltau et al. (2007). 

 
BNAD05 DEV07 EVL06bn EVL06bc 
15.7% 17.9% 24.0% 31.9% 

Table 3.103: ASR 1-best word error rates. 

We generated two sets of lattices which differ in the average link density (ALD) and 
the degree of pruning: one set with an ALD of 2.5 (pruned with a beam of 0.5), and 
another one with an ALD of 5 (pruned with a beam of 1.0). The original (unpruned) 
lattices have an ALD of 450. The ASR decoder that was used to generate the lattices is 

Chapter 3: Machine Translation from Speech588



described by Saon et al. (2005). The 1-best word error rates on the different test sets are 
summarized in Table 3.103. 

The MT phrase tables were trained on a variety of corpora: UN parallel corpus, LDC 
News and various GALE data releases. The size of the parallel training corpus is 7.3M 
sentence pairs (roughly 313K pairs after test set sub-sampling). Phrases were extracted 
using the inverse projection constraint described by Och and Ney (2000). We used both 
HMM and maximum entropy word level alignments. This procedure for extracting 
phrases is standard for all IBM phrase-based SMT decoders. The English language model 
is a modified Kneser-Ney smoothed 5-gram LM and has about 800M n-grams. All non-
monotone decodings were run with a window width of 4 words and a maximum skip 
length of 2 words. 

 BNAD05 DEV07 EVL06bn EVL06bc
Monotone decoding 

1bst 64.0% 60.1% 67.6% 70.6% 
LS1 63.0% 59.8% 67.4% 69.8% 
LS2 63.2% 59.8% 67.8% 69.5% 

Non-monotone direct decoding 
1bst 61.7% 58.9% 66.9% 70.3% 
LS1 61.5% 59.1% 67.4% 70.8% 
LS2 61.6% 59.4% 68.1% 70.4% 

Non-monotone two-pass decoding 
1bst 61.7% 58.9% 66.9% 70.3% 
LS1 61.2% 58.8% 67.1% 69.9% 
LS2 61.3% 59.2% 67.5% 69.3% 

Table 3.104: TER results for lattice-based SMT decoding. 

 Monotone Reordering 
Sentence based 260.3 w/s 13.4 w/s 
Lattice based 19.4 w/s 4.1 w/s 

Table 3.105: Execution speed in number of translated words per second for the various decoding strategies. 

Lastly, the decoding speed of the various approaches (monotone, reordering, 
sentence based and lattice based) is summarized in Table 3.105 as the number of decoded 
words per second. All experiments were run on a 2.8GHz AMD Opteron 64-bit 
processor. 

Handbook of Natural Language Processing and Machine Translation 589

In Table 3.104 we report TER results for both monotone and non-monotone de-
coding for 1-best, lattice set 1 (LS1) and lattice set 2 (LS2). Scoring is case insensitive 
with a single reference. We also compare direct decoding with the twopass strategy pre-
sented in Section 3.7.3.2.4. An analysis of these results show that the largest gains (1 TER 
point) are obtained for EVL06bc followed by the BNAD05 test-set (1 point monotone, 
0.5 with reordering). The gains on the other test sets are inconclusive. A second observa-
tion is that the two pass strategy outperforms the direct decoding strategy and degrades 
less on the larger lattices. We surmise that this is because the two pass strategy copes bet-
ter with search errors than direct lattice decoding with reordering. We also note that the 
only test set which improves for the larger lattices is EVL06bc (which, also, has the high-
est WER/TER). 



3.7.3.5 Conclusion 

We described a Viterbi decoder for speech translation which operates on general 
ASR lattices. The decoder finds the path of minimum cost through an on-demand 
composition of several automata. We deal efficiently with word reordering on the lattice 
by representing the reordering FSM implicitly as a lattice node coverage vector. A 
twopass decoding strategy is also presented which has the advantage of factoring the 
search into simpler sub-problems. Future work will extend some of these ideas to joint 
decoding. 

 

3.7.4. Optimizing Speech-to-Text System Combination for 
Machine Translation  

Authors: Spyros Matsoukas, Bing Zhang, Jeff Ma, Tim Ng, Long Nguyen, Frank Diehl, Mark J. F. Gales, 
Xunying Andrew Liu, Junho Park, Marcus Tomalin, Phillip C.Woodland, Jean-Luc Gauvain, Lori Lamel, 
Abdelkhalek Messaoudi, Petr Fousek, and Jun Luo 

3.7.4.1 Introduction 

System combination has become a standard component of state-of-the-art speech 
recognition systems. In its simplest form – ROVER (Fiscus 1997) – it combines 1-best 
speech-to-text (STT) hypotheses from multiple systems to produce a single hypothesis 
that has lower word error rate (WER) than any of the individual system outputs. Another 
combination approach, commonly referred to as cross-adaptation, uses one system’s STT 
hypotheses as adaptation data for transforming another system’s acoustic and/or language 
model parameters prior to running a final recognition pass. Other, more elaborate system 
combination methods, such as consensus network combination (CNC) (Evermann and 
Woodland 2000), aim at combining lattices from multiple STT systems, and often 
incorporate cross-adaptation to maximize overall recognition accuracy. 

The above techniques have served the speech recognition community well in terms of 
reducing WER. However, it is not clear whether reducing WER is the right thing to do 
when the final evaluation criterion is machine translation (MT) accuracy of the STT 
combination output. A preliminary investigation of STT system combination for MT 
(Gales et al. 2007), revealed that there are indeed certain cases in which a system 
combination method with higher WER leads to better MT performance – measured in 
terms of bilingual evaluation understudy (BLEU) or translation edit rate (TER) scores – 
compared to using a lower WER combination technique. 

We continue that investigation, probing deeper into understanding the effects of STT 
system combination methods on Arabic-English and Chinese-English MT. In addition, 
we present a novel technique for optimizing the parameters of ROVER STT combination 
so as to directly maximize MT accuracy. 

3.7.4.2 Optimizing STT System Combination  

In this section we review the ROVER system combination method and present 
methods for optimizing the ROVER parameters so as to maximize either STT or MT 

Chapter 3: Machine Translation from Speech590



accuracy. Later we will contrast these methods to standard ROVER or cross-adaptation, 
in terms of both STT and MT performance. 

3.7.4.2.1. ROVER Background  

The first step in ROVER combination is to align all system outputs to each other, 
forming a consensus network (CN). A CN is a restricted directed graph in which every 
path from the start node to the end node must go through the same sequence of nodes. 
Once the nodes are ordered according to a topological sorting of the graph, all arcs 
coming out of a node must enter the node adjacent to it. All arcs between a pair of 
adjacent nodes represent the possible distinct word/null choices available at that position 
in the CN. In addition to the word/null label, each arc also carries information about 
which system included that word/null at this particular position in its output, along with a 
confidence score. The confidence score for null arcs is fixed to a constant value across all 
systems, and it is called the “null confidence” score. 

The next step in ROVER is to compute a single score for each arc in the CN. If q is 
an arc, and ݍ)ݓሻ is the word/null label of the arc, then ROVER calculates ݍ)ݎሻ = ߙ ∑ ఒಿసభ ௩(ሻ∑ ఒಿసభ  (1 െ ሻߙ ∑ ఒಿసభ (ሻ∑ ఒಿసభ    (3.75) 

where N is the number of systems being combined, ߣ is a system specific weight set to 1 
by default, and ݒ(ݍሻ is a binary variable that is 1 if ݍ)ݓሻ is generated by system i and 0 
otherwise. When ݒ(ݍሻ = 1, the function ܿ(ݍሻ returns system i’s confidence score of ݍ)ݓሻ, and 0 otherwise. When ݍ)ݓሻ is NULL, ܿ(ݍሻ returns the constant null confidence 
score if system i does not output any word at this position, and 0 if it does. We will refer 
to the null confidence score as ߚ in the rest of the section. 

Thus, the ROVER parameters are ߚ ,ߙ, and ߣଵ, … ,  ே, each taking value in the rangeߣ
[0, 1]. 

Finally, the CN is searched to find the path that has the highest product of ROVER 
arc scores. Given the topology of the CN, this can be performed simply by finding the 
outgoing arc q with the highest ݍ)ݎሻ value for each node in the CN. 

3.7.4.2.2. STT-Based Tuning  

The ROVER parameters may be tuned in order to optimize STT performance, such 
as WER. In standard ROVER, only ߙ and ߚ are used, and can be tuned easily by 
quantizing the interval [0, 1] into a number of bins, then sampling it for each of the two 
parameters, running ROVER and evaluating the STT output, and finally choosing the (ߙ,  .ሻ setting that provides the best resultߚ

Tuning becomes more difficult when system weights are included, especially as the 
number of combined systems increases. We have developed a process in which a 
derivative-free optimization algorithm; in our case, Powell’s method (Powell 1964), is 
employed to find optimal values of the ROVER parameters. In this process, the objective 
function (e.g., WER) is evaluated several times with varying parameter vector values in 
order to identify the direction that optimizes the evaluation criterion in the multi-
dimensional search space. Evaluation of the objective function can be done in two steps: 

Handbook of Natural Language Processing and Machine Translation 591



first, the 1-best hypothesis for each sentence is extracted from the consensus network 
using Equation (3.75) to calculate the CN arc scores for ROVER. Then, the 1-best 
hypotheses of the entire test set are scored to compute the objective function value.19 

3.7.4.2.3. MT-Based Tuning  

The ROVER parameters may also be tuned in order to optimize MT performance 
(TER/BLEU) directly.  

One way to do this is to apply a modified ROVER to the CN that can extract N-best 
STT hypotheses, along with their associated detailed CN arc scores. This is 
straightforward once the ROVER arc scores have been computed based on Equation 
(3.75). Then, each of the N-best STT hypotheses can be translated using the baseline MT 
engine, and the resulting MT hypotheses can be evaluated in terms of TER or BLEU 
scores. That provides a mapping from the STT ROVER N-best hypotheses to their fitness 
score in terms of MT, and Powell’s method can be used again to optimize the ROVER 
parameters as follows: 

1. Given the current parameter settings, loop over the STT hypotheses in the N-best 
and compute their total ROVER score as a product of their corresponding 
updated arc scores. 

2. Extract the top scoring hypotheses from the N-best and calculate their fitness in 
terms of TER or BLEU score, using the mapping mentioned above. 

3. Apply Powell’s search to find the next setting of the ROVER parameter vector, 
based on the fitness value. 

4. Go to step 1 and iterate until the parameter vector converges. 
5. Given the new ROVER parameter settings, go back to the CN and decode it 

again in order to generate a new N-best of STT hypotheses. 
6. Merge new N-best with old and run MT on the newly inserted STT hypotheses to 

get their TER/BLEU fitness statistics. 
7. Go to step 1 and iterate until the parameter vector converges. 

 
The above procedure will eventually lead to ROVER settings that improve MT 

performance on the tuning set, but it is too costly as it requires translating an N-best of 
STT hypotheses for each segment in the tuning set. We, therefore, explored an alternative 
method, in which the MT hypothesis N-best is generated in a single step, by running MT 
directly on the ROVER CN, using a phrase-based MT system modified as by Bertoldi 
and Federico (2005) in order to support CN decoding. During this process, additional 
information is stored in order to reveal for each MT hypothesis its corresponding STT 
hypothesis in the CN (i.e., the exact sequence of arcs in the CN that the MT hypothesis 
was generated from). It should be easy to see now that the procedure described 
previously for optimizing ROVER in terms of MT can be applied here as well. Note, 
however, that one difference between this N-best method and the previous is that here the 
N-best may contain multiple MT hypotheses for the same STT path in the CN, while in 
the previous method the mapping between STT and MT hypotheses is one-to-one. This 
                                                 
19 For Chinese, there is an option to create the consensus networks at the character level. In that case, the 1-
best hypotheses need to be re-segmented to words before they are scored in terms of WER. 

Chapter 3: Machine Translation from Speech592



could cause a premature bias towards the most likely CN path in the early stages of 
optimization, but we believe that such a problem can be alleviated by generating a deep 
enough N-best when translating the ROVER CN. 

3.7.4.3 Experimental Setup  

In this section we describe the setup that was used for all experiments reported. 
Specifically, we provide details about the development sets, STT systems, and MT 
systems. 

3.7.4.3.1. Development Sets  

We ran experiments on the Arabic and Chinese AGILE STT/MT development sets. 
These sets were created by pooling together episodes from various existing speech test 
sets (e.g., GALE LDC-released audio development/evaluation sets), and partitioning 
them into three sets for each language. One set was used for tuning and the other two for 
validation. Here, we report results on the validation sets, described in more detailed 
below.  

Arabic: The arabic validation sets, at1 and at2, consist of equal parts of news and 
conversations broadcast from November 2005 through May 2007 by major Arabic-
speaking television and radio stations (e.g., Al-Jazeera, Al-Arabiya, Syrian TV).  
Specifically, at1 is made of 72 episode snippets, containing approximately 5 hours (1527 
segments) of speech, while at2 has 134 episode snippets amounting to 4.5 hours (1591 
segments) of speech. 

Chinese: The Chinese validation sets, ct1 and ct2, consist of equal parts of news and 
conversations broadcast from February 2001 through May 2007 by major Chinese-
speaking television and radio stations (e.g., CCTV, NTDTV, Phoenix, VOA). 
Specifically, ct1 is made of 69 episode snippets, containing approximately 4 hours (2581 
segments) of speech, while ct2 has 177 episode snippets amounting to 3.5 hours (2564 
segments) of speech. 

It is worth noting that there is only a single English reference translation available for 
most of the audio snippets in the AGILE tuning and validation sets. 

3.7.4.3.2. Speech Recognition  

Several STT systems from BBN, University of Cambridge (CU), and LIMSI were 
combined in various ways in order to produce the results presented in this section. A 
description of the systems is given below. 

Arabic: BBN generated four systems: Phoneme, Grapheme, Word-level and 
Contextual Morpheme(Ng et al. 2009). The language models used in these systems were 
trained on 1.7 billion words of text, while the acoustic training corpus consisted f 1433 
hours of audio data. The 490K vocabulary in the grapheme-based system decoding 
dictionary consisted of all acoustic training transcript words, plus all words that occured 
at least 30 times in the language model training data. About 390K words whose 
pronunciations could be found in the BBN master dictionary were used to construct the 
phoneme-based system decoding dictionary. The recognition lexicon for the two 

Handbook of Natural Language Processing and Machine Translation 593



morpheme systems was derived from the word-based lexicon. The word-level morpheme 
system used a 284K lexicon; a 290K lexicon was used for the contextual system. All 
acoustic models were gender independent, crossword quinphone state clustered, with a 9-
frame PLP long span feature (LSF) (Zhang et al. 2004) frontend, and were trained 
discriminatively based on Minimum Phoneme Frame Error (MPFE) (Zheng and Stolke 
2005).  

CU employed a multi-pass framework, with four main systems that differed in the 
frontend and tokenization. Decoding included a common initial lattice generation stage 
followed by lattice expansion with an interpolated word and class based 4-gram language 
model. These lattices were then rescored using a number of adapted acoustic models. The 
language models were trained on about a billion words of text data from a range of 
acoustic transcriptions and text sources. The word list associated with this language 
model had 350k words. All acoustic models were state-clustered triphones, built on 1537 
hours of acoustic training data. Two forms of feature vectors were used for the acoustic 
models. The first consisted of 39-dimensional, HLDA-projected, PLP features. The 
second frontend was a 65-dimensional PLP+MLP, which spliced 26 MLP-based 
bottleneck features (Grézl et al. 2007), generated from wLP inputs (Fousek 2007), to the 
initial feature vector. A semi-tied transform was applied to the MLP features (Park et al. 
2009). Both phonetic and graphemic gender dependent minimum phone error trained 
models were built on each of the frontends. The initial lattice generation was performed 
using a graphemic system built on PLP features. 

LIMSI provided 4 systems, differing in the acoustic feature vector (39 PLP 
coefficients vs. 78 MLP+PLP) and in the tokenization (words vs. morphemes). Each 
system used a two pass decoding strategy: first, word (morph) lattices were generated 
with crossword, gender-dependent SAT, MMIE acoustic models trained on 1200 hours of 
manually transcribed data; second, the lattices were converted into consensus networks 
and were decoded with adapted acoustic models, a word- or morph-based 4-gram LM, 
and pronunciation probabilities (Gauvain et al. 2002; Lamel et al. 2007). The LM was 
obtained by interpolating the classical 290k word 4-gram backoff LM and three neural 
network (NN) LMs. Each 4-gram backoff LM was trained on over 2.6 billion words of 
texts, and each NN LM on the audio and web transcripts, as well as, a sampling of the 
other text sources. 

Chinese: BBN had six Mandarin STT systems: the first three were updated versions 
of the systems described by Ng et al. (2008), with MPFE acoustic models trained on a 
1734-hour audio data set, and 4-gram LM trained on 4.6 billion characters of text. An 
improved word-compounding mechanism was used for the other three STT systems 
based on BBN’s Chinese parser (Serif). Words were compounded with their nearest 
sibling words in the parse tree if their n-grams were in the 40K most frequent n-gram list. 
An LM was estimated on training data that was automatically segmented using the 
aforementioned compound word list based on the maximum length algorithm (MLA). 
This LM was then interpolated with the uncompounded LM and the compound-word LM 
trained on the word segmentation derived from the parse trees. 

CU employed four systems, in a decoding structure similar to that described by Sinha 
et al. (2006). It consisted of an initial lattice generation stage followed by lattice 
rescoring with adapted 4-gram language models and acoustic models. The language 

Chapter 3: Machine Translation from Speech594



model was trained on 2.9 billion words from a total of 27 sources. Two sets of lattices 
were used in acoustic model rescoring stages. These were expanded from the initial 
lattices using context dependent language model adaptation (Liu et al. 2008). The 1-best 
hypotheses from the baseline 4-gram lattices were used as the supervision for the LM 
adaptation. All acoustic models were state-clustered triphones, trained on 1676 hours of 
acoustic training data using MPE training. Two forms of feature vectors were used for the 
acoustic models, PLP and PLP+MLP. Two PLP-based systems were built: a gender-
dependent system; and a SAT system. For both systems an additional Gaussianization 
stage was applied to the feature vector. Two PLP+MLP-based systems were also built: a 
gender-dependent system; and a gender-dependent PLP-Gaussianized system. 

LIMSI provided one system with PLP+MLP acoustic frontend (including pitch 
features), SATMMIE acoustic model training, and classical/NN 4-gram LMs. The 
acoustic models were trained on 1441 hours of manually transcribed data. A common 56k 
word recognition vocabulary was used for recognition, which was carried out in two 
passes (see LIMSI’s Arabic STT description above). The NN language models were 
trained on a subset of the available data including the audio transcripts (17.3M words) 
and 1.3 billion words from the most relevant sources. 

Each site also produced a final single STT system by applying standard ROVER or 
consensus network combination (CNC) methods to the individual systems described 
above. 

3.7.4.3.3. Machine Translation  

Machine translation experiments were carried out using the BBN HierDec MT 
system (Shen et al. 2008), which employs hierarchical rules to translate the source string 
to a target dependency tree. HierDec produces an N-best of translation hypotheses, which 
is subsequently rescored with a 5-gram target language model (LM) in order to choose 
the best answer. In the experiments carried out, the Arabic-English MT system was 
trained on approximately 200 million words of parallel training data; the Chinese-English 
MT was trained on about 230 million words of parallel text. In both cases, the English 5-
gram LM was trained on approximately 8 billion words of text. 

In all experiments, the MT system parameters were optimized on translations of the 
audio tuning set reference transcripts, rather than on STT output. This means that the 
same MT decoding weights were used when translating different STT outputs on the 
validation test sets.20 The MT optimization criterion was the difference between the TER 
and BLEU scores. 

3.7.4.4 Results 

Table 3.106 and Table 3.107 compare various system combination configurations 
on the Arabic and Chinese AGILE development sets, respectively. STT was evaluated 
based on character error rate (CER), word error rate (WER), and word deletion rate 
(WDR). MT performance was measured in terms of TER and BLEU scores. In all cases, 

                                                 
20 It could be argued that different STT outputs would require different MT tuning, however we did not find 
that to be true in our experiments. 

Handbook of Natural Language Processing and Machine Translation 595



STT was performed on manually segmented audio, and the STT output was post-
processed to convert spoken numbers to written form prior to machine translation. 

On Arabic, the lowest WER site-specific STT output was from BBN, produced by 
applying standard ROVER to the four individual BBN STT outputs described in the 
previous section. In Table 3.106 this output is compared to three AGILE-wide ROVER 
combinations. The first one is a three way standard ROVER, combining the (already 
combined) site-specific STT outputs from BBN, CU, and LIMSI. It can be seen that this 
three way ROVER gives a significant gain in WER and small gains in TER and BLEU 
compared to the standalone BBN ROVER. The next two AGILE-wide ROVER 
combinations shown in the table are applied to the 12 individual STT systems from BBN, 
CU, and LIMSI. The first such combination uses standard ROVER, while the second 
optimizes the ROVER parameters (alpha, null confidence score, and system weights) on 
the AGILE tuning set in order to minimize the function WER + 0.6*WDR. The 
motivation for including WDR in the optimization criterion was based on earlier 
experiments in which a correlation between WDR and BLEU was observed. Basically, 
lower WDR tends to lead to higher BLEU scores after MT. This makes sense because the 
BLEU score includes a penalty factor that is a function of the MT hypothesis and 
reference lengths. If the STT WDR is high, then the STT output is likely to be shorter 
than normal, leading to deletions in the MT hypothesis and hence a more severe brevity 
penalty term in BLEU scoring. The results show that the standard 12-way ROVER 
outperforms the 3-way ROVER in terms of WER and WDR, and is also slightly better in 
TER and BLEU. The optimized 12-way ROVER can achieve even lower WER without 
increasing deletion rate, but the effect on MT is too small and inconsistent. 

On Chinese, the lowest CER STT output was the CNC of the four individual systems 
from CU. In Table 3.107 this output is compared to four AGILE-wide system 
combinations. The first one is generated by cross-adapting each of CU’s 4 STT systems 
to the BBN ROVER and LIMSI outputs separately, yielding a total of eight new STT 
outputs, and then combining those using CNC. It can be seen that cross-adaptation gives 
a significant gain in both CER and WER, and small improvements in TER compared to 
the standalone CU CNC STT output. The next two AGILE STT outputs are produced by 
applying standard word-based or character-based ROVER to the 11 individual STT 
systems from BBN, CU, and LIMSI.21 There is very little difference between these two 
and the cross-adapted output in terms of MT performance, even though the standard 
ROVER combinations tend to reduce CER and WDR. Finally, WDR can be reduced a bit 
further by optimizing the character-based ROVER (alpha, null confidence score, system 
weights) so as to minimize WER + 0.6*WDR. However, this has no effect on MT. 

 

                                                 
21 Note that the character-based ROVER outputs a character sequence which is then segmented into words 
using the same tokenization process as the one applied to the MT parallel training data. 
 

Chapter 3: Machine Translation from Speech596



Test Set System 
STT MT 

 

WER WDR TER BLEU 

 

at1 
BBN 12.4 2.2 54.5 26.7 
AGILE 3-way ROVER 11.3 2.2 54.3 27.1 
AGILE 12-way ROVER 11.3 1.8 54.3 27.3 
AGILE 12-way ROVER Opt. 10.9 1.8 54.2 27.3 

at2 
BBN 10.2 1.6 51.0 28.6 
AGILE 3-way ROVER 9.3 1.5 50.7 28.9 
AGILE 12-way ROVER 9.1 1.2 50.5 29.1 
AGILE 12-way ROVER Opt. 8.9 1.2 50.6 29.0 

Table 3.106: Arabic STT/MT results on the AGILE validation test sets, comparing site-specific and cross-site 
system combination in terms of word error rate (WER), word deletion rate (WDR), translation edit rate 

(TER), and bilingual evaluation understudy (BLEU) scores. 

Test Set System 
STT MT 

 

CER WER WDR TER BLEU  

 

ct1 

CU 9.4 14.2 2.7 66.4 19.2 
 

AGILE cross-adapted 8.7 13.0 2.9 66.0 19.2 
 

AGILE word ROVER 8.6 13.0 2.8 66.1 19.2 
 

AGILE char ROVER 8.5 13.0 2.6 66.1 19.2 
 

AGILE char ROVER Opt. 8.5 13.0 2.5 66.2 19.3 
 

ct2 

CU 8.2 11.7 2.3 66.0 17.1 
 

AGILE cross-adapted 7.4 10.5 2.5 65.8 17.2 
 

AGILE word ROVER 7.3 10.4 2.4 65.6 17.3 
 

AGILE char ROVER 7.2 10.5 2.3 65.7 17.3 
 

AGILE char ROVER Opt. 7.2 10.4 2.2 65.7 17.3 
 

Table 3.107: Chinese STT/MT results on the AGILE validation test sets, comparing site-specific and cross-
site system combination in terms of character error rate (CER), word error rate (WER), word deletion rate 

(WDR), translation edit rate (TER), and bilingual evaluation understudy (BLEU) scores. 

Based on the above results, it is clear that a reduction in CER or WER does not 
guarantee improvement in MT accuracy. It would be preferable to optimize the STT 
ROVER combination using the method outlined in Section 3.7.4.2.3. A prototype of this 
algorithm was implemented using the BBN phrase-based MT system to translate the STT 
ROVER consensus network. Preliminary results on the AGILE Arabic tuning set show 
that this method can achieve a small gain (0.3% BLEU) in phrase-based MT after several 
(10 - 12) iterations of optimization. However, when this MT-optimized STT ROVER 
output is compared to standard or WER-optimized ROVER in terms of the more 
advanced BBN HierDec MT performance, there is no clear benefit. This result is slightly 
discouraging, but we are hoping that we can see a benefit in the future, when the tuning 
of the STT ROVER combination is performed based on the more accurate HierDec MT 
engine. 
 
 
 
 
 
 

Handbook of Natural Language Processing and Machine Translation 597



 References 
Aertsen, A.M.H.J., P.I.M. Johannesma and D.J. Hermes. 1980. Spectro-temporal 
receptive fields of auditory neurons in the grassfrog. 2: Analysis of the stimulus-event 
relation for tonal stimuli. Biological Cybernetics, 38(4): pp. 235–248, November. 

Afify, M., L. Nguyen, B. Xiang, S. Abdou and J. Makhoul. 2005. Recent progress in 
Arabic broadcast news transcription at BBN.  Proceedings of InterSpeech, Lisbon, 
Portugal, September. 

Akita, Y., and T. Kawahara. 2004. Language model adaptation based on PLSA of topics 
and speakers.  Proceedings of ICSLP, pp. 1045-1048.  

Alexandrescu, A. and K. Kirchhoff. 2006. Factored neural language models.  NAACL, 
June. 

Allen, J.B. 2005. Articulation and Intelligibility. Morgan and Claypool, Publisher. 

Allen, J. B. 1994. How do humans process and recognize speech? IEEE Transactions on 
Speech and Audio 2(4): pp. 567-577. 

Al-Onaizan, Y. and L. Mangu. 2007. Arabic ASR and MT Integration for GALE, 
Proceedings of ICASSP, Honolulu, Hawaii, USA. 

Al-Onaizan, Y. and Papineni, K. 2006. Distortion Models for Statistical Machine 
Translation. 21st International Conference on Computational Linguistics. 

Altun, Y., I. Tsochantaridis and T. Hofmann. 2003. Hidden Markov support vector 
machines.  International Conference on Machine Learning (ICML), Washington, DC, 
USA. 

Amengual, J.C., J. M. Benedì, F. Casacuberta, A. Castaño, A. Castellanos, D. Llorens, A. 
Marzal, F. Pratand, E. Vidaland and J. M. Vilar.  1997. Using categories in the EuTrans 
system, Proceedings of Spoken Lang. Translation Workshop, Madrid, Spain, pp. 44–53. 

Asanovic, K., R. Bodik, J. Demmel, T. Keaveny, K. Keutzer, J. D. Kubiatowicz, E. A. 
Lee, N. Morgan, G. Necula, D. A. Patterson, K. Sen, J. Wawrzynek, D.Wessel and K. A. 
Yelick. 2008. The Parallel Computing Laboratory at U.C. Berkeley: A Research Agenda 
Based on the Berkeley View, EECS Department, University of California, Berkeley 
Technical Report No. UCB/EECS-2008-23, March 21. 

Athineos, M., H. Hermansky and D. P.W. Ellis. 2004. LP-TRAP: Linear predictive 
temporal patterns.  ICSLP’04, pp. 1154–1157, Jeju, KR. 

Bacchiani, M., M. Riley, B. Roark and R. Sproat. 2006. MAP Adaptation of Stochastic 
Grammars. Computer Speech & Language, 20(1):  pp. 41-68. 

Bahl, L., P. F. Brown, P. V. de Souza and R. L. Mercer. 1986. Maximum Mutual 
Information Estimation of Hidden Markov Model Parameters for Speech Recognition.  
Proceedings of ICASSP’86. 

Chapter 3: Machine Translation from Speech598



Bellegarda, J. 2000. Exploiting latent semantic information in statistical language 
modeling. IEEE Transactions on Acoustics, Speech and Signal Processing, 88(8): pp. 63-
75, Aug.  

Bellegarda, J. 2005. Latent semantic mapping: Dimensionality reduction via globally 
optimal continuous parameter modeling.  Proceedings of IEEE ASRU Workshop,  pp. 
127- 132.  

Bender, O., E. Matusov, S. Hahn, S. Hasan, S. Khadivi and H. Ney. 2007. The RWTH 
Arabic-to-English spoken language translation system, Proceedings of ASRU’ 2007, 
Kyoto. 

Bengio, Y., R. Ducharme and P. Vincent. 2001. A neural probabilistic language model.  
Advances in Neural Information Processing Systems. 

Bertoldi, N., R. Zens, M. Federico and W. Shen. 2008. Efficient Speech Translation 
Through Confusion Network Decoding, IEEE Transactions on Audio, Speech and 
Language, Vol. 16, No. 8, pp. 1696-1705. 

Bertholdi, N. and M. Federico. 2005. A new decoder for spoken language translation 
based on confusion networks, ASRU-05. 

Billa, J., M. Noamany, A. Srivastava, D. Liu, R. Stone,  J. Xu, J. Makhoul and F. Kubala. 
2002. Audio Indexing of Arabic Broadcast  News.  Proceedings of ICASSP, pp. 5-8. 
April.   

Bilmes, J., K. Asanovi, C. Chin and J. Demmel. 1997. Using phipac to speed error back-
propagation learning.  Proceedings of ICASSP. 

Bisani, M., and H. Ney. 2008. Joint-Sequence Models for Grapheme-to-Phoneme 
Conversion. Speech Communication, 50: pp. 434 – 451. 

Bisani, M. and H. Ney. 2005. Open vocabulary speech recognition with flat hybrid 
models.  Proceedings of European Conf. on Speech Communication and Technology,  pp.  
725 – 728, Lisbon, Portugal, September. 

Bisani, M., and Ney, H. 2003. Multigram-based grapheme-to-phoneme conversion for 
LVCSR,  Proceedings of EUROSPEECH, vol. 2,  pp.  933-936. 

Blei, D., A. Ng, and M. Jordan. 2003. Latent Dirichlet Allocation.  Journal of Machine 
Learning Research,  pp.  1107-1135.  

Bourlard, H. and S. Dupont. 1996. A new ASR approach based on independent 
processing and re-combination of partial frequency bands. Proceedings of ICSLP. 

Bourlard, H. and Morgan N. 1994. Connectionist Speech Recognition - A Hybrid 
Approach. Kluwer Academic Publishers. 

Brants, T., C. Ashok, P. Popat, F. Xu, J. Och and J. Dean. 2007. Large language models 
in machine translation.  EMNLP,  pp.  858–867. 

Handbook of Natural Language Processing and Machine Translation 599



Brown, P.F., S. A. Della Pietra, V. J. Della Pietra and R. L. Mercer.  1993. The 
mathematics of statistical machine translation: Parameter estimation, Comput. Linguist., 
vol. 19, no. 2, pp. 263–312. 

Buckwalter, T. 2004.  LDC2004L02: Buckwalter Arabic morphological analyzer version 
2.0. 

Buckwalter, T. 2002. Buckwalter Arabic Morphological Analyzer (LDC2002L49, 
LDC2004L02). http://www.qamus.org/morphology.htm. Linguistic Data Consortium, 
Philadelphia. 

Chan, H.Y., and P.C. Woodland. 2004. Improving broadcast news transcription by lightly 
supervised discriminative training.  ICASSP, Montreal. 

Chang, P.C., S.P. Liao, and L-S. Lee. 2003. Improved Chinese broadcast news 
transcription by language modeling with temporally consistent training corpora and 
iterative phrase extraction.  Proceedings of Eurospeech,  pp.  421–424. 

Chen, L., J-L. Gauvain, L. Lamel and G. Adda. 2004. Dynamic Language Modeling for 
Broadcast News. Proceedings of ICSLP’04. 

Chen, S., B. Kingsbury, L. Mangu, D. Povey, G. Saon, H. Soltau and G. Zweig. 2006. 
Advances in Speech Transcriptions at IBM under the DARPA EARS Program.  IEEE 
Transactions on Audio, Speech, and Language Processing, 14(5): pp. 1569-1608. 

Chen, S.F. 2003. Conditional and Joint Models for Grapheme-to-Phoneme Conversion.  
Proceedings European Conf. on Speech Communication and Technology, pages 2033 – 
2036, Geneva, Switzerland, September. 

Chi, T., Y. Gao, M.C. Guyton, P. Ru and S.A. Shamma. 1999. Spectro-temporal 
modulation transfer functions and speech intelligibility, J. Acoust. Soc. Am., 106(5): pp. 
719- 2732. 

Chien, J.T. and C. H. Chueh. 2008. Latent Dirichlet language model for speech 
recognition.  IEEE Workshop on Spoken Language Technology,  pp.  201-204.  

Choueiter, G., D. Povey,  F. C. Stanley and G. Zweig. 2006.  Morpheme-Based Language 
Modeling for Arabic LVCSR. Proceedings of ICASSP, Toulouse, France. 

Chu, S.M., H-K. Kuo, Y. Y. Liu, Y. Qin, Q. Shi and G. Zweig. 2007. The IBM Mandarin 
Broadcast Speech Transcription System. Proceedings of ICASSP’07. 

Cohn, D., L. Atlas and R. Ladner. 1994. Improving generalization with active learning. 
Machine Learning, 15: pp. 201–221. 

Darroch, J.N., and D. Ratcliff. 1972. Generalized iterative scaling for log-linear models. 
The Annals of Mathematical Statistics, 43(5): pp. 1470-1480.  

Dau, T., B. Kollmeier and A. Kohlrausch. 1997. Modeling auditory processing of 
amplitude modulation .I Detection and masking with narrow-band carrieres. Journal 
Acoustic Society of America 102.  

Chapter 3: Machine Translation from Speech600



de Cheveigné, A. and H.  Kawahara. 2002. YIN, A Fundamental Frequency Estimator for 
Speech and Music. Journal of the Acoustical Society of America, 111: pp. 1917-1930. 

Deerwester, S.C., S. T. Dumais, T. K. Landauer, G. W. Furnas and R. A. Harshman. 
1990. Indexing by latent semantic analysis. Journal of the American Society of 
Information Science, 41(6): pp. 391--407.  

Deligne, S. and F. Bimbot. 1995. Language modeling by variable length sequences: 
Theoretical formulation and evaluation of multigrams.  Proceedings of ICASSP, pp. 169 
– 172, Detroit, Michigan, USA, May. 

Deligne, S., F. Yvon and F. Bimbot. 1995. Variable length sequence matching for 
phonetic transcription using joint multigrams.  Proceedings European Conf. on Speech 
Communication and Technology, pp. 2243 –2246, Madrid, Spain, September. 

Deng, Y. and W.J. Byrne. 2008. HMM word and phrase alignment for statistical machine 
translation, IEEE Trans. ASLP, Vol. 16, pp. 494-507. 

Despres, J., P. Fousek, J-L. Gauvain, S. Gay, Y. Josse, L. Lamel and A. Messaoudi. 2008. 
The LIMSI-Vecsys Research Systems for NBest 2008.  N-Best workshop, Soesterberg, 
NL. 

Doddington, G. 2002. Automatic evaluation of MT quality using n-gram co-occurrence 
statistics.  Proceedings of human language technology conference, pp. 138-145.  

Duda, R.O., P. E. Hart and D. G. Stork. 2001. Pattern Classification. John Wiley and 
Sons, Inc., second edition.  

Dyer, C. and S. Muresan and P. Resnik 2008. Generalizing word lattice translation. 46th 
Annual Meeting of the ACL. 

Ellis, D.P.W., R. Singh and S. Sivadas. 2001. Tandem Acoustic Modeling in Large-
Vocabulary Recognition. Proceedings of ICASSP’01. 

Emami, A. and F. Jelinek. 2005. A neural syntactic language model. Machine Learning, 
60(1-3):195–227. 

Emami, A., P. Xu and F. Jelinek. 2003. Using a connectionist model in a syntactical 
based language model. Proceedings of ICASSP. 

Evermann, G. and P. C. Woodland. 2000. Posterior probability decoding, confidence 
estimation and system combination.  Proceedings of the NIST Speech Transcription 
Workshop. 

Faria, A. and N. Morgan. 2008. Corrected Tandem Features for Acoustic Model Training, 
Proceedings of  ICASSP. 

Finke, M. and A. Waibel. 1997. Speaking mode dependent pronunciation modeling in 
large vocabulary conversational speech recognition.  Proceedings of Eurospeech, volume 
5, pp. 2379–2382. 

Finke, M., P. Geutner, H. Hild, T. Kemp, K. Ries and M. Westphal. 1997. The Karlsruhe 
Verbmobil Speech Recognition Engine, Proceedings of ICASSP, Germany. 

Handbook of Natural Language Processing and Machine Translation 601



Fiscus, J. G. 1997. A post-processing system to yield reduced word error rates: 
Recogniser output voting error reduction (ROVER).  IEEE Workshop on ASRU, pp. 347–
352, Santa Barbara, CA. 

Fletcher, H. 1995. The ASA edition of Speech and Hearing in Communication. Journal 
Acoustic Society of America. 

Fousek, P., L. Lamel and J-L. Gauvain. 2008. On the use of MLP features for broadcast 
news transcription.  TSD’08, volume 5246 of Lecture Notes in Computer Science, pages 
303–310. 

Fousek, P., L. Lamel and J-L. Gauvain. 2008a. Transcribing Broadcast Data Using MLP 
Features.  Interspeech’08, pp. 1433–1436, Brisbane, AU. 

Fousek, P. 2007. Extraction of features for automatic recognition of speech based on 
spectral dynamics. Ph.D. thesis, Czech Technical University in Prague, Faculty of 
Electrical Engineering, Prague. 

Fügen, C. and I. Rogina. 2000. Integrating dynamic speech modalities into context 
decision trees.  Proceedings of ICASSP. 

Gadde, V.R.R. 2000. Modeling word durations, Proceedings of ICSLP, vol. 1, pp. 601–
604, October. 

Gales, M.J.F., X. Liu, R. Sinha, P. C. Woodland, K. Yu, S. Matsoukas, T. Ng, K. 
Nguyen, L. Nguyen, J. L. Gauvain, L. Lamel and A. Messaoudi. 2007. Speech 
recognition system combination for machine translation.  Proceedings of ICASSP, 
volume 4, pp. 1277–1280. 

Gales, M.J.F., B. Jia, X. Liu, K. C. Sim, P. C. Woodland and K. Yu. 2005. Development 
of the CUHTK 2004 Mandarin conversational telephone speech transcription system.  
Proceedings of ICASSP, Philadelphia. 

Gales, M.J.F. 1999. Semi-tied covariance matrices for hidden Markov models. IEEE 
Trans.Speech and Audio Processing, 7(3), May. 

Gales, M.J.F. 1998. Maximum likelihood linear transformations for HMM-based speech 
recognition. Computer Speech and Language, 12: pp. 75–98. 

Gales, M.J.F. 1997. Maximum likelihood linear transformation for hmm-based speech 
recognition. Tech. Report CUED/FINFENG/TR291, Cambridge University Engineering 
Dept. 

Gauvain, J-L, L. Lamel and Gilles Adda. 2002. The LIMSI Broadcast News 
Transcription System. Speech Communication, 37(1-2): pp. 89–108. 

Gauvain, J-L., L. F. Lamel, G. Adda and M. Adda-Decker. 1994. Speaker-independent 
continuous speech dictation. Speech Communication, 15: pp. 21–37. 

Gelbart, D. 2008. Ensemble Feature Selection for Multi-stream Automatic Speech 
Recognition. Ph.D. Thesis, University of California at Berkeley. 

Chapter 3: Machine Translation from Speech602



Gildea, D. and T. Hofmann. 1999. Topic-based language models using EM.  Proceedings 
of European Conference on Speech Communication and Technology.  

Gillick, L. and S. Cox. 1989. Some statistical issues in the comparison of speech 
recognition algorithms.  Proceedings of the  ICASSP,  pp.  532-535.  

Grézl, F. and P. Fousek. 2008. Optimizing bottle-neck features for LVCSR.  ICASSP’08, 
pp.  4729–4732. 

Greenwood, D.D. 1990. A cochlear frequency-position function for several species–29 
years later. Acoustical Society of America Journal, 87: pp. 2592–2605, June. 

Grézl, F., M. Karafiát, S. Kontár and J. Černocký. 2007. Probabilistic and bottle-neck 
features for LVCSR of meetings.  Proceedings of ICASSP, pp.  757–760. 

Guiliani, D. and F. Brugnara. 2006. Acoustic model adaptation with multiple 
supervisions.  Proceedings TCSTAR Workshop on Speech-to-Speech Translation, pp. 
151–154, Barcelona, Spain, June. 

Habash, N. and R. Owen. 2005. Arabic tokenization, morphological analysis, and part-of-
speech tagging in one fell swoop.  Proceedings of the Association for Computational 
Linguistics, pp. 573 – 580, Ann Arbor, Michigan, USA, June. 

Hain, T. et al. 2005. The 2005 AMI System for the Transcription of Speech in Meetings. 
NIST RT05 Workshop, Edinburgh, UK. 

Hatch, A.O., S. Kajarekar and A. Stolcke. 2006. Within-class covariance normalization 
for svmbased speaker recognition.  Proceedings of ICSLP, pp.  1471–1474.  

Heidel, A., H. Chang and L. Lee. 2007. Language model adaptation using latent Dirichlet 
allocation and an efficient topic inference algorithm.  Proceedings of Interspeech, pp. 
2361– 2364.  

Heigold, G., R. Schlüter and H. Ney. 2009. Modified MMI/MPE in a transducer-based 
framework.  Proceedings of ICASSP, Taipei, Taiwan. 

Heigold, G., T. Deselaers, R. Schlüter and H. Ney. 2008a. Modified MMI/MPE: A direct 
evaluation of the margin in speech recognition.  International Conference on Machine 
Learning (ICML), Helsinki, Finland. 

Heigold, G., P. Lehnen, R. Schlüter and H. Ney. 2008b. On the equivalence of Gaussian 
and log-linear HMMs.  ICLSP (Interspeech), Brisbane, Australia. 

Hermansky, H. and P. Fousek. 2005. Multiresolution RASTA filtering for TANDEM-
based ASR.  Interspeech’05, pp. 361–364, Lisboa, PT. 

Hermansky, H., D.P.W. Ellis and S. Shamma. 2000a. Tandem connectionist feature 
extraction for conventional HMM systems, Proceedings of ICASSP, 2000. 

Hermansky, H., D. Ellis and S. Shamma. 2000b. Connectionist feature extraction for 
conventional HMM systems. Proceedings of ICASSP 2000. 

Handbook of Natural Language Processing and Machine Translation 603



Hermansky, H. and S. Shamma. 1998. TRAPS Classifiers of temporal patterns, 
Proceedings of ICSLP-98, Sydney, vol. 3, pp. 1003-1006. 

Hermansky, H. 1998. Should recognizers have ears? Speech Communication 25: pp. 3-
27. 

Hermansky, H. and S. Tibrewala. 1997. Sub-band based recognition of noisy speech. 
Proceedings of ICASSP 1997. 

Hermansky, H., S. Tibrewala and M. Pavel. 1996. Towards ASR on partially corrupted 
speech. Proceedings of ICSLP 1996. 

Hermansky, H. and N. Morgan. 1994.  RASTA processing of speech. IEEE Trans. on 
Speech and Audio Proc 2: pp. 578-589. 

Hermansky, H. 1990. Perceptual linear predictive (plp) analysis of speech. Journal of the 
Acoustical Society of America, 87(4): pp. 1738–1752.  

Hildebrand, A., K. Rottmann, T. Notari, Q. Gao, S. Hewavitharana, N. Bach and S. 
Vogel. 2008. Recent improvements in the CMU large-scale chinese-english SMT system. 
The joint conference of the International Committee on Computational Linguistics and 
the Association for Computational Linguistics.  

Hoffmeister, B., C. Plahl,  P. Fritz, G. Heigold, J. Lööf, R. Schlüter, and H. Ney. 2007.  
Development of the 2007 RWTH Mandarin GALE LVCSR system, Proceedings of 
ASRU, pp. 455–460.  

Hoffmeister, B., T. Klein, R. Schlüter and H. Ney. 2006. Frame based system 
combination and a comparison with weighted ROVER and CNC.  Proceedings of ICSLP. 

Honal, M. and T. Schultz.  2005. Automatic Disfluency Removal on Recognized 
Spontaneous Speech – Rapid Adaptation to Speaker-Independent Disfluencies, 
Proceedings of ICASSP, Philadelphia, Pennsylvania, USA. 

Houtgast, T. 1989. Frequency selectivity in amplitude modulation detection. Journal 
Acoustic Society of America, 88. 

Hsu, B.J. and J. Glass. 2006. Style and topic language model adaptation using 
HMM-LDA.  Proceedings of Empirical Methods on Natural Language Processing.  

Hwang, M.Y., G. Peng, W. Wang, A. Faria and A. Heidel. 2007. Building a highly 
accurate Mandarin speech recognizer with language-independent technologies and 
language-dependent modules. Proceedings of ASRU. 

Hwang, M.Y., G. Peng, M. Ostendorf, W. Wang, A. Faria and A. Heidel. 2009. Building 
a highly accurate Mandarin speech recognizer with language-independent technologies 
and language-dependent modules. IEEE Trans. on Audio, Speech, and Language 
Processing. To appear. 

Iyer, R. and M. Ostendorf. 1999. Modeling long distance dependence in language: Topic 
mixtures versus dynamic cache models. IEEE Transactions on Speech and Audio 
Processing, 7(1): pp. 30--39, Jan.  

Chapter 3: Machine Translation from Speech604



Janin, A., A. Stolcke, X. Anguera, K. Boakye, O. Cetin, J. Frankel and J. Zheng. 2006. 
The ICSI-SRI Spring 2006 Meeting Recognition System, S. Renals and S. Bengio, 
editors, Machine Learning for Multimodal Interaction: Third International Workshop 
(MLMI 2006), Lecture Notes in Computer Science. Springer. 

Jebara, T. 2002. Discriminative, generative, and imitative learning. Doctoral dissertation, 
Massachusetts Institute of Technology. 

Jin, Q. and T. Schultz. 2004. Speaker segmentation and clustering in meetings.  
Proceedings of the ICSLP. 

Juang, B.-H. and S. Katagiri. 1992.  Discriminative learning for minimum error classifi-
cation, IEEE Trans. Signal Process. 40 (12) (1992), pp. 3043–3054. 

Kamm, T.M. and G.G.L. Meyer. 2002. Selective sampling of training data for speech 
recognition.  Proceedings Human Language Technology, San Diego. 

Kanedera, N., T. Arai, H. Hermansky and M. Pavel. 1999. On the relative importance of 
various components of the modulation spectrum for automatic speech recognition, 
Speech Communication, 28: pp. 43-55.  

Kanthak, S., D. Vilar, E. Matusov, R. Zens and H. Ney. 2005. Novel reordering 
approaches in phrase-based statistical machine translation. ACL Workshop on Building 
and Using Parallel Texts: Data-Driven Machine Translation and Beyond.  

Kanthak, S. and H. Ney. 2001. Context-Dependent Acoustic Modeling Using Graphemes 
for Large Vocabulary Speech Recognition.  Proceedings of ICASSP, pp.  845 – 848.  

Karypis, G. 2002. Cluto. http://glaros.dtc.umn.edu/gkhome/views/cluto/. 

Kenny, P., P. Ouellet, N. Dehak and V. Gupta. 2008. A study of Interspeaker Variability 
in Speaker Verification. IEEE Trans. on Audio, Speech and Language Processing, 16(5): 
pp. 980–987. 

Kemp, T. and A. Waibel. 1997. Unsupervised Training of a Speech Recognizer Using TV 
Broadcasts. Proceedings of ICSLP. 

Kim, W. 2004. Language model adaptation for automatic speech recognition and 
statistical machine translation. Ph.D. thesis, Johns Hopkins University. Distributed by 
JHU.  

Kingsbury, B., N. Morgan and S. Greenberg. 1998. Robust speech recognition using the 
modulation  spectrogram, Speech Communication, vol. 25, no. 1-3, pp. 117-132, Aug.  

Kirchhoff, K., D. Vergyri, J. Bilmes, K. Duh and A. Stolcke. 2006. Morphology-based 
language modeling for conversational Arabic speech recognition. Computer Speech and 
Language, 20(4). 

Kirchhoff, K., J. Bilmes, S. Das, N. Duta, M. Egan, J. Gang, H. Feng J. Henderson, L. 
Daben, M. Noamany, P. Schone, R. Schwartz and D. Vergyri. 2003.  Novel approaches 
to Arabic speech recognition: report from the 2002 JHU Summer Workshop,  
Proceedings of ICASSP, vol.1, pp. 344–347, April.  

Handbook of Natural Language Processing and Machine Translation 605



Kleinschmidt, M. 2003. Localized spectro-temporal features for automatic speech 
recognition, Proceedings of Eurospeech, pp. 2573-2576.  

Kneser, R. and H. Ney. 1995. Improved backing-off for M-gram language modeling.  
Proceedings of ICASSP, volume 1, pp.  181-184.  

Kneser, R., J. Peters and D. Klakow. 1997. Language model adaptation using dynamic 
marginals.  Proceedings of European Conference on Speech Communication and 
Technology, pp. 1971-1974.  

Koehn, P., F. Och and D. Marcu. 2003. Statistical phrase-based translation,  
NAACL/HLT. 

Kozhevnikov, V.A. and L.A. Chistovich. 1967. Speech: Articulation and Perception, 
translated from Russian by U.S. Dept. of Commerce, pp. 250-251. 

Kumar, S., Y. Deng and W.J. Byrne. 2006.  A weighted finite state transducer translation 
template model for statistical machine translation, Natural Language Engineering, Vol. 
12, pp. 35–75.  

Kumar, S., & W.J. Byrne. 2005. Local phrase reordering models for statistical machine 
translation, Proceedings of HLT and EMNLP.  

Lamel, L, A. Messaoudi and J-L Gauvain. 2008. Investigating Morphological 
Decomposition for Transcription of Arabic Broadcast News and Broadcast Conversation 
Data.  Interspeech’08, pp. 1429–1432, Brisbane, Australia. 

Lamel, L., A. Messaoudi and J-L Gauvain. 2007. Improved Acoustic Modeling for 
Transcribing Arabic Broadcast Data.  Interspeech’07, pp. 2077–2080, Antwerp, BE. 

Lamel, L., J-L. Gauvian and G. Adda. 2002. Lightly supervised and unsupervised 
acoustic model training. Computer Speech and Language, 16: pp. 115–129. 

Leggetter, C. and P. Woodland. 1995. Maximum likelihood linear regression for speaker 
adaptation of continuous density hidden Markov models. Computer Speech & Language,  
9(2): pp. 171–185, April. 

Lei, X., et. al. 2006. Improved tone modeling for Mandarin broadcast news speech 
recognition.  Proceedings ICSLP, pp.  1237–1240, September. 

Li, F. and J.B. Allen. 2009. Multiband product rule and consonant identification Journal 
Acoustic Society of America. 

Li, J., Z. Yan, C. Lee and R. Wang. 2007. A study on soft margin estimation for LVCSR.  
IEEE ASRU, Kyoto, Japan. 

Liu, Y. and F. Liu. 2008. Unsupervised language model adaptation via topic modeling 
based on named entity hypotheses.  Proceedings of ICASSP.  

Liu, Y., E. Shriberg, A. Stolcke, B. Peskin, J. Ang, D. Hillard, M. Ostendorf, M. 
Tomalin, P. C. Woodland and M. Harper. 2005.  Structural Metadata Research in the 
EARS Program, Proceedings of the  ICASSP.   

Chapter 3: Machine Translation from Speech606



Liu, X.A., M. J. F. Gales and P. C. Woodland. 2008. Context dependent language model 
adaptation.  Proceedings of Interspeech’08. 

Ma, J., S.Matsoukas, O. Kimball and R. Schwartz. 2006. Unsupervised training on large 
amount of broadcast news data.  Proceedings ICASSP, Toulouse. 

Mangu, L., E. Brill and A. Stolcke. 1999. Finding consensus among words: lattice-based 
word error minimization.  Eurospeech. 

Mangu, L., E. Brill and A. Stolcke. 2000. Finding Consensus in Speech Recognition: 
Word Error Minimization and Other Applications of Confusion Networks. Computer, 
Speech and Language, 14(4): pp. 373-400.  

Mathias, L. and W. Byrne. 2006. Statistical phrase-based speech translation. ICASSP-06. 

Matusov, E., B. Hoffmeister and H. Ney 2008. ASR Word Lattice Translation with 
Exhaustive Reordering is possible, Interspeech-08. 

Matusov, E., S. Kanthak and H. Ney 2005. On the integration of speech recognition and 
statistical machine translation, Interspeech-05. 

McDermott, E. 1997. Discriminative Training for Speech Recognition, Ph.D. Thesis, 
Waseda. 

Messaoudi, A., J-L Gauvain and L. Lamel. 2005. Modeling Vowels for Arabic BN 
Transcription. InterSpeech Eurospeech'05, pp. 1633-1636, Lisbon. September.  

Messaoudi, A., J-L Gauvain and L. Lamel. 2006. Arabic Broadcast News Transcription 
using a One Million Word Vocalized Vocabulary. Proceedings of ICASSP, pp. 1093-
1096.  

Miller, L. M., M. A. Escabi, H. L. Read and C. E. Schreiner. 2002. Spectrotemporal 
Receptive fields in the lemniscal auditory thalamus and cortex. The journal of 
Nuerophysiology 87(1). 

Misra, H., H. Bourlard and V. Tyagi. 2003. New Entropy Based Combination Rules In 
Hmm/Ann Multi-Stream ASR.  Proceedings of ICASSP’03. 

Mohri, M., F. Pereira & M. Riley. 2002.  Weighted finite-state transducers in speech 
recognition, Computer Speech and Language. Vol. 16, pp. 69–88. 

Morgan, N. and H. Bourlard. 1995. Continuous speech recognition: An introduction to 
the hybrid HMM/connectionist approach, IEEE Signal Processing Magazine, vol. 12, no. 
3, pp. 25-42, May.  

Morgan, N., Q. Zhu, A. Stolcke, K. Sonmez, S. Sivadas, T. Shinozaki, M. Ostendorf, P. 
Jain, H. Hermansky, D. Ellis, G. Doddington, B. Chen, O. Cretin, H. Bourlard and M. 
Athineos. 2005. Pushing the envelope - aside [speech recognition], IEEE Signal 
Processing Magazine, vol. 22, no. 5, pp. 81-88, Sep.  

Morgan, N., B. Y. Chen, Q. Zhu and A. Stolcke. 2004. TRAPping Conversational 
Speech: Extending TRAP/Tandem Approaches to Conversational Telephone Speech 
Recognition.  Proceedings of ICASSP’04. 

Handbook of Natural Language Processing and Machine Translation 607



Mrva, D. and P. C. Woodland. 2004. A PLSA-based language model for conversational 
telephone speech.  Proceedings of ICSLP.  

Navratil, J. 2006. Recent advances in phonotactic language recognition using binary-
decision trees. Proceedings of Interspeech. 

Ney, H. 1999.  Speech translation: coupling of recognition and translation. ICASSP-99  

Ng, T., B. Zhang, K. Nguyen and L. Nguyen. 2008. Progress in the BBN 2007 Mandarin 
Speech to Text System. Proceedings of ICASSP. 

Ng, T., K. Nguyen, R. Zbib and L. Nguyen. 2009. Improved Morphological 
Decomposition for Arabic Broadcast News Transcription. Proceedings of ICASSP. 

Nguyen, L. and B. Xiang. 2004. Light supervision in acoustic model training. 
Proceedings of ICASSP, Montreal, Canada, May.  

Nguyen, L., S. Matsoukas, J. Davenport, F. Kubala, R. Schwartz and J. Makhoul. 2002. 
Progress in transcription of broadcast news using byblos. Speech Communication, 38: pp. 
213–230.  

Nguyen, L. and R. Schwartz. 1997. Efficient 2-pass n-best decoder. Proceedings of 
EuroSpeech, pp. 167–170, Rhodes, Greece, September.  

Noamany, M., T. Schaaf and T. Schultz. 2007. Advances in the CMU/INTERACT 
Arabic GALE Transcription System, Proceedings of HLT/NAACL, USA.  

Och, F.J. 2003. Minimum error rate training in statistical machine translation.  The joint 
conference of the International Committee on Computational Linguistics and the 
Association for Computational Linguistics.  

Och, F. and H. Ney. 2000. Improved statistical alignment models, 38th Annual Meeting 
of the ACL. 

Papineni, K., S. Roukos, T. Ward and W. Zhu. 2002. BLEU: A method for automatic 
evaluation of machine translation.  The joint conference of the International Committee 
on Computational Linguistics and the Association for Computational Linguistics.  

Park, J., F. Diehl, M. J. F. Gales, M. Tomalin and P. C. Woodland. 2009. Training and 
adapting MLP features for Arabic speech recognition.  Proceedings of ICASSP. 

Paulik, M., S. Rao, I. Lane, S. Vogel and T. Schultz.  2008. Sentence Segmentation and 
Punctuation Recovery for Spoken Language Translation, Proceedings of ICASSP. 

Pavel, M., M. Slaney and H. Hermansky. 2009. Reconciliation of human and machine 
speech recognition performance. Proceedings of ICASSP 2009. 

Plahl, C., B. Hoffmeister, M.Y. Hwang, D. Lu, G. Heigold, J. Lööf, R. Schlüter and H. 
Ney. 2008. Recent improvements of the RWTH GALE Mandarin LVCSR system.  
Proceedings Interspeech, pp. 2426–2429. 

Povey, D., D. Kanevsky, B. Kingsbury, B. Ramabhadran, G. Saon and K. Visweswariah. 
2008. Boosted MMI for Feature and Model Space Discriminative Training. ICASSP. 

Chapter 3: Machine Translation from Speech608



Povey, D., S. M. Chu and B. Varadarajan. 2008a.  Universal Background Model Based 
Speech Recognition.  ICASSP. 

Povey, D. and B. Kingsbury. 2007. Evaluation of Proposed Modifications to MPE for 
Large Scale Discriminative Training. Proceedings of ICASSP’2007. 

Povey, D., B. Kingsbury, L. Mangu, G. Saon, H. Soltau and G. Zweig. 2005. fMPE: 
Discriminatively Trained Features for Speech Recognition. Proceedings of ICASSP, Vol. 
1 pp961-964. 

Povey, D. 2005. Improvements to fMPE for discriminative training of features. 
Interspeech 2005. 

Povey, D. 2004. Discriminative Training for Large Voculabulary Speech Recognition. 
PhD thesis, Cambridge University.  

Povey, D., M.J.F. Gales and P.C. Woodland. 2003. Discriminative MAP for acoustic 
model adaptation. Proceedings of ICASSP, Hong Kong, China. 

Povey, D. and P. Woodland, 2002. Minimum Phone Error and I-smoothing for Improved 
Discriminative Training. Proceedings of ICASSP, pp. 105–108. 

Povey, D., B. Kingsbury, L. Mangu, G. Saon, H. Soltau and G. Zweig. 2005. fMPE: 
Discriminatively trained features for speech recognition.  Proceedings of ICASSP. 

Povey, D. 2009. Subspace Gaussian Mixture Models for Speech Recognition, Microsoft 
Research technical report.  MSR-TR-2009-64 

Povey, D., L. Burget, et al. 2010. “Subspace Gaussian Mixture Models for Speech 
Recognition.”  Proceedings of ICASSP 2010. 

Powell, M.J.D. 1964. An efficient method for finding the minimum of a function of 
several variables without calculating derivatives. The Computer Journal, pp. 155–162. 

Reichl, W. and G. Ruske. 1995. Discriminative training for continuous speech 
recognition. Proceedings of EUROSPEECH-1995,  pp. 537-540 

Press, W.H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery. 1992. Numerical 
Recipes, chapter 10.5. Cambridge University Press. 

Rao, S., I. Lane and T. Schultz.  2007a. Optimizing Sentence Segmentation for Speech 
Translation, Proceedings of  Interspeech, Antwerp, Belgium. 

Rao, S., I. Lane and T. Schultz.  2007b. Improving Spoken Language Translation by 
Automatic Disfluency Removal: Evidence from Conversational Speech 
Transcripts, Proceedings of Machine Translation Summit, Copenhagen, Denmark. 

Reichl, W. and W. Chou. 1999. A Unified Approach of Incorporating General Features in 
Decsion Tree Based Acoustic Modeling.  Proceedings of ICASSP. 

Reynolds, D. A, T. F. Quatieri and R. Dunn. 2000. Speaker verification using adapted 
Gaussian mixture models. Digital Signal Processing, 10(1-3): pp. 19–41. 

Handbook of Natural Language Processing and Machine Translation 609



Riedmiller, M. and H. Braun. 1993. A direct adaptive method for faster backpropagation 
learning: The Rprop algorithm.  International Conference on Neural Networks (ICNN), 
San Francisco, CA, USA. 

Rottmann, K. and S. Vogel. 2007. Word reordering in statistical machine translation with 
a POS-based distortion model. Proceedings of the 11th International Conference on 
Theoretical and Methodological Issues in Machine Translation.  

Rybach, D., S. Hahn, C. Gollan,  R. Schlüter and H. Ney. 2007. Advances in Arabic 
broadcast news transcription at RWTH,  Proceedings of ASRU, pp. 449–454.  

Saon, G., D. Povey and H. Soltau. 2009. Large margin semi-tied covariance transforms 
for discriminative training. Proceedings of ICASSP, Taipei, Taiwan. 

Saon, G. and D. Povey. 2008. Penalty function maximization for large margin HMM 
training. ICSLP (Interspeech), Brisbane, Australia. 

Saon, G. and M. Picheny. 2007.  Lattice-based Viterbi decoding techniques for speech 
translation. ASRU Workshop. 

Saon, G., D. Povey and G. Zweig. 2005. Anatomy of an extremely fast LVCSR decoder.  
Interspeech-05. 

Saon, G., G. Zweig, B. Kingsbury, L. Mangu and U. Chaudhari. 2003. An architecture 
for rapid decoding of large vocabulary conversational speech. Eurospeech. 

Saon, G. and M. Padmanabhan. 2001. Data-driven approach to designing compound 
words for continuous speech recognition. IEEE Trans. on Speech and Audio Processing, 
9(4):327–332, May. 

Saon, G., M. Padmanabhan, R. Gopinath and S. Chen. 2000. Maximum Likelihood 
Discriminant Feature Spaces. Proceedings of ICASSP’00, 2: pp. 1129-1132.  

Saon, G. and D. Povey and G. Zweig. 2005. Anatomy of an extremely fast LVCSR  
decoder. Interspeech-05.  

Sarikaya, R. and Y. Deng. 2007. Joint morphological-lexical language modeling for 
machine translation. Human Language Technology conference. 

Schlüter, R., I. Bezrukov, H. Wagner and H. Ney. 2007. Gammatone features and feature 
combination for large vocabulary speech recognition.  Proceedings of ICASSP, volume 4, 
pp. 649–652, Honolulu, HI, USA, April. 

Schlüter, R., A. Zolnay and H. Ney. 2006. Feature combination using linear discriminant 
analysis and its pitfalls. Proceedings of ICSLP, pp. 345–348, Pittsburgh, PA, USA, 
September. 

Schwenk, H. and E. Yannick. 2008. Data selection and smoothing in an open-source 
system for the 2008 NIST machine translation evaluation. Interspeech, pp. 2727–2730. 

Schwenk, H. 2007. Continuous space language models. Computer Speech and Language, 
21: pp. 492–518. 

Chapter 3: Machine Translation from Speech610



Schwenk, H. and J-L. Gauvain. 2005a. Building continuous space language models for 
transcribing european languages.  Interspeech, pp. 737–740. 

Schwenk, H. and J-L. Gauvain. 2005b. Training neural network language models on very 
large corpora.  EMNLP, pp. 201–208. 

Schwenk, H. 2004. Efficient training of large neural networks for language modeling.  
IJCNN, pp. 3059–3062. 

Schwenk, H. and J-L. Gauvain. 2002. Connectionist Language Modeling for Large 
Vocabulary Continuous Speech Recognition. Proceedings of ICASSP, pp. 765–768. 

Sha, F. and L. Saul. 2007. Comparison of large margin training to other discriminative 
methods for phonetic recognition by hidden Markov models.  Proceedings of ICASSP. 

Shamma, S. 1999.  Multi-Stream Approach To Robust Speech Recognition. PhD. Thesis, 
OGI, Portland, USA. 

Shen, W., R. Zens, N. Bertoldi and M. Federico. 2006.  On the integration of speech 
recognition and statistical machine translation. IWSLT-06. 

Shen, L., J. Xu and R. Weischedel. 2008. A new string to dependency machine 
translation algorithm with a target dependency language model.  Proceedings of the 46th 
Annual Meeting of the Association for Computational Linguistics (ACL). 

Shi, Q., S.M. Chu, W. Liu, H-K. Kuo, Y. Liu and Y. Qin. 2008. Search and classification 
based language model adaptation. Proceedings of Interspeech, pp. 1578–1581. 

Shriberg, E. and A. Stolke. 2004. Prosody Modelling for Automatic Speech Recognition 
and Understanding, Mathematical Foundations of Speech and Language Processing, 
IMA Volumes in Mathematics and Its Applications, Vol 138, Springer-Verlag, New 
York: pp. 105-114.  

Shriberg, E.E. 1994. Preliminaries to a Theory of Speech Disfluencies. PhD thesis, 
Berkeley's University of California. 

Sinha, R., M. J. F. Gales, D. Y. Kim, X. A. Liu, K. C. Sim and P. C. Woodland. 2006. 
The CU-HTK Mandarin Broadcast News Transcription System. Proceedings of ICASSP. 

Solomonoff, A., W.M. Campbell and I. Boardman. 2005. Advances in channel 
compensation for svm speaker recognition. ICASSP, volume 1, pp. 629–632.  

Soltau, H. and A. Waibel. 2000. Phone dependent modeling of hyperarticulated effects. 
Proceedings of ICSLP. 

Soltau, H., F. Metze, C. Fügen and A. Waibel. 2001. A one-pass decoder based on 
polymorphic linguistic context assignment. Proceedings of ASRU. 

Soltau, H., G. Saon, D. Povey, L. Mangu, J. Kuo, M. Omar and G. Zweig. 2007. The 
IBM 2006 GALE Arabic ASR System. Proceedings of ICASSP, vol. 4, pp. 349–352. 

Stolcke, A., C. Barry, H. Franco, V.R.R. Gadde, M. Graciarena, M-Y. Hwang, K. 
Kirchhoff, A. Mandal, N. Morgan, X. Lei, T. Ng, M. Ostendorf, K. Sonmez, A. 

Handbook of Natural Language Processing and Machine Translation 611



Venkataraman, D. Vergyri, W. Wang, J. Zheng and Q. Zhu. 2006. Recent innovations in 
speech-to-text transcription at SRI-ICSI-UW. Audio, Speech and Language Processing, 
IEEE Transactions on, 14(5): pp. 1729–1744. 

Stolcke, A., F. Grézl, M.-Y. Hwang, X. Lei, N. Morgan and D. Vergyri. 2006. Cross-
domain and Cross-language Portability of Acoustic Features Estimated by Multilayer 
Perceptrons. Proceedings of ICASSP’06. 

Stolcke, A. 2002. SRILM - an extensible language modeling toolkit. Proceedings of 
ICSLP.  

Stolcke, A., H. Bratt, J. Butzberger, H. Franco, V.R.R. Gadde, M. Plauché, C. Richey, E. 
Shriberg, K. Sönmez, F. Weng and J. Zheng. 2000. The SRI March 2000 Hub-5 
conversational speech transcription system. Proceedings NIST Speech Transcription 
Workshop, College Park, MD, May. 

Su, Y., F. Jelinek, S. Khudanpur. 2007. Large-Scale Random Forest Language Models 
For Speech Recognition, Proceedings  of ICASSP’07.  

Tam, Y.C. and T. Schultz. 2008. Correlated bigram LSA for unsupervised LM 
adaptation. Advances in Neural Information Processing Systems.  

Tam, Y.C. and T. Schultz. 2005. Language model adaptation using variational Bayes 
inference. Proceedings of Interspeech.  

Tam, Y.C. and T. Schultz. 2006. Unsupervised language model adaptation using latent 
semantic marginals. Proceedings of Interspeech.  

Tam, Y.C. and T. Schultz. 2007a. Correlated latent semantic model for unsupervised 
language model adaptation. Proceedings of ICASSP.  

Tam, Y.C., I. Lane and T. Schultz. 2007b. Bilingual LSA-based LM adaptation for 
spoken language translation. Proceedings of ACL.  

Taskar, B., C. Guestrin and D. Koller. 2003. Maxmargin Markov networks. Neural 
Information Processing Systems Conference (NIPS), Vancouver, B.C., Canada. 

Technology and Corpora for Speech to Speech Translation, http://ww.tc-star.org 

Tibrewala, S. and H. Hermansky. 1997.  Multi-Stream Approach in Acoustic Modeling. 
Proceedings of LVCSRHub5 Workshop. 

Tillmann, C. and H. Ney. 2003. Word reordering and a dynamic programming beam 
search algorithm for statistical machine translation, Computational Linguistics. 

Tomalin, M. and P.C.Woodland. 2006.  Discriminatively Trained Gaussian Mixture 
Models for Sentence Boundary Detection.  Proceedings of ICASSP. 

Tree, F.  1995. The effects of false starts and repetitions on the processing of subsequent 
words in spontaneous speech. Journal of Memory and Language, 34, pp 709–738. 

Chapter 3: Machine Translation from Speech612



Tsai, M.Y., F-C. Chou and L-S. Lee. 2007. Pronunciation modeling with reduced 
confusion for Mandarin Chinese using a three-stage framework. IEEE Trans. on Audio, 
Speech, and Language Processing, 15(2): pp. 661–675, Feb. 

Tseng, H, P. Chang, G. Andrew, D. Jurafsky and C. Manning. 2005. A conditional 
random field word segmenter. Fourth SIGHAN Workshop on Chinese Language 
Processing.  

Valente, F., J. Vepa, C. Plahl, C. Gollan, H. Hermansky and R. Schlüter. 2007. 
Hierarchical neural networks feature extraction for LVCSR system.  Interspeech. 

Valente, F.  and H. Hermansky. 2007 Hierarchical and parallel processing of modulation 
spectrum for ASR applications. Proceedings of Interspeech 2007. 

Valente, F. and H. Hermansky. 2006. Combination of Acoustic Classifiers based on 
Dempster-Shafer Theory of Evidence. Proceedings of ICASSP 2007. 

Valtchev, V., J.J. Odell, P.C. Woodland and S.J. Young. 1997. MMIE training of large 
vocabulary speech recognition systems. Speech Communication, 22: pp. 303–314. 

Vapnik, V. 1995. The nature of statistical learning theory. Springer. 

Venkataraman, A., A. Stolcke, W. Wang, D. Vergyri, V. R. Gadde and J. Zheng. 2004. 
An Efficient Repair Procedure for Quick Transcriptions. Proceedings of ICSLP’04. 

Venkataraman, A. and W. Wang. 2003.  Techniques for effective vocabulary selection in 
domain specific speech recognition,  Proceedings of EUROSPEECH, pp. 245–248. 

Venkataraman, A., A. Stolcke, W. Wang, D. Vergyri, V.R.R. Gadde and J. Zheng, 2000. 
An efficient repair procedure for quick transcriptions, Proceedings ICSLP, pp. 1961–
1964, Oct.  

Vergyri, D., A. Mandal, W. Wang, A. Stolcke, J. Zheng, M. Graciarena, D. Rybach, C. 
Gollan, R. Schlüter, K. Kirchhoff, A. Faria and N. Morgan. 2008. Development of the 
SRI/Nightingale Arabic ASR system. Proceedings Int. Conf. on Spoken Language 
Processing, pp. 1437–1440, Brisbane, Australia, September. 

Vergyri, D., K. Kirchhoff, K. Duh and A. Stolcke. 2004. Morphology-based language 
modeling for Arabic speech recognition. ICSLP. 

Vergyri, D. and K. Kirchhoff. 2004. Automatic Diacritization of Arabic for Acoustic 
Modeling in Speech Recognition. COLING Workshop on Arabic-script Based 
Languages,  pp. 66–73, Geneva. 

Vogel, S., Y. Zhang, F. Huang, A. Tribble, A. Venogupal, B. Zhao and A. Waibel.  2003. 
The CMU statistical translation system.  Proceedings MT Summit IX, New Orleans, LA. 

Wallach, H.M. 2006. Topic Modeling: Beyond Bag-of-Words. International Conference 
on Machine Learning.  

Wang, L., M. J. F. Gales and P. C. Woodland. 2007. Unsupervised training for Mandarin 
broadcast news and conversation transcription. Proceedings ICASSP, Honolulu. 

Handbook of Natural Language Processing and Machine Translation 613



Wessel, F. and H. Ney. 2005. Unsupervised training of acoustic models for large 
vocabulary continuous speech recognition. IEEE Transactions on Acoustics, Speech and 
Signal Processing, 13(1): pp. 23–31. 

Woodland, P.C. and D. Povey. 2000. Large Scale MMIE Training for Conversational 
Telephone Speech Recognition.  Proceedings of Speech Transcription Workshop. 

Xiang, B., L.Nguyen, X. Guo and D. Xu. 2005. The BBN Mandarin Broadcast News 
Transcription System. Proceedings of Interspeech’05, pp. 1649–1652. 

Xiang, B., K. Nguyen, L. Nguyen, R. Schwartz and J. Makhoul. 2006. Morphological 
decomposition for arabic broadcast news transcription.  Proceedings of ICASSP. 

Xu, P., A. Emami and F. Jelinek. 2003. Training connectionist models for the structured 
language model. Proceedings of EMNLP. 

Yu, K., M. J. F. Gales and P. C. Woodland. 2007. Unsupervised training with directed 
manual transcription for recognising Mandarin broadcast audio. Proceedings of 
INTERSPEECH, Antwerp. 

Yu, H., Y. C. Tam, T. Schaaf, S. Stüker, Q. Jin, M. Noamany and T. Schultz. 2004. The 
ISL RT04 mandarin broadcast news evaluation system.  EARS Rich Transcription 
Workshop, Palisades, NY, USA, November. 

Zavaliagkos, G. and T. Colthurst. 1998. Utilizing untranscribed training data to improve 
performance.  DARPA Broadcast News Transcription and Understanding Workshop. 

Zhan, P. and M., Westphal . 1997. Speaker Normalization Based on Frequency Warping. 
Proceedings of ICASSP-97, Vol. 2, pp. 1039–1041.  

Zhang, B., S. Matsoukas and R. Schwartz. 2004. Long span features and minimum 
phoneme error heteroscedastic linear discriminant analysis.  Proceedings EARS RT-04 
Workshop, New York, September. 

Zhang, B., S. Matsoukas and R. Schwartz. 2006. Discriminatively Trained Region 
Dependent Feature Transforms for Speech Recognition. Proceedings ICASSP’06. 

Zheng, J. and A. Stolcke. 2005. Improved Discriminative Training Using Phone Lattices. 
Proceedings of European Conf. on Speech Communication and Technology 
(EUROSPEECH’2005). 

Zhang, J., R. Jin, Y. Yang and A. Hauptmann. 2003. Modified logistic regression: An 
approximation to SVM and its applications in large-scale text categorization. 
International Conference on Machine Learning (ICML), Washington, DC, USA. 

Zhang, J., J. Gao and M. Zhou. 2000. Extraction of Chinese compound words - an 
experimental study on a very large corpus. The Second Chinese Language Processing 
Workshop attached to ACL2000. 

Zhang, R., G. Kikui, H. Yamamoto, T. Watanabe, F. Soong and W. K. Lo. 2004.  A 
unified approach in speech-to-speech translation: Integrating features of speech 

Chapter 3: Machine Translation from Speech614



recognition and machine translation. ProceedingsCOLING, Geneva, Switzerland, pp. 
1168–1174. 

Zhang, Y. and S. Vogel. 2004. Measuring confidence intervals for the machine 
translation evaluation metrics. Proceedings of the 10th International Conference on 
Theoretical and Methodological Issues in Machine Translation. 

Zheng, J., O. Cetin, M-Y. Hwang, X. Lei, A. Stolcke and  N. Morgan. 2007. Combining 
discriminative feature, transform, and model training for large vocabulary speech 
recognition, Proceedings ICASSP, pp. 633–636, Apr.  

Zheng, J. and A. Stolcke. 2005. Improved discriminative training using phone lattices, 
Proceedings Eurospeech, pp. 2125–2128, Sep.  

Zhou, B. and L. Besacier and Y. Gao. 2007.  On efficient coupling of ASR  and  MT  for 
speech translation.  ICASSP-07. 

Zhu, Q., A. Stolcke, B. Y. Chen and N. Morgan. 2004. Incorporating Tandem/HATs 

DARPA Rich Transcription Workshop. 

Zhu, Q., A. Stolcke, B. Y. Chen and N. Morgan. 2005. Using MLP features in SRI’s 
conversational speech recognition system. Interspeech’05, pp. 2141–2144. 

Zolnay, A. 2006. Acoustic Feature Combination for Speech Recognition. Ph.D. thesis, 
RWTH Aachen University, Aachen, Germany, August. 

Zolnay, A., R. Schlüter and H. Ney. 2005. Acoustic feature combination for robust 
speech recognition.  Proceedings ICASSP, volume 1, pp. 457–460, Philadelphia, PA, 
USA, March. 

  

Handbook of Natural Language Processing and Machine Translation 615

MLP Features into SRI’s Conversational Speech Recognition System. Proceedings of 





Chapter 4:   Distillation 
Editors: Radu Hans Florian, Joseph Olive Caitlin Christianson, and John McCary 
 
 
 

4.1 Introduction 
Author: Radu Hans Florian 

 
The GALE distillation task was designed to synthesize information extracted from 

multiple source types and languages and distill them into coherent and complete English 
representations that could be directly used by analysts.  This included detecting and 
presenting both redundancy and contradiction to make large amounts of information 
easier to digest. This chapter discusses the work done for the distillation task of GALE.  

The distillation program has roots in and similarities to many fields in natural 
language processing, including question answering, information extraction, 
summarization, and machine translation. In the process of integrating these previously 
segregated fields, a large number of scientific explorations have been started and are 
presented in this chapter.  Some of them focused on advancing the state of the art in 
information extraction, while others were directed at the interface between the 
components of the GALE program – speech recognition and machine translation. These 
technologies are combined and integrated to produce concise relevant and non-redundant 
responses to queries. 

To focus the semantic search on a particular set of desired capabilities, a set of 17 
interesting query templates was created. These templates covered a large spectrum of 
inquiries including the biography of a person, how a particular country reacted to a 
specific event, and where and when a person has been. In particular, systems had to 
identify all sub-sentential units relevant for a given semantic query, extract citations for 
each of them and group them into semantically equivalent sets by identifying and 
marking redundancy. The evaluation also measured system performance relative to a 
human performing the same task. 

 This part is organized into five chapters, each containing sections that address one of 
the GALE distillation objectives. 4.2 contains the design of the template task that was the 
focus of the distillation quantitative evaluation and was created to stress-test advances in 
the field (Section 4.6.1). 4.3 describes the generic architecture of a GALE Distillation 
System and two specific implementations of such systems, detailing the particular 
approaches devised by the AGILE and NIGHTINGALE teams. 4.4 describes general 
investigations into topics related to distillation, including identifying sentence relevance 
(Hakkani-Tür et al. 2010), comparing rule-based with statistical methods for sentence 

J. Olive et al. (eds.), Handbook of Natural LanguageProcessing  
DOI 10.1007/978-1-4419-7713-7_4, � Springer ScienceþBusiness Media, LLC 2011

and Machine Translation, 617 

relevance detection (Section 4.4.3), system combination for Distillation Systems (Ma 
et al. 2010), using structural semantic information for language understanding (Freedman 
et al. 2010), and identifying contradictions in text (Section 4.4.6). 4.4 also contains a 



618 

detailed description of the natural language processing toolkit used by the AGILE team 
(Section 4.4.1). 4.5 describes investigations of the connection of distillation with the 
other components of the GALE program: using source-side named entity identification to 
improve translation (Ji et al. 2010), and using query-time available information to 
improve recognition of names in speech and translation (Section 4.5.1; Section 4.5.2).  
4.6 discusses methods for evaluation of the technology. 

4.2 Template-Based Query Development 

4.2.1. The Templates 
Authors: Connie Fournelle and Olga Babko-Malaya 

 
GALE distillation templates provided a structured method for posing queries to the 

GALE engines.  These templates eliminated the need for natural language analysis of 
queries, allowing researchers to focus on retrieval of relevant information.   

The templates also provided a means to request a very specific set of information. 
Templates provide structure to queries that is much tighter than keyword search, enabling 
system users to ask open-ended questions without having to wade through a volume of 
irrelevant returned information in order to focus on a few desired pieces of information. 
Note that templates do, in fact, provide structure for a set of open-ended queries, rather 
than structuring a set of factoid-type questions.    

In accordance with the program vision, all templates were written in English, and 
systems retrieved and presented relevant information in response to these templates in 
English. 

We group the templates into three categories, as shown in the tables below: (Table 
4.1) templates for events; (Table 4.2) templates for agents – i.e. persons, organizations, or 
countries; and (Table 4.3) templates involving relations between agents and events. 
  

 EVENT TEMPLATES 
 Template Restrictions 

1 List facts about [EVENT] The activity date indicates the time interval of interest for the 
query.  The location indicates the location of actions of 
interest for the query 

2 What connections are there 
between  [EVENT1/TOPIC1] and 
[EVENT2/TOPIC2]? 

Location is not applicable  

3 Describe attacks in [LOCATION] 
giving location (as specific as 
possible), date, and number of 
dead and injured 

The activity date indicates the time interval of the attacks to 
be included in the response. 
The location  indicates location of the attacks of interest for 
the query  

Table 4.1: Event Templates 

 

Chapter 4: Distillation



Handbook of Natural Language Processing and Machine Translation   619 

 Template Restrictions 
4 Provide information on [PERSON] Activity date and location are not applicable. 
5 Provide information on 

[ORGANIZATION] 
Activity date and location are not applicable. 

6 Find statements made by or 
attributed to [PERSON] on 
[TOPIC(S)] 

Location is not applicable.  When an activity date is 
provided, responses should only include statements made 
during the specified time window. 

7 Describe the relationship of 
[PERSON/ORG] to 
[PERSON/ORG] 

If an activity date is provided, only include activities 
associated with the relationship that occurred within the 
specified time interval.  When a location is provided, 
responses should only include evidence of the relationship 
that occurred in specified location. 

8 Find acquaintances of [PERSON]  If an activity date is provided, response should be restricted  
to acquaintance ties that are explicitly declared to exist 
during the specified time period 
If a location is provided,  responses should be restricted to 
acquaintances that are explicitly connected to the specific 
location   

9 Produce a biography of 
[PERSON] 

Activity date and location are not applicable. 

10 Describe the actions of [PERSON] 
during [DATE] to [DATE] 

The activity date indicates the time interval of interest for 
the query.  The location indicates the location of actions of 
interest for the query 

11 Describe the actions of 
[ORGANIZATION] during 
[DATE] to [DATE] 

The activity date indicates the time interval of interest for 
the query.  The location indicates the location of actions of 
interest for the query 

12 Describe arrests of persons from 
[ORGANIZATION] and give their 
role in the organization 

The activity date indicates time interval of the arrests of 
interest.  The location is the location of the arrests  

13 Where has [PERSON] been and 
when? 

If the activity date is specified, only include locations whose 
known associated date falls within the time interval. 
Location is not applicable for this template  

Table 4.2: Agent Templates 

Table 4.3: Agent/Event Templates 

 AGENT/EVENT TEMPLATES 
 Template Restrictions 

14 What [PEOPLE/ORGAN-
IZATIONS/COUNTRIES] are 
involved in [EVENT] and what are 
their roles? 

 
The activity date indicates the date of the event.  The 
location indicates the location of the event. 

 
15 Describe involvement of 

[PERSON/ORGANIZATION/ 
COUNTRY] in [EVENT/TOPIC] 

The activity date specifies the date of the event, or period of 
interest for the topic. 
When a location is provided, it specifies the location of the 
event or topic (ex: coal mining in West Virginia)  

16 Describe the prosecution of 
[PERSON] for [CRIME] 

The activity date indicates time frame for the prosecution. 
The location  indicates the location of the prosecution.  

17 How did [COUNTRY] react to 
[EVENT]? 

The activity date indicates the date of the event.  The 
location indicates the location of the event. 

 
 AGENT TEMPLATES 



4.2.2. Relevancy Determination 
Authors: Connie Fournelle and Olga Babko-Malaya 

4.2.2.1. Introduction 

When developing responses to the templates, systems must determine whether 
information they encounter in the system is relevant, and if it is redundant with other 
information they have already selected.  In the following section, we discuss how we 
scoped the requirements for each template via relevancy guidelines, and how consistently 
humans were able to determine the relevance of information in machine and human-
generated responses to those specific queries written in these templates. 

4.2.2.2. Relevance Guidelines 

Relevancy guidelines included (1) description of information which should be 
viewed as relevant, and (2) a list of relevant “categories” for each template.  

For each template, we provided general information to help an annotator or system 
developer determine whether information was relevant to the query. To further 
characterize relevant information within the guidelines, we also provided information 
categories to indicate the reason for information relevance. At least one category had to 
apply for the information to be relevant. Categories existed for illustrative purposes only; 
training data did not include category annotations, and distillation engines were not asked 
to provide category labels in their output. 

4.2.2.3. Relevancy Guideline Examples 

To illustrate the task specification associated with each template, we provide the 
following example, drawn directly from the GALE program Relevancy Guidelines: 
 
Instructions for Template 1: LIST FACTS ABOUT [event]    
 

Relevant information focuses on the event and the persons, places, 
and activities directly associated with the event. Relevant information 
also includes subevents, causes, goals, and precursor or preparation 
events. 

For persons associated with the event: relevant information includes 
their role and the reason for their involvement in the event, as well as, 
their involvement in promoting, funding, or planning for the event. 
Information about a person must be directly related to the event if it is 
to be relevant. Involvement in the event may be confirmed or suspected. 

Direct reactions, direct consequences, and the significance of the 
event are also relevant. 

For locations associated with events: only information that directly 
pertains to the event is relevant. 
 
Activity date: indicates date of the event 
Location: indicates the location of the event 
Categories: time, location, cause/intention/planning, participant, 
subevent/execution/manner, consequence/reaction/significance 
 

Chapter 4: Distillation620 



Example Responses for Template 1: 
LIST FACTS ABOUT [EVENT]: [Vice President Dick Cheney's shooting of Harry 
Whittington] 
 
Relevant: 
Subevent/execution/manner: Whittington was shot with pellets 
Location: on a private Texas ranch 
Manner: Shooting was accidental 
Reaction: Shooting has generated much talk 
Participant: Whittington is Cheney’s hunting partner 
Effect: A pellet lodged near Whittington's heart caused his heart attack 
 
Irrelevant: 
Whittington is a lawyer 
Whittington is a prominent Republican 
Whittington is 78 years old 

4.2.2.4. Query Responses 

Distillers, whether they are humans or machines, produce (English-only) query 
responses consisting of snippets of text, which may include direct quotations from source 
text, translations of foreign materials, and summaries of these materials. Answers 
provided by distillers were at the sub-document, and even sub-sentence level, while still 
maintaining full traceability to the original source document. Distillers were instructed to 
provide only relevant information, which the evaluators subsequently parsed into atomic 
pieces of information contained in the responses.   Scores for distillation engine were 
ultimately based on generating precision and recall scores for each distiller, and 
comparing those results to human performance.   

Evaluators only parsed relevant information; any irrelevant material returned by a 
distillation engine ultimately contributed towards the false detection score for the system. 
Consequently, the ability of annotators to understand and recognize which information 
was relevant was critical. Annotators further had the flexibility to assign partial relevance 
scores, or “degrees of relevance”, to atomic answers they created. While evaluating 
system responses, annotators were asked to categorize each relevant atomic fact 
according to the categories provided in the relevancy guidelines, which helped them in 
making decisions about relevancy of each created atomic fact. This approach, as we will 
show, has proven to produce consistent annotations with high inter-annotator agreement 
scores.  

4.2.2.5. Inter-Annotator Agreement  

We measure inter-annotator agreement for each template by measuring the Relevancy 
Agreement. This measure reflects yes/no judgments on a snippet level. Every annotated 
snippet that has at least one atomic fact is considered relevant. Snippets from which no 
atomic facts were created are irrelevant. Relevancy Agreement counts the percentage of 
snippets which both annotators judged as relevant or irrelevant. The inter-annotator 
agreement for Phase 2 for the different templates was between 76% and 100% with a 
mean of 89%.  

Handbook of Natural Language Processing and Machine Translation 621 



4.2.2.6. Surprise Template 

One potential concern with the GALE model of template-based queries was that 
work involved in adapting to a new query template might be cost prohibitive for new 
customers or new system users. To mitigate this concern, teams were asked to provide 
responses for one additional “surprise” template. Teams were given a description of the 
template and provided with 24 hours to adapt their systems to this new template.   The 
idea behind the surprise template was to test the systems’ ability to adapt to a new 
template within 24 hours, in case field users were unable to procure desired information 
from existing templates.  One Surprise Template was: 

 
IDENTIFY ADDITIONAL NAMES/SPELLINGS/ALIASES FOR 

[PERSON/ORGANIZATION /LOCATION] AND DATE OF ANY CHANGES TO NAME IF 
KNOWN 

  
Instructions for Surprise Template: 
Responses should include various spellings, aliases, nicknames, or 

name changes for the same person, organization, or geographic 
location IF the multiple spellings/aliases/name changes are noted in 
the same document.  [We are not interested in lists of “equivalent 
terms” from a gazetteer.  All information must come from the corpora 
text.]    

 
Examples of relevant responses include sentences that 

explicitly state that name variants refer to the same entity, 
such as entities followed by phrases like “also known as,” 
“formerly known as,” or “will soon be called.”  Also relevant 
are constructions where entities are followed by another name in 
parentheses - as in Jerusalem (Al-Quds) - or followed by a nickname 
in quotations - as in Chevrolet, “Chevy” or  Stephen “The Rifleman” 
Flemmi.   

 
Different spellings of the name which occur in the same document 

are also relevant. 
 
Teams are not required to co-reference within documents to provide 

the additional names if world knowledge is needed to infer that the 
name variants refer to the same entity – as in Her soaring I happen 
To Like New York is a lusty, life-affirming tribute to the Big Apple. 
Such snippets will not count as relevant, however, there will be no 
penalty for providing this information.  

 
Do not include responses which restate a part of the same name.  

For instance, if a sentence says “Bill Clinton was President of the 
United States, but Clinton’s tenure was tumultuous,” do not list 
“Clinton” as a variant of “Bill Clinton.”   

 
For responses which include a name change, also relevant is a date 

of change (past, present, or future). Dates pointing to when a 
person/place/organization were called by its old or new name are 
relevant, even if the exact date of change is not given. 

 

Chapter 4: Distillation622 



 
If an organization changes its name, include any change/non-change 

to its stock ticker if available.   
 
Responses should not include reasons for name change, expected 

impact of changes, or possible consequences of the change.  Also 
irrelevant are statements about the change, impact, or cause of the 
change. 

 
As this example shows, the specifications for new templates were, in fact, reasonable 

guidelines that an interested party could provide, and since teams could adapt their 
systems within a 24 hour period, the model of template-based query was operationally 
tractable.  
 

4.3 Architecture and Implementation of a Distillation 
System 

4.3.1. Architecture of a Generic GALE Distillation System 
Authors: Radu Florian, Connie Fournelle, Kathy McKeown, and Ralph Weischedel   

4.3.1.1. Introduction 

This section presents the generic architecture of a GALE Distillation System. The 
usual process for a GALE Distillation System consists of two steps, the first being 
processing of data into text, representing it in a form that is appropriate for searching, and 
the second consisting of a runtime module, which performs the actual query. 

The following two sections define the two phases of a Distillation System. 

4.3.1.2.  The Preprocessing Stage 

The preprocessing phase usually consists of: 
 
• Speech recognition, applied to audio sources 
• Processing in the source language (sentence segmentation, etc.) 
• Machine translation, applied to texts in a foreign language (e.g., Arabic, Chinese) 
• Information extraction applied to both foreign language and English text (such as 

sentence segmentation, parsing, mention detection, co-reference resolution, 
relation and event detection and recognition, semantic role label detection, etc., 
see Section 4.4.1) presents an extensive list of natural language processing that is 
typical of this phase. 

 
 
Figure 4.1 presents a typical data processing flow. Speech input – e.g., broadcast 

news, broadcast conversations, telephone conversations, etc. – is passed through an 

Handbook of Natural Language Processing and Machine Translation 623 



automatic speech recognizer, for both the English and the non-English content, resulting 
in text documents, which are added to the collection of documents in text format, which 
usually consists of newswire, weblog, and newsgroups. These text documents are then 
processed by extracting semantic and syntactic information, extracting named and non-
named entities, resolving co-reference, identifying relations and events, either in the 
source language of the document and translating the extracted information into English, 
or by translating the foreign source document into English and performing the extraction 
in English, or possibly both. This processed document collection now represents a rich 
and enhanced pool in which the systems will search for answers to the user queries.  

 
 
 

 
 

 

It is notable here that the lines between the collections and processing do not 
necessarily have to be as clear as they are shown in  

 
Figure 4.1. As it will be shown in the next section and in Section 4.5.3 information 

gathered by identifying named entities in the source language can be used to perform a 
more faithful translation of the text. 

4.3.1.3. The Runtime Stage 

The runtime phase of a Distillation System consists of processing a stream of user 
queries. Figure 4.2 depicts such a typical processing sequence – the query is processed by 
the template processing engine by identifying the arguments, their types, and relations 
among them, running a document search in the processed information database created in 
the preprocessing phase, then extracting snippets – basically semantically coherent 
sentential or subsentential units – from the found documents, then identifying and 

Foreign Text 
Documents 

Speech Recognition Machine Translation 

Foreign 
Database 

English 
Database 

English Text 
Documents 

English Text 
Content 

Foreign Language 
Text Content 

Chapter 4: Distillation624 

Figure 4.1: Typical Data Preprocessing 



marking redundancy among them and extracting and grouping citation information – the 
source text support the snippet. 
 

 
Figure 4.2: Runtime Processing 

Below is a short description of each stage: 
 
• Query preprocessing consists of identifying the arguments of the query, mostly in 

refining the input into smaller components (such as breaking the titles from the 
name, e.g., “[president] [George Bush]”), linking the named arguments with a 
cross-document database (identifying which George Bush the query is about), 
identifying relations in the arguments (“George Bush” has the occupation 
“president”). 

• The separation between the document search and snippet search is not 
theoretically necessary, but it is practically needed (and sometimes leads to 
increased performance), as performing advanced processing on all the documents 
is not feasible for large document collections. During the document search phase, 
one would create a search query that is based mostly on lexical atoms (the words 
in the arguments), and other features that are discovered during the query 
preprocessing phase. The output from this phase is a relatively small number of 
documents. 

• During the snippet search phase, the documents identified at the previous stage 
are investigated for sentences / sub-sentential units that match the given query. 
One can afford to do deeper processing here, using both syntactic and semantic 
information, given the relative small number of documents. This is the core of 
the Distillation System, and this is the place where the systems will tend to differ 
the most. The output from this stage is a list of snippets that are relevant to the 
query. 

• The resulting snippets are then checked for redundancy: snippets are scheduled to 
be output in some order (very likely in the order of their likelihood to be 
relevant), and snippets that are found to completely subsume previous snippets 
are marked as citations for those snippets, and any redundant part of the snippets 
is marked correspondingly. 

• Finally, a number of the resulting snippets are output, taking into account the 
desired output size for the particular query and general guidelines for the output 

Handbook of Natural Language Processing and Machine Translation 625 



(output size, format, etc.). Redundant parts in any snippet relative to previously 
output snippets are marked and output correspondingly.  

 
As with the preprocessing phase, systems can make use of the input query to refine 

the search process. An example can be found in Section 4.5.2, where the query arguments 
are used to perform acoustic adaptation for a better search through the audio documents. 
Similarly, systems can use this information, and cross-lingual information retrieval CLIR 
techniques, to do a better job at doing the document search (and possibly retranslation) of 
material in foreign language – the main idea being to use query adaptation techniques for 
speech recognition and machine translation. 

The following two sections present examples of implementations of GALE 
Distillation Systems: the AGILE system (Section 4.3.2) and the NIGHTINGALE System 
(Section 4.3.3). 

The architecture of a GALE field system is similar to a generic laboratory system in 
the preprocessing phase, but differs significantly in the runtime processing. Here are 
some examples of differences:  

 
• The system has to be interactive, visualizing the results, helping analysts to 

generate reports, allow the users to also perform other tasks (such as regular 
textual search)  

• The system has to be responsive, which might impose limitations of not using 
compute intensive methods (such as speech re-decoding) 

• The system has to allow the user to refine/adjust queries 
 
 

4.3.2. Distillation at BBN – The AGILE System 

4.3.2.1. Introduction 

Distillation at BBN involves two primary stages of processing: background 
processing and live distillation. Background processing includes speech recognition, 
machine translation, running the Statistical Entity and Relation Information Finding 
(SERIF) information extraction engine, creating word and extraction based indices and 
identifying aliases and misspellings for the named entities in the corpus.  Live distillation 
includes four stages: query understanding, relevant document retrieval, answer selection, 
and response generation.  

4.3.2.2. BBN Background Processing 

Every document in the corpus is processed and analyzed before any questions are 
asked. The results of this analysis are stored in a database and are immediately accessible 
to the system during live distillation.  

Chapter 4: Distillation626 

Authors: Elizabeth Boschee, Marjorie Freedman, Roger Bock, John Graettinger, and Ralph Weischedel 



• Figure 4.3 illustrates BBN’s background processing.  Speech recognition systems 
convert speech data into text.  This text is then segmented in stories. Arabic and 
Chinese documents are translated by one or more machine translation systems. 
BBN’s Distillation System works over multiple translations (or transcriptions) of the 
same text. The resulting Distillation Corpus is processed by BBN’s core NLP engine, 
SERIF. SERIF is described in detail in Section 4.4.1. Highlights of SERIF’s 
document analysis include:Entity extraction: For each entity (person, organization, 
place, etc.) mentioned in the document, the system identifies all named references to 
that entity, as well as, all descriptions and pronominal references. 

• Relationship extraction: The system detects and classifies relationships between 
entities, e.g., “Bill Gates is the CEO of Microsoft”  Employment (Bill Gates, 
Microsoft). 

• Event extraction: The system detects and classifies events and their arguments, e.g., 
“The bombing in Baghdad injured three Americans”  Attack (Victim: three 
Americans, Location: Baghdad) 

• Parsing and proposition extraction: The system generates a syntactic parse for each 
sentence and from that parse extracts a set of predicate-argument propositions (i.e. 
who did what to whom) that together form a normalized representation of the parse 
structure. 

 

For documents that originated in a language other than English, this analysis is 
performed both for the source language document and for each machine translation that is 
provided. 

SERIF analyzes each document independently, facilitating the addition of new 
documents to the corpus as they become available. Additionally,   BBN produces a tf/idf 
index of the corpus (to enable document retrieval) and a cross-document co-reference 
database of the named entities mentioned in the corpus documents.  

The cross-document co-reference database is generated using algorithms that handle 
variation in names across news sources (and languages), including aliases, misspellings, 

Handbook of Natural Language Processing and Machine Translation 627 

Figure 4.3: BBN Background Processing

English
Speech 

Chinese
Speech

Arabic
Speech

Arabic
Text

Chinese
Text 

English
Text

Speech to Text

Sentence segmentation

English Distillation Corpus

BBN MT
(Arabic and Chinese)

Sakhr MT
(Arabic Only)

IR Index 
Creation

Duplicate 
document 
detection

Serif (extraction system)

Cross-document 
co-reference

Proposition Tree 
generation

Story segmentation



transliteration variations, and abbreviations. The cross document co-reference system 
clusters names together based on document information generated by SERIF, information 
provided by external resources (e.g., known alias lists, geographical databases, 
Wikipedia), and other algorithms designed to handle aliases and spelling variation (e.g., 
Levenshtein’s edit distance). A sampling from a cluster generated by this system is: al 
Qa'eda, al Qa'ida, ll Qaeda, al Quaida, al Qaedas, al Qaeda Group of Jihad, al Qaeda 
movement, etc. The cross document co-reference database is designed to account for 
spelling variation and aliases, but not to disambiguate between two entities that share a 
name.   

4.3.2.3. BBN Real-Time Distillation   

Real-time question-answering begins when the user asks a query. As 
illustrated in Figure 4.4, there are four stages to BBN’s real-time processing: query 
interpretation, document retrieval, answer finding, and redundancy removal / 
response generation. We describe each of these in detail here.  
 

4.3.2.4. Query Interpretation 

In the first stage, BBN uses SERIF to analyze the query provided by the user. It also 
translates the query into both Arabic and Chinese and uses SERIF to analyze the 
translated queries as well. 

For templated queries, only the query slots are analyzed. For instance, for the query 
“Provide a biography of [Kenyan president Mwai Kibaki]”, the system will analyze only 
“Kenyan president Mwai Kibaki”. In this instance, it will identify “Kenyan” and “Mwai 
Kibaki” as names and detect that “Mwai Kibaki” is the name of the person whose 
biography is sought.  

BBN’s system is also capable of responding to non-templated questions. For free text 
(non-templated) queries, the system will use the SERIF analysis to decide what answer 
strategy is appropriate for this query.  For instance: 

Chapter 4: Distillation628 

 
Figure 4.4: BBN’s Live Real-time Distillation 

Serif
(BBN extraction engine)

QueryInterpreter

QUERY

Corpus & 
AnnotationsSet of ranked documents

Set of ranked snippets

DocumentRetriever

AnswerFinder

RedundancyRemover/
ResponseGenerator

Pattern Sets
regular expressions

relations
events

propositions

Interpreted query

Response



 
• “Tell me about Mwai Kibaki”  find-biography(“Mwai Kibaki”) 
• “Where was Bill Clinton born?”  find-location(“Bill Clinton was born”) 
• “Who won the 1991 World Series?”  find (“X won the 1991 World Series”) 

 
Further SERIF analysis will provide information beyond the selection of the answer 

strategy. For instance, for “Where was Bill Clinton born?”, the system will decide not 
only that this is a request for a geographical location, but also that the event in question 
can be normalized as Birth (Bill Clinton), enabling the next stage to easily select all 
documents where that event has been seen. 

4.3.2.5. Document Retrieval 

In the second stage, the BBN Distillation System retrieves a set of documents that it 
judges most likely to contain answers to the user’s query. There are two primary methods 
of document retrieval: a tf/idf index and an extraction database.  

The extraction database serves as the primary method of document retrieval, with the 
tf/idf index being used primarily for re-ranking or when there is no extraction information 
available for the query (this will happen when the query contains no named entities, 
relationships, or events, e.g., “List facts about [the mad cow disease outbreak]”). 

Each type of query has a document retrieval strategy associated with it, made up of 
one or more sub-strategies. Available sub-strategies include: 
 

1. Find documents containing name X. 
2. Find documents containing name X and name Y. 
3. Find documents containing a relationship between name X and name Y. 
4. Find documents containing an event of type E with an argument of name X. 
5. Find documents containing both name X and an event with type E. 
 
These searches are performed over all translations of the corpus documents, as well 

as, the source-language versions of the corpus documents, using the translated version of 
the query. Document- and entity-level statistics are used to rank the results returned by 
these sub-strategies. There are also full text and fuzzy text search sub-strategies available 
to the system.  

The combination of these sub-strategies results in a ranked list of documents.  The 
system then uses this list of documents to constrain a tf/idf search incorporating all of the 
words from the query. The scores from the tf/idf query are normalized and combined 
with the normalized scores from the database queries.  

For instance, we consider the query “List facts about [the contested election of Mwai 
Kibaki]”. During the query interpretation stage, BBN’s Distillation System will identify 
that this query contains an Election event with Mwai Kibaki as an argument. During the 
document retrieval stage, the system will therefore search first for documents containing 
Election events with Mwai Kibaki as an argument (Strategy 4).  If that does not return 
enough documents, then it will search for documents containing Election events and the 
name Mwai Kibaki (Strategy 5). If this still returns only a few documents, the system will 

Handbook of Natural Language Processing and Machine Translation 629 



then back-off to searching for all documents containing Mwai Kibaki (Strategy 1). The 
system will then run a tfi/df query (using the words contest election Mwai Kibaki), 
constrained to include only those documents that the database found. The scores of the 
tf/idf search will be combined with the scores from the database search and a ranked list 
of documents provided to the next stage. 

As mentioned previously, BBN’s preprocessing produces multiple translations of the 
same source text.  During document retrieval, additional translations are included to 
increase the likelihood that relevant snippets are found in the text (the Response 
Generation stage ensures that we do not produce overlapping answers from the same 
source document).  

4.3.2.6. Answer Finding 

In the third stage, BBN’s Distillation System uses patterns to find answers to a query 
in the set of documents returned by document retrieval. To do this, the system must first 
match the entities or topics in the query with the entities and phrases in the document. 
Entity matching is performed using a combination of the within-document co-reference 
information (linking names to descriptions and pronouns) and the cross-document co-
reference database (linking names to other names). So, the system is able to match “Find 
statements by [Bill Clinton]” to “he said…” Topic matching is performed using the 
proposition trees (or text graphs) described in Section 4.4.4.4.  This matching strategy 
allows the system to detect the similarity between phrases that are semantically similar 
but do not share surface structure or key lexical items. For example identifying the 
similarity between “Clinton met the Kenyan president in July 2005” and “the meeting 
between Clinton and Kibaki happened in 2005” 

Once the entities and topics have been found in a document, the system uses query-
specific patterns to identify sentences that contain answers.  The query-specific patterns 
use extraction structures (e.g., relations and events), syntactic structures (propositions), 
and regular expressions.  For instance, for the query “Provide a biography of Bill 
Clinton,” one pattern might be [find all snippets that express a “family/social” relation 
with Bill Clinton as an argument].  This pattern would select both “Chelsea, daughter of 
former president Bill Clinton”, and “Clinton’s friend Vernon Jordan.” 

This stage generates a ranked list of answer “snippets” (text extracted from corpus 
documents), which are delivered to the fourth and final stage of the live question-
answering process. 

After answer finding, as described in Section 4.4.5, a statistical process merges and 
re-ranks the response snippets from BBN and PowerAnswer.  

4.3.2.7. Redundancy Removal and Response Generation 

The goal of this stage is to identify and remove redundant information from the set of 
answer snippets identified by the previous stage. To do this the system must identify all 
phrases that overlap in meaning, for instance, “Abu Abbas was arrested in Iraq” and “his 
capture in Iraq”. For this process, the system relies primarily on “proposition nodes” as 
the atomic unit of redundancy and output. These are best described as parse nodes, 
normalized with regard to predicate-argument structure, thus, they are the system's 

Chapter 4: Distillation630 



closest approximation for a “concept” or nugget in the text. The system uses a bottom-up 
algorithm for finding directional similarities between nodes, using exact match, 
synonyms, syntactic structural comparisons, and cross-document co-reference 
information. In practice, redundancy between a pair of snippets, or nodes, is rarely a true 
or false quantity, so we assign weights to the similarity between any two phrases.  

The system then uses these weights to decide which snippets should be included in 
the response and which should be reported only as supporting information. The system 
also decides at what point the response is more likely to lead to spurious irrelevant 
information than to add to new, relevant information being presented, and prunes the 
response accordingly, using a number of features such as the similarity of a given snippet 
to all previous snippets and the level of confidence that system has in the snippet. 

At the end of this fourth stage, the complete response — a ranked list of relevant 
snippets, as well as, sets of additional redundant snippets reported as supporting 
information — is returned to the user.  
 

4.3.3. Distillation at SRI - The NIGHTINGALE System 
Authors: Kathleen McKeown, James Allan, Ralph Grishman, Dilek Hakkani-Tür, Julia Hirschberg, and 

 

4.3.3.1. Introduction 

SRI’s NIGHTINGALE Distillation Engine features information retrieval tuned by 
templates from a set of richly annotated documents, a suite of response generators also 
tuned for the different templates, and a redundancy detection component that operates 
below the sentence level.  

 
Figure 4.5: NIGHTINGALE Distillation Architecture 

An overview of the system architecture is shown in Figure 4.5. It shows that the first 
step in processing is to parse the input XML query, retrieving template type and query 
arguments. The UMASS INDRI information retrieval engine (see Section 4.3.3.3) is 
called next with both the arguments and template as input. It searches through the corpus 
collection, which has been annotated with a variety of linguistic information, including 
parses, POS tags, and named entities. The relevant documents are retrieved and the 

Handbook of Natural Language Processing and Machine Translation 631 

Gokhan Tür 

 

Search 
engine

Annotated
data

Query
analyzer

Event
Multi-arg
IE/Summ
response 

success

erro
r/e

mpty

Resolve 
references

Backup
response
generators

Chunking,
Citations,

redundancy

XML
query

Response
And

Citation
XML

Search 
engine

Annotated
data

Query
analyzer

IE-based
Event
Multi-arg
IE/Summ
response 
generators

success

erro
r/e

mpty

Resolve 
references

Backup
response
generators

Chunking,
Citations,

redundancy

XML
query

Response
And

Citation
XML



template specific response generator is invoked to extract relevant sentences from the 
documents. 

One feature of NIGHTINGALE distillation was its ability to handle noise in the input 
documents. It included a facility to generate name variations in order to retrieve more 
relevant information when the query contained a name as an argument. It also exploited 
the speech features that were available in annotation to better access relevant information 
in speech documents. In the following sections, we describe the different components of 
the system.  

4.3.3.2. Annotated Documents 

An extensive set of annotations were added to the entire distillation corpus for use by 
the response generators. These annotations generally followed the format and content of 
the ACE [Automatic Content Extraction] 2005 guidelines. These included: 

 
• named entities (including people, organizations, and locations) 
• noun phrases referring to people, organizations, locations, and co-reference 

relations among these NPs 
• date and time expressions, including normalized dates or date  ranges when 

computable 
• instances of 18 semantic relations, such as affiliation with  an organization 
• instances of 33 types of events 
 

Several of the ACE event types correspond closely to events sought by the GALE 
query templates, such as prosecutions and attacks. These annotations were generated for 
English sources.  For Arabic and Chinese sources, annotations were generated on the MT 
output.  In addition, for Chinese, a second set of annotations were produced directly from 
the source language texts and then mapped to the MT output using the Chinese-English 
alignment information produced by the MT system. Furthermore, for English text sources 
we produced parse trees and predicate argument structures in GLARF [Grammatical 
Logical Argument Representation Framework]. 

Chapter 4: Distillation632 

The NIGHTINGALE System had multiple response generators, some of which 
handle more than one template type. In some cases, multiple response generators were 
used for the same template and the responses were merged to produce the final answer. If 
the primary response generator failed to return a response, the back-up response 
generator was called. We used a generic, query-focused summarization system as back-
up, which has not been tuned for any of the template types. The generated response was 
then passed through redundancy detection, a system which uses a graph based method to 
determine which sentences should be included in the response and which should be 
included only as redundant sentences. The redundancy detector also retrieves the 
citations. Finally, the name rewriting system was called to include full names and full 
temporal references for every pronoun and partial names.  



4.3.3.3. The Indri Search Engine1 

The information retrieval part of the system was used to search for documents likely 
to contain answers to the questions.  All documents were indexed using the Indri IR 
system from the UMass and CMU Lemur toolkit, a state-of-the-art retrieval system that 
combines language modeling probability estimates and field support wrapped in a highly 
expressive query language. 2  Mandarin and Arabic documents were indexed both in the 
source language and in translation; audio material was indexed after being transcribed 
and translated.  In addition to capturing the text of the documents, all annotations were 
indexed so that they could be queried directly - e.g., finding references to “Austin” used 
as a person's name.  The system also included an estimate of document quality that was 
used to decrease the chance that poor-quality documents would be retrieved when more 
readable - and therefore parse able -  relevant material was available. 

GALE template queries were mapped to Indri queries that were tuned on training 
data: each template, therefore, generated a query that combined keywords, fields, 
proximity operators, and weights differently.  For example, a template that required 
information about a person would prefer documents where the name was actually tagged 
as a name, but would also consider the name string if it wasn't tagged, and would 
ultimately consider matching only parts of the name.  Cross document co-reference 
information was incorporated if appropriate to support alternate forms of the name, 
though that ended up not being helpful in the evaluation. 

Finally, by using Indri as a search engine, it possible for other members of the 
NIGHTINGALE project to issue queries separately from the GALE templates.  This 
capability meant that they could do corpus-based processing of the parts of the query to 
better adapt to its peculiarities: if a location occurs thousands of times in a corpus, there 
may be little value in backing off to a more general location. 

4.3.3.4. Response Generators 

NIGHTINGALE used a variety of different approaches to response generation. These 
included an approach based on detection of event sub-parts, an approach involving 
interleaved IR, information extraction (IE), and summarization, an approach for multi-
argument queries (e.g., Template 6), a machine learning based approach, a combined IE 
and summarization based approach, and an IE based approach. In this section, we provide 
some examples of the different approaches that were taken. 

The event detection based approach was used for Templates 1 and 10. The 
NIGHTINGALE System uses a form of unsupervised learning over documents returned 
by the Indri information retrieval engine to create a shallow semantic network 
representation of a document collection corresponding to the event in question. This 
semantic network is used to identify important event constituents (i.e., statistically 
significant atomic relations, Filatova and Hatzivassiloglou, 2003) and the sentences that 
best cover these constituents, and thus, should be included into the final answer. 

                                                 
1 http://www.lemurproject.org/indri/ 
2 http:www.lemurproject.org  

Handbook of Natural Language Processing and Machine Translation 633 



Interleaving of IR, IE and focused summarization was used for Template 8. We 
interleave generation, using IR in high precision mode in the first stage to return a small 
number of documents that are highly likely to be relevant. Information extraction of 
entities and events within these documents is then used to pinpoint highly relevant 
sentences and associated words, including name variants are selected to revise the query 
for a second pass of retrieval, improving recall.  As part of this process, we approximate 
the relevant context by measuring the proximity of the target name in the query and 
extracted events. We employ an IE system trained for the tasks of the 2005 Automatic 
Content Extraction evaluation, which include entity and event extraction. ACE defines a 
number of general event types, including Justice events, which cover indictments, 
accusations, arrests, trials, and sentencing. The union of all these specific categories gives 
us many of the salient events in a criminal justice case from beginning to end. The 
program uses the events, as well as, the entities, to help identify the passages that respond 
to the question. 

Query-focused summarization was used for Templates 3, 4, 13 and 14. This approach 
takes a person or organization as input. It filters all sentences which mentioned the entity 
or organization and extracts these sentences. The sentences are then clustered and a 
representative sentence from each cluster is chosen for the response. The clusters are 
rank-ordered by their relevance to the query, and also, by how much overlap there is with 
sentences already included in the response.  

We use a combination of IE and query-focused summarization for Template 12, 
which produces a biography for an individual. IE biography patterns are learned using a 
combination of search on Wikipedia and Google. Seed tuples for fields such as date of 
birth, place of birth are extracted from formatted tables in Wikipedia. Sentences 
containing these tuples are identified in the accompanying text and the patterns 
corresponding to their usage are constructed. These patterns are used to identify 
additional sentences from Google. For fields which are not likely to have any reliable 
patterns (e.g., religion of an individual), we use two language models to distinguish 
between sentences that are likely to be biographical sentences and those that are unlikely 
to be biographical. A biographical language model is trained from Wikipedia biography 
articles and a non-biographical language model is trained from TDT news articles. 
Sentences extracted from relevant documents containing the query name are kept for the 
answer if they are closer to the biographical model than the non-biographical model.  

Some of the response generators rely primarily on information extraction. These 
include Templates 15, 16 and 17, which are looking for information about arrests, attacks 
and locations. For the first of these, we use annotated events in the corpus to identify 
sentences containing arrests and attacks. For the last of these, we use named entity 
identification to locate the queried person or organization and extract the location that 
occurs in the same sentence.  

Finally, another method that we use for response generation is based on supervised 
learning. We used the training data provided by the Linguistic Data Consortium (LDC) of 
paired queries and responses and learned features that could help to identify relevant 
sentences. We employ a data-driven statistical method for sentence extraction in 
information distillation, and treat the problem as a binary classification task, where each 
sentence is classified as relevant (positive), or not relevant (negative). For extracting 

Chapter 4: Distillation634 



classification features, all names in each candidate sentence and query are extended with 
possible variants. A set of syntactic and semantic features is computed from these 
sentences, and a graph structure, that is used for feature extraction, is formed (Levit, et al. 
2006). The syntactic features include part-of-speech tags and syntactic parse trees, and 
the semantic features include information extraction annotations, such as named entities, 
and semantic role labels. The names matching the ones in the query are also marked as 
so. N-gram and inclusion features are extracted from these graphs, and enhanced with 
various similarity based features between the sentence and the query. 

4.3.3.5. Use of Speech Features 

We conducted experiments to determine the best unit to choose for response 
generation, considering hypothesized sentences, automatically identified intonational 
phrases, and pause-based chunks (separated by 250ms and by 500ms of silence).   We 
extracted features for training automatically from the speech signal associated with the 
appropriate chunks and also used hypothesized speaker turn and speaker identity 
information provided by the GALE SRI annotation team to train classifiers for each 
segmentation type.  Comparison with hand-written summaries showed that intonational 
phrase-based summarization yields the best performance in terms of F-measure, with a 
score of 0.516, compared to sentences (0.434), 250ms pause-delimited segments (0.432) 
and 500ms pause-delimited segments (0.381).  We used these findings to improve the 
response generation engine for Template 5 queries.  

We also evaluated alternative input segmentations for news story boundary detection 
in: English, Mandarin and Arabic. Our results suggest that the best performance can be 
achieved by using 250ms pause-based segmentation or sentence boundaries determined 
using a very low confidence score threshold. 

We integrated prosodic and acoustic information and disfluency detection into the 
distillation process for templates other than Template 5.  We used this information to 
identify speaker roles in Broadcast News (anchor, reporter, other), which we also use to 
improve response generation. 

4.3.3.6. Redundancy Detection 

Practical attempts at reducing redundancy in the output of these systems, however, 
usually involve clustering the sentences of the generated output, picking a representative 
sentence from each cluster and discarding the rest. Although redundant information can 
be removed in this manner, clustering approaches tuned for coarse matches will also 
remove non-redundant information, whereas clustering approaches tuned for near-exact 
matches will end up removing very little repeated information. This is simply a 
consequence of the fact that information can, and commonly does, exist at the 
subsentential level and that clusters of sentences don’t necessarily correspond to clusters 
of information. 

In NIGHTINGALE, we use a novel graph-based representation to detect redundancy 
within documents given any high performance algorithm for identifying similarities 
between sentences. We identify redundancy at the sub-sentential level between the 
sentences of a document through alignment and use this to build a bipartite graph which 

Handbook of Natural Language Processing and Machine Translation 635 



enables us to keep track of redundant information across sentences. Common information 
between pairs of sentences, detected with the alignment algorithm, can be extrapolated to 
document-wide units of information using the graph structure. Individual sentences that 
are encompassed by the information in the rest of the document can then be identified 
and removed efficiently by using a well known greedy algorithm adapted for this 
representation. 

 

4.4 Enabling Technology Breakthroughs to Improve 
Distillation Capabilities 

 

4.4.1. SERIF Language Processing — Effective Trainable 
Language Understanding 

Authors: Lance Ramshaw, Elizabeth Boschee, Marjorie Freedman, Jessica MacBride, Ralph Weischedel, and 
Alex Zamanian 

4.4.1.1. Introduction 

For a decade, our vision has been a trainable, language-independent understanding 
system that would:  

 
• handle multiple genres, such as newswire, broadcast news, blogs, email, and 

meeting and conversation transcripts 
• be portable to other languages and other domains, given training data 
• be robust to noisy input, e.g., speech recognition, OCR, and machine translation  

 
For BBN’s Distillation System, SERIF serves as the core NLP engine which extracts 

the features used for document retrieval, answer selection, and redundancy detection. 
SERIF (Statistical Entity and Relation Information Finder) is a trainable, language-
independent understanding system that produces rich linguistic analyses (including full 
parses, who did what to whom, and co-reference). A propositional representation derived 
from the parses provides semantic features used in co-reference, relation, and event 
models.  

The names, relations, and events extracted by SERIF supplement word-based 
document retrieval. The propositions, relations, and events serve as features that identify 
relevant snippets in a document. SERIF’s entity co-reference allows the system to 
identify snippets even when a relevant entity is referred to with a pronoun or description. 
Section 4.4.1.2 describes these uses in more detail. In Section 4.4.1.3.5 we describe how 
we use a distance metric defined over SERIF’s propositions to find snippets that are 
similar to a topic, or event specified in a query. 

Chapter 4: Distillation636 



Historically, the initial motivation for SERIF was the information extraction task as 
defined in NIST’s Automatic Content Extraction (ACE) evaluations. 3  Rather than using 
handcrafted finite state patterns based on shallow parsing, patterns that identify only base 
noun phrases and verb groups (a common approach to information extraction systems 10 
years ago), our design choice was a full parser, trained on a Treebank (Marcus et al. 
1993).  Rather than mapping directly to domain-specific extraction targets (specific 
classes of entities, relations, and events), our design was to map text to a propositional 
structure.  Since the work started prior to the release of the first PropBank for English 
(Palmer et al. 2005) and since our goal was to capture predicate argument structure for 
more than verbs, we created a more inclusive propositional representation.  Linguistic co-
reference was always included, at first rule-based, then using trained statistical models.   

The system maps from propositional structure to an application-specific 
representation, e.g., the entities, relations, and events of an ACE evaluation, or to an 
application-specific ontology for a reasoning system.   

SERIF has been extensively applied and repeatedly tested in ACE (information 
extraction), GALE (query-response distillation and the who, what, when, where, and why 
of distillation), and AQUAINT (question answering). Its multilingual capability has been 
tested and evaluated in English, Arabic, and Chinese in ACE, GALE, and AQUAINT.  

4.4.1.2. Designed for Multiple Contexts 

 
SERIF’s design has been driven by a diverse set of application goals well beyond 

information extraction from clean text: 
 
• In AQUAINT and GALE, SERIF analyses of both queries and texts are matched 

at the entity, proposition, and relation levels to identify segments responsive to a 
query and to reduce redundancy in complex answers. 

• To improve MT performance, SERIF output has been used to derive dependency 
trees for syntax-directed translation (see Shen et al. String-to-Tree Translation 
Models, in 2.4.5).  

• SERIF has been used to supply the knowledge for a system that learns to read 
relations and concepts (Boschee et al. 2008). 

• A windowing version was used to process speech recognition input, where 
sentence boundaries must be inferred (Ramshaw et al. 2001).  

• SERIF was applied to noisy OCR output. 
• SERIF can produce alternative parses to focus on distinctions that will produce 

usefully different interpretations. 

4.4.1.3. SERIF System Description 

The system’s overall structure is shown in Figure 4.6. The initial stages of processing 
recognize relevant document metadata and break text into sentences. Each sentence in 

                                                 
3 ACE results site. NIST: http://www.itl.nist.gov/iad/mig//tests/ace/  

Handbook of Natural Language Processing and Machine Translation 637 



turn is then processed through various interpretation models. Once sentence processing 
has been completed, the document-level models (like co-reference models) are run. 

Figure 4.7 shows sentence level processing. The sentence string is first tokenized 
using a heuristic component that tries to match the tokenization used in treebank data (for 
English, the Penn Treebank).  Name finding, parsing, nominal classification, and 
proposition finding are described in the following sections. The value finder identifies 
ACE value strings like dates, times, and monetary amounts. Sentence-level relation-
finding involves a preliminary run of the relation model for pronoun typing. For example, 
while “their” in “their goals” could be of type Person, Organization, or GPE, in “their 
sister”, the type would have to be Person. When this information is available, it can 
reduce the pronoun co-reference model’s search space. 

SERIF supports beam search to track multiple interpretations for sentence level 
processing, thus reducing the chances that a suboptimal choice by an early stage model 
will prevent the system from finding the best overall interpretation. This capability has 
been used to improve the integration between name finding and tokenization for Chinese, 
and also to prefer alternative parses that result in more ACE relations. The beam search 
capability is limited to the sentence level by design, since it is rare for “garden path” 
alternative interpretations to remain ambiguous beyond sentence boundaries. 
 

Chapter 4: Distillation638 

 
Figure 4.6: Top Level SERIF Dataflow 

 
Figure 4.7: Sentence Level SERIF Processing 

 

Sentence String 
and Metadata Tokenization Name Finding

Value FindingParsingNominal 
Classification

Subtype
Classification

Proposition
Finding

Sentence Level 
Relation Finding

Metadata 
Processing

Sentence 
Identification

Sentence 
Level 

Extraction

Document 
Level 

Extraction

Document

APF

Metadata 
Processing

Sentence 
Identification

Sentence 
Level 

Extraction

Document 
Level 

Extraction

Document

APF

Top Level Serif Processing



Figure 4.8: Document Level SERIF Processing 

Once all sentences have been processed, SERIF executes the document level 
processing shown in Figure 4.8. The co-reference, event, and relation models are 
described below.  

4.4.1.3.1. SERIF Model Types and Features 

Though SERIF’s parser uses a generative model, most of the other components use 
discriminative models, either maximum entropy models or log-linear ones trained using 
averaged perceptron training (Collins 2002). These discriminative models use large 
numbers of binary features to model context. Some (e.g., the relation and co-reference 
models) apply to a single instance. Others (like the name model) are sequence models 
that predict an interpretation for an interdependent sequence of instances, selecting the 
most likely path over a lattice of possibilities. 

Many models use word-based features, and use a word clustering approach that 
extends the lexical coverage of such features using a word similarity measure, 
automatically derived from a large, unannotated corpus. This approach follows Brown et 
al. (1992), where words are clustered based on their distributional similarity. Clustering 
begins conceptually with each word in its own class, and then looks for pairs of words 
that can be combined into the same class with the smallest loss in average mutual 
information. BBN uses this approach to organize the entire vocabulary as a binary cluster 
tree. For example, “CPT” (an Irish corporate designator like “Inc.”) may not occur in the 
name training, but may still occur in the large clustering corpus, and should cluster near 
other corporate designator words that occurred in the name training. A word cluster 
feature would then fire when a word in that region of the tree was assigned an ORG tag. 
During training, that feature would receive weight from corporate designator words with 
that tag, and then at run time, it could help predict that “CPT” should be tagged as part of 
an organization name. 

Note that cluster size will be important in determining the usefulness of a feature. A 
cluster that is too small may not include enough terms that occur in training to receive 
much weight. A cluster that is too large will tend to include quite diverse terms, and the 
resulting positive and negative examples during training will tend to cancel out, leaving it 
with relatively little weight. To allow the model to automatically learn which size clusters 
work best, feature templates are created for various sizes, expressed in terms of levels in 
the cluster tree.  

BBN has reported experiments (Miller et al. 2004) showing that word cluster features 
like these when combined with active learning techniques can allow name models with 
equivalent performance to be trained from only a quarter as much name-annotated 

Handbook of Natural Language Processing and Machine Translation 639 

 

Sentence Theories Coreference: Names, 
Nominals, Pronouns 

Document Level
Relation Finding

Document Level
Event Finding

Event Value
Finding



training data as would normally be required. SERIF makes extensive use of such word 
cluster features not only in its name models, but also in its models for nominal 
classification, co-reference, relations, and events. 

4.4.1.3.2. Preprocessing 

English tokenization is fairly straightforward, and is implemented using handwritten 
heuristics. Trained tokenization models for Chinese and Arabic assign tags to mark which 
characters start new words versus continuing previous ones. 

4.4.1.3.3. Name Finding 

SERIF uses a perceptron-trained log-linear sequence tagging model to recognize 
names. The tag set for the model includes X-ST (for “start”) and X-CO (for “continue”) 
tags for each name class X, along with NONE-ST and NONE-CO tags for words that are 
not part of any name. This approach distinguishes between two contiguous names and a 
single longer name of the same type, but does not handle nested names. In ACE, names 
are non-decomposable. Miller et al. (2004) describes this component in further detail.  

4.4.1.3.4. Parsing 

The BBN Parser implements a generative lexicalized PCFG model (Miller et al. 
2000) similar to other current statistical parsers (Charniak 2000; Collins 2003). Trained 
on parse trees from the Penn Treebank (Marcus et al. 1993), the model estimates the 
probability of a particular parse tree as the product of the probability of the modifier 
attachment steps required to assemble the tree.  

The generation of the right-hand-side (RHS) of a rule is broken up into a series of 
smaller steps, with a specified “head” child generated first, followed by its premodifiers 
and postmodifiers. The head word of the head child of a constituent is also carried along 
with each node as its lexical head, and possible attachments are evaluated based in part 
on this lexical information.  

The generative process for each constituent begins by choosing its syntactic type, 
followed by choosing the POS tag of the head word and then the actual head word with 
its features (unless this constituent inherits its head word from its parent). The head child 
is then generated, followed by its premodifiers and postmodifiers. 

The probability at each step is computed using maximum likelihood from the counts 
of similar events seen in training. Thus for example the constituent type of a modifier is 
conditioned on the constituent types of the parent, of the head constituent, and of the 
previous modifier in the given direction, as well as, on the head word of the parent. In 
“ate the apple”, the probability of an NP as a postmodifier of the VP with head “ate” 
would be based on the tuple VP (for the type of the parent), VBD (for the POS tag of the 
head), START (signaling that there is no previous postmodifier), and “ate” for the head 
word of the parent.  

To handle data sparseness, the prediction based on all features is combined with 
backoff model predictions using feature subsets, e.g., the set of all features minus the 
head word feature.  In some cases, multiple backoff stages are used with mixture weights 
computed using a modified version of the Witten-Bell formula.  

Chapter 4: Distillation640 



The search for the most likely parse is organized bottom up, using beam search over 
a CKY-style chart. To ensure that the parse will be consistent with earlier results from the 
name model, name spans are initialized in the chart as pre-parsed leaves. (More data is 
typically available to train the name model, because name annotation is less expensive 
than Treebank style annotation.) 

The parser can return an N-best list of alternative parses, rather than just a single best 
parse, with heuristic tests used to prefer alternatives that differ in ways likely to be 
significant for extraction. 

For languages or domains where Treebank training data is not available, SERIF also 
supports an alternative partial parsing mode where a noun phrase chunk model is 
substituted for full parsing. 

4.4.1.3.5. Propositions 

SERIF extracts propositions from the parses to represent their semantic import 
(including verb/noun argument structure and modification relations). Later models like 
the relation model use these propositions as predictive features, without enumerating the 
different ways in which those propositional connections can be encoded in the underlying 
parse tree.  

The proposition finders for each language are currently heuristic components that 
output a set of relations that use numbered entity arguments (e1, e2, …) combined with 
lexical items taken from the text. For example, the propositional representation “Sam 
likes fudge” is shown in Table 4.4.

 

 
Table 4.4: Propositions for 'Sam likes fudge' 

The first proposition identifies the subject and object entities for the verb “likes”; the 
“<sub>“ and “<obj>“ labels are logical, even if the surface grammatical form is passive. 
The second proposition relates entity e1 to the string “sam” that is its name; the “<ref>“ 
argument label identifies the relevant entity mention. The third proposition asserts the 
property “fudge” of the object entity e2, which comes from the head word of its noun 
phrase mention. 
 

p35 = <name>(<ref>:e96, “yury zinin”) 
p40 = shot<verb>(<obj>:e96, in:e97, while:p39) 
p36 = back<noun>(<ref>:e97) 
p39 = leaving<verb>(<sub>:e96,<obj>:e98) 
p38 = block<noun>(<ref>:e98, <poss>:e96) 

Table 4.5: Propositions for 'Yury Zinin was shot in the back while leaving his apartment block’' 

There are copula, modifier, possessive, set, and comparative predicate types. 
Arguments typically represent entity mentions, but can also represent other propositions 

p1 = likes<verb>(<sub>:e1, obj>:e2) 
p2 = <name>(<ref>:e1, “sam”) 
p3 = fudge<noun>(<ref>:e2) 

Handbook of Natural Language Processing and Machine Translation 641 



(using their label, like “p1”) or literal text (as in the object of “say” in “Mary said no”).  
The parse for the sentence “Yury Zinin was shot in the back while leaving his apartment 
block” results in the propositions shown in Table 4.5. 

4.4.1.3.6. Nominal Mentions 

After predicting names, parses, and propositions, SERIF processes mentions to 
identify and type nominals and pronouns. The first step identifies “structured mentions,” 
those that combine primitive mentions in ways that call for special processing such as 
appositives, lists, or partitives.  

A discriminative classifier predicts either one of the target semantic types or NONE 
for non-structured mentions.  The model uses contextual features including word clusters, 
WordNet hypernyms (for generalization), and features based on word endings. Other 
features based on propositions can help predict, the semantic type of subjects, for 
example the subject of “say”.  

4.4.1.3.7. Co- Reference 

The co-reference process, which links together those mentions within a document 
that refer to the same entity, is organized into three stages covering name, nominal, and 
pronominal mentions.  

The name and nominal co-reference models are both discriminative, feature-based 
models that operate left-to-right through the text, deciding for each instance whether to 
treat it as the first mention of a new entity or to connect it to one of the entities previously 
mentioned.  

The pronoun co-reference model makes a similar sweep through the text, but also 
allows for linking a pronoun forward to a name or nominal mention later in the same 
sentence.  Discriminative and generative models are available (Ramshaw et al. 2001), 
with features that include a distance measure that counts constituents in the order 
suggested by Hobbs (1977), along with a linear distance feature and features based on 
words and on the predicted mention types, number, and gender.  

4.4.1.3.8. Relations 

Relations link two entities. SERIF’s primary relation model is a classification model 
that is applied to each pair of mentions in a sentence to predict either a particular relation 
type or NONE as most likely, based on a set of contextual features and their trained 
weights. Relation model performance has also been improved by incorporating a number 
of subsidiary models, either as separate models whose output is then used as an additional 
feature for the main model, or by heuristically combining the predictions of the two 
models to produce a more optimal joint prediction. 

4.4.1.3.9. Events 

Events in SERIF can have arbitrary numbers of arguments, including both ACE 
entities (e.g., people) and non-entity values (e.g., dates). For each event, a single trigger 
word or phrase is annotated. SERIF’s event model works in three stages: (1) identify 

Chapter 4: Distillation642 



possible event triggers, (2) attach likely arguments to each possible trigger, and (3) 
decide which trigger + argument clusters to report, merging those that refer to the same 
real world event.  

The event trigger stage intentionally favors recall over precision, e.g., tagging “hit” 
as an attack trigger in both “bombs hit Iraq” and , “hit a home run”. Triggers are pruned 
in the third stage, after potential arguments have been assigned.    

The primary trigger-finding model is a perceptron-trained discriminative classifier. 
The model uses features about the word and its context, including proposition features, 
word cluster and WordNet synset features, and document topic features. Other trigger 
models use simple maximum likelihood estimation to identify cases where the addition of 
the subject or object argument strongly increases the model’s confidence compared to a 
backoff model based only on the trigger word. 

The second stage in the event model uses a discriminative maximum entropy model 
to determine the probability of each entity or value in a certain role (e.g., Agent, Artifact, 
or Time-Within) in a possible event. The model’s features capture both the surface-level 
and deeper syntactic connections between the trigger and potential arguments.  

The decisions about a trigger’s arguments are not independent. The resulting 
probability scores are used to select argument assignments for each trigger that maximize 
the total probability of the argument set while filling each role if plausible and restricting 
each mention or value to filling at most one role. For example, in the sentence “The 
defendant moved the guns”, “defendant” could be either the Agent or the Artifact of the 
move event. The presence of “guns,” as a likely filler for Artifact, will cause “defendant” 
to be classified as the Agent.  

In the final stage of the event model, the candidate clusters of trigger words and 
arguments are filtered with a set of heuristics and combined to produce a final set of 
events. A maximum entropy model predicts the likelihood that, for each pair of trigger 
word clusters, the two represent the same event, using primarily match/mismatch features 
between the event arguments or trigger words.  

Since these merging predictions are made independently, they can be inconsistent. 
For example, the model might predict that “the attack” should link to “the attack in the 
Spanish capital” link, and that the latter should link to “the incident in Madrid”, but still 
predict that “the attack” and “the incident in Madrid” should not link. In such cases, the 
link predictions are preferred over the no-link ones, because link decisions tend to be 
better informed than those not to link. 

4.4.1.3.10. Cross-Document Co-Reference 

BBN’s cross-document co-reference component links named entities across a corpus 
of documents.  We divide the problem of cross document co-reference into two sub-
problems name variation and entity disambiguation (Baron and Freedman 2008). The 
name variation component identifies name strings that could refer to the same entity. It 
uses measures of string similarity, lists of known aliases, and features pulled from 
SERIF’s output to produce lists of equivalent name strings. For each set of ‘equivalent 
names’, the entity disambiguation component runs an agglomerative clustering algorithm 
over all document entities that include one of the name strings in the set. Features used 

Handbook of Natural Language Processing and Machine Translation 643 



during agglomerative clustering include predicted document topics, relations and events 
extracted by SERIF, and document metadata.  

4.4.1.4. Evaluation Results 

SERIF has been a consistent top performing system in ACE evaluations of 
entities, relations, and events in English, Chinese, and Arabic over the past five 
years. Complete results for ACE in 2007 and 2008 and are available on NIST’s 
website (http://www.itl.nist.gov/iad/mig/tests/ace/). Table 4.6 provides ACE 
results for the highest, lowest, and average system in the entity detection and 
linking (EDR) and relation detection (RDR) tasks. These numbers reflect each 
site’s primary submissions. The ACE scorer maps system-produced entities to 
reference entities.  ACE value has been the official metric of the ACE evaluation. 
It puts a higher cost on certain entity classes (e.g., people are more important than 
facilities), certain mention classes (e.g., names are more important than 
pronouns). It penalizes systems for mistakes in linking, as well as, type and 
subtype detection. Incorrectly assigning a mention to an entity is very costly in 
terms of value score: for names, a system will be penalized 1.0 for the missed 
mention and an additional 0.75 for a mention false alarm. 
 

 English Arabic 
 EDR RDR EDR RDR4 
Top 52.6 11.6 43.6 5.5 
Average -53.3 7.7 17.3 5.5 
Low -269.1 3.8 -9.1 5.5 
SERIF 52.6 11.6 43.6 5.5 

Table 4.6: Value Score for ACE 2008:  LEDR and LRDR 

4.4.1.5. Conclusions 

SERIF’s combination of trained models working over full syntactic and propositional 
analyses has produced state-of-the-art performance on the core multilingual information 
extraction task and has also provided a foundation for a wide range of related language 
understanding applications, from speech and OCR input through to query analysis and 
response.  

SERIF’s predictions of ACE-style extraction elements and core syntactic structure are 
critical to BBN’s approach to Distillation. The extraction elements provide targeted 
document retrieval for specific entities and certain classes of events. We identify relevant 
answers using a rich pattern language that combines the extraction elements with 
propositions (see Section 4.3.2.6). The propositions are also used in a distance metric that 
identifies spans of text that are similar to a topic or event specified in the query (see 
Section 4.4.4.4). Extending these results going forward will call for richer, more 
integrated models, but building on the same foundation. 

                                                 
4 BBN was the only participant in Arabic RDR.  

Chapter 4: Distillation644 



4.4.2.1. Introduction 

Our Distillation approach is based on using document retrieval for finding relevant 
documents in response to a given query, and statistical classification to extract sentences 
as Snippets from the relevant documents (Hakkani-Tür and Tur 2007). The set of selected 
sentences is then reduced by removing redundancies. Here, we focus on sentence 
extraction for information distillation using binary classification. To train sentence 
extraction models, negative and positive (relevant) examples are computed from 
manually annotated answer keys, which have the relevant snippets and the corresponding 
document identifiers for each query. Then, possible variants of all names in each sentence 
and query are found and included as alternative spellings. Furthermore, a set of syntactic 
and semantic features is computed from these sentences, and a graph structure, that is 
used for feature generation, is formed (Levit et al. 2007). During sentence extraction 
from non-English documents, in addition to automatic translations of the candidate 
sentences, word sequences from the  original documents are used and have been shown to 
be beneficial experimentally (Singla and Hakkani- Tür 2008). Section 4.4.2.2.5 presents 
methods for combining these information sources during classification. 

4.4.2.2. Sentence Extraction 

The first step in sentence extraction is retrieving documents that are relevant to the 
given query. We use the University of Massachusetts Indri search engine (Strohman et al. 
2005) to find the relevant documents. Then the documents are segmented into sentences 
by the NYU ACE System (Grishman et al. 2005) for text and the ICSI+ sentence 
segmentation system for speech input (Zimmerman et al. 2006). While a similar 
information retrieval based approach may be used for the sentence extraction, we employ 
discriminative classification methods, for robustness to the noise introduced by the 
automatic speech recognition and machine translation systems for non-English and/or 
audio documents. 

4.4.2.2.1. Classification-Based Approach 

To train sentence extraction models, we extract negative and positive examples from 
the given answer keys, which have the relevant snippets and the corresponding document 
identifiers for each query. All sentences in the relevant documents are used as examples; 
and the sentences that are fully or partially in the answer keys are marked as positive 
examples and all the rest as negative examples. In this step, the same sentence can be 
marked as a positive example by one query and as a negative example by another. For 
building models from audio sources, we use speech recognizer output and align the 
automatic hypotheses with reference sentences to extract their class (positive or negative) 

Handbook of Natural Language Processing and Machine Translation 645 

4.4.2. Statistical Sentence Extraction for Multilingual 
Information Distillation  

Authors: Dilek Hakkani-Tür, Gokhan Tür, Michael Levit, Daniel Gillick, Adish Singla, and Sibel Yaman 



from the answer keys. Given the collection of all relevant sentences, x1, ..., xm, and 
irrelevant sentences, y1, ..., yn from each document dj ∈ D, where D is the set of documents 
that have at least one snippet as an answer to a query, we form the set:  S = {(x1, 1), ..., (xm, 
1), (y1, 0), ..., (yn, 0)}  

Then the sentence extraction for the distillation task is defined as estimating the 
conditional probability, P(c|si), c ∈ {0, 1}, that sentence si is relevant (c = 1) or not (c = 0). The sentences that have P(c|si) > θq, where the threshold θq is estimated using a held 
out set for each query q, are then output by sentence extraction. 

4.4.2.2.2. Finding Variants of Names 

Proper names, especially names of foreign origin, are often written in different ways. 
For example, Wikipedia indicates that over 30 different spellings for the name of the 
Libyan leader, Muammar al Gaddafi, have appeared in published media. 5 This variability 
creates a word matching problem for language processing and a data fragmentation 
problem for statistical language modeling used in speech recognition and machine 
translation, because variance of the same name may not be recognized as such. Since our 
sentence extraction approach relies on matching words, we automatically detect variants 
of names that refer to the same person using a novel unsupervised method for learning 
spelling edit probabilities. This method results in overall F-measure improvements on 
name variant detection experiments we performed on an in-house data set (and achieved 
around 0.80 F-measure), as well as, improvements on sentence extraction for distillation 
(Gillick et al. 2008). 

While finding variants of names is often addressed when forming databases, where 
entities are stored in structured fields (Cohen et al. 2003; McCallum et al. 2005), we 
consider its application to unstructured text. The name variant detection algorithm draws 
inspiration from statistical edit-based spell checking, developed by Kernighan et al. 
(1990) and improved by Brill and Moore (2000). To improve on standard edit-distance, 
we introduce edit probabilities, which include character and word substitutions, and 
abbreviations. We use the following unsupervised bootstrap method for learning the edit 
model: We find all pairs of names that differ by exactly one edit and assume that their 
match probability is computed using a TF.IDF based word context window similarity. 
Then the probability of each edit can be estimated by maximum likelihood. Using the 
resulting probabilistic edit model improves F-measure significantly. This algorithm and 
related experiments are described in detail in Gillick et al. (2008). 

4.4.2.2.3. Syntactic and Semantic Graphs 

In our approach, each sentence is represented as a directed acyclic graph, called a 
Syntactic and Semantic Graph (SSG) or Chart, which is an amalgam of elements from 
various annotation levels (Hakkani-Tür et al. 2005). An SSG of a sentence with N words 
consists of N+1 states that are connected by arcs labeled with SSG entries. Graph entries 
can be of several types. The simplest ones are words, so the trivial graph is just a single 

                                                 
5 http://en.wikipedia.org  

Chapter 4: Distillation646 



path whose arcs are words (in their natural order). Other annotation levels can be 
integrated in SSGs as well. In this work, we consider the five SSG entry types: 

 
• Words 
• Part-of-speech tags and syntactic parses 
• Arguments and targets of PROPBANK predicate-argument structures 

(Kingsbury et al. 2002) 
• Information extraction elements including entities, relation and event 

arguments with co-references 
• Slot values, which are those parts of each sentence which correspond to the 

variable portion of a given query.  

For example, for the query in Figure 4.9, the slot value for the variable portion of the 
query is “Baghdad”. Therefore, the word Baghdad is marked with a SLOT arc in the SSG 
of each sentence considered as a candidate answer for this query. 

These annotations are inserted into SSG as arcs parallel to the words they correspond 
to and span the same nodes with them. The SSG for sentence “John gave Mary his car” is 
shown in Figure 4.10, where arc prefixes indicate the SSG entry type. More information 
on the computation of SSGs is presented by Levit et al. (2007).  

 
Query: Describe attacks in [Baghdad] giving location, date, and number of dead and injured. Provide 
information since [28 Sept 2008]. 
Snippets: 
• Attack against a school bus filled with children 
• There were 45 students and 2 teachers in the bus 
• No organization claimed responsibility 

Figure 4.9: An example query and answering snippets. 

 
Figure 4.10: Syntactic and semantic graph for sentence “John gave Mary his car”; it contains 5 words (prefix 
w+), 10 syntactic nodes (prefix s+), 4 mentions of 3 entities (prefix a+), arguments of one ownership relation, 

and finally target and arguments of verb give (prefix p+) 

While most of the SSGs are computed offline, they are augmented with slot features 
once the query is received. To find instantiations of query slots in a sentence, we use 
weighted bag-of-words pattern matching, with the name variants described earlier, some 

Handbook of Natural Language Processing and Machine Translation 647 



linguistic knowledge (like verb nominalizations and synonyms), and world knowledge 
(such as gazetteer resources). Contributions of individual words to the overall score 
depend on their parts of speech and occurrence frequencies. For example if the location is 
“Iraq”, the word “Baghdad” is labeled also as “slot” with some weight. Similarly, if the 
query is about “George Bush”, but we have “Bush” mentioned in the sentence, it gets a 
much higher slot weight than “George” mentioned in the sentence. Furthermore, if the 
slot is “Qaddafi” but the sentence has a variant of it, say “Kaddafi”, a weighted slot arc is 
also introduced. These weights are optimized on a held out test set for each template.  

4.4.2.2.4. Feature Generation 

Two types of features are extracted from SSGs: n-grams and inclusion features. 

n-gram Features 
Since SSG arc labels of all types are treated the same way, n-grams extracted from 

them can consist of entries that are quite heterogeneous in nature. For instance, from the 
SSG in Figure 4.10, the following n-grams can be extracted (we use “⊎” as a connector in 
n-gram representations): 

 
a+PER ⊎   p+give targ ⊎   w+Mary 
w+gave ⊎   a+PER ⊎   s+NP 
w+John ⊎   s+VP 
a+PER ⊎   s+VP 

 
For example, an n-gram such as “bombed SLOT” would be a strong indicator of an 

attack in the requested location entered as the query slot value. This generation process is 
very powerful; paired with a task-dependent feature selection process, it allows keeping 
only those features that strike just the right balance between specificity and generality, 
while ignoring everything else. 

For instance, if the question is about John’s actions, the third feature in the list above 
seems most relevant. If we are asked about people’s actions in general, the fourth feature 
will probably suit our needs better. Finally, if the focus is on the process of giving, the 
first feature in the list should be favored with respect to the others. 

Inclusion Features 
While n-grams contain information about sequences of chart entries, the inclusion 

features focus on parallelism. For example, the word John is at the same time a noun 
phrase and an entity of type PERIND (person, individual), but also the first argument in a 
relation and arg0 (agent) for the “giving” predicate. These features are obtained by 
computing all pairs of chart entries that “contain” each other (in terms of the span of the 
words they account for). In the chart in Figure 4.10, some of the inclusion features will be 
(“∋” stands for “includes”)  

 
a+Ownership arg1 ∋   a+PER-IND  

Chapter 4: Distillation648 

s+S ∋   s+VP  
a+VEHICLE-LAND ∋   w+his  



 
SLOT values are also helpful with inclusion features. For example, knowing that the 

name mentioned in the person name slot is the object (arg1) of the predicate “arrest” 
would help a template questioning arrested people. 

4.4.2.2.5. Cross-Lingual Processing 

In cross-lingual distillation, the user query is in one language (usually called target 
language), and documents are in other languages (called source language). In such a 
case, one can either search the query in source language (in this case, Arabic or 
Mandarin) documents and then translate the output to target language (in this case, 
English) or translate the source language documents to target language and search the 
machine translation (MT) output, or search both and combine the outputs. 

Since the presented approach is largely language independent, we also explored 
techniques for cross-lingual sentence extraction for information distillation from non-
English sources and combined the two systems working on the source side and target 
(English) side. Usually, there are more natural language processing (NLP) resources and 
tools on the English language side. However, the noise introduced by MT into the 
documents usually degrades the performance of following NLP tasks. There are at least 
three ways of using information from both sides, as shown in Figure 4.11: 

 
Figure 4.11: Three ways of combining sentence extraction in source and target languages 

target language data (that is, the target language model) can be interpolated, 
estimating the new probability:  

 

Handbook of Natural Language Processing and Machine Translation 649 

ܲሺܿ|ݏሻ  ൌ ߣ  ൈ ெ்ܲሺܿ|ݏሻ  ሺ1 െ ሻߣ ൈ ௌܲோሺܿ|ݏሻ  
where ߣ ∈  ሾ0, 1ሿ is estimated from a held-out data set. 

1. Posterior Probability Interpolation: For each class   ∈        and sentence s, 
the posterior probability estimated by the two models,           from the 
classification model trained from the source language data (that is, the source 
language model) and          from the classification model trained from the 



 
2. Using the output from one model as a feature in the other: The probability 

estimate, ௌܲோሺܿ|ݏሻ, and/or the class estimate ܿ̂ௌோ from the source language 
model can be used as a feature in the target language model (or vice versa). 

3. Combining features from Source and Target Language Sentences and MT 
output: Instead of training two separate models from source and target language 
data, the set of features computed from the two data sets can be combined and a 
single model is learned from them. Assume ܵ  is the set of features extracted 
from the sentences in the source language, ܶ is the set of features extracted from 
the machine translation output corresponding to ܵ, and ܿ is the relevance 
annotation (where ݅ ൌ  1, . . . , ܰ, and N is the number of examples from source 
language documents). Then one can learn a model from (ܵ ∪ ܶ , ܿ), instead of 
the two models learned from ( ܵ, ܿ) and ( ܶ, ܿ). To utilize the answer keys from 
English documents, with features ܧ  (where ݆ ൌ  1, . . . ,  and M is the number ,ܯ
of examples from English documents) and relevancy annotations ݁, one can treat 
English examples in the same framework by considering unknown values for 
source language features. The classification algorithm used should be able to deal 
with unknown feature values for this case. 

 
These approaches are described in detail by Singla and Hakkani-Tür (2008). 

4.4.2.3. Experiments and Results 
# Text 
1 List facts about event: [EVENT] 

8 Describe the prosecution of [PERSON] for 
[CRIME] 

12 Provide a biography of [PERSON] 
15 Identify person arrested from 

[ORGANIZATION] and give their name and 
role in the organization and time and location 
of arrest 

16 Describe attacks in [LOCATION] giving 
location, date, and number of dead and injured 

Table 4.7: Query templates considered for system evaluation 

We focus on sentence extraction for five types of queries used for the DARPA GALE 
Program, listed in Table 4.7. 

4.4.2.3.1. Experiments with English Data 

Documents that supplied answer keys for training and test queries came from 
different corpora distributed by Linguistic Data Consortium. We used the English text 

Chapter 4: Distillation650 



part of the GALE training data (LDC catalog number: LDC2006E15) for training and the 
English text part of the GALE corpus (LDC catalog number: LDC2007E13) for testing. 
Overall, there was an average of 24 training and 9 test queries per template. About 2700 
(500 for test) documents that were considered contained 38,000 (16,000 for test) 
sentences, and supplied an average of 72 (39 for test) relevant snippets per query. The 
test corpus had a significantly smaller proportion of relevant snippets (11% as opposed to 
21% in the training corpus), and its queries were judged as subjectively more difficult by 
human observers. All documents were processed in advance to obtain syntactic parses 
and PROPBANK annotations using Charniak and ASSERT parsers (Pradhan et al. 2004). 
We used NYU’s toolkit JET (Grishman et al. 2005) to produce ACE annotations. Similar 
processing was applied to all queries, and in particular to their slot spans. Note that, in 
these experiments, we present results using the relevant documents in the answer keys, 
and not the ones returned by INDRI, as we do not have manual relevancy annotations for 
those. 

To investigate the potential of using other annotation layers in addition to words, we 
created parallel sets of classification features extracted from SSGs that contained only 
words, as well as, features from SSGs with all annotation layers introduced above. Table 
4.8 shows the F-measures for class “relevant” achieved for each template with a support 
vector machine classifier (Joachims 1999). The baseline results correspond to 
performance obtained by marking all candidate sentences as relevant.  

 
template 1 8 12 15 16 Avg. 
Baseline 0.40 0.32 0.17 0.22 0.33 0.29 
words 0.42 0.42 0.25 0.40 0.46 0.39 
all feats 0.47 0.51 0.43 0.42 0.52 0.47 

Table 4.8: Classification results (F-measure) for a baseline classifier that marks all sentences as relevant 
(baseline), uses word bigrams, and all features (all feats). 

We see that for all templates, introducing additional annotation levels to produce 
classification features resulted in very significant improvements. In these experiments we 
used bigrams, but using trigrams did not improve the performance. It is worth mentioning 
however that, given the words only baseline’s ignorance of the slots, its performance 
looks remarkably good. What happens is that the system assumes that the selected 
documents are about the slots, so that it needs to be looking only for words that indicate 
the right template. For instance, if an arrest is mentioned in the document, it is 
presumably an arrest of the slot-person. Another reason is most clearly articulated by the 
open-domain template 1. Here, the seemingly high F-measure for the word-only case is 
not much better than the one of a trivial classifier that marks all sentences as relevant (last 
row of Table 4.8) In fact, unlike other templates, entire selected documents are often 
dedicated to the event in question, so that most of the sentences in them are on-topic (e.g., 
for event “Civil unrest in France” this proportion is about 65%). 

Handbook of Natural Language Processing and Machine Translation 651 



4.4.2.3.2. Cross-Lingual Sentence Extraction Experiments 

To see the effectiveness of the cross lingualsentence extraction, we performed 
experiments using Template 16 from the GALE project Year 1 and Year 2 distillation 
data sets, since annotated data from both of the non-English data sources for this template 
is available. For the GALE Year 1 data set, there is a total of 24 queries for template 16; 
all have answer keys from English documents, 11 of them have answer keys from Arabic 
documents and 12 of them have answer keys from Mandarin documents. For the GALE 
Year 2 data set, there are 9 template 16 queries with answer keys for English, 8 for 
Arabic and 9 for Mandarin. The Arabic and Mandarin documents were translated into 
English using SRI’s machine translation system (Zheng et al. 2008). 

We performed n-fold cross-validation with a total of 19 rounds for Mandarin data and 
21 rounds for Arabic data, and used a boosting classifier (Schapire and Singer 1999); 
20% of the training data is used as a validation set while computing the optimal number 
of iterations and probability threshold values, while data from one query is the test set for 
each round. To compare different systems, we use macro-averaged F-measure over query 
template examples. In this study, we used word (for Arabic and English) and character 
(for Mandarin) n-grams and no syntactic or semantic features.  

Table 4.9 has the results from the experiments, where source and target language 
information is used. In the first combination experiment, the probabilities from the source 
and target language models are interpolated. The second and third combination 
experiments include the output from the source language experiment as a feature in the 
target language experiment. One uses the probability output from the source language 
classifier, PSRC; the other uses the relevancy decision, ܿ̂ௌோ. The fourth combination 
experiment uses only data from the source language, but also includes features from MT 
output sentences. The last experiment is similar to the fourth, but the training data set is 
much larger, since the data from English sources (MT+ENG) is also used. 

 
Method Arabic Mandarin 
baseline 0.42 0.47 

mono. (SRC/SRC) 0.60 0.60 
mono. (MT/MT) 0.58 0.64 

comb. 1 0.68 0.70 
comb. 2 with PSRC 0.58 0.67 
comb. 2 with ĉSRC 0.62 0.63 

comb. 3 (MT & SRC) 0.56 0.62 
comb. 3 (MT+ENG & SRC) 0.58 0.65 

 
Table 4.9: Cross-lingual distillation F-measure results, when two information sources are combined. MT 

represents the automatic translations of non-English data (SRC), ENG represents data from English 
documents. “mono.”  Is used to denote mono-lingual experiments, that is, either source or target language 

examples are used in these. 

 
 As seen in Table 4.9 for both languages, one or more of the combination methods 

helped improve performance. The best results are obtained using linear interpolation for 

Chapter 4: Distillation652 



both. We experimentally show that the combination approach results in about 9.3% and 
13.3% relative F-measure improvement for Mandarin and Arabic respectively over the 
best monolingual baseline. The first combination approach of building two separate 
models and interpolating their probability outputs has given the best results for both 
Arabic and Mandarin. 

4.4.2.4. Conclusions 

This section described the ICSI-SRI approach that selects document sentences with 
respect to their relevance to a query using statistical classification methods. The 
contributions of our approach include, 1) a novel method to generate classification 
features extracted from syntactic and semantic graphs, formed using elements from 
various annotation layers, such as word transcriptions, syntactic and semantic parses, and 
information extraction annotations, 2) a probabilistic method to compute name variants, 
3) and the use of source and target language data to train extraction models. 

Acknowledgements 

We thank Jing Zheng for providing us with the machine translation output used in the experiments and the 
SRI GALE Distillation team members at Columbia University, University of Massachusetts, NYU, and Fair 
Isaac. 
 
 

4.4.3. Snippets: Using Heuristics to Bootstrap a Machine 
Learning Approach 

Authors: Daniel M. Bikel, Vittorio Castelli, Radu Florian, Xiaoqiang Luo, Scott McCarley, Todd Ward, and 
Imed Zitouni 

4.4.3.1. Introduction 

We address the problem of identifying collections of snippets (i.e., sentences, or 
selected portions thereof) that are relevant to the answer to a structured GALE query. We 
propose an approach to this task that consists of seeding a statistical rule-based system. 
Specifically, the rule-based system is used to bootstrap the annotation of training data for 
the statistical system. 

Our approach has two main motivations. First, generating a heuristic system is an 
efficient way of building a working prototype that can guide the development of a 
statistical system with better F-measure characteristics. Second, the heuristic system can 
be used to filter large amount of data and produce a restricted corpus for annotation that 
contains a much higher percentage of positive examples than the full data set. 

To evaluate the approach, we compare the statistical system to a finely-tuned rule-
based system on the snippet selection task of our GALE system. This task is at the heart 
of the GALE program distillation. Its purpose is to eliminate all the sentences that are not 
relevant to a given query and to assign a relevance score to the remaining ones. In a full-
blown GALE system, the scored snippets are then collectively analyzed to identify and 

Handbook of Natural Language Processing and Machine Translation 653 



remove content redundancy. The final output of the system consists of the most relevant 
subset of snippets that contain no redundant information. 

Rule-based methods have long been used in natural language processing. They have 
low start-up costs, are easy to implement — by an experienced architect — with a 
relatively small number of examples of the task, and yield good results on structured or 
semi-structured data. They are computationally efficient, and, to some extent, the user 
can visually inspect traces of their execution and explanations of how the results were 
selected. On the down side, rules are difficult to write if the data are not structured, or are 
even moderately noisy (e.g.,  or automatic transcripts). Rule-based systems additionally 
suffer from scalability issues. The primary cause is the difficulty in discovering the 
positive and negative interaction between rules, and building the control structure to 
appropriately leverage them. Finally, it is difficult to write effective rules that fire based 
on real-valued numbers, and in particular probabilities, within a rule-based system. This 
limitation makes the integration of probabilistic information sources (such as POS 
taggers and mention detectors) particularly challenging, especially when multiple such 
sources are combined by individual rules or chains of rules. For the past 20 years, 
statistical modeling has become the dominant approach to natural language processing 
(Church 1988). The advantages of statistical methods include their ability to combine 
arbitrary types of input (including the output of rules) and their very good empirical 
performance. Statistical systems can be easily retrained when new data becomes 
available. On the down side, they depend on the existence of medium to large annotated 
corpora, which require a precise definition of the task at hand and substantial amount of 
human annotations effort.6 Historically, statistical systems have been criticized as being 
difficult to inspect; however, these criticisms have eased over time as new methodologies 
for inspection have emerged in the literature (Lee 1999; Bikel 2004. 

Hybrid approaches have also been proposed, notably transformation-based learning 
(Brill 1992), which attempts to combine the simplicity and inspectability of rule-based 
approaches with corpus statistics and has been successfully applied to selected tagging 
problems. 

4.4.3.2. Task Description and System Architecture 

 
 
 
 
 

 
Figure 4.12: Rosetta Distillation System Diagram 

The snippet relevance detection module, which embodies the snippet-selection 
methods described in this section, is part of Rosetta’s distillation pipeline, presented in 

                                                 
6 It is important to mention, however, that the annotation does not require experts, but rather good speakers of 
the language. 

Query Information 
Retrieval 

Snippet 
Filtration 

Snippet 
Processing 

Redundancy 
Detection Response 

Snippet Detection 

Corpus 

Chapter 4: Distillation654 



Figure 4.12. We preprocess the documents in the distillation corpus with our information 
extraction system, BlueMax (Florian et al. 2004). BlueMax performs sentence 
segmentation, tokenization, and parsing; identifies numerous entity mentions, including 
PERSON, AGE, and OCCUPATION; and performs co-reference resolution and relation 
extraction on these mentions. Additionally a cross-document co-reference resolution 
component assigns global IDs to PERSON and COUNTRY entities. 

After preprocessing the corpus, we use a five stage pipeline, consisting of query 
preprocessing (including processing the arguments of each query using BlueMax), 
document extraction using CMU extensions to the INDRI search engine, snippet 
filtration, snippet processing and planning (redundancy detection). Snippet filtration and 
snippet processing are the two components of the Snippet Detection box of Figure 4.12, 
the main focus of this section. Their purpose is to select snippets that are relevant to the 
current query. 

Determining relevance precisely is a difficult exercise in natural language 
understanding. Subjectivity makes it challenging even for humans to perform this task 
consistently. This is exemplified by a simple experiment based on template 17, where we 
recorded an inter-annotator agreement F-measure of 0.82. 

Our approach estimates relevance by computing a score that captures the following 
situations: 

 
1 The snippet contains a direct or indirect mention of the query argument(s). For 

queries about a PERSON or an ORGANIZATION, we test if the snippet contains 
the PERSON or ORGANIZATION name, or a nominal or pronominal mention 
of the name. For queries about a TOPIC or an EVENT, we test if the snippet 
contains a description of the target topic or event.  

2 The snippet contains query-specific information. For example, for the biography 
template, the snippet must contain the person’s age, birth place, profession and/or 
education. 

 
For example, if the query is “List attributions by Hu Jintao on George Bush”, a 

relevant answer should contain a quotation, the quotation must be attributed to Hu Jintao, 
and the topic of the quotation should involve George Bush. A joint statement by both 
presidents would not satisfy the query in spite of displaying several traits of a correct 
answer. 

The Snippet Detection Systems described in the following sections address the 
challenge by relying on a large variety of lexical, syntactic, and semantic information, 
including: 

 
• morphological information 
• part-of-speech tags 
• word senses (WordNet-based) 
• mention detection information (32 types of mentions, including persons, 

organizations, locations, countries, dates, etc., are detected) and event 
information (13 types of events are detected) 

• in-document and cross-document co-reference 

Handbook of Natural Language Processing and Machine Translation 655 



• parse information and semantic role labels 
• date resolution 

4.4.3.3. Rule-Based System 

A version of the Rosetta Distillation System relies on a rule-based snippet detection 
stage. In this section we describe in detail how rules were written and how empirical 
weights were assigned to the rules. 

4.4.3.3.1. Rule Writing and Scoring 

Recall that a snippet is considered relevant to a query if 1) it contains mentions of the 
arguments and 2) it contains query-specific information. Correspondingly, we rely on two 
types of rules: one for the query arguments, and one for the query-specific information. 
We assign to each rule ri a positive deterministic score s(ri). Scores greater than one 
denote rules that fire in the presence of positive evidence, while rules with score less than 
one fire in the presence of irrelevant snippets. 

For example, rule r5 in Table 4.10, which detects the presence of an OCCUPATION 
mention in apposition to a mention of the target person, provides positive evidence for 
the biography template, and has a high weight. Conversely, rule r7, which detects the 
presence of a LOCATION mention near target person, is not as discriminative as r5 for 
the same template, and has lower weight. 

 
ID Rule Weights 
r1 contains the target name? 4.0 

r2 
contains a nominal or pronominal 
mention of target name? 2.0 

r3 does not contain the target name? 10-10 
r4 contains AGE in vicinity? 8.0 
r5 contains OCCUPATION in vicinity? 4.0 
r6 contains DATE in vicinity? 2.0 
r7 contains LOCATION in vicinity? 2.0 

Table 4.10: Sample rules and associated weights 

Let R(p) be the set of rules that fire on a given snippet p. We then compute the score 
s(p) of the snippet as:  ݏሺሻ ൌ ෑ ሻ∈ோሺሻݎሺݏ  

 
The candidate snippets ܥሺݍሻ ൌ ሼ: ݅ ൌ 1,2, ڮ , ܰሽ of a query q are then ranked based on 
the assigned scores: ሺሺଵሻሻ  ܵሺሺଶሻሻ  ڮ  ܵሺሺேሻሻ , where the subscripts in parentheses 
denote rank order. 

Chapter 4: Distillation656 



4.4.3.3.2. An Example 

In this section, we use a biography query to illustrate how the rule-based snippet 
ranking system works: 

 
PRODUCE A BIOGRAPHY OF [Canadian Prime Minister Stephen Harper]. 
 
Some sample rules are listed in Table 4.10. Rule r1, r2 and r3 are to test if a snippet 

contains the PERSON argument: Canadian Prime Minister Stephen Harper. Note that the 
Distillation System must be robust to errors made by the BlueMax information extraction 
system, and in particular to mistakes in entity detection and co-reference resolution. For 
example, we observed that matching a person by name is much more reliable than by 
nominal or pronominal mention in the co-reference chain. Thus we assign a higher 
weight to Rule r1 than r2. Rule r3 is an example of a negative rule: if the target person 
cannot be found either by lexical matching, or by co-reference chain, the snippet is 
assigned a very low weight, which effectively eliminates it from consideration. 

The top three snippets for Query 3.2 are list below in descending order of relevance 
score. Note that some English documents are from machine translation, and contain 
ungrammatical sentences; the Distillation System is designed to retrieve answers from 
both “clean” text and MT output. 

 
1 The ruling General requested Canada Michael Jean yesterday evening Tuesday of 

the Governor Stephen Harper who won in the elections yesterday, Monday, to 
form the new government.  

2 Using ominous martial music and stern voiceovers, the governing Liberal party 
has released television commercials suggesting that Stephen Harper, the 
Conservative leader, supports the Iraq war, conspires with Quebec separatists 
and may even receive illegal donations from American conservatives.  

3 Unless every national poll here is amiss, Stephen Harper, 46, an economist and 
social conservative who is writing a history of ice hockey, appears poised to lead 
his Conservative Party to victory over Prime Minister Paul Martin’s Liberal 
Party, something that seemed highly improbable just a few weeks ago. 

 

The first and second snippets receive high scores because they both contain an 
OCCUPATION (Rule r5) mention in the vicinity of the query argument. The first 
mention gets higher score than the second one because it also contains a DATE (Rule r6) 
mention. The third snippet contains both AGE and OCCUPATION mention, and is thus 
assigned high score. 

The following are examples of snippets that contain mentions of “Harper,” but are 
assigned low scores because they lack biographic information: 

 
1. But Harper told them that often those aspirations are neither focused nor built on 

a firm foundation of preparation. 
2. The White House was announced Friday on a visit Harper, but he did not specify 

the agenda topics. 

Handbook of Natural Language Processing and Machine Translation 657 



3. Powell to visit him, Harper official however Hall this morning where asked him 
officially, the formation of a government. 

4.4.3.3.3. Challenges 

As shown in this section, a rule often tests if a snippet contains a very specific 
semantic item (e.g., occupation, age, etc.). Once a set of good rules are written, the 
system can produce relevant snippets with high precision. However, the rule-based 
approach suffers from several shortcomings: 

 
• The rule scores are constructed empirically, via a process more akin to art than to 

science: there is no established process to construct good rules and assign proper 
scores other than trial-and-error and experience. 

• Score assignment becomes increasingly difficult as the number of rules grows 
large. 

• Scalability with respect to the number of supported templates is hampered by the 
dependence of rules and, especially, of weights on the specific template. 

• Maintenance and upgrade cost grow dramatically with the number of rules. 

4.4.3.4. Statistical System 

In this section, we focus primarily on the snippet filtration and snippet processing 
phases. 

4.4.3.4.1. System Architecture 

The overall system architecture consists of a cascade of statistical models, organized 
hierarchically in a directed acyclic graph. The two main methods for constructing a 
cascade of statistical models are: 1) feeding the output of previous stages to the current 
stage, and 2) using the output of previous stages as features for the models of the current 
stage. We employ both types of cascading. 

4.4.3.4.2. Snippet Processing 

The input queries are template queries with one, two, or three instantiated arguments. 
Examples: 

 
• Describe the relationship between [PERSON|ORG] to [PERSON|ORG]. 
• Find statements by [PERSON] on [TOPIC]. 
• List facts about [EVENT]. 

 
The problem of answering queries like these may be broken down into smaller sub-
problems, the components for which may be efficiently reused. For example, several 
query types involve arguments of type PERSON; therefore, it would be very useful to 
have a binary classifier that determines whether a particular PERSON from a query 
argument appears in a snippet, either nominally or pronominally, and similarly for ORG’s 
(organizations). An EVENT or TOPIC can be a noun phrase, verb phrase or entire 

Chapter 4: Distillation658 



inflectional phrase that itself contains instances of PERSON’s or ORG’s. In such a case, 
not only would it be useful to have a binary classifier that detects whether a particular 
EVENT or TOPIC appears in a particular snippet, but such a classifier would surely 
benefit from the output of the PERSON or ORG classifiers if the event involves a person 
and/or an organization. 

Accordingly, our system employs argument models, binary classifiers that detect 
whether query arguments appear in snippets, and template models, models that detect 
whether a snippet is a suitable answer to a query under the GALE distillation rules. 
Crucially, some argument models employ other argument models, and template models 
employ argument models, as well as, other template models. 

It quickly became essential for us to experiment with a wide variety of features and 
feature combinations, which included using the output of one model as a feature to 
another. To achieve this goal, we employed a Java scripting language called BeanShell 
(Bea, 2009). Determining which features and feature conjunctions to use and how those 
feature functions would operate could be largely controlled by editing a BeanShell script. 
The system would read these BeanShell scripts at runtime, allowing us to explore a wide 
variety of models with great efficiency.  

4.4.3.4.3. Corpus Annotation 

In order to build our binary classifiers, we had to annotate data. After a pilot study to 
determine feasibility, we used our deterministic system to retrieve a limited number of 
snippets that were likely to contain positive results. We did this so as to avoid having too 
many negative examples to annotate. After the first round of annotation, we developed a 
set of features for the initial statistical classifier, and we used a subset of these features as 
filters to create the actual dataset: examples for which any of the selected features fired 
were retained for annotation. Table 4.11 shows that amount of data annotated for each 
argument type. 

Model Sentences Tokens 
PERSON 1698 46,481 

ORG 11,765 226,574 
LOCATION 4,912 119,987 
COUNTRY 19,994 454,444 

EVENT 4,747 170,944 

Table 4.11: Amount of data annotated for each argument model 

For the PERSON, ORGANIZATION and LOCATION models in particular, it was 
important to annotate instances that were frequent enough to have meaningful statistics, 
but not so frequent as to be trivial.7 Accordingly, we annotated PERSON instances whose 
names appear in exactly 10 documents in the entire corpus. 

                                                 
7 With trivially easy instances, such as “Hillary Clinton”, our model would only end up learning to trust the 
output of the BlueMax mention detector, which is encoded as a feature. 

Handbook of Natural Language Processing and Machine Translation 659 



4.4.3.4.4. Algorithms 

Our information extraction engine, BlueMax, uses maximum entropy (MaxEnt) 
modeling and Viterbi decoding for almost all sequence-based classification problems, 
such as tokenization, part-of-speech tagging/parsing and mention detection. We also use 
a MaxEnt model to do co-reference resolution (Luo et al. 2004). 

 
Name Description 
matchName True if the PERSON argument text appears exactly as-is in the 

snippet text. 
matchXdcId True if the cross-document co-reference system matches the 

PERSON argument to a PERSON mention in the snippet. 
containsQuote True if the snippet contains a quotation according to quotation-

detector model. 
matchEqTermXdcId True if an equivalent term in the query has a cross-document co-

reference id equal to a mention in the snippet. 
Table 4.12: Sample of features used by the PERSON model 

For the binary classifiers that constituted our argument and template models, we 
experimented with a number of different algorithms, including MaxEnt, averaged 
perceptron (Freund and Schapire 1999), support vector machines (Cristianini and Shawe-
Taylor 2000) and passive aggressive models (Crammer et al. 2006). Based on this 
investigation, we opted for averaged perceptron models in all cases, due to their ability to 
converge quickly and provide superior results with the small data sets we were using. 
Also, the averaged perceptron is in the class of large-margin techniques that can deal with 
noisy, inseparable data, such as the feature-based representations of natural text used by 
our Distillation System. Finally, the algorithm, like many support-vector–based methods, 
is amenable to the use of Mercer kernels, which allow for efficient computation during 
training and classification. In our case, in order to provide effective exploration of the 
space of feature conjunctions, we used polynomial kernels of varying degrees (as small as 
two and as large as six). To give the reader a flavor for the features we would use, Table 
4.12 shows a selection of features we used for our PERSON argument model. 

4.4.3.4.5. Challenges 

In spite of the averaged perceptron algorithm’s ability to deal with non-separable 
data, our biggest challenge was producing high quality annotated data. For example, 
when annotating data for the EVENT argument model it was often not trivial to 
determine whether a sentence explicitly mentioned an event. The following example 
illustrates this problem. A newswire article was describing a particular escape of four 
inmates from a Greek prison. One of the sentences considered for annotation was the 
following: 

 
The police said that the two to escape with the help of accomplices they 
rented the helicopter from the town of Antiphonitis Sahelian Kwsmas in the 
south of the country. 

 

Chapter 4: Distillation660 



This sentence did, indeed, refer to the particular Greek prison-break incident that was the 
centerpiece of the article, and even mentioned a town in Greece, but because at least two 
levels of inference including the use of world knowledge were required to arrive at that 
conclusion, we deemed this sentence a negative example, for it did not constitute an 
explicit mention of the event. Such cases were tricky, and abounded in our event/topic 
data. 

We also encountered many cases of inconsistent annotation. In such cases, however, 
we were able to use our models themselves to catch the errors. Normally, a model can 
learn its training set quite well, and so we tested our models on their training sets and 
observed their errors. In many cases, the errors were instances of inconsistent annotation 
that we would correct, thereby improving performance on the model’s held out 
development test set. 

4.4.3.5. Results 

We now compare the statistical snippet detection stage and a finely-tuned rule-based 
heuristic stage, under the assumption that the remaining components of the pipeline are 
identical. 

4.4.3.5.1. Materials and Methods 

Data for the experiments was obtained by constructing queries for each template, 
retrieving documents from the Gale corpus, and manually annotating these documents. 
Table 4.13 shows the number of training, devtest, and test examples for the templates 
used to produce plots in this section. The split was 80−10−10 based on the document of 
origin of the annotated data, which accounts for Training and devtest data were used to 
train and to develop features for the statistical models. Both systems were evaluated on 
the test data. 
 

Template T01 T03 T04 T09 T10 T12 T16 
Training 4942 806 4875 3801 862 693 2444 
DevTest 597 93 300 481 119 109 608 
Test 806 59 450 581 76 171 308 

Table 4.13: Data set sizes for the templates in the experiments 

Both statistical and heuristic models operate by first computing a score and then 
selecting answers whose score exceeds a predefined threshold. This threshold determines 
the operating point of the model, which can be characterized in different ways. Here, we 
use two different characterization of the operating point: the first consists of computing 
the F−deficit, defined as 1 − F1, where F1 is the traditional F-measure of information 
retrieval. The second is by means of a pair of probabilities: probability of missing pm(T) 
(i.e., probability of type II error), and probability of false alarm pf(T) (i.e., probability of 
type I error). The operating point of the model can then be represented as the point [pf(T), 
pm(T)] in the [0,1]×[0,1] square. The operating point of the model corresponding to a 
specific value of the threshold can be estimated from the data, for example, by means of a 
test set separate from the training and development sets used to infer and tune the model. 

Handbook of Natural Language Processing and Machine Translation 661 



 

 

 

 
Figure 4.13: Comparison of statistical 
system and heuristic system on seven 

templates, in terms of F-deficit, defined as 
1-F1 

 
Figure 4.14: ROC curves of a heuristic and 

statistical systems for Template 3.  The 
statistical system was trained with the same 

features used in the rule-based heuristic 
system. 

In Figure 4.13 we provide an overall assessment of our methodology by comparing 
the F−deficit values across several templates. In the remaining experiments, we contrast 
the behavior of the two systems on individual templates by analyzing the dependence of 
[pf(T), pm(T)] on the choice of the threshold. Given the finite nature of the test set, the set 
of points {[pf(T), pm(T)]}T∈ℜ←is finite, and the curve obtained by linearly interpolating 
these points is the empirical Receiver Operating Characteristic (ROC) of the model.8 
ROC curves are related to Precision-Recall curves (Davis and Goadrich 2006), and are 
better suited to assess the performance of models when the training and test data is not 
selected to reflect the proportion of positive and negative examples in the underlying 
distribution. 

 
Figure 4.15: Typical comparison between statistical and heuristic models: the statistical ROC curve 

dominates the heuristic curve. 

                                                 
8 The points on these straight segments are achieved by flipping an appropriately biased coin to randomly 
select the thresholds of one of the two extreme points. 

Chapter 4: Distillation662 



 
Figure 4.16: ROC curves where neither system uniformly dominates the other.  On the left, the statistical 
system operates at a better point than the rule-based system; on the right, each system operates at a point 

where it locally dominates the other. 

Figure 4.14, Figure 4.15, and Figure 4.16 show both the ROC curves obtained from 
the statistical model (solid line) and the heuristic model (dashed line), for a single 
template. Lower curves are better. Each plot also shows the equal-probability line (from 
[0, 0] to [1, 1]) and the line describing a classifier that makes a decision by flipping a 
biased coin (from [0, 1] to [1, 0]). The point corresponding to the threshold used in the 
system is marked on each ROC curve by a “◦” mark crossed by a vertical bar. 

4.4.3.5.2. Results and Discussion 

Figure 4.13 shows the F−deficit values of the heuristic system and the statistical 
system at their actual operating point, on seven templates. In most cases, the statistical 
system reduces the deficit by half or more. Template 4 (provide information on 
ORGANIZATION), where the rule-based system yielded an F−deficit of above 60, the 
statistical system operates just above 20. On template 16 (describe attacks in 
LOCATION), the deficit reduction displayed by the statistical system is almost four fold. 
The exception is Template 9 (how did COUNTRY react to EVENT), where both systems 
have very poor performance, and the statistical system is inferior to the heuristic system. 

The experiment illustrated in Figure 4.14 compares a statistical system and its 
corresponding rule-based system on Template 3 (provide information on PERSON), 
where both systems rely on the same 15 features.9 Recall that all the rule-based heuristic 
systems described in this section are carefully designed and developed to perform the 
Snippet Detection task, and are not simple systems intended just for seeding statistical 
models. The figure shows how the statistical model is uniformly better than the heuristic 
system: for each value of the probability of false alarm, it yields a smaller probability of 
miss than the heuristic system. Theorem 3.2 of (Davis and Goadrich 2006) ensures that 
the same dominance yields in Precision-Recall space, and hence in F_-measure space for 
every value of β∈(0,∞), every fixed dataset. While the ROC curve shapes are similar, the 
statistical system’s shows finer-grained details. This illustrates the ability of the statistical 

                                                 
9 Only three of these features were used to construct the training set. 

Handbook of Natural Language Processing and Machine Translation 663 

 



 

algorithm to perform local optimizations of the decision surface that would be difficult to 
capture with heuristics. 

The remaining experiments compare heuristic and statistical systems constructed 
with different features. One of the characteristics of statistical systems is the ability to 
deal with classes of features, such as lexical features, that are not handled as well by 
heuristic systems.  Figure 4.15 illustrates the typical results of the experiments: the 
statistical system dominates the heuristic system both on difficult templates (e.g., 
Template 10 — connection between EVENT/TOPIC and EVENT/TOPIC — where the 
heuristic model is not better than a biased coin) and on “simpler” templates (e.g., 
Template 16, where the heuristic system is substantially better than a biased coin).  

Figure 4.16 illustrates the second most common behavior, where the statistical 
system is not uniformly better than the heuristic system. For the Template 1 (list facts 
about EVENT), the statistical system chooses a point closer to the equal-error line than 
the heuristic system; additionally, the point selected by the statistical system is superior to 
that selected by the heuristic system, in the sense that both operating points fall in a 
region where the statistical system is locally better than the heuristic system.  For 
Template 12, the ROC curves are somewhat similar, and each system operates in a region 
where it is locally superior to the other.  

 
Figure 4.17: Example of a difficult template: while the heuristic, rule-based ROC curve mostly dominates the 

statistical ROC curve, both systems are dominated by a biased coin. 

 
Figure 4.17 shows the case in which the statistical system is inferior to the heuristic 

system in terms of F−deficit: Template 9. Neither ROC curve dominates the other and 
neither convex hull contains the other curve. While the statistical system is somewhat 
better in the high-precision region of the curve, it is not substantially superior to a biased 
coin with the appropriate bias. At the operating point, the statistical system has even 
lower recall than the heuristic system. Both systems have a very high F−deficit across the 
entire ROC curve. We postulate that Template 9 requires more advanced features than 
those developed for the two systems, to better identify what constitutes a “reaction” to an 
event on the part of a country. 

Chapter 4: Distillation664 



4.4.3.6. Summary 

We believe we derived substantial benefits by first developing a heuristic system 
before moving on to a full statistical system. First, in developing the heuristic system we 
learned the problem well as researchers. Second, we identified features that would be 
useful when moving to the statistical system. Lastly, the heuristic system provided a 
meaningful baseline that proved to be an effective motivator when migrating to the fully 
statistical approach that we believed would surpass the performance of the heuristic 
system. As the empirical data have shown, this belief was correct. More generally, when 
presented with any new, complex task such as distillation, we advocate our approach. 

 

Authors: Marjorie Freedman, Elizabeth Boschee, and John Graettinger 

4.4.4.1. Introduction 

Responding to the Distillation task involved identifying relevant, non-redundant 
responses to a query. For queries involving descriptions of topics or events, the system 
typically must first determine whether the candidate answer refers to the same topic or 
event as the query. Matching a topic or event can be trivial if the description consists of a 
single name or very specific term, but is a significant challenge when the description is 
lengthy or complex. One example of such an event is the query: “List facts about [the 
widespread looting of Iraqi museums after the US invasion]”. There are many difficulties 
in dealing with such a topic description. 

 
• Some words will be less important than others. Here, ‘widespread’ is a relatively 

unimportant word and will be omitted from many relevant responses.  
• Even seemingly important words can be omitted in relevant responses. “Many 

Iraqi museums were looted, leaving Iraq without its cultural treasures” omits the 
important information that this occurred after “the US invasion”.  

• Sometimes on-topic information can be conveyed without using any of the words 
from a user’s specific topic formulation: “Many works of art were stolen from 
Baghdad galleries in 2003” is a relevant response that contains very little token 
overlap with the original query.  

• The presence of the topic words in a sentence does not guarantee that a response 
will be relevant: “Iraqi museums presented an exhibit on looting in Afghanistan 
after the US invasion” is not a relevant response. 

• The semantic role that words play in a question is important. A query about 
‘arrests by the policemen’ is very different than a query about ‘arrested 
policemen’  

 
The ability to find similar spans of text is necessary for tasks beyond question 

answering. Even during early distillation research, a related capability was necessary to 

Handbook of Natural Language Processing and Machine Translation 665 

4.4.4. Using Structural Semantic Information for Language 
Understanding Problems  



perform redundancy removal within a set of relevant snippets. In fact, the proposition 
trees described here were used in both BBN’s answer finding and redundancy detection 
components. The task of identifying similar spans of text is also present in textual 
entailment, where systems must determine if a sentence is entailed by or contradicts a 
different sentence.  

In this section, we will describe in detail the predicate-argument propositions 
extracted by SERIF, BBN’s information extraction engine (Section 4.3.2), and how these 
propositions are integrated into a proposition tree (a kind of text graph) for systems to 
identify similarity between spans of text despite differences in terms and syntactic 
structure addressing the challenges outlined above. By incorporating semantic 
information into our measure of similarity we perform semantic associative retrieval, 
using semantic features (rather than lexical items) to detect similarity. We will describe 
experiments that explore the effectiveness of the semantic matching algorithm when 
compared with a word based approach and how the semantic algorithm can be adapted to 
Chinese and Arabic text.  

 We also describe how SERIF’s propositions can be used in other contexts, for 
example to find the core Who, What, When, Where, and Why for a sentence with 
relatively simple heuristics, and as a basis for automatically learning patterns that trigger 
a relation.  

4.4.4.2. Related Work  

Tree edit distance metrics have been used successfully for factoid-question answering 
(e.g., Punyakanok et al. 2004; Emms 2006) and textual entailment (Kouylekov and 
Magnini 2005). Therefore, the appropriateness of tree edit distance is not surprising, 
though factoid question answering and entailment are significantly different than 
Distillation. Factoid-question answering and Distillation share a goal of responding to 
questions with relevant information. However, typically the response to a factoid-
question is a single, short phrase, requiring high accuracy in finding a 1-best answer. In 
contrast, the typical Distillation query has many relevant answers, most of which will be 
a full clause or sentence; the distance metric must accurately rank the top n-candidate 
responses. As we discuss in Section 4.4.4.4, relevant answers frequently share only 
partial overlap in meaning with the question. For Distillation, unlike textual entailment, 
the distinction between related (but not entailing) phrases and even the distinction 
between entailment and contradiction does not affect a potential answer’s correctness. As 
a result the system described here is designed to assess potential relevancy in situations 
where the edit distance is expected to be high.   

4.4.4.3. Propositions 

In Section 4.4.1.3.5, we describe how predicate-argument propositions are extracted 
from a syntactic parse as a part of the linguistic analysis performed by SERIF. As a 
representation of text content, the propositions extracted by SERIF occupy a middle 
ground between PropBank’s (Palmer et al. 2005) semantic representation of verb 
argument structure and the purely syntactic predictions of SERIF’s parser which is 
trained using the Penn Treebank (Marcus et al. 1993). The proposition finder normalizes 

Chapter 4: Distillation666 



for certain common syntactic constructions, for example identifying the logical subject of 
a passive verb, but does not distinguish between verb-specific argument roles (e.g., agent 
versus experiencer). SERIF’s proposition finder normalizes some prepositional phrase 
arguments, for example labeling certain arguments with location or temporal roles, but 
for other prepositional phrases, it simply attaches the argument with the preposition as the 
role label. SERIF’s proposition finder considers both noun and verb predicates and 
attaches arguments to both. Currently, SERIF identifies propositions in English and 
Chinese. While we could develop proposition finding code for Arabic, we have not done 
so, partially due to the lower performance of the Arabic syntactic parser thus far.  

Propositions have been a key component in many language understanding tasks 
including: 

 
• BBN’s event and relation models in both Chinese and English  
• Distillation both to find relevant passages and identify redundant answer texts 
• Initial experiments where a system “learns to read” concepts and relations 

(Boschee et al. 2008) 
 
While in this section we focus on the use of propositions as a measure of similarity in 

a question answering framework, the propositions themselves are key components to 
BBN’s pattern language described in Section 4.3.2. For example, when responding to the 
question Find statements by [PERSON] on [TOPIC], the information that the person 
must be the logical subject of a statement-like verb is encoded with a proposition based 
pattern. 

 
Figure 4.18: Proposition Tree for Franklin's age was 8 when he started school 

Proposition Trees (Levit et al. 2007) combine three types of semantic information: 
SERIF’s propositions, co-reference, and synonyms. The predicates and arguments 
identified by SERIF are linked in tree structure as illustrated in Figure 4.18 The structure 
of proposition-trees provides three contributions to identifying relevant, ‘on-topic’ 
responses.  

 
(1) Because the proposition finder has regularized the parses, we are able to 

recognize similarity across alternative syntactic manifestations of the same 
semantic concept (e.g., active versus passive constructions). 

Franklin

when

started

he school

was

subj

subj obj
age

poss.
8

obj

Handbook of Natural Language Processing and Machine Translation 667 

4.4.4.4. Proposition Trees for Identifying Similarity between a Query 
and Answer 



(2) The distance of a word from the root in a proposition tree gives us a measure of 
the importance of the word in the sentence.  

(3) Edges of the proposition tree introduce a measure of proximity for long range 
dependencies. 

 

 
Figure 4.19: Synonym and Co-reference Augmentation for Propostion Trees 

As we saw in the examples in the introduction, in addition to structural changes in a 
sentence, a distiller must be able to account for changes in the lexical items of a sentence. 
To account for such changes we augment nodes in the tree with synonyms (from 
WordNet) and co-reference (both for names, pronouns and noun phrases within a 
document, and for spelling variants and aliases across the full corpus.)  Figure 4.19 
illustrates the proposition tree before and after being augmented with synonym and co-
reference information. 

Figure 4.20 shows three proposition trees. The sentences represented by the 
trees are quite different (a) is a question; (b) is a noun phrase; and (c) is a 
complete sentence. The lexical items are also quite different, but because the 
proposition trees normalize the syntactic structure and augment the nodes with co-
reference (e.g., British = UK) and synonyms (attack = strike), the distiller 
correctly recognizes that all three phrases are similar.  

 

In addition to matching ‘full trees’ as seen in Figure 4.20, our system can be 
configured to match only sets of edges or only sets of nodes as shown in Figure 4.21. 
Such structures are still augmented with synonyms and co-reference, and in the case of 
edge matching, preserve the role labels and some structural information. In practice we 
typically combine different levels of matching. When working with the output of 
machine translation we have frequently found that the combination of edge and node 
matches is more robust than full match given the errors present in such text.  

 

Chapter 4: Distillation668 

 

 
Figure 4.20: Proposition Trees for Three Text Spans 

arrest

his

poss.

Baghdad

in

arrest 
(capture, apprehend, 
apprehension, detain)

His     
(Abu Abbas, Abbas, PLF 

leader, Mohammed Abbas)

poss.

Baghdad 
(the Iraqi capital, 
Baghhdad, Bagadad)

in

Semantic
Augments

? citiesBritish

subj obj

attacked

UKDresden

strike

of by

DresdenEngland

bombed

subj obj

(a) What cities were attacked by the British? 
(b) The strike of Dresden by the UK…
(c) England bombed Dresden

(a) (b) (c)



4.4.4.5. Contributions of Synonyms and Structure Over English Text  

One of the challenges of Distillation has been developing automatic metrics that 
correlate with the full distillation task. In Section 4.6.2.4, we describe evaluation of 
proposition tree matching in the context of the full GALE evaluation. Here we have 
chosen an automatic evaluation route that measures how often the ‘top’ match in a 
relevant document is a relevant answer.  

Of the 17 Distillation templates, Template 1: List facts about [EVENT], is the 
template that relies the most on a distiller’s ability to identify similar and related text. To 
evaluate proposition trees, we have taken documents which were annotated with answers 
to Template 1 queries and measured how frequently the sentence that was identified as 
the highest match was in fact a relevant answer to the query.  

There are many aspects of distillation that this does not measure; notably, the need to 
identify all relevant information, and the need to filter through irrelevant documents. 
However, the relative simplicity of the measure allows us to run experiments in several 
configurations and thus empirically measure the impact of the various components of the 
proposition trees. 

One reason we have not attempted to evaluate proposition trees as a similarity metric 
identifying all relevant answers in the document is that relevant answers do not need to 
overlap in meaning with the query. For example, given the query List Facts about [the 
2008 presidential election] the snippet ‘McCain and Obama held a debate’, would be a 
relevant answer, but we would not expect the proposition tree algorithm to identify it as 
‘similar to the query’.10 However, we would assume that any text which is similar to the 
query (e.g., Before the US elects a new president in 2008...) would be a relevant answer. 
As a result, we can assume that if the system selects an answer as being similar and that 
snippet is not relevant, then the system is incorrect in its judgment of similarity.  

In our full Distillation System, we use heuristics that combine the three different 
approaches to similarity scores (node, edge, and full-match) for a sentence with the 
similarity scores of neighboring sentences to recover some of the relevant snippets that 
would otherwise be missed. While we have not performed an internal evaluation of the 
full approach, BBN’s system was the top performing system for five out six of the query 
types which included a topic or event slot including Template 1: List Facts about 
[EVENT], for which all of BBN’s answers were the result of the semantic matching 
approach described here.  

                                                 
10 In Distillation section 4.4.4 we discuss techniques for expanding our measure of similarity to account for 
context outside of the answer snippet and thus identify such answers. 

Handbook of Natural Language Processing and Machine Translation 669 

Figure 4.21: Sets of Nodes and Edges 

? citiesBritish

subj obj

attacked attacked

cities

British

attacked

Set of Nodes Set of Edges



Our experiments compare edge match, node match, and node match without 
synonyms.11 The experiment is intended to tease apart the relative importance of the 
different types of semantic information involved in our similarity metric. As discussed 
above, we measure only precision (i.e., in the form of how often the top-ranked sentence 
in a document was judged as relevant to a query). Given this experiment where only the 
top ranked answer was evaluated, we found that co-reference expansion was not critical, 
but if the task had been more recall oriented (e.g., identify all of the relevant snippets), 
co-reference might have played a larger factor. We did not measure full match in this set 
of experiments. Our intuition is that this setup would not have favored full match over 
edge match. Full match allows the system to rank highly those answers which capture the 
full meaning and structure of the query. These can be considered the ‘best’ matches. 
However, frequently a relevant answer may contain only portions of the query, and 
consequently answers where full match does not fire are also likely to be annotated as 
relevant. Because our answer key includes all relevant answers (with no measure of 
which answers are ‘better’), full match would have provided little benefit over edge 
match.  

 Correct 
Matching Strategy #  % 
English Edge Match 205 88.0 % 
English Node Matching 196 84.1 % 
English Node Matching, without WordNet 184 79.0 % 

Table 4.14: Number and Percent Correct Using Different Matching Strategies in English 

Table 4.14 presents the results of applying three matching strategies to 233 query-
document pairs.12 In the two right-most columns, we include the number and percentage 
of the time each algorithm’s highest ranked snippet was a relevant snippet. Identifying 
relevant text with structure (edge matching) outperforms a strategy that used simply the 
lexical items augmented with synonyms. Furthermore, in the last row we see that 
augmenting the trees with synonyms outperforms a matching strategy that only makes 
use of the lexical items of the query.  

4.4.4.6. Proposition Trees in Arabic and Chinese 

As we describe in Section 4.6.2.4 we believe that distillation performance could 
be improved by performing answer identification in the source language. As a step 
towards a full source language Distillation System, we have implemented a version of the 
matching (semantic associative retrieval) algorithm in both Chinese and Arabic. Levit et 
al. (2007) describe proposition trees used over English text. SERIF is a multi-lingual 
engine and produces normalized proposition sets in Chinese (and English) and syntactic 
parses in English, Chinese and Arabic. Because propositions were not available in 
Arabic, we implemented an alternative method of generating proposition trees in which 
the trees are produced directly from the syntactic parse (without the intermediate step of 

                                                 
11 In this setting, if there is no ‘edge match’ in a document, we choose the best ‘node match’. 
12 The query-document pairs were generated by selecting all documents with at least one relevant snippet for 
the LDC released Template 1 queries.   

Chapter 4: Distillation670 



propositions). This transformation captures some but not all of the effect of the 
proposition finder: it uses a small number of heuristics (e.g., for prepositional phrases 
transforming the preposition into the role) to create the proposition trees. We use the 
same evaluation methodology described in the previous section. Table 4.15Table 4.16 
include results over 233 English query document pairs (from 21 queries), 143 Chinese 
query document pairs (from 16 queries), and 230 Arabic query-document pairs (from 17 
queries). 

 Correct 
Matching Strategy # % 

English Edge Match- Propositions 205 88.0 % 
English Edge Match- Parse 199 85.4 % 

English Node Matching 196 84.1 % 
Chinese Edge Match- Propositions 123 86.0% 

Chinese Edge Match- Parse 123 86.0% 
Chinese Node Match 122 85.3% 

Arabic Edge Match- Parse 210 91.3% 
Arabic Node Match 209 90.9% 

Table 4.15:  Comparison of Matching Strategies in English, Arabic, and Chinese 

 Correct 
Matching Strategy # % 

Chinese Match- Reference 123 86.0% 
Chinese Match- Web 120 83.9% 

Chinese Match- Pre GALE 93 65.0% 
Arabic Match- Reference 210 91.3% 

Arabic Match- Web 195 84.8% 
Arabic Match- Pre GALE 182 79.1 

Table 4.16: Degradation of Matching as a Result of Translation Quality 

Experiment 1: Here we compare performance of ‘edge matching’ using propositions 
and/or parses in English, Chinese and Arabic with node matching in all three languages. 
For the purposes of this experiment, we use reference translations of the queries provided 
by the LDC. Results between languages are not directly comparable as we are using 
different queries and different documents. We have not yet included synonym expansion 
in Arabic or Chinese. Results suggest that structural matching can help in all three 
languages, although the effect is less strong in Arabic and Chinese, perhaps due to lower 
parsing accuracy in both languages. While in English, using the propositions is clearly an 
improvement over using a parse-based match, this is not true in Chinese. Potentially, 
improvements to the normalization process in the Chinese proposition finder could 
improve accuracy. Other improvements (to both node and edge matching) could come 
from incorporating Chinese and Arabic synonyms. The lack of synonyms may cause 
more degradation to edge match (which requires the match of two lexical items) than to 
node match.  

Experiment 2: In a second experiment we examine the effect of translation quality 
on edge matching in Arabic and Chinese. Because distillation queries will be in English, 
translating the query into the source language is necessary to identify answers in the 
source. In this experiment, we used three translations; (1) a reference translation, (2) a 
web-based machine translation, and (3) a pre-GALE translation system developed at 

Handbook of Natural Language Processing and Machine Translation 671 



BBN.13 In Table 4.16 we see that translation quality is important and that the accuracy of 
the proposition tree matching degrades rapidly as machine translation quality degrades. 
While unmeasured, we could imagine a similar degradation in performance occurs when 
matching proposition trees over machine translated material in English. 

4.4.4.7. Other Applications of Propositions and Proposition Trees 

Propositions and proposition trees are used for many other language understanding 
tasks as well. For instance, Boschee, et al. (2005) describe a BBN system that learns 
patterns for relationships from a few seed examples. To do this, the system iteratively 
searches a collection of documents to find sentences where instances of a known relations 
are expressed (e.g., for the relation invent(Thomas Edison, light bulb), the system first 
finds instances such as “Thomas Edison’s patent for the light bulb”), and then induces 
patterns over textual features found in those instances, and finally repeats the cycle by 
applying the generated patterns to find additional instances followed by inducing more 
patterns from those instances, etc. 

This research was built on prior work that took a similar approach but relied solely on 
surface-level features, i.e., tokens or parts-of-speech (e.g., Ravichandran and Hovy 2002). 
In our work, the system incorporates deeper, structural features based on proposition tree 
(and dependency tree) patterns. Initial results showed specifically that patterns based on 
predicate-argument propositions outperformed surface rules in both recall and precision. 
(Patterns based on dependency trees were more accurate than both, but fired far less 
frequently.) The following table shows the results from the first iteration of the system 
learning to recognize the relation invent. 

 
 Correct Incorrect Percent Correct 
Dependency Trees 75 10 88.2% 
Propositions 315 86 78.6% 
Surface Structure 222 68 76.6% 

Table 4.17: first iteration of the system learning to recognize the relation invent 

For this application, the primary strength of proposition-based patterns is their ability 
to generalize well across complex sentence structures. For instance, it is trivial for a 
proposition-based pattern to identify the sentence “Trevithick also developed steam 
engines for use in mines and invented a steam threshing machine” as an instance of 
an invent relation. For an example like that, it would be difficult to automatically 
generate surface-level patterns (as in prior work) that could reliably detect relations like 
this without introducing too many false positives. 

4.4.4.8. Conclusion and Future Work 

We have shown how SERIF’s propositions serve as a flexible representation of the 
logical predicate-argument structure of a sentence. The generic nature of the propositions 
has made them an invaluable tool for several of our language understanding components 
                                                 
13 English to Arabic and English to Chinese translation has not been a focus for GALE. 

Chapter 4: Distillation672 



including distillation and additionally in recent work in learning patterns for 
entity/relation extraction. 

While the propositions are language independent and can be effective in multiple 
languages, accuracy degrades as the quality of the text degrades. This presents a 
challenge for advancing such techniques in Distillation Systems where work is done in a 
cross-lingual setting. Propositions potentially provide a language model of English, 
Arabic, and Chinese; proposition extraction therefore may provide a semantic language 
model to contribute to more accurate transcription and translation  

We believe that SERIF’s propositions will continue to be useful in a variety of new 
language understanding tasks. If the proposition trees were augmented to allow the 
detection of contradiction, as well as, similarity, they could serve as an effective starting 
place for a system that performed the Rich Textual Entailment (RTE) task (Dagan et al. 
2006).  

 

Authors: Jeff Ma, Elizabeth Boschee, and Marjorie Freedman 

4.4.5.1. Introduction 

Many different approaches to open-domain question-answering for complex 
questions (ones that do not have a single, short answer) have been explored, both in 
GALE Distillation and elsewhere. These approaches demonstrate diverse strengths and 
weaknesses; thus, a system which combines responses from different methods could 
improve performance beyond any individual algorithm.  

We used a system combination approach to participate in the Distillation evaluation 
of the GALE program, where our final submission was generated by merging the results 
of two distinct systems. We show that the combined system outperforms both of the 
individual component systems. Results are presented for user queries formulated 
according to the GALE Distillation query templates (for example, Describe the 
relationship of X and Y or  How did country A react to event B?), but the principles 
generalize easily to any class of questions having multiple partial answers. 

4.4.5.2. Overall Approach 

The two component question answering systems (“SYS1” and “SYS2”) operate over 
the same corpus but ingest documents and produce responses independently. During 
response generation, each system selects a set of excerpts from documents (“snippets”) 
that it believes to be relevant responses to the query. One system (provided by BBN) uses 
a linguistically-informed pattern recognizer to select the relevant answers; the other 
(provided by Lymba) selects snippets based on theorem proving.14 Given input from both 
systems, the Merger re-ranks and merges the two sets of snippets into a single list. To 
produce a final response, another module condenses the re-ranked list of snippets, 
                                                 
14 http://lymba.com/ 

Handbook of Natural Language Processing and Machine Translation 673 

4.4.5. Improving Answer Identification by Merging Distiller 
Responses 



removing redundancy and shortening the final response to what it decides is the ideal 
length (typically shorter than the full list of snippets). Here, we will focus solely on the 
Merger and will compare results of a fixed length. 

Both systems generate scores for their snippets, but the scores are not comparable 
across systems and cannot be used directly to re-rank the list of combined snippets. The 
easiest way to combine snippets is to normalize the scores for each system and then use 
those scores to merge and re-rank the snippets. For our baseline, we assign a normalized 
score to each snippet by dividing its system generated score by the sum of all snippet 
scores generated for the same query by the same system. We consider this normalized 
score to be the snippet's posterior. Using these scores is one simple choice for merging.15 

However, more complex techniques should prove more effective. We explore methods 
for estimating confidences for snippets, which we will use to re-rank snippet output for 
each system and to enable more effective merging. 

4.4.5.3. Related Work 

System combination techniques have been explored in natural language technology, 
e.g., speech recognition (Fiscus 1997, Ma and Matsoukas 2005), machine translation 
(Rosti and Ayan 2007; Hillard and Hoffmeister 2007), and information retrieval (Bartell 
et al. 1994; Si and Callan 2005).  

In speech or MT systems the goal is to generate a single, potentially new, hypothesis 
by selecting words from a lattice of hypotheses produced by multiple systems. The 
successful use of confidences in speech and MT provides evidence that confidence-based 
merging of multiple independently ranked snippet lists may succeed.  

System combination for factoid question answering (QA) requires finding the one-
best answer, rather than accurately ranking multiple snippet lists. Merging multiple 
system outputs for lists requires systems to find specific, non-overlapping answers. 
Typically voting schemes can be a reasonable baseline in factoid/list QA.  

Unlike speech, MT and factoid/list QA, information retrieval system must provide 
ranked lists of answers (whole documents/passages). However, much work here relies on 
assumptions that apply better to document retrieval than a task like Distillation. For 
instance, Si and Callan (2005) use a centralized retrieval algorithm to assess the quality 
of component retrievers (thereby avoiding the need for a manually-generated training 
corpus), but no such baseline algorithms are available for the more complex Distillation 
task, which cannot be approximated by term overlap with the query. Other IR efforts 
concentrate on systems designed to combine a large number of diverse components or 
algorithms (rather than just two) or systems that operate over multiple distinct collections 
of data.  

By contrast to those efforts, this section reports on merging ranked lists of snippets 
arising from two highly distinct ranking algorithms. The key to our effort has been 
estimating and weighing confidence in each system’s ranking based on tens of complex 

                                                 
15 This approach is more effective when the two systems produce a similar number of snippets. When 
responses for SYS1 and SYS2 are of very different lengths it may be misleading; however, as a baseline for 
comparison, it is a reasonable starting place (given that the systems do not produce any directly comparable 
confidence measures). 

Chapter 4: Distillation674 



and rich features from the component distillation engines, moving beyond the word-based 
features used in IR system combination 

4.4.5.4. Training Data 

Annotated data for Distillation was provided by LDC; BBN also annotated data. To 
generate a set of correct responses for a training query, an annotator looked at potentially 
relevant documents (usually between 100 and 200 per query) and identified relevant 
responses. For instance, in response to the query How were Mozart and Haydn related?, 
an annotator reading a biography of Haydn might mark as relevant the sentence “In 1781, 
Haydn met Wolfgang Amadeus Mozart in Vienna, and the two immediately became close 
friends.” Such annotation is not comprehensive (since annotators cannot read every 
document in the corpus), but is sufficient to serve as an approximate reference. For the 
results reported here, we used 311 Distillation training queries, with responses generated 
from the TDT4 and TDT5 corpora (the official development data for the GALE 
Distillation Evaluation).16  

To generate training data for system combination, we asked both systems to produce 
responses for these 311 queries. SYS1 generated 85,095 snippets; SYS2 generated 51,100 
snippets. Queries where either system produced a null response were discarded, leaving 
294 queries with responses from both systems.  

We split the queries into two subsets, a development (Dev) set — 80% of the data — 
and a validation (Val) set — 20% of the data, selected randomly but attempting to 
maintain an 80/20 division of both queries and snippets. These data sets were used for all 
experiments reported here. 

4.4.5.5. Metrics 
4.4.5.5.1. Automatic Metrics 

The Distillation Evaluation uses human judgments to evaluate performance by 
judging the correctness of each individual “nugget” of information in a response. Since 
such human judgments are extremely labor-intensive and moreover must be redone 
whenever system output changes, we wanted a metric that automatically measures system 
performance. This metric should correlate well with human judgments, to guarantee that 
improvements observed in this metric can also be observed in human judgments.  

One automatic scoring metric is derived from “ROUGE” (Recall-Oriented 
Understudy for Gisting Evaluation), which has been used to automatically evaluate text 
summarization systems by comparing n-gram overlap between hypotheses and references 
(Lin and Hovy 2003; Lin 2004). In Distillation, typically there are multiple reference 
snippets for each hypothesis snippet. We therefore derive a new metric “ROT”3, (3 
“Rouge” and “rot” are the French and German words for “red”, respectively) where for 

                                                 
16 For these experiments we used queries from Distillation templates 1, 3, 4, 5, 6, 8, 9, 15, and 16. (More 
information about the Distillation templates can be found in section 4.2.1.) These are the templates for which 
annotation was available in sufficient quantity. 

Handbook of Natural Language Processing and Machine Translation 675 



each hypothesis (h), ROT(h) is generated by calculating the average ROUGE-n score (n 
∈ [1, 2, 3, 4])n against each reference (ri), and choosing the highest score. 

Like ROUGE, ROT is recall-oriented: long snippets tend to have high ROT scores, 
but do not necessarily have better quality. In machine translation, the precision-oriented  
BLEU metric (Papineni, et al. 2002) deals with an analogous problem by penalizing short 
translations. We reverse this method here to penalize long snippets according to the 
following equation, 

,ሺ݄ܲܮ  ሻݎ ൌ ൝1,                        ݂݅ሺ݈݁݊ሺ݄ሻ  ݈݁݊ሺݎሻ݁ଵିሺሻሺሻ  , ݂݅ሺ݈݁݊ሺ݄ሻ  ݈݁݊ሺݎሻ 

 
where len(·) denotes the length of a hypothesis or a reference in terms of number of 
words. Applying this penalty on the ROT score, we have a penalized score, “PROT”, ܴܱܲܶሺ݄ሻ ൌ argmaxଵஸஸூ ሼܲܮሺ݄,  ሻሽݎ

 
We show a comparison of the effectiveness of ROT and PROT in Section 4.4.5.7. 

4.4.5.5.2. Human Snippet Judgments 

One problem with ROT and PROT is that there will likely be system-generated 
snippets that are relevant to the query but are not similar to the set of reference snippets, 
since the annotation is not comprehensive. A metric closer to full human evaluation is 
desirable to determine whether system combination is effective. Comprehensive nugget-
based human scoring, as in the Distillation Evaluation, is clearly out of scope. We 
approximate the formal evaluation by manually assigning human judgments (1 = 
relevant, 0.5 = mediocre, or 0 = irrelevant) to each snippet produced by one or both of the 
systems4. (4 We were able to assign scores to all of SYS1's validation snippets, but only 
about one quarter of SYS2's validation snippets, due to time constraints on this labor-
intensive process.) Note that the level of granularity here is relatively crude (many 
snippets are partially relevant, which ROT/PROT measures more accurately), and this 
metric also treats all snippets equally, regardless of length. It, therefore, provides a 
reasonable way to evaluate performance improvements, but should not be considered 
equivalent to a full, formal human evaluation of system performance. 

4.4.5.5.3. Metric Evaluation 

To roughly evaluate the quality of our new automatic metrics, we determined how 
well they correlate with our human snippet judgments, by computing the Pearson 
correlation coefficients between snippet-judgment scores and automatic ROT and PROT 
scores for SYS1’s outputs on the Val set. As shown in Table 4.18, both have a relatively 
weak (though positive) correlation with snippet judgment scoring, which we believe to be 
a somewhat closer approximation of the manual evaluation. The PROT scores also 
correlate with human judgments slightly better than the ROT scores do: 
 
 

Chapter 4: Distillation676 



 ROT PROT 
Pearson Correlation 
Coefficient 

0.197 0.205 

Table 4.18: Pearson correlation coefficients between the snippet-judgment scores and the automatic 
scores

As shown, training models using ROT and PROT results in improvement measured 
by human snippet judgments, despite the relatively weak correlation of the metrics. 
Developing automatic metrics more tightly correlated with human judgments (or 
potentially just using a training corpus with more extensive references) would likely 
provide even greater performance increases, and is an interesting area for potential future 
work. 

4.4.5.6. Snippet Confidence Estimation 
4.4.5.6.1. Procedure 

We have used the generalized linear model (GLM) (Hastie and Tibshirani 1990) in a 
variety of confidence estimation applications. It is expressed as:  

 
E(Y) = µ = g−1(X •β ) 

 
where g(µ) is a non-linear function that links the expected value of the response, E(Y), 
and the linear predictor X • β. µ  is the mean of the distribution of the response Y. In our 
application Y is confidence. Since confidence scores are between 0 and 1, we choose g(µ) 
to be the “logit” function:  

g(µ ) = ln(µ /(1−µ )) 
 
The model parameter β is estimated by the iterative re-weighted least square method 

(McCullagh and Nelder 1989), given a set of input data X and output confidence Y. 
To train a GLM to estimate confidence for system-generated snippets, we extract a 

set of snippet related features (i.e., produce input data X) and determine the relevance of 
snippets (i.e., produce output data Y). 

To produce input data X, we create a set of snippet-related features by extracting the 
snippet related features in both systems' outputs. We extracted ten features for each 
snippet from SYS1 and six features for each snippet from SYS2. Some of these features 
are number-of-chars, number-of-words, snippet-score (generated by the component 
system) and snippet-posterior (a normalized version of snippet-score, as described in 
Section 4.4.5.2). 17 Other system-specific features attempt to capture the system’s basis 
for selecting a particular snippet. For instance, the snippet “Haydn met Wolfgang 
Amadeus Mozart in Vienna”, might have additional features document_rank = 0.34, 
mention-confidence = 1.0, backoff_level = 0 and pattern_type =propositional-connection. 

                                                 
17 We omitted the number-of-chars and number-of-words features in the final model training for SYS1 in the 
evaluation, because we found later that the performance on the Dev and Val sets was more consistent without 
those two features. 

Handbook of Natural Language Processing and Machine Translation 677 



To produce output data Y, we have a set of human-selected reference snippets 
available for all queries in training. Using this data, we compute the ROT or PROT score 
for each snippet. If the ROT or PROT score is above a threshold, the snippet is 
considered relevant. If a snippet is defined as relevant, its target value (or Y) is set to 1; 
otherwise, to 0.  

A threshold effectively divides the training data into two pieces: a set of “correct” 
snippets and a set of “incorrect” snippets. After some experimentation, using ROT, we 
found that the trained models generalize better when, rather than selecting a single 
arbitrary threshold, we compute an average confidence score for each snippet using a set 
of different threshold values. The average score:  ܽ݃ݒሺ௦௧ሻ ൌ  ܿ ௧݂ሺݐ݊ݏሻ/ ௧ܰ௧∈்  

 
where T denotes a set of thresholds, Nt the number of thresholds in the set, and ܿ ௧݂ሺݐ݊ݏሻ 
the confidence score estimated with threshold t. We used three threshold values, 0.1, 0.2 
and 0.3, in all experiments, and trained confidence models for each system using 
development data. 

Finally, all queries in the training data were from nine Distillation templates. The 
number and nature of the snippets produced for queries from each template varies greatly. 
We tried two training mechanisms: first, training a single joint confidence model for all 
data; and second, training nine separate confidence models for the nine templates. We 
found that the nine separate confidence models outperformed the one joint model, 
although a few templates suffered from over-fitting due to lack of training data (queries 
formulated according to certain templates tend to produce far fewer snippets). All 
experiments reported here use nine separately trained confidence models. 

4.4.5.6.2. Results 

Template 
ID 

SYS1 SYS2 
Dev Val Dev Val 

1 0.103 0.073 0.187 0.125 
3 0.185 0.119 0.357 -0.141 
4 0.122 0.060 0.267 0.133 
5 0.167 0.026 0.227 0.069 
6 0.086 -0.352 0.447 0.094 
8 0.175 0.074 0.325 0.270 
9 0.199 -0.338 0.329 -0.040 
15 0.264 -0.265 0.178 0.084 
16 0.113 0.044 0.128 0.028 
Overall 0.164 0.049 0.263 0.128 

Table 4.19: NCE scores for Dev and Val sets 

We first look at an indirect measure of performance improvement, NCE (Normalized 
Cross Entropy). NCE is a common way to measure quality of confidence estimation 
(NIST 2000).  The closer NCE is to 1.0, the better the quality of the confidence 

Chapter 4: Distillation678 



estimation. Table 4.19 shows the NCE scores computed on both the Dev sets and the Val 
sets, using confidence models trained for both systems.  

For many templates, the NCE scores are much lower on the Val sets than on the Dev 
sets. This is especially true for Templates 6, 9, and 15 for SYS1 and for Templates 3 and 
9 for SYS2. These templates are those which have the smallest amount of training data 
(e.g., less than one-tenth of the data available for Template 1). We suspect that the 
models trained for these templates suffered from over-fitting during training. 

In general, the gap between overall Dev NCE scores and overall Val NCE scores 
leads us to conclude that models trained on the Dev sets did not generalize very well to 
the Val sets. There are two possible causes for this behavior. First, there may not be 
enough training data. Second, the features used by the model may not generalize well 
across queries. NCE scores are in fact relatively low across the board — much smaller 
than 1.0, and also lower than typical NCE scores for word confidence estimation in STT 
(typically above 0.3). We, therefore, suspect the primary problem here is the quality and 
quantity of features. (Word confidence estimation models used for STT typically employ 
about 60 features, many more than for this task.)  

Although the NCE scores are relatively low, using estimated confidence scores did 
improve the snippet ranking. To automatically compare two snippet rankings, we first cap 
the length of the output for each query at 500 words.18 We then compute the arithmetic 
average of ROT scores. If a re-ranking increases the average ROT, the re-ranking has 
successfully moved more correct snippets up rank. (All initial experiments were done 
with ROT.) 

System Ranked 
by 

Average ROT scores 

Dev Val 

SYS1 
Posteriors 0.2843 0.2806 
Confidence 0.3751 0.3579 

SYS2 
Posteriors 0.1713 0.1818 
Confidence 0.2747 0.2794 

Table 4.20: Average ROT scores before and after confidence-based re-ranking. 

Table 4.20 compares the original snippet rankings (using the posteriors, which are 
proportional to the original system-generated scores) with the snippet re-rankings using 
the estimated confidences. 

These comparisons show that re-ranking using confidence scores substantially 
increases the average ROT for each system on both the Dev and Val sets. The relative 
increases are about 25% for SYS1 and about 50% for SYS2. (The larger improvements 
for SYS2 are mainly due to that system's lower baseline scores.) 

Figure 4.22 shows some representative examples of improved ranking on SYS1’s 
output for a query in the validation set, Tell me about the attempted British Airways plane 
crash? Looking at the top ten snippets before and after re-ranking, we see improvements 
because correct snippets have been promoted (all three were originally ranked 45th or 
lower) and from the demotion of incorrect snippets. For this example, confidence-based 
                                                 
18 500 words roughly corresponds to the desired response length for the Distillation go/no-go evaluation. In 
all comparison experiments reported in this paper, we cap the query output at 500 words. 

Handbook of Natural Language Processing and Machine Translation 679 



re-reanking increased the number of correct, top ten snippets from three out of ten to six 
out of ten.  

 
Query: Tell me about the attempted British Airways plane crash. 

Correct snippets promoted 
into the top ten by re-ranking 

 
-- A number of passengers are 
believed to have suffered 
relatively minor injuries as the 
aircraft made sudden maneuvers 
during the struggle. 
-- The man, described by 
passengers as tall, strong and 
hysterical, launched his assault on 
the cockpit during a British 
Airways flight from London to 
Nairobi. 
-- “Our crew are trained to deal 
with every situation and it was this 
training and their professionalism 
that ensured a quick resolution of 
the incident,” Mike Street, the BA 
director of customer service, said 
in a statement. 

Incorrect snippets demoted 
from the top ten by re-ranking 
 
-- More than 2.5 million 
passengers have since flown on 
BA's supersonic jets. 
-- He claims Virgin, which he 
created in the 1980s as an upstart 
challenger to BA, may be able to 
make the plane more profitable. 
-- Double said BA was talking to 
aviation museums interested in 
taking custody of the sleek jets. 

Correct snippets in the top ten 
before and after re-ranking 

 
-- A male passenger on a British 
Airways flight from London to 
Nairobi broke into the cockpit and 
tried to crash the plane Friday, 
sending it into a violent dive 
before the crew regained control, 
the airline and passengers said. 
-- But a British Airways 
spokesman said the crew was “in 
shock,” and passengers making 
connections at Nairobi's 
Jomo Kenyatta International 
Airport said they thought the plane 
was going to crash. 

Figure 4.22: Examples of improved results from confidence-based re-ranking (SYS1) 

We measured performance using the manual snippet judgments described in Section 
4.4.5.5.2, by computing the arithmetic mean of snippet judgment scores on capped 
outputs (for the Val sets, since the manually-assigned scores do not exist for the Dev 
sets).  Table 4.21 shows improvement in average snippet-judgment (SJ) score after 
confidence-based re-ranking. Here ROT does indeed correlate with simple human 
judgments, though the relative improvements on the average snippet-judgment score — 
about 7% for both systems — are smaller than the improvements observed on the average 
ROT scores — about 25% and 50% (shown in Table 4.21), due no doubt to the 
correlation being somewhat weak. 

 
System Ranked by Average SJ 

Scores 

SYS1 
Posteriors 0.7704 
Confidence 0.8189 

SYS2 
Posteriors 0.6033 
Confidence 0.6439 

Table 4.21: Average snippet-judgment scores before and after confidence-based re-ranking. 

We also compared performance using ROT and the PROT on system SYS1. We 
trained new confidence models for SYS1, replacing the ROT metric with the PROT 
metric; then re-ranked the snippets using the confidence scores generated by the new 

Chapter 4: Distillation680 



models. Table 4.22 shows this comparison in terms of the average snippet-judgment 
score; PROT outperforms ROT in terms of average snippet-judgment scores. 

 
 

Metric Ranked by Average SJ 
Score 

- Posteriors 0.7704 
ROT Confidence 0.8189 

PROT Confidence 0.8398 

Table 4.22: Comparison of the ROT and PROT metrics in terms of average snippet-judgment scores. 

Given these results, we used PROT in our system merging work discussed in the next 
section. 

4.4.5.7. System Merging 

Given the positive results in the previous section, experiments on merging snippets 
from the two systems and re-ranking the snippets according to confidence scores began. 
Note that (1) the two systems do not typically perform equally well and should probably 
be weighted unequally and (2) that a snippet found by both systems is presumably more 
likely to be correct.  

We applied a system-dependent scaling factor (Wsystem) to the estimated confidence 
scores and for each snippet also calculated an “overlap rate” with snippets produced by 
other systems. (The overlap rate for a snippet is the number of its tokens that also occur 
in snippets from other systems, divided by the total number of its tokens.) For each 
snippet, the mrgScr score is defined as: 

ሻݐ݊ݏሺܿݎܵ݃ݎ݉  ൌ ߙ כ ௦ܹ௬௦௧ כ ሻݐ݊ݏሺ݂݁ܿ݊݁݀݅݊ܿ  ሺ1 െ ሻߙ כ  ሻݐ݊ݏሺ݁ݐܴ݈ܽܽݎ݁ݒ
 
Here, α is a system-independent factor that controls the relative weighting of the 

system-weighted confidence score and the overlap rate. Both WSystem and α are in [0, 1]. 
The combiner re-ranks the snippets for each query according to their mrgScrs. α and 
WSystem are automatically optimized using the Dev sets from both systems, and tested 
using the combination of the Val sets from both systems. The best values for the merging 
parameters are found by linearly sampling the region of [0, 1] with a sampling step of 0.1 
for all parameters. For each template, we choose the parameter values that maximize 
PROT on the merged output. 

We evaluate merging using both the original posterior scores as confidences and the 
estimated snippet confidence scores.  Table 4.23 shows the results of both experiments in 
terms of average PROT for the individual component system responses and for the 
merged response. Percentage improvement attributed to merging is given as the relative 
improvement over the best individual system.  

Comparing the merged response with individual system responses, one can see that 
either type of merging produces higher average PROT scores on both the Dev and the 
Val sets. Confidence-based merging produces slightly smaller relative improvements than 

Handbook of Natural Language Processing and Machine Translation 681 



posterior-based merging because its baselines have already been improved by 
confidence-based re-ranking. 

.  

 Score used in merging 
posteriors confidence 

On Dev set 

SYS1 0.268 0.315 
SYS2 0.145 0.187 
Merged 0.314 0.347 
Relative Imprv. 17% 10% 

On Val set 

SYS1 0.238 0.253 
SYS2 0.141 0.169 
Merged 0.248 0.295 
Relative Imprv. 19% 17% 

Table 4.23: Improvements from merging in terms of the average PROT score. 

Comparing confidence-based merging with posterior-based merging, one can see that 
confidence-based merging provides higher overall PROT scores than posterior-based 
merging on both the Dev set (11% relative, improving from 0.314 to 0.347) and the Val 
set (4% relative, improving from 0.284 to 0.295). This verifies our initial intuition that 
confidence scores are more useful than posteriors in system merging. Measured on the 
Val set, the overall gain using both confidence estimation and system merging is 24% 
relative improvement over the best individual system. 

4.4.5.8. Conclusion 

We have presented a statistical approach for improving Distillation performance, and 
open domain question answering performance in general, using confidence estimation 
and system combination. We have presented a method for estimating snippet confidence, 
using trained GLMs and new automatic metrics designed for this task (ROT and PROT). 
System performance improved by re-ranking snippets according to confidence scores 
generated by these trained models. Moreover, when used as input to the final merging 
process, confidence scores improve the performance of the merger as well. The method 
we developed for statistically combining results from two component systems provides 
additional benefit for question answering performance; the final response is of higher 
quality than either individual system response. The combined result of both approaches 
(re-ranking based on confidence estimation and system combination) is of even higher 
quality. Desirable future directions include further work to improve both the automatic 
metrics and the confidence estimation procedure. The automatic metric used to train these 
models does not correlate very strongly with the simple human judgments we created. It 
would be interesting to explore metrics that could better approximate more complex 
evaluation of question-answering performance. The poor performance of confidence 
estimation in terms of the NCE metric is most likely explained by the shortage of good 
snippet-related features. Future work could include the development of more and better 
features for snippets, as well as, the creation of additional training data for the templates 
which are sparsely represented, potentially reducing overfitting. Improvements to the 

Chapter 4: Distillation682 



automatic metrics and confidence estimation should also carry over to system merging, 
allowing for even further improvement over the already promising results presented here. 

 

4.4.6. Identifying Conflicting Information in Texts 
Authors: Marie-Catherine de Marneffe, Anna N. Rafferty, and Christopher Manning 

4.4.6.1. Introduction 

The primary goal of Distillation is to identify information relevant to a user’s query. 
To do so, a system needs to gather pertinent and concise information about the topic in 
question. A crucial step in this process is to understand the relationships between pieces 
of text which are retrieved: to choose which information seems relevant, it matters to 
know whether text snippets are unrelated, equivalent, redundant, or whether they present 
information that conflicts. So far, little work has targeted the notion of “contradiction” in 
NLP tasks (Harabagiu et al. 2006), however as pointed out by Condoravdi et al. (2003), 
handling contradiction is necessary to achieve text understanding. We argue that it is also 
central to information analysis. It is particularly important for analysts to be made aware 
of conflicting factual claims and divergent viewpoints, which might reflect different 
sources, political leanings, or even disinformation. Consider the following texts:  

 
(1) Maitur Rehman, a 29-year-old Pakistani from Multan in Punjab, is reported 

to be the present amir of Jundullah. He had previously served in the 
Lashkare-Jhangvi, an anti-Shia terrorist organization.  

(2) Intelligence sources in the U.S. and Pakistan tell NBC News that Maitur 
Rehman is a low-level militant operating in South Waziristan. 

 
If one wanted to know the status of Maitur Rehman, it would be appropriate to 

retrieve both passages, and let the user know that the information found diverges: if  
Maitur Rehman is an amir (a leader), then he is not a low level militant. The pieces of 
text contain conflicting information, and determining the exact status of Maitur Rehman 
would demand further analysis. Relevant information gathering can benefit from 
recognizing such contradictions in text. 

We will analyze the nature of conflicting information that commonly appears in text, 
and describe a system to automatically identify these “contradictions”. Information 
conflicts appear when facts diverge: a rising death toll for example, if detached from a 
time line, shows contradictory figures: 

 
(3) The explosion in Qana that killed more than 50 civilians has presented Israel 

with a dilemma. 
(4) An investigation into the strike in Qana found 78 confirmed dead thus far. 

 
Conflicting opinions and reports are also very frequent in texts: one example is the pair of 
sentences in (1) and (2), another example is the following, where two different sources 
report conflicting data. 

Handbook of Natural Language Processing and Machine Translation 683 



 
(5) That police statement reinforced published reports that eyewitnesses said de 

Menezes had jumped over the turnstile at Stockwell subway station and was 
wearing a padded jacket, despite warm weather. 

(6) However, the documents leaked to ITV News suggest that Menezes, an 
electrician, walked casually into the subway station and was wearing a light 
denim jacket. 

 
Distillation would benefit greatly from recognizing differences in opinions: it can 

indeed matter to a user that the two texts above differ in what information is embedded 
about de Menezes. We, therefore, aim at finding contradictions defined in a broad sense: 
two pieces of text are contradictory if they are extremely unlikely to be considered true 
simultaneously (de Marneffe et al. 2008). This definition captures the two cases of 
conflicting information that typically arise in text: divergent facts and different opinions. 

We will describe a system which, given pairs of passages called text (T) and 
hypothesis (H), decides whether or not they are contradictory. A contradiction system is a 
key component for achieving relevant information gathering, and as such, could be 
integrated in a global system targeting distillation. 

4.4.6.2. System Description 

Our system to detect contradiction is an adaption of the Stanford RTE (Recognizing 
Textual Entailment) system (MacCartney et al. 2006). It follows the Stanford System 
multi-stage architecture. The first stage computes the linguistic representations containing 
information about the semantic content of the passages: the text and hypothesis are 
converted to typed dependency graphs produced by the Stanford parser (Klein and 
Manning, 2003; de Marneffe et al. 2006). The second stage provides an alignment 
between the graphs, consisting of a mapping from each node in the hypothesis to a unique 
node in the text or to null. Details about the scoring alignment measure and the search 
algorithm are presented by de Marneffe et al. (2007) and Chambers et al. (2007).  

In the final stage, we extract contradiction features on which we apply logistic 
regression to classify the pair as contradictory or not. Feature weights are handset, guided 
by linguistic intuition.  Contradiction features rely on mismatches between the text and 
the hypothesis. However, pairs of sentences which do not describe the same event, and 
thus cannot be contradictory to one another, could nonetheless contain mismatching 
information. An extra stage to filter non-co-referent events is, therefore, added before 
feature extraction. For example, in the following pair, it is necessary to recognize that the 
Johnstown Flood has nothing to do with a ferry sinking; otherwise conflicting death tolls 
result in labeling the pair a contradiction.  

 
T: More than 2,000 people lost their lives in the devastating Johnstown Flood. 
 
H: 100 or more people lost their lives in a ferry sinking. 

 

Chapter 4: Distillation684 

This issue does not arise for textual entailment: elements in the hypothesis not supported 
by the text lead to non-entailment, regardless of whether the same event is described. For 



4.4.6.3. Filtering Non-Co-Referent Events 

Right now the system uses a crude filter based on topicality. Assuming two sentences 
of comparable complexity, we hypothesize that modeling topicality could be used to 
assess whether the sentences describe the same event. The topicality score of a sentence 
is calculated as a normalized score across all aligned NPs. The text and hypothesis are 
topically related if either sentence score is above a tuned threshold. While filtering 
provides improvement in performance (6.8% in precision), some examples of non-co-
referent events are still not filtered, such as:  

 
T: Also Friday, five Iraqi soldiers were killed and nine wounded in a bombing, 
targeting their convoy near Beiji, 150 miles north of Baghdad. 
 
H: Three Iraqi soldiers also died Saturday when their convoy was attacked by 
gunmen near Adhaim. 
 
It seems that the real world frequency of events needs to be taken into account. In this 

case, attacks in Iraq are unfortunately frequent enough to assert that it is unlikely that the 
two sentences present mismatching information (i.e., different location) about the same 
event. But compare the following example: 

 
T: Princess Diana died in Paris. 
 
H: The car accident killing Princess Diana occurred in London. 

 
The two sentences refer to one unique event, and the location mismatch renders them 
contradictory. 

4.4.6.4. Contradiction Features 

Mismatching information between sentences is often a good cue of non-entailment 
(Vanderwende et al. 2006), but it is not sufficient for contradiction detection, which 
requires more precise comprehension of the consequences of sentences. Some of the 
features used in the Stanford RTE system have been more precisely defined to only 
capture mismatches in similar contexts, instead of global mismatching. These features are 
described below. 
 
Antonymy features. Aligned antonyms are a very good cue for contradiction. Our list of 
antonyms and contrasting words comes from WordNet, from which we extract words 
with direct antonymy links and expand the list by adding words from the same synset as 
the antonyms. We also use oppositional verbs from VerbOcean. We check whether an 
aligned pair of words appears in the list, as well as, checking for common antonym 

Handbook of Natural Language Processing and Machine Translation 685 

contradiction, however, it is critical to filter unrelated sentences to avoid finding false 
evidence of contradiction when there is contrasting information about different events.  



prefixes (e.g., anti-, un-). The polarity of the context is used to determine if the antonyms 
create a contradiction.  
 
Polarity features. Polarity difference between the text and hypothesis is often a good 
indicator of contradiction, provided there is a good alignment: 
 

T: A closely divided Supreme Court said that juries, and not judges, must impose a 
death sentence. 
 
H: The Supreme Court decided that only judges can impose the death sentence. 

 
The polarity features capture the presence (or absence) of linguistic markers of 

negative polarity contexts. These markers are scoped such that words are considered 
negated if they have a negation dependency in the graph or are an explicit linguistic 
marker of negation (e.g., simple negation (not), downward-monotone quantifiers (no, 
few), or restricting prepositions). If one word is negated and the other is not, we may 
have a polarity difference. This difference is confirmed by checking that the words are 
not antonyms and that they lack unaligned prepositions or other context that suggests 
they do not refer to the same thing. In some cases, negations are propagated onto the 
governor, which allows one to see that no bullet penetrated, and a bullet did not 
penetrate, have the same polarity.  
 
Number, date and time features. Numeric mismatches can indicate contradiction (see 
example (3–4) above). The numeric features recognize (mis-)matches between numbers, 
dates, and times. We normalize date and time expressions, and represent numbers as 
ranges. This includes expression matching (e.g., over 100 and 200 is not a mismatch). 
Aligned numbers are marked as mismatches when they are incompatible and surrounding 
words match well, indicating the numbers refer to the same entity. 
 
Structural features. These features aim to determine whether the syntactic structures of 
the text and hypothesis create contradictory statements. For example, we compare the 
subjects and objects for each aligned verb. If the subject in the text overlaps with the 
object in the hypothesis, we find evidence for a contradiction. Consider: 
 

T: Jacques Santer succeeded Jacques Delors as president of the European 
Commission in 1995. 
 
H: Delors succeeded Santer in the presidency of the European Commission. 

 
In the text, the subject of succeed is Jacques Santer while in the hypothesis, Santer is the 
object of succeed, suggesting that the two sentences are incompatible. 
 
Factivity features. The context in which a verb phrase is embedded may give rise to 
contradiction: 
 

Chapter 4: Distillation686 



T: The bombers had not managed to enter the embassy. 
 
H: The bombers entered the embassy. 

 
Negation influences some factivity patterns: Bill forgot to take his wallet contradicts Bill 
took his wallet, while Bill did not forget to take his wallet does not contradict Bill took his 
wallet. For each text/hypothesis pair, we check the (grand)parent of the text word aligned 
to the hypothesis verb, and generate a feature based on its factivity class. Factivity classes 
are formed by clustering our expansion of the PARC lists of factive, implicative and 
nonfactive verbs (Nairn et al. 2006) according to how they create contradiction.  
 
Modality features. Simple patterns of modal reasoning are captured by mapping the text 
and hypothesis to one of six modalities ((not_)possible, (not_)actual, (not_)necessary), 
according to the presence of predefined modality markers such as can or maybe. A 
feature is produced if the text/hypothesis modality pair gives rise to a contradiction. For 
instance, the following pair will be mapped to the contradiction judgment (possible, not 
possible): 
 

T: The trial court may allow the prevailing party reasonable attorney fees as part 
of costs. 
 
H: The prevailing party may not recover attorney fees. 

 
Relational features. A large proportion of the RTE data is derived from information 
extraction tasks where the hypothesis captures a relation between elements in the text. 
Using Semgrex, a pattern matching language for dependency graphs, we find such 
relations and ensure that the arguments between the text and the hypothesis match. In the 
following example, we detect that Fernandez works for FEMA, and that because of the 
negation, a contradiction arises. 
 

T: Fernandez, of FEMA, was on scene when Martin arrived at a FEMA base 
camp. 
 
H: Fernandez doesn’t work for FEMA. 

 
Relational features provide accurate information, but are difficult to extend for broad 
coverage. 

4.4.6.5. Typology of contradictions 

The corpora we used to develop our system are the RTE datasets (Dagan et al. 2006; 
Bar-Haim et al. 2006; Giampiccolo et al. 2007) that we annotated for contradiction. We 
found that contradictions constitute approximately 10% of these corpora. Since the RTE 
datasets were constructed for textual inference, they might not reflect ‘real life’ 
contradictions. We therefore also collected contradictions ‘in the wild.’ The resulting 
corpus contains one hundred and thirty one contradictory pairs, and is available at 

Handbook of Natural Language Processing and Machine Translation 687 



http://nlp.stanford.edu/projects/contradiction. About 40% of the pairs were taken from the 
GALE distillation data. We excluded repeated pairs. We, therefore, took 8 pairs out of the 
45 “contradicting” pairs in the Phase-1 data, and 45 out of the 72 pairs judged 
contradictory in the Phase-2 data.  

Analyzing the data, we find two primary categories of contradiction: (1) those 
occurring via antonymy, negation, and date/number mismatch, and (2) contradictions 
arising from the use of factive or modal words, structural and subtle lexical contrasts, as 
well as, world knowledge (WK). Category (1) contradictions are more often surface 
contradictions, which are relatively easy to detect, as in the death toll example (3–4) ) or 
in the de Menezes example (5–6). The contradictions in the second category are more 
difficult to find automatically: they involve lexical and structural discrepancies, as well 
as, inconsistency via world knowledge. In (1–2) for instance, the meaning of amir is 
crucial for detecting the contradiction. In the following pair, one needs to have some 
knowledge about head companies and branches: 

 
(7) Microsoft Israel, one of the first branches outside the USA, was founded in 

1989. 
(8) Microsoft was established in 1989. 

4.4.6.6. Results and Discussion 
 Precision Recall 
RTE1 dev1 70.37 40.43 
RTE1 dev2 72.41 38.18 
RTE2 dev 64.00 28.83 
RTE3 dev 61.90 31.71 
RTE1 test 42.22 26.21 
RTE3 test 22.95 19.44 
Avg. RTE3 test 10.72 11.69 

Table 4.24: Precision and recall figures for contradiction detection. ‘Avg. RTE3 test’ refers to mean 
performance of the 12 submissions to the RTE3 Pilot. 

Our contradiction detection system was developed on all datasets listed in the first 
part of Table 4.24. As test sets, we used RTE1 test, as well as, the RTE3 test 
independently annotated by NIST (Voorhees 2008). We focused on attaining high 
precision. In a real world setting, it is likely that the contradiction rate is extremely low; 
rather than overwhelming true positives with false positives, rendering the system 
impractical, we mark contradictions conservatively. We found reasonable inter-annotator 
agreement between NIST and our post-hoc annotation of RTE3 test (κ = 0.81), showing 
that, even with limited context, humans tend to agree on contradictions.19 The results on 
the test sets show that performance drops on new data, highlighting the difficulty in 
generalizing from a small corpus of positive contradiction examples, as well as, 
underlining the complexity of building a broad coverage system. This drop in accuracy 

                                                 
19 This stands in contrast with the low inter-annotator agreement reported by Sanchez-Graillet and Poesio 
(2007) for contradictions in protein-protein interactions. The only hypothesis we have to explain this contrast 
is the difficulty of scientific material. 

Chapter 4: Distillation688 



on the test sets is greater than that of many RTE systems, suggesting that generalizing for 
contradiction is more difficult than for entailment. Particularly when addressing 
contradictions that require lexical and world knowledge, we are only able to add coverage 
in a piecemeal fashion, resulting in improved performance on the development sets, but 
only small gains for the test sets.  
 

Type RTE3 dev RTE3 test 
1 Antonym 25.0 (3/12) 42.9 (3/7) 
   Negation 71.4 (5/7) 60.0 (3/5) 
   Numeric 71.4 (5/7) 28.6 (2/7) 
2 Factive/Modal 25.0 (1/4) 10.0 (1/10) 
   Structure 46.2 (6/13) 21.1 (4/19) 
   Lexical 13.3 (2/15) 0.0 (0/12) 
   WK 18.2 (4/22) 8.3 (1/12) 

Table 4.25: Recall by contradiction type. 

Thus, as shown in Table 4.25, we achieve 13.3% recall on lexical contradictions in 
RTE3 dev, but are unable to identify any such contradictions in RTE3 test. Additionally, 
we found that the precision of category (2) features was less than that of category (1) 
features. Structural features, for example, caused us to tag 36 non-contradictions as 
contradictions in RTE3 test, over 75% of the precision errors. Despite these issues, we 
achieve much higher precision and recall than the average submission to the RTE3 Pilot 
task on detecting contradictions, as shown in the last two lines of Table 4.24. In the RTE3 
Pilot task, systems made a three-way decision as to whether pairs of sentences were 
entailed, contradictory, or neither (Voorhees 2008).  

One significant issue in contradiction detection is lack of feature generalization. This 
problem is especially apparent for items in category (2) requiring lexical and world 
knowledge, which proved to be the most difficult contradictions to detect on a broad 
scale. While we are able to find certain specific relationships in the development sets, 
these features attained only limited coverage. Many contradictions in this category 
require multiple inferences and remain beyond our capabilities: 

 
T: The Auburn High School Athletic Hall of Fame recently introduced its Class 
of 2005, which includes ten members. 
 
H: The Auburn High School Athletic Hall of Fame has ten members. 

 
Of the types of contradictions in category (2), we are best at addressing those formed 

via structural differences and factive/modal constructions as shown in Table 4.25. 
However, creating features with sufficient precision is an issue for these types of 
contradictions. Intuitively, two sentences that have aligned verbs with the same subject 
and different objects (or vice versa) are contradictory. This indeed indicates a 
contradiction 55% of the time on our development sets, but this is not high enough 
precision given the rarity of contradictions.  

Another type of contradiction where precision falters is numeric mismatch. We 
obtain high recall for this type (Table 4.25), as it is relatively simple to determine if two 

Handbook of Natural Language Processing and Machine Translation 689 



numbers are compatible, but high precision is difficult to achieve due to differences in 
what numbers may mean. Consider: 

 
T: Nike Inc. said that its profit grew 32 percent, as the company posted broad 
gains in sales and orders. 
 
H: Nike said orders for footwear totaled $4.9 billion, including a 12 percent 
increase in U.S. orders. 

 
Our system detects a mismatch between 32 percent and 12 percent, ignoring the fact 

that one refers to profit and the other to orders. Accounting for context requires extensive 
text comprehension; it is not enough to simply look at whether the two numbers are 
headed by similar words (grew and increase). This emphasizes the fact that mismatching 
information is not sufficient to indicate contradiction.  

We handle single word antonymy with high precision (78.9%), as well as, negation. 
Nevertheless, Harabagiu et al. (2006)’s performance on detecting contradictions arising 
from negation and antonyms (64% on a balanced dataset) demonstrates that further 
improvement on these types is possible; indeed, they use more sophisticated techniques 
to extract oppositional terms and detect polarity differences. Thus, detecting category (1) 
contradictions is feasible with current systems. Since more than half of the examples 
found in the real corpus are of that category (60% if we restrict the corpus to the pairs 
coming from the GALE data), it suggests that we may be able to gain sufficient traction 
on contradiction detection for real world applications. Even so, category (2) 
contradictions must be targeted to detect many of the most interesting examples and to 
solve the entire problem of contradiction detection. Some types of these contradictions, 
such as lexical and world knowledge, are currently beyond our grasp, but we have 
demonstrated that progress may be made on the structure and factive/modal types.  

Despite being rare, contradiction detection is foundational for information analysis. 
Our detailed investigation demonstrates which aspects of it can currently be resolved and 
where further research must be directed. 

Acknowledgements  

We would like to thank Sebastian Padó for all his work as part of the Stanford Distillation team. 
 

4.5 Distillation in an Integrated GALE system 

Authors: Kristen Parton, Weiyun Ma, Kathleen McKeown, and James Allan 

4.5.1.1. Introduction 

Cross-Lingual Question Answering (CLQA) typically focuses on the task of 
retrieving answers in language f (or a set of languages F) that are relevant to a question 

Chapter 4: Distillation690 

4.5.1. Using Query-Time Information to Improve Multi-lingual 
Search and Response Generation  



posed in language e. The GALE distillation task expands this task to include result 
translation - we call this new task translingual question answering. In many real life 
scenarios, such as intelligence work, international business, or tourism, users may not be 
able to read language f and therefore need results in the query language, e. Whereas, 
result translation in CLQA has usually been considered a separate, post-processing step 
that should be evaluated separately, in translingual QA, relevance and translation quality 
are inseparable: a poor translation of a relevant answer is likely to be deemed irrelevant.  

To address this problem, we propose a post-editing mechanism to deal with 
translation errors in answers. We first use a machine translation (MT) system to translate 
a source sentence, and then detect and correct problematic translations using information 
available in the QA context. In this framework, we treat MT as a black-box, and focus on 
improving the output rather than re-engineering the translation system itself. As MT is 
used in a more and more multi-lingual applications, this situation will be quite common.  

4.5.1.2. Post-Editing  Framework 

Human post-editing is commonly used in commercial applications of MT, to correct 
errors in MT output. Knight and Chander (1994) introduced the idea of an automatic 
post-editing system that would be “portable across MT systems.” More recently, Simard 
et al. (2007) use a statistical machine translation (SMT) system to learn to post-edit the 
output of a rule-based MT system. Elming (2006) applied transformation-based learning 
to learn substitution rules for post-editing an MT system. Similar to that work, we focus 
on two kinds of MT errors: named entity mistranslation and verb deletion. This post-
editing framework is applicable across a variety of MT systems, since it only needs word 
alignments.  

Within the context of the GALE Distillation task, our system works as follows. The 
query is sent to the information retrieval system for document retrieval. Each document 
retrieved is returned in both the source language and the query language (via MT). Based 
on the input query, the post-editing modules check each sentence for translation errors. 
When an error is detected, the translation is corrected (if possible). The corrected 
translations are then sent to response generators, which are responsible for selecting 
relevant sentences and generating a system response.  

4.5.1.3. Post-Editing Named Entities  

Named entities are particularly important in the GALE distillation task: in the second 
year GALE evaluation, more than 90% of the arguments contained named entities. 
However, SMT systems typically perform poorly on named entity translation, as many 
named entities are out-of-vocabulary with respect to the training data. Since the GALE 
corpus contains informal genres, there are many variations of the same name, such as 
misspellings and slang, making it even harder for MT systems to correctly translate the 
names. Incorrect name translation adversely affects both the precision and recall of 
GALE distillation. The recall is decreased because the QA component cannot find as 
many answers containing the named entity in the query. The precision is decreased when 
the translated answers have incorrect named entity translations, and therefore, appear 
irrelevant.  

Handbook of Natural Language Processing and Machine Translation 691 



Our approach addresses both of these problems. We improve our retrieval by 
simultaneously searching for a query in the source documents (in Chinese and Arabic), as 
well as, in their translations (in English). The query translation is based on dictionary 
lookup, but the dictionary we use is derived from Wikipedia, which allows us to cover 
many different name variations. Ferrandez et al. (2007) demonstrate that Wikipedia is an 
excellent source of named entity translations for cross-lingual question answering, since 
it is created and edited by humans. The simultaneous multilingual IR (SMLIR) system 
that we use is described more fully in Parton et al. (2008).  

When sentences are returned that contain a name in the source language, but not in 
translation, we hypothesize that the name was mistranslated. Using word alignments, our 
system replaces the incorrect name translation with the name from the original query.  

There are several reasons that SMT post-editing could improve over SMT. First, 
statistical machine translation takes a sentence-by-sentence approach to translation, 
ignoring issues of coherence and consistency. In one document in our corpus, the same 
name was translated three different ways. A name that co-referred in the source language 
appeared to be three different people in the translation. Second, we have more 
information at query-time than at document translation time. Since we run named entity 
tagging on the queries, we can try to match them to documents that are name-tagged in 
both languages. Therefore, we are using information from multiple sources to make an 
informed translation decision. This is similar to the approach of Ji and Grishman (2007) 
for using joint inference over information extraction and entity translation to improve 
name translation.  
 

4.5.1.3.1. Algorithm  

Consider a query such as “Provide information on [Arnold Schwarzenegger]”. Using 
our Wikipedia-derived dictionary, we can find English variations of this name (e.g., slang 
variants such as “the governator” and misspellings like “schwartzenegger”), as well as, 
Chinese and Arabic translations of the name and name variations. Using the set of all 
English, Chinese and Arabic terms for “Arnold Schwarzenegger”, we issue a SMLIR 
query to simultaneously search the corpus and the translated corpus. An example result is 
shown in Figure 4.23. This sentence is relevant in Arabic, but a user is unlikely to rate it 
relevant in English given the poor translation.  

 
 

 

 

 

 

 

He SwArznjr by these pointed out here today in a dinner 
banquet held by the network of California American. 

Actual translation: “Schwarzenegger made this statement 
here today, Tuesday, at the dinner held by the Chinese-
American business association of California.” 

Chapter 4: Distillation692 

Figure 4.23: A translated answer for the query [Schwarzenegger], with Arabic source and English machine 
translation. A reference translation is shown below. Note that the word “Chinese” is deleted in the machine 
translation, and “Schwarzenegger” is mistranslated.  



Using the SMLIR approach, we can detect potentially incorrect translations in a 
document when a document-language match is found for a query, but a query-language 
match is not found. In the example from Figure 4.23 the query translation matched the 
query “Schwarzenegger” in Arabic شوارزذجر  , but the document translation did not match 
the query due to a translation error. This occurs since the query translation and document 
translations are done by different methods. Since we have word alignments from the 
document translation system, after detecting an incorrect translation, we can replace the 
incorrect translation (“$warznjr”) with the original query (“Schwarzenegger”). The user 
then gets a response with the correctly spelled name, and the translated document is 
perceived relevant.  

Figure 4.24 illustrates the post-editing process for a different query.  
Our algorithm for query-directed SMT post-editing is:  

 
1. Use SMLIR system to detect potential mistranslation. If a result contains a 

match in the foreign source but not in the English, consider it a potential 
error.  

2. Using word alignments, extract the MT hypothesis: the English words that 
correspond to the foreign source match.  

3. If the MT hypothesis matches a name variation in our dictionary, do not 
rewrite this translation.  

4. Use word alignments to decide which translation tokens to replace. Name 
translations are not necessarily contiguous, so it is important not to insert 
the name multiple times. If the match is part of a larger phrase match, there 
may be links to other words, which should not be rewritten.  

 
Figure 4.24: Query-directed statistical machine translation post-editing. SMLIR returned a match on the 

Arabic part of the document for “Kofi Annan”, but not on the English side. We use word alignments from 
SMT to extract “Kofi Anan” from the English translation. Since “Kofi Anan” is not a known name variation 

for “Kofi Annan”, we rewrite the sentence with the term as it appeared in the query. 

Handbook of Natural Language Processing and Machine Translation 693 



In general, a find-and-replace approach to machine translation is too simplistic and 
likely to be problematic. We restrict our post-editing to proper names, which are more 
amenable to rewriting than arbitrary words or phrases. The approach is generally 
language-independent, although for some languages, additional work may be needed to 
address morphology (for example, case endings in Russian). We implemented the post-
editing module in both Chinese and Arabic, but we evaluated on Arabic only.  

4.5.1.3.2. Results  

The goal of our automatic machine translation post-editing system is to use query 
time information to improve the translation quality of returned results. Our preliminary 
results indicate that this approach is able to improve our MT output. We ran the post-
editing system on 127 Arabic GALE queries, using the top 10 document results from our 
SMLIR system. Of those, 28 (22%) of the queries returned documents that required post-
editing. For the queries that were post-edited, 15% of the IR name matches were 
rewritten. For each query, up to the first 5 post-edits were examined by a student of 
Arabic. The annotator decided whether the replacement was Acceptable, Not Acceptable 
or Ambiguous. Of the 101 rewrites examined, our replacements were Acceptable 93% of 
the time. 6% were Not Acceptable and 1% was Ambiguous. Our post-editing algorithm 
was especially conservative, so it aimed for precision rather than recall. A more in-depth 
evaluation is required to explore this issue further. 

Improved name translation is essential for good translingual applications like GALE 
Distillation. However, MT metrics such as the BLEU score (Papineni et al. 2002) or 
METEOR (Banerjee and Lavie, 2005) do not take into account the relative importance of 
various words in the sentence. Producing an incorrect translation of a name such as 
“Zarqawi” has the same effect on BLEU score as producing an incorrect determiner (“a” 
instead of “the”). On the other hand, a deleted determiner is unlikely to affect a user’s 
understanding of a GALE answer, whereas a mistranslated name can make a relevant 
sentence seem irrelevant to a user. By using query-directed post-editing, we have shown 
that we can improve named entity translation for translingual applications.  

4.5.1.4. Post-Editing Deleted Verbs  

Our second post-editing module is aimed at detecting and correcting verb deletion. 
The main verb usually plays a crucial role in conveying the whole meaning of a sentence. 
A missing main verb can result in an incomprehensible sentence as seen in the first 
example of Figure 4.25 where the Chinese verb “被捕” was not translated at all. In other 
cases, a deleted main verb can result in miscommunication; in the second example of 
Figure 4.25, the Chinese verb “减退” should have been translated as “decreased”. An 
English native speaker could easily misunderstand the meaning to be “People love 
classical music every year.” which is the opposite of the original intended meaning.  

In cases where only the main verb is missing, MT evaluation metrics (such as BLEU 
or Translation Edit Rate) may give a high score, but the sentence can nonetheless be 
incomprehensible. We propose a novel method which uses redundant information 
available within QA to detect and correct verbs deleted in MT.  

 

Chapter 4: Distillation694 



 
MT On December 13 Saddam . 
Ref On December 13 Saddam was arrested. 
Source 12月 13日萨达姆被捕。 
MT People of classical music loving every year. 
Ref People’s love for classical music decreased every year. 
Source 民众对古典音乐的热爱逐年减退。 

One of the recent trends in phrase-based SMT is to integrate more syntactic 
considerations into translation models. SMT systems integrate syntactic information of a 
source side (Watanabe et al. 2003; Wang et al. 2007) or of a target side (Yamada and 
Knight 2001; Charniak and Knight 2003) or of both sides (Huang et al. 2006; Lavie 
2008) into their translation model. Most systems utilize N-grams as the language model 
for providing local constraints, whereas, global constraints are needed to check for a 
missing main verb in a target sentence. Our work tries to complement this kind of global 
consideration through post-editing mechanism using question-answering context.  

We modify the set of related MT documents retrieved by IR so that the QA system 
can utilize these modified documents to generate answers. Handling this problem at 
query time rather than during SMT gives us valuable information which was not 
available during SMT, namely, a set of related sentences and their translations which may 
contain the missing verb. By using translation examples of verb phrases and alignment 
information in the related documents, we are able to find an appropriate English verb and 
embed it in the right position as the main verb in order to improve MT quality and QA 
performance. More details are described by Ma and McKeown (2009).  

4.5.1.4.1. Algorithm  

The post-editing algorithm works as follows: we detect a clause with a missing main 
verb, determine which Chinese verb phrase should have been translated, and find an 
example sentence in the related documents, which can be used to modify the sentence in 
question.  

In the first step, we identify the main clauses, subordinate clauses and conjunct 
clauses from a translated English sentence. If a clause does not have any POS tag that can 
serve as a main verb (VB, VBD, VBP, VBZ), it is marked as missing a main verb. MT 
alignment information is then used to further ensure that these marked clauses are really 
missing main verbs. We segment and tag the Chinese source sentence using the Stanford 
Chinese segmenter and the CRF Chinese POS tagger developed by Purdue University. If 
we find a verb phrase in the Chinese source sentence that was not aligned with any 
English words in the SMT alignment tables, then we label it as a verb translation gap 
(VTG).  

We translate VTGs by using verb redundancy in related documents: if the VTG was 
translated in other places in related documents, the existing translations can be reused. 
Related documents are likely to use a good translation for a specific VTG as it is used in 
a similar context. A verb’s aspect and tense can be directly determined by referencing the 

Handbook of Natural Language Processing and Machine Translation 695 

Figure 4.25: Examples of verb deletion in Chinese-English SMT 



corresponding MT examples and their contexts. If a given VTG did not have any other 
translation record, then the VTG will not be processed.  

Given a set of related MT documents and their MT alignments to a certain query, we 
collect all Chinese verb phrases and their translations along with their frequencies and 
contexts.  

One key issue is to decide appropriate contextual features of a verb. A number of 
researchers (Cabezas and Resnik 2005; Carpuat and Wu 2007) provide abundant 
evidence that rich context features are useful in MT tasks. Carpuat and Wu (2007) tried to 
integrate a Phrase Sense Disambiguation (PSD) model into their Chinese-English SMT 
system and they found that the POS tag preceding a given phrase, the POS tag following 
the phrase and bag-of-words are the three most useful features. Following their approach, 
we use the word preceding and the word following a verb as the context features. We 
select the proper translation of a given VTG according to the Naive Bayes equation 
shown below 
 
ᇱݐ                    ൌ  argmax௧ೖ ܲሺݐ|ݓ,  ሻݓ݂

                       ൌ argmax௧ೖ ሺlog ܲሺݐሻ  log ܲሺݐ|ݓሻ  log ܲሺ݂ݐ|ݓሻሻ  

where pw,  fw and tk represent the preceding source word, the following source 
word and a  translation candidate of a VTG, respectively. 

Finally, once we have selected an English translation, we use word alignment 
information to insert the translation back into the translated sentence. Chinese ordering 
differs from English mainly in the clause ordering. But within a clause centered by a 
verb, Chinese mostly uses a SVO or SV structure, just like English (Yamada and Knight 
2001). Therefore, we assume the local alignment centered by a verb between Chinese and 
English is a linear mapping relation. 

4.5.1.4.2. Results  

Our test data is drawn from Chinese-English MT results generated by Aachen 
RWTH’s translation system (Mauser et al. 2007), which is a state-of-art phrase-based 
SMT system. We passed five GALE queries to the IR module, and then post-edited all 
retrieved 18,886 sentences. Among these MT sentences, 1,142 sentences were detected 
and modified (6 % of all retrieved MT sentences).   

Since we did not have reference translations of our corpus, we used human 
judgments to evaluate our post-editing module. We also believe that human judgments 
are more accurate than MT scoring techniques such as TER or BLEU, since readers can 
better tell whether the correct meaning was captured in translation. We recruited 13 
Chinese native speakers who are also proficient in English to participate in the 
evaluation. Evaluators were presented with the Chinese sentence, the machine translation, 
and the post-edited machine translation in random order, so they could not tell which was 
post-edited. They were then asked to choose which translation was better, or “no 
difference”. Each sentence was evaluated by three annotators.  
We used majority voting (two out of three) to decide the final evaluation of a sentence 
judged by three people. Of the 1,142 modified sentences, 900 (79%) were judged better 

Chapter 4: Distillation696 



than the original sentences. This is equivalent to 5% of all the retrieved sentences. For 
629 (70%) of these 900 better modified sentences, all three evaluators agreed that the 
modified sentence was better.  

We also evaluated the impact of post-editing on the 234 sentences returned by our 
response generator. Response sentences were judged as “Relevant”, “Partially Relevant”, 
“Irrelevant” and “Too little information to judge” by English native speakers. With our 
post-editing technique, 7% of 141 “Irrelevant” or “Too little information” responses 
became “Relevant” or “Partially Relevant.” None of the “Relevant” or “Partially 
Relevant” responses became “Irrelevant” or “Too little information” responses. Two 
examples of beneficial post-edits are shown below.  
 

Question: Who/What is involved in Saddam Hussein's trial?  
Original QA answer: On May 8, Saddam defense counsel in Jordan's capital 
Amman.  
Modified QA answer: On May 8, Saddam defense counsel in Jordan's capital 
Amman formally established.  
Original QA answer: According to the Iraqi transitional government announced that 
Saddam would on October 19.  
Modified QA answer: According to the Iraqi transitional government announced 
that Saddam would on October 19 to be tried.  

 
In total, the post-editing system improved 4% of the actual system response sentences, 
thus demonstrating that our correction of MT truly improves QA performance.  

4.5.1.5. Conclusions  

The GALE task gives us a unique opportunity to explore a translingual application, 
where doing well requires a correct answer and a readable translation of the answer. Our 
section builds on previous work in automatic post-editing of machine translation to 
correct errors in MT, with the goal of returning more readable, relevant answers. Like 
previous work, our approach treats MT as a black box, and does not rely on system-
specific internals, so it is widely applicable to any MT system. Our work is novel in that 
it uses information available at query time to guide the post-editing process, thus tailoring 
the post-editing to the specific user needs. Our results showed that we can successfully 
detect and correct mistranslated named entities in a largely language-independent 
approach. We also demonstrated that we could detect verbs that were deleted by MT and 
insert correctly translated verbs back into the sentences. In the future, we plan to extend 
our approach to tackle other MT error types by using information available at query time. 

Acknowledgements 

We would like to thank Bob Armstrong for making the annotation happen, Mark Smucker and Giridhar 
Kumaran for help with INDRI and corpus issues. We would also like to thank Ben Carterette for help with 
discussions about evaluation. We would also like to thank the members of the NIGHTINGALE machine 
translation team for translation data, especially Nizar Habash. 

Handbook of Natural Language Processing and Machine Translation 697 



4.5.2. Handling Out-of-Vocabulary Terms Using Query 
Driven Retranscription 

Authors: Brian Kingsbury and Upendra V. Chaudhari 

4.5.2.1. Introduction 

Dealing with queries containing out-of-vocabulary (OOV) terms is a central problem 
in information retrieval from speech. Most speech transcription systems rely on closed 
recognition vocabularies that are small in comparison to the set of words that are 
encountered in operation. The OOV problem is especially severe for named entities, 
which are frequently the most important tokens to get right in information retrieval tasks. 
Moreover, OOV names often arise and become significant quickly and unpredictably. We 
first encountered this problem in the GALE Distillation task, where the goal is to provide 
concise, relevant responses to structured queries against a corpus derived from audio and 
text sources in Arabic, Chinese and English. In a Distillation evaluation, one of the test 
queries was: 

 
FIND STATEMENTS MADE BY OR ATTRIBUTED TO [Isabelle Dinoire] ON 
[her successful face transplant].  
 

Due to training data restrictions, only audio sources in the distillation corpus contained 
information on Isabelle Dinoire’s face transplant. However, the transcription system used 
to convert the audio to text did not have “Dinoire” in its vocabulary, so the Distillation 
System was unable to return any information in response to this query.  

Phonetic indexing provides a partial solution to the OOV problem in that it can return 
a ranked list of segments that may contain the OOV terms; however, in the GALE 
Distillation task a list of possible hits is insufficient. What is required is text that can be 
further processed to provide the user with a concise and relevant answer to her query. 
This goal can be accomplished by augmenting the recognition vocabulary and language 
model of a transcription system with the OOV terms, and then decoding audio segments 
returned by a phonetic indexing system with the augmented recognizer. We refer to this 
process as query-driven retranscription.  

4.5.2.2. System Architecture 

Our system for query-driven re-transcription operates in two phases: indexing and 
retrieval. Both phases are illustrated in Figure 4.26. The indexing phase begins with 
transcription of the input speech. The transcription system, which is described in more 
detail below, produces three outputs: a diarization of the audio that includes a 
segmentation of the audio into shorter units and a clustering of segments into 
hypothesized speakers, a set of adaptation parameters for each speaker hypothesized in 
the diarization, and a one best word transcription of each segment in the diarization. The 
index is constructed by expanding the word-level transcripts into phone-level transcripts 
using the baseforms in the recognition dictionary. Lattice based indexing could be used, 
however in practice we have found that approximate search over one best transcripts is 

Chapter 4: Distillation698 



more efficient and has comparable accuracy. Non-speech phones are discarded, then the 
phone-level transcripts are parsed into N-grams and an inverted index is constructed. For 
each N-gram that occurs in the audio corpus, the index stores all locations at which it 
occurs, where a location is a (segment, time) pair.  
 

 
Figure 4.26: Architecture of the query-driven retranscription system. 

For retrieval, query terms are converted into phone sequences. In-vocabulary terms 
are converted by looking up baseforms in the recognition dictionary, while out-of-
vocabulary terms are converted using an automatic spelling-to-sound conversion system 
(Chen 2003).  

The phonetic search, which is described in more detail below, is based on an 
approximate matching score that accounts for confusions between phone unigrams, 
bigrams and trigrams (Chaudhari and Picheny 2007). The match score for a segment is 
the average of the scores of the best-scoring index element for that segment for each n-
gram in the query. The output of the phonetic search is a ranked list of segments that may 
contain the query term.  

The baseforms from the spelling-to-sound conversion are added to the recognition 
lexicon and the OOV terms are added to the recognition language model. In the tests 
described below, the OOV terms are added to the language model as unigrams with the 
unknown word score. Finally, the audio segments that are identified by the phonetic 
search as possibly containing the query terms are retranscribed with the augmented 
system. The retranscription can be done efficiently because we need to re-decode only 
those segments that are identified by the phonetic search, and because we reuse the 
adaptation parameters computed during indexing and need to run only the final, speaker-
adapted decoding pass.  

Handbook of Natural Language Processing and Machine Translation 699 



4.5.2.2.1. Transcription System 

The transcription system used in our tests operates in four stages: audio diarization, 
speaker-independent decoding, adaptation, and speaker-adapted decoding. The audio 
diarization stage takes as input a list of audio files and produces as output a list of 
segments with hypothesized speaker labels. The speaker-independent decoding produces 
a one best transcript of each segment in the diarization output. The adaptation stage uses 
the one best transcripts to compute a vocal tract length normalization (VTLN) warping 
factor, feature space maximum likelihood linear regression (FMLLR) transform, and up 
to 16 maximum likelihood linear regression (MLLR) transforms (mean only) for each 
speaker. The speaker-adapted decoding then produces a one best transcript of each 
segment, which is further processed by the audio indexing component.  

The audio diarization process is similar to that described by Soltau et al. (2007), with 
two differences. First, before speaker clustering, we perform speaker change point 
detection using the modified Bayesian Information Criterion (BIC) method (Ajmera and 
Wooters 2003), over a four second sliding window. Second, hypothesized speech 
segments are padded by up to 0.5 seconds at the beginning and end of each segment. Due 
to constraints enforced throughout the audio diarization process, the resulting audio 
segments, which are treated as documents by the audio indexing system, are no more than 
20.0 seconds long.  

The raw acoustic features for transcription are 19-dimensional perceptual linear 
prediction (PLP) features. The speaker-independent pass mean-normalizes the PLP 
coefficients on a segment-by-segment basis, while the speaker adapted pass uses mean-
and-variance-normalization on a speaker-by-speaker basis. Both recognition passes use 
linear discriminant analysis followed by a maximum likelihood linear transform 
(LDA+MLLT) to project from 9 spliced frames of raw features to a 40-dimensional 
recognition feature space. Both models use roughly 6000 quinphone context-dependent 
states. The speaker independent model uses 250K Gaussians, and the speaker-adapted 
model uses 300K. Both transcription systems are discriminatively trained using feature 
space minimum phone error (fMPE) (Povey et al. 2005) and minimum phone error 
(MPE) training. The acoustic models were trained on 430 hours of audio. We used lightly 
supervised training (Chan and Woodland 2004) on the TDT4 data.  

The initial transcription of the corpus is done using statically compiled decoding 
graphs, but the retranscription is done using a dynamic decoder, because it would be 
prohibitively expensive to compile a new decoding graph for each query term. The 
dynamic decoder is similar to the one described by Soltau et al. (2001), but uses a 
statically compiled and minimized word network that allows for contexts spanning more 
than one word and allows for multiple pronunciations. We used two language models: a 
small language model (3.3M n-grams) for constructing static decoding graphs, and a 
large language model (54M n-grams) for in-memory lattice rescoring during the speaker-
adapted transcription pass and for dynamic decoding during retranscription. Both 
language models are interpolated back-off four gram models smoothed using modified 
Kneser-Ney smoothing. The language models were trained on a collection of 335M 
words. The recognition lexicon comprises 84K words and 90K pronunciation variants. 

Chapter 4: Distillation700 



This transcription system has a word error rate of 13.2% on the RT-04 evaluation set. 
While this error rate is slightly higher than the best published results on the RT-04 set 
(Gales et al. 2006), this level of transcription accuracy is achieved with an extremely 
simple transcription system that performs only two decoding passes and does no system 
combination. 

4.5.2.2.2. Phonetic Indexing 

The input to the query-driven retranscription is a ranked list of hypothesized term 
occurrences obtained via an approximate search over an index built on phonetic. Ranking 
is based on the match score, defined below. 
 
Building an Index 

The indexing phase takes as input the one best word transcripts produced by the 
transcription system. These are converted into phone transcripts using the pronunciation 
dictionary. The diarization consists of segments that are, on average, about 15 to 20 
seconds long. In the indexing scheme, each segment is considered to be a unique 
document, , whose length is measured in phones. These are the units that are reported on 
the initial ranked list of possible term occurrences. Using the set of documents defined 
above, an inverted index is created with a temporal granularity corresponding to the 
positions of phones. The phone sequences in the index are five phones long (N = 5). Each 
document Dk is parsed, using a sliding window, into a sequence of n-grams that occur at 
each position: 

ܦ  ՜ ሼ݄,ଵ, ݄,ଶ, ݄,ଷ … ሽ, 
 
where hk;j = {pk,j , pk,j+1,…. pk,j+4} and each pk,j is an element of the phonetic alphabet. At 
the end, where full n-grams are not available, sub-n-grams are used. 
ܫ  ൌ ራ    ܦ  

 
is the set of all unique n-grams that occur. The inverted index associates to each element 
of ܫ the list of (document, position) pairs at which that element occurs. Note that h ∈  ܫ
represents an observed N-gram and is treated as a hypothesis vector. The query is 
considered to be the reference: the exact sequence of phones that is sought. 
 
Confusion Matrix 

Phone confusions are represented as P(pi|pj), the probability that pi is the true phone 
when pj is observed. Our approach also incorporates high order confusions, given by 
P(pipjpk|plpmpn) or P(pipj|plpm), the probability of trigram or bigram confusions. The 
distributions P(pi … |pj …) are estimated from held-out data. 
 
 
 

Handbook of Natural Language Processing and Machine Translation 701 



Generating Scores 
The query is an arbitrary sequence of words. To perform search, each word in the 

query is expanded into one or more phone sequences via lookup in the pronunciation 
lexicon and via automatic baseform generation using a joint maximum entropy model 
trained on the Pronlex lexicon and Random House dictionary (Chen 2003). This allows 
us to handle out-of-vocabulary terms and obtain alternate pronunciations for query terms. 
Let Qk denote a single phone sequence for a query term. 

 ܳ ՜ ሼܚ,ଵ, ,,ଶܚ ,ଷܚ … ሽ,   
 

where rk;j = {pk,j , pk,j+1,…. pk,j+4} is the phone 5-gram at position j in Qk. Given ri and hj ∈ 
I a match score S(ri, hj)is computed (Chaudhari and Picheny, 2007). Then, given a 
document D and a query n-gram r, the best matching index element corresponding to the 
document is given by כܐሺܦ, ሻܚ ൌ argmaxܐ∈ூ/ ܵሺܚ,  ,ሻܐ
Letting NQ = the number of n-grams extracted from the query, the score is ଵே ∑ ܵሺܑܚ ∈ொܚ,  (࢘,D)כܐ
4.5.2.3. Experiments 

 
To evaluate the effectiveness of query-driven re-transcription in retrieving OOV 

terms, we performed a set of experiments on the English audio data used in the GALE 
Distillation evaluation. This collection of 25 hours of audio comprises 53 broadcasts on 
CNN, MSNBC, and NBC from the period of January 3, 2005 until June 30, 2005. Initial 
transcripts of all 53 broadcasts, excluding advertisements, were produced by a single 
transcriber. In a quality-control phase, a second transcriber examined all occurrences of 
words that were not present in the recognition vocabulary of the transcription system. 
Where these OOV words corresponded to transcription errors, the errors were corrected. 
In cases where a genuine OOV word was found, it was verified and, in the case of proper 
nouns, checked against online resources such as Wikipedia to validate spelling. 
Excluding disfluencies and partial words, we found 845 occurrences (tokens) of 430 
OOV words (types) in the 200411 words of the transcripts. 70% of the types and 82% of 
the tokens derived from names. The transcription word error rate on this data set is 
15.0%.  

We treat each individual OOV word as an independent query, and measure the 
retrieval performance of the re-transcription system on the entire set of queries in terms 
of precision, recall, F1-measure, and mean average precision (MAP). Scoring is done at 
the level of speech segments, as defined by the audio diarization component of the 
transcription system. This experimental design underestimates the performance of re-
transcription in an actual application setting where the queries are likely to span multiple 
words, because both phonetic indexing and the end-to-end re-transcription system 
perform better for longer queries.  

Chapter 4: Distillation702 



For each query, the spelling-to-sound system produces up to five pronunciation 
variants, with most words receiving only one. On average, there are 1.75 variants per 
word. Each pronunciation variant is treated as a separate query by the audio indexing 
system, which produces a ranked list of 100 candidate locations for each query, as 
described in Section 4.5.2.2.2. When a query word has more than one variant, the lists of 
potential hits from the different variants are merged: because an approximate phonetic 
match is used, different variants can match the same audio segment. Next, for each query, 
the potential hits are retranscribed as described in Section 4.5.2.2. If the output of the 
retranscription contains the query term, it is retained; otherwise, it is discarded.  

 
Metric audio indexing Retranscription 

Precision 0.0061 0.3985 
Recall 0.4563 0.4113 
F1 0.0121 0.4048 
MAP 0.2656 0.4137 

Table 2.26: OOV term retrieval performance for the audio indexing and the full re-transcription system.  Note 
that the audio indexing was turned for high recall to ensure good end-to-end system performance. 

 
query length count precision recall F1 

≤ 3 35 0.3913 0.2571 0.3103 
4 117 0.3101 0.3419 0.3252 
5 210 0.3212 0.2952 0.3077 
6 185 0.3578 0.3946 0.3753 
7 120 0.4274 0.4167 0.4219 
8 92 0.3740 0.5326 0.4395 
9 49 0.6047 0.5306 0.5652 
≥10 37 0.8857 0.8378 0.8611 

Table 4.27: OOV term retrieval performance for the query-driven re-transcription system, as a function of 
query length in phones. 

4.5.2.4. Conclusions and Discussion 

We have shown for English broadcast material that it is possible to combine audio 
indexing and speech transcription to identify audio segments containing terms that are out 
of the transcription system’s original vocabulary and provide transcripts for those 
segments that contain the target OOV terms. While the accuracy with which these terms 
are transcribed is modest (F1 = 0.40), this is a substantial improvement over the baseline 
case in which none of the terms would appear in the speech transcripts. Also, in actual 
use we expect the query terms to be longer than the average (single word) queries in this 

Handbook of Natural Language Processing and Machine Translation 703 

The performance of the system, both after audio indexing and after re-transcription, 
is summarized in Table 2.26. It is important to note that none of the target query terms 
could have been returned by the original transcription system because all the targets were 
OOV, and also that the audio indexing was tuned for high recall and low precision 
because it was followed by re-transcription-based filtering. Table 4.27 shows that 
retrieval performance improves as the length of the query increases. This pattern is not 
surprising because longer queries are more distinctive.  



study, which should lead to better retrieval performance, as shown in Table 4.27, there 
are still many other issues that need to be addressed, however, for query-driven 
retranscription to be a useful addition to practical Distillation Systems.  

Is the text around out-of-vocabulary terms sufficiently well-formed that it is 
usable by distillation engines? Producing the OOV query terms in the correct speech 
segments is only the first step in handling OOV queries against audio data in a 
Distillation System. The text surrounding the OOV query must be sufficiently accurate 
and well-formed that the modules in a Distillation System can correctly process it. The 
current study does not address this question. It is quite likely that the addition of the OOV 
terms to the transcription system’s language model as unigrams having the same score as 
the unknown word will not provide enough prior information to ensure accurate 
transcription. We believe that a better approach would be to define classes for various 
entities that might show up as out-of-vocabulary terms, e.g., personal names, organization 
names, and place names, and to assign new OOV terms to the correct class with a score 
appropriate for an unknown word in that class. This would model the OOV terms in 
context, and should improve both the retrieval of the OOV terms, as well as, the accuracy 
of the transcribed text surrounding the OOV terms.  

How can retranscription be applied to translingual distillation? There are 
additional challenges that must be overcome for query-driven retranscription to work in a 
translingual setting. First, we need methods for producing sensible phonetic search 
queries from English-language terms. We believe that this problem could be solved by 
using statistical models that perform transliteration (in the common case of names) from 
English to the source language or that detect common co-occurrences of names (or word 
class elements) in parallel corpora. Note that such models would probably need to 
distinguish between terms that originate in the source language and are presumably 
transliterated into English queries, terms that originate in English, and terms that 
originate in some third language (e.g., searching for an Arabic personal name in Chinese 
news broadcasts). Second, we need methods to add new words to machine translation 
systems, much in the way that the new words are added to the transcription system. We 
think that simple approaches can work, especially if the Distillation Engine performs 
source-language processing.  

How broadly can retranscription be applied in Distillation Systems? In principle, 
query-driven retranscription can be used any time the query contains terms that are not 
present in the audio transcripts or the translations of the audio transcripts, even in cases 
where the missing terms are in-vocabulary. If target terms are indeed present in the audio, 
but are absent from the input to the Distillation System, the cause may be some problem 
in the transcription or translation system such as incorrect pronunciations, poor language 
models, or poor translation models. The retranscription process, by using a larger set of 
possible pronunciations for a term and less restrictive language and translation models, 
may recover missing terms. The cost of this improvement in recall is reduced precision, 
and work is required to determine the best tradeoffs.  

Can the information gained in retranscription be fed back into the upstream 
transcription and translation systems to improve their performance? Clearly it 
would be useful to use the information gained from user queries about important named 
entities and other query terms that are out of vocabulary to extend the vocabularies and 

Chapter 4: Distillation704 



language models of the upstream transcription and translation systems. One option would 
be to simply leave the added terms in the transcription and translation models. This 
approach is unlikely to work. We did something similar to this in our experiments with 
the 2006 GALE data when we processed all of the queries in a single batch. That is, we 
added all of the pronunciations of all of the OOV terms to the transcription vocabulary 
and language model, and retranscribed all segments identified by the audio indexing as 
potential hits. Retrieval performance was much worse than when we processed each 
query individually: F1 = 0.30, primarily due to a 50% reduction in precision. A more 
practical approach would be for a deployed system to track the OOV query terms, and for 
the lists of these terms to be used to extend the transcription and translation models when 
they are periodically updated. 

Acknowledgements 

Thanks to Radu Florian for alerting us to the Isabelle Dinoire problem in the 2006 evaluation and 
insisting that we find a solution. 
 

4.5.3. Name Extraction and Translation for Distillation 
Authors: Heng Ji, Ralph Grishman, Dayne Freitag, Matthias Blume, Zhiqiang (John) Wang, Shahram 
Khadivi, Richard Zens, and Hermann Ney 

4.5.3.1. Introduction 

Traditional MT systems focus on the overall fluency and accuracy of the translation, 
but fall short in their ability to translate certain informationally critical words. In 
particular, the translation of names is fundamentally different from the translation of 
other lexical items. Table 4.28 shows the wide range of cases that must be addressed in 
translating Chinese names into English, according to whether a name is rendered 
phonetically (P), semantically (S), or a mixture of both (M).  

We may be expected to translate source language tokens which do not appear in the 
training corpus, based on our knowledge of transliteration correspondences (e.g., “You 
shen ke” to “Yushchenko”) and of contexts in the target language (e.g., to distinguish 
“Yasser Arafat” from “Yasir Arafat”). In addition, some source names may appear in 
abbreviated form and may be mistranslated unless they are recognized as abbreviations. 
For example, “以” is the abbreviation for ‘Israel’, but can also be translated into the 
common word ‘as’. Furthermore, errors may be compounded when part of an out-of-
vocabulary name is mistakenly segmented into common words. For example, 
“瓦斯涅夫斯基(Kwasniewski)” is mistakenly translated into “gas(瓦斯) 
Novsky(涅夫斯基)” by a phrase-based statistical MT system; “ (Bobylev)” 
receives incorrect translations from different MT systems because it is not recognized as 
a name: “German Gref”, “Bo, yakovlev”, “Addis Ababa”, “A. Kozyrev” and “1988 lev”. 

 
 
 
 

Handbook of Natural Language Processing and Machine Translation 705 

博贝列夫 



Name Translation 
Types Chinese English 

Context/ 
Ethnic 

Independent 

P → P 尤申科 (You shen ke) Yushchenko 

P → S 可伶可俐 (Ke Ling Ke Li) Clean Clear 

P → M 欧佩尔吧 Opal Bar 

S → P 旧金山 (Old Golden Mountain) San Francisco 

S → S 解放之虎 Liberation Tiger 

S → M 长江(Long River) Yangze River 

M → P 清华大学学报 (The Journal of 
Tsinghua University) 

Tsinghua Da Xue Xue 
Bao 

M → S 百新百网站 Best Buy Website 

M → M 尤干斯可石油天然气公司 Yuganskneftegaz Oil and 
Gas Co. 

Context/ 
Ethnic 

Dependent 

P → P 

亚西尔阿拉法特 
Yasser Arafat (PLO 

Chairman) 
Yasir Arafat (Cricketer) 

潘基文 
Pan Jiwen (Chinese) 

Ban Ki-Moon (Korean 
Foreign Minister) 

S → S 红军 
Red Army (in China) 

Liverpool Football Club 
(in England) 

M → M 圣地亚哥市 
Santiago City (in Chile) 
San Diego City (in CA) 

Table 4.28: Examples for Diverse Name Translation Types. 

Name translation is important well beyond the relative frequency of names in a text: 
a correctly translated passage, but with the wrong name, may lose most of its value. 
Many GALE distillation templates involve names, so name processing is the key for 
accurate distillation from foreign languages. We found that distillation performed notably 
worse on machine translated texts than on texts originally written in English, and our 
error analysis indicated that a major cause was the low quality of name translation. 

Thus, it appears that better entity name translation can substantially improve the 
utility of machine translation and the amount of information that can be gleaned from 
foreign sources. To meet these challenges, the Nightingale team has built a name 
translation component which operates in tandem with a conventional phrase-based 
statistical MT system, identifying names in the source text and proposing translations to 
the MT system. Versions have been developed for both Chinese-to-English and Arabic-
to-English name translation. The Chinese system is more fully developed, so – while we 
will describe the name taggers for both languages – this section will focus on the 
translation of Chinese.  

4.5.3.2. System Overview 

The overall system pipeline for Chinese is summarized in Figure 4.27 (the system for 
Arabic has a subset of these components). This system runs a source language name 

Chapter 4: Distillation706 



tagger, then uses a variety of strategies to translate the names it identifies. We shall 
present each of the main components in the following sections. 
 

 
Figure 4.27: Chinese System Overview. 

4.5.3.3. Name Tagging 

Both Arabic and Chinese name taggers are trained on several years of ACE 
(Automatic Content Extraction) corpora, and can identify names and classify them as 
PER (persons), ORG (organizations), GPE (‘geo-political entities’ – locations which are 
also political units, such as countries, counties, and cities) and LOC (other locations).20 In 
the following we will describe the Arabic and Chinese entity extraction systems. 

4.5.3.3.1. Arabic Name Tagging 

To identify Arabic names we trained a structured perceptron model, as detailed by 
Farber et al. (2008). Structured perceptrons are in a class of models, which also includes 
conditional random fields and hidden Markov Support Vector Machines that can exploit 
arbitrary features of the input in search of an optimal assignment of labels to a given 
input. We compensate for Arabic’s lack of name-relevant orthographic features (i.e., 
capitalization) and its relative lack of lexical resources (e.g., gazetteers) by expanding the 
feature set available to the model. First, we derive term clusters through a statistical 
analysis of a large volume of unlabeled Arabic newswire text, and treat a given term’s 
cluster membership as a feature (Freitag 2004). Second, we apply the MADA tool (Roth 

                                                 
20 http://www.nist.gov/speech/tests/ace/ 

Name Tagger

Chinese Text

MT 
Isolated 
Name 

Translation

List
Based
Name

Translation

Average 
Perceptron

Person Name 
Transliteration

Char-based MT
Person Name

Transliteration

Name
Structure-

based Merge

Name Selection
With English

Corpus and IE

Name Selection 
with English 

LM

Confidence- based Merge

English 
Names

Integration into MT

Chinese 
Names

Handbook of Natural Language Processing and Machine Translation 707 



et al. 2008) for Arabic morphological analysis and word sense disambiguation. Two 
Boolean features are derived from the output of MADA, the first reflecting whether the 
analysis is successful (whether the word was in or out of vocabulary), and the second 
indicating whether the English gloss returned by MADA is capitalized. 

4.5.3.3.2. Chinese Name Tagging 

The Chinese name tagger consists of a Hidden Markov Model (HMM) tagger 
augmented with a set of post-processing rules (Ji and Grishman 2006). The HMM tagger 
generally follows the Nymble model (Bikel et al. 1997). Within each of the name class 
states, a statistical bigram model is employed, with the usual one-word-per-state 
emission. The various probabilities involve word co-occurrence, word features, and class 
probabilities. Since these probabilities are estimated based on observations seen in a 
corpus, several levels of “back-off models” are used to reflect the strength of support for 
a given statistic, including a back-off from words to word features, as for the Nymble 
System. To take advantage of Chinese names, we extend the model to include a larger 
number of states, 14 in total. The expanded HMM can handle name prefixes and suffixes, 
and has separate states for transliterated foreign names. Finally a set of post-processing 
heuristic rules are applied to correct some omissions and systematic errors. 

4.5.3.4. Candidate Name Translations 

We first apply the source language name taggers to identify named entities, and then 
generate a set of candidate translations for each name. We describe here the techniques 
we used for Chinese-to-English translation. 

4.5.3.4.1. MT Isolated Name Translation 

As a baseline we translate each source phrase referring to a named entity (a name 
‘mention’) in isolation into English using our MT system. The only difference from full 
text translation is that, as subsentential units are translated, sentence boundaries are not 
assumed at the beginning and end of each input name mention.21 

The RWTH Aachen Chinese-to-English machine translation system (Zens and Ney 
2004, Zens et al. 2005) is used. It’s a statistical, phrase-based machine translation system 
which memorizes all phrasal translations that have been observed in the training corpus. 
The posterior probability is modeled directly using a weighted log-linear combination of 
various models: an n-gram language model, phrase translation models and word-based 
lexicon models, as well as, a lexicalized reordering model. The model scaling factors are 
tuned on a development set to maximize the translation quality (Och 2003). The bilingual 
training data consists of about 8 million Chinese-English sentence pairs with more than 
200 million words in each language. The language model was trained on the English part 

                                                 
21 We tried an alternative approach in which mentions are translated in context and the mention translations are 
then extracted using word alignment information produced by the MT system, but it did not perform as well. The 
word alignments are indirectly derived from phrase alignment and can be quite noisy. As a result, noise in the form 
of words from the target language context is introduced into the mention translations. Manual evaluation on a small 
development set showed that isolated translation obtains (about 14%) better F-measure in translating names. 

Chapter 4: Distillation708 



of the bilingual training data and additional monolingual data from the GigaWord corpus, 
about 650 million English words in total. The Chinese text is segmented into words using 
the tool provided by the Linguistic Data Consortium (LDC). 

4.5.3.4.2. Name Pair Mining 

We exploited a variety of approaches to automatically mine about 80,000 name pairs, 
as follows.  
 

• Extracting cross-lingual name titles from Wikipedia pages. We run a web 
browser (Artiles et al. 2008) to extract titles from Chinese Wikipedia pages and 
their corresponding linked English pages (if the link exists).  Then we apply 
heuristic rules based on Chinese name structure to detect name pairs; for 
example, foreign full names must include a dot separator, Chinese person names 
must include a last name from a closed set of 437 family names.  

• Tagging names in parallel corpora. Within each sentence pair in a parallel 
corpus, we run the Chinese name tagger as described in Section 4.5.3.3.2 and the 
NYU English name tagger (Grishman et al. 2005). If the types of the name tags 
on both sides are identical, we extract the name pairs from this sentence. Then at 
the corpus-wide level, we count the frequency for each name pair, and only keep 
the name pairs that are frequent enough. Each member of the name pair then 
becomes the translation of the other member. The corpora used for this approach 
were all GALE MT training corpora and ACE 07 Entity Translation training 
corpora. 

• Using patterns for Web mining: we constructed heuristic patterns such as 
“Chinese name (English name)” to extract NE pairs from web pages with mixed 
Chinese and English. 

 
In addition, we exploited an LDC bilingual name dictionary (LDC2005T34) and a 

Japanese-English person name dictionary including 20126 Japanese names written in 
Chinese characters (Kurohashi et al. 1994). The Japanese-English name dictionary is 
essential, because the English translations of Japanese names preserve their Japanese 
pronunciation instead of Mandarin pinyin and therefore cannot be transliterated 
appropriately.  For example, for the name “中田英寿” with Mandarin pinyin as “Zhong 
Tian Ying Shou”, the Japanese-English dictionary can provide two possible translations 
“Hidetoshi Nakata” and “Hidetoshi Nakada”. 

Besides full string matching, we also parse name structures (e.g., first name and last 
name for persons; modifier and suffix word for organizations) and then match each name 
component separately. The matching results for each name component are then merged 
with the baseline translations obtained from MT isolated translation (shown as name 
structure based merging in Figure 4.27). We have also developed a name ethnicity 
identification component based on heuristic rules so that we can match non-Asian person 
names by pinyin to enhance the matching rate.  

Handbook of Natural Language Processing and Machine Translation 709 



4.5.3.4.3. Statistical Name Transliteration 

If a name can be translated using one of the lists described above, name 
transliteration is not required. Note that the writing systems of both Arabic and Chinese 
make transliteration nontrivial. Because non-native names in both languages are typically 
rendered phonetically, we require methods for “back-transliteration” in order to recover 
likely English renderings: Chinese renders foreign names by stringing together words that 
approximate a name’s constituent sounds (e.g., “Bu Lai Er” is the pinyin representation 
for “Blair”), while Arabic omits short vowels. Both languages lack and must approximate 
some English sounds.  

We adopted a data-driven approach to address this problem, and trained two foreign-
to-English character transliteration models to generate multiple transliteration hypotheses 
(multiple plausible English spellings of a name from Chinese or Arabic), using bilingual 
name lists assembled from several sources, as described above in Section 4.5.3.4.2. We 
pursued two quite different approaches. 

In one, we applied state-of-the-art statistical machine translation techniques to the 
problem, to translate the character sequence of a foreign name to a sequence of letters 
which form an English name. We created a 6-gram character based language model (LM) 
trained from a large list of English names to rank the candidate transliterations. In this 
approach, no reordering model is used due to the monotonicity property of the task, and 
model scaling factors are tuned for maximum transliteration accuracy.  

In the other, we trained a structured perceptron to emit character edit operations in 
response to a foreign string, thereby, generating a Romanized version. The two 
approaches achieve comparable accuracy. A detailed description and empirical 
comparison of these approaches are presented by Freitag and Khadivi (2007). 
Experiments showed that the combination of the two achieved 3.6% and 6% higher 
accuracy than each alone. 

4.5.3.5. Name Translation Selection 

In general, the output of the above approaches is a set of candidate English names. In 
order to ensure that the output is an acceptable English name, we select the best 
translation from a large number of candidates using Information Extraction (IE) results 
and Language Models (LM) built from large English corpora. 

4.5.3.5.1. Name Selection with English Corpus and IE 

To choose amongst these transliterations we first consult a large English corpus from 
a similar time period and its corresponding IE results, similar to the techniques described 
by Al-Onaizan and Knight (2002) and Kalmar and Blume (2007). We prefer those name 
spellings which appear in the corpus and whose time of appearance and global context 
overlaps the time and context of the document being translated. Possible contexts include 
co-occurring names, nominal phrases, and document topic labels.  

We first process a large English corpus for names, their corresponding titles, the 
years in which they appear, and the frequencies under different categories, resulting in a 
large database of person entities in English. A source name’s time of appearance and the 
translation of any co-occurring titles are then compared to the entries in this database for 

Chapter 4: Distillation710 



any candidate translations. For GPE name translation, the associated country information 
of the target name is used for comparison with the mined lists. Weights are optimized to 
combine the edit distance, temporal proximity and context similarity metrics. The 
candidate translation ranked highest according to this combined score is then selected. 
For example, in the following Chinese text:  

 
… 据国际文传电讯社和伊塔塔斯社报道，<PER>格里戈 里·帕斯科</PER>的 

律师<PER>詹利·雷兹尼克</PER> 向俄最高法院提 出上诉。 

 
The name transliteration components generate the following candidates for the name 
“詹利·雷兹尼克 (zhan li . lei zi ni ke)”: 
 

24.11 amri 28.31 reznik 
23.09 obry 26.40 rezek 
22.57 Rezi 25.24 Linic 
20.82 henri 23.95 Riziq 
20.00 henry 23.25 ryshich 
19.82 genri 22.66 lysenko 
19.67 djari 22.58 ryzhenko 
19.57 jafri 22.19 linnik 

 

In a large English corpus we find the following sentence: “Genri Reznik, 
Goldovsky's lawyer, asked Russian supreme Court Chairman Vyacheslav Lebedev….”. 
By matching the Chinese entity extraction results (“律师 (lawyer)” referring to 
“詹利·雷兹尼克”) against English IE results (“lawyer” referring to “Genri Reznik”), we 
can select “Genri Reznik” as the correct translation. Without re-ranking with global 
context, the transliteration component would have produced “Amri Reznik”, an incorrect 
translation. 

4.5.3.5.2. Name Selection with English Language Models (LM) 

In addition, we have built a unigram word-based LM from a large English name list 
to penalize those transliteration hypotheses which are unlikely to be English names.  

For example, for the name “保尔森” in the sentence “财政部长保尔森访问中国 (Paulson, 
the Treasury Secretary, visited China)”, the transliteration component produces the 
following top hypotheses: “Bauerson”, “Paulsen”, “Paulson” and “Baulson”. We assign a 
low score to “Bauerson” and “Baulson” because they don’t exist in the English unigram 
LM. 

Each of the above translation and re-ranking steps produces a scaled confidence 
score; at the end we produce the final n-best name translations with token based weighted 
voting. 

4.5.3.6. Integration into Machine Translation (MT) 

The source text, annotated with name translations, is then passed to a statistical, 
phrase based MT system. To integrate name translation results into MT, two critical 
decisions have to be taken: the position of the name in the target sentence and the 
translation of the name. The position of the name is decided by the MT system, and the 

Handbook of Natural Language Processing and Machine Translation 711 



translation of the name can be performed with or without its context. Therefore, we have 
two approaches: a simple transfer method, and an MT derived method. 

4.5.3.6.1. Simple Transfer-Based Integration 

The first method simply transfers the best translation of the source name to the target 
side based on word alignment. This approach ensures all name translations appear in the 
MT output, so it can principally benefit the Distillation task. However, it doesn’t take into 
account word reordering or the words found in a name’s context.  For example, in the 
following sentence, the temporal phrase structure (“before…”) was broken by the name 
translation transfer and therefore cannot be translated correctly: 

 
Name Translation Annotated Chinese Sentence: 
在(“at”)<NAME TYPE=“PER” TRANSLATION=“Zhao Ziyang”>赵紫阳</NAME> 十四日陷入昏迷 
前(“before), <NAME TYPE=“PER” TRANSLATION=“Tian Jiyun”> 田纪云</NAME>去看过 他。 
Reference Translation: 
Before Zhao Ziyang fell into a coma on the 14th, Tian Jiyun visited him. 
MT After Simple-Transfer based Name Integration: 
At Zhao Ziyang before the 14th fell into a comma, Tian Jiyun went to visit him. 

4.5.3.6.2. Phrase Table and LM based Integration 

Therefore, we adopt the second method for improving full-text MT. The MT system 
considers the provided list of name-entity translations as a secondary phrase table, and 
then uses this phrase table, as well as, its own phrase table and language model to decide 
which translation to choose when encountering the names in the text. In order to avoid 
the problem of word segmentation inconsistency, we add all possible segmentations for 
each name. In order to obtain the best translation BLEU score, the name phrase table 
receives a coefficient optimized on a development set. 

We then apply a 4-gram word based English LM to select the final translation from 
the name translation or MT phrase tables. For the example below, assuming name 
translation suggests a translation ‘Paulson’ while the regular MT phrase table produces 
‘Paulsen’, then we can compare the LM scores based on the following phrases in the LM 
training corpus: 

 
 
For “Paulson”: 
Paulson , Jr. to be the 74th Secretary of the Treasury 
Paulson , the Treasury secretary , is a good guy 
Treasury Secretary Henry M. Paulson, the former head of Goldman Sachs 
Listen to US Secretary of the Treasury Henry M. Paulson discuss economic issues 
For “Paulsen”: 
Paulsen was worried that her vacation in Los Angels 
Paulsen , chief investment officer at Norwest Investment Management 
Paulsen , chief investment strategist at Wells Capital Management 
Paulsen , professor of agronomy at Kansas State University 
 
We then can choose “Paulson” as the best transliteration because its context “Paulson, 
the Treasury” matches those in the English LM. 

Chapter 4: Distillation712 



4.5.3.7. Experimental Results and Analysis 

 
In this section we present the overall performance of our Chinese-to-English name 

translation system. 

4.5.3.7.1. Data and Scoring Metric 

We conduct experiments on the text set of the NIST 2005 MT evaluation. By 
annotating names in the four reference translations, we identify on average 592 Person 
names, 1275 GPE names and 595 organization names - 2762 names in total. We apply 
the RWTH Aachen statistical phrase based MT system (Zens and Ney 2004; Zens et al. 
2005) as our baseline, which uses the uniform translation model for names and non-
names. 

The following metric is defined to measure the accuracy of name translation: 
Approximate Accuracy = 
(# Target reference names found in MT Output)/ 
(# Total reference names) 
 

Using a manually assembled name variant table, we also support the matching of 
name variants (e.g., “World Health Organization” and “WHO”). 
 

4.5.3.7.2. Results 

System 
 Type 

Y1 
Baseline 

Y2 
Baseline 

Y2 
1Best-
Phrase 

Y2 
Simple- 
Transfer 

Y2.5 
1Best- 
Phrase 

Y2.5 
NBest-
Phase 

Y2.5 
Simple-
Transfer 

PER 59.63 58.28 66.89 69.59 67.91 62.84 70.44 
GPE 92.24 93.18 93.25 94.12 93.49 93.18 94.27 
ORG 78.15 84.37 84.71 84.54 85.88 84.54 85.88 
ALL 83.00 84.54 86.50 87.44 87.07 85.56 87.98 

Table 4.29: Approximate Accuracy of Name Translation (%). 

 
Table 4.29 summarizes the approximate accuracy results for Y1 and Y2 baselines, 

and the MT system integrated with name translation by two different approaches: simple 
transfer and name phrase table.  Table 4.29 shows that the name translation system 
provided a 29.3% relative error reduction on overall name translation, and a 26.8% 
relative error reduction on person names using simple transfer integration. It’s also 
interesting to see that adding N-Best name translation does not provide improvement over 
1-Best, which indicates that the name re-ranking approaches described in Section 4.5.3.5 
are effective to select the best translations. Experiments also show that the 1-Best name 
phrase approaches can achieve about 0.2%-0.3% improvement on BLEU score over the 
MT baselines. In addition, we have found that although the Simple Transfer outperforms 
Phrase-table/LM based integration on approximate accuracy because it strictly preserves 
names, it achieved lower BLEU scores due to the cost of incorrect word ordering and loss 

Handbook of Natural Language Processing and Machine Translation 713 



of function words. In the future we shall evaluate the impact of these effects on the 
Distillation task. 

4.5.3.8. Impact on Cross-Lingual Sentence Retrieval 

In this section we describe an experiment to measure the impact of name translation 
on cross-lingual spoken sentence retrieval: given a person name query in English the 
system should retrieve the sentences containing this name from Mandarin speech. 

We used part of the GALE Y2 audio MT development corpus as our candidate 
sentence set (in total 668 sentences drawn from 45 shows). Fifty-three queries were 
constructed by selecting person names from the reference translations of reference 
transcripts for these shows. For each query, relevant sentences from the entire corpus 
were then manually labeled as answer keys, using reference translations as the basis for 
selection. 

For each query, we then search the documents as translated by Machine Translation 
and by Name Translation. We compute the matching confidence between the query and a 
sentence substring based on the edit distance, with each operation assigned unit cost. We 
then define the sentence-level match confidence as the maximum confidence between the 
query and any sentence substring starting and ending on a token boundary. 

We found that, over a range of confidence thresholds, searching name translation 
output yields comparable precision with an absolute improvement in recall of about 23% 
over searching MT output. More details are described by Ji et al. (2009). 

4.5.3.9. Related Work 

Most of the previous name translation work combined supervised transliteration 
approaches with Language Model based rescoring (e.g., Al-Onaizan and Knight 2002; 
Huang et al. 2004). Our approaches of mining name pairs from parallel corpora and 
mixed-code web texts are also related to the parenthesis translation mining as described 
by Lin et al. (2008). However, to the best of our knowledge, this is the first work that 
combines all of these existing techniques, as well as, name translation selection using IE 
techniques. 

4.5.3.10. Discussion 

 
The name extraction and translation system reduces the number of incorrectly 

translated names by about 30% (from 17% to 12%). People names remain the most 
difficult: even with name translation, the error rate remains about 30% (reduced from 
40%). We analyzed the sources of these remaining errors for person names. They reveal 
the following major shortcomings of both name extraction and name translation. 

4.5.3.10.1. Improving Name Extraction 

Chinese name extraction errors contribute 5.5% to the person name translation error 
rate. As noted in Ji and Grishman (2006), boundary errors are dominant in Chinese name 
identification due to word segmentation errors. In addition, without indicative contexts, 

Chapter 4: Distillation714 



the name tagger tends to miss some rare names and confuse foreign Person and GPE 
names. In order to address these problems we will exploit character based HMM and 
propagate multiple name tagging hypotheses to name translation to increase recall. 

Automatic Speech Recognition (ASR) errors bring more challenges to name tagging; 
we will attempt to develop a phone-aware name tagger, using co-reference resolution to 
correct name ASR errors. 

4.5.3.10.2. Improving Name Transliteration 

In Ji and Grishman (2009) we demonstrated that feedback from name translation can 
be used to improve name tagging. We plan to extend the approach by incorporating more 
feedback from name transliteration confidence and mined name pairs as features. 

Limitations in the name transliteration models contributed 8.8% to the translation 
error rate. It may be very challenging for our edit-distance based models to insert 
consonants at the end of syllables. For example, “Abdelrahman” is mistakenly 
transliterated into “Abderaman”. In the future we intend to use cross-lingual Wikipedia 
titles to capture more name pairs, especially more Arabic-origin and Russian-origin 
names. 

4.5.3.10.3. Improving Name Translation Mining 

A 5.8% error rate was due to the mismatch of some famous person names in 
uncommon spellings. For example, “鲍尔 (Powell)” does not exist in our mined name 
lists but its more common spelling “鲍威尔” appears with correct translation. Therefore it 
will be important to harvest name clusters by using within-document and crossdocument 
co-reference, so we that we can provide the clusters instead of each individual name to 
the name translation pipeline as input. In addition, we are also interested in automatically 
mining name translation pairs from comparable corpora as described by Sproat et al. 
2006) and Klementiev and Roth (2006). 

4.5.3.10.4. Improving Name Translation Selection 

Our novel approach of using English IE to re-rank name translation results produces 
promising results (Kalmar and Blume 2007). However, it also relies heavily on the 
characteristics and size of selected English corpora to provide such ‘background 
knowledge’. We found that 4.6% in the error rate can be traced to a lack of corresponding 
English contexts for the name candidates. In the future, besides exploiting more 
unstructured corpora, we will also attempt to incorporate structured knowledge such as 
the social network databases existing on the web. 

4.5.3.10.5. Toward Name Aware MT 

In the experiments reported here, the underlying statistical MT system treats names 
just like any other tokens. Ultimately we will explore a new approach of training a name-
aware MT system based on coordinated name annotation of source and target bitexts and 
conducting information driven decoding. 

Handbook of Natural Language Processing and Machine Translation 715 



4.6 Evaluating Distillation Technology 

4.6.1. Assessing Distillation Technology  
Authors: Connie Fournelle, Olga Babko-Malaya, James V. White, and Dan Hunter 

4.6.1.1. Introduction 
While those tasked with collecting and analyzing military intelligence  are often 

required to provide accurate, complete intelligence reports in a limited amount of  time, 
they are typically constrained in this task by (1) language, which limits search to English-
only sources of information, since translation is often not available in the requisite time 
frame, and (2) data volume, with extremely large data collections potentially masking 
important content by the sheer quantity of data available.  To respond to a request for 
information, an analyst must find as much information as possible, as well as provide 
source traceability and confidence indicators, such as the existence of corroborating 
evidence. 

GALE translation engines were designed to ingest available data from audio and text 
sources in multiple languages, including English, Arabic, and Mandarin Chinese, and 
provide English text versions via transcription and translation activities.  GALE 
Distillation engines respond to formatted queries by searching information sources for 
relevant data and providing targeted English summaries of the relevant information.  

Under the auspices of the GALE program, our team conducted a series of evaluations 
to characterize the information content, redundancy, and citation completeness of 
responses from GALE Distillation engines in comparison to responses from bilingual 
humans tasked with responding to focused, template-based queries. This section 
describes the evaluation framework we developed to collect statistics on distillation 
performance of machines and humans, the metrics we collected, and the salient results of 
the evaluations we conducted. 

4.6.1.2. Evaluation Framework  

The goal of the GALE evaluations was to compare the distillation performance of 
bilingual humans using non-GALE state-of-the-art tools to the performance of GALE 
Distillation engines.   To accomplish this goal, BAE Systems’ Advanced Information 
Technologies organization developed an evaluation framework that included realistic 
distillation tasks for both machines and humans, together with a methodology for 
comparing their performance.  A crucial part of this framework was an approach to 
evaluation that did not require the existence of a “gold standard” in advance of the 
evaluations. 

4.6.1.3. Task Definition 

In each evaluation, GALE distillation engines were required to submit responses to a 
set of queries based on information contained in a preselected corpus of English, 
Mandarin, and Arabic in four genres (structured and unstructured, speech and text). The 

Chapter 4: Distillation716 



queries conformed to 17  templates containing argument variables that ranged over 
events, topics, people, organizations, locations, and dates.  

The GALE distillation engines and human distillers produced English-only snippets 
in response to these queries, which could consist of exact text extractions, translations, 
summarizations, or paraphrases of the source material. These output responses had to be 
clean and precise: irrelevant and redundant information incurred a penalty.  Distillation 
engines and human distillers were also required to provide citations associating extracted 
snippets of information with the documents supporting them. 

4.6.1.4. Machine Distiller Testing 

In addition to extracted snippets of information, machine distillation engines (but not 
humans performing distillation) reported the following: 

• Snippet Chunks, which were excerpts of snippets (also in English text) supported 
by source citations. Chunks did not need to be self-sufficient (interpretable 
independent of any other resource) and were allowed to contain non-contiguous 
text strings.  In accordance with the XML specifications for the distillation 
responses, the Chunks included character offsets into the snippets in order to 
avoid ambiguity about which part of the snippet was being referenced. 

• Citations, which were specific snippet chunks.  Each citation indicated the chunk 
it supported and included the literal excerpt from the source document from 
which it originated (text string in the source language or audio time stamp), and 
an English transcription or translation for each foreign source. 

Example 
Query: DESCRIBE ATTACKS IN [Kosovo] GIVING LOCATION (AS SPECIFIC AS POSSIBLE), DATE, 
AND NUMBER OF DEAD AND INJURED. 

Snippet 1: The UN police said the officer was killed late Sunday on the motorway between Leposavic and 
Mitrovica, some 55 kilometers (33 miles) north of the capital Pristina 

Chunk 1.1: The UN police said the officer was killed late Sunday on the motorway 

Citation 1.1.1: Menon became the first UN police man to die in the line of duty in Kosovo when he was 
ambushed late Sunday on a motorway in northern Kosovo. 

Chunk 2.1:  The officer was killed late Sunday some 55 kilometers (33 miles) north of the  capital Pristina 

Citation 2.1.1: Satish Menon, 43, from India's southern state of Kerala, was killed by sniper  fire 
shortly before midnight Sunday while traveling in a U.N. police car near the village of Slatina, some 55 
kilometers (33 miles) north of the capital, Pristina, police said 

 
In order to incorporate new redundancy requirements distillation engines could mark 

potentially redundant context information by enclosing it inside of {curly braces}.  
 

Snippet 2. {A United Nations policeman has been shot dead} in a sniper attack, {the UN said}, confirming the 
first fatality of an international officer while on duty here. 

 
Such context information did not count against the Distillation engine if it was 

redundant, but also did not add to the system’s recall score if it was new information.  

Handbook of Natural Language Processing and Machine Translation 717 



4.6.1.5. Human Distiller Testing 

A total of 18 participants completed queries for the GALE evaluation. Ten 
participants were bilingual (five Arabic/English speakers, five Mandarin/English 
speakers), and eight were English speakers with no Arabic or Mandarin language 
proficiency. 

Humans used Copernic Desktop Search Version 2.02 for searching English text and  
Onfolio Desktop Search Version 2.02 for searching Arabic and Mandarin text.  Both 
search tools required typing keywords into a textbox search field and returned a list of 
documents from the indexed corpora that contained those keywords.  Windows Media 
Player was used for listening to audio files in all languages.  Arabic and Mandarin 
speakers were also provided with translation dictionaries to support word lookup and 
translation between. 

The humans’ task was to construct answers to a series of questions by searching large 
volumes of text and audio data archived and indexed on the computer and to find relevant 
information (i.e., generate responses) by using the search tools provided. Participants’ 
responses (i.e., snippets) could consist of direct quotations, translations (participants were 
required to translate all non-English information into English), or paraphrases of relevant 
information retrieved during their searches. They were instructed to resolve all 
ambiguous references and dates in their responses (paper calendars were provided for 
date resolution). Participants were also instructed to include source information for all 
responses. Participants were given a minimum of 30 minutes, and up to 60 minutes (at 
their discretion) to generate responses to each query. 

Due to concerns that human distillers would not be able to locate relevant 
information for audio queries within a 60-minute time window, the following procedure 
was instituted to ensure non-blank responses to audio queries.  For all audio queries, 
participants were initially provided with the same information (i.e., source date, activity 
date, etc.) provided to machine distillers, and were given up to 60 minutes to generate 
responses.  After responding to all assigned queries, participants were provided with 
“hints” for each audio query that they had been assigned.  Each hint consisted of the 
name of a single audio file and a 20-minute time window within that file that contained 
information relevant to the query. 

Participants were instructed to generate new responses to the audio queries, using 
only information provided through the hints, regardless of whether they had earlier 
generated a response without any hint. Participants were given 30 additional minutes to 
respond to each query after receiving hints, and were instructed not to reference their no-
hint responses in generating their hint responses.  Thus, for all audio queries, each 
participant completed first a no-hint response and later a hint response. In a small number 
of cases, due to attrition prior to completion of hint responses, different participants 
completed the no-hint and hint responses for a given audio query. 

4.6.1.6. Evaluation Methodology  

In contrast to most previous evaluations of query answering systems, the GALE 
evaluations required evaluation of responses to very open-ended queries.  There was no 
pre-existing set of “gold standard” answers against which the response of a given distiller 

Chapter 4: Distillation718 



could be compared and scored.  We therefore compared each distiller’s response to a 
query to the total set of responses received for the query.  Specifically, in determining 
what pieces of information a given distiller had missed, we looked only at information 
provided by other distillers. The scores of a distiller for a particular query were therefore 
relative scores, reflecting the degree to which the distiller provided relevant and specific 
responses to the queries as compared to other distillers.  The details of computing these 
relative scores are spelled out in subsequent sections. 

4.6.1.7. Annotation of Human and Machine Responses 

After receiving all distiller responses, BAE evaluated each query individually.22 The 
first 500 words of each response were manually parsed into atomic facts or information 
units that answered the query in question, called nuggets. The nuggets, in turn, were 
mapped into equivalence classes of one or more nuggets, referred to as nugs. In Phase 2, 
BAE also performed citation checking to validate that the content of each nugget 
accurately reflected information in the source document. 

For each query and distiller, BAE monitored the density of the distiller’s response to 
determine how much of the response to parse for relevant information. If the density of 
the amount of relevant, non-redundant information of the first 500 words was less than 
0.5, then no more of the distiller’s response text was parsed. On the other hand, if the 
density equaled or exceeded 0.5, then an additional 200 words was parsed, nuggetized, 
and assigned to nugs. The density was then computed for the additional 200 words that 
had been parsed, and the 0.5 criterion applied. This process continued with additional 
blocks of 200 words until either the density was less than 0.5 or no more response text 
remained.  

4.6.1.7.1. Nuggetization and Mapping to Nugs 

Nuggetization consisted of decomposing each snippet returned by a distiller into 
nuggets (In some cases the entire snippet could be a nugget; more typically, however, a 
snippet consisted of multiple nuggets.)   

Determining how to nuggetize a snippet was difficult, and different annotators 
seemed to have difference intuitive notions of the appropriate granularity for nuggets. For 
example, consider the following snippet: 

 
Snippet: Before receiving the war spending bill from Congress, the president will fly to the headquarters of 
the U.S. Central Command in Tampa, Florida 
 

There are many ways that this sentence could have been broken down into smaller 
pieces of information. In order to ensure consistent annotations, we did not try to achieve 
the finest level of granularity, but rather developed the set of procedural rules listed 
below.  Whereas, some nuggetization rules relied on linguistic criteria, others were based 
on end-user specified significance.  

                                                 
22 Annotators evaluating responses were not participating in generating human responses.   

Handbook of Natural Language Processing and Machine Translation 719 



The first nuggetization rule was “A nugget is created out of each core verb and its 
arguments, where the maximal extent of the argument is always selected.” Since there are 
two core verbs in the italicized sentence above, two nuggets should be generated. The 
extent of the nugget in each example is indicated by double brackets: 

 
Nugget 1. Before receiving the war spending bill from Congress, [[the president will fly to the headquarters 
of the U.S. Central Command]] in Tampa, Florida 
Nugget 2. Before [[receiving the war spending bill from Congress, the president]] will fly to the headquarters 
of the U.S. Central Command in Tampa, Florida 
 

The second rule said that “all temporal, locative, causative, and other types of 
modifiers of the verb constitute a separate nugget, including subordinate clauses, where 
the maximal extent of the modifier is always selected.” In this example, a nugget has 
been created out of the temporal clause: 
 
Nugget 3: [[Before receiving the war spending bill from Congress]], the president will fly to the 
headquarters of the U.S. Central Command in Tampa, Florida 
 

It is certainly possible to break this snippet down into much smaller pieces, for 
example, by breaking down noun phrases into ‘the war spending bill’ and ‘bill from 
Congress.’ This level of granularity, however, is often too fine for the task in question, 
where relevant nuggets serve as building blocks for answers to distillation queries.  In 
order to provide a level of granularity corresponding to possible answers to the queries, 
as well as, to simplify the annotation task, the following rule was introduced:  “Noun, 
phrases are not decomposed into separate nuggets, unless they contain temporal, locative, 
numerical information, or titles.” These exceptions relate to the “significance” of created 
nuggets, where times and locations of events, as well as, quantitative information, were 
considered to be important pieces of information. Based on this rule, only one other 
nugget is created for the snippet above, which specifies the location of the headquarters 
of the U.S. Central Command: 

Nugget 4: Before receiving the war spending bill from Congress, the president will fly to the headquarters of 
the U.S. Central Command [[in Tampa, Florida]] 
 

Special rules were introduced for specific linguistic constructions, such as 
conjunctions or sentences with direct and indirect speech (see Babko-Malaya 2008 for 
discussion of nuggetization and relevancy in GALE Distillation). 

Nuggets were further grouped together into larger units called “nugs.”  A nug 
contains nuggets that convey similar information but that can differ with regard to the 
specificity of that information.  For example, the nuggets John was [[in Rome, Italy]] and 
John was [[in Italy]] would belong to the same nug, however, the first nugget has a 
higher degree of membership in the nug than does the second, since it provides more 
specific information about John’s location. Degrees of membership in a nug are indicated 
by values between 0 and 1, inclusive. The information content of the nug itself is 
identified with the information content of the most specific nugget in the nug. 

Chapter 4: Distillation720 



In the process of clustering nuggets into semantically equivalent classes, we 
distinguished between two types of nuggets: propositional nuggets, which introduced 
facts or propositions, and non-propositional nuggets, which introduce names, times, 
locations, or other entities.  

In the case of propositional nuggets, we adopted the definition of ‘entailment’ from 
PASCAL Textual Entailment Challenge, which said “A entails B if the meaning of B can 
be inferred from the meaning of A, as it would typically be interpreted by people.” Using 
this notion of entailment, we defined degrees of nug membership for propositional 
nuggets as follows: “Nugget A has a degree of membership  in a nug if there is no 
other nugget in the nug which entails A. Nugget A has a degree of membership less than 
1 in a nug if there is some other nugget B in the nug (not necessarily from the same 
distiller) that entails A and which is not entailed by A.” To ensure consistency, we 
assumed the following rule: “if nugget A entails nugget B and A is not entailed from B, 
then D is reduced by 0.2, independent on how different the nuggets are”: 

[[The United Nations imposed sweeping sanctions on Iraq]],  
[[The United Nations imposed sanctions on Iraq]],  
[[Sanctions were imposed on Iraq]],  
 
[[William Taylor is a defense lawyer]],   
[[William Taylor is a lawyer]],  

 
For non-propositional nuggets, i.e., nuggets which refer to an entity, a time interval, 

or a location, a different rule was introduced: “If a nug has 2 nuggets of differing 
membership, the degree of membership of the less specific one is reduced by 0.5. If a nug 
has 3 nuggets with different levels of specificity, then each time the degree of 
membership is reduced by 0.3. In the case of 4 nuggets – by 0.2, if there are more than 4 
nuggets in a nug, D is reduced by 0.1”: 

 
John Smith visited Italy  [[on August 31, 1999]],  
John Smith visited Italy  [[in August 1999]],  
John Smith visited Italy  [[in 1999]],  
 
John Smith visited [[Italy]],  
John Smith visited [[Rome, Italy]],  
 
Andrew Fastow faces [[31]] more charges,  
Andrew Fastow faces [[about 30]] more charges,  
[[Dozens]] more charges were filed against Andrew Fastow,  

 
Nugs themselves were assigned a degree of relevance, reflecting how relevant they 

were to a given query.  Degrees of relevance were likewise measured on a scale from 0 to 
1, 1 being completely relevant.  The reason for assigning degrees of relevance to nugs 
was that, although great pains were taken to spell out relevancy guidelines for each query 
template, there were inevitably borderline cases in which it was a matter of the 
annotator’s judgment how relevant a piece of information was to the given query.  

Handbook of Natural Language Processing and Machine Translation 721 



Allowing the annotator to assign a degree of relevancy somewhere between 0 and 1 in 
such cases provided more flexibility than would have requiring the annotators to make 
categorical “relevant” or “not relevant” judgments that may have seemed arbitrary for 
each borderline case. 

In order to ensure reliable and consistent annotation, each query was at least double 
annotated and adjudicated.  The following metrics show inter-annotator agreement 
scores.  

 
Relevancy agreement: reflected yes/no judgments on a snippet level. Every 

annotated snippet that had at least one nugget was considered relevant. Snippets from 
which no nuggets were created were considered irrelevant. Relevancy agreement counted 
the percentage of snippets that both annotators judged as relevant or irrelevant. 

 
   Relevance Agreement %Nugget Overlap 
 Audio 0.90 0.83 
 Text 0.89 0.82 

 Arabic 0.91 0.86 
 Chinese 0.85 0.72 
 English 0.91 0.85 

 Structured 0.89 0.79 
 Unstructured 0.89 0.80 

 Total 0.89 0.80 
Table 4.30: Inter-Annotator Agreement Scores 

Nugget Overlap: every relevant snippet was associated with a set of nuggets, which 
were represented as intervals over the text of the snippet. The overlap and difference 
between each pair of annotators’ nugget intervals were calculated, counting only 
‘meaningful characters’, i.e., letters and numbers. Overlap was the number of meaningful 
characters that both annotators included in the extent of the nuggets, and difference (Diff) 
was the number of meaningful characters, which only one annotator included in the 
extent of the nuggets. The following formula was then used to determine percentage of 
nugget overlap: % NuggetOverlap = Overlap / (0.5*Diff + Overlap). Table 4.30 shows 
Phase 2 inter-annotator agreement scores across languages and different source types.  

4.6.1.7.2. World Knowledge 

Several new tags on nuggets were introduced in Phase 2 to deal with the fact that 
determinations of relevancy or degree of membership in a nug sometimes hinged upon 
world knowledge.  For example, if the query was “Provide information on the Egyptian 
Islamic Jihad” and a distiller provided as part of the response the snippet “Dr. Ayman 
Zawahiri's decade-long quest to weaponize and use Anthrax against US targets,” then 
determining the relevance of this snippet required the world knowledge that Zawahiri was 
associated with Egyptian Islamic Jihad.  Since this information was not necessarily 
present in the corpus, it seemed unfair to penalize other distillers for missing this piece of 
information.  On the other hand, the distiller returning this snippet had indeed returned a 

Chapter 4: Distillation722 



relevant piece of information, so it seemed equally unfair to penalize that distiller by 
counting the snippet as irrelevant.  In such cases, we tagged the extracted nugget with the 
“World Knowledge – Relevant” tag, indicating that determination of its relevancy 
required world knowledge not contained in the corpus.   When a nugget was so tagged, 
the distiller providing the nugget was given credit for reporting it, but other distillers who 
failed to report equivalent information were not penalized. 

Similarly, if world knowledge was required to determine whether one nugget was 
redundant with another (e.g., when that fact that two names referred to the same entity 
required empirical knowledge), then the “World Knowledge – Redundancy” tag was used 
for one of the nuggets.  Nuggets with that tag did not trigger a penalty for redundancy. 

4.6.1.7.3. Citation Checking 

In year 2, we validated that nuggets were supported by the citations provided by the 
distiller.  For each nugget, annotators first determined which part of the nugget was 
represented in the chunk for that nugget.  (See Section 4.6.1.4 for a definition of 
“chunk”.)  Annotators assigned a “chunk degree of membership” (cDM) between 0 and 
1, which consisted of the content overlap between the nugget and the chunk.  For 
example, if the nugget was fully contained in the chunk, cDM was 1.  If none of the 
content of the nugget was contained in the chunk, cDM was set at 0.  If no chunk either 
wholly or partially contained the nugget, then cDM was likewise 0. 

For chunks which did support the nuggets (cDM>0), English-speaking and bilingual 
annotators checked citations (and documents, if needed) in order to validate that the 
information in the nugget that was contained in the chunk did accurately reflect 
information in the source document. Citation checkers assigned “degrees of support” 
(DS) ranging between 0 and 1 to estimate to what extent a given citation supported the 
information in the nugget that was represented in the chunk. In the following example, 
the nugget says that a certain event took place on Wednesday, August 08, 2003. The 
overlap between the nugget and the chunk, August 2003, is less specific than the 
information in the nugget, so the cDM is set as 0.5.23 The degree of support (DS), on the 
other hand, is 1, given that August 2003 is fully supported by the citation:  

 
Nugget: At least one gunman opened machine-gun fire on teenagers swimming in a river in western 
Kosovo [[on Wednesday]], killing two Serb youths and injuring four others 
Chunk:  In August 2003 attackers gunned down two Serb youths  
Citation: In August 2003, attackers gunned down two Serb youths while they were swimming in central 
Kosovo 
cDM = 0.5 and DS =1 

4.6.1.8. Metrics 

The core metrics used in GALE evaluations measured recall, precision, and F-value for 
information retrieval and document citations.  Another important metric that we 
computed was proficiency, which measured the proportion of the total information 

                                                 
23 The guidelines for assigning chunk degree of membership followed the same rules as the guidelines for 
assigning nug degree of membership. 

Handbook of Natural Language Processing and Machine Translation 723 



provided by a given distiller.  (The proficiency metric is not discussed in this section; see 
White, Hunter, and Goldstein 2008, for a definition of this metric.) 

4.6.1.8.1. Information Retrieval Metrics 

Information retrieval metrics were used to measure the performance of each distiller 
in returning information relevant to each query.  To compute these metrics, we needed 
three numbers: 

 
• The number of right nuggets 
• The number of wrong nuggets 
• The number of missing nuggets 
 

The challenge was to compute these numbers in a context in which relevancy was taken 
to be a matter of degree, as was a nugget’s membership in a nug.  

Consider Table 4.31: 
 

 1 - D D 

1 - R _ #Wrong 

R #Missing #Right 

Table 4.31 

For an arbitrary nug with relevance R=[0,1] let D=[0,1] be the average degree of 
membership of non-redundant nuggets from a given distiller.  This nug contributes (R)D 
to the distiller’s  #Right score, (1 – R)D to the #Wrong score, and R(1 – D) to the 
#Missing score. The final value of #Right, #Wrong, etc. includes the sum of each nug’s 
contribution to that value. 

Two additional values were needed to complete the computation of the contingency 
table entries.  First, we needed to take into account that nuggets in text determined to be 
irrelevant should count as wrong; however, since such text was not nuggetized,   the 
number of nuggets in it had to be estimated.  We used as an estimate of the number of 
such nuggets max(0, C/40 - #Right), where C was the total number of non-blank 
characters in the response text.  Second, we wanted to penalize redundant nuggets as 
wrong, so the #Wrong score had to include a term giving the number of redundant 
nuggets in any nug from a given distiller. 

Given the entries in the generalized contingency table, we can compute the following 
information metrics (recall and precision): 

 ܴ݈݈݁ܿܽ ൌ ݃݊݅ݏݏ݅ܯ#ݐ݄ܴ݃݅#  ݐ݄݃݅ݎ# , ݊݅ݏ݅ܿ݁ݎܲ ൌ ݃݊ݎܹ#ݐ݄ܴ݃݅#   .ݐ݄݃݅ݎ#
 

Chapter 4: Distillation724 



These are the two key metrics used to evaluate information retrieval performance and 
may be combined in the standard method to produce the single measure of information F-
value 

4.6.1.8.2. Citation Metrics 

In evaluating the document support in a distiller’s response text for a given query, the 
computations were analogous to those used in evaluating information retrieval 
performance.  

As described in Section 4.6.1.4, source citations were associated with chunks, which 
were excerpts of snippets.  A source citation for a chunk was considered to support a 
nugget if the chunk contained the nugget and the document confirmed the information 
content of the nugget.  A nugget was allowed to be only partially contained in a chunk 
(some information in the nugget might have been missing from the chunk or the nugget 
might have contained information not in the chunk), so we quantified a nugget’s degree 
of membership, DM, in the chunk by a value between 0 and 1.  Each nugget also had a 
degree of support provided by the document associated with the chunk.  We take degree 
of support, DS, to be a value between 0 and 1. 

Thus for citations, the procedure for computing #Right was the following.  We iterated 
through each chunk provided by the distiller, computed DS and DM for each nugget 
contained in the chunk, and took the sum of these values.  A similar procedure was 
followed for #Wrong, except that the terms in the sum were in the form (1 – DS)DM. 

The computation of the missing score required a somewhat different procedure from 
that described above.  Since annotators did not examine the corpus for missing 
documents, in computing the missing increment for a nugget extracted from a given 
distiller’s response, the annotator  considered only documents provided by other distillers 
that were associated (via the chunks) to nuggets contained in the same nug as the nugget 
under evaluation.  Documents cited by other distillers for nuggets in the nug but not cited 
by the given distiller counted toward the missing score for that distiller.  

As in the case of  information retrieval metrics, precision, recall, and F-value for 
document retrieval were computed using  the same definitions, in terms of #Right, 
#Wrong, and #Missing. 

4.6.1.8.3. GALE Evaluation Metric 

The official GALE evaluation metric for Phase 2 combined the information and 
document retrieval metrics by weighting information recall by document F-value and 
then computing a weighted F-value using information precision and weighted 
information recall in place of simple information recall.   The metric so computed was 
called scaled F-value. The rationale for this metric was that machine distillers should 
excel at recall because of their ability to process a large number of documents very 
rapidly; however, the value of retrieved information depended upon the documentation 
backing it up, so information recall should be weighted by the overall value (the F-value) 
of the retrieved documents.  Perfect document retrieval should not diminish the weight 
placed on information recall, but missed or erroneous document citations should have the 
effect of lowering the value placed on information recall for a particular query. 

Handbook of Natural Language Processing and Machine Translation 725 



4.6.1.8.4. Other Metrics 

A wide range of additional metrics were computed during the performance 
evaluation.  For a detailed discussion of the range of metrics, see White et. al. (2008). 

4.6.1.9. Key Results in Human/Machine Comparison 

In this section, we discuss results on the performance of machine distillers relative to 
humans.  The results showed the ratio of the average machine performance to average 
human performance for a variety of key metrics, broken down by source type and 
language.  We start with metrics by source type: 

 
 

Information Metrics 
 Str. 

Text 
Uns. 
Text 

Str. 
Audio 

Uns. 
Audio 

Recall 0.77 1.21 0.82 0.40 
Precision 0.66 0.66 0.67 0.58 
F-value 0.50 0.78 0.49 0.28 
Table 4.32: Relative information ratio 
scores by source type for structured and 
unstructured text and speech. 

Table 4.33: Relative document ratio 
scores by source type for structured and 
unstructured text and speech. 

Combined Metrics 
 Str. 

Text 
Unstr. 
Text 

Str. 
Audio 

Unstr. 
Audio 

Scaled F-value ratio 0.54 0.80 0.52 0.25 

Table 4.34: Combined relative metrics by source type. 

The following observations can be drawn from the above tables. 
 

• Machines performed  better at document recall on Text than on 
Unstructured Audio  
• Machine distillers significantly outperformed humans on both 
information and document recall for unstructured text 
• Unstructured Audio files were most difficult for machine distillers 

 
Next we consider scores broken down by language: 

 
Information Metrics 

 English Chinese Arabic 
Recall 0.76 0.53 1.08 
Precision 0.70 0.77 0.48 
F-value 0.60 0.34 0.53 
Table 4.35: Relative information scores by 
language. 

 

Document Metrics 
 English Chinese Arabic 
Recall 0.69 0.61 1.30 
Precision 1.02 1.07 1.04 
F-value 0.74 0.63 1.27 
Table 4.36: Relative document scores by 
language. 

Document Metrics 
 Str.

Text
Uns.
Text

Str. 
Audio 

Uns. 
Audio 

Recall 0.88 1.40 0.78 0.33 
Precision 0.97 1.07 1.11 1.03 
F-value 0.93 1.30 0.83 0.37 

Chapter 4: Distillation726 



Combined Metrics 
 English Chinese Arabic 
Scaled F-value ratio 0.59 0.36 0.61 
Table 4.37: Combined relative metrics by language. 

The scores by language tell us that Chinese was the most difficult language for 
machine distillers to process, while machine performance on Arabic exceeded that of 
humans.  English was intermediate in difficulty, but for one metric – document precision 
– machine performance was better than that of humans. 

Scores were also broken down by template type and argument type for templates.  No 
correlation between template type and relative machine performance was detected.  Many 
of the queries found to be difficult used names as their argument type, with names in 
Chinese audio files being particularly difficult. 

 

4.6.2. Error Analysis and Future Directions for Distillation 
Authors: Elizabeth Boschee, Marjorie Freedman, Roger Bock, John Graettinger, and Ralph Weischedel 

4.6.2.1. Introduction 

Evaluating Distillation performance is complicated because, 1) end-to-end system 
evaluation involves human assessment of system responses that include speech 
recognition, machine translation, response identification, and redundancy detection, 2) 
both response identification and redundancy detection are dependent on various natural 
language understanding components, including syntactic parsing, name recognition, co-
reference (both within and across documents), relation and event detection, and 3) 
automatic scoring can only roughly approximate the human evaluators’ judgments, due to 
the complex nature of the evaluation and the challenges of producing a complete answer 
key.  

Detailed error analysis of the available evaluation results can therefore be highly 
valuable. The following analysis is based on AGILE’s results in the Phase 2 Distillation 
evaluation and specifically examines BBN’s contribution to the AGILE submission.  

On many queries, AGILE performance was strong, sometimes producing responses 
twice or three times as comprehensive, accurate, and efficient as an average human’s.  

For this section, however, we have selected twenty of AGILE’s lowest scoring query 
responses to analyze, under the assumption that looking specifically at system error can 
help identify potentially fertile ground for future research  The queries we have selected 
include examples from all four genres and all three languages.  

We have identified five primary categories of errors: 1) the quality of recognized 
speech or translated text; 2) mistakes in co-reference which cause entities to be 
incorrectly linked or links between mentions to be missed; 3) failures of answer selection 
due to poor matching of complex topics; 4) failures of answer selection due to low 
feature coverage; and 5) highly redundant answers. While aspects of this analysis may be 
system-specific, the analysis does provide insights into which components of a 
Distillation System are most likely to cause errors. For each error category, we provide 

Handbook of Natural Language Processing and Machine Translation 727 



some thoughts on how errors from this category could be addressed in the framework of 
the AGILE Distillation System. 

4.6.2.2. Translation or Transcription 

More than two-thirds of the evaluation queries called for responses solely from 
machine translation and/or transcription. For many of these queries, the 
translation/transcription (though imperfect) was of high enough quality to enable 
reasonably accurate Distillation. For instance, in response to a query about places visited 
by Hu Jintao, the system identified the following two responses from Chinese MT, 
despite the lower machine translation quality in the second example: 

 
1. Chinese President Hu Jintao's visit to the United States in September 
2. Hu Jintao 2005 in September in New York to participate in the UN General 

Assembly during the summit 
 

However, sometimes the quality of the machine translation and transcription proved a 
significant stumbling block for Distillation; indeed, this was the case for eight of the 
lowest scoring queries analyzed here.24 For seven of these queries, the specific problem 
was that a name in the query was missed in the translation or transcription of the correct 
answers. (For the eighth query, the MT responses were simply too garbled to be 
understood.) 

This problem is an example of how evaluation in an end-to-end context can highlight 
problems of upstream processing which might not be immediately noticed except for 
their impact on a downstream component. The GALE MT evaluation does not distinguish 
between incorrect translation of names and the incorrect translation of non-name words. 
In Distillation, however, names are disproportionately important: 80% of the templates 
require the system to identify at least one named entity in the text, and even the ‘topic-
based’ queries usually involve at least one name as a key component (e.g., “List facts 
about [the death of Abu Musab al-Zarqawi]”). The following table provides a few 
examples of instances where errors in name translation/transcription caused the 
Distillation System to miss responses. The underlined portion of the English text contains 
the words that should have been translated or transcribed as the missing name. 

 
Missed Name English Text 
Abu Hamza 
al-Muhajir 

On the Internet, said in a statement that the Iraqi anti-US armed forces 
leader Zarqawi’s successor Issa al-personally… 

Cher “So could some simple padding in the helmet of marine save lives share 
thinks so and is now taking on the Pentagon 

Hines Ward the United States conduct rugby hero Hans about nine years 
Table 4.38: Distillation Errors due to Missed Names 

                                                 
24 For reference, these were queries GNG16, GNG17, GNG32, GNG43, GNG45, GNG46, GNG49, 
GNG53. More information about the Distillation evaluation and evaluation queries can be found in 
Distillation 5.1. 

Chapter 4: Distillation728 



This problem was not unique to the AGILE team: of the eight queries analyzed here, 
only two had any correct responses returned by either the Rosetta or NIGHTINGALE 
System. Improving machine translation specifically for Distillation is, therefore, a 
program-wide necessity. 

There are several potential avenues for improving Distillation performance over the 
current state-of-the-art in machine translation and transcription. Some improvements will 
come naturally, as machine translation and speech recognition continue to improve. 
However, focused work on improving the transcription and translation of names would 
be especially helpful. For instance, Ji and Grishman describe a method for explicitly 
identifying names in the source text and proposing translations to the MT system (Section 
4.5.3). Parton et al. (2008) use information derived from user’s queries to do focused 
identification and re-translation of names and deleted verbs (Section 4); Kingsbury and 
Chaudhari take a related approach in their use of query-time information to re-transcribe 
possible answer passages (Section 4.5.2). We expect there would be further gains by 
more closely integrating Distillation with the n-best or lattice output of machine 
translation and speech recognition. 

An alternative path to be explored in parallel would be (1) translating the query (2) 
identifying the answer in the source language (3) translating the answer. (This path would 
address names that are mistranslated, but not those that are mistranscribed.) This path 
presents several challenges.   

Step 1 requires very accurate English-to-source language translation models. For 
queries which are purely name-focused (e.g., provide information about [PERSON]), a 
model that emphasized transliteration might suffice, however for topic-based queries 
(where names can still be critical), full translations of the topics are necessary. 

Step 2 requires high quality language understanding technology in the source 
language. While the Automatic Content Extraction evaluation has included Arabic and 
Chinese evaluations for the past several years, syntactic parsing and extraction 
particularly in Arabic have lagged behind English performance. 

Step 3 would be trivial if the Distillation System were simply to return the answer as 
originally translated by the machine translation system. However, this strategy will not 
always be successful. The goal of the three-step process is to improve performance in 
cases where machine translation quality has prevented the English Distillation System 
from finding a relevant response. If a machine translation is poor enough to confuse the 
language understanding components of the Distillation System, it is also likely to confuse 
an evaluator reading a response drawn from that same translation. For instance, consider 
a query like “List facts about [tips in Chinese restaurants]”. In response to this query, the 
system might find a relevant passage in the source language that should be translated as 
“In China, notices are posted in many restaurants prohibiting attendants from accepting 
tips from customers”. However, if the system returns the machine translation “many 
Chinese restaurants were pasted notices to that the attendant received the tip of the 
guests”, this may be considered incorrect by an evaluator who rightly thinks that it omits 
the real meaning of the passage. Instead, it will be necessary to build on the related work 
described above to further take advantage of the Distillation System’s understanding of 
both the query and source language response to improve answer translation quality. 

Handbook of Natural Language Processing and Machine Translation 729 



4.6.2.3. Co-Reference 

To successfully answer a question about a person, organization or country, the 
Distillation System should identify all mentions of that entity, even when the mention 
uses an alias, alternative spelling, or pronoun.  
 

Name in Query Mistake 
the Egyptian Islamic Jihad Missed link: “al-Jihad al-Islami” 
the Egyptian Islamic Jihad Spurious link: “Hezbollah” 
Awad Hamed al-Bandar Missed link: “Awwad Ahmad al-Bandar” 
New York Police Department Missed link: “New York cops” 
European Union Spurious link: “The UN Secretary-General Kofi Annan 

advised on holding an administrative reform complete to the 
organization [European Union]” (“the organization” does 
not refer to the EU) 

Table 4.39: Distillation Errors due to Co-Reference Mistakes that led to errors in the evaluation. 

For most queries the AGILE system was able to do this successfully. However, for 
three of the lowest-scoring queries, we identified the primary source of error as a mistake 
in co-reference.  

BBN relied on SERIF’s co-reference for links between names, pronouns, and 
nominal mentions within a single document. Continued improvements to within 
document co-reference—including incorporating the expanded notion of co-reference 
available through OntoNotes — will improve Distillation. However, errors in within-
document co-reference frequently require expanded world knowledge to be solved. For 
example, the incorrect link between ‘organization’ and ‘European Union’ could be made 
less likely if the co-reference model were aware that Kofi Annan is more likely to be 
associated with the UN than the EU.25 Initial results of using cross-document co-
reference information to improve within-document co-reference decisions for named 
entities were promising in the ACE 2008 evaluation (Baron and Freedman, 2008). 

For Distillation, we addressed one aspect of the problem of cross-document co-
reference by using a set of features to identify name variation links, for example 
identifying that Al Qaeda and Al Qaida refer to the same organization. These links 
allowed the system to answer a query about named entity X using passages mentioning 
only X’ but did not disambiguate document entities that might share those names X or 
X’, i.e., distinguishing between all people named John Smith. Instead we relied on the 
context of the query to guide the system to the correct documents. For example, given the 
query Describe the prosecution of [John Smith], the system would naturally focus only 
on John Smiths who were mentioned as trial defendants.  

Since the Phase 2 evaluation, BBN has integrated the name variation component into 
a full named entity cross document co-reference component (Baron and Freedman 2008). 
Experiments with cross document co-reference showed that adding context-based 
features (e.g., premodifiers from the extraction system, topic predictions) to the name 

                                                 
25 The slightly garbled machine translation also contributed to this error.  

Chapter 4: Distillation730 



variation component improved cross-document co-reference. For example in the Phase 2 
component, the names Koufodinas and Koufontianas were not linked (though the second 
is just a misspelling of the first). Both names are mentioned in conjunction with events 
related to terrorism in Greece. With the addition of context-based features, the system 
correctly linked these two names.  

Using language-specific variants of edit distance could also improve performance. 
For example, the variation between ‘ui’ and ‘u’ in a Chinese name usually indicates two 
separate entities (e.g. Suizhou and Suzhou). However, the same variation in a Hindi name 
is usually just a misspelling (e.g., Kastruirangan and Kastrurangan). One challenge with 
this approach would be automatically identifying the linguistic origins of a name not 
published in its native language. 

4.6.2.4. Proposition Tree Matching Errors 

For four of the lowest-scoring queries in the evaluation set, we identified semantic 
matching as the primary source of error. In other words, the system did not correctly 
match a user-specified topic to the relevant passages (which were potentially expressed in 
very different words).26 For templates with event- and topic-based slots, the BBN system 
uses ‘proposition trees’ to identify passages that are syntactically and semantically 
similar to the topic or event. Details about proposition trees and the associated matching 
algorithm are described in Section 4.4.4.3.   

Briefly, a proposition tree is a representation of text content that is designed to 
capture the normalized predicate-argument structure of a sentence (who did what to 
whom). For Distillation, the BBN system generates proposition trees for both the query 
and all possibly relevant response documents. It then augments these trees with 
synonyms and co-reference information, and uses a matching algorithm over the resulting 
trees to identify document passages relevant to a particular query, even when the 
passages refer to the topic using different words or syntactic structure. For instance, the 
system will use the following proposition trees (shown pre-augmentation) to match the 
query topic “the arrest of Abu Abbas in Baghdad” to the document passage “he was 
captured in the capital”: 

 

Although the proposition tree matching algorithm enables the system to detect 
relevant passages with greater recall and precision than surface-level strategies, the 
proposition tree matching algorithm can make two kinds of mistakes: it can either be too 
lenient (causing irrelevant responses) or too conservative (causing missed responses).  

                                                 
26 Queries GNG06, GNG23, GNG29, GNG34 

Handbook of Natural Language Processing and Machine Translation 731 

Figure 4.28: Proposition Trees 

BaghdadAbu 
Abbas

arrest

of in

capitalhe

capture

object



Irrelevant responses are usually the result of the algorithm not identifying the most 
important words in the topic. For example, in answering the query “What connections are 
there between [World Cup games] and [stock markets]?”, BBN provided the response 
“The government to rescue the original pattern of the game, as well as, several times in 
the game in the formation of the rules of the game, … the company’s basic law of the 
market…” The matching algorithm did not know that it should not have expanded to 
games beyond the “World Cup”, i.e., that “World Cup” was a very important modifier. 
The current matching algorithm weights words primarily by their syntactic position: 
predicates and roots are more important than the words that modify them. At BBN, we 
plan to address this issue by introducing more complex features for weighting words, 
perhaps placing more weight on certain types of modifiers (e.g., words that are 
capitalized, or words that are less frequent).  

Missed responses are frequently the result of the algorithm not understanding when 
context from one sentence in a document carries over to a neighboring sentence. For 
example, for the query “List facts about [the signing of the Adam Walsh Child Protection 
and Safety Act],” the system only reported the underlined portion of the following 
relevant transcription: “John Walsh who courses a host of America’s most wanted his son 
Adam was abducted exactly 25 years ago today. And was found murdered weeks later 
and today the president signed the Adam Walsh Child Protection Safety Act”. At BBN, 
we plan to improve semantic matching performance in such cases through more 
sophisticated modeling of topic flow and segmentation over documents.  

4.6.2.5. Low Feature Coverage 

For query templates that do not rely on open-ended topics and events, the BBN 
Distillation System frequently relies on specific lexically- and syntactically-driven 
patterns that produce features for the answer selection process. These patterns, based on 
linguistic elements produced by SERIF (e.g., entity mentions, relations, events, and 
propositions), are typically very successful at capturing relevant answers for these entity-
based queries. However, when answers appear in atypical contexts (e.g., amid garbled 
machine translation), the Distillation System sometimes misses responses due to lack of 
pattern coverage. We determined that the poor performance on three of the lowest scoring 
queries was primarily the result of answers that were not covered by our features.27 The 
two examples below illustrate instances where BBN missed responses (underlined) 
because of this problem: 

                                                 
27 Queries GNG31, GNG41, GNG42 

Chapter 4: Distillation732 



 
 

In the missed responses to (A), the locations are not easily syntactically connected to 
Zoellick or his actions. In the missed responses to (B), the machine translation led to 
phrases that are (generally) understandable by a person but which BBN’s Distillation 
System was not able to understand.  

We believe there are several avenues for improving feature coverage. By partially 
automating feature proposal, we could increase the number of features used to identify 
answers without additional effort. We also plan to use the GALE semantic annotations to 
extend the coverage of lexically-based patterns. For example, automatic word-sense 
disambiguation, combined with an ontology linking word senses, can be used to expand 
the word ‘support’ to ‘endorse’ and ‘back’ in appropriate contexts. Work that identifies 
answers in the source language text will also be helpful in identifying answers such as 
“French President Jacques Chirac at the 72-year-old,” where the machine translation is 
understandable, but not covered by a pattern.  

4.6.2.6. Redundancy 

The GALE Distillation task involves not only identifying relevant responses to a 
query, but also compressing redundant information into a non-redundant response. For 
instance, when asked about the activities of Abu Musab al-Zarqawi, the BBN system 
recognized that “al-Zarqawi, who has very definitely been involved in the kidnapping and 
beheading of foreigners” repeats information found in “Al-Zarqawi has claimed 
responsibility for numerous attacks on U.S. and Iraqi forces, along with the kidnappings 
and the beheadings of several foreigners, including Americans.”  

Given the complexity and sub-sentence granularity of redundancy, this component 
was particularly challenging to evaluate outside of the full GALE evaluation. We 
identified two queries for which the primary cause of failure was redundant information 
that was not removed from the response.28 The algorithm used to identify redundant 
information combines lexical and syntactic information to identify chunks of an answer 
that are redundant. For machine translated text, the syntactic parse is typically degraded. 
Consequently, it is more difficult to identify which chunks are redundant, or which 
chunks are the most important (typically those closest to the root of the parse). At BBN, 
we will address this problem by exploring ways to decouple redundancy detection from 
the parse structure, making the process more robust to syntactic degradation. We will also 
                                                 
28 Queries GNG19, GNG35 

(A)Where has [Robert B .Zoellick] been and when? 
 … Robert Zoellick told an audience this week in Khartoum, Sudan's capital. 
 The United States opened a consulate in Juba, in southern Sudan. Robert B. 

Zoellick, the deputy secretary of state, officiated. 
 As three white helicopters carrying Robert B. Zoellick and his traveling party 

began descending over the Kalma refugee camp… 
(B)Produce a biography of [Jacques Rene Chirac] 

 French President Jacques Chirac at the 72-year-old 
 CHIRAC-72-year-old CHIRAC-72-year-old 
 French presidential office announced Friday, French President Jacques vascular 
problems led minor problems, from 2:hospital one week 

Handbook of Natural Language Processing and Machine Translation 733 



add additional sources of lexical redundancy from the GALE semantic annotations. We 
expect this to help identify the redundancy of snippets like these (both returned in 
response to a query about Airbus): “A.380 generation Airbus postponed delivery 
ceremony” and “Boeing’s rival Airbus company has announced the extension of the 
Airbus a.380 delivery period”. In this case the system has failed to recognize the 
similarity between the core concepts “announced the extension” and “postponed”; better 
and broader lexical features will help here.  

4.6.2.7. Conclusion 

We have discussed five primary sources of error for the GALE Distillation task. The 
most significant contributor numerically is the translation and transliteration of names. 
Other primary contributors are co-reference error, answer selection error from poor 
matching of complex topics, answer selection error from low feature coverage, and 
redundancy.  

To improve Distillation over imperfect machine translation and transcription, we have 
suggested pursuing Distillation work in the source language; the main challenge here is 
not answer identification (though this can be difficult as well), but discovering how to use 
the identification of source language answers to improve overall translation so that those 
answers can be understood in English.  

To improve co-reference, we have discussed ongoing work at BBN using context-
specific features and other improvements to a cross-document co-reference system. The 
integration of additional language understanding resources (e.g., OntoNotes) will also 
help improve co-reference performance. We expect these resources could also help 
minimize answer selection error, for instance by allowing the system to automatically 
expand feature coverage with high precision, or by providing additional information to 
the semantic matching algorithms.  

Finally, redundancy removal is by itself a significant research task. Planned 
algorithms for redundancy detection will better balance the need to incorporate and 
account for syntactic structure with the reality of operating over imperfect text with 
degraded parses. Incorporating additional semantic features gleaned from the GALE 
semantic annotations (OntoNotes) will improve the accuracy of redundancy detection. 
Developing automatic evaluation techniques for this component would improve our 
ability to monitor progress. 

In sum, we have used the results of the GALE Phase 2 Distillation evaluation to 
identify significant sources of error and propose possible research directions to address 
these errors. The end goal should be improved performance across the board for 
Distillation.  

 
 
 
 
 
 

 

Chapter 4: Distillation734 



References 
Ajmera, J. and C. Wooters. 2003. A Robust Speaker Clustering Algorithm. Proceedings 
of the IEEE workshop on Automatic Speech Recognition and Understanding. 

Al-Onaizan, Y. and K. Knight. 2002. Translating Named Entities Using Monolingual and 
Bilingual Resources. Proceedings of the Meeting of the Association for Computational 
Linguistics. 

Artiles, J., S. Sekine, and J. Gonzalo. 2008. Web People Search - Results of the First 
Evaluation and the Plan for the Second. Proceedings of the International World Wide 
Web Conference. 

Babko-Malaya, O. 2008. Annotation of Nuggets and Relevance in GALE Distillation 
Evaluation.  Proceeding of the International Conference on Language Resources and 
Evaluation.   

Banerjee, S. and A. Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation 
with Improved Correlation with Human Judgments. Proceedings of Workshop on 
Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization at the 
Meeting of the Association for Computational Linguistics.  

Bar-Haim, R., I. Dagan, W. Dolan, L. Ferro, D. Giampiccolo, B. Magnini, and I. 
Szpektor.  2006. The Second PASCAL Recognising Textual Entailment Challenge. 
Proceedings of the Second PASCAL Challenges Workshop on Recognising Textural 
Entrailment. 

Baron, A. and M. Freedman. 2008. Who is Who and What is What: Experiments in Cross 
Document Co-Reference. Empirical Methods in Natural Language Processing. 274–283. 

Bartell, B., G. Cottrell, and R. Belew. 1994. Automatic Combination of Multiple Ranked 
Retrieval Systems. Proceedings of 17th Annual International ACM SIGIR Conference on 
Research and Development in Information Retrieval. 173–181. 

Bikel, D. M. 2004. A Distributional Analysis of a Lexicalized Statistical Parsing Model. 
Proceedings of the Conference on Empirical Methods in Natural Language Processing. 

Bikel, D. M., S. Miller, R. Schwartz, and R. Weischedel. 1997. Nymble: a High 
Performance Learning Name-Finder. Proceedings of ANLP pp. 194–201. 

Boschee, E., R. Weischedel, and A. Zamanian. 2005. Automatic Information Extraction. 
Proceedings of the International Conference on Intelligence Analysis. 

Boschee, E., V. Punyakanok, and R. Weischedel. 2008 An Exploratory Study Towards 
Machines that Learn to Read. Proceedings of AAAI’08 BICA. 

Brill, E. 1992. A Simple Rule Based Part of Speech Tagger. Proceedings of the Third 
Conference on Applied Natural Language Processing. 

Handbook of Natural Language Processing and Machine Translation 735 

BeanShell. 2009. http://www.beanshell.org/ 



Brill, E., and R. Moore. 2000. An Improved Error Model for Noisy Channel Spelling 
Correction.  Proceedings of the Meeting of the Association for Computational 
Linguistics. 286–293. 

Brown, P. E, V. J. Della Pietra, P. V. deSouza, J. C. Lai and R. L Mercer. (1992). Class-
based n-gram models of natural language. Computational Linguistics, 18(4):467–480. 
 
Cabezas, C., and P. Resnik. 2005. Using WSD Techniques for Lexical Selection in 
Statistical Machine. Translation Technical report CS-TR-4736 / LAMP-TR-124 / 
UMIACS-TR-2005-42. 

Carpuat, M., and D. Wu. 2007. Context-Dependent Phrasal Translation Lexicons for 
Statistical Machine Translation. Proceedings of Machine Translation Summit XI. 

Chambers, N., D. Cer, T. Grenager, D. Hall, C. Kiddon, W. MacCartney, M. de 
Marneffe, D. Ramage, E. Yeh, and C. Manning. 2007. Learning Alignments and 
Leveraging Natural Logic. Proceedings of the Meeting of the Association for 
Computational Linguistics-PASCAL Workshop on Textual Entailment and Paraphrasing. 

Chan, H. Y., and P. C. Woodland. 2004. Improving Broadcast News Transcription by 
Lightly Supervised Discriminative Training.  Proceedings of the ICASSP. 

Charniak, E., and K. Knight. 2003. Syntax-Based Language Models for Machine 
Translation. Proceedings of Machine Translation Summit IX.  

Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. The NAACL.  

Chaudhari, U., and M. Picheny. 2007. Improvements in Phone Based Audio Search via 
Constrained Match with High Order Confusion Estimates.  Proceedings of the IEEE 
Automatic Speech Recognition and Understanding Workshop. 

Chen, S. F. 2003. Conditional and Joint Models For Grapheme-to-Phoneme Conversion. 
Proceedings of the Eurospeech Conference. 

Church, K. 1988. A Stochastic Parts Program and Noun Phrase Parser for Unrestricted 
Text.  Proceedings of the Second Conference on Applied Natural Language Processing.  
136–143. 

Cohen, W., P. Ravikumar, and S. Fienberg. 2003. A Comparison of String Distance 
Metrics for Name-Matching Tasks. Proceedings of the IIWeb Workshop. 

Collins, M. 2002. Discriminative Training Methods for Hidden Markov Models: Theory 
and Experiments with Perceptron Algorithms. EMNLP.  1-8. 

Collins, M. 2003. Head-Driven Statistical Models for Natural Language Parsing. 
Computational Linguistics 29: 589-637. 

Condoravdi, C., R. Crouch, V. de Pavia, R. Stolle, and D. Bobrow. 2003. Entailment, 
Intensionality, and Text Understanding.  Workshop on Text Meaning. 

Crammer, K., J. Keshet, S. Shalev-Schwartz, and Y. Singer. 2006. Online Passive-
Aggressive Algorithms. Journal of Machine Learning Research 7: 551–585. 

Chapter 4: Distillation736 



Cristianini, N., and J. Shawe-Taylor. 2000. An Introduction to Support Vector Machines 
and Other Kernel-Based Learning Methods. Cambridge University Press. 

Dagan, I., O. Glickman, B. Magnini. 2006. The PASCAL Recognising Textual 
Entailment Challenge. MLCW 2005, LNAI 3944: 177–190. 

Davis, J., and M. Goadrich. 2006. The Relationship between Precision-Recall and Roc 
Curves. Proceedings of the 23rd International Conference on Machine Learning.  233–
240. 

De Marneffe, M., A. N. Rafferty, and C. Manning. 2008. Finding Contradictions in Text. 
Proceedings of the ACL. 

De Marneffe, M., W. MacCartney, and C. Manning. 2006. Generating Typed 
Dependency Parses from Phrase Structure Parses. Proceedings of the 5th International 
Conference on Language Resources and Evaluation. 

De Marneffe, M., T. Grenager, W. MacCartney, D. Cer, D. Ramage, C. Kiddon, and C. 
Manning. 2007. Aligning Semantic Graphs for Textual Inference and Machine Reading. 
Proceedings of the AAAI Spring Symposium at Stanford. 

Elming, J. 2006. Transformation-Based Correction of Rule-Based MT. Proceedings of 
the European Association for Machine Translation Conference.  219–226. 

Emms, M. 2006. Variants of Tree Similarity in a Question Answering Task. Proceedings 
of the Linguistic Distances Workshop Held in Conjunction with the International 
Conference on Computational Linguistics.  100–108. 

Farber, B., D. Freitag, N. Habash, and O. Rambow. 2008. Improving NER in Arabic 
Using a Morphological Tagger. Proceedings of The International Conference on 
Language Resources and Evaluation. 

Ferrández, S., A. Toral, O. Ferrández, A. Ferrández, and R. Muñoz. 2007. Applying 
Wikipedia's Multilingual Knowledge to Cross Lingual Question Answering. Proceedings 
of the 12th International Conference on Applications of Natural Language to Information 
Systems.  352–363.  

Fiscus, J. 1997. A Post-Processing System to Yield Reduce Word Error Rate: Recognizer 
Output Voting Error Reduction (ROVER). Proceedings of the IEEE Workshop on 
Automatic Speech Recognition and Understanding. 

Florian, R., H. Hassan, A. Ittycheriah, H. Jing, N. Kambhatla, X. Luo, N. Nicolov, and S. 
Roukos. 2004. A Statistical Model for Multilingual Entity Detection and Tracking. 
Proceedings of the Meeting of the ACL: Human Language Technologies.  1–8. 

Freitag, D., and S, Khadivi. 2007. A Sequence Alignment Model Based on the Averaged 
Perceptron. Proceedings of the EMNLP and the Conference on Natural Language 
Learning. 

Freitag, D. 2004. Trained Named Entity Recognition Using Distributional Clusters. 
Proceedings of the EMNLP. 

Handbook of Natural Language Processing and Machine Translation 737 



Freund, Y., and R. E. Schapire. 1999. Large Margin Classification Using the Perceptron 
Algorithm. Machine Learning 37(3): 277–296. 

Gales, M. J.F., D. Y. Kim, P. C. Woodland, H. Y. Chan, D. Mrva, R. Sinha, and S. E. 
Tranter. 2006. Progress in the CU-HTK Broadcast News Transcription System. IEEE 
Transactions on Audio, Speech, and Language Processing 14(5): 1513–1525. 

Giampiccolo, D., I. Dagan, B. Magnini, and W. Dolan. 2007. The Third PASCAL 
Recognizing Textual Entailment Challenge. Proceedings of the ACL PASCAL Workshop 
on Textual Entailment and Paraphrasing. 

Gillick, D., D. Hakkani-Tür, and M. Levit. 2008. Unsupervised Learning of Edit 
Parameters for Matching Name Variants. Proceedings of ICSLP. 

Gonzalo, J., and D. Oard. 2004. iCLEF 2004 Track Overview: Pilot Experiments in 
Interactive Cross-Language Question Answering. Multilingual Information Access for 
Text, Speech and Images, Fifth Workshop of the Cross-Language Evaluation Forum 
Revised Selected Papers Series, LNCS (3491): 310–322. 

Grishman, R., D. Westbrook, and A. Meyers. 2005. NYU’s English ACE 2005 System 
Description. Technical Report 05-019, NYU Proteus Project. 

Grishman, R., D. Westbrook, and A. Meyers. 2005. NYU’s English ACE 2005 System 
Description. Proceedings of the Automatic Content Extraction Evaluation Workshop. 

Hakkani-Tür, D., and G. Tur. 2007. Statistical Sentence Extraction for Information 
Distillation. Proceedings of the International Conference on Acoustics, Speech, and 
Signal Processing. 

Hakkani-Tür, D., G. Tur, and A. Chotimongkol. 2005. Using Syntactic and Semantic 
Graphs for Call Classification. Proceedings of the Workshop on Feature Engineering for 
Machine Learning in Natural Language Proceedings of the Meeting of the Association 
for Computational Linguistics. 

Harabagiu, S., A. Hickl, and F. Lacatusu. 2006. Negation, Contrast, and Contradiction in 
Text Proceedings of the Twenty-First National Conference on Artificial Intelligence.  

Hastie, T., and R. Tibshirani. 1990. Generalized Additive Models. London: Chapman and 
Hall. 

Hillard, D., B. Hoffmeister, M. Ostendorf, R. Schülter, and H. Ney. 2007. iRover: 
Improving System Combination with Classification. Proceedings of the Meeting of the 
Association for Computational Linguistics: Human Language Technologies.  65–68. 

Hobbs, J. R. 1977. Resolving Pronoun References. Readings in Natural Language 
Processing, B. Grosz et al. eds., 1986. Morgan Kaufmann. 

Huang, F., S. Vogel, and A. Waibel. 2004. Improving Named Entity Translation 
Combining Phonetic and Semantic Similarities. Proceedings of the Meeting of the 
Association for Computational Linguistics: Human Language Technologies. 

Chapter 4: Distillation738 



Huang, L., K. Knight, and A. Joshi. 2006. Statistical Syntax-Directed Translation with 
Extended Domain of Locality. Proceedings of the Meeting of the Association for 
Machine Translation of the Americas.  

Ji, H., and R. Grishman. 2006. Analysis and Repair of Name Tagger Errors. Proceedings 
of the International Conference on Computational Linguistics / Association for 
Computational Linguistics Conference. 

Ji, H., and R. Grishman. 2007. Collaborative Entity Extraction and Translation. 
Proceedings of the International Conference on Recent Advances in Natural Language 
Processing. 

Ji, H., and R. Grishman. 2009. Collaborative Entity Extraction and Translation. Recent 
Advances in Natural Language Processing. Amsterdam and Philadelphia: John 
Benjamins Publishers. 

Ji, H., R. Grishman, and W. Wang. 2008. Phonetic Name Matching For Cross Lingual 
Spoken Sentence Retrieval. Proceedings of the IEEE-Association for Computational 
Linguistics Spoken Language Technology Conference. 

Joachims, T. 1999. Making Large-Scale SVM Learning Practical.  In Advances in Kernel 
Methods - Support Vector Learning. B. Scholkopf, C. Burges, and A. Smola, eds. MIT 
Press. 

Kalmar, P., and M. Blume. 2007. Web Person Disambiguation via Weighted Similarity of 
Entity Contexts. Proceedings of the Association for Computational Linguistics Workshop 
on SemEval. 

Kernighan, M. D., K. W. Church, and W. A. Gale. 1990. A spelling correction program 
based on a noisy channel model.  Proceedings of the International Conference on 
Computational Linguistics.  205–210. 

Kingsbury, P., M. Palmer, and M. Marcus. 2002. Adding Semantic Annotation to the 
Penn TreeBank. Proceedings of the Human Language Technology Conference. 

Klein, D., and C. D. Manning. 2003. Accurate Unlexicalized Parsing. Proceedings of the 
41st Annual Meeting of the Association of Computational Linguistics. 

Klementiev, A., and D. Roth. 2006. Named Entity Transliteration and Discovery from 
Multilingual Comparable Corpora. Proceedings of the Meeting of the Association for 
Computational Linguistics: Human Language Technologies. 

Knight, K. and I. Chander. 1994. Automated Post-Editing of Documents. Proceedings of 
the National Conference on Artificial Intelligence (AAAI).  

Kouylekov, M., and B. Magnini. 2005. Tree Edit Distance for Textual Entailment.  
Proceedings of the Recent Advances in Natural Language Processing Conference. 

Kurohashi, S., T. Nakamura, Y. Matsumoto, and M. Nagao. 1994. Improvements of 
Japanese Morphological Analyzer JUMAN. Proceedings of The International Workshop 
on Sharable Natural Language Resources.  22–28.  

Handbook of Natural Language Processing and Machine Translation 739 



Lavie, A. 2008. A General Search-Based Syntax-Driven Framework for Machine 
Translation.  Proceedings of the Conference on Intelligent Text Processing and 
Computational Linguistics LNCS 4919: 362-375. 

Lee, L. 1999. Measures of Distributional Similarity.  Proceedings of the Meeting of the 
Association for Computational Linguistics.  25–32. 

Levit, M., D. Hakkani-Tür, G. Tur, and D. Gillick. 2007. Integrating Several Annotation 
Layers for Statistical Information Distillation.  Proceedings of the IEEE workshop on 
Automatic Speech Recognition and Understanding. 

Levit, M., E. Boschee, and M. Freedman. 2007. Selecting On-Topic Sentences from 
Natural Language Corpora. Proceedings of the InterSpeech Conference.  2793-2796. 

Lin, C. 2004. ROUGE: A Package for Automatic Evaluation of Summaries. Proceedings 
of the Workshop on Text Summarization Branches Out, Post-Conference Workshop of the 
Meeting of the Association for Computational Linguistics. 

Lin, C. L., and E. Hovy. 2003. Automatic Evaluation of Summaries Using N-gram Co-
occurring Statistic.  Proceedings of the Human Technology Conference. 

Lin, D., S. Zhao, B. Van Durme, and M. Paşca. 2008. Mining Parenthetical Translations 
from the Web by Word Alignment. Proceedings of the Meeting of the Association for 
Computational Linguistics. 

Luo, X., A. Ittycheriah, H. Jing, N. Kambhatla, and S. Roukos. 2004. A Mention-
Synchronous Co-reference Resolution Algorithm Based on the Bell Tree. Proceedings of 
the Meeting of the Association for Computational Linguistics Main Volume:135– 142. 

Ma, J., and S. Matsoukas. 2005. Improvements to the BBN RT04 Mandarin 
Conversational Telephone Speech Recognition System.  Proceedings of the Inter-Speech 
Conference. 

Ma, W. Y., and K. McKeown. 2009. Where's the Verb? Correcting Machine Translation 
During Question Answering. Proceedings of the Meeting of the Association for 
Computational Linguistics.  

MacCartney, W.,  T. Grenager, M. de Marneffe, D. Cer, and C. D. Manning. 2006. 
Learning to Recognize Features of Valid Textual Entailments. Proceedings of the 
Meeting of the Association of Computational Linguistics.  

Marcus, M. P., B. Santorini, and M. A. Marcinkiewicz. 1993. Building a Large 
Annotated Corpus of English: The Penn Treebank. Computational Linguistics 19(2):313–
330. 

Mauser, A., D. Vilar, G. Leusch, Y. Zhang, and H. Ney. 2007. The RWTH Machine 
Translation System for IWSLT 2007. In Proceedings of the International Workshop on 
Spoken Language Translation.  

McCallum, A., K. Bellare, and F. Pereira. 2005. A Conditional Random-Field for 
Discriminatively-Trained Finite-State String Edit Distance.  Proceedings of the 
Conference on Uncertainty in Artificial Intelligence (UAI). 

Chapter 4: Distillation740 



McCullagh, P. and J. A. Nelder. 1989. Generalized Linear Models. Chapman and Hall, 
London. NIST, ftp://jaguar.ncsl.nist.gov/current_docs/sctk/doc/sclite.Htm 

Miller, S., H. Fox, L. Ramshaw, and R. Weischedel. 2000. A Novel Use of Statistical 
Parsing to Extract Information from Text. Proceedings of the Meeting of the Association 
for Computational Linguistics.  226-233.  

Miller, S., J. Guinness, and A. Zamanian. 2004. Name Tagging with Word Clusters and 
Discriminative Training. Proceedings of the Meeting of the ACL:HLT.  337-342. 

Nairn, R., C. Condoravdi, and L. Karttunen. 2006. Computing Relative Polarity for 
Textual Inference.  Proceedings of the International workshop on Inference in 
Computational Semantics. 

Nanda K. 2004. Combining Lexical, Syntactic, and Semantic Features with Maximum 
Entropy Models for Extracting Relations. Proceedings of the Meeting of the Association 
for Computational Linguistics.  22. 

NIST. 2000. http://www.itl.nist.gov/iad/mig/tests/ctr/2000/h5_2000_v1.3.html  

Och, F. J. 2003. Minimum Error Rate Training for Statistical Machine Translation. 
Proceedings of the Meeting of the Association for Computational Linguistics. 

Palmer, M., D. Gildea and P. Kingsbury. 2005. The Proposition Bank: A Corpus 
Annotated with Semantic Roles. Computational Linguistics 31(1). 

Papineni, K., Salim R., Todd W., and W. J. Zhu. 2002. BLEU: A Method for Automatic 
Evaluation of Machine Translation. Proceedings of the Meeting of the ACL.  311-318.  

Parton, K., K. McKeown, J. Allan, and E. Henestroza. 2008. Simultaneous Multilingual 
Search for Translingual Information Retrieval.  Proceedings of the Conference on 
Information and Knowledge Management.  

Povey, D., B. Kingsbury, L. Mangu, G. Saon, and H. Soltau. 2005. fMPE: 
Discriminatively Trained Features for Speech Recognition. Proceedings of the ICASSP. 

Pradhan, S., W. Ward, K. Hacioglu, J. Martin, and D. Jurafsky. 2004. Shallow Semantic 
Parsing using Support Vector Machines.  Proceedings of the Meeting of the ACL:HLT. 

Punyakanok, V., D. Roth, W. T. Yih, and D. Zimak. 2004. Natural Language Inference 
via Dependency Tree Mapping: An Application to Question Answering. Computational 
Linguistics.  

Ramshaw, L., E. Boschee, S. Miller, R. Stone, R. Weischedel, and A. Zamanian. 2001. 
Experiments in Multi-Modal Automatic Content Extraction. Proceedings of the HLT 
Conference.  1-5.  

Ravichandran, D. and E Hovy. 2002. Learning surface text patterns for a question 
answering system.  Proceedings of the ACL. 41–47. 

Rosti, A., N. Ayan, B. Xiang, S. Matsoukas, R. Schwartz, and B. Dorr. 2007. Combining 
Outputs from Multiple Machine Translation Systems. Proceedings of the Meeting of the 
ACL:HLT.  228-235. 

Handbook of Natural Language Processing and Machine Translation 741 



Roth, R., O. Rambow, N. Habash, M. Diab, and Cynthia Rudin. 2008. Arabic 
Morphological Tagging, Diacritization, and Lemmatization Using Lexeme Models and 
Feature Ranking. Proceedings of ACL. 

Sanchez-Graillet, O., and M. Poesio. 2007. Discovering Contradiction Protein-Protein 
Interactions in Text. Proceedings of the Conference on Biological, Translational, and 
Clinical Language Processing (BioNLP). 

Schapire, R. E., and Y. Singer. 1999. Improved Boosting Algorithms Using Confidence-
Rated Predictions. Machine Learning 37(3): 297–336. 

Si, L., and J. Callan. 2005. Modeling Search Engine Effectiveness for Federated Search. 
Proceedings of the ACM SIGIR Conference on Research and Development in 
Information Retrieval. 83-90. 

Simard, M., C. Goutte, and P. Isabelle. 2007. Statistical Phrase-Based Post-Editing. 
Proceedings of the Meeting of the ACL:HLT.  

Singla, A., and D. Hakkani-Tür. 2008. Cross Lingual Sentence Extraction for Information 
Distillation. Proceedings of the ICSLP (Inter-speech). 

Soltau, H., F. Metze, C. Fugen, and A. Waibel. 2001. A One-Pass Decoder Based on 
Polymorphic Linguistic Context Assignment. Proceedings of the IEEE Workshop on 
Automatic Speech Recognition and Understanding (ASRU). 

Soltau, H., G. Saon, B. Kingsbury, J. Kuo, L. Mangu, D. Povey, M. Omar, and G. Zweig. 
2007. The IBM 2006 GALE Arabic ASR System. Proceedings of the ICASSP. 

Sproat, R., T. Tao, and C. X. Zhai. 2006. Named Entity Transliteration with Comparable 
Corpora. Proceedings of the ACL. 

Strohman, T., D. Metzler, H. Turtle, W. B. Croft. 2005. INDRI: A Language-Model 
Based Search Engine for Complex Queries. Proceedings of the International Conference 
on Intelligence Analysis. 

Vanderwende, L., and A. Menezes, R. Snow. 2006. Microsoft Research at RTE-2: 
Syntactic Contributions in the Entailment Task: An Implementation. Proceedings of the 
Second PASCAL Challenges Workshop on Recognising Textual Entailment. 

Vorhees, E. 2008. Contradictions and Justifications: Extensions to the Textual Entailment 
Task. Proceedings of the Meeting of the ACL:HLT. 

Wang, C., M. Collins, and P. Koehn. 2007. Chinese Syntactic Reordering for Statistical 
Machine Translation.  Proceedings of the EMNLP and the Conference on Natural 
Language Learning. 

Watanabe, T., E. Sumita, and H. Okuno. 2003. Chunk-Based Statistical Translation. 
Proceedings of the ACL.  303-310.  

White, J., D. Hunter, and J. Goldstein. 2008. Statistical Evaluation of Information 
Distillation Systems. Proceedings The International Conference on Language Resources 
and Evaluation. 

Chapter 4: Distillation742 



Yamada, K. and K. Knight. 2001. A Syntax Based Statistical Translation Model. 
Proceedings of the ACL.  523-530. 

Zelenko, D., C. Aone, and A. Richardella. 2003. Kernel Methods for Relation Extraction. 
Journal of Machine Learning Research 3: 1083-1106. 

Zens, R. and H. Ney. 2004. Improvements in Phrase Based Statistical Machine 
Translation. Proceedings of the Meeting of the ACL:HLT. 257-264. 

Zens, R., O. Bender, S. Hasan, S. Khadivi, E. Matusov, J. Xu, Y. Zhang, and H. Ney. 
2005. The RWTH Phrase-Based Statistical Machine Translation System. Proceedings of 
the IWSLT.  155-162. 

Zheng, J., W. Wang, and N. Ayan. 2008. Development of SRI’s Translation System for 
Broadcast News and Broadcast Conversations. Proceedings of the ICSLP. 

Zimmerman, M., D. Hakkani-Tür, J. Fung, N. Mirghafori, L. Gottlieb, E. Shriberg, and 
Y. Liu. 2006. The ICSI+ Multilingual Sentence Segmentation System. Proceedings of the 
ICSLP. 

 

Handbook of Natural Language Processing and Machine Translation 743 





Chapter 5:  Machine Translation Evaluation and 
Optimization 
Editors: Bonnie Dorr, Joseph Olive, John McCary, and Caitlin Christianson 

 
 

 

5.1 Introduction 
Authors: Bonnie Dorr, Matt Snover, and Nitin Madnani 
 

The evaluation of machine translation (MT) systems is a vital field of research, both 
for determining the effectiveness of existing MT systems and for optimizing the 
performance of MT systems.  This part describes a range of different evaluation 
approaches used in the GALE community and introduces evaluation protocols and 
methodologies used in the program.  We discuss the development and use of automatic, 
human, task-based and semi-automatic (human-in-the-loop) methods of evaluating 
machine translation, focusing on the use of a human-mediated translation error rate HTER 
as the evaluation standard used in GALE. We discuss the workflow associated with the 
use of this measure, including post editing, quality control, and scoring.  We document 
the evaluation tasks, data, protocols, and results of recent GALE MT Evaluations.  In 
addition, we present a range of different approaches for optimizing MT systems on the 
basis of different measures.  We outline the requirements and specific problems when 
using different optimization approaches and describe how the characteristics of different 
MT metrics affect the optimization.  Finally, we describe novel recent and ongoing work 
on the development of fully automatic MT evaluation metrics that have the 
potential to substantially improve the effectiveness of evaluation and optimization of 
MT systems. 

Progress in the field of machine translation relies on assessing the quality of a new 
system through systematic evaluation, such that the new system can be shown to perform 
better than pre-existing systems.  The difficulty arises in the definition of a better system.  
When assessing the quality of a translation, there is no single correct answer; rather, there 
may be any number of possible correct translations.  In addition, when two translations 
are only partially correct – but in different ways – it is difficult to distinguish quality. 
Moreover, quality assessments may be dependent on the intended use for the translation, 
e.g., the tone of a translation may be crucial in some applications, but irrelevant in other 
applications.  

Traditionally, there are two paradigms of machine translation evaluation: (1) Glass 
Box evaluation, which measures the quality of a system based upon internal system 
properties, and (2) Black Box evaluation, which measures the quality of a system based 
solely upon its output, without respect to the internal mechanisms of the translation 
system. Glass Box evaluation focuses upon an examination of the system’s linguistic 

J. Olive et al. (eds.), Handbook of Natural LanguageProcessing  
DOI 10.1007/978-1-4419-7713-7_5, � Springer ScienceþBusiness Media, LLC 2011

and Machine Translation, 745 



coverage and the theories used to handle those linguistic phenomena.  Individual 
linguistic components of the system may be examined and be subjected to black box 
evaluations.  This method of evaluation was primarily focused on rule-based expert 
systems, rather than statistical systems.  

Black Box evaluation, on the other hand, is concerned only with the objective 
behavior of the system upon a predetermined evaluation set.  This method of evaluation 
is only a fair comparison of systems if the systems being tested were both designed to 
work on data that is of the same character as the evaluation set or, if not, the person 
testing the systems has the objective of testing robustness across different data types with 
variations in structure, genre, and style.  This method has proved invaluable to the field of 
machine translation, enabling comparison of systems on the same test sets in order to 
determine whether a given change to a system is in fact an improvement.  The method of 
actually measuring the performance of a system upon a test set is still a very active 
research area, and evaluation metrics of this type are the focus of this part. 

Within black box approaches both intrinsic and extrinsic measures are used to assess 
the accuracy and usefulness of MT output.  Intrinsic measures focus on the quality of MT 
output and often involve quality comparisons between MT output and a set of reference 
translations that are predetermined to be of high quality.  Human intrinsic measures 
determine quality through human subjective judgments of certain characteristics of the 
output such as fluency and adequacy.  Automatic intrinsic measures use an easily 
computed sentence similarity measure to produce rankings among MT systems by 
comparing the corresponding MT output against a fixed set of reference translations.  The 
use of automatic metrics for system optimization of MT systems represents a significant 
breakthrough in the field of machine translation that has been used heavily in the GALE 
program. Eight automatic metrics are discussed in this part: BLEU, NIST, METEOR, and 
WER, PER, GTM, TER, and CDER.  These measures have become an essential part of the 
machine translation research cycle, allowing rapid testing of new features and models, as 
well as providing a method for the automatic optimization of system parameters. 

In contrast to intrinsic measures, extrinsic (task-based) measures are aimed to test the 
effectiveness of MT output with respect to a specific task.  Two examples discussed in 
this part are extrinsic measures of human performance based on document exploitation 
task accuracy and measurements of human reading comprehension on machine translated 
texts. Extrinsic measures are aimed at testing the utility of machine translation.  It is this 
utility testing aspect that served as a crucial foundation for justifying the establishment of 
the GALE program, wherein measures such as Defense Language Proficiency Test 
(DLPT) and HTER were first tested on a broad scale. 

As HTER has become the primary evaluation criterion for the GALE MT program, a 
central component of evaluation research is that of relating HTER to automatic measures, 
with the motivation of establishing an automatic metric that can serve as a surrogate for 
HTER during system development.  In addition, researchers in the GALE program have 
investigated different optimization techniques for tuning statistical MT systems and 
system combinations. (For a more elaborate description of system combinations, see the 
section on System Integration Framework in Chapter 6 of this book.) Researchers have 
also focused on the development of improved automatic evaluation metrics for machine 

746 Chapter 5: Machine Translation Evaluation and Optimization



 

translation, with the goal of improving levels of correlation of metric scores with human 
judgments of translation quality. 

The next three sections provide the definitional foundation for the remaining 
chapters.  Section 5.1.1   focuses on the historical background for the approaches 
described in this part. Section 5.1.2 discusses evaluation metrics that rely upon human 
judgments, arguing for the continued use of human judgments in MT evaluations and 
describing the kinds of judgments that are commonly used.  Common practices for 
generating such judgments are surveyed and efforts to improve the validity and 
repeatability of human judgments are discussed. Section 5.2.2 examines automatic 
evaluation metrics that do not require any human interaction (BLEU, NIST, METEOR, 
WER, PER, GTM, TER, and CDER) and also provides a brief description of the human-
mediated standard used in GALE (HTER), relating it to automatic measures.   

The following three sections turn to evaluation measures and approaches requiring 
human intervention. The primary goal of these new metrics is to improve the levels of 
correlation of metric scores with human judgments of translation quality, especially at the 
levels of documents and individual segments. 5.3 presents two human-in-the-loop 
extrinsic measures for evaluating the output of machine translation technology: human 
performance based on document exploitation task accuracy and measurements of human 
reading comprehension on machine translated texts.  Both approaches seek to provide 
real MT users an alternative, accessible frame of reference for assessment of MT engines. 
5.4 focuses on human post-editing, its challenges and its use in GALE. The entire post-
editing process is detailed and the challenges of editor consistency are addressed. Section 
5.4.4 provides a detailed overview of the GALE MT evaluations and their results, 
including a study comparing the different metrics. 

The final two Chapters turn to techniques for using MT evaluation measures in 
system tuning, approaches to improving on existing measures, and approaches to 
designing innovative MT measures. 5.5 describes different optimization techniques 
(Simplex, Powel’s method, etc.) used for tuning statistical MT systems and system 
combinations. Experiments that highlight different aspects of this optimization and 
different characteristics of MT metrics are discussed. Finally, 5.6 describes significant 
recent work by members of the GALE research community on developing improved 
automatic evaluation metrics for machine translation.  

5.1.1. Historical Background  
Authors: Bonnie Dorr, Mark Przybocki, Matt Snover, Audrey Le, Gregory Sanders, Sebastién Bronsart, 
Stephanie Strassel, Meghan Glenn 
 

The task of evaluating machine translation quality, like machine translation itself, has 
a long history (Hutchins 2001). As far back as 1966, in Appendix 10 of ALPAC (1966), 
experiments were reported with human ratings of intelligibility, as well as the 
informativeness of a human translation seen after studying the machine translation. One 
of the legacies of DARPA MT evaluations in the early 1990’s has been the use of human 
subjective judgments to “score” the semantic accuracy and fluency of MT outputs against 
one or more professionally produced human reference translations.  The original 
hypothesis was that human subjects trained on these scoring tasks could serve as 

Handbook of Natural Language Processing and Machine Translation   747 747 



adequately accurate stand ins for full-fledged professional translators trained to rate the 
MT outputs according to well-established standards.  

Several methods of evaluation using human judgments are frequently employed in 
the machine translation community.  In some cases, the quality of system output is 
measured directly, such as with human judgments; in other cases, it is measured by 
performing reading tests or other downstream tasks with the system output, and in still 
other cases it is measured by calculating the amount of work required to correct the 
system output. 

Two of the most common human evaluation metrics are fluency and adequacy 
judgments (White 1994; Callison-Burch 2007).  Fluency requires a speaker fluent in the 
target language to judge whether the system output is fluent, regardless of whether 
content of the output is an accurate translation of the source words. 

Adequacy disregards the level of fluency in the system output and, as far as this is 
possible, measures whether the essential information in the source can be extracted from 
the system output.  The requirements for an annotator of adequacy are stricter than for 
fluency, as the annotator must be bilingual in both the source and target language in order 
to judge whether the information is preserved across translation.  In practice, an annotator 
fluent only in the target language could also annotate adequacy using a set of high quality 
human translations of the source sentence. 

Fluency and adequacy are measured separately on each sentence in the system output 
and are usually judged on a five or seven point scale (Przybocki 2008). They are 
sometimes averaged to give a single numerical score to a system output.  Some studies 
(Turian 2003; Snover 2006) have shown poor correlation between annotators using this 
method, bringing into question the reliability of this method. Nevertheless, human 
evaluation has been used as a baseline by which evaluation metrics are frequently judged. 
Judgments of semantic adequacy (and related ideas such as understandability or fluency) 
(Gates 1996; Nubel 1997) have continued to be employed as extremely useful 
benchmarks for the performance of MT systems and proposed MT metrics, even though 
the reliability of human judgments remains difficult (Turian 2003). 

By the mid 1990’s, the results of regular ARPA evaluations of MT led to doubts 
about the validity and reliability of human ratings of adequacy and fluency of MT output 
(King 1996) due to compounding factors such as the human evaluators’ experience as 
translators/evaluators and the evaluators’ familiarity with the system interfaces. The idea 
of using multiple reference translations for the first fully automatic measures was being 
seriously explored by 1990, when Niessen (2000) investigated a combination of Word 
Error Rate with sentence-by-sentence selection from multiple human references. Edit-
distance metrics have since been explored as measures for MT quality (Frederking 1994; 
Knight 1994; King 1996).  

Post-editing, where the system output is corrected after it is produced, is another 
common method of measuring translation quality, with more accurate translation 
requiring less editing and poor translations requiring large amounts of editing.  This 
method suffers as an evaluation metric due to the large amount of work required by 
human annotators to correct system output, rather than quickly scoring it on an objective 
scale.   

Chapter 5: Machine Translation Evaluation and Optimization748 



 

We will see in Section 5.2.3.1 that the notion of post-editing is still relevant in 
modern measures, e.g., “Human-mediated Translation Error Rate” HTER (Snover 2006), 
an approach to evaluating machine translation that was developed in and for the GALE 
program. Although HTER is built on human judgments, its greatest obvious weakness is 
that it is a purely quantitative metric that weights all errors equally, when in fact some 
edits, some translation errors, are of trivial importance while others such as some 
instances of polarity errors (is vs. is not) can be devastating.  On the other hand, human 
judges are more likely to “forgive trivial” translation errors, or incorporate synonyms in 
their post edits.  This would not be possible in an approach that uses Gold Standard 
references only. 

Task oriented evaluation (White 2000; Jones 2006) is concerned with the effect of  
machine translation on downstream tasks that use the translation output as input.  
Recognizing named entities, document categorization, and the effect on reading speed 
and accuracy are all examples of task oriented evaluation that have been used to measure 
the quality of machine translation quality.  The performance of human evaluators on 
these tasks is compared across system outputs, as well as to performance when using 
reference translations.  This evaluation method is beneficial in that it measures how 
useful the system output is for a task rather than how close it is to the reference answers.  
Translations that are not judged to be perfect according to other measures may still prove 
to be fully adequate for downstream tasks.  Similarly, translations of a certain type may 
achieve high scores by other measures, but may turn out to be completely inadequate for 
these tasks, e.g., because of the aforementioned polarity errors. In addition to tasks that 
require humans to process the system output, one could imagine using the system output 
in some automatic downstream process, such as information extraction.  As an evaluation 
metric, such automated task evaluations are problematic as they compound errors in the 
translation process with errors in the downstream automated process, and at best can be 
used only to measure how useful that translation is for that particular implementation of 
that downstream automated task. 

Automated metrics such as BLEU, NIST, METEOR, WER, PER, GTM, TER, CDER and 
now HTER (to be presented in Section 5.2.3.1) were developed due to the high costs, lack 
of repeatability, subjectivity, and slowness of evaluating machine translation output using 
human judgments, and the desire to enable automatic tuning of system parameters (Och 
2003).  These are based on automated comparisons between MT system outputs and 
human translations of the same source material, typically looking at n-gram matches. 
Coughlin (2003) examined the nature of the correlation between such n-gram based 
automated metrics and human judgments on a four-point acceptability scale of the same 
MT outputs, using 124 sentences from a range of European language pairs.  

Automated metrics that can somehow give credit for paraphrases and/or synonymy 
have some intuitive merits. METEOR (Lavie 2004; Banerjee 2005) makes use of 
stemming and (at least for English) of synonymy apparent in WordNet synsets. TER and 
HTER allow some rearrangements, scoring a block move as a single edit, which may be 
particularly useful for target languages that have relatively free word order. Russo-
Lassner (2005) explored the possible merits of exploiting paraphrase-like features in MT 
evaluations. As has been mentioned, not penalizing paraphrases is part of the motivation 
for using HTER in the GALE program. 

Handbook of Natural Language Processing and Machine Translation 749 



Perhaps the closest competing approach to mechanical edit distance measures are 
those based on concepts of one sort or another. Sanders (2008) presented the evaluations 
used in the DARPA TRANSTAC program, which are based on purely quantitative 
scoring of the probability of a successful transfer of open-class content words. Other 
work based on concepts includes the use of Interlingua Interchange Format (Levin 2000), 
and predicate argument structures (Belvin 2004). 

 

5.1.2. Human Subjective Judgments 
Authors: Gregory Sanders, Mark Przybocki, Nitin Madnani, and Matthew Snover 
 

Two central problems, measuring utility and/or measuring quality, face anyone who 
sets out to create a new or different evaluation of the outputs of MT systems. Either there 
is a clear idea of the specific purposes that the translation is to serve and the evaluation 
focuses on the utility (or acceptability) of the actual MT outputs, and/or there is some 
idea of what constitutes a better translation with the evaluation focused on the quality of 
the MT outputs. 

The general notion of quality of a translation is, however, somewhat subjective, and 
the most accepted measure, the Gold Standard, so to speak, is to have truly bilingual 
human judges compare the source language inputs to the target language outputs and then 
somehow provide an opinion about the quality of the translation. Such judgments are 
most often provided on a multi-point scale. 

MT systems that take live or recorded spoken inputs must include automatic speech 
recognition (ASR) abilities, also called speech-to-text (STT). If evaluation of ASR/STT 
is not desired, textual transcripts may be used as a surrogate input, constituting perfect 
ASR.  Similarly, spoken outputs involve text-to-speech (TTS) abilities, and if evaluation 
of the TTS is not desired, the textual input to the TTS can be evaluated. 

This section of the book focuses on subjective human judgments, whether from 
bilingual judges who know both the source and the target languages or from monolingual 
judges who know only the target language. We provide arguments for the continued use 
of human judgments in MT evaluations, as well as, contrasting approaches using 
automated metrics, non-subjective counts, or editing-based metrics. We explain what 
kinds of subjective human judgments are commonly used, survey several ways to 
generate such judgments, and discuss efforts to improve the validity and repeatability of 
those judgments. 

One type of subjective human judgments involves bilingual human judges reading 
the source-language input and the corresponding target-language output (see Figure 5.1), 
then providing a rating on a multi-point scale. As can be seen in Figure 5.1, such ratings 
require a bilingual judge. The qualities to be rated are most commonly semantic adequacy 
(is the meaning correct), understandability (is the meaning easy to understand), and 
fluency (does the MT output have errors that no native speaker would produce). An 
example of a multi-point scale for semantic adequacy is shown in Figure 5.2. When 
judging fluency, the source-language inputs are not relevant, so ratings for fluency are 
usually obtained from monolingual judges. 

Chapter 5: Machine Translation Evaluation and Optimization750 



 

 

 
Figure 5.1: A sample source utterance and translation as presented to a bilingual judge. 

Figure 5.2: Spoken Language Communication and Translation System for Tactical Use  

A criticism of using bilingual judges is that their knowledge of the source 
language is not going to be available to monolingual users, which may 
hypothetically, lead the bilingual to give a score that is influenced by factors that 
are of no interest or importance to monolingual users of the translations. We are 
aware of no real evidence that this is a problem in practice. 

We do note that the logistics of using bilingual judges for manual assessment of MT 
quality are significantly more difficult to arrange as compared to using monolingual 
judges. 

5.1.2.1. Justification for Continued Use of Subjective Human Judgments 

There are two strong arguments for using human judgments.  The first is that 
translations are produced for human users, and human judgments are thus the right 
measure of the qualities of the translation.  The second is that human understanding of the 
real world allows a human judge to assess the practical importance of errors in a 
translation. For example, if a source language sentence actually means, “There are new 
land-mines buried under the road to Baghdad,” and the machine translation is, “There are 
no land-mines buried under the road to Baghdad,” then the one small error (of polarity) is 
terribly important because lives can be at risk.  A human judge should recognize and 
weigh the risk correctly. 

What was said:  

 
 
What it was translated into: 

Yes indeed we do these things every 

Handbook of Natural Language Processing and Machine Translation 751 

 

Adequacy of translation 

  3     Completely adequate 
 
  2 
 
  1     Tending towards adequate 
 
  0 
 
-1     Tending towards inadequate 
 
-2 
 
-3     Inadequate 



Many properties make up the quality of a translation. Semantic adequacy (also 
known as fidelity) is often viewed as the most important, as it answers the question: does 
the translation have the same meaning as the source-language material?   

Understandability is also important. A translation may have the completely correct 
meaning yet be so awkward as to be difficult to understand, noticeably more difficult 
than the source-language material. Or a source-language idiom may be translated literally 
and be impenetrable for a target-language hearer/reader.  One cannot usefully ask a judge 
directly whether a translation is understandable: one must find a way to measure or test 
the judge’s understanding. 

Finally, fluency is important. The translation may have the correct meaning, be easy 
to understand, yet could be something that no native speaker of the target language would 
say or write, for example, “I talks Arabic real OK”, or more severe fluency problems.  
When judging fluency, the source-language inputs are not relevant, so ratings for fluency 
are usually obtained from monolingual judges. 

Although not discussed here, there are other properties of a translation that one might 
evaluate via subjective human judgments. For example, the target language output should 
be appropriate for the intended users.  Examples of such problems include ‘Britishisms’ 
for American users, or vice-versa, female-specific forms when the hearer/reader is male 
and improper social register (generating language appropriate for speaking to a small 
child when the person addressed is a distinguished elder). 

In the case of human translators using an MT system as an aid, the human translator’s 
proficiency at using the computer interface tools and workstation environment is 
confounded with measurements of core MT performance (White 1994). This 
consideration may also be true of human judgments of machine translations, if the judges 
have difficulty understanding or using whatever system they must use to give their 
opinions. 

Any evaluation of translation involving human judges is inherently also an evaluation 
of the human judges (King 1996). There are two main concerns with evaluations based 
on human judgments that must be addressed. The first is that humans will have different 
opinions and will give different answers for the same assessment. Generally a panel of 
independent judges is needed to average out those differences. Some of these differing 
opinions may be attributed to the unavoidable case that judges from different 
backgrounds tend to weight characteristics of a translation such as syntax “errors” or 
oddities of style differently (Nubel 1997).  Some recent studies (Turian 2003; Snover 
2006) have shown poor correlations between annotators using subjective judgments, 
further bringing into question the reliability of these types of human judgments.  The 
second concern is that the evaluation will be affected by whether the judges are familiar 
with the subject matter and/or sub-language. One can imagine the types of assessment 
differences that might occur when using judges with no military experience to assess a 
translation between Marines that reads, “Tell me the identity of the adjacent unit” or 
using American judges to assess, “Drop that spanner! Pop the bonnet and boot!” 

Nevertheless, human evaluation has been used as a baseline by which evaluation 
metrics are frequently judged.  The fact is we have no real substitute for human 
judgments of translations. Such judgments constitute the reference notion of translation 
quality. 

Chapter 5: Machine Translation Evaluation and Optimization752 



 

5.1.2.2. Survey of Common Practices  

Several varied kinds of subjective human judgments of machine translation outputs 
have been tried. In this section, we discuss characteristics that could be used to describe 
approaches to subjective judgments, survey six approaches, and comment on their 
apparent problems and strengths. For purposes of giving clear examples of instructions to 
the judges, this section will assume the target language is English. 

All approaches can be seen as a set of choices among a set of alternatives: 
 

• Are the judges monolingual or bilingual? 
•  Do the judges have to understand the subject matter? 
•  Is there a reference for the judges?  A reference could be either the source-

language material or else one-or-more target language human translations. 
• What characteristic(s) are to be measured: fluency, semantic adequacy, relative 

quality, acceptability? 
• What type of judgment is to be made: a yes/no judgment (as of acceptability), a 

judgment on some sort of numeric scale (allowing correlation/regression analyses), 
a categorical judgment, or a preference judgment (possibly even a rank-ordering). 

• How to analyze the judgments statistically or use them for formative or summative 
evaluation purposes. 

• Is the goal to evaluate the translation of some particular text/audio item, or is the 
goal to evaluate the overall performance of the machine translation system?  In 
practice, this particular question is about the use to be made of the evaluation 
results rather than the evaluation approach to be used. 

 

Figure 5.3: One example of a multi-point fluency scale, with anchor text for each value 

5.1.2.2.1. Fluency ratings from literate monolingual speakers of the 
target language.  

For proper fluency assessments the judge should have access to only the translation 
being assessed, and not the original source data or a reference translation. The question 
put to the judges is typically along the lines of, “Is this good English?” It is common to 
ask the judge to choose a rating from a multi-point scale. Typically, the choices have 
some anchor value or text, as in Figure 5.3, which displays the scale (Linguistic Data 
Consortium 2005) that was used in annual NIST OpenMT evaluations and in a meta-
evaluation (Callison-Burch, et al. 2007) that was done for the ACL-2007 Workshop on 
Statistical Machine Translation. 

Handbook of Natural Language Processing and Machine Translation 753 

 How do you judge the fluency of this translation? 
It is: 

5 Flawless English 
4 Good English 
3 Non-native English 
2 Disfluent English 
1 Incomprehensible 



The most negative anchor text in the example above may be construed as conflating 
the notion of comprehensibility with that of fluency, an effect that could be lessened if 
the anchor text were instead “Word salad / This is not English.” 

The main problem encountered with subjective human judgments of fluency is that 
understandability or comprehensibility of the translation enters into the picture. This is a 
problem if the judges are not familiar with the subject matter, and is a particularly acute 
problem if the source-language material is disfluent, as is often the case with spoken 
language, or unstructured texts such as web data. 

This approach can be characterized with respect to our bullet list of choices.  Fluency 
judgments can be given by monolingual judges and it is helpful if the judges understand 
the subject matter.  Fluency judgments do not require a reference translation (or the 
source-language material).  The quality to be judged is fluency. (Is this good English?)  
The judgments are usually given as categorical rankings, but the judgments are often 
analyzed as numeric – as seen in the numbers that begin the anchor values in our 
example. 

Analyzing these judgments as categorical data is favored unless the judges are 
explicitly presented with the numeric interpretation of their choices and informed that 
those numbers are the data that will be analyzed and that the numeric values are 
presumed to be equally spaced. 

5.1.2.2.2. Using fluency ratings from literate monolingual speakers of 
the target language as a proxy for accuracy ratings.   

Wilks (2008) demonstrated that reasonably fluent MT output is also usually 
reasonably correct in meaning. For that reason, ratings of fluency by a monolingual judge 
often correlate with judgments of semantic adequacy sufficiently that (strange as the 
methodology might be) fluency judgments have some power to predict ratings of 
semantic adequacy.  

In contrast, human language learners typically produce translations that are fluent 
even when the meaning is wrong, perhaps because a human translator (in contrast to a 
machine translation system) may construct a plausible meaning. A truly bilingual judge 
can detect such errors.  

It is not known whether the correlation (between fluency and adequacy judgments of 
machine translation outputs) is a result of fluency judges assigning lower fluency scores 
when the MT output contradicts human knowledge of the real world. 

With respect to the bullet list of choices, this approach is like the previous approach, 
but the caveats mentioned for this approach turn on the use of monolingual judges and 
the effects of the judges’ understanding of the subject matter.  Note that although the 
judgments are of fluency, the quality to be measured, indirectly, is semantic adequacy.  
The judgments are usually given as categorical choices, but the judgments are often 
analyzed as numeric.  It would probably be most appropriate to analyze these data as 
categorical and to attempt to validate this approach by showing some systematic 
relationship between the fluency judgments and some independent measure of semantic 
adequacy.  The authors are not persuaded that this validity will always exist. 

Chapter 5: Machine Translation Evaluation and Optimization754 



 

5.1.2.2.3. Semantic adequacy from truly bilingual judges.  

This is widely regarded as the Gold Standard for assessment of MT quality. In 
addition to the translation being assessed, a bilingual judge will have access to the 
original source text and optionally a reference translation.  The question put to the judge 
usually asks for a categorical rating based on the meaning contained in the translation as 
compared with the source text.  It is necessary to use judges who understand the subject 
matter sufficiently for such judgments to be valid.  In addition, for bilingual judges, their 
proficiency and native language is also important. 

Typically, the human judgments are given on a multi-point scale, such as that in 
Figure 5.3. 

A problem with using such a scale for any type of subjective human assessment is 
that the level of agreement between judges is typically not high, unless one counts the 
agreements as including the assessments that disagree by one category on a five-point 
scale, or by up to two categories when using a seven-point scale. This problem of inter-
judge agreement can be dealt with by averaging over a panel of several judges. 

One can treat the data as categorical and present the results for each judge separately, 
looking to see whether the judges agree about which items are better or worse.  Or, if the 
scores have a valid numeric interpretation, then for comparisons where each judge gives 
scores on a set of many items, and all judges score the same set of items, one can 
normalize the data from each judge separately to a z-statistic (mean = 0.0 and standard 
deviation = 1.0). 

However, if the goal is an absolute measurement of quality, or to compare 
performance between a current evaluation and a previous evaluation, normalizing across 
judges is of course not relevant. For comparisons to measure progress between 
performance on a current evaluation and performance on a previous evaluation, 
especially if the panel of judges changes from one evaluation to the next, one falls back 
on trying to hold the evaluation procedures as constant as possible – there is no statistical 
magic bullet in this situation.  With a panel of several judges, more robust statistics such 
as a trimmed mean (say, counting only the middle five judges from a panel of nine), the 
median, or the inter-quartile range may be used. 

If the goal is to assess fitness for some purpose, it may be possible to find a judge, or 
judges, who represent the intended users and whose assessments are known a-priori to 
accomplish that goal. 

If a machine translation system or the translation itself is to be assessed, these 
judgments will be used directly.  But, if an automated metric for machine translation 
quality must be assessed, that assessment is usually based on the degree of correlation 
between the scores from the automated metric and these ratings of semantic adequacy 
from bilingual judges. 

Returning to our bullet list of characteristics of assessment techniques, these 
judgments are from truly bilingual judges and it is important that they understand the 
subject matter in order for their judgments to reflect the quality of the translation.  
Judgments of semantic adequacy require a reference translation (or the source-language 
material).  The quality to be judged is semantic adequacy (i.e., whether the translation 
conveys the meaning).  The judgments are usually given as categorical rankings, but may 

Handbook of Natural Language Processing and Machine Translation 755 



be given as numeric, even as an effectively real-number value such as percentage.  If the 
judgments are given on a categorical scale, the data should be analyzed as categorical 
unless the judges are presented with the numeric interpretation of their choices and 
informed that the judgments will be analyzed as those numbers. 

5.1.2.2.4. Accuracy ratings from literate monolingual speakers of the 
target language who consult one or more careful human 
translations.  

This is a widely used method for assessing the semantic adequacy of translations, due 
in part to the ease of obtaining monolingual judges. In addition to the translation being 
assessed, a monolingual judge will have access to one or more reference translations.  
The question put to the judge usually asks for a categorical rating based on the meaning 
contained in the translation as compared with the reference translation.  An example is 
the following scale, Figure 5.4, in which “gold-standard” means a careful human 
reference translation. 

 

Figure 5.4: Another scale for semantic adequacy 

In practice, this is popular because it tends to be more convenient and less expensive 
than the approach just discussed using bilingual judges. However, this approach has its 
limitations.  When comparing a translation against a single human reference translation it 
relies on the reference translation as being perfect, a problem that is worse if the 
reference translation gives no alternatives for ambiguous passages. Everything mentioned 
elsewhere in this section about the need for the judges to understand the subject matter 
and sub-language applies equally to human translators. So, errors introduced by a single 
human translator will cascade through these subjective assessments.  

Given somewhat difficult source-language material, and multiple human reference 
translations, one commonly finds that the human translators have disagreed about the 
meaning of the source material. Many such disagreements can only be understood by 
someone who understands the source language. 

The balance switches, and criticisms evaporate, when one has several completely 
independent careful human translations, because they may bring out ambiguities that 
would otherwise have escaped the notice of a judge, or may fortuitously involve at least 
one translator who is sufficiently familiar with the subject matter as to understand the 
source material correctly. These advantages of multiple source language experts (the 
translators) independently giving careful consideration to the meaning of the source 
material can overcome all the edge of having bilingual judges who will work 

Chapter 5: Machine Translation Evaluation and Optimization756 

 How much of the meaning expressed in the 
gold-standard translation is also expressed in 
the target translation? 

5 All 
4 Most 
3 Much 
2 Little 
1 None 



 

independently (and thus not take advantage of insights to which only one judge arrives) 
and who may ponder the source material less thoroughly than careful translators due to 
focusing on only the errors of the machine translation. Of course, introducing several 
reference translations into the assessment process may increase the cognitive burden 
placed on the human judge. 

With respect to the bullet list of characteristics of assessment techniques, these 
judgments are from monolingual judges, but in all other respects have the same 
characteristics as the version using bilingual judges. 

5.1.2.2.5. Informativeness ratings by literate monolingual speakers of 
the target language.   

The essence of this approach is to have the judge make a thorough attempt to 
understand the translation (perhaps by asking the judge to rewrite it so that it is 
completely clear), and then afterwards show the judge a careful human translation and 
have the judge rate how informative the reference human translation turned out to be. For 
example, “Did the reference translation change your understanding of what the passage 
meant?” This can be rated on a multi-point scale. This approach has been around since 
the earliest days of machine translation research: it was first described in the ALPAC 
report (ALPAC 1966). The crucial point of this approach is that the judge must 
thoroughly consider the translation and arrive at a frozen interpretation thereof before 
being allowed to see the reference translation; one wants to guard against the judge who 
realizes only in retrospect (after having seen the reference) that the meaning was obvious 
and then says the reference was not informative. Although one could simply ask the 
judge to arrive at a frozen understanding before viewing the reference, it is probably 
useful to force this issue.  For example, one might ask the judge, before seeing the 
reference, to edit the translation to make it clear and fluent, an editing approach used by 
Callison-Burch et al. (2007). 

The key advantage of obtaining ratings of the informativeness of a human translation 
is that it is a measure not just of semantic adequacy but also of how well a monolingual 
speaker of the target language understood the machine translation output before seeing a 
reference translation. 

If judges are truly bilingual, a slightly different version of this evaluation can be 
performed, with the informativeness step showing the judge the source material (instead 
of a reference translation). However, this version gives up the advantage of having judges 
who are naive about the characteristics of the source language. 

Returning to our bullet list of characteristics of assessment techniques is particularly 
interesting here because this approach is so different from those described so far.  These 
judgments can be from either monolingual or bilingual judges.  It is important for the 
judges to understand the subject matter in order for their judgments to reflect the quality 
of the translation.  Judgments of informativeness require a reference human translation or 
translations. The quality to be judged is semantic adequacy (i.e., whether the translation 
conveys the meaning), but this quality is measured in an interestingly indirect way that 
encompasses the understandability of the translation.  Although the judgments could be 
given as a yes/no response, it is far more useful to obtain responses where the categories 

Handbook of Natural Language Processing and Machine Translation 757 



get at the degree of change in the judges understanding and/or ask the judge whether the 
problem was with the meaning of the MT output or it’s comprehensibility. 

 

5.1.2.2.6. Preference ratings by a literate monolingual speaker of the 
target language or from bilingual judges.   

Often used as a quick approximation for improvement in the development work of 
system building, this approach presents a monolingual judge with a pair of translations 
and the corresponding reference translation or presents a bilingual judge with the pair of 
translations plus the source material.  The question put to the judge is along the lines 
“Which translation do you prefer?” 

If one wishes to rank-order multiple translations of the same material, one may use 
pair-wise preference judgments to build a rank-ordering across several systems.  
Alternatively, one can present all the versions together and ask the judge to rank-order 
them. 

For a formative evaluation, one might wish to ask the judges to indicate why they 
prefer one translation over the other, although the judge may not be able to provide an 
accurate answer. 

Our bullet list of characteristics of assessment techniques is also interesting here.  
These judgments can be from monolingual or bilingual judges.  It is important for the 
judges to understand the subject matter.  Monolingual judges require one or more high 
quality reference human translations and bilingual judges should be provided with the 
source-language material (either instead of, or in addition to, the human reference 
translations).  The quality to be judged should be overall quality – it is unreasonable to 
believe judges could isolate quality such as semantic adequacy when making preference 
judgments. The judgments are preferences which could be implemented in a full pair-
wise fashion, comparing two system translations at a time, or in theory, judges could be 
presented with several translations and asked to rank order their preferences.  Rank-
ordering may be more burdensome and time-consuming but would avoid the A>B, B>C , 
and C>A scenario that one might find with pair-wise judgments.  There is reason to 
believe pair-wise rankings will be performed more reliability than directly rank ordering 
several translations.  The data should be analyzed as ranks. 

 

5.2  Automatic and Semi-Automatic Measures 

5.2.1. Automatic and Semi-Automatic Measures: 
Introduction 

Authors: Matthew Snover, Nitin Madnani, Bonnie Dorr, and Richard Schwartz 
 
Automatic machine translation evaluation metrics were developed due to the high 

costs, lack of repeatability, subjectivity, and slowness of evaluating machine translation 
output using human judgments, and the desire to enable automatic tuning of system 

Chapter 5: Machine Translation Evaluation and Optimization758 



 

parameters (Och 2003).  These automatic measures generally judge the quality of 
machine translation output by comparing the system output, also referred to as candidates 
or hypotheses, against a set of reference translations of the source data. 

The quality of these evaluation metrics is usually measured by determining the 
correlation of the scores assigned by the evaluation metrics to scores assigned by a 
human evaluation metric, most commonly fluency and adequacy.  In some cases, single 
scores for systems averaged over entire test sets are compared, and in others document or 
even sentence level scores are compared.  The use of Spearman versus Pearson 
correlation coefficients also varies within the field.  An alternate, although rarely 
examined, method of comparing automatic evaluation metrics is to examine their effect 
upon parameter tuning of the MT system.  It has not been established that an MT system, 
which has its parameters tuned to maximize the performance on a metric that correlates 
better with human judgments, will actually produce better MT output.  Such a study is 
hampered by both the varying parameters of MT systems which allow different aspects of 
different MT systems to be controlled in different ways as well as variance in parameter 
optimization methods.  Such a study is necessary though for a full understanding of the 
automatic evaluation of machine translation. 

This section details some of the more common automatic evaluation metrics that are 
used for MT evaluation and parameter optimization, as well as one semiautomatic 
variant. Word Error Rate (WER) (Section 5.2.2.1) the standard metric of Automatic 
Speech Recognition performance and one of the first automatic metrics applied to 
machine translation. BLEU (Section 5.2.2.2), a widely used precision oriented measure 
that counts the n-gram matches between the MT output and the Gold Standard references. 
(NIST is a variant of BLEU that is weighted according to n-gram informativeness.) 
METEOR (Section 5.2.2.3), an alignment-based measure that utilizes stemming and 
synonymy to better align the MT output with the Gold Standard references. Translation 
Edit Rate (TER) (Section 5.2.2.4), an extension of the Word Error Rate measure WER 
(and its variants, MWR, PER and GTM) that allows the movement of word sequences 
within the MT output. All of these automatic measures rely upon a comparison of the MT 
output to a set of Gold Standard references, which represent only a small sample of the 
set of possible correct translations. Human-mediated TER (HTER) (Section 5.2.3.1), which 
is used as the primary criterion for evaluating the MT systems in GALE, addresses this 
lack of Gold-Standard references by having human annotators create new references that 
are as similar as possible to the MT system output, and evaluating the system output with 
TER using these targeted references. 

These automatic metrics represent just a small sampling of the automatic evaluation 
metrics that been proposed in the machine translation research community and were 
chosen due to their prominence and use in the GALE research community. 

 
 
 
 

Handbook of Natural Language Processing and Machine Translation 759 



5.2.2. Automatic Measures 
Authors: Matthew Snover, Nitin Madnani, Bonnie Dorr, and Richard Schwartz 

5.2.2.1. Word Error Rate (WER MWER) and Position-Independent Error 
Rate.  

One of the first automatic metrics used to evaluate MT systems was Word Error Rate 
(WER), which is the standard evaluation metric for Automatic Speech Recognition.  WER 
is computed as the Levenshtein distance (Levenshtein 1966) between the words of the 
system output and the words of the reference translation divided by the length of the 
reference translation.  The Levenshtein distance is computed using dynamic 
programming to find the optimal alignment between the MT output and the reference 
translation, with each word in the MT output aligning to either 1 or 0 words in the 
reference translation, and vice versa.  Those cases where a reference word is aligned to 
nothing are labeled as deletions, whereas the alignment of a word from the MT output to 
nothing is an insertion.  If a reference word matches the MT output word it is aligned to, 
this is marked as a match, and otherwise is a substitution.  The WER is then the sums of 
the number of substitutions (S), insertions (I), and deletions (D) divided by the number of 
words in the reference translation (N) as shown in Equation (5.1). 

ܴܧܹ  ൌ  ௌାூାே      (5.1) 

MWER (Multi-Reference WER) (Nießen 2000) – the application of WER to more than 
one reference translation – refers to the minimum of the WER scores between the MT 
output and each reference.  In essence, MWER is the WER between the MT output and the 
closest reference translation.  While this allows WER to be used with multiple references, 
the references are not combined in any fashion and are not truly exploited by the metric. 

Unlike speech recognition, there are many correct translations for any given foreign 
sentence.  These correct translations differ not only in their word choice but also in the 
order in which the words occur.  WER is generally seen as inadequate for evaluation for 
machine translation as it fails to adequately combine knowledge from multiple reference 
translations and also fails to model the reordering of words and phrases in translation. 

Position-independent Error Rate or (PER)  (Tillmann 1997)  is an attempt to address 
the word-ordering limitation of WER by treating the reference and hypothesis as bags of 
words, so that words from the hypothesis can be aligned to words in the reference 
regardless of position.  Because of this the PER of an MT output is guaranteed to be lower 
than or equal to the WER of the MT output.  This variant has the disadvantage of being 
unable to distinguish a correct translation from one where the words have been 
scrambled. 

5.2.2.2. BLEU  

BLEU (Bilingual Evaluation Understudy) (Papineni 2002) is the current standard for 
automatic machine translation evaluation.  Like MWER, a key characteristics of BLEU is 
its direct exploitation of multiple references. The BLEU score of a system output is 

Chapter 5: Machine Translation Evaluation and Optimization760 



 

calculated by counting the number of n-grams, or word sequences, in the system output 
that occur in the set of reference translations. 1  BLEU is a precision-oriented metric in that 
it measures how much of the system output is correct, rather than measuring whether the 
references are fully reproduced in the system output.  BLEU could be gamed by producing 
very short system outputs consisting only of highly confident n-grams, if it were not for 
the use of a brevity penalty which penalizes the BLEU score if the system output is shorter 
than the references.  ൌ  ∑ ∑ ௧ሺି୰ୟ୫ሻషౝ౨ౣאאሼೌሽ∑ ∑ ௧ሺି୰ୟ୫ᇱሻషౝ౨ౣᇲאᇲᇲאሼೌሽ    (5.2) 

ܲܤ ൌ  ቊ1,                      ݂݅ ܿ  ݂ܿ݅           ,ቀଵିೝቁ݁  ;ݎ ൏ .ݎ    (5.3) 

ܷܧܮܤ ൌ · ܲܤ exp ሺ∑ ሻேୀଵ݈݃ݓ    (5.4) 

Equation (5.2) shows the computation of the BLEU precision scores for n-grams of 
length ݊, where Can are the sentences in the test-corpus,  ݐ݊ܥ(n-gram) is the number of 
times an n-gram occurs in a candidate, and ݐ݊ܥ(n-gram) is the minimum of the 
unclipped count and the maximum number of times it occurs in a reference translation.  
Equation (5.3) shows the calculation of the BLEU brevity penalty, where ܿ is the length of 
the candidate translation, and ݎ is the length of the reference translation.  These terms are 
combined, as shown in Equation (5.4), to calculate the total BLEU score, where ܰ is 
typically 4, and ݓ is usually set to 1/ܰ. 

Several variants of the BLEU measure are commonly used that primarily differ in the 
calculation of the number of reference words used to calculate the brevity penalty.  The 
IBM version of BLEU uses the average lengths of the references, while the NIST version 
of BLEU uses the shortest reference to calculate brevity penalty. The NIST automatic 
evaluation metric, not to be confused with the NIST version of BLEU, is a variant of the 
BLEU metric that differs in that it uses the arithmetic mean of the n-gram counts, rather 
than the geometric mean used in BLEU. 2  More importantly, the NIST metric does not treat 
all n-grams equally, but weights them according to their informativeness. The frequency 
of an n-gram sequence is calculated from the set of reference translations, rather than 
from an external corpus. 

                                                 
1 A maximum length of four words is common. 
2 http://www.itl.nist.gov/iad/mig/tests/mt/doc/ngram-study.pdf  

Handbook of Natural Language Processing and Machine Translation 761 



Since its introduction, BLEU has become widespread in the machine translation 
community and is the most commonly reported evaluation metric.  Several shortcomings 
of the BLEU evaluation metric have been brought forth by the measure’s critics (Turian 
2003; Lavie 2004; Callison-Burch 2006).  One of the primary critiques of BLEU is 
absence of recall in its formulations.  In addition, BLEU was designed for, and has been 
shown to work best when used on, large test corpora, such that the scores are averaged 
over many sentences.  BLEU scores of individual sentences are not considered reliable.  
Other shortcomings of BLEU are the lack of synonym matching and the inability to detect 
multiple proper word orders.  In short, translation quality – especially semantic quality – 
is not detected by the BLEU measure. 

A number of new automatic evaluation measures for machine translation have been 
proposed in recent years to compensate for the perceived failings of the BLEU scoring 
measure.  These measures all fundamentally deal with the notion of string matching 
between reference translations and hypothesized translations.  The following sections 
describe several of these more recent measures in detail. 

Despite these criticisms, BLEU remains the most commonly used automatic metric 
both for the optimization of system parameters and for final evaluation of the quality of 
an MT system.  The use of the BLEU metric has driven development in the MT research 
community, and it is now the automatic evaluation metric against which all new metrics 
are compared.   

5.2.2.3. METEOR  

METEOR (Metric for Evaluation of Translation with Explicit ORdering) (Banerjee 
2005) is an evaluation specifically designed to address several observed weaknesses in 
BLEU.  METEOR is a tunable, alignment-oriented metric, whereas BLEU is generally a 
precision-oriented metric.3 Unlike BLEU, which only calculates precision, METEOR 
calculates both precision and recall, and combines the two, as shown in Equation (5.5), to 
calculate the parameterized harmonic mean.4  In more recent work  (Lavie 2007), higher 
correlations with human judgments were obtained by optimizing the parameters of the 
harmonic mean for specific target languages. 

ܨ  ൌ ·ோఈାሺଵିఈሻோ     (5.5) 

METEOR uses several stages of word matching between the system output and the 
reference translations in order to align the two strings.  The matching stages are as 
follows: 

 

                                                 
3 The brevity penalty in BLEU addresses this issue by penalizing short translations, which BLEU would 
otherwise be unfairly biased towards.  Without the brevity penalty, BLEU would be purely a precision-oriented 
metric. 
4 The default parameters for the harmonic mean originally set ߙ ൌ 0.9.  It is because of this strong bias 
towards recall that METEOR is often considered to be a recall-oriented metric. 

Chapter 5: Machine Translation Evaluation and Optimization762 



 

1. Exact matching.  Strings which are identical in the reference and the hypothesis 
are aligned. 

2. Stem matching.  Stemming is performed, so that words with the same 
morphological root are aligned. 

3. Synonymy matching.  Words which are synonyms according to WordNet 
(Fellbaum 1998) are aligned. 

 
In each of these stages, only words that were not matched in previous stages are 

allowed to be matched.  Only unigrams, single words, are compared for matches.  
Precision in METEOR is defined as number of matches divided by the number of words in 
the system output, and recall is defined as the number of matches divided by the number 
of words in the reference. 

In addition to the ܨ, METEOR also uses a fragmentation penalty to penalize 
system outputs composed of many small chunks, where a chunk is defined as a sequence 
of matches that are contiguous and identically ordered in the system output and reference. 
Fragmentation is calculated as the number of chunks divided by the number of unigram 
matches.  The fragmentation is calculated as shown in Equation (5.6), with default 
parameters of  ߚ ൌ 3.0 and ߛ ൌ .5. 

 ܲ݁݊ ൌ ߛ  ·  ఉ     (5.6)݃ܽݎ݂

This fragmentation penalty causes METEOR to correctly penalize “word salad” MT 
output that would be allowed under the PER metric, and is an essential portion of the 
METEOR scoring metric. 

The final METEOR score is calculated as: ݁ݎܿݏ ൌ ሺ1 െ ܲ݁݊ሻ ·  .ܨ 
The free parameters (alpha, beta, and gamma) were originally hand-set to alpha=0.9, 

beta=3.0, and gamma=0.5, encoding a strong preference for recall and strict 
fragmentation penalty. In current versions of METEOR, these parameters are tuned to 
maximize correlation with human judgments of translation quality.  Sections 5.6.2.2 and 
5.6.2.3 describe tuned parameters and tuning procedures.  These tuned parameter values 
are now the defaults. 

Unlike BLEU, METEOR does not penalize longer answers and incorporates a level of 
linguistic knowledge in the form of its stem and synonym matching allowing it to identify 
equivalences between the MT output and the reference translation that would ignored by 
these earlier measures.  METEOR lacks one of BLEU’s key features however: the direct 
exploitation of multiple references, as METEOR cannot combine knowledge from multiple 
references into its score, but rather, when multiple references are available, METEOR 
selects the reference translation for each segment that gives the best METEOR score.  
Furthermore, METEOR’S ability to handle variability via stemming and synonyms already 
reduces the expected gain from comparing against multiple references simultaneously, 
mitigating the effect of this limitation. 

The highly recall based measure though can be exploited by the inclusion of 
additional highly likely words (such as “the” in English) in the MT output, giving higher 
scores to outputs with these additional padded words – although such behavior is not 

Handbook of Natural Language Processing and Machine Translation 763 



typically exhibited by modern machine translation systems.  The benefits of a precision-
oriented metric such as BLEU versus a recall-oriented metric such as METEOR must be 
tested experimentally in terms of correlation with human judgment. 

5.2.2.4. General Text Matcher (GTM), Translation Edit Rate (TER) and 
CDER  

As discussed in Section 5.2.2.1, WER (in its standard form) is viewed as inadequate 
for machine translation evaluation due to its failure to utilize multiple reference 
translations and its failure to model the reordering of words and phrases in a translation.  
This section discusses several recent evaluation metrics that attempt to address this latter 
failing. 

The General Text Matcher (GTM)  (Turian 2003) evaluation metric attempts to model 
the movement of phrases during translation by using the maximum matching size to 
compute the quality of a translation.  It finds the longest sequences of words that match 
between the hypothesis and the reference.5  The size of the matches is defined in 
Equation (5.7), where M is the set of matches found.  This formulation can be generalized 
to other exponents, and in experimental results (Turian 2003) the metric appears to work 
best when ݁ݖ݅ݏሺܯሻ ൌ  ∑ ெאሻݎሺ݄ݐ݈݃݊݁ .  The precision and recall are computed as the 
size of the matches divided by the length of the system output or the reference, 
respectively.  The score of the GTM is the harmonic mean, F-score, of precision and 
recall. 

ሻܯሺ݁ݖ݅ݏ  ൌ  ඥ∑ ெאሻଶݎሺ݄ݐ݈݃݊݁      (5.7) 

GTM can also be used with multiple references by concatenating the references 
together, and not allowing a match to cross the boundary between references. 

Like BLEU (and also TER, discussed below), GTM does not incorporate any linguistic 
knowledge, and only considers words in the MT output and the references as matching if 
they are identical.  The typical definition ݁ݖ݅ݏሺܯሻalso generates several interesting 
properties that are not present in TER however.  If a single word in the translation is 
incorrect, the affect on TER is the addition of a single edit, while in GTM the effect 
depends upon the location of the error in the sentence.  An error in the middle of the 
sentence has the largest effect, resulting in two matches of equal size, while an error 
closer to either end of the sentence has a minimal effect, only reducing the length of the 
match by 1 if the error is the first or last word.  Whether errors in the middle of the 
sentence are of much greater importance than errors at the beginning or end of the 
sentence, rather than such errors being of equal importance, as in TER, has not been 
adequately studied.  

                                                 
5 Because the solution to this is conjectured to be NP-hard, a greedy search is used to iteratively select the 
longest sequences.  The authors claim that this obtains the optimal solution in 99% of cases. 

Chapter 5: Machine Translation Evaluation and Optimization764 



 

Translation Error Rate (TER)  (Snover 2006)  addresses the phrase reordering failing 
of WER by allowing block movement of words, also called shifts, within the hypothesis as 
a low cost edit, a cost of 1, the same as the cost for inserting, deleting or substituting a 
word.  While a general solution to WER with block movement is NP-Complete  
(Lopresti,1997),  TER addresses this by using a greedy search to select the words to be 
shifted, and as well as further constraints on the words to be shifted.  These constraints 
are intended to simulate the way in which a human editor might choose the words to 
shift.   

The shifting constraints used by TER serve to both reduce the computational 
complexity of the model and better model the quality of translation.  Examining a larger 
set of shifts, or choosing them in a more optimal fashion might result in a lower TER 
score, but it would not necessarily improve the ability of the measure to determine the 
quality of a translation.  The constraints used by TER are as follows: 

 
1. Shifts are selected by a greedy algorithm that selects the shift that most reduces 

the WER between the reference and the system output. 
2. The sequence of words shifted in the system output must exactly match the 

sequence of words in the reference that it is being shifted to. 
3. The words to be shifted must contain at least one error, according to the WER, 

before being shifted.  This prevents the shifting of words that currently correctly 
matched. 

4. The matching words in reference that are being shifted to must also contain at 
least one error.  This prevents shifting to align to words that already correctly 
aligned. 
 

When TER is used in the case of multiple references, it does not combine the 
references, but scores the hypothesis against each reference individually.  The reference 
with which the hypothesis has the fewest number of edits is deemed the closest reference, 
and that number of edits is used as the numerator for calculating the TER score, as is done 
in MWER.  Rather than use the number of the words in the closest reference as the 
denominator, TER uses the average number of words across all of the references.  Thus, 
the equation for the TER score, where ܷܵܤ, ,ܵܰܫ  are the number of ܶܨܫܪܵ and ܮܧܦ
substitutions, insertions, deletions and shifts, respectively, and ഥܰ is the average number 
of reference words, is shown in the following equation. 

ܴܧܶ  ൌ  ௌାூேௌାாାௌுூி்ேഥ     (5.8) 

Handbook of Natural Language Processing and Machine Translation 765 

 
TER cannot exploit multiple references as is done in BLEU nor does it incorporate 

external linguistic knowledge, e.g., synonyms, as is done in METEOR.  These failings can 
be addressed through the use of targeted references – references created by humans 
specifically for a particular machine translation output – changing it from an automatic 
metric (TER) to a semi-automatic metric (HTER) as is discussed in Section 5.2.3. 



Other automatic metrics for MT evaluation exist that follow the general formulation 
as TER, but address the complexity of shifting in different ways, such as CDER  (Leusch 
2006)   (Cover Disjoint Error Rate).  CDER exploits the fact that the number of blocks in 
a sentence is equal to the number of gaps among the blocks plus one. Thus, the block 
movements can equivalently be expressed as long jump operations that jump over the 
gaps between two blocks. The costs of a long jump are considered constant. The blocks 
are read in the order of one of the sentences. These long jumps are combined with the 
“classical” Levenshtein edit operations, namely insertion, deletion, substitution, and the 
zero-cost operation identity. The resulting long jump distance ݀ gives the minimum 
number of operations which are necessary to transform the candidate sentence into the 
reference sentence. Like the Levenshtein distance, the long jump distance can be depicted 
using an alignment grid as shown in  

Figure 5.5. Here, each grid point corresponds to a pair of inter-word positions in 
candidate and reference sentence, respectively. ݀ is the minimum cost of a path 
between the lower left (first) and the upper right (last) alignment grid point which covers 
all reference and candidate words. Deletions and insertions correspond to horizontal and 
vertical edges, respectively. Substitutions and identity operations correspond to diagonal 
edges. Edges between arbitrary grid points from the same row correspond to long jump 
operations. It is easy to see that ݀ is symmetrical. 

 

Figure 5.5: Example of a long jump alignment grid All possible deletion, insertion, identity and 
substitution operations are depicted. Only long jump edges from the best path are drawn. 

Chapter 5: Machine Translation Evaluation and Optimization766 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

. 

o'clock 

seven 

at 

airport 

the 

at 

met 

we 

a
i
r
p
o
r
t

t
h
e
 

o
n
 

o
'
c
l
o
c
k
 

s
e
v
e
n
 

a
t
 

m
e
t
 

h
a
v
e
 

w
e
 

deletion 

insertion 

substitution 

identity 

long jump 

block 

best path 

start/end 
node 



 

While finding an optimal path in a long jump alignment grid is an NP-hard problem, 
CDER uses an approach which has a suitable run-time, while still maintaining 
completeness of the calculated measure. The idea of the proposed method is to drop some 
restrictions on the alignment path. 

The long jump distance, as well as the Levenshtein distance, require both reference 
and candidate translation to be covered completely and disjointly.  When extending the 
metric by block movements, we drop this constraint for the candidate translation.  That is, 
only the words in the reference sentence have to be covered exactly once, whereas those 
in the candidate sentence can be covered zero, one, or multiple times. Dropping the 
constraints allows for an efficient computation of the distance. CDER drops the 
constraints for the candidate sentence and not for the reference sentence to prevent any 
information contained in the reference from being omitted. Moreover, the reference 
translation will not contain unnecessary repetitions of blocks.  

CDER can thus be seen as a measure oriented towards recall, while measures like 
BLEU are guided by precision. The CDER is based on the ܦܥതതതതܦܥ distance introduced by 
Lopresti and Tomkins (Lopresti 1997).6  It can be shown that the problem of finding the 
optimal solution can be solved in ܱሺܫଶ ·  ሻ time, where I is the length of the candidateܬ
sentence and J the length of the reference sentence.  Using a modification of the 
Levenshtein algorithm, the time complexity can be further reduces to  ܱሺܫ ·  ሻ  (Leuschܬ
2006). 

5.2.3. Semi-automatic Measures 
Authors: Matthew Snover, Nitin Madnani, Bonnie Dorr, and Richard Schwartz 

5.2.3.1. HTER 

HTER (Human-mediated Translation Error Rate) (Snover 2006) is a human-in-the-
loop variant of TER that has also been used to evaluate machine translation systems.  
HTER requires the use of mono-lingual human annotators who create references that are 
targeted to a particular system output.  Targeted references are crafted by changing the 
system output with a minimal number of edits so that it is both fluent and preserves the 
meaning of the other reference translations.  Because a minimal number of edits are used 
to correct the system output, creating a targeted reference can be thought of as selecting 
from the set of all possible references the one which is closest, as measured by TER, to 
the system output.  Targeted references could be used with any other automatic 
evaluation metric that uses reference translations.  The use of targeted references has 
been shown to increase the correlation of automatic metrics with subjective human 
judgments, and can be seen as a method of addressing the sparsity of reference 
translations. 

Because targeted references are tailored for each particular system output, they 
cannot be reused for system output from different systems or even output from a different 
version of the original machine translation system. Because targeted references cannot be 

                                                 
6 C stands for cover and D for disjoint. 
 

Handbook of Natural Language Processing and Machine Translation 767 



reused and the need for human annotators to create targeted references, HTER is 
completely unsuited as a purely automatic machine translation evaluation metric.  
Viewed as a type of human judgment though, HTER is an expensive, but fine grained 
measure of translation quality, and has been used as the primary metric of MT 
performance in the GALE program.  The full details of HTER as implemented in the 
GALE program are discussed in Section 5.4.2. 

Although HTER is built on human judgments, its most obvious weakness is that it is a 
purely quantitative metric that weights all errors equally, when in fact some edits, some 
translation errors, are of trivial importance while others such as some instances of 
polarity errors (is vs. is not) can be devastating.  Such a problem could possibly be 
addressed by using an automatic measure other than TER to compute the resulting error 
between the targeted reference and the hypothesis, although this leaves the question of 
which errors to more heavily weight.  The answer to this is likely to depend heavily on 
the intended use of the translation.7 

5.3 Tasks and Human-in-the-Loop Measures  

5.3.1. Tasks and Human-in-the-Loop Measures: Introduction 
Authors: Clare Voss and Doug Jones  

 
In addition to the use of human judgments for comparison-based approaches to MT 

evaluation, humans are also central to extrinsic measures that have been adopted for the 
purpose of evaluating the output of machine translation.  Two examples are 
measurements of human performance based on document-exploitation task accuracy and 
measurements of human reading comprehension on MT texts.  Both approaches seek to 
provide real MT users with an alternative, accessible frame of reference for assessment of 
MT engines. Since machine translation may distort or delete portions of the original 
content, task developers in both approaches must distinguish assessments of:  

 
• Mistakes in the MT text proper, that can be measured indirectly by human 

subjective judgments, as described in Section 5.1.2 or directly by intrinsic 
metrics with automated comparisons to human reference translations, as 
described in Section 5.2.2. 

• Human response errors – whether caused by inherent difficulty of the text–
handling task, human performance factors (such as fatigue, inadequate task 
training, or other individual differences), or mistakes in the MT text.  

 
Developers of task metrics must: first establish the ground truth or answer set for the 

task and document collection, which entails understanding its foreign language content 
and typically building reference translations of the collection; second, after developing 

                                                 
7 We note that, in recent variations of HTER, the evaluator is able to specify the ``weight’’ of different types 
of edits, thus enabling a task-oriented evaluation approach, where certain errors may be penalized more 
heavily than others. 

Chapter 5: Machine Translation Evaluation and Optimization768 



 

the task protocol and establishing the experimental design and statistics, train the subjects 
and conduct the task under experimental conditions with MT documents; and third, 
assess the accuracy of task responses in relation to information conveyed in the test 
documents.  

5.3.2. Document-Exploitation Task Accuracy  
Authors: Clare Voss and Calandra Tate Moore 

5.3.2.1. Introduction 

Document collectors in the field, analysts at tactical operational centers, and 
translators operating from remote sites must work rapidly and accurately in triaging 
foreign language documents so that they or others in the shared workflow can prioritize 
which documents require additional analysis or document exploitation (DocEx). This 
section describes the experimental challenges and research results in assessing the 
effectiveness of Arabic-English MT engines for one document exploitation task, in 
enabling English speakers to identify essential elements of information in machine-
translated documents that they otherwise would not understand. 

5.3.2.2. Document Exploitation 

When foreign language documents are collected by English-speaking troops in the 
field, the time-critical challenge is to determine the mission relevance of the information 
contained in those documents. In this context, “documents” refer to any of a wide variety 
of items, including hard-copy materials such as newspapers, leaflets, official reports, 
receipts, supply lists or pocket litter, as well as soft-copy files with text, images, video, 
audio, or any combination of mixed media. 

When documents are printed, handwritten, or spoken in languages other than English, 
the DocEx process will at some point include “content translation” in conjunction with 
other text-handling tasks that range from simple filtering or topic detection to binning or 
triaging by prioritized categories, up to more linguistically complex tasks of entity 
extraction, event identification, and summarization within and across documents (see 
Table 5.1). The most severe bottlenecks in the DocEx process in the field occur when 
massive quantities of foreign language documents need to be reviewed, and too few 
translators are available for this work. 
 

Handbook of Natural Language Processing and Machine Translation 769 



Task       Description of Task 
Publishing Produce a technically correct document in fluent English 
Gisting Produce a summary of the document in English 
Extraction For documents of interest, capture specified key information in English: 

• Deep Extraction: Event identification (scenarios): id incident type & facts  
- task iii: Event Completion: id relations among elements, time, & place of event 

• Intermediate Extraction: Relationship id (ex. member-of, phone-number-for) 
- task ii: Wh-item extraction: id who-, where-, when-type elements of information  

• Shallow Extraction: Named entity recognition: isolate names of people, places, 
organizations, times 

Triage For documents determined to be of interest, rank by importance 
- task i: Topic id: bin document by topic 

Detection Find documents of interest 
Filtering Discard irrelevant documents 

Table 5.1: Hierarchy of text-handling tasks proposed by Taylor & White (1998), augmented to include 
ARL’s tasks i—iii 

5.3.2.3. DocEx Tasks with MT  

Shortly after Church (1993) described “good applications for crummy MT,” ARL8 
decided to test a DocEx triage task as an application for FALCon,9 its laptop-based 
system for non-translators to scan in hardcopy documents, OCR the stored images to text, 
run the text through MT to convert it into “English”, and then search the resulting text for 
English keywords (Fisher 1997; Fisher 1999). The goal was for document collectors in 
the field to convert found documents into “English” via FALCon, and then to triage the 
output text for mission relevance, reducing the translators’ workload. 

The FALCon systems, once in the field, however, came into the hands of in-country 
translators; they valued the systems for quickly generating first-pass translations that they 
could readily revise and give to their English-speaking supervisor, who in turn would 
review and possibly post-edit their translations for inclusion in summary reports. Instead 
of reducing the number of documents in the translators’ workflow by enabling others to 
triage documents, FALCon’s utility came in reducing the time-to-translate documents in 
the translators’ workflow by speeding up their process of gisting documents.  With 
evidence coming back to the lab for the utility of FALCon in the field, two types of 
evaluation questions were raised about providing support for these systems: 

 
• Developmental testing (DT) conducted by the developers in the lab: how “good” 

are the MT engines? (measures of translation performance) 
• Operational testing (OT) conducted with potential users on working systems: how 

“effective” are users of the MT engines? (measures of task effectiveness) 
 
In 2000, we began conducting pilot studies to determine which MT engines conveyed 

sufficient information in their translations to support different levels of text-handling 
tasks. In 2004, we ran two large-scale experiments on Topic Binning and Wh-item 

                                                 
8 Army Research Laboratory 
9 FALCon stands for Forward Area Language Converter 

Chapter 5: Machine Translation Evaluation and Optimization770 



 

Extraction and one large-scale pilot test on Event Completion (see tasks i-iii respectively, 
in Table 5.1) to assess three types of Arabic-English MT engines:  MT-1 a rule-based 
machine translation (RBMT) engine, MT-2 a statistical machine translation (SMT) 
engine, and MT-3 a lexicon-based machine translation (LBMT) engine.10 This section 
focuses on operational testing (OT) of MT engines for Wh-item Extraction (task ii), 
where the engines showed statistically significant differences on two response metrics.  
The section concludes with analyses of how closely these task-based (OT) results align 
with text-based (DT) automated metric scores on the same set of documents. 

 
Who-type: people, roles, organizations, companies, groups of people, and the 
government of a country 
When-type: dates, times, duration or frequency in time, including proper names for 
days and common nouns referring to time periods 
Where-type: geographic regions, facilities, buildings, landmarks, spatial relations, 
distances, and paths 

Table 5.2: Wh-types in Wh-item extraction (task ii) 

5.3.2.4. Wh-item Extraction Task  
On this task, the subjects were asked to read through a machine-translated text on 

their screen and “mark up” all word sequences that belonged to the assigned wh-type for 
that text (see Table 5.2). Each marked-up sequence appeared both highlighted directly in 
the text in the wh-type color code and copied as an entry in the screen’s summary box 
with all wh-items extracted so far for the presented text.11  

The Arabic ground truth (GT) of wh-items was defined in the original Arabic 
documents. Then a corresponding English reference translation (RT) set of wh-items was 
derived with the translator of the task documents. Since subjects were asked to mark wh-
items in the MT output texts, a corresponding set of correct answers for scoring their 
responses also had to be identified in these texts.  Two task developers and one 
adjudicator coded the answer set of wh-items by marking up each MT text alongside its 
corresponding RT text already marked with RT wh-items.  Their answer set was called 
the omniscient truth set of wh-items, to reflect their use of the reference translations 
while marking the MT texts.12 The task developers assigned a category code to each wh-
item for computing inter-coder reliability and reconciling and recoding the texts. The 
codes of A (correct), B (almost correct), and S (split) are defined in Table 5.3. When no 
words in the MT output were clearly semantically or phonetically related to an RT wh-
item, that item was coded Z for lost in translation. As an example, three different codings 

                                                 
10 Results were presented at TIDES PI meetings (2001, 2002) and NIST Open MT Workshops (2003, 2004). 
DARPA TIDES funded the initial task-based evaluation research; the Center for Advanced Study of 
Language at U. of Maryland funded the follow-on large-scale experiments. Tasks i and iii yielded no 
statistically significant differences in the accuracy of subjects’ responses across MT engines:  all MTs 
supported task i and no MTs supported task iii. (Laoudi 2006) 
11 For further details, see Tate and Voss 2006 and Voss and Tate 2006 
12 Note that the HTER post-editors are also ``omniscient’’ in this sense: they read RTs to understand the SL 
text so that they can post-edit the MT output to convey its meaning exactly. 

Handbook of Natural Language Processing and Machine Translation 771 



for the same underlying wh-item with different MT output results are shown in Figure 
5.6. 

A 1) Exact match, synonym, or paraphrase, where words are in grammatical word order 
2) Contiguous phrase 
B 1) Exact match, synonym, paraphrase, but wording out of grammatical order  
or 1’)  Partial match with some content loss, but wording in grammatical order 
2) Contiguous phrase 
S  1) Exact match, synonym, paraphrase, but wording out of grammatical order 
or 1’) Partial match with some content loss, but wording in grammatical order 
2’) Non-contiguous phrase 
Z  Lost OR not recognizable 

Table 5.3: Category codes for wh-items identified in MT output or lost in translation 

To capture differences among MT engines’ output and quality (independent of task 
results), we scored the individual wh-items by category code to measure translation 
accuracy and loss in the MT text proper. The category counts, accuracy rate, and loss 
rates are broken out in Table 5.4.13 There were no statistically significant differences 
between SMT (MT-2) and LBMT (MT-3) in terms of available wh-items to extract (total 
A, B, and Ss), but RBMT (MT-1) showed a significant loss in wh-items (Zs only).14 
 

 
 
 
 
 
 
 
 

Figure 5.6: Example of the same wh-item underlined in parallel sentences: the Arabic GT, English RT, and 
three MT outputs with category codes in square brackets 

 
 A B S Z Prec. Recall Loss 
MT1 Totals 67 51 20 18 .49 .43 .12 

Who 21 17 12 6 .42 .38 .11 
Where 34 15 2 5 .67 .61 .09 
When 12 19 6 7 .32 .27 .16 

MT2 Totals 91 49 9 7 .61 .58 .05 
Who 29 19 7 1 .53 .52 .02 

Where 41 12 1 2 .76 .73 .04 
When 21 18 1 4 .53 .48 .09 

MT3 Totals 67 75 4 10 .46 .43 .06 
Who 21 26 2 7 .43 .38 .13 

                                                 
13 Let |ܣ| stand for the # wh-items coded as A’s. Precision was defined as |A| / ሺ|A|    |B|    |S|ሻ, Recall as |A| / ሺ|A|    |B|    |S|   |Z|ሻ, and Loss rate as |Z| / ሺ|A|   |B|    |S|    |Z|ሻ. 
14 MT-2 showed higher precision and recall than the other two engines (As only). Details are presented by 
Vanni (2004). 

GT:  
RT:  Reem Meeh wrote: 
 at Bayan Palace… 
MT1:  Reem wrote ‘Lmeeaa: [S] 
 in a statement derelict,… 
MT:2 I wrote Rim almayai [      ] : [A] 
 in the short statement,… 
MT3: clerks move flowing :[Z] 
 in castle demonstration/statement?... 

Chapter 5: Machine Translation Evaluation and Optimization772 

Where 33 22 0 1 .60 .59 .02 
When 13 27 2 2 .31 .30 .05 

Table 5.4: Results of category coding of wh-items in MT outputs 



 

We hypothesized that, if correct local word order were critical for wh-item 
extraction, then the LBMT (MT-3) would yield the weakest response rates.  If word order 
however were not critical, then LBMT (MT-3) would outperform RBMT (MT-1) due to 
the latter’s loss rate and match SMT (MT-2). 

The task-based results by MT engine show subjects did statistically significantly 
better on two of the three metrics: they found more wh-items (higher recall) and they 
were misled by fewer non-wh-items (higher precision) in the statistical MT-2 output than 
in the output of the other two engines.  The results did not yield a clear ranking of MT-1 
and MT-3: the lexicon-based MT-3 did a better job in support of higher hit rates, while 
rule-based MT-1 did better with lower false alarm rates.  Curiously, the miss rates across 
engines do not differ significantly: subjects fail to detect roughly the same proportion of 
wh-items in the output of each engine. 

The task-based results by wh-type show subjects did statistically significantly better 
marking where- and who-items correctly than the when-items. They were least likely to 
miss the who-items. This contrasts with the MT results, where the miss rates were 
comparable across engines. Subjects were roughly equally likely to mark items 
incorrectly across wh-types. This contrasts with the MT results, where false alarm rates 
differed significantly. 

To rank the MT systems on the basis of a single metric, we applied an approach from 
statistical decision theory:  the three different performance rates – hit, miss, and false 
alarm rates - were combined with weighted cost estimates into a single loss function 
(Tate 2006). Based on several tests with hypothetical weights that we selected, the overall 
preference ranking of MT systems that persisted, where higher value (lower cost) is better 
than lower value (higher cost), was: MT2 > MT3 > MT1. 

5.3.2.5. Correlating Task-based & Text-based Scores  

The next phase of the evaluation was to ask how well text-based (DT) scores on task 
ii documents track the task-based (OT) results on these documents. Four automated text-
based metrics were run on all machine-translated documents, to capture the MT engines’ 
differences on full sentences. These results, presented in Table 5.5, are consistent with 
the text-based precision and recall on wh-items presented in Table 5.4; MT-2 ranks above 
the other two engines.  However, the automated metrics do not provide a consistent 
picture for ranking MT-1 and MT-3: BLEU and GTM rank MT-1 well above MT-3, while 
METEOR and TER rank MT-3 slightly higher than MT-1. 

 
System BLEU GTM METEOR TER 
MT-1 .088 .529 .385 .221 
MT-2 .187 .617 .524 .370 
MT-3 .055 .453 .397 .233 

Table 5.5: Automated metric scores on task ii document sentences by MT engine 

Handbook of Natural Language Processing and Machine Translation 773 



Corr Level System BLEU GTM METEOR TER 
P system  .663 .468 .865 .86312 
S document  .211 .193 .242 .231 
S document MT 1 .140 .147 .109 .235 
S document MT 2 .134 .303 .298 .111 
S document MT 3 .298 .323 .311 .182 
S document Who .253 .292 .320 .198 
S document Where .229 .185 .252 .251 
S document When .250 .158 .237 .331 

Table 5.6: Text-based automated metrics correlated with task-based Hit Rates, for Pearson (P) and Spearman 
(S) correlations, at system and document level 

The standard for meta-evaluation of new automated MT metrics has, until recently, 
been to aggregate autometric scores and human subjective judgment scores to the system 
level, and then to interpret the strength of their correlation as a validation of the former in 
terms of the latter. 

We note that high correlations between automated metrics and task ii hit rates can be 
achieved when results are aggregated at the system level, as shown in the top row of 
Table 5.6.  This is most evident for METEOR and TER metrics. 

The correlations drop significantly when the text-based and task-based scores are 
paired at the individual document level.  The modification, shown in the second row of 
Table 5.6 also yields correlations that are much closer to each other and have a much 
smaller range in values for the different automated metrics. 

Pursuing this result further, when document-level scores are paired within MT 
systems, the table shows monotonic and significantly positive associations between hit 
rates and automated metrics, for all four metrics.  Similarly the table shows significant 
relationships after grouping the data within Wh-type.15  

These correlation analyses support the initial conjecture for task ii:  subjects perform 
less well when given documents translated poorly by a weak MT engine, while they 
perform better when given documents translated by a stronger MT engine (Tate 2007). 

5.3.2.6. Impact of Task-Based Approaches in MT Evaluation 

Task-based approaches to MT evaluation seek to provide MT users with results that 
they can interpret relative to their own text-handling tasks. This section presented results 
of a large-scale DocEx experiment where subjects performed wh-item extraction on MT 
texts. The study found that the accuracy of their task responses yielded results consistent 
with a text-based measure of document translation-difficulty, derived from an automated 
MT evaluation metric. These results suggest that the task accuracy on wh-item extraction 
may, with further studies, be estimated from automated text-based metrics. 

                                                 
15 All table correlations are permutationally significant with p-values < .01  (Tate 2008). 

Chapter 5: Machine Translation Evaluation and Optimization774 



 

5.3.3. Using United States Government Language Proficiency 
Standards for MT Evaluation  

Authors: Doug Jones, Wade Shen, Martha Herzog, Sabine Atwell, Hussny Ibrahim, and Dan Ding 

5.3.3.1. Introduction 

The purpose of this section is to discuss a method of measuring the degree to which 
the essential meaning of the original text is communicated in the MT output.  We view 
this test to be a measurement of the fundamental goal of MT; that is, to convey 
information accurately from one language to another. 

We conducted a series of experiments in which educated native readers of English 
responded to test questions about translated versions of texts originally written in Arabic 
and Chinese.  We compared the results for those subjects using machine translations of 
the texts with those using professional reference translations.  These comparisons serve 
as a baseline for determining the level of foreign language reading comprehension that 
can be achieved by a native English reader relying on machine translation technology.  
This also allows us to explore the relationship between the current, broadly accepted 
automatic measures of performance for machine translation and a test derived from the 
Defense Language Proficiency Test, which is used throughout the Defense Department 
for measuring foreign language proficiency.  Our goal is to put MT system performance 
evaluation into terms that are meaningful to US government consumers of MT output. 

5.3.3.2. Defense Language Proficiency Test 

The official Defense Language Proficiency Test (DLPT) is constructed according to 
rigorous, well-established testing principles to measure the foreign language proficiency 
of military personnel trained by the Department of Defense and several other United 
States government entities.  Developed and improved over the course of several decades, 
the DLPT is focused on the language proficiency standards recognized and used 
throughout the government. 

In support of studies that preceded GALE to determine the accuracy vs. utility of 
MT, we constructed a variant of the DLPT, adhering to the test construct and design 
principles, but making modifications to measure the quality of machine translations. This 
test became known as the DLPT – Standardized Translation Assessment with Reference, 
or DLPT-STAR. 

Earlier DARPA work in MT evaluation incorporated (1) an informativeness measure, 
based on answers to comprehension questions; (2) fluency, a measure of output 
readability without reference to a Gold Standard; and (3) adequacy, an accuracy measure 
that did refer to a Gold Standard translation (White OConnell 1994).  Later MT 
evaluation found fluency and adequacy to correlate well enough with automatic measures 
(BLEU).  Since comprehension tests are relatively more expensive to develop, the 
informativeness test was not used in later MT evaluations, such as those performed by 
NIST from 2001-2006. In other work (Voss and Tate 2006), and as described in the 
previous section, task-based evaluation has been used for MT evaluation.  These 

Handbook of Natural Language Processing and Machine Translation 775 



techniques measure human performance by exhaustively extracting ‘who’, ‘when’, and 
‘where’ type elements in MT output. 

The DLPT-STAR also uses such factual questions, but this is not the only question 
type.  The DLPT-STAR test items focus on the elements in the original text that are most 
characteristic of its proficiency level as defined by the Interagency Language Roundtable 
(ILR) Language Proficiency Scale. For example, Level 3 texts may have test questions 
about abstract linguistic formulations, hypotheses, or supported opinion essential to the 
meaning of the text.  The test construct of the DLPT-STAR is based on the ILR scale, 
which is used throughout the United States government, so it provides Defense 
Department decision makers with results they can readily interpret.  A description of a 
text classification scheme based on the ILR scale can be found in  Child (1993).  Some 
key points about the ILR scale for reading at Levels 1 through 3 are shown below:  

 
Level 1 texts: contain short, discrete, simple sentences; generally pertain to the 

immediate time frame; often written in an orientational mode; require 
elementary level reading skill. For example, newspaper announcements are 
typically written at Level 1. 

Level 2 texts: convey facts with the purpose of exchanging information; do not 
editorialize on the facts; often written in an instructive mode; require limited 
working proficiency. For example, newswire articles are often Level 2. 

Level 3 texts: have denser syntax and highly analytic expressions; place greater 
conceptual demands on the reader; often written in an evaluative mode; may 
require the reader to ‘read between the lines’; require general professional 
proficiency. For example, newspaper opinion and editorial articles may be 
written at Level 3. 

5.3.3.3. Experimental Design 

The DLPT-STAR measures the quality of machine translation output in terms of 
readers’ comprehension of the text as reflected by the accuracy of their responses to 
short-answer constructed-response questions.  Subjects participating in the test were 
allowed five to eight hours to complete the experiments, depending on the specific test.  
Approximately 50 participants were recruited from MIT and the surrounding community 
for each test.  All were native readers of English.  The experimental tests were delivered 
by computer.  Subjects were shown each text and its associated questions simultaneously. 
They were allowed to work at their own pace.  The interface of the delivery software 
allowed them to navigate between texts and take breaks as needed. 

Each subject’s responses were rated against a predetermined scoring protocol.  The 
same scoring process, protocol, and standards were used for all responses, regardless of 
whether the subject used MT output or the reference translation (the control case).  The 
raters were blind to the conditions of the responses they scored.  

We expected that, if the reference translation were better than the MT output, the 
reference should yield a higher percentage of accurate responses than the MT. 

Chapter 5: Machine Translation Evaluation and Optimization776 



 

The first DLPT-STAR test was based on authentic Arabic texts at ILR Levels   1, 2, 
and 3, with short-answer questions at the level of the texts.  Texts were identified by a 
team with substantial experience in ILR text rating and DLPT development.  The 
documents were presented in two conditions of English translation: (1) professionally 
translated into an appropriate English equivalent, and (2) machine translation output from 
state-of-the-art MT systems; this was often quite garbled. 

This experiment showed that, when reading MT output, native readers of English 
could generally attain or surpass the passing score on Level 1 texts with 75% 
comprehension and on Level 2 texts with 76% comprehension.16 However, with Level 3 
texts, the result was 51% comprehension, well below the passing score.  Comprehension 
of the Gold Standard reference translation was 95% at Level 1, 91% at Level 2, and 79% 
at Level 3, as shown in Figure 5.7. The results are presented in greater detail elsewhere 
(Jones et al. 2005). 

The lower results for Level 3 on the reference translation reflected the higher degree 
of difficulty of the original texts. Subjects may not have frequently read this kind of 
prose, even in their native language.  However, we could not determine whether the 
somewhat weak performance at Level 1 on the MT output was due to systematic deficits 
in MT performance at Level 1 or to a mismatch between the texts and MT capabilities.  
Subsequent experiments in the GALE program were designed to address the ILR scale 
levels while using materials better suited for MT processing. 

 
 

 
Figure 5.7: First DLPT-STAR Results 

5.3.3.5. Second Test – Arabic MT 

In 2006 during Phase 1 of GALE, we created a new variant of the DLPT-STAR, 
using materials specifically created to test the capabilities of the MT systems.  We used 

                                                 
16 In line with many language proficiency testing practices, we set 70% as a passing grade. 

Handbook of Natural Language Processing and Machine Translation 777 

5.3.3.4. Initial Study – 2004  

75% 76%

51%

95%
91%

79%

0%

20%

40%

60%

80%

100%

Level 1 Level 2 Level 3

GS

MT



the DARPA GALE 2006 evaluation data sets, used by several research sites for testing 
MT algorithms.  We arbitrarily merged the MT output from three GALE performers. 

The ILR levels of the documents ranged from Level 2 to Level 3; DARPA GALE 
2006 data did not contain any texts that could be rated as Level 1.  The absence of Level 
1 documents was not accidental; the kinds of texts associated with Level 1, such as 
newspaper announcements, advertisements, weather reports, etc., have not been part of 
the typical training or test data for MT evaluation and would not be of interest to the 
Department of Defense.  

To partially compensate for the lack of authentic Level 1 material, we constructed 
questions about Level 1 elements (including personal and place names) found in Level 2 
and 3 texts.  A standard DLPT would use texts rated as Level 1, resulting in more variety 
in topic and testing points.  It would also ask Level 1 questions only about Level 1 texts, 
Level 2 questions about Level 2 texts, etc.  Our method of compensation is only partial, 
because it does not show the true performance of MT systems on Level 1 documents.  It 
is possible that the performance we have seen at Level 1 may be atypical.  Training of the 
systems on Level 1 texts would be needed to provide answers. 

We selected approximately half of the DARPA GALE 2006 evaluation material for 
our test.  There were twenty-four test documents, with balanced coverage across four 
genres: newswire, web data, broadcast news, and broadcast conversation.  Our target was 
to have at least 2500 words for each genre; we exceeded this slightly with approximately 
12,200 words in total for the test.  We constructed an exhaustive set of questions for each 
document, approximately 200 questions in all.  See Jones et al. (2007) for additional 
details. 

 
 

 
Figure 5.8: DLPT-STAR Results by ILR Level  

 

Chapter 5: Machine Translation Evaluation and Optimization778 

97% 96%
91% 88%

77%
82%

76%

51%

0%

20%

40%

60%

80%

100%

L1~ L2 L2+ L3

GS

MT



 

Figure 5.9: DLPT-STAR Results by Genre 

Handbook of Natural Language Processing and Machine Translation 779 

97% 93% 94% 94%

80% 77%
72%

66%

0%

20%

40%

60%

80%

100%

Newswire Web Data Broadcast 
News

Broadcast 
Conversation

GS

MT

The overall comprehension results for MT and for the Gold Standard (GS), 
professionally-produced reference translations, are shown by ILR level in Figure 5.8. The 
results by genre are shown in Figure 5.9. 

The pattern of results for the second test using the DLPT-STAR was similar to that 
observed in the initial study: 

 
• Level 1 performance was both lower than Level 2 and lower than expected. 
• Level 3 was lower than Level 2, as expected. 
 
Comprehension results for MT output were 77% for Level 1, 82% for Level 2, 76% 

for Level 2+, and 51% for Level 3.  Gold Standard (GS) results ranged from 97% for 
Level 1 to 88% for Level 3. 

Further analysis showed the low performance of MT at Level 1 to partially stem from 
the systems’ incorrect translations of personal names, although these were essential to 
correctly answering many Level 1 questions.  We observed that the name questions had 
71% comprehension accuracy, compared with 83% comprehension for Level 1 items 
testing language features other than personal names.  We should reiterate that MT 
systems have typically not had Level 1 documents as training data.  Unfortunately, as 
long as this imbalance remains, the DLPT-STAR cannot be expected to show a consistent 
trend in performance across the ILR levels.  Whether the addition of appropriate training 
data would affect performance is an open question. 

Earlier (Jones et al. 2007), we also examined the relationship between 
comprehension rates and translation error. We compared comprehension rates with HTER, 
which counts the edits required for MT output to contain all, and only, the information 
present in a Gold Standard reference. A linear regression showed that subjects lose about 



Chapter 5: Machine Translation Evaluation and Optimization780 

12% in comprehension for every 10% of translation error, with an ܴଶ value of 33%.  The 
low correlation suggests that the comprehension results are measuring a somewhat 
independent aspect of MT quality.  We feel this distinction is important.  HTER does not 
directly address the fact that not all MT errors are equally important and that texts contain 
inherent redundancy that readers use to answer questions. 

5.3.3.6. Using the DLPT-STAR for multiple MT systems in NIST’s MT 08 

Although we believed the overall design of previous DLPT-STAR tests was sound, 
we built the next test taking care to select documents across a broader range of topics and 
data sources. Also, previous tests compared machine translation output with professional 
reference translation output.  The present test was designed to contrast different MT 
systems, using GALE phase 2 materials and administering the DLPT-STAR in the NIST 
2008 OpenMT evaluation. 

We selected ten Arabic-to-English MT systems and ten Chinese-to-English MT 
systems that were part of the NIST 2008 OpenMT evaluation run on the progress test set.  
We used all ten Chinese Systems that participated in the NIST evaluation.  We chose ten 
Arabic systems, from the top, middle, and bottom of the range of BLEU scores attained in 
the NIST evaluation.  In order to have a manageable number of conditions per test, we 
ran five MT systems and one GS reference translation with 100 subjects at a time.  

We tested two of the GALE genres, structured text (Newswire) and unstructured text 
(Webdata).  Overall, Arabic performance was higher than Chinese, and Newswire 
performance was higher than Webdata.  The BLEU scores and the DLPT-STAR 
comprehension results are shown in Figure 5.10 and Figure 5.11 for two of these cases. 

Figure 5.10 shows Arabic Newswire results, the highest comprehension results.  The 
systems are sorted according to DLPT-STAR comprehension results and are shown by 
the gray bars.  The white bar at the right indicates performance on the reference 
translations. The black bars indicate the BLEU score for the progress test set for each of 
the systems.  System ‘MT-A7’ has the lowest comprehension rate and the lowest BLEU 
score.  However, the highest BLEU score belongs to ‘MT-A3’, which is in the middle 
range of comprehension results. The highest scoring DLPT-STAR score is associated 
with a relatively low BLEU score. For comparison, Figure 5.11 shows the results for 
Chinese Newswire. 

 



 
Figure 5.10: Arabic Newswire 

 
Figure 5.11: Chinese Web data

System-level correlation is shown in Figure 5.12.  Each point indicates the overall 
BLEU score and overall DLPT-STAR score for one MT system in one condition.  Since 
there are ten systems, two languages, and two genres, there are forty points in the cloud 
in Figure 5.12.  At this broad level, the ܴଶ value is 74%. 

 

Handbook of Natural Language Processing and Machine Translation 781 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

MT      
A7

MT      
A6

MT      
A8

MT      
A5

MT      
A3

MT      
A2

MT      
A4

MT      
A9

MT      
A1

MT      
A0

REF

DLPT*

BLEU

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

MT      
C5

MT      
C7

MT      
C4

MT      
C8

MT      
C3

MT      
C0

MT      
C6

MT      
C2

MT      
C1

MT      
C9

REF

DLPT*

BLEU



 
Figure 5.12: System level correlation 

5.3.3.7. Impact of Language Proficiency Standards in MT Evaluation 

Overall, we have found that Level 2 texts are a natural fit for successful machine 
translation.  The MT systems seem to show an ability to convey concrete factual 
information that can be retrieved and used by the reader who does not need to understand 
the style, tone, or organizational pattern used by the writer. 

Over the course of this series of experiments, we have observed increasing levels of 
comprehension demonstrated by readers of MT output.  However, each experiment was 
run with a new DLPT-STAR test, making comparisons difficult.  Now that we are able to 
sequester the DLPT-STAR as part of the NIST OpenMT progress test set, we will have 
an opportunity to observe trends with the same test material. 

5.3.4. Concluding Remarks on Task-based Evaluation  
 
Authors: Clare Voss, Doug Jones, and Martha Herzog 
 

Chapter 5: Machine Translation Evaluation and Optimization782 

 Both research studies discussed in this section report on human subjects performing 
language tasks using texts that were derived from the original foreign language source.  
The degree of distance from the original text depended on the quality of the translation, 
whether professional reference translation or machine translation output.  The language 
tasks for the subjects were related to the communicative intent of the original text.  That 
is, communication of the text’s message was evaluated by requiring subjects to use all or 
portions of the message for a purpose.  These two sets of studies approached the 
evaluation of communicative intent from different directions. Specifically, the first study 
focused on identifying the core factual information comprising the text to determine the 
relative accuracy of each system’s output.  The second study focused on determining 



 

5.4.1. GALE Machine Translation Metrology: Introduction 

 
One way to evaluate the quality of a machine translation is to note what edits 

(changes) a human editor will make to correct the meaning of the translation and to make 
the translation understandable (possibly also to make the translation reasonably fluent). 
We refer to that editor as a post editor. Ideally, the post editor will be bilingual, with a 
high-level understanding of both the source language and the target language (the 
language translated into), with the target language as his/her strongest language. 
However, post editing can be performed by a monolingual editor who compares the 
machine translation (MT) output to one or more carefully produced reference translation. 

The GALE program uses the metric of edit distance to evaluate machine translation 
performance. As in many manual assessments of human language technologies, post 
editing can be implemented in a variety of ways. For GALE, the implementation of edit 
distance requires monolingual human post editors that refer to a carefully produced 
reference translation, to make the minimum set of edits that completely corrects the 
meaning and makes the translation as understandable as the reference translation.  

The TERCOM scoring software (Snover 2006) automatically compares the original 
(unedited) MT output to the post-edited version, and counts the number of changes. We 
refer to the number of such edits, divided by the number of words in the reference 
translation as the “Human-mediated Translation Error Rate”, or HTER (Snover 2006). 

This section will focus on HTER and post editing, where we will define HTER and 
describe its use in the GALE evaluation of MT. The entire post-editing process will be 
detailed, including the recruitment and training of editors, the software tool and 
guidelines used for facilitating the edits, the workflow management system and quality 
control (QC) methods employed, and how the output of the post-editing process is used 
for the final calculation of HTER. Where appropriate, this section will cover the 
interaction between the post-editing process and HTER scoring. GALE post editing is the 

Handbook of Natural Language Processing and Machine Translation 783 

5.4 GALE Machine Translation Metrology: Definition, 
Implementation, and Calculation  

whether subjects using machine translation output have adequate material to answer 
content questions about the most significant information in the original text.   The first 
study examines the building blocks of a text, while the second examines the purpose for 
writing it.  The interaction between subjects and text demonstrates the degree to which 
the original communicative intent is conveyed in the output.  The subjects’ accuracy in 
performing the tasks demonstrates the usefulness of the output.  Most importantly, both 
studies move the research closer to evaluating real-world use of machine-translation 
systems. 
 

Authors: Mark Przybocki, Audrey Le, Gregory Sanders, Sebastién Bronsart, Stephanie Strassel, and 
Meghan Glenn 



largest manual scoring effort of MT metrology being employed in any of the current 
NIST coordinated MT technology evaluations. 

This section also addresses the challenges of editor consistency, and how GALE 
evaluations use control documents to allow for year-to-year editor consistency 
measurement. It describes the year-to-year changes made to the post-editing process, 
including improvements to the editing guidelines, added flexibility to the post-editing 
software, and streamlining the post-editing process. We also include a section that 
describes how MT output is selected and assigned to particular editors, such that all 
GALE system translations are handled equivalently. Finally, we describe the overlap of 
work between particular editors and how this information can be used to identify 
consistent (consistently good or bad) editors. 

Although human post editing of present day MT outputs is expensive, we have 
probably come some distance from the situation in the nineteen-sixties, when the 
[controversial] ALPAC report observed that, 

 
. . . when after 8 years of work, the Georgetown University MT project 

tried to produce useful output in 1962, they had to resort to post editing. 
The post-edited translation took slightly longer to do and was more 
expensive than conventional human translation. (ALPAC 1966) 

  

 
We begin by explaining the adaptation of TER to a human-mediated evaluation 

measure, HTER. As described in Section 5.2.2.4, TER is defined as the measure of edit 
distance when editing the original MT output to exactly match a human reference 
translation. The scoring software simply compares the original MT output to the 
reference translation. But it is not necessary for MT system output to match a reference 
translation word-for-word in order to convey the complete meaning of the translation. 
Synonyms, phrasal reordering, and substituting pronouns or simplified forms of noun 
phrases for already defined proper nouns are just a few examples of acceptable 
alternatives. 

For example, suppose the reference translation reads, “His black car had a dented 
bumper, and when the car was driven down the street, the observers called us to report 
that it was on the move.” In this case, there is no problem if the MT output reads, “His 
black car had a dented bumper, and when the black car was driven down the street, the 
observers called us to report that the black car was on the move.” 

Correspondingly, the GALE metric for MT evaluation is not a measure of the number 
of edits required to match the reference translation text TER, nor is it a measure of the 
number of word matches between the MT output and the sets of reference translations (as 
in BLEU or WER). Rather, it is a measure of the minimum number of edits required to 

Chapter 5: Machine Translation Evaluation and Optimization784 

5.4.2. GALE Machine Translation Metrology: From TER to 
HTER  

Authors: Mark Przybocki, Audrey Le, Gregory Sanders, Sebastién Bronsart, Stephanie Strassel, and Meghan 
Glenn 



 

match the meaning of the reference translation and make it equally understandable 
(HTER). 

Deciding which textual alternatives alter the meaning or impair the understandability 
of the translation requires human judges. For the GALE evaluation of MT system 
performance, human editors compare the original MT output to the reference translation 
and manually modify the MT output using as few edits as they can manage to make the 
MT output contain the same meaning as the reference translation and be equally 
understandable. We refer to this process as post editing. 

HTER (Human-mediated TER) is a measure of edit distance between the original MT 
output and the post-edited version of the original MT output. HTER is the official metric 
used to evaluate GALE MT system performance. Thus, where TER measures the edit 
distance to change the machine translation output into a human reference translation, in 
contrast HTER uses the same scoring software but measures the edit distance to change 
the same machine translation into the final post-edited version. 

In evaluation, output from multiple MT systems processing the same input, are 
compared.  Thus, it is necessary in the calculation of HTER to divide the number of edits 
for each system by the number of words in the reference translation rather than in the 
original system translation, so that the denominator is the same across each system.  
Using the token count from the reference as our denominator serves as a normalizing 
factor, allowing for direct comparison of HTER scores. Without normalization, systems 
could reduce their error scores by simply outputting superfluous text.  For example, if a 
system translation was “They traveled to Mexico,” an example of superfluous text might 
be “The group undertook a trip and traveled to the country of Mexico.” Now consider in 
each case if the reference referred to a trip to Spain.  In each example there would be one 
edit (substituting Spain in place of Mexico).  The first example would have an HTER 
score of 25% error (1 error divided by 4 token words), while the second example would 
have an HTER score of 8% error (1 error divided by 12 token words). 

The following sections explain the process of HTER calculation for the GALE 
program. The required infrastructure is reviewed, including the editing guidelines, the 
recruitment and training of editors, the editing software, and the workflow system 
required to manage the post-editing effort. We describe the methods employed to 
accommodate for editor inconsistency and fatigue which is a part of every human effort 
that imposes a heavy cognitive load. 

5.4.3. GALE Machine Translation Metrology: Post-editing  

5.4.3.1. Post-editing Guidelines  

The definition of HTER centers on what edits are to be made. The editors compare the 
MT output to a correct reference translation, and edit the MT output correspondingly. To 
date, the translations to which GALE has applied the HTER metric have all been 
translations into English (the target language) from two source languages, Arabic and 
Chinese. Thus, English was always the language being edited.  

Handbook of Natural Language Processing and Machine Translation 785 

Authors: Mark Przybocki, Audrey Le, Gregory Sanders, Sebastién Bronsart, Stephanie Strassel, and Meghan 
Glenn 



Four goals were discussed at length during the design of the editing guidelines. First 
and foremost is that the edits should completely correct the meaning. The second goal is 
that the editors should find the minimum set of edits that will completely correct the 
meaning. These first two goals amount to the underlying idea of the HTER metric. The 
third goal is that the edited translation needs to be understandable English, assuming the 
source material is understandable. This third goal is an important constraint on the editing 
process. A fourth goal that was discussed, and ultimately rejected, was to ask the editors 
to produce fluent English, if the source-language material was fluent. 

5.4.3.1.1. The Process of Creating the Guidelines  

The Post-editing Guidelines (NIST 2007) reflect the goals that were just mentioned. 
All parties to the GALE program agreed with the goal of completely correcting the 
meaning, but when various parties in the GALE community post edited several example 
translations, there were differences in what those various editors had corrected. As the 
parties discussed those differences, some decisions emerged as to the desired edits. NIST 
and the LDC created the first full versions of the post-editing guidelines in order to 
capture those decisions; the guidelines increase the level of agreement among editors 
regarding what constitutes a difference of meaning, and thus increase the level of 
agreement about the edits required to completely correct the meaning. The guidelines 
were refined through an iterative process of using successive versions of the guidelines to 
post edit example translations, looking at the edits that resulted, and modifying the 
guidelines appropriately. The guidelines continue to be reviewed after each phase of 
GALE evaluation, allowing post editor comments to be considered. 

Through that iterative process, it became apparent that some editors were distinctly 
cleverer than others at finding ways to correct the text with fewer edits. Ways to correct 
the text with fewer edits were addressed at several places in the guidelines. 

Minimizing the number of edits was also addressed in the recruitment and training of 
the editors; seeking editors who would find it interesting to find a minimal set of edits. 
The main tool assisting editors to understand what constitutes fewer edits has been the 
post editing software itself, which was modified to display (see upper right window pan 
in Figure 5.13) the HTER value for the segment currently being edited, an HTER value that 
resulted from the edits just made. This modification to the tool was effective because it 
made it easy for editors to try various alternative edits, with immediate feedback about 
their effect on the HTER value. In practice, having the editors consult the displayed HTER 
value for the segment has proven effective. 

5.4.3.1.3. The Post Editor’s Role  

The job of the MT post editors may be summarized as follows: “Make the MT output 
have the correct meaning (the same meaning as the reference translation), using 
understandable English, in as few edits as possible.” 

Chapter 5: Machine Translation Evaluation and Optimization786 

5.4.3.1.2. Displaying the HTER Value to Help Minimize the Number of 
Edits 



 

 The guidelines ask the editor to keep in mind that if the MT output adds/inserts 
information that is not present in the reference translation, those additions should be 
removed. Likewise, if the MT output omits information that is present in the reference 
translation, the missing information should be added. 

Although the editors work on one segment at a time, the tool displays all the 
preceding (already edited) and following (not yet edited) segments in the current 
document. This allows the editor to see the complete context of the document, both as the 
reference translation and as the system output being edited. The guidelines ask the editor 
to keep in mind that the goal is to correct the meaning of the document as a whole, and 
that the MT systems are free to rearrange words and phrases over long distances (to/from 
other segments in the document). The editor is not to gratuitously alter those 
rearrangements if they do not affect the meaning. Without the display of context, judges 
could have difficulty identifying acceptable rearrangements.  In practice, GALE data 
identifies the sentence segmentation for the systems, practically eliminating 
rearrangements. 

Finally, we ask the editor to avoid wholesale copying of the reference. 

5.4.3.1.4. A Condensed Version of the Post-editing Guidelines  

• Make the MT output have the same meaning as the reference human translation: 
no more and no less. 

• Make the MT output be as understandable as the reference. Similarly, try to make 
the MT output not be more or less ambiguous than the reference. 

• Punctuation must be understandable, and sentence-like units must have sentence-
ending punctuation and proper capitalization. Do not insert, delete, or change 
punctuation merely to follow traditional rules about what is “proper.” 

• Capture the meaning in as few edits as possible using understandable English. If 
words/phrases/punctuation in the MT output are completely acceptable, use them 
(unmodified) rather than substituting something new and different. 

 
In case of conflicts among the four rules above, consider them to be ordered by 

importance. For example, never sacrifice the goal of correcting the meaning just to 
minimize the number of edits.  

5.4.3.2. Post-editing Software  

The Post-editing Software is a Java application that NIST designed and programmed. 
A strong collaboration between NIST and LDC allowed for frequent improvements of the 
software over time.  Version 1.2.2 of the post-editing software was used for GALE 
evaluations at the time of this writing.  

Handbook of Natural Language Processing and Machine Translation 787 



In order to ease the process of distributing the software to the annotators, a single 
JAR file bundles all of the required libraries. This includes the TERCOM (Snover 2006) 
library that computes the HTER score and provides a visual representation of the 
modifications made to the original MT output. 

5.4.3.2.1. The MTF File Format  

The Machine Translation File format (MTF) is the primary exchange format used 
throughout all GALE post-editing evaluations. MTF is based on XML: a DTD file 
defines the set of elements and attributes that may appear in a file, their respective 
relationships, the possible attribute values, and so forth. NIST chose to base MTF on 
XML for the following reasons: 

 
• Given a DTD, any XML file can be validated using one of the many XML 

validating tools available. 
• XML handles Unicode encodings. 
• XML syntax is fairly simple and allows for easy manual editing of the 

contents. 
 
The root element of an MTF file is a container for one or more documents, which in 

turn contain one or more segments. Usually, one segment corresponds to a single 
sentence. Several attributes are used to identify the data contained in the file, allowing 
tools to automatically parse the contents of a set of MTF files. 

Because members of each editing team work successively on the same file (see 
Sections 5.4.3.3.2 and 5.4.3.3.4), the MTF format embeds facilities for the team members 
to communicate. One such feature, the Request For Review attribute, is used when an 
annotator decides to notify a supervisor of any inconsistency in the guidelines or, more 
realistically, in the data being edited. For example, an annotator may want to report that a 
reference sentence requires a review if he/she thinks there might be an error in the 
reference translation. 

5.4.3.2.2. The Post-Editing Interface  

The main window (see Figure 5.13) is divided into three main panels. The leftmost 
panel contains the reference translation for a given document. The middle panel is where 
the translation of the document is edited. The rightmost panel is used to display the HTER 
representation (as described in Section 5.4.3.1.2) and the original version of the current 
segment. 

This leftmost panel (with the reference translation) is divided into three text boxes: 
the top box displays all previous segments for this document, the middle box displays the 
current segment, and the bottom box displays all succeeding segments for the document. 
Some reference words, or groups of words, may have associated alternate translations. If 
so, these words are highlighted and alternate translations are shown via a drop-down list 
that is invoked by hovering the mouse pointer over the highlighted text. 

The middle panel (with the edited translation of the document) is also divided into 
three text boxes, containing respectively all the previous segments, the segment currently 

Chapter 5: Machine Translation Evaluation and Optimization788 



 

being edited, and all the succeeding segments yet to be edited. Additional buttons are 
provided to allow the annotator to flag the current segment, in case it cannot be edited 
directly. 
 

 
Figure 5.13: Main window of the post-editing tool 

5.4.3.3. The Evaluation 

5.4.3.3.1. Recruitment and Training of Post Editors  

Linguistic Data Consortium recruits Philadelphia-area native English speakers with 
training in copy-editing, proofreading, creative writing, or journalism. First-time 
applicants residing outside of the region are excluded because the training process 
requires a visit to LDC in Philadelphia. All candidates receive by email a pre-test “kit,” 
containing a brief set of instructions, the annotation tool and the test file to edit. The test 
file consists of eleven sentences which LDC selected from GALE Phase 1 machine 
translations that represent the two source languages and multiple genres and machine 
translation systems. The eleven sentences were also selected to represent a range of 
editing difficulty, so that the first few sentences of MT output require fewer changes, and 
the last sentences require more – and possibly more creative – edits.  

Managers score and review the test kits carefully, looking for a basic post-editing 
aptitude in the test kit responses: primarily, correct spelling, incorporation of the full 
meaning of the Gold Standard reference in the test edits, and no extraneous information. 

Handbook of Natural Language Processing and Machine Translation 789 

 



After examining the pre-test results and eliminating outlier candidates, LDC invites 
qualified applicants to LDC’s offices for an intensive group training session. 

The training session focuses on the program goals and the MT post-editing guidelines 
developed jointly by NIST and LDC. Managers display a set of editing examples to 
demonstrate editing possibilities and pitfalls. Following the training session, applicants 
re-edit the test kits so that managers can observe what they would do differently after 
learning more about the task. Those who continue to produce edits that convey the same 
meaning as the Gold Standard translation and who make only necessary changes to the 
MT are selected for the project.  

Many editors return for multiple cycles of post-editing within the GALE program. 
Returning editors are required to attend a re-training session at LDC. The re-training 
session focuses primarily on the same points as the original training session, but 
managers provide more time for questions and examples. In addition, the group works 
through multiple examples together. Editors are also encouraged to come to LDC for 
“office hours,” or regular opportunities during the course of a project to sit down with a 
manager to discuss editing questions in general or review specific kits in detail.  

Before beginning work on GALE evaluation data, editors read the guidelines 
carefully and complete a starter kit, a set of documents that reflect attributes of the data 
for the current phase. The starter kit reinforces their knowledge of the post-editing rules 
and allows editors and LDC staff to solve technical problems. It also offers managers 
another opportunity to evaluate editors and to answer many task-related and procedural 
questions before the project begins in earnest. 

5.4.3.3.2. LDC Workflow and Quality Control  

Editors work remotely, accessing post-editing assignments through a web-based 
workflow management site, which LDC developed for this task. The workflow system 
assigns kits, or files containing approximately 1200 words of translated material, to 
editors. Editors are assigned the role of first pass or second pass editor at the beginning of 
the project. The primary role of a first pass editor is to perform the initial editing of the 
MT output, finding the minimal number of edits required to capture the complete 
meaning of the reference translation.  The primary role of the second pass editor is to 
review and check the work of the first pass editor.  The second pass editor determines if 
the meaning of the edited MT output matches the reference. If correct, the editing is left 
alone.  The secondary role of the second pass editor is to determine if appropriate 
modifications can be made in order to reduce the HTER score. Second pass editors are 
paired with first pass editors, to form a team. In most cases, two editors will be paired for 
the duration of a project. Translations are reviewed by two independent editor teams of 
first- and second-pass editors. 

The workflow system serves both the editors and the LDC managers. LDC managers 
are able to view and manage users and assignments, as well as, backup the project 
through the system. Assignments, the kits, for each editor team are loaded into the 
workflow system at the start of the project. Editors check out kits from this system, 
working with one kit at a time. After a first pass editor checks in a completed kit and no 
problems are identified by an automated scoring process, the kit is automatically assigned 
to the second pass editor. 

Chapter 5: Machine Translation Evaluation and Optimization790 



 

The workflow system was designed as a central information resource for editors. 
Here they can view their file assignment lists, verify expected payment per kit, and find 
links to other project resources. Editors are also able to check the status of kits in their 
queue, and monitor their first- or second-pass partner’s progress. Second-pass editors 
benefit from a “nudge” option in the workflow system, which allows them to send a 
polite reminder to their editing partner that they are waiting for data.  

LDC quality control measures are in place to catch careless errors or alert managers 
to potential problems during the editing process. In addition to managing file 
assignments, the workflow system supports such quality control measures. When an 
editor checks in a file, the workflow system triggers various automatic and manual LDC 
quality control mechanisms. For example, the first kit submission of every editor is 
flagged and held in a separate queue until approved by a manager. Scripts automatically 
score and check incoming kits to identify potentially problematic kits; these include kits 
with high HTER scores or with unedited segments. LDC managers also spot-check kits 
daily, and provide feedback to editors accordingly, in order to satisfy the quality 
requirements for the project.  

5.4.3.3.3. Reducing the Cognitive Burden  

As with most (possibly all) manual evaluations of translation quality, the difficulty 
of the task presented to the human judges has a direct bearing on the quality or 
consistency of their effort. This section describes specific efforts that were made to 
reduce the cognitive burden placed on the editors. 

As was mentioned in the previous Section, data units or “kits” that are to be edited by 
the editors are kept to a reasonable size. For the first GALE evaluation of MT 
performance each kit contained approximately 1500 words of translated text to be edited. 
Post-evaluation editor comments led to reducing the kit size to approximately 1200 
words. While post editing is performed remotely (left to the editor’s choice) and the 
editors are under no scrutiny to work through a kit absent lengthy breaks, we have 
estimated that an editor spends approximately two to four hours editing each kit. The goal 
was to be sure kits were small enough to finish one kit per day. Kit size was a primary 
consideration in defining which documents were grouped into a specific kit. 

A second consideration in the kit definition process was the original source language. 
We have observed through automatic and manual measurements of MT quality that the 
English translations of Arabic source data tend to be better than those from Chinese 
source data. With that in mind, kits were created as to mix, and preferably alternate 
between, documents that originated in the two languages. The thought being that the 
lower MT quality would require more thought, more careful editing, to achieve the post 
editing goal. This second consideration was not always possible. For example in the first 
MT evaluation during phase 3, only one team participated and only the Arabic source 
data was processed. 

The third consideration designed to reduce the cognitive burden on editors related to 
mixing the genres in each kit. To the extent possible NIST sought to mix audio and text 
sources and within that grouping NIST sought to interleave translations from each of the 
four genres (text from newswire and web; audio from broadcast news and broadcast 
conversations). Again, through automatic and manual evaluations of MT performance by 

Handbook of Natural Language Processing and Machine Translation 791 



genre, it has been observed that system performance was generally better for the 
structured sources when compared to the unstructured sources (translations of newswire 
data were generally better than translations of web data, for both languages; and 
translations of broadcast news data were generally better than translations of broadcast 
conversations, for both languages).  

And finally, as was mentioned in Section 5.4.3.1.4, a one-page reminder of the post 
editing goals was produced as a quick reference guide. The full post editing guidelines 
are too comprehensive to expect editor memorization. This one-page reference guide 
emphasized the order of priorities and general philosophy behind the editing process and 
served new editors as a tool that could quickly be committed to memory. 

5.4.3.3.4. Post-editing Protocols – Teams: first pass editors and second 
pass reviewers  

This section describes the post-editing protocol used in the GALE program and the 
changes that were made in later phases of GALE such as to combine the first pass editors 
and second pass reviewers into a team, streamlining the post-editing process. 

 

Figure 5.14: Diagram outlining the post-editing protocol used in GALE phase 1 

We designed the GALE post-editing protocol to maximize repeatability and improve 
validity by employing a multi-stage process.  

Figure 5.14 summarizes the protocol used in the first year of GALE. In the first year 
of GALE , the editing process involved three truly separate stages: first-pass editing, 
second-pass reviewing, and a final stage in which a composite document was assembled 
and scored. In the first stage, three independent first-pass editors post edited each 

Chapter 5: Machine Translation Evaluation and Optimization792 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 
 
 

Seg1 
Seg2 

… 
SegN 

Seg1 
Seg2 

… 
SegN 

Mi 
Hi 
… 
Lo 

Seg1 
Seg2 

… 
SegN 

 
Lo 
Mi 
… 
Hi
 

Seg1 
Seg2 

… 
SegN 

 
Hi 
Lo 
… 
Mi 

 

Seg1/Ed2
Seg2/Ed3

… 
SegN/Ed1

Seg1/Ed2
Seg2/Ed3

… 
SegN/Ed1

Seg1 
Seg2 

… 
SegN 

 
Lo 
Hi 
… 
Lo

Seg1 
Seg2 

… 
SegN 

 
Hi 
Lo 
… 
Hi

Seg1/Ed5 
Seg2/Ed4 

… 
SegN/Ed5 

Legend 
Seg=segment     Lo=lowest HTER score segment 
PE=post edited  Mi=mid HTER score segment 
Ed=editor            Hi=highest HTER score 

t

System Output 

Editor1 PE Output 

Editor2 PE Output

Composite Low

Composite Mid

Editor4 PE Output

Editor5 PE output

Final PE Output 

Editor3 PE Output



 

system’s output translation. The result was three first-pass post-edited versions of the 
same document. The HTER score was computed for each segment of each of those three 
versions. 

In the second stage, the two composite outputs were reviewed by different second 
pass editors who acted as a reviewer and made additional (or different) edits and 
corrections if needed. The focus of the reviewer was ensuring that the meaning of the 
post-edited translation matched the meaning of the reference translation. Usually the 
editors who served as reviewers were more experienced editors. The second pass editors 
were primarily concerned with ensuring the accuracy of the edits. This stage resulted in 
two second-pass post-edited versions.  The HTER score was computed for each segment 
of each of the two second-pass versions.  

In the third stage, a final composite output was created from the two second-pass 
post-edited versions of each segment by choosing the version with the lower HTER score 
for each segment. The final HTER value is computed over that final composite output.  

We turn now to elaborating on the rationale for this process. For HTER to be 
meaningful, the post-edited output must be consistent and accurate. Accurate is defined 
as (1) completely correcting the meaning, (2) being as understandable as the reference, 
and (3) using the minimum number of edits necessary to accomplish those two goals. 
Consistent is defined as repeatable, which in practice means different editors would make 
similar edits on any given system output. However, the post-editing task is highly 
subjective despite the fact that editors have gone through a rigorous training process. 
Thus, multiple editors were used to post edit each system output, in an attempt to ensure 
editing consistency.  

In the first stage, for practicality reasons (time and cost) we chose the number of 
first-pass editors to be three although a higher number would have been more desirable. 
As has been mentioned, the post-edited translation should convey the same meaning as 
the reference translation. This does not mean the post-edited translation should have 
exactly the same wording as the reference translation. Using three independent first-pass 
editors generated a wider range of alternative ways to edit the translation so as to 
minimize HTER. The second-pass review editors ensured that the meaning was not 
compromised. The reviewer is necessary because minimizing HTER conflicts with 
improving the meaning of the translation. 

Making as few edits as possible during the editing process is important to a 
meaningful HTER score (recall that the idea of HTER is that it is a measure of the 
minimum edits required to correct the MT output). Without keeping an eye on the 
number of edits being made, the HTER score could be falsely inflated. Finding the 
minimal number of edits is, however, an ideal; there is no benchmark to compare to. And 
the task is difficult, with clear differences among editors in their ability to find a minimal 
set of edits (as discussed at the end of Sections 5.4.3.1.1 and 5.4.3.1.2). Therefore, to 
increase repeatability we create the composite version using the segments with the lowest 
HTER scores from the available second-pass post-edited outputs. In this context lower 
HTER scores are assumed to be better editing.  

In the current phase of GALE, and for future phases, the post-editing protocol 
employs a streamlined two-stage process: in the first stage each system output is post 
edited by two independent teams of editors thus creating two post-edited versions, and 

Handbook of Natural Language Processing and Machine Translation 793 



then in the second stage (exactly as in the previous third stage) we create and score a 
composite version. 

Figure 5.15: Diagram outlining the current post-editing protocol used in GALE 

Each post editing team consists of two editors, one acting as the first-pass editor and 
the other serving as the second-pass reviewer checking the edits of the first pass editor. 
Together, the editors of a team produce one post-edited version. Thus, the two teams 
produce two post-edited versions. Unsurprisingly, with the variability that exists in 
human language, the resulting edits between two teams may at times vary, sometimes 
drastically.  Ideally, five or more teams would be used for post editing each document 
and the differences between teams could be averaged for a better understanding of HTER 
scores.  The practice of limiting to two teams has been dictated by both cost and the 
amount of data post edited for evaluation. HTER is calculated for each segment of each of 
the two versions. We select the version of each segment with the lower HTER, combine 
them into a composite document, and score the composite document.  

Figure 5.15 summarizes the protocol used in GALE at the time of this writing. 

5.4.3.3.5. Potential Problems and Attempted Solutions  

There are two identified weaknesses in using the described post-editing protocols for 
MT evaluation over successive years, and both have to do with the human aspect of the 
task:  (1) the lack of post-editors retention causing inter post-editor differences and (2) 
year-to-year intra post-editor differences. 

Despite LDC’s best efforts, it is not possible to retain the same set of post editors for 
duration of a five year program. During each phase of GALE, new editors are added to 
the team and some choose not to return. The quality of each post editor can range from 
those who are exceptional at solving the puzzle (finding the least number of edits 
required to modify MT output to contain the exact meaning of the reference translation 
using equally understandable English) to those who solve the puzzle in less than the 

Chapter 5: Machine Translation Evaluation and Optimization794 

 

Seg1 
Seg2 

… 
SegN 

Seg1 
Seg2 

… 
SegN 

 

Seg1 
Seg2 

… 
SegN 

 

Seg1 
Seg2 

… 
SegN 

Hi 
Hi 
… 
Lo
 

Seg1 
Seg2 

… 
SegN 

Lo 
Lo 
… 
Hi
 

Seg1/T1
Seg2/T1

… 
SegN/T2

Legend 
Seg=segment     Lo=lowest HTER score segment 
PE=post edited  Mi=mid HTER score segment 
Ed=editor            Hi=highest HTER score 

t

System Output 

Team1 Editor1

Team2 Editor1

Team1 Editor2 

Team2 Editor2 

Final PE 



 

optimal fashion. Some editors may be aggressive in the amount of editing they perform to 
capture the meaning while others may be too lenient, taking too much editor liberty in 
deciding the meaning is equivalent. It is through the LDC’s quality control process of 
spot checking editor performance that such trends may be found. LDC also compares 
each editing team’s HTER scores to those of the alternative version. When a team is found 
to be producing consistently lower or higher HTER scores than the corresponding editing 
team, a flag is raised and a review of their work is conducted. On occasion, an editor has 
been counseled due to poor editing skills, but one has never been let go during the 
evaluation. 

As the pool of editors change from evaluation to evaluation, “control documents” are 
used to measure the editing consistency across evaluations. This is accomplished by 
inserting original translations that were previously edited, in the preceding evaluation, 
into the current editing task. When the documents are edited by different individuals, this 
process allows the measurement of the average difference on a subset of documents 
between two evaluations. Major differences are not expected, but can result from changes 
in editing protocols or from changes in the performance of the editors. Major differences 
prompt investigation.  Editor differences between two evaluations can help explain 
system performance changes between the two evaluations. If editors are found to be 
particularly picky one year, they can unknowingly mask system improvements. 

5.4.3.4. Conclusion  

This section described the evaluation metrology used for the evaluation of MT 
performance for the GALE program. HTER as defined is the primary metric for GALE 
evaluations. NIST and LDC jointly created the post editing guidelines. NIST has created 
the evaluation datasets. The Linguistic Data Consortium has coordinated and supervised 
the post editing work for the GALE evaluations. 

Authors: Mark Przybocki, Audrey Le, Stephanie Strassel, Calandra Tate Moore, and Gregor Leusch 

5.4.4.1. Introduction 

The DARPA GALE MT evaluations test a system’s capability to accurately and 
fluently produce an English translation for language data that originated in one of two 
languages, either Arabic or Chinese.  The official evaluation metric is HTER as described 
earlier in Sections 5.2.3 and 5.4.2.  The evaluation paradigm requires local 
implementation, that is, GALE teams receive the evaluation source data, allowing 
processing to take place locally using their distributed translation system network. Due to 
the complexity and the costliness of post editing, each GALE Team submits a single 
system for evaluation representing the one-best translation. Contrastive systems and 
system components are not evaluated. In essence it is the quality of the returned 
hypothesized translations that is being evaluated.    

Handbook of Natural Language Processing and Machine Translation 795 

5.4.4. GALE Machine Translation Metrology: Machine 
Translation Assessment  



There are two tasks evaluated in each GALE MT evaluation.  These tasks differ only 
by the medium of source data being processed.  We refer to the two tasks as the 
Translation task, when the data medium is text, and the Transcription task, when the data 
medium is speech or audio files. 

5.4.4.2. Translation Task  

The GALE MT Translation task requires systems to accurately and fluently translate 
foreign language text data into English.  The text data has been drawn from various 
online news and web forums or blog sources.  The evaluation data sets were designed to 
include some source providers that were represented in the allowable training data and 
some source providers who were not.  The data encoding for both input and output files 
has remained UNICODE UTF-8 encoded data, throughout each phase of GALE.  

Although the definition of the Translation task has enjoyed relative stability 
throughout each phase of GALE, there were two noticeable changes that occurred 
between Phases 1 and 2. The first allowed systems to use ground truth sentence 
segmentation, as defined from the original source data.  In review of the phase 1 
evaluation protocols, it was noticed that too many post-editing errors may have been 
improperly influenced by the automatic alignment process (Matusov 2005) that was used 
to align the system hypotheses to the reference translation. An automatic alignment 
process was necessary since the segmentations used for each team’s system translations 
were created independently of each other and independently of the reference translation 
segmentation. Although post editors are trained to consider information in a document as 
a whole, allowing information to exist outside the current segment under focus, in 
practice many post editors were inconsistent with how they handled information in 
adjacent segments which could lead to over editing.  By providing the true segmentation 
marks for the following phases these types of errors were and will be eliminated.  The 
second modification was to reduce the size of the evaluated document.  Rather than 
evaluating the contents of each full document, which ranged in size from about a hundred 
words to several hundred words, smaller cohesive subsets of the larger document were 
defined with each targeted to have about 200 words, thus allowing for more data points 
during analysis. This change was mainly due to a change in the program’s targets. For 
Phase 1, the target was average accuracy. For the following phases, the target was set as 
the percentage of documents that exceeded a minimum accuracy target. To get a proper 
value for the percentage of documents, we increased the number of documents evaluated. 

5.4.4.3. Transcription Task  

The GALE MT Transcription task requires systems to accurately and fluently 
produce English transcripts from foreign language audio sources.  Like the Transcription 
task, the evaluation data sets for Transcription were designed to include some source 
providers that were represented in the allowable training data and some source providers 
who were not.   The source language audio files for the Transcription task were provided 
to the GALE teams as NIST à SPHERE (Garofolo 1994) formatted waveforms, most 
likely requiring systems to use an automatic speech recognizer (ASR) as the front end 
ideally optimized for use with a translation system.   While both the ASR and MT system 

Chapter 5: Machine Translation Evaluation and Optimization796 



 

components could be measured separately the focus of the GALE evaluations is not on 
the individual component performance but rather to evaluate the system performance as a 
whole. 

As with the before mentioned Translation task, the Transcription task too had similar 
changes to begin allowing systems to use segmentation information, but this change for 
the Transcription task occurred after Phases 2 and was motivated out of the necessity to 
save time and to reduce the size of the evaluated audio file rather than any type of 
observed errors. 

5.4.4.4. Data  

Each succeeding GALE evaluation phase requires a new test set to be created for 
both evaluation source languages (Arabic and Chinese).  The reason for the requirement 
for new test material arose because the performers used the results of previous 
evaluations for error analysis. This section defines the evaluation test sets used in the 
GALE phases.   The evaluation test sets have been collected by the Linguistic Data 
Consortium (LDC).  The actual selection of the data files to be used in evaluation has 
been a combined effort between NIST and the LDC, with final approval coming from 
DARPA.   

The National Virtual Translation Center (NVTC) was responsible for generating the 
Gold Standard reference translations for the first evaluation (Phase 1) and the LDC has 
been responsible ever since. 

 
Genres 

At the highest level, the GALE evaluation data can be categorized into two distinct 
categories, structured data and unstructured data.   

Structured data is defined as that which is cleaner, well prepared and most likely has 
been reviewed and edited before being published.  There are two genres that represent 
structured data.  The first is newswire.  Newswire is text data that is typically a single 
coherent news story; examples can be viewed from any online news reporting agency.  
For the first phase, 3 Arabic and 2 Chinese sources were used in the evaluation.  There 
was a concentrated effort to include more variety of source providers in the following 
phases (7 Arabic and 6 Chinese sources). 

The second genre of structured data is broadcast news which contains smaller news 
clips extracted from a larger audio broadcast. As with text, broadcast news data 
represents clean audio broadcasts, usually scripted and this data has probably gone 
through multiple reviews before being broadcast.  This data is typically void of 
conversational and spontaneous data. As with newswire, the first phase of GALE used 4 
Arabic and 4 Chinese sources and this set was augmented to 17 Arabic and 14 Chinese 
sources.  

Unstructured data genres, as the name implies, carry a more informal tone.  In text 
data, the informality is found in the form of web data, blogs and forums where 
keyboarders are more likely to write in fragments, with typing errors, and using 
unconventional phrases and abbreviations.  We refer to the unstructured text genre simply 
as web data.   For audio data the informality comes in the form of call-in talk shows and 

Handbook of Natural Language Processing and Machine Translation 797 



live reports from the field, including unscripted interviews.  This genre is referred to as 
broadcast conversations.  For Phase 1 UT, only 2 Arabic sources and one Chinese source 
of Newsgroups were used and for UA, 6 Arabic and 3 Chinese sources. This was 
augmented in following phases to 7 Arabic Newsgroups, 12 Weblogs, 2 Chinese 
Newsgroups and 9 Weblogs for UT. For UA, 24 Arabic sources and 14 Chinese sources 
were used in later phases. 

We will use the following abbreviations throughout this chapter:  NW to refer to the 
newswire genre, WB to refer to web data, BN for broadcast news, and BC for broadcast 
conversations. 

 
Test Set Size 

A reoccurring issue in defining an evaluation data set is that of determining “how 
much data is required for the test?”  For GALE the “how much data” must be taken in 
consideration with the practical question of “how much will it cost” for the post editing 
of resulting system translations.   

In Phase 1 the evaluation test set size was measured via source word counts with the 
goal to have approximately 10,000 source words represented in each of the four genres, 
for each source language.  While this may seem relatively straight forward, a couple of 
assumptions were made.  First, for Chinese text data, 1.5 native Chinese characters were 
estimated to correspond to one word.  And since the selection of evaluation data was 
from audio (before reference transcriptions were available) an estimation of the rate of 
speech in Arabic and Chinese BN and BC data was required.  The rate of speech 
estimates used for the various audio data sets are listed in Table 5.7  The adjustment 
between Phases 1 and 2 was made after post evaluation analysis identified that much 
more data was post edited in phase 1 than anticipated. 

 
Language/Genre Estimated Rate of Speech words per hour 
 Phase 1 Later Phases 
Arabic BN 6000 5700 
Arabic BC 6000 5700 
Chinese BN 10,000 11,000 
Chinese BC 10,000 11,000 

Table 5.7: Estimated rates of speech for GALE audio evaluation data based on calculations from lower 
quality training data 

Following Phase 1, the evaluation test set size was increased by 50%, that is, the goal 
was for each genre to be represented with 15,000 source words (for each language) and 
the number of documents was increased as explained above.  Table 5.8 lists the actual 
words per genre as measured by the source and reference word counts.  The decision to 
limit documents to smaller snippets (cohesive topic segments) allowed for the inclusion 
of many more document samples.  

The fluctuation in test set difficulty from year-to-year has been an issue that NIST 
has struggled with in many human language technology evaluations.  In the DARPA 
EARS program, NIST began making use of a “progress” test set that was treated with 
special instructions so that it could be reused in subsequent evaluations, allowing system 
improvements to be better tracked over time.  This scenario only works if the evaluation 

Chapter 5: Machine Translation Evaluation and Optimization798 



 

data can remain completely blind from the systems and participants.   In GALE 
evaluations this is not possible.  The evaluation data is examined in excruciating detail 
post evaluation.  Post editors completely probe the data, and participants are encouraged 
to perform error analysis in order to improve their systems.  Given these constraints, the 
program explored two alternatives for dealing with year-to-year test set difficulty 
differences.  The first involved controlling the evaluation test set selection process, and 
the second made use of a few control documents allowing year-to-year test set 
calibration.  These two ideas are further explained below. 

 
Language/Genre Phase 1 Later Phases 

 SRC 
Words 

REF 
words 

Doc 
Count 

AVG 
Doc 

length 

SRC 
words 

REF 
words 

Doc 
count 

AVG 
Doc 

Length 
Arabic BN 12k 15.5k 24 636 14k 20k 69 218 
Arabic BC 11k 15k 13 1130 14k 20k 60 250 
Arabic NW 10k 14k 51 182 14k 18k 68 220 
Arabic WB 10k 12.5k 29 309 14k 19k 69 219 
Chinese BN 13k 14.5k 18 777 16k 17k 70 215 
Chinese BC 14k 13k 11 1126 15k 15k 53 283 
Chinese NW 10k 10.5k 36 240 16k 17k 74 201 
Chinese WB 10k 10.3k 19 485 15k 17k 66 227 

Table 5.8: Word counts for phase 1 and phase 2 evaluation test sets. Source words are counts of native word 
tokens and reference words are counts of the words in the English translation. 

 
Defining the Evaluation Epoch 

Test set creation begins with selection of the evaluation (and optionally, a 
corresponding development test) epoch. Several factors are considered when choosing 
the evaluation epoch. First, the epoch should occur during a period of relative stability for 
LDC’s ongoing data collection. For instance, LDC’s broadcast collection system is taken 
offline once or twice a year to perform software upgrades and ongoing system 
maintenance, and an evaluation epoch that coincides with one of these maintenance 
windows would be subject to recording gaps. Similarly, programming schedules on the 
broadcast networks that LDC subscribes to are subject to variation during the time 
change between standard to daylight savings time, and so recording schedules may be 
unreliable for the few days surrounding this transition. Programming schedule disruptions 
are also common during holiday periods, for instance Chinese New Year and Ramadan. 
A second consideration in selecting the evaluation epoch is topical content in the news. 
While GALE evaluation data is intended to be representative of the linguistic challenges 
that exist in real world data, it happens occasionally that a single topic will dominate 
news coverage for days or weeks on end, and care must be taken to avoid selecting an 
epoch in which one single topic will predominate. For instance, the earthquake that 
occurred in the Sichuan region of China in May 2008 completely dominated Chinese 
news reports for several days on end, disrupting normal programming considerably.  

Consideration must also be given to what data sets have already been “exposed” as 
training data (within GALE, or as part of other technology evaluation programs that 
GALE sites may have been part of); evaluation data should be blind and so previously-

Handbook of Natural Language Processing and Machine Translation 799 



exposed epochs and possibly sources are avoided. Finally, an evaluation epoch must be 
selected from early enough in the current phase to ensure adequate time to prepare Gold 
Standard references before system evaluation takes place.  

At minimum, GALE evaluation epochs are one month in duration.  This is necessary 
to ensure sufficient data volume and variety to support targeted selection. If a 
development test (devtest) set is to be defined, it typically comes from a time period 
directly preceding the evaluation epoch.  Typically LDC and NIST collaborate to define 
an appropriate evaluation epoch, and the plan is endorsed or refined by the GALE data 
committee.  

 
Evaluation Candidate Pool and Manual Selection 

Once an evaluation epoch has been defined, LDC creates the evaluation candidate 
pool.  The candidate pool is very large, typically hundreds of times larger than the final 
evaluation set. It consists of source data for all four genres that were collected during the 
evaluation epoch, processed to conform to the standard GALE source data format, and 
(where applicable) subject to manual or automatic auditing for quality and content 
(Chapter 1 in this book). 

The candidate pool serves as input to the first stage of data selection. LDC annotators 
review the contents of the candidate pool to identify portions of documents or files that 
meet specific selection criteria. LDC has developed a customized user interface for doing 
data selection. (See Figure 5.16.)  The interface uses a database backend to track 
annotation decisions. The process begins by dividing the candidate pool into randomized 
file lists. Each list includes up to 200 files, drawn from a single language and genre and 
either mixed or uniform with respect to sources/programs and epochs, depending on 
requirements. All files in the candidate pool appear on some list. At the start of a work 
session the annotator logs into LDC’s Annotation Workflow System (AWS) ((Maeda 
2009) and Chapter 1 in this book) and chooses Eval Data Selection from their assigned 
list of tasks. AWS then launches the data selection toolkit and pre-loads the next 
unassigned file list from the pool of available data.  After the tool launches, the annotator 
sees the list of candidates to review, along with the first line of text in the file (where 
available) and the file size (in tokens or duration).  The annotator clicks on each filename 
in turn, whereupon the tool displays the full text and/or audio for that file. Newswire 
candidates are presented for manual review as individual story units, with story 
boundaries pre-defined by the source data provider. Web text candidates are presented for 
review as threads, which consist of a single entry or post on a given topic, plus all the 
follow-up entries, posts, messages and/or comments responding to the original post. 
Broadcast candidates are presented for review as single audio files that correspond to a 
recording of one episode of a single program, typically 20, 30, or 60 minutes in duration, 
plus the corresponding automatic speech recognition (ASR) output for that recording 
(Chapter 1 in this book). 
 

Chapter 5: Machine Translation Evaluation and Optimization800 



 

 
Figure 5.16: Audio and Corresponding Text Display for Selected Story 

 
Figure 5.17: Completing Judgments for Selected Story 

The annotator reads through the text or ASR output, and/or listens to the audio 
recording, and makes an initial YES/MAYBE/NO judgment about the suitability of a file 
for inclusion in the selection pool.  The primary determination for suitability is based on 
topic content. Hard news about politics and current events, social issues, human interest 
stories, and opinions about current news are all examples of suitable topic content.  This 
data may be collected as editorials, interviews, call-ins, round table discussions or from 
simple news reports.   There are many categories of topic content that are excluded.  

Handbook of Natural Language Processing and Machine Translation 801 

 

 



Some examples include: re-broadcasts or re-prints, previews, sporting events, lists of any 
kind, weather or stock reports, commercials, movie or book reviews, chain letters, fake 
news, and anything that contains explicit sexual or obscene language.  Neither of these 
lists is intended to be exhaustive of all suitable and non-suitable topic content defined for 
use in GALE.  

While collected source data varies in length, the GALE test set consists of smaller 
snippets - typically, segments under 200 words in length. (A snippet is defined as a single 
cohesive story or article contained in a much larger publication.) Because of this 
requirement, LDC annotators typically must designate one or more subsections of a given 
candidate file for selection. The toolkit includes functionality for marking off one or more 
segments (snippets) within an audio or text.  When a segment is selected, the tool 
automatically updates the file inventory and file size (token or duration) information. 

 
After the annotator labels a file or segment as YES or MAYBE, the tool launches a 

decision panel (see Figure 5.17) and the annotator records the following judgments: 
 

• Genre: NW, WB, BN, BC, Other (with text box) 
• Topic Category:  

1. Local or regional news – general  
2. National or international news – general 
3. Editorial or opinion  
4. Personal anecdote  
5. Human interest story 
6. Medical 
7. Legal 
8. Other 

• Synopsis: 1-2 sentence description of content, in English 
• Document difficulty rating:17 Less than 2; 2; 3; 3+ (See description of ILR 

ratings in Section 5.3.3.) 
• Language/Dialect issues: text box 
• Other comments: text box 

 
After making the relevant judgments, the annotator moves on to the next file (or 

segment of the same file) for review.   
At the close of the work session, the annotator is asked by AWS whether the file is 

complete or still in progress.  If the file is labeled complete, AWS will allow the 
annotator to request another file for review or to log out.  If the file is labeled in progress, 
AWS will launch the same file in the selection tool the next time the annotator logs in for 
a work session. 

 

                                                 
17 LDC annotators assign preliminary ratings using the Interagency Language Roundtable (ILR) system. 
Although there are no hard and fast requirements regarding document difficulty, the selection process 
primarily targets level 2 and level 3 documents. See 
http://www.dliflc.edu/academics/academic\_affairs/dli\_catalog/reading.htm  

Chapter 5: Machine Translation Evaluation and Optimization802 



 

First Round Automatic Selection 
Once manual selection on the candidate pool is complete, LDC annotators create 

quick rich transcripts for selected audio snippets, and segment the selected text snippets 
into sentence units, resulting in preliminary source text references (Chapter 1 in this 
book). LDC then distributes to NIST the preliminary source text references along with 
the output of the data selection database consisting of the following fields:  

 
• Snippet ID 
• Language 
• Genre 
• Source 
• preliminary ILR 
• Publication date 
• Topic category 
• Topic description 
• Language / Dialect issues 
• Document section location {Begin, Middle, End} 
• Document section word count (text) 
• Document section duration (audio) 
 
The next stage of data selection applies a series of automatic diagnostics to calculate 

log-perplexity and 3-gram hit-rate for selected snippets.  
 

First Round of Down Selection 
Automatic measures of n-gram statistics and perplexity as measured against the 

original Phase 1 training data were used as a first step in controlling for year-to-year test 
set differences.18  The evaluation candidate pool of potential test materials was sampled, 
removing candidate documents that were outside the Phase 1 test material statistics in 
either n-gram hit rates or log-perplexity.  From the remaining set of documents, NIST 
semi-randomly selected a set that was three times the anticipated test set size such that 
the n-gram hit rate distribution and log-perplexity scores were similar to that of the phase 
1 test sets.  

The selected files (three times the intended test set) were returned to the LDC for 
further processing.  Audio sources were processed with in-house speech-to-text systems 
to generate rough transcriptions.  These transcripts and the source data from the text 
genres were processed by in-house MT systems to produce system translations.  The MT 
output and the rough human translations were returned to NIST for the second round of 
down selection. 

 
Second Round of Down Selection 

Before Phase 2, the hope was that matching n-gram statistics and perplexity measures 
would be sufficient to produce stable, in terms of test set difficulty, succeeding year test 

                                                 
18 This down-selection process did not apply to phase 1 evaluation data. 

Handbook of Natural Language Processing and Machine Translation 803 



sets.19  It was not.   In Phase 2, post evaluation analysis indicated that the Chinese test set 
was slightly more difficult than the Phase 1 test set which confounded the ability to 
demonstrate technology progress. Demonstrating progress is of vital importance in any 
evaluation that has strict targets of performance that must be met for continuation in the 
program.  The fact that there was a measurable difference in test set difficulty was not a 
surprise and underscored the fact that inherent differences in the data exist despite best 
efforts to eliminate those differences.  Language is ever changing. 

A second round of down selection was implemented in Phase 3.  In another attempt 
to reduce year-to-year test set differences the test material was carefully selected such 
that its overall TER distribution matched that of a previous year’s test set.  The idea is that 
an MT system is likely to produce similar TER distributions on two corpora with the same 
overall difficulty, provided that the corpora share the same genre, and that the system is 
not trained on either corpus.  The use of system technology to select evaluation material 
is not a practice that NIST endorses. The same weaknesses that are a part of the system(s) 
being used to select the data will not be properly probed by the new test. Overriding the 
NIST concern is the need to demonstrate progress. 

Along with the rough human translations of all the data being considered for test 
material, the LDC provided NIST with three system translations for each document, each 
produced by a different MT system.  A per document TER score was established by 
averaging the scores from each MT system.  In a similar manner TER scores were 
generated for each of the preceding evaluation test sets.  The phase 3 test set was selected 
so that the TER distribution of the data matches the desired distribution.  For the Arabic 
test materials, Phase 3 data was to match the TER distributions obtained in Phase 2.  For 
Chinese test materials, Phase 3 data were to match the TER distributions obtained in 
phase 1. 

This second round of down selection reduced the number of files to be submitted to 
Quality Control (QC) for final reference translation to the actual evaluation test set plus a 
handful of additional files, held in reserve, in case a file or two is deemed inappropriate 
for evaluation during the QC process.  

While this second round of down selection was not performed to perfection in Phase 
3, it is believed that in future phases of GALE this step will help reduce (but not 
eliminate) year-to-year test set differences. Short of using a progress test set – data that is 
kept blind and reused in future evaluations – language data is varied enough that efforts 
to control levels of difficulty will prove at times to be ineffective. 

 
Final Reference QC 

With the final selected files in hand, the LDC performs translation and QC, the last 
step in identifying possible issues with the selected data before declaring the official 
evaluation test set as finalized. The complete set of reference translations with 
segmentation that matches the source files are provided to NIST for GALE MT 
evaluation, which involves HTER scoring of translations from the evaluation systems. 

                                                 
19 This down-selection process did not apply to either of the first two phases of GALE.  It has since become 
part of the data selection protocol and is planned for all future phases.  
 

Chapter 5: Machine Translation Evaluation and Optimization804 



 

As described in Sections 5.2.3 and 5.4.2, HTER is a measure of edit distance between 
a modified system output and a single reference translation.  Acknowledging that there 
are multiple acceptable translations HTER is designed to capture the quantity of edits 
required to obtain the correct “meaning.”   Sometimes the source data can be ambiguous 
as to the intended meaning.  In such cases alternative translations are encoded in the 
reference translation allowing the post editors to use their best judgment as to which 
“meaning” the system is closest to capturing.  The actual implementation of alternatives 
in translation is described above in Section 5.4.2. 

The LDC has created documentation that defines the process used to create reference 
translations.  These translation guidelines are available from the LDC website.20 

  
Control Documents 

As stated in the preceding sections, despite best efforts, some level of difference will 
often exist between two test sets. The GALE program has made good use of control 
documents to assist in understanding test set differences.  Control documents are used in 
two facets. 

In the first situation, several documents from an evaluation are declared sequestered 
shortly after the evaluation period.  Team interaction with sequestered data is limited, and 
no system development is permitted that makes use of information derived from the 
sequestered files.  In the subsequent evaluation these sequestered documents will be 
reprocessed by the GALE teams along with the new evaluation test set. The data is post-
edited and scored.  While not a part of the official GLE evaluation, the scores obtained 
from the sequestered data alone are useful as a benchmark of improvement from the 
previous year.  This does not represent a perfect solution since the remaining data from 
the previous evaluation are used to develop the new system and that data is drawn from 
the same epoch where similar language, topics, and names are used, which might create a 
bias. 

In the second situation, control documents are used to measure year-to-year editor 
differences.  See Section 5.4.3.3.5 for a description of how control documents are used to 
measure changes in editor behavior from one evaluation to the next. 

5.4.4.5. Metrics  

In addition to the official GALE MT evaluation metric of HTER, other automatic 
metrics that GALE teams might use in the development cycle are reported to the teams to 
assist in error analysis.  The automated metrics reported by NIST include: BLEU (Section 
5.2.2.2 [version 1.04] above), METEOR (Section 5.2.2.3 [version 0.6] above), and TER 
(Section 5.2.2.4 [version 0.7.25] above).  NIST reports per-document HTER scores that 
are used by DARPA to determine the success of teams meeting DARPA GALE 
program’s performance targets. 

                                                 
20 http://projects.ldc.upenn.edu/gale/Translation/ 

Handbook of Natural Language Processing and Machine Translation 805 



5.4.4.6. Evaluation Rules  

Each evaluation is implemented according to predefined rules and restrictions that 
identify the evaluation protocols.  NIST documents these protocols in an evaluation 
specification document.   The reader is referred to the NIST GALE web site for access to 
these evaluation specification documents (evaluation plans).21 A few of the rules and 
protocols are listed here. 

 
1. Teams are forbidden from using data created or published during the same 

time epoch that the evaluation data is chosen from. 
2. Teams are forbidden from manually inspecting the evaluation data before 

their results are submitted to NIST for scoring. 
3. Teams are required to share all self collected training data. 
4. Teams are required to process the entire evaluation test set and return 

resulting translations to NIST by an agreed upon due date, usually allowing 
two weeks to process the text sources, and three weeks to process the audio 
sources. 

5.4.4.7. Systems Evaluated  

As identified earlier there are three GALE teams.  Each team submits a single set of 
results for each of the two test sets (Arabic and Chinese).  The team names are AGILE 
(led by BBN Technologies), ROSETTA (led by IBM), and NIGHTINGALE (led by SRI 
International).    

5.4.4.8. MT Results  

In this section we report the performance results obtained in each of the GALE 
phases.  Section 5.6 focuses on the primary metric of HTER. Section 5.4.4.8.2 focuses on 
the automated metrics that were reported to the GALE teams. Section 5.4.4.8.3 focuses 
on the intermediate HTER scores calculated from the first pass and second pass post 
editing. 

 

                                                 
21 http://www.nist.gov/speech/tests/gale/ 

Chapter 5: Machine Translation Evaluation and Optimization806 



 

 
Figure 5.18: Average HTER for all genres of Arabic sources 

 
Figure 5.19: Average HTER for all genres of Chinese sources 

Handbook of Natural Language Processing and Machine Translation 807 

0

5

10

15

20

25

30

35

40

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

Structured Text Unstructured 
Text

Structured 
Speech

Unstructured 
Speech

%
 E

rr
or

  

Arabic Machine Translation

0

5

10

15

20

25

30

35

40

P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4 P1 P2 P3 P4

Structured Text Unstructured 
Text

Structured 
Speech

Unstructured 
Speech

%
 E

rr
or

Chinese Machine Translation



5.4.4.8.1. HTER Results  

The scores presented in this section represent the final HTER scores as calculated 
after completion of all post-editing.  Scoring is divided into four genres:  NW for 
newswire data, WB for web data, BN for broadcast news data, BC for broadcast 
conversation data.  The results are shown in Figure 5.18 and Figure 5.19.  

These averages were only used for the first year of GALE. For the following years, 
DARPA changed the metric.  Instead of aiming for an average translation accuracy rate, 
the program set goals based on a given percentage of documents that exceeded a 
minimum accuracy. The targets for years two to five are shown in Table 5.9. 

 
 

Language Arabic Chinese 
Genres NW WB BN BC NW WB BN BC 

Phase 2 80/90 70/75 75/80 70/70 75/90 70/75 70/75 65/70 
Phase 3 85/90 75/80 85/85 75/75 80/90 75/80 80/80 75/75 
Phase 4 90/90 80/85 90/85 85/80 85/90 80/85 85/85 80/80 
Phase 5 90/95 85/90 90/90 90/90 90/90 85/90 90/90 85/85 

Table 5.9: GALE translation targets shown as accuracy/percent of documents 

 Figure 5.20: Arabic document accuracy plotted in descending order. Stars show 
the target for each Genre 

Chapter 5: Machine Translation Evaluation and Optimization808 

 

70

75

80

85

90

95

100

Arabic NW

Arabic WB

Arabic BN

Arabic BC

H
TE

R

10   20    30    40    50    60    70    80    90
Percent of Documents



 

Figure 5.21: Chinese document accuracy plotted in descending order. Stars show 
the target for each Genre 

5.4.4.8.2. Automated Metric Results 

Team Genre Average BLEU Average METEOR Average TER 
P1 P2 P3 P1 P2 P3 P1 P2 P3 

Agile 

NW 0.23 0.33 0.4 0.55 0.62 0.67 0.55 0.45 0.4 
WB 0.11 0.22 0.27 0.40 0.53 0.57 0.69 0.58 0.52 
BN 0.16 0.27 0.35 0.48 0.58 0.64 0.64 0.53 0.43 
BC 0.14 0.23 0.28 0.44 0.55 0.57 0.68 0.57 0.49 

Nightin
gale 

NW 0.23 0.31 0.32 0.55 0.61 0.61 0.56 0.50 0.48 
WB 0.10 0.20 0.21 0.40 0.52 0.52 0.70 0.64 0.60 
BN 0.16 0.23 0.28 0.48 0.56 0.58 0.69 0.61 0.51 
BC 0.12 0.23  0.42 0.53  0.75 0.64  

Rosetta NW 0.24 0.29 0.38 0.56 0.61 0.66 0.55 0.47 0.41 
WB 0.13 0.19 0.25 0.42 0.50 0.55 0.68 0.58 0.53 
BN 0.17 0.28 0.35 0.47 0.59 0.64 0.70 0.60 0.50 
BC 0.13 0.20 0.27 0.42 0.50 0.57 0.70 0.60 0.50 

Table 5.10: Arabic: Summary of Automated Metric Scores across Phases for BLEU, METEOR, TER (error 
measure).  For each phase the average metric score is shown. 

Several automated metrics were run over the submitted systems data compared 
against the single reference.  Since these metrics do not make good use of embedded 
alternatives, only the first listed in the set of alternatives are used.  The translation 
agencies are instructed to put the most common, or their best guess as to the intended 
meaning, first. 

Handbook of Natural Language Processing and Machine Translation 809 

 

60

65

70

75

80

85

90

95

100
Chinese 
NW
Chinese 
WB
Chinese 
BN
Chinese 
BC

10     20     30     40     50     60     70     80     90
Percent of Documents

H
TE

R

Since the percentage of documents of a given accuracy was set as the GALE targets, 
the translation quality is best displayed in Figure 5.20 for Arabic and Figure 5.21 for 
Chinese. These figures display the document accuracies after they have been sorted. 
These are the best Phase 3 results. The figures show the Phase 3 targets as stars. All 
Arabic genre and three of four Chinese genres exceeded the targets. Only Chinese BN is 
slightly below target. 



 
Team Genre Average BLEU Average METEOR Average TER 

P1 P2 P3 P1 P2 P3 P1 P2 P3 

Agile 

NW 0.17 0.21 0.18 0.50 0.51 0.49 0.63 0.60 0.63 
WB 0.14 0.14 0.16 0.44 0.44 0.43 0.65 0.66 0.66 
BN 0.13 0.21 0.15 0.45 0.51 0.46 0.75 0.59 0.65 
BC 0.10 0.11 0.11 0.39 0.39 0.39 0.77 0.71 0.69 

Nightin
gale 

NW 0.14 0.17 0.16 0.48 0.49 0.47 0.67 0.64 0.65 
WB 0.11 0.13 0.13 0.41 0.42 0.42 0.69 0.68 0.67 
BN 0.12 0.19 0.14 0.43 0.49 0.45 0.73 0.62 0.66 
BC 0.08 0.11 0.11 0.37 0.37 0.39 0.78 0.70 0.68 

Rosetta NW 0.14 0.17  0.45 0.48  0.67 0.64  
WB 0.10 0.12  0.39 0.40  0.71 0.68  
BN 0.08 0.16  0.38 0.46  0.76 0.62  
BC 0.06 0.10  0.33 0.36  0.79 0.70  

Table 5.11: Chinese: Summary of Automated Metric Scores across Phases for BLEU, METEOR, TER (error 
measure).  For each phase the average metric score is shown. 

Table 5.10 and Table 5.11 summarize the average scores for three popular 
automated metrics, for Arabic and Chinese, respectively. Please note that TER is an error 
measure so its polarity is different from the other two. 

5.4.4.8.3. Correlation Study  

Correlation results are generally used in MT evaluation to compare automatic and 
human evaluation of output from various machine translation systems.  In this section, we 
present a correlation analysis of the results obtained from comparing each of the three 
engine outputs for the GALE data across evaluations, source language, and genre.  We 
choose to use Spearman correlation as our measure for the strength of relationships 
between each of the variables of interest.  Spearman rank correlation is a distribution-free 
rank statistic that tests the direction and strength of the relationship between two 
variables (Lehmann and D’Abrera 1998).  This method, based on ranking the two 
variables, makes fewer assumptions about the distribution of the values and measures 
monotone rather than linear covariation.  We show the relationship between automated 
metrics BLEU, NIST, TER, and METEOR) and both the human judgments of quality (as 
denoted by adequacy scores) and HTER (the official metric of GALE). Both automated 
metric scores and human judgments are calculated per segment and then correlated at that 
level.  Adequacy scores amongst raters are averaged prior to performing correlations.   

 
Analysis and Results 

First, we computed correlation scores for the entire data set.  Table 5.12 shows these 
results.   The results presented are the absolute value correlations between the variables.  
This is done because as TER is an edit distance measure (smaller score means better), the 
true correlation between it and similarity metrics (larger score means better) has a reverse 
relationship. METEOR and HTER are found to correlate highest with adequacy as 
compared to the other metrics.  As should be expected, TER correlate highest with HTER.   

 
 

Chapter 5: Machine Translation Evaluation and Optimization810 



 

 
 HTER BLEU  NIST TER METEOR 
a) 0.622 0.508 0.577 0.517 0.624 
b) – 0.502 0.473 0.528 0.512 

Table 5.12: Automated Metric Correlation with (a) Adequacy judgments and (b) HTER scores 

 Language HTER BLEU  NIST TER METEOR 
a) Arabic 0.639 0.518 0.558 0.520 0.611 

Chinese 0.584 0.431 0.520 0.438 0.570 
b) Arabic – 0.592 0.588 0.626 0.614 

Chinese – 0.399 0.364 0.428 0.417 
Table 5.13: Automated Metric Correlation with (a) Adequacy judgments and (b) HTER scores classified by 

Source Language. 

We see in Table 5.13 that there is a change in the relationship between automated 
metrics and adequacy by source language.  Within each language, HTER has higher 
correlation with adequacy scores.  Across the board, scores are lower for Chinese than for 
Arabic.  Similar findings have been confirmed in previous NIST MT evaluations.  

Similar analysis shows a dramatic decrease in the magnitude of correlation within the 
unstructured data track of broadcast conversation across most metrics.  With the 
exception of the broadcast news track, METEOR presents a stronger relationship with 
human judgment within genres.   

 
Discussion of the Correlation Process 

Correlation helps establish whether there is a relationship between machine 
translation output quality as determined by commonly used machine translation 
evaluation metrics and human induced adequacy or HTER judgments.  What correlation 
does not provide is a correct sense of predictability of one for the other, i.e. it does not 
answer the question: Can automated metrics be used instead of human judgments?  To 
correctly characterize a predictive relationship, we would need to extend beyond 
correlation and determine which automated metrics would best serve as predictors in 
distinguishing adequacy or HTER.  Statistical modeling techniques would be useful in this 
direction. 

 
Section Summary and Conclusion 

We have shown various correlation results for several cross-classifications of the 
GALE data.  In most instances, HTER and METEOR tend to be more closely related to 
human judgments of adequacy than the other automated evaluation metrics.  Because 
HTER scores are just as time consuming to reproduce as adequacy metrics, it would be 
beneficial to find a metric that not only correlates well with adequacy but also HTER.  
While TER generally correlates better with HTER, it does not outperform other metrics in 
comparison to adequacy scores. Hence, METEOR seems to be the best automated metric 
in terms of assessing both adequacy and HTER.  Though it does not correlate well to 
HTER, BLEU scoring remains the standard method for most internal development because 
of its low cost and rapid turnaround time. 

Handbook of Natural Language Processing and Machine Translation 811 



5.5  Use of Evaluation for Optimization  

5.5.1. Effect of MT Evaluation Measures on Optimization  
Authors: Arne Mauser, Saša Hasan, Alok Parlikar, and Stephan Vogel 

5.5.1.1. Introduction 

Och (2003) suggested a procedure to automate research in MT with the help of a 
numerical optimization technique that works with an error surface on the MT output as 
defined by an automatic evaluation metric such as BLEU or TER. The error surface as 
defined in the space of model weights is known to be very bumpy. It has several sharp 
hills and valleys, and many plateaus. Numerical optimization can only guarantee a local 
optimum in this space. The final optimal value depends on where we start in this space, 
and also how the optimization algorithm searches the space. It has been shown that using 
random restarts in the weight space during search typically gives better optima (Moore 
and Quirk 2008). However, the search still remains a complex problem, which leads to a 
number of questions.  

 
• How does selection of the tuning set impact the performance on unseen test data? 
• How does optimization on one evaluation metric affect the performance on other 

metrics? 
• Do different numerical optimization algorithms lead to different optima? How 

robust are these methods to the initial search point? 
• Should all training samples be given the same importance or should, for example, 

optimization be biased to improve bad translations more? 
 
Also note that any optimum found is still determined by an automatic metric, which 

may or may not reflect how humans actually perceive the optimized output. 
In the following sections, we will explore these questions in a number of different 

experiments. Before doing so, we will first take a quick look at how MT systems are 
typically composed of a log-linear combination of models. We will also review the 
process of automatic optimization, and look at different numerical optimization 
techniques. 

5.5.1.2. Minimum Error Rate Training  

Minimum error rate training (MERT) is essentially a method for automatically 
optimizing the weights for each of our models (see Chapter 2) to achieve optimal 
performance. This is typically done in three steps: (i) choose an automatic evaluation 
metric that can judge how good or bad a particular translation output is; (ii) define an 
error function on the entire MT output with the help of this metric; and (iii) use a 
numerical optimization method to minimize this error function. 

MERT can deal with several types of output formats from an MT system. The most 
common strategy is to use an n-best list of hypotheses. Given a vector of model weights, 
we can re-rank the hypotheses for each sentence in the n-best list and establish a new 

Chapter 5: Machine Translation Evaluation and Optimization812 



 

first-best translation for those weights. Thus, the error function is defined by the metric 
error on the new first-best hypothesis for a given weight vector. Some MT systems can 
output an entire lattice of translations instead of just the n-best hypotheses. Lattices are 
compact representations of several hypotheses, so they contain more alternatives than 
what we would have in an n-best list. However, an error function on a lattice could be 
defined in a similar manner: for each sentence, choose the best hypothesis from the 
lattice, and the metric then defines the corresponding error.  

The error function thus defined has several properties. First, it is not a convex 
function; it has many local optima. Secondly, the function is not necessarily differentiable 
or even continuous in the weight space, and a gradient function on the error surface 
cannot be analytically defined. Two widely used optimization techniques, which are 
applicable under such conditions, are the Downhill Simplex method and the Powell 
method. 

5.5.1.3. Downhill Simplex  

The Downhill Simplex method (Nelder 1965) is a commonly used nonlinear 
optimization algorithm. Given an N-dimensional space to search in, the method uses an 
N+1 dimensional polyhedron, called the simplex. The error is evaluated on each vertex of 
the simplex.  The vertex with the highest error is discarded and a new test position is 
generated based on the behavior of the error on the different vertices. To avoid getting 
stuck in a local optimum and to achieve convergence, the downhill simplex algorithm 
includes a shrinking of the simplex. 

5.5.1.4. Powell 

The Powell method (Powell 1964) is another commonly used optimization method. 
This method uses a set of directions in the search space. Starting from an initial guess, the 
method moves along one dimension until a minimum is reached, then continues moving 
along the next direction until it finds the minimum, and thus cycles through the set of 
directions until the error function in minimized. It then modifies the set of directions, and 
repeats the process, until convergence is achieved.  

5.5.1.5. Experiments  

We conducted our experiments on the NIST MT Chinese-to-English task.  Details are 
provided below regarding data characteristics, generalization to other data sets and 
metrics, and comparison of optimization techniques. 

 
Data 

The international evaluation held by the US National Institute of Standards and 
Technology (NIST) is focused on news translation of Arabic and Chinese to English. The 
bilingual training is provided by the Linguistic Data Consortium (LDC) and consists of 
newswire and news magazine translations, UN documents and parliamentary 
proceedings.  In total, we have about 8 million sentence pairs or 250 million running 
words. 

Handbook of Natural Language Processing and Machine Translation 813 



The evaluation corpus from 2002 is used as main development set. In most 
experiments we optimize the system weights on this corpus. The years 2003 to 2005 
serve as test sets unless stated otherwise. Each corpus consists of about 600 to 1000 
sentences and has 4 reference translations. All measures are computed disregarding the 
case of test. Evaluation of the corpus from the years 2003 to 2005 shows a degradation of 
1.8 to 3 points in the BLEU score and a corresponding degradation in all other metrics 
evaluated (TER, WER, PER and NIST)  
 
Generalization to other Metrics 

Different MT evaluation metrics favor different features in the generated translations.  
For example TER typically favors shorter translations than BLEU.  Therefore, 
optimization using one metric will not give optimal performance when evaluating using 
other metrics (Och 2003).  However, if our MT system improve using one or two metrics, 
but degrades evaluating with other metrics, we can hardly feel confident that the 
translation quality really improved.  Preferably, we would like to see an improvement on 
a number of different MT evaluation metrics. 

 
 

 Evaluation 
Opt. on  BLEU TER WER PER NIST Avg. Len. 
BLEU 35.9 56.7 63.1 39.7 9.63 31.8 
TER 34.6 55.7 62.0 40.4 9.41 29.2 
WER 33.2 55.5 61.0 41.8 8.93 27.4 
PER 35.1 57.3 64.5 39.8 9.59 31.9 
NIST 35.8 56.2 63.1 39.5 9.66 31.3 

BLEU+ TER 35.4 55.8 62.2 39.8 9.56 30.2 
Table 5.14: Error rates on the NIST 2005 corpus when optimizing an evaluating with different measures. 

TER, WER, PER: lower values are better, BLEU, NIST: higher values are better 

In order to find a good overall criterion for system tuning, we examined the effect of 
optimizing on one measure and evaluating on all. The results for the NIST 2005 set are 
shown in Table 5.14. This table shows that the best results are obtained when evaluating 
with the same or similar metrics to the one used for training (BLEU, PER, and NIST vs. 
TER and WER), using non similar metrics shows some degradation. This grouping also 
shows a large difference in the sentence length. The word count for BLEU, NIST and PER 
shows longer hypotheses. TER and especially WER lead to rather short hypotheses.  

Since the sentence length is rather different, we also tried to optimize on the sum of 
error-rate version of BLEU (100- BLEU) and TER. The result shows a good performance 
on most error measures, indicating that it could serve as a reasonable all-round criterion. 

 
Comparing Simplex and Powell 

Different optimization techniques will typically find different optima, even when 
starting from the same initial configuration. And starting from different initial 
configurations can lead to very different local optima.  It is, therefore, advisable to use 
multiple random restarts (Moore and Quirk 2008). However, while finding a good local 
optimum is the primary goal, it is also important to find it fast. Some evaluation metrics 

Chapter 5: Machine Translation Evaluation and Optimization814 



 

are computationally expensive.  They can only be used in automatic tuning if the 
optimization procedure converges within a small number of steps, i.e., if only a small 
number of different hypotheses need to be evaluated.  

We therefore studied how the two numerical optimization algorithms, Simplex and 
Powell, compare to each other in terms of speed of convergence and quality of the 
results. For this comparison we used the implementation of these algorithms from the 
SciPy toolkit. In this experiment, we used a 1500-best list of hypotheses on the MT05 test 
set for Chinese-English translation task. We separately used the TER and BLEU metrics to 
define the error function for optimization. 

We chose ten different random points in the weight space as starting configurations 
and we ran both the Simplex and Powell methods to find the optimal value. We looked at 
what the resulting error value was, and how many different points in the weight space 
were evaluated before convergence. Ideally, we would like to have as low an error as 
possible, with as few as possible calls to the error evaluation. Note that error evaluation 
requires re-ranking an entire n-best list, and depending on the number of sentences in our 
test set and the size of the list, this operation can add significantly to the overall 
processing time. The comparison of the number of re-ranker calls required is shown in 
Figure 5.22. The corresponding BLEU scores achieved at the end of optimization starting 
from those random points is shown in Figure 5.23.  
 

 
Figure 5.22: Comparison Powell vs. Simplex: Number of calls to re-ranker for different random starts. 

 

Handbook of Natural Language Processing and Machine Translation 815 



 
Figure 5.23: Comparison Powell vs. Simplex: Bleu scores for different random starts. 

Although these figures are based on error function defined by the BLEU metric, a 
similar observation is made upon using TER. We observe that Powell’s method 
consistently made many more function evaluations than simplex, and usually also ended 
up with a lower error than simplex method. We should note, however, that the difference 
between the Powell and Simplex methods, in terms of best BLEU scores, is rather small 
(0.008 average), and Simplex is much faster.  I.e., we can run Simplex with more random 
restarts. 

5.5.1.6. Document Level Tuning  

MT systems are generally optimized towards the corpus level score of a dev-set. We 
have run some initial experiments to see what happens when we tune towards a collection 
of documents, each of which is weighted differently. The idea here is to investigate 
whether we can improve on hard-to-translate documents, by giving them more weight 
during optimization.  

In our setup, we specify how many classes of documents we would like to have and 
we specify a weight for each class. After one round of decoding, we rank documents 
based on the BLEU scores of their top-best translations. We then chunk the ranked list of 
documents into stipulated classes. Based on what weight a document has, the metric 
features (n-gram counts in case of BLEU) for every sentence in the document are scaled 
up or down in the n-best list. MERT is run on this scaled n-best list, to find model 
weights that are then used in the next decoding iteration. Note that documents are re-
ranked and reclassified in every MERT iteration, so they can have different weights every 
time. 

 

Chapter 5: Machine Translation Evaluation and Optimization816 

 



 

 
Figure 5.24: Document Scores on Dev Set 

We ran initial experiments to understand how this document level tuning behaves. In 
one setup, we set the class weights to ‘1,0’, which means only the top 50% best translated 
documents participate in the optimization. In the other experiment, we set the weights to 
‘0,1’, so only the worse half of the corpus participates in the optimization. Our baseline 
system uses all the documents, which is equivalent to having weights ‘1,1’. The dev-set 
used here is the NIST-MT05 set for Chinese-English translation. After four iterations of 
decode-MERT, we plotted the ranked errors of documents in each of the setups. We see 
that the error curve tilts in favor of the half that was used in tuning. Figure 5.24 shows 
this trend. 

The scores of these three systems on an unseen test set, part of the DEV-07 set 
containing 588 sentences with one reference each. Tuning towards bad documents did not 
change the scores, but tuning to just the better half of the documents had a deleterious 
impact on both average scores, and the tail.  

From these preliminary experiments, our hypothesis is that including poorly 
performing documents from the tuning set in optimization is important. We believe that 
assigning appropriate weights to the documents based on their scores can lead us to 
overall improvements, and we are investigating this. We notice that between the different 
MERT iterations, documents jump classes. Having a rigid 0-1 boundary is not desirable, 
because having a largely different set of documents in MERT could make it brittle. 
Instead, we plan to use a smoother weight distribution - using more than just two classes, 
and assigning weights in steps.  

5.5.1.7. Conclusions  

In this section, we looked at the automatic optimization of MT systems. We went 
over the Powell and Simplex methods of numerical optimization. Our experiments 
showed that Powell is more robust to random variation in the starting point in our setup. 
We presented a comparison of how tuning towards particular evaluation metric affects 
the performance along other metrics. We observed that BLEU and TER are robust metrics 
for optimization, because of two reasons. First, improvement on a development set results 
in improvement on similar test sets, and second, the improvement is seen consistently 
along all metrics of evaluation. This is not the case for metrics such as WER and PER, and 

Handbook of Natural Language Processing and Machine Translation 817 



hence using either BLEU, or TER, or an interpolation of these two metrics seems to be an 
overall good choice for tuning an MT system. 

5.6  Searching for Better Automatic MT Metrics 

Author: Alon Lavie 
 

This section describes recent research work by members of the GALE community on 
developing advanced automatic evaluation metrics for machine translation. The primary 
goal behind most of these efforts is to develop metrics with high levels of correlation 
between automatic metric scores and human judgments of translation quality.  The 

ranking systems, do not consistently correlate highly with human judgments of 
translation quality at the granularity levels of individual segments and documents. These 
levels are of particular interest for developers of MT systems within GALE, since the 
target goals of the GALE evaluations are formulated around percentiles of documents 
that score higher than set thresholds, as calculated by HTER scores.  The new metrics 
described in this section are designed to address this fundamental issue. In some cases, 
the metric developers explicitly aim to directly improve correlation levels with HTER.  
This would provide MT system developers with fully automatic metrics for system 
evaluation and parameter optimization that are more effective in maximizing system 
performance, as measured by HTER. 

We review six metrics in this section.  While the primary goals of these metrics are 
fundamentally similar, the means by which they seek to achieve these goals are quite 
different.  There are, however, several consistent themes.  Several of the metrics 
(METEOR, TERP, RTE) seek improvements by addressing the language variability issue, 
where the same meaning can be expressed in various ways using different words and 
constructs.  To address this variability, these metrics employ methods for detecting the 
similarity between an MT-produced translation and a reference at the word level 
(synonyms) and/or the phrasal level (paraphrases).  A second common theme to several 
of the metrics (SEPIA, EDPMEmpty, MULCH, RTE) is their focus on syntactic features, in 
addition to, or instead of, features at the word and n-gram level.  The rationale behind this 
is that similarity in meaning between an MT-produced translation and a reference may be 
more accurately identified by syntactic components of the two sentences, rather than 
correspondences at the shallow lexical-level.  A third strong emerging theme for several 
of the metrics (METEOR, TERP, RTE) is their use of Machine Learning techniques for 
parameter optimization in order to obtain maximum correlation with human judgments.  
These metrics combine several features and components, which can be assigned relative 
weights.  The idea behind this optimization process is similar to the goal of using 
automatic MT metrics for optimizing the performance of MT systems.  In this case, 
however, the parameters of the metric itself are optimized to correlate best with human 
judgments on sets of data.  Interestingly, this results in a two-stage optimization chain, 

Chapter 5: Machine Translation Evaluation and Optimization818 

5.6.1. Searching for Better Automatic MT Metrics: 
Introduction 

commonly used metrics to date, previously described in Section 5.2.2, while effective for 



 

where an automatic metric is first optimized against human judgment data, and the 
resulting metric is then used to optimize MT systems.  This gets around the difficult 
problem of optimizing MT systems directly against human judgments, which are difficult 
and expensive to obtain in quantities that would be required for direct optimization of the 
MT systems.  

In the sub-sections below, we describe six different recently proposed automatic MT 
evaluation metrics.  The descriptions include some initial assessments of improvements 
provided by the metrics in comparison with previous state-of-the-art metrics.  All but one 
(MULCH) of these six metrics participated in the NIST MetricsMATR evaluation – an 
open comparative evaluation of automatic metrics for MT, which was organized by NIST 
in late 2008.  Detailed contrastive results analyzing the performance of these and other 
metrics can be found on the NIST website.22 

Authors: Alon Lavie, Abhaya Agarwal, and Michael Denkowski 
 

The METEOR metric (Lavie 2004; Banerjee 2005) was originally developed in 2004, 
and the commonly used version of METEOR, version 0.7, tuned to adequacy and fluency, 
was already briefly described in Section 5.2.2.3.  Here we describe some recent work on 
improving the metric and its correlation with human judgments. Much of the recent work 
on METEOR has focused on the tuning and optimization of the three adjustable parameters 
within the metric.  This involved experimenting with optimizing the parameters on 
different data sets and to several different formulations of human judgments.  The 
subsection below recaps the parameter optimization process used and presents the results 
of these optimization experiments. 

5.6.2.1. Optimizing Metric Parameters  

The original version of METEOR (Banerjee 2005) defines instantiated values for three 
parameters in the metric: one for controlling the relative weight of precision and recall in 
computing the Fmean score (ߙ); one governing the shape of the penalty as a function of 
fragmentation (ߚ) and one for the relative weight assigned to the fragmentation penalty 
 For details, see the METEOR description in Section 5.2.2.3. In the original version of  .(ߛ)
METEOR, these parameters were instantiated with the values 3.0=ߚ ,0.9=ߙ and 0.5=ߛ, 
based on early data experimentation. 

Over the past two years, in the context of the contrastive evaluations of automatic 
MT evaluation metrics conducted by the WMT-07, WMT-08, and the NIST 
MetricsMATR workshops, a thorough investigation was conducted aimed at tuning these 
parameters based on several available data sets, with the goal of finding parameter 
settings that maximize correlation with human judgments. Human judgments traditionally 
come in the form of “adequacy” and “fluency” quantitative scores.  More recently, a new 

                                                 
22 http://www.itl.nist.gov/iad/mig//tests/metricsmatr/ 

Handbook of Natural Language Processing and Machine Translation 819 

5.6.2. Metric for Evaluation of Translation with Explicit 
Ordering (METEOR)  



form of human judgments in the form of binary and n-ary human rankings of translation 
output have also become available.  The experiments conducted looked at optimizing 
parameters for each of these human judgment types separately, as well as optimizing 
parameters for the sum of adequacy and fluency.  Parameter adaptation is also an issue in 
instances of METEOR that have been created for other languages, since parameters that 
were optimized to maximize correlation with human judgments for English would not 
necessarily be optimal for other languages. 

In all of these optimization experiments, adequacy and fluency parameters were 
tuned by means of “hill climbing” and ranking parameters were turned by means of 
exhaustive grid search to find the parameters that achieve maximum correlation with 
human judgments on the training set.  Pearson’s correlation coefficient was used as the 
measure of correlation.  A “leave one out” training procedure was used in order to avoid 
over-fitting. Whenever training data segments from n MT systems was available for a 
particular language, parameters were trained n times, leaving the data from one system 
out in each training, and pooling the segments from all other systems.  The final 
parameter values were calculated as the mean of the n sets of trained parameters that 
were obtained.  When evaluating a set of parameters on test data, segment-level 
correlations with human judgments are computed for each of the systems in the test set 
and the mean over all systems is then reported. 

5.6.2.2. Optimizing for Adequacy and Fluency  

Parameters were trained to obtain maximum correlation with normalized adequacy 
and fluency judgments separately and also trained for maximal correlation with the sum 
of the two. Parameters for the sum of adequacy and fluency are used in the baseline 
versions of METEOR   (versions 0.6 and 0.7), as these are the versions used in MT 
evaluations. To partially address human bias issues, the human judgments were 
normalized, which transforms the raw judgment scores so that they have similar 
distributions.  The normalization method used is described by Blatz (2003).  Multiple 
judgments were combined into a single number by taking their average.  A detailed 
description of these experiments is presented by Lavie (2007). 

 
 Adequacy Fluency Sum 0.28 0.38 0.21 ߛ 0.83 0.75 1.0 ߚ 0.81 0.78 0.82 ߙ 

Table 5.15: Optimal Values of Tuned Parameters for Different Criteria for English 

The resulting optimal parameter values on the training corpus are shown in Table 
5.15. The optimal parameter values found are somewhat different than the previous 
settings of the metric parameters (lower values for all three parameters). The new 
parameters result in small, but noticeable improvements in correlation with human 
judgments on both training and testing data. Tests for statistical significance using 
bootstrap sampling indicate that the differences in correlation levels are all significant at 
the 95% level.  An interesting observation is that precision receives slightly more 
“weight” when optimizing correlation with fluency judgments (versus when optimizing 

Chapter 5: Machine Translation Evaluation and Optimization820 



 

correlation with adequacy). Recall, however, is still given more weight than precision.  
Another interesting observation is that the value of ߛ is higher for fluency optimization.  
Since the fragmentation penalty reflects word-ordering, which is closely related to 
fluency, these results are consistent with expectations.  When optimizing correlation with 
the sum of adequacy and fluency, optimal values fall in between the values found for 
adequacy and fluency. 

5.6.2.3. Optimizing for Rankings  

Callison-Burch (2007) reported that the intercoder agreement on the task of assigning 
ranks to a given set of candidate hypotheses is much better than the intercoder agreement 
on the task of assigning a score to a hypothesis in isolation. Based on that finding, in 
WMT-08, only ranking judgments were collected from the human judges. 

A new set of experiments was therefore conducted to re-optimize the METEOR 
parameters in order to maximize for correlation with ranking judgments.  This required 
computing full rankings according to the metric and the humans and then computing a 
suitable correlation measure on those rankings.  METEOR assigns a score between 0 and 1 
to every translation hypothesis. This score can be converted to rankings trivially by 
assuming that a higher score indicates a better hypothesis.  In development data, human 
rankings were available as binary judgments indicating the preferred hypothesis between 
a given pair. There were also cases where both the hypotheses in the pair were judged to 
be equal.  These parameters are used in the METEOR-rank entry in some MT evaluations. 

In experiments conducted for the WMT-08 evaluation, the binary ranking judgments 
were converted into full rankings of all translations of each source sentence.  Spearman 
correlation was then calculated between these human rankings and METEOR scores 
rankings for each source sentence.  The final correlation score is the average of the 
Spearman correlations for all individual sentences.  An exhaustive grid search was 
performed in the feasible ranges of parameter values, looking for parameters that 
maximize the average Spearman correlation over the training data. To get a fair estimate 
of performance, three fold cross validation was performed on the development data. Final 
parameter values were chosen as the best performing set on the data pooled from all the 
folds.  (see Agarwal 2008). 

In further experiments for the NIST MetricsMATR evaluation, a slightly different 
optimization process was used.  Binary human rankings were not converted into full 
rankings.  Instead, the metric parameters were directly optimized for maximizing the 
number of correct binary human rankings across the entire training data set. 

 
 Α β γ Original Re-tuned 
English 0.95 0.5 0.45 0.3813 0.4020 
German 0.90 3.00 0.15 0.2166 0.2838 
French 0.90 0.5 0.55 0.2992 0.3640 
Spanish 0.90 0.5 0.55 0.2021 0.2186 

Table 5.16: Optimal Values of Ranking-Tuned Parameters for Various Languages and Average Spearman 
Correlation with Human Rankings for METEOR on Development Data 

Handbook of Natural Language Processing and Machine Translation 821 



Overall, Meteor was one of the best performing metrics in the NIST MetricsMATR 
evaluation.  Three versions of Meteor, differing only in their parameter settings, were 
evaluated. Meteor was one of the three top performing metrics in just about all conditions 
evaluating correlation with human judgments at the segment and document levels, for 
both adequacy and ranking forms of human judgments.  Further details can be found on 
the NIST MetricsMATR website. 

5.6.3. Translation Edit Rate Plus (TER-Plus)  
Authors: Matthew Snover, Nitin Madnani, Bonnie Dorr, and Richard Schwartz  
 

While Translation Edit Rate (TER) (Snover 2004) has been shown to correlate well 
with human judgments of translation quality, it has several flaws, including the use of 
only a single reference translation and the measuring of similarity only by exact word 
matches between the hypothesis and the reference.  These flaws are addressed through 
the use of Human-Mediated TER (HTER), but are not captured by the automatic metric.  
The handicap of using a single reference can be addressed by the construction of a lattice 
of reference translations, and such a technique has been used to combine the output of 
multiple translation systems (Rosti 2007). TERP does not utilize this methodology and 
instead focuses on addressing the exact matching flaw of TER. 

TER-Plus (TERP) is an extension of TER that aligns words in the hypothesis and 
reference not only if they are exact matches but also if they are determined to be related 
morphologically or to be synonyms, as well as directly aligning multi-word phrases by 
considering possible paraphrases of the reference words.23  Matching using stems and 
synonyms (Banerjee 2005) and using paraphrases  (Zhou 2006; Kauchak 2006) have been 
shown to be beneficial for automatic MT evaluation. Paraphrases have also been shown 
to be useful in expanding the number of references used for parameter tuning (Madnani 
2007; Madnani 2008) although they are not used directly in this fashion within TERP. 

TERP uses all the edit operations of TER – Matches, Insertions, Deletions, 
Substitutions and Shifts, as well as, three new edit operations: Stem Matches, Synonym 
Matches and Phrase Substitutions. TERP identifies words in the hypothesis and reference 
that share the same stem using the Porter stemming algorithm (Porter 1980).  Two words 
are determined to be synonyms if they share the same synonym set according to WordNet 
(Fellbaum 1998). Sequences of words in the reference are considered to be paraphrases of 

                                                 
23 The name Terp doubles as the nickname – “Terp” — of the University of Maryland, College Park, mascot: 
the Diamondback Terrapin. 

Chapter 5: Machine Translation Evaluation and Optimization822 

The re-tuned parameter values from the WMT-08 experiments and the average 
Spearman correlations for various languages with original and re-tuned parameters are 
shown in Table 5.16. The parameters show that for optimal correlation with ranking 
judgments the “Precision/Recall” balance is weighed almost completely toward “Recall”, 
and this is consistent for all languages that we tested. Also, the re-tuned parameters for all 
the languages except German are quite similar. Comparing original and retuned 
parameters, we see significant improvements for all the languages. Gains are specially 
pronounced for German and French.  



 

a sequence of words in the hypothesis if that phrase pair occurs in the TERP phrase table.  
Unlike TER, where all edits are given equal cost, the edit costs in TERP are optimized to 
maximize correlation with human judgments, and can be tuned to any particular type of 
human judgment. 

5.6.3.1. Paraphrase Generation  

TERP uses probabilistic phrasal substitutions to align phrases in the hypothesis with 
phrases in the reference. It does so by looking up – in a pre-computed phrase table – 
paraphrases of phrases in the reference and using its associated edit cost as the cost of 
performing a match against the hypothesis. The paraphrases used in TERP are extracted 
using the pivot-based method (Bannard 2005) with several additional filtering 
mechanisms to increase the precision. The corpus used for extraction was an Arabic-
English newswire bitext containing a million sentences. Here are a few examples 
paraphrases that were actually used in a run of TERP:  

 
controversy over →  polemic about 
by using power → by force 
response  → reaction 
 
A probability for each paraphrase pair is computed as described by Bannard (2005). 

The phrase table for TERP contains 14,184,361 paraphrases.  Paraphrases are only used if 
the reference side of the paraphrase occurs exactly in the reference translation, allowing 
us to filter the paraphrase phrase table according to a reference set if needed. 

5.6.3.2. TERP Edit Cost Optimization  

In total, TERP uses 11 parameters (Match, Insert, Deletion, Substitution, Stem, 
Synonym, Shift and Phase Substitution) out of which 4 represent the cost of phrasal 
substitutions.  These costs are optimized to maximize correlation with human judgments.  
The match cost is held fixed at 0, so that only the 10 other parameters can vary during 
optimization.  All edit costs, except for the phrasal substitution parameters, are also 
restricted to be positive.  A simple hill-climbing search is used to optimize the edit costs 
by maximizing the segment-level correlation of human judgments with the TERP score. 

With the exception of the phrase substitutions, the edit cost for all other edit 
operations is the same regardless of what the words in question are. That is, once the edit 
cost of an operation is determined via optimization, that operation costs the same no 
matter what words are under consideration. The cost of a phrase substitution, on the other 
hand, is a function of the probability of the paraphrase and the number of edits needed to 
align the two phrases according to TERP.  Specifically, the cost of a phrase substitution 
between the reference phrase, ଵ and the hypothesis phrase ଶ is: 
 costሺଵ, ଶሻ ൌ ଵݓ                                  ݓଶ editሺଵ, ଶሻ log ሺPrሺଵ, ଶሻሻ                                 ݓଷeditሺଵ, ଶሻ Prሺଵ, ଶሻ  

,ଵସeditሺݓ                   ଶሻ   (5.9)

Handbook of Natural Language Processing and Machine Translation 823 



editwhere editሺଵ, ,ଵଶ and Prሺ ଵ to ଶሻ is the number of edits according to TERP of aligning  ଶ, obtained from the TERP phrase ଵ as ଶሻ is the probability of paraphrasing
table. Only paraphrases specified in the TERP phrase table are considered for phrase 
substitutions. In addition, the cost for a phrasal substitution is limited to values greater 
than or equal to 0, i.e., the substitution cost cannot be negative.  The shifting constraints 
of TERP are also relaxed to allow shifting of paraphrases, stems, and synonyms. 

5.6.3.3. TERp Alignment  

In addition to providing a score indicating the quality of a translation, TERP also 
generates an alignment between the hypothesis and the reference, indicating which words 
are correct, incorrect, misplaced, or are close to the reference translation. 

Figure 5.25: Example of TERP HTML Alignment Output 

Consider an example MT output from the NIST MetricsMATR MT-06 data set and 
the closest of the four reference translations. A portion of the HTML output of the 
alignment generated by TERP is shown in Figure 5.25.  The alignment shown is the final 
alignment after all shifts are performed.  Each word or phrase in the hypothesis is aligned 
to a word or phrase in the reference, with the symbol between the word or phrases 
indicating the type of edit: “I” for insertions, “D” for deletions, “S” for substitutions, “T” 
for stem matches, “Y” for synonym matches, and “P” for phrasal substitutions.  The lack 
of a symbol indicates an exact match. 

5.6.3.4. Correlation Results  

 
 Optimization set Test set Optimization + Test 

Seg Doc Sys Seg Doc Sys Seg Doc Sys 
BLEU 0.623  0.867 0.952 0.563 0.852 0.948 0.603 0.861 0.954 
METEOR 0.731  0.894 0.952 0.751 0.904 0.957 0.739 0.898 0.958 
TER -0.609 -0.864 -0.957 -0.607 -0.860 -0.959 -0.609 -0.863 -0.961 
TERP -0.782  -0.912 -0.996 -0.787 -0.918 -0.985 -0.784 -0.914 -0.994 

Table 5.17: MATR MT06 Pearson Correlation Results. 

A portion of the MT-06 data was annotated with adequacy judgments for the 2008 
NIST MetricsMATR evaluation (Przybocki 2008) and distributed to participants as 

Chapter 5: Machine Translation Evaluation and Optimization824 

 
 

 
 
 
 
 
 
 
 

I S S T D P S S I I I

and advocates to democratize the islamic arab region between the republic beats “ hamas 

Reference 

Hyp After Shifts 

Reference 

Hyp After Shifts 

Reference 

Hyp After Shifts 

victory to    election gains made by the fundamentalist movement in the iranian the 

P  I I  P  D  Y  S S  Y  D D  

won  “ and electoral gains on the hard-line  trend in the 

elections and to muslim brotherhood candidates winning five seats in parliament for the first time in egypt . 

  I  S  S  S 

elections iran ,  had muslim brotherhood candidates to five seats in parliament for the first time in egypt . 

 opponents of democratization in the muslim arab world link the hamas 



 

development data. TERP was optimized to maximize segment level Pearson correlation 
with Adequacy on two-thirds of this data (the Optimization Set). In addition, we also 
show the actual Pearson correlation numbers on this optimization set and the remaining 
portion of the development data (the Test Set) in Table 5.17.  For comparison, 
correlations from the standard TER, BLEU and METEOR are also shown.  Those 
correlations that are statistically indistinguishable from the top metric (according to a 
95% confidence interval) in each column are shown in bold. TERP had the highest 
correlation in each test case, and more importantly, showed significant improvement over 
the base TER evaluation metric. 

5.6.4. Using Surface Span in Syntax-aware MT Evaluation 
(SEPIA) 

Author: Nizar Habash 
 

SEPIA is a newly developed MT evaluation metric that falls within the class of 
syntactically-aware evaluation metrics (Liu and Gildea 2005; Owczarzak 2007; Gimenez-
Marquez 2007). The basic assumption of these metrics is that higher agreement in 
syntactic structure between MT output and Human reference translations reflects a higher 
degree of MT grammaticality and thus provides better correlation with human judgment 
than simple surface n-gram measures. An important failing in this assumption is that 
surface n-grams do capture a lot of syntactic information, especially for local 
dependencies. For instance, within the framework of dependency syntactic 
representation, 77% of all structural bigrams (parent-child links) have a surface span of 
less than 4 words and an absolute 47% of these are surface bigrams. Given this 
observation, SEPIA was designed with the goal of assigning bigger weight to structural 
bigrams with longer surface spans. Specifically, SEPIA uses a dependency representation 
but extends it to include surface span as a factor in the evaluation score.  The dependency 
surface span is the surface distance between two words that are in a direct relationship in 
a dependency tree. 

The rest of this sub-section describes the SEPIA metric and its variants, and 
summarizes how SEPIA performed in the recent NIST MetricsMATR evaluation (Habash 
2008). 

5.6.4.1. SEPIA 

SEPIA evaluates a translation hypothesis segment (sentence) by computing a score 
based on a brevity-penalty-adjusted mean of multiple modified precision-based sub-
scores.   SEPIA uses two types of sub-scores: surface n-gram precision sub-scores (similar 
to BLEU (Papineni 2002)) and span-extended structural bigram precision sub-scores.  We 
next discuss the latter type of sub-scores which are unique to SEPIA. 

 

Handbook of Natural Language Processing and Machine Translation 825 



Span-Extended Structural Bigram Precision. A structural bigram (SB) is defined as a 
head word chain of size 2 (heads) in a dependency representation of the 
hypothesis/reference sentence.  For example, in Figure 5.26, the edges linking the words 
Among-crises, mentioned-Among and mentioned-dispute represent SBs.  An SB can 
simply be the parent-child word pair or it can include additional information such as the 
relation of child to parent (e.g., Among-obj-crises), the part-of-speech (POS) of both child 
and parent (e.g., Among/IN-crises/NNS), the relative order of the two (e.g., Among- ൏ -
crises or mentioned--Among}), or any combination of the above (e.g., Among/IN- ൏ -
obj-crises/NNS). 

We define the surface span (SS) to be the absolute surface distance between parent 
and child in an SB.  For the SBs Among-crises and mentioned-Among, the SS values are 5 
and 12, respectively. Overall, in the tree in Figure 5.26, there are six SBs with SS of 1, 
two SBs with SS of 2, three SBs with SS of 3 and one SB each for SS values 4, 5, 10 and 
12. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.26: A dependency tree analysis for the sentence Among the existing and potential crises in the 
Middle East, Roed-Larsen mentioned the Arab-Israeli dispute.} 

For each unique SS value, n, associated with any SB in the hypothesis tree, we define ܵܵ as the count of all the SBs that have an SS value of n. We also define ݈ܵܵܿ݅ as the 
count of all the hypotheses SBs (with SS value of n) that match reference SBs. However, 
if the number of matching hypothesis SBs exceeds the maximum seen in any reference 
tree, we use a partial count equal to (maximum # of reference SBs / # of hypothesis SBs) 

13: mentioned 
VBD 

12: Roed-Larsen             16: dispute 
NNP         NN 
subj         obj 

11:,  14: the 15: Arab-Israeli
PUNC DT JJ 
mod mod mod 

5:potential    8:the    9:middle 
JJ       DT   NNP 
Mod       mod   mod 

1: Among 
IN 
mod 

6: crises 
NNS 
obj 

2: the 3: existing       7:in 
DT VBG         IN 
mod mod         mod 

4: and         10: East 
CC         NNP 
Mod         obj 

Chapter 5: Machine Translation Evaluation and Optimization826 



 

in computing ݈ܵܵܿ݅.  This is our variant of clipping, used by other precision-based 
metrics (Papineni 2002) to minimize gaming. 

Finally, we define the set SPANS to contain all the unique SS values seen in the 
hypothesis tree. 

Next, we describe two span-extended SB precision sub-scores, which vary in how 
they use the SS of an SB: ܵ ௫ܰ and SPN. 

First, the sub-score ܵ ௫ܰ is computed as follows: 
 ܵ ௫ܰ ൌ ∑  ௌௌൈೣאೄುಲಿೄ∑  ௌௌൈೣאೄುಲಿೄ    (5.10) ܵ ௫ܰ is basically the span-weighted precision of hypothesis SBs matching reference SBs. 

The weighing is controlled through the power term x.  The default value of x is 0, which 
assigns all SBs equal weight regardless of the SS value. A power term of 1 effectively 
multiplies the count of an SB by its SS value. A multiplier of 2 multiplies the count by the 
square of the SS value (and so on).  This allows the user to give a bigger weight to the 
longer-distance matching spans. 

Second, the sub-score ܵܲܰ is computed as follows: 
 ܵܲܰ ൌ ଵ|ௌேௌ| ∑  ௌௌ ௌௌאௌேௌ    (5.11) ܵܲܰ is basically the average of all ܵܵ-value-specific precision calculations. This scoring 

approach normalizes the frequency of ܵܵ values. This effectively gives more weight to 
the long-distance ܵܤs because of the Zipfian distribution of ܵܵs: shorter spans appear 
more frequently than longer spans. 

Although the two scoring methods are different, they both give more weight to long-
distance dependencies than to short-distance dependencies. 

   
Sub-Score Combination. The segment-level SEPIA score is computed by taking the 
mean of any subset of the sub-scores described above, including both surface n-gram and ܵܤ sub-scores. Note that using the surface n-gram sub-scores alone is comparable to 
using BLEU.  This serves as a robust back off in case no parse is found. The score is 
further adjusted by multiplying it with a brevity penalty factor as done in other precision-
based metrics (Papineni 2002). Document-level scores are computed as a segment-
length-weighted (in words) average of segment scores. Similarly, system-level scores are 
computed as a document-length-weighted (in segments) average of document scores. 
The set of all parameters in the SEPIA package is described by Habash (2008). 

5.6.4.2. SEPIA’s Performance in NIST MATR  

For the NIST MetricsMATR evaluation, two SEPIA variants that are tuned on 
different data sets were submitted.  SEPIA1 was tuned for MT-06 data, and uses surface 
unigram, bigram and trigram precision, in addition to the SPN subscore over (word, 
parent, relation, wordPOS, parentPOS and surface relative order). SEPIA2 was tuned for 

Handbook of Natural Language Processing and Machine Translation 827 



TRANSTAC data, which was quite limited.24  It only used surface unigrams and bigrams 
over morphologically de-inflected words. Both SEPIA variants employed length penalty. 
In terms of speed, SEPIA1 and SEPIA2 ranked 28th and 29th, respectively, out of the 38 
NIST MetricsMATR metrics. Both took around 2 hours to finish (compared to BLEU 
taking less than 5 minutes but faster than metrics that took over a day). SEPIA1 was the 
best performer in two conditions: system-level correlation with multi-referenced pairwise 
and yes/no conditions.  Sepia1 was in the top 5 performers in 12 cases out of 45. SEPIA1 
always outperformed SEPIA2, which was in top 5 performers in 4 out of 45 conditions.  
SEPIA1 and SEPIA2 did better with multiple references than single references.  They also 
did better at document and system level than sentence level: neither SEPIA1 nor SEPIA2 
was in top 5 performers at sentence-level correlation. 

5.6.5. Expected Dependency Pair Match (EDPM)  
Authors: Jeremy Kahn, Mari Ostendorf, and Brian Roark 

5.6.5.1. Introduction 

In improving MT metrics, we try to model acceptable variation, whether by 
modeling word-choice (e.g., METEOR (Banerjee 2005)), by weighting adjacent matches 
more than non-local matches (e.g. GTM (Turian 2003)) or by modeling syntactic 
information (Liu 2005; Owczarzak 2007).  In keeping to the syntactic approach, we 
consider a family of Dependency Pair Match (DPM) measures, which follows the 
labeled-dependency match version of SPARSEVAL (Roark 2006) and the d/d_var 
(Owczarzak 2007) measures. These approaches evaluate hypothesis-reference similarity 
with an F measure over fragments of a labeled dependency structure, which may be 
generated by a PCFG with deterministic head-finding (Liu 2005;  Roark 2006 SParseval) 
or by extracting the semantic dependencies from an LFG parser (Cahill et al. 2004 and 
Owczarzak 2007). Our specific extension, Expected Dependency Pair Match (EDPM), 
leverages a publicly available PCFG parser, deterministic head-finding rules, word-level 
matching and weighted multiple parse alternatives for improved performance. 

5.6.5.2. DPM Family of Metrics 

DPM is defined as the F measure over bags-of-subtrees of the hypothesis translation 
dependency tree as compared to bags-of-subtrees of the reference translation dependency 
tree.  

                                                 
24 Spoken Language Communication and Translation System for Tactical Use (TRANSTAC).  See 
http://www.darpa.mil/IPTO/programs/transtac/transtac.asp.  
 

Chapter 5: Machine Translation Evaluation and Optimization828 

Different members of the DPM family of metrics may extract different subtrees.  We 
denote the set of extracted tree-components with a trailing DPMdlh extracts all ‹Depend, 
arc-Label, Head› subtree tuples, roughly equivalent to labeled SPARSEVAL (Roark 2006 
Sparseval) and the (Owczarzak 2007) d measure. We also consider the DPM1g,2g  
extractions, which represent unigrams and bigrams, or the DPMdl,lh , which extracts all the 



 

 
 
 

 
 
dependency tree 

  ۄ       the       , ୢୣ୲ሱሮ ,        cat       ۃ ۄ       the, ୢୣ୲ሱሮ ,      catۃ 
    dlh list ۃred, ୫୭ୢሱۛ ሮ ,    cat       ۃ ۄ       cat       , ୱ୳ୠ୨ሱۛሮ , stumbled ۄ  
, stumbled, ୰୭୭୲ሱۛሮ  ۃ ۄ     cat,  ୱ୳ୠ୨ሱۛሮ ,      ateۃ    ൏ ݐݎ  ۄ  
, ate, ୰୭୭୲ሱۛሮۃ    ൏ ݐݎ  ۄ  

 
Precisiondlh is ଵଷ and Recalldlh is ଵସ , yielding ܯܲܦௗ ൌ ܨ ൌ ଶ ൌ 0.286 

Figure 5.27: Example hypothesis and reference dependency trees and the dlh decomposition of each. 

‹Depend, arc-Label, Head› 
 
Since the dependency structures of the hypothesis and reference text are hidden, we 

also explore alternative dependency structures predicted by the parser, to cope with 
genuine ambiguity (in both hypothesis and reference) and to mitigate the effects of parser 
error. DPM is well-defined over the n-best list of dependency-structures: when n>1 DPM 
uses the expectation of bags-of-subtrees rather than the bags-of-subtrees derived from the 
1-best parse.  In computing the expectation, we first “flatten” the parser probabilities such 
that ሺݔሻ ൌ ሺ௫ሻം∑ ሺሻം   (where  ߛ is a free parameter) to account for over-confidence in the 
parser, normalizing so that the resulting probabilities sum to one over the n-best list. 

In principle, the DPM family of measures may be implemented with any parser that 
generates a dependency graph (a single labeled arc for each word, pointing to its head-
word). Our reference implementation uses a state-of-the-art PCFG parser (the first stage 
of Charniak-Johnson, (2005)) to generate a 50-best list of trees for each hypothesis and 
reference translation, using the parser’s default WSJ (Wall Street Journal) training 
parameters.25  We use Magerman (1995) head-finding to construct dependency trees, 
using the Charniak parser’s head-finding rules, with three modifications: prepositional 
and complementizer phrases choose nominal and verbal heads respectively and auxiliary 
verbs are modifiers of main verbs (rather than the converse). 

                                                 
25 http://ssli.ee.washington.edu/people/jgk/dist/edpm/  

The red cat ate <root>
det mod 

subj root 

The
cat 

stumbled <root> 

det subj root 

Handbook of Natural Language Processing and Machine Translation 829 

subtrees ‹Depend, arc-Label› and ‹arc-Label, Head›  (roughly equivalent to the 
(Owczarzak 2007) d_var method). 

 



Arc-labels ݀ /ሱۛሮ ݄ are determined from constituent labels, where the arc label A/B 
between dependent d and its head h is composed of A (the lowest constituent headed by h 
and dominating d) and B (the highest constituent headed by d). This strategy is the one 
adopted in labeled-dependency SPARSEVAL, and it acts as an approximation of the rich 
semantics generated by Cahill et al. (2004), but with much less knowledge-engineering 
required. The A/B labels are not as descriptive as LFG semantics, but they have a similar 

resolution, e.g. the 
ௌ/ேሱۛ ሮۛ  arc label usually represents a subject dependent of a sentential 

verb. 

5.6.5.3. Experimental Validation 

Experiments exploring correlation with fluency and adequacy judgments against the 
LDC Multiple Translation Chinese corpus Chapters 2 and 4 indicate that the best member 
of the DPM family uses the full 50-best parses produced by the system, with a 
“flattening” λ ൌ 0.25.  Using both the partial subtrees dl,lh and the string-only statistics 
1g,2g provides an optimal setting of: 

ܯܲܦܧ  ൌ ,ଵ,ଶ,ௗ,ܯܲܦ ݊ ൌ 50, ߛ ൌ 0.25 
This configuration for EDPM has a correlation r=0.24 against the average fluency 

and adequacy judgment per-sentence over these corpora. 
 

Measure s All-Arabic All-Chinese All 
TER 0.51 0.19 0.39 
BLEU -0.40 -0.19 -0.32 
EDPM -0.61 -0.25 -0.47 

Table 5.18: Per-document Pearson’s r of Δs with ΔHter over various measures s, examined for each genre in 
the corpus, for each language in the corpus, and as a whole. 

We also explore the EDPM variant’s utility on the task of predicting the human-
targeted translation edit rate (HTER) on the (unsequestered) GALE evaluation results, and 
find that per-document differences across systems in EDPM (ΔEDPM) are better 
correlated with changes in HTER (ΔHTER) than ΔBLEU or ΔTER (Table 5.18). 

Chapter 5: Machine Translation Evaluation and Optimization830 



 

Note that HTER uses a TER measure to calculate the post-editing work between the 
hypothesized translation and the human-targeted reference which could, in principle, bias 
HTER towards a TER measure. EDPM shares no such advantage.  EDPM nevertheless has 
the best correlation of the three measures in both Arabic and Chinese, as well as over the 
entire corpus.  

5.6.5.4. Future Work 

Within the DPM framework, there are a number of directions for improving the 
quality of the scoring function, including increasing the number of parse alternatives, 
using different parsers, and exploring other (higher order) segmentations of the 
dependency tree. It would also be useful to assess the sensitivity of the score to parse 
quality, since very poor quality translations might be difficult to parse.  

Alternatively, one might look at combining EDPM with other measures that attempt 
to account for allowable variation in word choice. Unlike many recently proposed 
evaluation methods, EDPM does not use word-substitution tables or tuned weights 
(beyond the λ free parameter described above), and yet substantially outperforms BLEU 
and TER as a predictor of changes to HTER.  Perhaps further gains could be achieved by 
combining the different approaches. 

 
 

5.6.6. Metric Using Large Chunks of Hierarchy (MULCH)  
Authors: Seth Kulick and Mitch Marcus 

5.6.6.1. Introduction 

Our work aims to improve automatic MT evaluation by working with the syntactic 
structure of the reference sentence rather than treating it as a string of words.  Our 
hypothesis is that this will allow a metric to make more sophisticated decisions about the 
relationship between the system output and the reference sentence, particularly in regard 
to such aspects as word movement and substitution.  We are testing this hypothesis by 
adapting the METEOR system to use the treebanked representations of reference sentences 
that are available as part of the Ontonotes project.  We refer to this new evaluation 
approach as MULCH (“Metric Using Large Chunks of Hierarchy”). 

Handbook of Natural Language Processing and Machine Translation 831 



METEOR has two basic components. The first is a unigram matching between the 
system and reference sentences, where the matching is done by exact match and also 
looser matching using WordNet.  The second is a “fragmentation penalty” to account for 
word order, attempting to capture such information as arguments in the wrong order. 

We have decomposed the trees for the reference sentences into small tree fragments, 
representing core pieces of argument structure, with adjuncts and arguments separated.  
The two components of our adapted METEOR view the reference sentence as a collection 
of these small tree fragments, with the following impact: 

 
• The unigram matching is able to differentiate between “function words” that can 

easily differ between a system output and reference translation, and those words 
that capture a core semantic notion.  For example, the complementizer that might 
be missing from a subordinate clause, or the preposition about might be used 
instead of on in a prepositional clause. In such cases, by referring to the small 
tree fragments, we can exclude such function words from the recall calculation.  

• METEOR ‘s fragmentation penalty is not able to distinguish between adjuncts and 
arguments, although they have very different word order possibilities.  We have 
taken the obvious step, now that we have the trees, of completely rewriting the 
fragmentation penalty to require arguments to be in the correct order, while 
adjuncts are free to move. 

5.6.6.2. Example 

We present here an example sentence from the output of one of the GALE systems, 
from the Arabic Newswire section of the data. The reference translation for the sentence 
is (1), and the system output is (2). 

 
(1) In July 2005 Turkey had signed a protocol ...  
(2) Turkey signed in July 2005 a protocol ...  
 
The unigram matching component of METEOR leaves had in the reference sentence 

unmatched, lowering the recall score.  In addition, the “fragmentation penalty” lowers the 
score because the words In July 2005 Turkey had signed in the reference sentence do not 
map to a continuous sequence in the system output, due to the movement of in July 2005. 

These are clearly not actual errors in the system output though, but rather simply an 
alternative translation, different from the reference sentence, but just as valid.  However, 
since METEOR only works with words as strings with no linguistic information, it is 
unable to recognize this and compensate appropriately. 

In our approach, we utilize the treebanked representation of the reference string, of 
which the relevant section is shown below (a).  We decompose this tree into smaller tree 
fragments, associating each one with a lexical item.26 This results in the four trees in (b), 

                                                 
26 This is very much inspired by the long line of work in Tree Adjoining Grammar Joshi and Schabes (1997).   

Chapter 5: Machine Translation Evaluation and Optimization832 



 

(c) (d) and (e), as well as a “derivation tree”, not shown here, which encodes how the tree 
fragments fit together to form the original tree.27 

As mentioned above, we can now improve the unigram matching  F measure of 
METEOR by using these tree fragments as a small domain in which the matching can be 
made loosened.  For example, we have encoded that if there is a match with the main 
verb of a tree, there is no penalty if an auxiliary that is present in the same tree does not 
map to a word in the system output. In this example, this means that since signed in the 
tree (d) is mapped to signed in the system output, there is no penalty for had not having a 
mapping. 

 
 

Also, while we do not have space to show all the details here, these trees can be used 
to check that verbs and their arguments are in the same order in the system output as in 
the reference translation.  We have completely rewritten the “fragmentation penalty” 
aspect of METEOR to take advantage of this new source of information.  In this example, 
the order of Turkey and a protocol around signed is enforced, using the information in 
tree (d). However, the adjunct in July 2005 is allowed to appear anywhere and so there is 
no penalty in our revised METEOR for in July 2005 appearing in different locations in the 
reference and system output sentences.28 

It is worth noting that to some extent our use of the trees is able to simulate what the 
human annotator does in the edited reference sentences for the HTER evaluation.  For 
example, for this particular sentence the edited reference sentence is edited: 

 
(3) Turkey signed in July 2005 a protocol ...  

 

                                                 
27 The ↓ indicates a node where another tree must be substituted into it, such as the tree for Turkey in (c) into 
the NP-SBJ node in (d). 
28 This is of course a simplification, since adjuncts do not have complete freedom of movement. 

S 

PP-TMP NP-SBJ VP

In july 2005 Turkey had VP 

signed NP 

a protocol

VP

NP-SBJ↓ VP 

had NP 

signed NP↓ 

PP-TMP 

In july 2005 

NP 

Turkey 

NP 

a protocol

(a) 

(b) (c) 

(d) 

(e) 

Handbook of Natural Language Processing and Machine Translation 833 



What the human annotator has done is adjust for the missing had and the movement 
of in July 2005, just as we have been able to do automatically by making use of the 
linguistic information encoded in the trees. 

5.6.6.3. Evaluation 

To test the modified METEOR, we calculated the following three scores for a team’s 
output, for each sentence: 

 
• HTER: using tercom on the system output and human-edited reference sentence. 
• Original METEOR: using the system output and the (unedited) reference sentence. 
• Modified METEOR: using the same data as for the previous, along with the 

treebanked representation of the reference sentence. 
 
We then calculate the Pearson correlation between (HTER, original METEOR) and 

(HTER, modified METEOR). 
Focusing for now on the Arabic Newswire part of the data, we obtain the scores for a 

development slice of the data, showing the increase in correlation from (HTER, original 
METEOR) to (HTER, modified METEOR): 

 
AGILE:        0.66 → 0.69 
ROSETTA: 0.65 → 0.66 
NIGHTINGALE: 0.62 → 0.63 

 
While there is some improvement, it is clearly not enough.  Our hypothesis, based on 

some examination of the data, is that while our modified METEOR is able to improve the 
correlation with HTER when the system output and reference translation are relatively 
close, it has very little to work with if the system output and reference translation are far 
apart, since in that case the edited reference sentence used for HTER is so greatly different 
from the original reference that our modified METEOR is not able to simulate the 
construction of the edited reference sentence. 

That is, we view the construction of the HTER sentence as consisting of four aspects: 
• deletions/insertions: METEOR tracks this, while our modified version can 

improve this. 
• synonyms: METEOR tracks this.  
• word order movement: METEOR tracks this, while our modified version can 

improve this. 
• severe paraphrases substantially altering the reference sentence. Neither METEOR 

nor our modified version can track this. 
 

Chapter 5: Machine Translation Evaluation and Optimization834 



 

5.6.7. The Stanford RTE-based Metrics (RTE and RTE+MT) 
Authors: Sebastian Pado, Michel Galley, and Christopher Manning 

5.6.7.1. Introduction 

The first generation of metrics developed for the automatic evaluation of machine 
translation output (such as BLEU (Papineni et al. 2002) and NIST (Doddington 2002)) 
were based on surface overlap, looking for identical word sequences between a system 
translation and one or more reference translations. However, recent work such as 
Callison-Burch et al. (2006) has identified serious problems with these metrics, such as 
unreliability at the level of individual segments, a bias towards statistical phrase-based 
MT systems, and (at least for some language pairs) low correlations between scores and 
human judgments. This casts a shadow on the frequent use of higher BLEU scores as a 
necessary and sufficient indicator of improvement in MT. 

More recent metrics address these shortcomings by refining the matching problem, 
for example by phrasing it as an edit sequence (Ter, Snover et al. 2006), or by integrating 
synonymy information from WordNet (Meteor, Banerjee and Lavie 2005). Our proposal 
is to go one step further and determine the adequacy of a system hypothesis with respect 
to a reference translation completely on a semantic level that generalizes over the 
different kinds of variability of linguistic realization that can arise through syntactic 
rearrangements (such as active/passive diatheses or adverb placement) or lexical and 
paraphrastic variation. To do so, we exploit the considerable similarities between the MT 
evaluation task and the task of Recognition of Textual Entailment or RTE (Dagan et al. 
2006). Given two short segments of text (premise and hypothesis), the recognition of 
textual entailment decides whether the hypothesis is entailed by the premise or not. 
Knowledge about the likelihood of textual entailment has been found to be beneficial for 
a range of applications, e.g., Word Sense Disambiguation or answer validation in 
Question Answering (Harabagiu and Hickl 2006). 

Transferred to the domain of MT evaluation, our intuition is that a good translation 
should be equivalent in meaning to the reference translation, Hence the likelihood of 
mutual entailment between system output and reference should be high for good 
translations, and low for bad translations. 

However, there are also evident differences between RTE and MT evaluation, both in 
terms of the data (entailment usually assumes that sentences are well-formed, which is 
often not true in MT), and in terms of the task (entailment is a “stricter”, and 
asymmetrical, task). Thus, we advocate a modular approach that predicts MT quality on 
the basis of entailment features, but can adjust the importance of these features for the 
new task. The resulting entailment-inspired approach has the potential of addressing the 
problems described in the first paragraph. First, entailment decisions are naturally made 
at the segment level. Second, textual entailment provides a framework for the integration 

Handbook of Natural Language Processing and Machine Translation 835 

Our plan is to measure the distance between the original and edited references, in 
effect measuring “severe paraphrases”, and determine if there is a threshold of distance 
such that for distances less than that threshold our modified METEOR shows a substantial 
improvement in correlation compared with the original METEOR. 



of different kinds of linguistic analysis techniques into MT evaluation. Finally, a deeper 
linguistic analysis can reduce biases towards particular system architectures. 

5.6.7.2. Metric Implementation  

The entailment features we use are computed by the Stanford RTE system 
(MacCartney et al. 2006). The input to the system is a pair of a premise and a hypothesis. 
We first perform a linguistic analysis whose result is a typed dependency graph. Next, an 
alignment is constructed between words of either sentence as the alignment that scores 
highest according to lexical similarity scores from about ten semantic resources and 
syntactic parallelism features. In the third phase, we construct features which model a 
range of syntactic, lexical, and semantic phenomena, such as factivity, polarity, 
monotonicity, matches and mismatches of named entities, and the quality of the 
alignment. The final score for each segment pair is computed by a regression model over 
the set of these entailment features. In contrast to the general entailment task, the features 
are computed for both directions to make a prediction for MT evaluation. This captures 
that system output and reference should entail each other.  

We compare this system (RTE) against two individual MT metrics (BLEU, TER) and 
a regression model over different parameterizations of the BLEU, NIST, and TER metrics 
(MT ). Finally, we combine the features of the MT regression model with the features of 
the RTE regression model to obtain a hybrid model (RTE+MT). We estimate the weights 
of all models from annotated translation corpora. 

 
 BLEU TER MT      RTE RTE+MT 

NIST 60.0 64.0 65.6 63.1 68.3 
WMT 35.9 37.5 39.6 42.3 45.7 

Table 5.19: Correlation between human judgments and predictions on two corpora (Spearman’s ρ) 

5.6.7.3. Experiment 1 

We first test the metric on two publicly available corpora with human judgments. The 
first one, NIST, includes data from the Open MT Evaluations of 2006 and 2008. The 
second one, WMT, consists of the 2006 and 2007 datasets of the ACL/NAACL WMT 
workshops. We used ten-fold cross-validation for (regularized) parameter estimation and 
testing. Table 5.19 shows Spearman’s ρ correlation coefficients between the models’ 
predictions and human judgments. Results for the two corpora differ in absolute values, 
due, e.g., to the use of a 5-point adequacy scale (WMT) vs. a 7-point scale (NIST). 
However, the main tendencies are the same: MT and RTE outperform individual metrics, 
but are not clearly ordered. The hybrid system (RTE+MT) substantially outperforms all 
other systems. Apparently, MT evaluation benefits from the complementary types of 
information it obtains from shallow and entailment features. 

Chapter 5: Machine Translation Evaluation and Optimization836 



 

5.6.7.4. Experiment 2  

We submitted the RTE+MT model from Experiment 1, with feature weights 
estimated on the union of the NIST and WMT corpora, to the NIST MetricsMATR’08 
single-reference track. The evaluation dataset was news and web data drawn from the 
NIST MT Eval and GALE programs, with some Transtac dialogue data. Across all 
performance analyses, our system was generally among the upper half. In the prediction 
of 7-point adequacy scores, RTE+MT obtained rank 14th of 39, with a correlation of ρ = 
0.61 (best system: 0.68). In the prediction of qualitative scores, it attained 7th place (ρ = 
0.51, vs. 0.57 for the best system). It was however the best system for the prediction of 
HTER scores (ρ = −0.56), the main GALE evaluation target. We hypothesize that the 
inferior performance in MetricsMATR compared to Exp. 1 is due to the following 
factors: (a), overfitting on training data due to a large number of parameters; (b), 
difficulty of structural features to deal with the often ungrammatical speech transcriptions 
in the Metric-sMATR data; (c), the absence of score normalization at the document or 
dataset level. 

5.6.7.5. Conclusion  

Our results show that the use of textual entailment features for MT evaluation is a 
promising perspective. We found that a vanilla RTE system — originally developed for 
well-formed English text – was mostly robust enough to compete with state-of-the-art 
MT evaluation metrics without adaptation. In particular, we found entailment-based 
features can be combined with traditional MT evaluation metrics to obtain a hybrid 
system that consistently outperforms either individual approach, which allows for the 
incremental improvement of evaluation schemes. 

Our current metric still has a number of limitations which are the subject of on-going 
research. Currently, a large hurdle to its practical use is its high resource requirements. 
Our metric requires several seconds to score one segment pair. While this is fast enough 
to score large corpora for evaluation purposes, it is clearly too slow for integration into 
minimum error rate training (MERT). However, a number of simple changes can reduce 
runtime considerably. In addition, the independence between individual segment pairs 
makes scoring easily parallelizable. 

 
 
 
 
 
 
 
 
 
 
 
 

 

Handbook of Natural Language Processing and Machine Translation 837 



References 
Agarwal, A. and A. Lavie. 2008. Meteor, M-BLEU and M-TER: Evaluation metrics for 
high-correlation with human rankings of machine translation output. Proceedings of the 
Third Workshop on Statistical Machine Translation, pages 115–118, Columbus, Ohio, 
June. Association for Computational Linguistics. 

ALPAC (Automatic Language Processing Advisory Committee). 1966. Report of the 
ALPAC; Language and Machines: Computers in Translation and Linguistics. Division of 
Behavioral Sciences, National Academy of Sciences, National Research Council, 
Washington, D.C. 

Banerjee, S. and A. Lavie. 2005. METEOR: An Automatic Metric for MT Evaluation 
with Improved Correlation with Human Judgments. Proceedings of the ACL 2005 
Workshop on Intrinsic and Extrinsic Evaluation Measures for MT and/or Summarization, 
pages 65–72, Ann Arbor, Michigan, June. 

Bannard, C. and C. Callison-Burch. 2005. Paraphrasing with Bilingual Parallel Corpora. 
Proceedings of the 43rd Annual Meeting of the Association for Computational 
Linguistics (ACL 2005), pages 597–604, Ann Arbor, Michigan, June. 

Belvin, R.S., S. Rieheman and K. Precoda. 2004. A Fine-Grained Evaluation Method for 
Speech-to-Speech Machine Translation Using Concept Annotations. Proceedings of the 
Fourth International Conference On Language Resources and Evaluation (LREC 2004), 
Lisbon, Portugal. 

Blatz, J., E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte, A. Kulesza, A. Sanchis and 
N. Ueffing. 2003. Confidence Estimation for Machine Translation. Technical Report 
Natural Language Engineering Workshop Final Report, Johns Hopkins University. 

Cahill, A., M. Burke, R. O’Donovan, J. van Genabith and A. Way. 2004. Long-distance 
dependency resolution in automatically acquired wide-coverage PCFG-based LFG 
approximations. Proc. ACL, pages 319–326. 

Callison-Burch, C., M. Osborne and P. Koehn. 2006. Re-Evaluating the Role of Bleu in 
Machine Translation Research. Proceedings of EACL-2006, pages 249–256, Trento, 
Italy. 

Callison-Burch, C., C. Fordyce, P. Koehn, C. Monz and J. Schroeder. 2007. (meta-) 
evaluation of machine translation. Proceedings of the Second Workshop on Statistical 
Machine Translation, pages 136–158, Prague, Czech Republic, June. Association for 
Computational Linguistics. 

Charniak, E. and M. Johnson. 2005. Coarse-to-fine n-best parsing and maxent 
discriminative reranking. Proceedings of the 43rd Annual Meeting of the Association for 
Computational Linguistics (ACL’05), pages 173–180, Ann Arbor, Michigan, June. 
Association for Computational Linguistics. 

Child, J.R., T. Ray and P. Lowe, Jr. 1993. Proficiency and Performance in Language 
Testing. Applied Language Learning, Vol. 4. 

Chapter 5: Machine Translation Evaluation and Optimization838 



 

Church, K. and E. Hovy. 1993. Good applications for crummy machine translation. 
Machine Translation, 8:239–258. 

Coughlin, D. 2003. Correlating Automated and Human Assessments of Machine 
Translation Quality. Proceedings of MT Summit IX, pages 63–70, New Orleans, LA. 

Dagan, I., O. Glickman and B. Magnini. 2006. The PASCAL Recognising Textual 
Entailment Challenge. Quiñonero-Candela, J., Dagan, I., Magnini, B., d’Alché-Buc, F. 
(Eds.) Machine Learning Challenges. Lecture Notes in Computer Science, Vol. 3944, pp. 
177-190, Springer.  

Doddington, G. 2002. Automatic Evaluation of Machine Translation Quality Using N-
gram Co-Occurence Statistics. Proceedings of the Human Language Technology 
(Notebook), pages 128–132, San Diego, CA. 

Fellbaum, C. 1998. WordNet: An Electronic Lexical Database. MIT Press.  
http://www.cogsci.princeton.edu/˜wn [2000, September 7]. 

Fisher, F. and C.R. Voss. 1997. Falcon, an mt system support tool for nonlinguists. 
Proceedings of the Advanced Information Processing and Analysis Conference (AIPA 
97), pages 182–191, McLean, VA. 

Fisher, F., C. Schlesiger, L. Decrozant, R. Zuba, M. Holland and C.R. Voss. 1999. 
Searching and translating arabic documents on a mobile platform. Proceedings of the 
Advanced Information Processing and Analysis Conference (AIPA 99), Washington, DC. 

Frederking, R. and S. Nirenburg. 1994. Three Heads are Better than One. Proceedings of 
the Fourth Conference on Applied Natural Language Processing (ANLP-94), Stuttgart, 
Germany. 

Garofolo, J.S., T. Robinson, and J. G. Fiscus. 1994. The development of file formats for 
very large speech corpora: Sphere and shorten. Proceeding of ICASSP. 

Gates, D., A. Lavie, L. Levin, A. Waibel, M. Gavald`a, L. Mayfield, M. Woszczyna and 
P. Zhan. 1996. End-to-End Evaluation in JANUS: a Speech-to-Speech Translation 
System. Proceedings of the European Conference on Artificial Intelligence (ECAI-1996) 
(Workshop on “Dialogue Processing in Spoken Language”), Budapest, Hungary, August. 

Gimenez, J. and L. Marquez. 2007. Linguistic features for automatic evaluation of 
heterogenous MT systems. Proceedings of the Second Workshop on Statistical Machine 
Translation, pages 256–264, Prague, Czech Republic, June. Association for 
Computational Linguistics. 

Habash, N. and A. Elkholy. 2008. Sepia: Surface span extension to syntactic dependency 
precision-based mt evaluation. Proceedings of the NIST Metrics for Machine Translation 
Workshop at the Association for Machine Translation in the Americas conference, 
AMTA-2008, Waikiki, Hawaii. 

Hutchins, W.J. 2001. Machine Translation Over Fifty Years. Histoire Épistémologie 
Langage, I(23):7–31. 2008. ILR language skill level descriptions. http://www.govtilr.org. 

Handbook of Natural Language Processing and Machine Translation 839 



Jones, D. and W. Shen. 2006. Two New Experiments for ILR-Based MT Evaluation. 
Proceedings of Association for Machine Translation in the Americas. 

Jones, E., T. Oliphant, P. Peterson, et al. 2001–. SciPy: Open source scientific tools for 
Python. 

Jones, D.A., W. Shen, N. Granoien, M. Herzog and C. Weinstein. 2005. Measuring 
translation quality by testing English speakers with a new defense language proficiency 
test for Arabic. Proceedings of 2005 International Conference on Intelligence Analysis, 
May 2-6, 2005, McLean, VA., May. 

Jones, D., M. Herzog, H. Ibrahim, A. Jairam, W. Shen, E. Gibson and M. Emonts. 2007. 
ILR-based MT comprehension test with multi-level questions. Human Language 
Technologies 2007: The Conference of the North American Chapter of the Association 
for Computational Linguistics; Companion Volume, Short Papers, pages 77–80, 
Rochester, New York, April. Association for Computational Linguistics. 

Joshi, A.K. and Y. Schabes. 1997. Tree-adjoining grammars. G. Rozenberg and A. 
Salomaa, eds., Handbook of Formal Languages, Volume 3: Beyond Words, pages 69–
124. Springer, New York. 

Kauchak, D. and R. Barzilay. 2006. Paraphrasing for Automatic Evaluation. Proceedings 
of the Human Language Technology Conference of the North American Chapter of the 
ACL, pages 455–462. 

King, M. 1996. Evaluating Natural Language Processing Systems. Communication of the 
ACM, 29(1):73–79, January. 

Knight, K. and I. Chander. 1994. Automated Postediting of Documents. Proceedings of 
National Conference on Artificial Intelligence (AAAI), pages 779–784, Seattle, 
Washington. 

Laoudi, J., C. Tate and C.R.Voss. 2006. Task-based mt evaluation: From 
who/when/where extraction to event understanding. Proceedings of the Fifth 
International Conference on Language Resources and Evaluation, LREC-2006, pages 
2048–2053, Genoa, Italy. 

Lavie, A. and A. Agarwal. 2007. METEOR: An automatic metric for MT evaluation with 
high levels of correlation with human judgments. Proceedings of the Second Workshop 
on Statistical Machine Translation, pages 228–231, Prague, Czech Republic, June. 
Association for Computational Linguistics. 

Lavie, A., K. Sagae and S. Jayaraman. 2004. The Significance of Recall in Automatic 
Metrics for MT Evaluation. Proceedings of the 6th Conference of the Association for 
Machine Translation in the Americas (AMTA-2004), pages 134–143, Washington, DC, 
September. 

Leusch, G., N. Ueffing and H. Ney. 2006. CDER: Efficient MT Evaluation Using Block 
Movements. Proceedings of the 11th Conference of the European Chapter of the 
Association for Computational Linguistics (EACL 2006). 

Chapter 5: Machine Translation Evaluation and Optimization840 



 

Levenshtein, V. I. 1966. Binary Codes Capable of Correcting Deletions, Insertions, and 
Reversals. Soviet Physics Doklady, 10:707–710. 

Levin, L., D. Gates, A. Lavie, F. Pianesi, D. Wallace, T. Watanabe and M. Woszczyna. 
2000. Evaluation of a Practical Interlingua for Task-Oriented Dialogue. Proceedings of 
ANLP/NAACL-2000 Workshop on Applied Interlinguas, pages 18–23, Seattle, WA. 

Liu D. and D. Gildea. 2005. Syntactic features for evaluation of machine translation. 
Proceedings of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for 
Machine Translation and/or Summarization, pages 25–32, Ann Arbor, Michigan. 

Lopresti, D. and A. Tomkins. 1997. Block edit models for approximate string matching. 
Theoretical Computer Science, 181(1):159–179, July. 

Madnani, N., N.F. Ayan, P. Resnik and B.J. Dorr. 2007. Using paraphrases for parameter 
tuning in statistical machine translation. Proceedings of the Workshop on Statistical 
Machine Translation, Prague, Czech Republic, June. Association for Computational 
Linguistics. 

Madnani, N., P. Resnik, B.J. Dorr and R. Schwartz. 2008. Are Multiple Reference 
Translations Necessary? Investigating the Value of Paraphrased Reference Translations 
in Parameter Optimization. Proceedings of the Eighth Conference of the Association for 
Machine Translation in the Americas, October. 

Magerman, D.M. 1995. Statistical decision-tree models for parsing. Proc. ACL, pages 
276–283. 

Matusov, E., G. Leusch, O. Bender and H. Ney. 2005. Evaluating machine translation 
output with automatic sentence segmentation. Proceedings of the International Workshop 
on Spoken Language Translation (IWSLT) 2005. 

Moore, R. C. and C. Quirk. 2008. Random restarts in minimum error rate training for 
statistical machine translation. Proceedings of the 22nd International Conference on 
Computational Linguistics (Coling 2008), pages 585–592, August. 

Nelder, J. A. and R. Mead. 1965. A simplex method for function minimization. Computer 
Journal, 7:308–313. 

Nießen, S., F.J. Och, G. Leusch, and H. Ney. 2000. An evaluation tool for machine 
translation: Fast evaluation for MT research. In Proceedings of the 2nd International 
Conference on Language Resources and Evaluation (LREC-2000), pages 39–45. 

NIST and LDC. 2007. Post Editing Guidelines for GALE Machine Translation 
Evaluation, Version 3.0.2, May 25. 

Nϋbel, Rita. 1997. End-to-End Evaluation in VERBMOBIL I. Proceedings of MT 
Summit VI, pages 232–239, San Diego, CA. 

Och, F.J. and H. Ney. 2002. Discriminative training and maximum entropy models for 
statistical machine translation. Proceedings of the 40th Annual Meeting of the Association 
for Computational Linguistics (ACL), pages 295–302, Philadelphia, PA, July. 

Handbook of Natural Language Processing and Machine Translation 841 



Och, F.J.. 2003. Minimum Error Rate Training in Statistical Machine Translation. 
Proceedings of the 41st Annual Meeting of the Association of Computational Linguistics, 
pages 160–167, July. 

Owczarzak, K., J. van Genabith and A. Way. 2007. Labeled dependencies in machine 
translation evaluation. Proceedings of the Second Workshop on Statistical Machine 
Translation, pages 104–111, Prague, Czech Republic. Association for Computational 
Linguistics. 

Papineni, K., S. Roukos, T. Ward and W. Zhu. 2002. BLEU: a Method for Automatic 
Evaluation of Machine Translation. Proceedings of the 40th Annual Meeting of the 
Association for Computational Linguistics, pages 311–318, Philadelphia, PA. 

Porter, M.F. 1980. An algorithm for suffic stripping. Program, 14(3):130–137. 

Powell, M. J. D. 1964. An efficient method for finding the minimum of a function of 
several variables without calculating derivatives. Computer Journal, 7:155–162. 

Przybocki, M., K. Peterson and S. Bronsart. 2008. Official results of the NIST 2008. 
“Metrics for MAchine TRanslation” Challenge (Metrics-MATR08). 
http://nist.gov/speech/tests/metricsmatr/2008/results/, October. 

Roark, B., M. Harper, E. Charniak, B. Dorr, M. Johnson, J.G. Kahn, Y. Liu, M. 
Ostendorf, J. Hale, A. Krasnyanskaya, M. Lease, I. Shafran, M. Snover, R. Stewart and 
L. Yung. 2006. SParseval: Evaluation metrics for parsing speech. Proc. LREC. 

Rosti, A.V., S. Matsoukas and R. Schwartz. 2007. Improved word-level system 
combination for machine translation. Proceedings of the 45th Annual Meeting of the 
Association of Computational Linguistics, pages 312–319, Prague, Czech Republic, June. 
Association for Computational Linguistics. 

Russo-Lassner, G., J. Lin and P. Resnik. 2005. A Paraphrase-Based Approach to 
Machine Translation Evaluation. Technical Report LAMPTR-125/CS-TR-4754/UMIACS-
TR-2005-57, University of Maryland, College Park. 

Sanders, G.A., S. Bronsart, S. Condon and C. Schlenoff. 2008. Odds of Successful 
Transfer of Low-level Concepts: A Key Metric for Bidirectional Speech-to-speech 
Machine Translation in DARPA’s TRANSTAC Program. Proceedings of the Sixth 
International Conference on Language Resources and Evaluation (LREC-2008), 
Marrakesh, Morocco, May. European Language Resources Association (ELRA). 

Snover, M., B. Dorr and R. Schwartz. 2004. A Lexically-Driven Algorithm for 
Disfluency Detection. Proceedings of HLT/NAACL, pages 157–160. 

Snover, M., B. Dorr, R. Schwartz, L. Micciulla and J. Makhoul. 2006. A Study of 
Translation Edit Rate with Targeted Human Annotation. Proceedings of Association for 
Machine Translation in the Americas (AMTA-2006), pages 223–231, Cambridge, 
Massachusetts. 

Chapter 5: Machine Translation Evaluation and Optimization842 



 

Tate, C.R. and C.R. Voss. 2006. Combining evaluation metrics via loss functions. 
Proceedings of the Association for Machine Translation in the Americas conference, 
AMTA-2006, Boston, MA. 

Tate, C.R. 2007. An Investigation of the Relationship between Automated Machine 
Translation Evaluation Metrics and User Performance on an Information Extraction Task. 
Ph.D. thesis, University of Maryland, College Park, MD. 

Tate, C.R. 2008. A statistical analysis of automated mt evaluation metrics for assessments 
in task-based mt evaluation. Proceedings of the Association for Machine Translation in 
the Americas conference, AMTA-2008, pages 182–191, Waikiki, Hawaii. 

Taylor, K. and J. White. 1998. Predicting what mt is good for: User judgments and task 
performance. Proceedings of the Association for Machine Translation in the Americas 
conference, AMTA-1998, Langhorne, PA. 

Tillmann, C., S. Vogel, H. Ney, A. Zubiag and H. Sawaf. 1997. Accelerated DP Based 
Search For Statistical Translation. European Conference on Speech Communication and 
Technology, pages 2667–2670, Rhodes, Greece, September. 

Turian, J.P., L. Shen and D.I. Melamed. 2003. Evaluation of machine translation and its 
evaluation. Proc. MT Summit IX, pages 386–393, New Orleans, LA. 

Vanni, M., C.R. Voss and C.R. Tate. 2004. Ground truth, reference truth and “omniscient 
truth” – parallel phrases in parallel texts for mt evaluation. Proceedings of the Fourth 
International Conference On Language Resources and Evaluation (LREC 2004), pages 
10–13, Lisbon, Portugal. 

Voss, C.R. and C.R. Tate. 2006. Task-Based Evaluation of Machine Translation (MT) 
Engines: Measuring How Well People Extract Who, When, Where Type Elements in MT 
Output. Proceedings of the 11th Annual Conference of the European Association for 
Machine Translation (EAMT-2006), pages 203–212, Oslo, Norway. 

White, J.S. and T. O’Connell. 1994. Evaluation in the ARPA Machine Translation 
Program: 1993 Methodology. Proceedings of the ARPA HLT Workshop, Plainsboro, NJ. 

White, J.S., T. O’Connell and F. O’Mara. 1994. The ARPA MT Evaluation 
Methodologies: Evolution, Lessons, and Future Approaches. Proceedings of the First 
Conference of the Association for Machine Translation, pages 193–205. 

White, J.S., J.B. Doyon and S.W. Talbott. 2000. Task Tolerance of MT Output in 
Integrated Text Processes. ANLP/NAACL 2000: Embedded Machine Translation Systems, 
pages 9–16. 

Wilks, Y. 2008. Machine Translation: Its Scope and Limits. Springer Verlag, New York, 
NY. 

Zhou, L., C.Y. Lin and E. Hovy. 2006. Re-evaluating Machine Translation Results with 
Paraphrase Support. Proceedings of the 2006 Conference on Empirical Methods in 
Natural Language Processing (EMNLP 2006), pages 77–84. 

Handbook of Natural Language Processing and Machine Translation 843 





Chapter  6:   Operational Engines 
Editors: Douglas W. Oard, Carl Madson, Joseph Olive, John McCary, and Caitlin Christianson  
 
  
 

6.1 Introduction 
The goal of the GALE Program is to empower the warfighter through the use of 

language technologies.  In order to accomplish this goal, the technologies must be 
integrated into operational engines that meet the needs of both warfighters and those who 
support them.  That integration imperative leads directly to the two key parts of this 
chapter: how to perform that integration, and assessing how well we have met operational 
needs. 

The chapter begins with a look at the deployment history over the past decade and a 
half for speech and language technologies in operational environments.  As Kathleen 
Egan and Allen Sears (Section 6.2.1) explain, this has been an evolutionary process 
driven by an increasingly rich understanding of warfighter needs.  The second 
contribution provides details on the design of an operational engine that has recently been 
deployed in operational environments around the world, including in direct support of 
operational forces in the field.  As Daniel Kiecza and his colleagues (Section 6.2.2) 
explain, meeting the need for responsive and accurate performance by integrating 
systems that each have a different development heritage can be a substantial undertaking, 
sometimes requiring development of new technologies.  As an example of that process, 
Amit Srivastava and Daniel Kiecza (Section 6.2.3) describe the development of a new 
technique for establishing sentence boundaries during speech recognition that 
substantially improves the latency for subsequent translation of the recognized speech.  

The integration challenge in GALE extends well beyond pairing components, 
however.  John Pitrelli and his colleagues (Section 6.2.4) introduce the full scope of the 
challenge by describing the GALE Interoperability Demonstration (IOD) system.  
Coordinating real-time processing by eleven different types of language technologies 
would be a substantial undertaking under any circumstances; doing so in a distributed 
manner using the facilities of seven research groups spread over thousands of miles in 
three countries raises the challenge to an entirely new level.  But, it is exactly that level at 
which we must learn to work if we are to learn how best to integrate the diverse language 
technologies that we are now able to create. 

The core technology behind the GALE IOD system is the Unstructured Information 
Management Architecture (UIMA), a flexible integration platform designed to meet the 
unique demands of distributed language processing.  Eric Nyberg (Section 6.2.5) and his 
colleagues describe how UIMA-enabled components can be shared using GALE’s UIMA 
Component Repository (UCR), and how individual researchers can flexibly configure 
entire UIMA processing environments using GALE’s UIMA Component Container 
(UCC). 

845J. Olive et al. (eds.), Handbook of Natural LanguageProcessing  
DOI 10.1007/978-1-4419-7713-7_6, � Springer ScienceþBusiness Media, LLC 2011

and Machine Translation,



Chapter 6: Operational Engines  846 

The unprecedented complexity of the systems that we can now assemble poses 
substantial challenges for evaluation.  We know from intrinsic evaluation how well 
individual components, and even specific types of component combinations, meet our 
expectations for their behavior.  However, calibrating our expectations for parts of a 
complex system against the true needs of users of the entire system is another matter 
altogether.  No one approach can provide a comprehensive answer to every question we 
must answer about the utility of the systems that we build, so in the second part of this 
chapter we look at three ways that GALE researchers have gained such insights.  Daqing 
He and his colleagues begin that process by describing a series of user studies to evaluate 
the utility of specific ways of integrating language technologies by using the Evaluation 
Dataset for Integration Exploration (EDIE) that they developed for GALE to create a 
controlled evaluation environment.  Studies of this type by each GALE team offered a 
principled basis for system design decisions. 

To bring GALE systems from the research lab to the warfighter requires that we 
augment these initial controlled user studies with additional user studies in representative 
environments and with representative users.  Douglas Oard and his colleagues tackle the 
challenge of evaluating a fully integrated system in a representative environment by 
running a rich set of formative evaluation studies using live content, designing tasks 
based on real-world events as they were unfolding.  Connie Fournelle and her colleagues 
then put experienced intelligence analysts in front of fully integrated GALE systems and 
challenged them with realistic tasks.  Never before has it been possible to deliver this 
level of integrated  language processing to real analysts, and the results of this important 
study have served to ground resource allocation decisions throughout the remainder of 
the GALE program. 

As with many difficult challenges, robust investment in system integration is, 
perhaps, more often preached than practiced.  We have forces deployed in harm’s way in 
the service of our nation, however, and those brave men and women demand and deserve 
our best effort to create the robust and effective integrated systems that they accomplish 
what we have asked of them.  Unprecedented challenges call for innovative approaches, 
and our goal in this chapter is to describe how the GALE research teams have risen to 
meet that challenge. 
 

6.2 Implementation of Operational Engines 

6.2.1. Bridging the Gap between Research Advances and 
Operational Users 

6.2.1.1. Introduction 

The efforts in bringing new technologies to bear in an operational setting started with 
the first meaningful Arabic data collection in 1998, including a variety of Arabic media 
sources, such as Al Jazeera. Established in 1996 with a grant from the Emir of Qatar, Al 
Jazeera’s BBC-trained staff brought the styles and techniques of Western media to the 

Authors: Kathleen Egan and Allen Sears 



Handbook of Natural Language Processing and Machine Translation 847
 

 

Arabic-speaking world for the first time. Covering the politics and conflicts of the region 
with a relatively apolitical eye, Al Jazeera accomplished the feat of appearing to be both 
anti-American (from the point of view of the U.S.) and anti-establishment (from the point 
of view of regional governments and powers). It was Al Jazeera’s airing of Al Qaeda’s 
home-produced video statements that brought the station worldwide attention. 

Because there were so many media outlets to monitor (including a rapidly increasing 
number of Web pages and blogs), by 2000 it became clear that U.S. personnel could no 
longer keep up with the inflow of media at all levels. No automation existed to stem the 
flow, although various organizations attempted to handle it by force of human effort. In 
addition, the vast majority of the content was in languages outside the Cold-War stalwarts 
of Russian, German, and the like, more than doubling the challenge to keeping up using 
human translators. 

The Department of Defense (DoD) graduates approximately 2500 linguists each year, 
of whom about 750 specialize in Middle Eastern languages. Today these numbers satisfy 
only 10-15% of the military's requirements for interpreters and translators. The current 
requirement is for about 10,000 linguists. With a rough annual cost of training each 
individual at approximately $250,000, the military cannot afford to train enough qualified 
linguists to support today's needs (Gilmore 2007). Moreover, even if enough linguists in 
all the priority languages were available, the amount of data to be analyzed is growing 
exponentially, and humans alone cannot monitor all of the available data in a timely 
fashion.  

Language is at the heart of human communication and having timely and accurate 
translations can save lives. Words are powerful. They have infuriated populations, 
created misunderstandings, fueled hatred, and built barriers across cultures and 
civilizations. At the same time, words have opened doors, reconciled groups, gained 
peace, and created laws for justice, order, democracy and freedom. The imperative with 
the sea of words from around the world is for accuracy, but more importantly, the 
meaning of each word in context.  

In the past ten years, human language technology (HLT) insertion in user-friendly 
solutions stepped in to bridge the two major capabilities gaps afflicting U.S. operations: 
media triage and foreign language comprehension. Various government agencies are 
now leveraging GALE advances and building on the on-going work of the Technical 
Supporting Working Group (TSWG). TSWG is an interagency research and development 
arm of the Office of the Secretary of Defense that is funding media monitoring 
development to enable the warfighter to gain immediate actionable intelligence from 
open source media.   

6.2.1.2. Pre-GALE Efforts: Early Applications of HLT in the Intelligence 
Community (IC) and DoD 

Throughout the 1990s, DARPA funded basic research in speech recognition 
(sometimes known as speech-to-text) and machine translation. While incremental 
progress had been made in the accuracy of transcription and translation during that 
decade, transition of these technologies to operational use had occurred only on a 
piecemeal basis. Users of these technologies were largely responsible for envisioning a 
concept of operations that would be introduced into their existing business processes, all 



of which assumed manual, human-intensive approaches. As such, technology transition 
was limited, and early adopters were not fully supported in the insertion of advanced 
language processing technologies into operational settings. Most user groups did not have 
strong information technology support, and did not want to depend on unreliable 
machines in support of operational tasks. Progress in transition has improved over the 
years through the adoption of a strategy of testing technologies with proxy users and then 
engaging them to define and improve on the proposed concept of operations.  However, it 
is only when moving technology from an experiment to an operational prototype and 
later to a fully integrated system in the workplace that full transition and technology 
maturity occurs.   

Before 2000, the overall technical goal for automated language processing was to 
reduce word error rates for speech, and achieve fluency and accuracy measures for 
machine translation quality. A shift started around 2000, with a goal of supporting users 
in the language processing tasks with which they were faced on a daily basis. From 2000 
to 2003, three major efforts in the IC and DoD laid the groundwork for bridging the gap 
between a community of users who relied heavily on human capital for all of its analysis, 
and a research community that focused on the hard scientific problems of speech 
recognition and machine translation.  

OASIS, TAP projects, and MAPS were the predecessors to the broadcast monitoring 
and Web monitoring capabilities that now support language needs and are currently 
deployed in a growing number of operational sites.  

6.2.1.3. OASIS 
In 2000, the Intelligence Community wished to broaden and accelerate the coverage 

of open-source broadcast media to Government decision makers. The Foreign Broadcast 
Information Service (FBIS, now known as the Open Source Center) was responsible for 
media processing that was extremely labor-intensive.  The sources were non-English, and 
native speakers performed selection, transcription, and translation of the audio sources. 
Selection was the process of locating media that was “newsworthy” for dissemination. 
Transcription was the process of transforming the media into typewritten form in the 
source language, and translation converted the non-English transcript into English for all 
selected excerpts.  

FBIS was interested in automating the processing pipeline, starting with the selection 
process, and considered using automatic speech recognition as a solution that would turn 
a listening problem into a reading or skimming problem, and eventually into a searching 
problem. Furthermore, having a transcript as a starting point would speed up the eventual 
translation of the media. To test this theory, BBN was awarded a contract to develop the 
OASIS system and use technology that BBN had been developing for DARPA called 
“Rough and Ready” (Kubala et al. 2000). OASIS allowed the scheduled recording and 
transcription of broadcast-news-quality audio, initially in South Asian-accented English, 
and later also in Arabic and Mandarin Chinese. OASIS was deployed to several 
international customer locations for use by local media analysis staff. 

OASIS proved to be highly successful at this task. While initially regarded as a threat 
by the local translators, the system acted as an additional set of “digital ears”, monitoring 
stations that the customer wished to cover, but for which they lacked staff to conduct 

848 Chapter 6: Operational Engines  



 

real-time reviews. OASIS recorded and transcribed stations on a time-shift basis, then 
allowed rapid review of the captured content for intelligence value. In a 2000 Weekly 
Activity Report (WAR) to the Secretary of Defense, DARPA reported that automatic 
language processing technology had been licensed by the commercial sector and would 
be used for automatic indexing of audio information, such as radio broadcasts. Basic 
speech recognition and information extraction components came from previous DARPA 
investment in the Human Language Systems program.  

The users concluded that being able to view the text while gisting the most important 
excerpts of the news made it possible for analysts to cover a larger number of hours of 
captured media in substantially less time. During these early OASIS prototypes testing, 
analysts reported that the word error rate did not bother them as long as they could 
corroborate the accuracy of the transcription by listening to the audio. This was important 
feedback from users that helped shape technology development priorities and user 
interface. 

OASIS marked the first major successful use of human language technology to 
bridge the media triage gap in an operational context for an operational government 
customer (Shepard et al. 2002). 

6.2.1.4. Text and Audio Processing (TAP) Experiments 
In late 2003, the DARPA TIDES program was focused on using HLT to enable 

native English speakers to access and process non-English media content with the same 
ease as English media. The TIDES program held regular pseudo-operational evaluations 
known as Integrated Feasibility Experiments, or IFEs, allowing proxy users to work with 
the technology developed by the research community in a controlled environment. Three 
organizations participated in the TAP experiments and helped shape the technology from 
their own perspectives. MITRE developed the MiTAP system that focused on 
information management of language reports on the Web regarding identifying and 
tracking disease outbreaks. Both Virage and BBN developed experimental systems 
(ViTAP and OnTAP respectively) to harvest and translate open-source Web content from 
news sites. ViTAP and OnTAP allowed analysts to write reports based on the content 
processed by the system. Both systems were given operational prototype stress-tests in 
2004 at the Strong Angel II humanitarian response technology demonstration. 

In September 2001, the world’s attention shifted to the 9/11 attacks by terrorists on 
the U.S. The DARPA HLT programs, which had been developing English transcription 
and translation capability, immediately focused all their effort on Arabic. Terrific 
progress was made on automated Arabic language processing in 2002 and 2003, and by 
the end of 2003, DARPA was ready to conduct an operational prototype experiment with 
an Arabic system. In December 2003, DARPA management approved an “experimental 
Text Information Retrieval (eTIR)” project that was based on the emerging TAP 
technologies. 

DARPA, with support from the National Virtual Translation Center (NVTC), 
developed an eTAP initiative with the J2 Open Source Cell at United States Central 
Command (CENTCOM) in Tampa, Florida.  The Open Source (OSINT) Cell was 
charged with collecting and reporting on Middle Eastern media coverage of U.S. actions 
in Iraq and Afghanistan for the CENTCOM commander. Their product was known as the 

Handbook of Natural Language Processing and Machine Translation 849



“Foreign Media Perceptions Digest” and was published three times a week. The 
technology at their disposal consisted of a set of America Online accounts, which they 
used to review English Web sites reporting on news in the CENTCOM theater. The 
OnTAP technology was selected to be modified and applied to the OSINT task for the 
eTIR project.  

With support from DARPA, BBN developed an operational prototype variant of 
OnTAP called eTAP, for CENTCOM’s exclusive use. eTAP collected Web pages from 
Arabic language news Web sites, translated them using a machine translation engine 
from Language Weaver, Inc., and made them searchable in English through a simple user 
interface. The system was built to provide a platform on which to develop a CONOPS for 
automated language processing in support of the Enduring Freedom effort in Iraq, and to 
measure the contribution of the technology in response to the operational needs. Even 
though the machine translation capability was far from perfect, the hypothesis was that 
the current state of the art in machine translation was of sufficient quality to allow 
accurate gisting of open-source content.  

The eTAP system allowed the CENTCOM users to set up personalized search terms, 
called a “watchlist,” and review them at will. Using the rough machine translation to 
judge the relevance of an article, the users could click an on-screen button, which would 
task a human linguist at the NVTC in Washington, D.C., to create a more accurate, 
human-vetted translation. This was performed first overnight, then in less than two hours 
if deemed critical, and returned to the analysts at CENTCOM for use in their reports.  

The eTAP capability proved to be extremely successful. During the first six months 
of operational use, the system harvested over 1.5 million web pages. CENTCOM staff 
selected over 1,300 automated translations for human gisting, and used over 99% of them 
in their final products, rejecting only two translations because they were either not 
relevant or redundant. As a direct result of their new level of success, CENTCOM 
increased its publication rate from three news roundup products per week to multiple 
daily products and expanded its staff to more than ten analysts and linguists. Growth in 
demand occurred in part due to the increased visibility brought about by the technological 
assist; instead of reducing overall labor, the system helped to create a capability. The use 
of eTAP at CENTCOM marked the first automated system that provided foreign 
language comprehension to the active warfighter. 

6.2.1.5. MAPS 
In 2003, TSWG responded to a requirement from the Deputy Directorate for 

Information Operations (DDIO), a component of the Joint Chiefs of Staff J2/J3 
Operations Directorate based in the Pentagon. The DDIO was focused on winning the 
international information campaign against terrorism. Their primary function was to 
monitor, collect, and resolve conflicting information from domestic and international 
broadcasts that was relevant to U.S. military interests. Timeliness of the collected 
information was of the essence.  

The DDIO had little automation support; staff members kept televisions on all the 
time, waiting for relevant broadcasts to air. When an important story appeared on the 
screen, staff members and linguists would run into a media room equipped with a set of 
digital video recorders to attempt to translate the news program. The DDIO was seeking 

850 Chapter 6: Operational Engines  



 

automated methods to allow them to monitor an increasing amount of media with the 
same or fewer staff. 

IC and DoD entities have always monitored foreign media using language analysts 
and/or native speakers to watch the news and report on critical events. This human 
approach was time and resource intensive, leading to a strong requirement to add support 
and go beyond the human effort. TSWG responded to DDIO need by capitalizing on the 
research gains realized by DARPA and moving them into an operational context, with 
real users who would rely on the technology for their day-to-day work. The practice of 
humans watching television news and reporting the highlights at the end of the day was 
deemed insufficient and unpractical when timely responsiveness and documented 
evidence of facts were paramount in gaining situational awareness and combating 
terrorism. The realization that human-machine collaboration was a better approach for 
timely handling of the volume of data motivated the subsequent development, 
architecture, configuration, integration and deployment of systems in operational 
environments.  

TSWG leveraged OASIS and funded a team led by BBN to develop and deploy the 
Multimedia Alert Processing System (MAPS), delivered to the DDIO as a prototype in 
two phases. The initial prototype supported monitoring of two English and three Arabic 
television channels. The second delivery incorporated upgrades and features requested by 
the user community. MAPS was the first turnkey application that was physically 
deployed in two operational settings (DDIO from 2003 to 2004 and CENTCOM from 
2003 to the present) combining audio, text, video, and translingual search into one 
application. 

TSWG funded extensions and improvements in response to specific requirements 
from users at the CENTCOM J2 OSINT section targeted at increasing its analysts’ ability 
to access Arabic-language media. These requirements included expanding its MAPS 
system to two channels and enhancing the eTAP Web harvesting system. 

At the same time, three overseas deployments of MAPS took place in support of 
Operation Iraqi Freedom: one with the Department of State Multi National Forces - Iraq 
(MNFI), one with PsyOps, and one with Special Forces.  

6.2.1.6. TALES (Translingual Advanced Language Exploitation System) 
In 2005, the Joint Intelligence Center PACIFIC (JICPAC) and DARPA planned a 

field test experiment to exploit web and broadcast information coming from the Pacific 
area of operations.  DARPA selected and funded IBM for the experiment and decided 
that the focus should be on Chinese transcription and translation. IBM was to develop 
and insert a prototype system to be called TALES. The hardware and software were to be 
packaged in a “deployment unit” installed at JICPAC in Hawaii. Open source processing 
personnel at JICPAC were given the task of developing analytical models to predict the 
possible impact of automated language exploitation capability. In addition, the 
DARPA/GALE Language Exploitation Environment (LEE) effort would demonstrate 
capabilities through the use of IBM’s UIMA (Unstructured Information Management 
Architecture) framework. The objective was to test data management and technical 
integration point approaches in order to discover both strengths and weaknesses relevant 
to future JICPAC operations.   

Handbook of Natural Language Processing and Machine Translation 851



The plan was for DARPA and JICPAC to develop a strategic relationship based on 
leveraging current language processing components within the UIMA framework to offer 
PACCOM an open-source processing capability that could be expanded to support 
requirements for an increasing volume of Chinese translation while reducing turn-around 
time and improving open source products. However, one lesson learned from the TALES 
insertion effort was that there was a delicate balance in opportune timing between 
capability maturity and technology insertion, as highlighted by the relative lack of 
maturity and capability of Chinese audio and text processing. At the time, the research 
capabilities for Chinese language processing were not sufficient to be of assistance to 
operational users. DARPA learned about the shortcomings in Chinese processing 
techniques from TALES and from metrics-based testing.  This led to increased efforts to 
find new approaches aimed at improving automated translation. Chinese translation 
techniques are still a high priority for DARPA/GALE today.  

6.2.1.7. BMS and WMS 
 

 
 

Figure 6.1: Timeline of HLT R&D efforts 

The approach adopted in these efforts was to mitigate machine errors and focus on 
robust retrieval methods, maximizing the users’ expertise by providing intuitive, user-
friendly interfaces and productivity tools that supported the users’ day-to-day operations. 
TSWG insisted that development be closely linked with efforts to observe, listen to, and 
respond as a team to the unique operational needs of users. A key objective was to exploit 
open-source media in order to efficiently and effectively monitor the growing impact of 
that media on military and intelligence analysis and actions. Both the BMS and WMS 

852 Chapter 6: Operational Engines  

 

 



 

helped to moderate the compounding challenges of access to the growing volume of data 
and the limited number of analysts and hours in the day to complete operational tasks.  

Since 2005, the BMS and WMS have been available as fully-functional, turnkey 
systems that can be deployed to customer sites in a leave-behind mode for operational 
use. Since these two systems have provided the most successful insertions for GALE 
technology to date, a short review of the applications follows:  

The BBN Broadcast Monitoring System creates a continuous, searchable archive of 
foreign language television broadcasts. For a complete description of BMS, see Section 
6.2.2.6.  

The BMS allows users with no foreign language skills to get the gist of a broadcast 
and triage enormous volumes of media, allowing linguists to focus on translation tasks. 
Users can quickly find spoken content in the video archive through keyword queries — in 
English or the source language — and play back video from any point in the system’s 
one-year internal cache. Searches can be saved in a watch-list and are automatically 
populated by the system as new matches are found.  

Figure 6.2: WMS article niew 

The BBN Web Monitoring System (WMS) is an end-to-end system providing the 
capability of collecting, organizing, and translating open-source content from the World 
Wide Web. The WMS integrates and manages the workflow of the media analysis 
process from beginning to end — from data collection and processing, to automated 
triage and retrieval, to machine-assisted translation and support for human translation, to 
publication and dissemination. 

Handbook of Natural Language Processing and Machine Translation 853

 

 



WMS continuously captures content from user-selected Web sites and stories it in an 
archive that can be shared by multiple, distributed user groups. The captured site is 
archived and versioned for later use.  

WMS supports over 30 input languages. Pages are automatically translated into 
English using machine translation software from Language Weaver. English speakers can 
use the machine translation to get the gist of an article, and then reach through the 
network for high quality human translation support. 

In addition to the insertion of GALE advances in speech and machine translation 
through system upgrades, we have found that developing assistive tools to improve 
workflow is critical. Users differ in their needs for the output of the data. By working 
with them directly, we have been able to adjust the applications to fit the users’ tasks and 
facilitate user acceptance of the technology.  

6.2.1.8. User Feedback 
Technology transition to a community of operational users involves a delicate 

balancing act. The natural tendency for technology providers is to attempt to field the 
most aggressive, highest performance application that represents the fruit of the labor of 
the research community. Yet, what leads to rapid adoption tends to be much different. 
TSWG insertion experiments have demonstrated that rapid adoption is best achieved if 
applications are simple to use and integrate seamlessly with users’ tasks. Moreover, 
prototype systems must be robust and require little in the way of maintenance. The 
success of the TSWG/DARPA partnership lies in the ability to address both of these 
seemingly conflicting goals, resulting in applications that can be fielded to environments 
as harsh as a dusty machine room in Iraq, and still result in measurable improvements in 
military operations. 

Over the past ten years, in successive deployment of automated language 
technologies, the key lessons learned have been that users care about quality and give the 
highest priority to applications that support their operations. The successes of the 
TSWG/DARPA partnership can be attributed to the rapid transition of research engines 
improved by GALE algorithms into useful applications. Human language technologies, 
such as speech-to-text and machine translation, by themselves are not sufficient to 
empower users to perform analytical tasks. Rather, these technologies are critical 
enablers of knowledge discovery, data exploitation, trend analysis, and product creation. 
Military and other Government users, including both language professionals and 
operators with no foreign language skills, must find an application to be user friendly and 
to match their operational workflow. 

Starting in 2004, the CENTCOM Open Source Intelligence Cell became the true test 
bed for a full operational insertion of HLT. The experience deploying the WMS and 
BMS at CENTCOM represents a case study of this effect. Since 2004, the CENTCOM J2 
Open Source Cell has grown from three users creating a thrice-weekly handcrafted 
product to a 24x7 operation with more than 25 analysts, creating multiple daily products 
and servicing in excess of 2,500 requests for information annually. Functioning as a 
stateside laboratory, both the WMS and BMS evolved based on requirements that were 
expressed by the CENTCOM user community and then rolled into the technology 
baseline.  

854 Chapter 6: Operational Engines  



 

Examples of products enabled by this technology include: responses to requests for 
information (RFIs), daily Foreign Media Trackers, weekly Pandemic Threat Updates, 
weekly Friday Sermon Analyses, weekly Threat Network Bulletins, and many more that 
are sensitive but critical to operations. As an indicator of success, CENTCOM started to 
anticipate RFIs, and started producing CIPs (Critical Information Products) to answer 
critical information needs before they had even been requested.   

CENTCOM management has stated that:  
 
Our whole operation is based around these [foreign language 
processing] technologies and without them we would have to rebuild our 
operation from scratch.”  

 

2005 through September 2009. 
 

 
Figure 6.3: CENTCOM RFI and CIP Production, 2005-09 

Working hand-in-hand with users in domestic command center environments, such as 
that found in Tampa at CENTCOM, helped shape capabilities and CONOPS, which in 
turn increased the odds of success in more hostile environments. For example, 
deployments to Iraq were successful as a result of the intense insertion experiments in 
Tampa. In fact, four deployments of BMS and WMS to units in Iraq occurred from 2005 
through 2009. In all cases, deployments were handled by contractors with minimal pre-
deployment contact with the fielding units. Hostile conditions are taxing and challenging. 
For example, reliable power is rare, with abrupt power failures regularly damaging 
components. In addition, audio/visual and internet capabilities are obtained by receiving 
units through local companies in neighboring towns in Iraq. Another serious problem is 
the fact that units rotate back to the United States every six to twelve months, with 
virtually no handover to the incoming unit. 

Despite these challenges, user acceptance has been extremely high for the BMS and 
WMS. One site in Baghdad reports that:  

Handbook of Natural Language Processing and Machine Translation 855

Figure 6.3 shows the quantity of RFIs and CIPs satisfied by CENTCOM staff from 
 

353

1959

3098 3059

2141

586

3220
3110

2430

1452

0

1122
966

758

350

0

500

1000

1500

2000

2500

3000

3500

2005 2006 2007 2008 2009 
Jan-Sep

RFI

CIP

Other Production



BMS was a true labor saver. With dozens of Pan Arab media outlets to 
monitor, BMS provided a 24/7 eye on what was happening in the information 
space. Countless times, BMS captured a piece of news that our human 
monitors did not catch. With the information battle space a key component of 
war fighting, we had a responsibility to not only be first with our 
information, but also to ensure media reporting was accurate and provided 
the right context and characterization. BMS was a key enabler for the 
communication team. 

 
The technical transfer and integration of operational engines from DARPA/GALE as 

described in Operational Integration of STT and MT for Rich Transcription and 
Translation of Speech (Chapters 1-3) became essential to demonstrate the value of 
research in responding to critical national security and military needs (Section 6.2.2). 

On a yearly basis, TSWG and BBN bring together the users of the BMS and WMS. 
Lessoned that have been learned from real users include:  
 

It WORKS! It is an integral piece to our daily operations. It speeds 
intelligence action; it doesn’t need systems personnel to work it. It is 
straightforward and intuitive. It only takes 1-2 hours to train someone to 
use it. 
 

Positive comments do not come only from early adopters, but also from the latest 
deployments in Iraq. Starting in 2009, the users’ meeting agenda included review of the 
Foreign Media Monitoring System funded by the Army Machine Foreign Language 
Translation Software (MFLTS) to gather feedback and determine new requirements. 
MFLTS acquired systems that fused together BMS and WMS capabilities. The Multi-
National Coalition in Iraq called in to the 2009 users’ meeting to share their feedback, 
stating:  

 
Our Open Source Team fills in some expected changes in reporting that 
are a result of having U.S. forces out of the Iraqi cities since June. The 
reliability of Open Source reporting can be questionable so having 
multiple sources to review allows us an opportunity to get different 
perspectives on the same story—[the system] has given us eyes on events 
that we do not ordinarily have access to due to the June Security 
Agreement that removed U.S. Forces from the Iraqi cities. Immediate 
unfiltered access to reporting in local and national Iraqi media allows 
for immediate validation of other intelligence reporting, i.e., validate 
claims of attacks, confirm events. 
 

The BMS has become an essential tool for intelligence analysts as showcased by 
Bemish (2008) and by user testimonials like those above. 

856 Chapter 6: Operational Engines  



 

 

 

6.2.1.9. Expanding the Impact of Automated Language Processing  
From 2003 to 2009, TSWG and other IC and DoD groups have funded various 

versions of the BMS and WMS. All of these efforts have helped move language 
processing technology from the research lab to the hands of the warfighter. Like any 
extremely large organization, the DoD has its own procedures for deploying new systems 
and capabilities, ensuring that they are sustained in the field, that users are adequately 
trained, that system use is incorporated into doctrine, and that systems continue to be 
enriched to meet evolving needs.  

Two DoD  organizations have stepped in to organize the set of requirements coming 
from the field and to transform them into a cohesive program: 1) The Army Machine 
Foreign Language Translation Software (MFLTS) Program of Record has taken the lead 
in fusing the WMS and BMS into a single Foreign Media Monitoring (FMM) system. 2) 
The Defense Intelligence Agency (DIA) has taken the lead in supporting intelligence 
capabilities for the combatant commands at the joint level. These interagency efforts will 
benefit all the users of the deployed applications.  

 

 
Figure 6.4: Current BBN Media Monitoring Deployments, January 2010 

Starting with a few experimental efforts around the year 2000, the scope and maturity 
of deployed systems have increased significantly. Currently, there are 24 sites with 86 
channels in the U.S. and overseas, with support in languages beyond the GALE core 
languages of Arabic and Chinese, including Farsi, Indonesian, Urdu, and Hindi. These 
language capabilities have been funded by TSWG, using GALE methodology to create 
and field operational systems. As these systems are put into service-wide use by the 
Army, DIA, and other organizations, language requirements will undoubtedly be 
addressed at the joint level. 

Handbook of Natural Language Processing and Machine Translation 857



These interagency efforts will benefit all the users of the deployed applications. New 
requirements are emerging to extend capabilities to more sources, such as radio, online 
video sharing sites, and social networks.  

6.2.1.10. Dual Use of Technology 
While the main users of the applications that have been described are language 

analysts and operators in the field, the BMS has been modified for dual use in the cultural 
awareness and language learning arenas. In every single operational deployment, 
language analysts have stated that they wished they had had these technologies available 
to them when they were learning a foreign language. Access to authentic materials, 
especially video content, is highly valued among instructors and language learners who 
aim to sustain their skills and stay up to date on cultural issues. In this role, the BMS 
provides instructors and students with access to authentic material that can be used in the 
creation of language-learning content and activities. This material is authentic, topical, 
and current, and contains pronunciations by a variety of native speakers. Accessing video 
cuts is a labor intensive task for instructors, and in the words of one of the instructors 
using the BMS: The BMS saves me time and makes it easy to find the right videos to 
insert in my lessons. 

While analysts may need 24x7 monitoring of each source, the language learning 
community prefers to focus on key shows and times of the day to gather data of interest. 
This requirement led to the development of a DVR-like scheduler that an administrator 
can customize to capture a variety of programming around the clock, multiplexing many 
sources into a single BMS channel. This multiplexing capability reduces the overall 
system cost and exposes users to a greater variety of sources. 

858 Chapter 6: Operational Engines  

 

 
Figure 6.5: BMS scheduler  



 

Three current deployments of the BMS to language learning centers provide 
instructors the ability to search video to create language activities based on authentic 
clips with full synchrony of video, audio, and text. This rich media is making it easy for 
teachers to create materials, and for learners to improve and sustain their language skills. 
In addition to making it possible for users to edit both the transcription and translation, 
third-party tools were integrated to enhance the learning process.  

Handbook of Natural Language Processing and Machine Translation 859

 

  
Figure 6.6: Clip Editor 

  
Figure 6.7: Building Rapid Rote 



The latest additional tool to be integrated provides the ability to create flashcards (for 
use in Rapid Rote from Transparent Language) with terms and expressions for further 
practice. Users can add notes to highlight cultural and linguistic features of a word, 
sentence and paragraph. 

The adaptation of the BMS to language learning requirements has not only supported 
the needs of this new community of users, but also promoted development new 
functionalities and user interfaces that can be offered to all BMS users.  

6.2.1.11. Conclusion 
The improvements to operational engines made under the GALE program have made 

it feasible for the Combating Terrorism Technical Support Office/TSWG to insert state of 
the art human language technologies into capabilities that have been developed and 
deployed in operational settings. These technologies are not intended to be a replacement 
for human language analysts, but rather an extension to support their task. The heavy 
dependence of HLT training algorithms on language, training domain, sources, and 
channels is a problem that will need to be resolved in order to make fuller operational 
implementation of HLT possible. While machine-extracted content metadata hold great 
promise for effective data triage and operational adoption has been successful in assisting 
open-source analysis missions, world conditions and mission objectives are constantly 
changing, and the static nature of current HLT algorithms will need to evolve and adapt 
to the dynamic and unpredictable content of operational data. It is critical to emphasize 
the importance of human-machine collaboration in achieving successful deployment of 
HLT. An excellent approach is to focus on the tasks of the users and respond to 
requirements by soliciting the expertise of humans who engage the automated systems.  

TSWG’s mission is to facilitate the emergence of innovation based on user 
requirements and build effective solutions to support specific missions. TSWG will 
continue to rely on the research community to advance and improve the quality of 
automated speech-to-text and machine translation algorithms and expect to see those 
advances integrated into systems that fill operational requirements.  

Addressing both ends of the research and development pipeline is vital to achieving 
success in providing functional solutions to the warfighter. For both DARPA/GALE and 
TSWG,  success in bridging the gap between research and operational reality has been 
due to a combination of factors—vision, teamwork, listening to users, taking risks on new 
ways of doing business, and integrating top-of-the-line operational engines into user-
friendly applications.  
 
Acknowledgements 

Since 2003, David Herrington of DoD/CTTSO/TSWG has been providing valuable resources and 
guidance. We also would like to acknowledge and thank all of the users - the early adopters- as well as the 
researchers and developers on the team who have made this DARPA/TSWG leveraging a success story. We 
would also like to thank Charles Wayne for his early contributions to the pre-GALE efforts. 

860 Chapter 6: Operational Engines  



 

6.2.2. Operational Integration of STT and MT for Rich 
Transcription and Translation of Speech 

6.2.2.1. Introduction 

In this section, we describe the joint engineering effort between BBN Technologies 
and Language Weaver to produce a tighter and richer coupling between their respective 
Speech-to-Text (STT) and Machine Translation (MT) systems.  The coupling includes 
the sharing of orthographic normalization rules, synchronization of lexicons between the 
two systems, and definition of an extensible interface that supports increased information 
flow between the engines. We show that tighter operational integration leads to better 
overall system performance.  We demonstrate that the integrated rich transcription engine 
with automatic translation has great practical utility for intelligence analysis operations as 
the primary enabler of the BBN commercial off-the-shelf (COTS) Broadcast Monitoring 
System (BMS). 

 
Goals 

State-of-the-art STT capability at BBN can automatically transcribe foreign language 
speech at real-time throughput. The Language Weaver MT system offers automatic 
translation of text in many foreign languages into English.  Both systems have been 
available as part of various commercial product solutions from BBN and Language 
Weaver, respectively, for some time. 

The goal of the Operational Integration effort under the GALE program is to bring 
the two systems together into a joint tightly-integrated product offering that can produce 
a rich transcript of foreign language audio and video data with automatic translation of 
the transcribed speech content to English.  The integrated system must run on a single 
commodity compute server and must be capable of continuous, real-time, low-latency 
processing of an audio signal.  

Beyond the immediate benefits of an integrated operational system we anticipate that 
the integrated system should match or exceed overall system performance in comparison 
to operating a loosely-connected pipeline of the two individual systems.  

 
Challenges 

In our attempt to integrate the BBN Audio Monitoring Component (AMC) and 
Language Weaver MT systems we faced several formidable challenges. 

BBN and Language Weaver (LW) have invested significant resources for many years 
to productize their respective systems.  In the process, each system was tuned to perform 
optimally on state-of-the-art commodity hardware.  Can the two systems run on a single 
server and still meet their respective operational requirements? Or do we need to scale 
each system down significantly to make the integrated system work and will this cause 
significant degradation in performance?  

The BBN and LW systems have evolved independently, each defining its own input 
and output data formats without regard for the other.  Naturally, these formats are not 

Handbook of Natural Language Processing and Machine Translation 861

Authors: Daniel Kiecza, Amit Srivastava, Guruprasad Saikumar, Sean Colbath, Martha Lillie, Prem 
Natarajan, Abdessamad Echihabi, Daniel Marcu, and William Wong 



 
 
 
 
 
 
 
 

随后法案又在众议院以四百零八票支持八票反对获得通过。 

 

新制裁法案在国会通过后还需要总统奥巴马亲属方能生效路

透社报道说新制裁法案内容包括。 
 
禁止与伊朗有业务往来的外国银行进入美国金融系统如果美

国银行与伊朗革命卫队革命卫队相关实体和个人展开业务合

作一经发现将会受到政府的严厉处罚。 

compatible as is.  Moreover, there are no available standardized representations for rich 
transcription output of STT or MT systems.  Can we define a joint data format that 
supports the goal of the effort and that that can be made compatible with both systems? 

 
Approach 

Product-quality operational integration of STT and MT involves two major aspects: 
tight software-level system integration and data format specification, i.e. first integrate 
the systems into a single data pipeline through which data flows seamlessly, and then 
specify the data format in which the systems exchange information. 

Our integration approach consisted of the following steps: 
 
1. Identify and resolve significant incompatibilities between the systems, including 

mismatched orthographic normalization rules, unsynchronized system lexicons, 
and assumptions on acceptable durations of sentences. 

2. The AMC product already emitted rich transcription according to a formal XML-
based data format specification.  We chose to leverage it for the development of 
an STT/MT information exchange format used to communicate between AMC 
and the MT system. 

3. While the primary mode of using the MT system is via a SOAP interface, it also 
already supported other ways of integration.  In particular, the MT system can be 
linked as a library into C++ applications. AMC was already a pipeline of C++ 
components, so we chose to integrate the MT system via this library. We 
developed a wrapper component to embed the MT system into the AMC pipeline 
as just another C++ application. 

4. Testing of the integrated system on real world data such as live satellite 
television feeds for extended periods of time to ensure that the system operates 
stably and that it meets the functional requirements. 

6.2.2.2. BBN COTS Rich Transcription System 

The BBN Audio Monitoring Component (AMC), which is used for operational 
integration of STT and MT, is a software solution for creating rich transcriptions of 
speech in audio recordings.  The transcript contains metadata beyond the raw STT 
annotation to enable improved human readability of the speech content. All elements in 
the transcript are indexed to the time at which they occur in the source audio stream. The 
following figure illustrates the richness of the AMC transcript: it is segmented into 
sentences and proper names are highlighted with color. 

Figure 6.8: AMC – audio signal to rich transcription 

862 Chapter 6: Operational Engines  



 

System Description 
The AMC integrates a suite of computationally demanding signal processing and 

pattern recognition techniques to produce a rich transcription of an audio input signal.  
The following figure shows an overview of the AMC system architecture. 

 

Figure 6.9: Integrated AMC component pipeline 

The AMC components are arranged in a simple data pipeline.  The final output of the 
AMC system is an XML-based transcript of the input audio signal.  Included in the 
transcript are the following features: 

 
1. Automatic word transcription 
2. Named entities: people, locations, and organizations 
3. Speaker turns and gender 
4. Sentence boundaries 
5. Non-speech audio events such as music or silence 
 
At the time of this writing, the AMC product supports the following languages for 

rich transcription: 
 
1. Modern Standard Arabic – with integrated Iraqi dialect 
2. Mandarin Chinese 
3. Persian/Farsi 
4. Western Hemisphere Spanish 
5. North American English 
 
The system is tuned to perform at an average throughput time of ½-times real-time, 

so a one hour audio file is processed in approximately 30 minutes. The AMC provides an 
HTTP input and output interface. The system accepts audio data and returns the rich 
transcription and translation through this interface. The transcription and translation 

Handbook of Natural Language Processing and Machine Translation 863

 



output is represented using an XML data format.  BBN has a fully documented API to 
support integration into other applications. 

6.2.2.3. LW COTS Machine Translation System 

This section describes the commercially available Language Weaver Machine 
Translation system used for operational integration of STT and MT.  The Language 
Weaver COTS MT product is a statistical system that translates text from one language to 
another while preserving any phrase annotations. 

 

Figure 6.10: MT with linked name annotations. 

The LW MT product was engineered to enable organizations to meet the volume, 
speed, and accuracy requirements for on-going translation demands. It is deployed in 
over 100 installations and has been integrated into over 20 complementary applications. 
Key features are: 

 
• Client-Server architecture for on-premise, large-scale and distributed deployment 
• Industry-standard Web services interface 
• Flexible input and output formats 
• MS Office support via Open Document Format 
• Customizable terminology translation 
• Phrase annotations linked across translation 
 
The LW Machine translation system supports two translation strategies: phrase-based 

and syntax-based translation. 
The phrase-based system is based on translating phrases that are extracted 

automatically from word-aligned parallel text.  The system uses a log-linear combination 
of translation models and an n-gram language model. The weights of these models are 
discriminatively tuned on a held-out development set.  The system requires 2GB of RAM 
and delivers translation speeds ranging from 1000 wpm to 5000 wpm depending on the 
desired quality. 

The syntax-based system is based on tree transducer rules that are learned 
automatically from a set of tuples of the type (English parse trees; foreign sentences; 
word alignment).  The system employs a CKY-style decoder that uses a log-linear 
combination of translation models and an n-gram language model. The system requires 

864 Chapter 6: Operational Engines  

 
 
 
 
 
 
 

 

Zarqawi's group adopts the assassination of the President of 
the Council of Diyala province and his brother

تتبنى اغتيال رئيس مجلس محافظة  الزرقاويمجموعة 
وشقيقهديالى



 

4GB of RAM and delivers translation speeds ranging from 100 wpm to 1000 wpm 
depending on the desired quality. 

6.2.2.4. Operational Integration 

This section describes the technical details of integrating BBN AMC and Language 
Weaver MT. 

 
Desired Capabilities 

When this effort started, the AMC served already as the rich transcription engine in 
the BBN BMS. Our operational integration work was guided by the goal of enhancing the 
BMS with automatic translation of the transcribed foreign language speech into English. 
The integrated system should run on a single commodity compute server, support 
continuous, real-time, low-latency processing of audio data and operate stably for months 
at a time with no need for human maintenance. 

The STT/MT interface and the associated data exchange format should provide the 
following capabilities: 

 
• Structured representation: The data should be formatted as XML which is 

capable of encoding all the indexed features by STT, named-entity recognition, 
and MT.  XML’s Unicode support allows unambiguous encoding of source 
language and English translation text.  In addition, the representation can be 
easily extended as needed.  

• Sentence-by-sentence translation: AMC transcribes speech content in the form of 
sentences.  The MT system is required to translate the source language transcript 
one sentence at a time. 

• Crosslingual name linkage: AMC annotates categorized as person, location, and 
organization in each source language sentence.  The MT system must preserve 
the identical set of names in the English translation.  The data format must 
encode name annotations in both the source language and the English translation 
and it must preserve an unambiguous link between a source name and its 
translation.   

• Output constraints specification: In order to improve human readability of the 
source transcript and its translation, the data format must define constraints on 
the lexical representation of both the source transcript and the translation, 
including controlling the range of legal characters, regulating usage of 
capitalization and punctuation, and removing typographical anomalies. 

 
Integration Issues 

This section summarizes the issues that we addressed to achieve effective operational 
integration of AMC and the LW MT system.  The overarching theme of these issues is 
that the two systems were developed independently, and so various engineering design 
choices involved in developing each independent system led to inherent incompatibilities 
between the systems. 

Handbook of Natural Language Processing and Machine Translation 865



First of all, the systems were mismatched as to the domains in which they were 
designed to operate.  AMC was optimized to handle audio signals that contain broadcast 
news recordings from television and radio sources, while the intended use of LW MT is 
to translate written text such as Web pages and documents.  While there are various 
potential problems associated with this mismatch, the most important one turned out to be 
the length of a translation unit.  Whereas LW MT was designed to perform optimally on 
sentence units as is typical for written text, but AMC was not yet capable of producing 
sentence-like STT output with average lengths similar to text, and a maximum length not 
to exceed a practical hard upper limit.  AMC routinely emitted token sequences of 
lengths that would cause the MT throughput performance to degrade noticeably.  To 
solve this issue, we developed and integrated a discriminative sentence boundary 
detection component into AMC that rendered the system capable of emitting well-formed 
sentence units.  Details are provided in the article entitled Discriminative Sentence 
Boundary Detection for Robust Operational Engines in this chapter. 

Differing system lexicons were another source of incompatibility between the 
systems. The LW Arabic-to-English MT lexicon was three times the size of the AMC 
Arabic STT lexicon; yet it covered only about 63% of the STT words.  More than one 
third of all tokens emitted by the STT system were unknown to the MT system!  We 
addressed this issue by first analyzing and categorizing the unknown words.  While our 
analysis showed that a good portion of the unknown words consisted of proper names and 
of legal morphological variations, we discovered that a large proportion of these had one 
simple cause:  the two systems used different sets of orthographic normalization rules 
during the lexicon design process.  We carefully synchronized the rule sets and found that 
the MT lexicon coverage of the STT lexicon grew by an absolute amount of over 24% to 
a value of 87%. 

A final source of incompatibility was found in the runtime characteristics of the two 
systems.  Specifically, each system was tuned to make optimal use of the then-best-
available commodity server.  Co-locating the systems on a single server caused the joint 
system to run very slowly – it exhibited end-to-end latency peaks above 300 seconds.  
This was significantly larger than a maximum latency of 100 seconds that BBN requires 
of the AMC system.  We resolved this problem by jointly tuning the runtime 
characteristics of the two systems. 

Software Integration 
A significant part of our effort to integrate the AMC and MT systems was spent on 

designing how the two systems would interoperate at a software component level.  
Originally, LW recommended integrating with its MT system via its SOAP I/O interface.  
While we considered this path for operational integration we ultimately selected a 
different approach: the MT system is also available as a C++ link-library.  We, thus, 
integrated it into a C++ wrapper application to access a function-level interface to the MT 
engine.  As shown in Figure 6.11 the wrapper application contains the MT system (gray 
box). 

The C++-based approach proved desirable for a number of reasons.  Firstly, the 
wrapper application was easy to develop using the AMC Component Manager (CM) 
client library and it yielded tight component integration into the AMC processing pipeline 
via function calls into the MT library.  Secondly, this design placed the MT component 

866 Chapter 6: Operational Engines  



 

 

under system state management of the CM.  By design, the CM integrates the individual 
component states into an overall AMC system state.  Now, the AMC system state also 
reflected the state of the MT system.  In particular, in the event that MT encountered a 
fatal error, the AMC system state could immediately reflect this information.  Further, 
several AMC components require large in-memory models to operate, including the MT 
system.  To minimize system startup time and to protect the system hard drive the CM 
starts the pipeline components in a staggered fashion.  Under CM control the MT system 
automatically participated in the staggered startup procedure. 
 

Figure 6.11: Component-level integration of AMC and MT 

Data Format Specification 
We have jointly developed a formal specification of the STT/MT data format.  As 

described in the previous sections, this format is derived from the pre-existing 
specification of the AMC rich transcription format. 

Specifically, the following features of the AMC rich transcription output are 
preserved in the STT/MT format: 

 
• Lexeme tokens: The source language lexeme tokens of a sentence form the basis 

on which MT produces an English translation. 
• Sentence boundaries: The MT system implicitly utilizes the sentence boundary 

information since translation is done one sentence at a time. 
• Named entities: Named entity attributes including name boundaries, name types, 

and unique name id are provided as input to MT which, in turn, is required to 
preserve each name in the MT output. 

 
Benefits of Integration 

The joint BBN—Language Weaver effort under GALE succeeded in creating an 
operational system that tightly integrates the BBN AMC and LW MT systems.  The 
resulting AMC with MT system produces a rich transcript of foreign language speech 

Handbook of Natural Language Processing and Machine Translation 867



contained in broadcast news recordings with automatic translations into English of the 
speech transcript.   

AMC with MT provides several benefits over loosely combining the individual 
systems that were available before the integration effort. Firstly, as a result of our 
extensive synchronization work the translation performance of AMC with MT on speech 
data is demonstrably better than that of the loosely connected individual systems. 
Secondly, the integrated system produces an improved rich transcription that preserves 
linkage of names across translation.  And finally, by design AMC with MT runs on a 
single commodity server resulting in better scalability.  Prior to integration, each of the 
two individual systems required its own server for proper operation.  

We have tested AMC with MT extensively to ensure runtime stability within the 
specified operational constraints for extended periods of time. Since then AMC with MT 
has been available as part of the BBN suite of commercial product offerings. In 
particular, AMC with MT is a critical enabler of one of BBN’s flagship products: the 
Broadcast Monitoring System (BMS).  The BMS creates a continuous searchable archive 
of international television broadcasts in real-time.   

Finally and most importantly for the GALE program, after many operational 
deployments of systems and solutions that integrate AMC with MT, it is clear that a 
system such as this has become a much appreciated and essential tool for intelligence 
analysis operations on open-source broadcast media sources.  In effect, the system 
enables English-only speaking analysts to reach across the language barrier and to 
monitor and gist broadcast media in languages that they themselves do not understand. 

6.2.2.5. Performance Evaluation: the BBN AMC, LW MT, and Integrated 
STT/MT 

This section describes the STT performance of BBN AMC, the MT performance of 
LW MT and the performance of the integrated STT/MT system over the course of the 
GALE program. 

 
Technology Integration 

 

STT Technology Integration 
1. Heteroscedastic Linear Discriminant Analysis  
2. Perceptual Linear Predictive (PLP) features 
3. LM interpolation and new backoff estimation 
4. Discriminative STT training 
5. Log-domain probability computation 
6. Support for large corpus training – Arabic: 1000+ 

hours, Chinese: 500 hours 
7. Discriminative named entity recognition 
8. Perceptron-based sentence boundary detection

Table 6.1: Technology integration into BBN AMC 

868 Chapter 6: Operational Engines  



 

MT Technology Integration 
1. 5-gram language models 
2. Language models trained on very large corpora 
3. Better rule-based components 
4. More accurate word alignment models 
5. Better feature weights tuning 
6. Improved translation models 
7. Syntax-based MT models

Table 6.2: Technology integration into LW MT 

One goal of the GALE program is the transfer of proven research advancements into 
systems that can be deployed for operational use.  Largely independent of each other, 
BBN and LW continue to integrate new research improvements into their operational 

integrated into BBN AMC during GALE. 

into the LW MT system during GALE. 
 
AMC System Performance 

Figure 6.12 tracks the performance of AMC Arabic during the first three years of 
GALE.  Performance is measured using the Word Error Rate (WER) metric on the 
GALE-2006 speech development sets – split into the broadcast conversation (BC) and 
broadcast news (BN) portions of the set. 

 
Figure 6.12: Arabic STT performance during GALE 

Figure 6.13 tracks the performance of AMC Chinese over the course of the first three 
years of the GALE program.  Performance is measured on the GALE-2006 speech 
development sets – broken up into the broadcast conversation and broadcast news 
portions of the set.  The GALE-improved Chinese system achieves a dramatic 50% 
relative reduction in WER on the Chinese conversational data compared to the pre-GALE 

Handbook of Natural Language Processing and Machine Translation 869

systems. Table 6.1 summarizes the specific research improvements that have been 

Table 6.2 summarizes the specific research improvements that have been integrated 

35.5

49.9

56.7

26.6

43.6

36.7

25

30

35

40

45

50

55

60

65

70

Pre-GALE GALE-Y1 GALE-Y2

W
or

d 
Er

ro
r R

at
e 

(W
ER

)

Arabic STT Performance

Broadcast Conversation (BC)

Broadcast News (BN)



23.5

40.1

50.7

12.1

19.3

15.2

10
15
20
25
30
35
40
45
50
55
60
65

Pre-GALE GALE-Y1 GALE-Y2

W
or

d 
Er

ro
r R

at
e 

(W
ER

)

Chinese STT Performance
Broadcast Conversation (BC)

Broadcast News (BN)

38

40

42

44

46

48

50

Pre-GALE GALE Year 1 GALE Year 2 GALE Year 3

BL
EU

Arabic to English 

AMC system. We have achieved a remarkably consistent and large WER reduction for 
both Arabic and Chinese. 

 
Figure 6.13: Chinese STT performance during GALE 

MT System Performance 

during the first three years of GALE.  Performance is measured using the Bilingual 
Evaluation Understudy (BLEU) metric on a 1,000-sentence newswire test set with 4 
translation references. 

 
 

Figure 6.14: Arabic-to-English phrase-based translation performance during GALE 

870 Chapter 6: Operational Engines  

Figure 6.14 tracks the performance of the phrase-based Arabic-to-English MT system 



 

Figure 6.15: Chinese-to-English translation performance during GALE 

 
Figure 6.15 tracks the performance of the Chinese-to-English MT system during the 

first three years of GALE.  Note that LW introduced Syntax-based MT in the product.  
Performance is measured using the BLEU metric on a 1,000-sentence newswire test set 
with 4 translation references. 
 
AMC-with-MT System Performance 

In addition to tracking performance improvements in the individual engines we also 
track the cumulative effect – translation performance of LW MT on AMC STT output.  
We score the MT on speech performance using the Translation Error Rate (TER) metric 
with a single reference and with mixed case and punctuation.  Performance is measured 
on the GALE-2006 speech development sets.  All results are produced by COTS engines 
in standard configuration. In particular, all systems run at real-time with an average end-

the integrated system on Arabic speech data during GALE. 

speech data during GALE. 
As the figures demonstrate, we have achieved consistent performance gains across 

languages and genres.  The translation performance on speech data of the GALE-enabled 
integrated system has improved significantly over the pre-GALE performance baseline. 

 

Handbook of Natural Language Processing and Machine Translation 871

to-end latency of less than one minute. Figure 6.16 tracks the translation performance of 

Figure 6.17 tracks the translation performance of the integrated system on Chinese 

 
 

26

28

30

32

34

36

38

Pre-GALE GALE Year 1 GALE Year 2 GALE Year 3

BL
EU

Chinese to English 

phrase-based syntax-based 



 

 
Figure 6.17: MT performance on Arabic speech during GALE 

6.2.2.6. The BBN Broadcast Monitoring System 

BBN’s commercial Broadcast Monitoring System (BMS) was developed in 
partnership with the Technical Support Working Group (TSWG), a research division 
under the Assistant Secretary of Defense for Special Operations/Low Intensity Conflict.  
TSWG focuses on rapid prototyping of new solutions with the ultimate goal of 
transitioning robust products to end users. In late 2001 when TSWG was keen on 
providing soldiers with the capability to access non-English media, specifically 
international television, they surveyed the technological landscape and selected BBN’s 
speech and language processing technologies (Shepard 2002).  Since its inception, the 
BMS has integrated the immense advances accomplished under DARPA-funded research 
efforts and in particular the current GALE effort.   

872 Chapter 6: Operational Engines  

 

74.8

71.8

68.1

78.4
76.4

72.1

65

70

75

80

85

0.5 1.5 2.5 3.5

TE
R

Arabic Operational Engine

v1.4, Nov '05 v2.1, Oct '06v1.4, Nov '05                   v2.1, Oct '06 v3.0, Feb '08

83.0

76.2

73.0

87.0
84.4

78.2

70

75

80

85

90

0.5 1.5 2.5 3.5

TE
R

Chinese Operational Engine

v1.4, Nov '05 v2.1, Oct '06                  v3.0, Feb '08

Figure 6.16: MT performance on Arabic speech during GALE 



 

The BMS is a turnkey COTS product (hardware and software) that creates a 
continuous searchable archive of international television broadcasts. Real-time broadcast 
streams from satellite or cable are captured by the system and automatically maintained 
in a one-year archive. As video is ingested by the BMS, the audio stream is automatically 
transcribed by the AMC and translated into English by the Language Weaver MT system. 
The browser-based interface on the BMS lets users access the BMS from any PC or 
laptop via a common high-speed IP network. The only required client software is 
Microsoft® Internet Explorer and Windows Media® Player. 

The following figure shows the home screen of the BMS – the Channel Overview.  It 
contains a search box, a list of persistent queries (the watchlist), and a thumbnail 
overview of the available channels. 

Figure 6.18: BBN BMS channel overview 

The BMS enables its users to quickly find specific spoken content in the video archive 
through keyword queries — in English or the source language — and to jump directly to 
the streaming video from the search results.  Searches can be scoped by channel, 
language, and time. 

Figure 6.19 shows the BMS Channel View, which displays the rich transcript and 
automatic translation side-by-side with the original video signal.  The video can be 
accessed and played back from any point in the archive by clicking on a word in the 
transcript.  As video plays back, the spoken words and translation are highlighted. The 
transcript and translation are enriched by highlighting the names of people, places, and 
organizations in color, and by separating the speakers in the audio file. This integrated 
view helps users to converge on the meaning of the broadcast. 

 

Handbook of Natural Language Processing and Machine Translation 873

 

  



Figure 6.19: BMS channel view 

Users can save collections of searches in a watchlist that continuously monitors 
incoming video for matches to search criteria.  Video segments are automatically added 
to the watchlist as they are broadcast and the system alerts the user as new matches occur.  
Watchlists can be filtered by date, user, and topic, so users view only watchlist items of 
interest to them. 

Users can extract video segments or still photos for collaboration, presentation, and 
reports.  Rich media — integrated video, transcript, and translation packages — can be 
exported to HTML files for playback in a browser or to BBN Translator’s Aide, an 
application that improves the efficiency of human translation from video sources. 

The BMS is available as a turnkey solution, requiring no hardware setup or software 
installation by the customer. The system is designed to run as an appliance without 
needing any onsite system administration.  The BMS turnkey solution is designed to 
comply with the Defense Information Systems Agency (DISA) Gold standard to support 
deployment security requirements. The BMS has been deployed operationally since 
August 2004 for open source intelligence collection and information operations at many 
locations around the world. 

The groundbreaking capability offered by the BMS enables users with no foreign 
language skills to get the gist of international television and radio broadcasts and to triage 
enormous volumes of media, allowing skilled linguists to focus on translation tasks. 
Realizing this capability required both fundamental research in human language 
technology, provided by DARPA, along with applied technology transition and user 
focus, provided by TSWG.  For more information, see Section 6.2.1. More information 
on the BMS is available on the BBN website.1 

                                                 
1 http://www.bbn.com/products_and_services/bbn_broadcast_monitoring_system 

874 Chapter 6: Operational Engines  

 



 

6.2.2.7. Conclusion 

With the commercial availability of AMC with MT, for example as part of the BBN 
Broadcast Monitoring System product, we have achieved the goal of this effort to 
demonstrate a practical integrated system that creates a rich transcript of foreign language 
audio data with automatic translation into English. The MT performance on speech is 
significantly improved over the pre-GALE system which consisted of a loose connection 
of the individual systems. AMC with MT also provides additional metadata: annotated 
and linked name phrases in both the source language and the corresponding English 
transcript.   

Over the course of the GALE program, we have continually transferred practical 
research advancements into both AMC and the LW MT system and are, thus, able to 
offer the resulting performance improvements in our deployable systems.  In fact, we 
managed to demonstrate that cutting edge research advancements achieved during GALE 
can be transitioned into deployable systems in as little as 12 to 18 months.   

We continue to transition our systems into operational deployments and we have 
found that these systems are rapidly becoming a much appreciated and essential tool to 
assist intelligence analysis operations on open-source broadcast media sources.  In effect, 
the systems enable English-only speaking analysts to reach across the language barrier 
and to monitor and gist broadcast media in languages that they themselves do not 
understand. 

 

6.2.3. Discriminative Sentence Boundary Detection for Robust 
Operational Engines 

6.2.3.1. Introduction 

We present a discriminative Sentence Boundary Detection (SBD) component for 
speech that not only improves the accuracy of sentence segmentation; it also improves 
the overall robustness of the system, enabling real-world deployments of GALE 
operational engines. In this section, we describe the combination of two SBD subsystems 
in the BBN operational engine: a discriminative Neural Network (NN) model built over 
prosodic features estimated from the underlying speech signal, and a Perceptron model 
that uses linguistic and prosodic information jointly. We also describe the analytical 
model used to estimate a length-based penalty during decoding to constrain the output 
sentence lengths. The discriminative SBD component outperforms the pre-GALE SBD 
component in both, the sentence segmentation performance on Arabic and Chinese 
speech, as well as the end-to-end system latency of the operational engine when 
processing live audio. 

As speech recognition, machine translation, and natural language processing 
technologies mature, there is an urgent need to transition the proven algorithms and 
techniques into the field to provide tools to analysts for effective distillation of 
information from large volumes of foreign speech. In addition to integrating and 
demonstrating the latest research algorithms and models, the GALE operational engines 

Handbook of Natural Language Processing and Machine Translation 875

Authors:  Amit Srivastava and Daniel Kiecza 



need to demonstrate a practical capability that can do useful work in the real world. In 
particular, we defined the core capabilities of the integrated operational engine as 
follows. The system would have to: 

 
• Run integrated speech-to-text (STT) and machine translation (MT) on a 

single commodity compute server to produce sentence-based translation 
of the input foreign speech, 

• Support continuous, real-time,2 low-latency processing of audio data and,  
• Operate stably for months at a time with no need for human maintenance 

 
The BBN Audio Monitoring Component (AMC) is an example of a practical, 

integrated operational engine that produces automatically and in real-time a rich 
transcript of foreign language speech. Sentence boundaries are important structural 
metadata that enhance speech recognition transcripts in terms of human readability and 
natural-language processing. Parsers, information extraction systems, and machine 
translation systems rely on sentential inputs from speech-to-text systems for optimal 
performance. The Sentence Boundary Detection (SBD) component in the AMC is critical 
to providing high-level linguistic structure in the output rich transcription, enhancing the 
accuracy and readability of the English translations, and enabling operational viability of 
the integrated operational engine on real world data in the field. 

Most SBD systems are statistical engines that learn linguistic and acoustic cues from 
human-annotated data to hypothesize sentence boundaries in speech transcripts. 
Limitations in the SBD algorithms and models as well as unspecified constraints can lead 
to very long sentence hypotheses that have many adverse effects on the operational 
engines: 

 
• Degraded readability and comprehension – long sentences are difficult to 

parse and understand especially in the presence of speech-to-text and 
machine translation errors 

• Inefficient MT – long sentences increase the potential search space for 
statistical machine translation engines leading to reduced speed and 
accuracy of translations 

• Increased end-to-end system latency – in pipelined, integrated 
operational engines that produce sentence-based translations of the input 
foreign speech, such as the BBN AMC, the length of the sentence 
directly influences the system latency and hence the practical usability of 
the system in the field. 

 
Previous research on SBD has focused on combining lexical and prosodic cues in 

separate models or in a single model-based framework to hypothesize sentence 
boundaries between words in the STT output (Stolcke and Shriberg 1996 and Liu et al. 
2004). Model combination has been shown to significantly improve segmentation 
                                                 
2 We use the term real-time to denote a throughput data rate that is the same or faster than the data rate of a 
live audio source. 

876 Chapter 6: Operational Engines  



 

performance over individual model outputs as in our pre-GALE approach (Stolcke et al. 
1998). However, most of these approaches lack sentence-length constraints unlike the 
SBD approach described in this section, which has been developed specifically for 
integration in the BBN AMC to enable sentential segmentation in high-throughput, low-
latency speech transcription for readability and translation.  

The approach described in by Matusov et al. (2006) focused on improving MT 
performance from speech and included a sentence-length constraint similar to our 
approach. However the decoding algorithm in their approach uses an HMM-style search 
over the complete document whereas our approach uses a tagging framework to reduce 
end-to-end system latency. 

6.2.3.2. Previous Approach and Limitations 

Prior to GALE, the operational engine included a SBD system (Srivastava and 
Kubala 2003) that consisted of a combination of two subsystems: an Acoustic subsystem 
that consisted of a discriminative Neural Network model over prosodic features, and a 
linguistic subsystem that consisted of a generative N-gram language model over word-
based trigram features. The scores from the two subsystems were combined in a 
Maximum-Likelihood framework in a Viterbi decoder to hypothesize sentence 
boundaries between words from each automatically segmented speaker-turn in speech. 
 
Prosodic Feature Extraction 

define putative boundaries (PB) as the intervals between words in the speech transcripts. 
The SBD system can hypothesize sentence boundaries in each of these PB. We extract a 
variety of prosodic features from the audio at each PB. 
 

 
Figure 6.20: Prosodic feature extraction method 

Pause statistics are estimated from the intervals between the words, which may be 
absent altogether when there is no pause between the hypothesized words.  Pitch, Energy, 
and Speaking Rate statistics are estimated from 500 ms windows on either side of PBi 

Handbook of Natural Language Processing and Machine Translation 877

Figure 6.20 shows the conceptual diagram of our feature extraction method. We 

 

500 ms 500 ms

Putative Boundary 
PBi

Pause Statistics 
estimated in intervals 
between words

Pitch, Energy, and Speaking Rate 
statistics estimated from 500 ms 
windows on either side of the 
putative boundary

Words from STT output

Wi-1 WiWi-2 Wi+1

500 ms 500 ms

Putative Boundary 
PBi

Pause Statistics 
estimated in intervals 
between words

Pitch, Energy, and Speaking Rate 
statistics estimated from 500 ms 
windows on either side of the 
putative boundary

Words from STT output

Wi-1 WiWi-2 Wi+1



extending from its edges. The estimated prosodic features are functions of these statistics. 
We used these four fundamental prosodic attributes to generate a total of 47 features.  

types of statistics used to estimate these features.  There were 9 Pause related features, 2 
Speaking Rate features, 6 Energy based features, and 30 Pitch related features estimated 
at the putative boundaries.  The prosodic features estimated during this effort were a 
diverse set of features with some being continuous, others being discrete, and yet others 
were Boolean features. 
 

Table 6.3: Distribution of prosodic feature attributes 

Acoustic Subsystem 
The NN model consists of a 2-layer feed-forward Neural Network that was trained on 

the 47 prosodic features described previously. Standard back-propagation training was 
applied with the Minimum Squared-Error (MSE) criterion to the NN with configuration: 
47 input nodes, 4000 hidden nodes, and one output node (Srivastava and Kubala 2003). 
Sentence boundary classes are hypothesized by comparing the NN output score to a 
threshold as shown in the equation below. The output of the NN can also be viewed as 
the MSE estimate of the posterior probability of the class, sentence boundary. We will 
use this property of the Neural Network during model combination. 
ࢉ  ൌ ቊࢋࢉࢋ࢚ࢋ࢙ െ ሻሺ۴෨࣐ ܑ     ࢟࢘ࢇࢊ࢛࢈  ࣎ െ ሻሺ۴෨࣐ ܑ                ࢟࢘ࢇࢊ࢛࢈ ൏ ߬    (6.1) 

Here, ߮ሺF෨ሻ denotes the Neural Network output when presented with the input 47-
dimensional prosodic feature vector F෨, and τ is an empirical threshold. 

 
 

 

878 Chapter 6: Operational Engines  

Table 6.3 shows the distribution of the prosodic features estimated, as well as, the 

 
30

•Discontinuous Chains in Voiced Regions
•Interpolated Continuous Pitch
•First-Order Pitch Differences
•Tone Estimates (Legendre Polynomials)

Pitch

6
•Absolute Values
•Difference across Putative Boundary
•First Difference of Energy

Energy

2•Absolute Value
•Difference across Putative Boundary

Speaking 
Rate

9
•Pause Duration
•Pause Attribute (Filler, Breath, etc.)
•Time since last Pause
•Normalized Pause Duration

Pause

#FeaturesFeature DescriptionFeature Type

30
•Discontinuous Chains in Voiced Regions
•Interpolated Continuous Pitch
•First-Order Pitch Differences
•Tone Estimates (Legendre Polynomials)

Pitch

6
•Absolute Values
•Difference across Putative Boundary
•First Difference of Energy

Energy

2•Absolute Value
•Difference across Putative Boundary

Speaking 
Rate

9
•Pause Duration
•Pause Attribute (Filler, Breath, etc.)
•Time since last Pause
•Normalized Pause Duration

Pause

#FeaturesFeature DescriptionFeature Type



 

Linguistic Subsystem 
For the Linguistic subsystem, we inserted the sentence-boundary class as the token, ൏ ݏ , in the word sequence for the transcripts in the training data and estimated a 

trigram language model (LM) using the BBN ByblosTM Speech Recognition LM toolkit. 
The resulting LM is very similar to the hidden segment model proposed by Stolcke and 
Shriberg (1996). Viterbi decoding is used to find the most likely class sequence given a 
sequence of words and the trained language model. The most likely class sequence is 
estimated as: ࢉොሾ:ሿ ൌ ሿ:ሾࢉܠ܉ܕܚ܉ ∑ ࢝ሺࡸܘ൫ܗܔ ,ି࢝ ,ି࢝ ,ିࢉ ൗିࢉ ሻ൯ୀ    (6.2) 

where p denotes the trigram Language Model probability for the context that includes 
the current word ݓ and two preceding tokens from the set 
,ିଵݓ} ,ିଶݓ   ܿିଵ,  ܿିଶ}. 
 
ML Combination Framework 

In the Acoustic subsystem, the NN produces scores, ߮ሺc/F෨݅ሻ  that are MSE estimates 
of the posterior probability of the boundary classes. These scores are transformed into 
likelihoods by scaling them with the prior probability, Pሺcሻ, of the boundary classes, 
estimated from the same training data.  

The Combined system computes an exponentially-weighted product of the 
likelihoods from the two subsystems in a Maximum-Likelihood framework. The optimal 
sequence of boundary classes ܿ̂ଵ, given the sequence of words ݓଵ, and the sequence of 
prosodic feature vectors F෨ଵ in a speaker turn with n words, is determined using the 
Viterbi algorithm as follows: ࢉොሾ:ሿ ൌ ሿ:ሾࢉܠ܉ܕܚ܉ ∑ ܗܔૃ ቀ࣐ሺ۴/܋෨ሻ۾ሺ܋ሻ ቁୀ  ࢾ ܗܔ ቀࡸܘሺ࢝ା ,࢝ ,ି࢝ ,ࢉ ሻൗିࢉ ቁ   (6.3) 

Powell’s minimization technique was used to search for the optimal weights, λ and δ 
that correspond to the minimum SBD error over the development test set. 

 
Impact on Sentence Length 

The Viterbi decoding framework needs well defined end-points for optimal search. 
Automatic speaker turns hypothesized by the speaker segmentation component in the 
AMC (Liu and Kubala 1999) provide these end-points for sentential decoding. However, 
speaker turns in speech can be very long. In the above approach it is very difficult to 
integrate sentence length constraints. This effectively implies that a sentence could span 
the entire speaker turn, which can lead to adverse effects on the operational engine. 

In the next section we will describe the new formulation for SBD that will allow 
more diverse and discriminative features to be integrated into a statistical modeling 
framework and also allow sentence-length constraints to directly influence the placement 
of the boundaries.  

Handbook of Natural Language Processing and Machine Translation 879



6.2.3.3. Discriminative Tagging Framework 

We formulate the Sentence Boundary Detection task as a tagging problem where the 
goal is to tag each word in the hypothesized transcription with one of the two classes: 
sentence-boundary (SB) class, and the non-boundary (NB) class. The hypothesized 
transcription is produced by the automatic speech recognition engine in the AMC. The 
sentence boundary tags are hypothesized independently at each word boundary by 
examining a fixed context around the word in each hypothesized speaker turn. 

  
Approach 

The SBD component in the AMC consists of an incremental decoder that 
accumulates speech utterances from the output of the Speech Recognition system in an 
input buffer. Each utterance consists of acoustic features, the top-1 word and phonetic 
transcripts. Acoustic and Indicator-function features are estimated and used by the 
Acoustic and Perceptron subsystems to produce scores for the two sentence classes: 
sentence-boundary and non-boundary. These two scores are combined with a sentence-
length-based penalty score based on the comparison of the current sentence length with 
the average sentence length for each language. A sentence boundary is hypothesized at 
the putative boundary if the score for the sentence-boundary class is greater than the 
score for the non-boundary class. At this point, all but the last sentence are output from 
the AMC and the last sentence is retained in the input buffer for the next pass of 
decoding. 

 
Feature Extraction 

Features for sentence boundary detection are functional representations of eight 
fundamental attributes of the transcription and the underlying speech signal. There are 
four linguistic attributes: the word identity, the POS tag associated with the word, the 
word prefixes, and the word suffixes. There are also four prosodic attributes: pause, pitch, 
energy, and speaking rate. We used these attributes to create two types of features: 
Prosodic and Indicator-function. The prosodic features, described in detail in Section 2.1, 
were used in a NN model as in the previous approach.  

 
Indicator-function Features 
 

Similar to the formulation of Huang and Zweig (2002), we denote H as the set of all 
possible contexts, or histories, of the word that is to be tagged, and C as the set of all 
possible classes or tags. In our case, the size of the set C is 2. The transformation function 

880 Chapter 6: Operational Engines  

Attribute Type Symbol Attribute Values 

Linguistic W 
• word identity 
• word suffices up to length 4 
• word prefixes up to length 4 

Linguistic P associated POS tag 

Prosodic F • Pause duration quantized to 0.5 secs 

 Table 6.4: Attributes used to define history at a word 



 

Φ, where Φ: H x C  RM  maps a history-class pair to an M-dimensional feature vector. 
Each component of the feature vector is represented as Φ௦ሺh, cሻ and denotes a particular 
indicator function over the history-class pair ሺh, cሻ at the word ݓ. 

We defined the history over a context of 5 words around the word that is to be 
tagged. The history includes all four linguistic attributes and one prosodic attribute. These 

h    ൌ  ൏ Pିଶ, Fିଶ, Wିଶ,                   Pିଵ, Fିଵ, Wିଵ,                   P, F, W,                   Pାଵ, Fାଵ, Wାଵ,                   ۾ା, ,ା۴ ା܅    (6.4)         
  

These indicator-function features encode co-occurrences of histories and classes. 
Effective features can denote that certain histories are strong predictors of the presence or 
absence of a sentence boundary class at a particular word in the transcription. 

 
Perceptron Subsystem 

The Perceptron model is a linear-discriminative model over the indicator-function 
features trained with the Averaged Perceptron algorithm (Collins 2002). The score of 
each boundary class from the Perceptron model at each word, given a fixed context 
around it, is given by: ܁ሺ܋ሻ ൌ ∑ ሺહ܁܁ሺܐ, ୀܛۻሻሻ܋       (6.5) 

Here, αs denotes the weight attributed to the indicator function Φs. Thus, given 
parameter values, αs and a history hi in the context of word ݓ, the highest scoring 
sentence class can be determined using the score from Equation 6.5. Training the 
Perceptron model consists of hypothesizing the sentence class at each putative boundary 
using the current parameter values αs, followed by simple additive updates to αs based on 
the true sentence classes, as explained in detail by  Collins (2002).             

  
Combined Decoder with Sentence Length Constraint 

The scores from the Acoustic subsystem and the Perceptron subsystem are combined 
linearly with a sentence length penalty that discourages the combined decoder from 
hypothesizing sentence boundaries resulting in output sentence lengths that are shorter or 
longer than a target sentence length. An analytical sentence duration model is used to 
calculate the penalty score as a function of the difference in hypothesized and target 
sentence lengths as shown in the equation below. 

ࡿ۲ሺ۾  ൗࢊ ሻ ൌ ܍ሺ܌തെ܌ሻ           ۲۾ሺࡺ ൗࢊ ሻ ൌ .  െ ࡿ۲ሺ۾ ൗࢊ ሻ     (6.6) 

Handbook of Natural Language Processing and Machine Translation 881

attributes are defined in Table 6.4. The history h at a word ݓ is then defined as: 



 

where, d  is the target sentence length estimated simply as the average sentence length 
from SBD training data for each language. 

 

Figure 6.21: Sentence boundary detection in the BBN AMC  

each putative boundary i using the equation: 
ሻ܋ሺ܁  ൌ ∑ሺࣆ ሺહ܁܁ሺܐ, ൌܛۻሻሻ܋ ሻ ીܗܔ ቀ࣐ሺ۴/܋ሻ۾ሺ܋ሻ ቁ ࢽ ܗܔ ቀ۲ܘ൫܋ ൗ܌ ൯ቁ    (6.7) 

 
where: 

 
• ߮ሺc/F෨݅ሻ is the Neural Network output for sentence class c given the 

feature vector F෨ 
• ‘d’ represents the current sentence length given current position i and the 

last hypothesized sentence boundary in the turn 
• Pሺcሻ is the prior probability of sentence class c 
• μ, θ, and γ are empirical weights that are estimated by tuning on the 

development test data 
 
Sentence boundaries are then hypothesized using the Bayesian framework: 

܋  ൌ ൜ܑ        ,ࡿሺ܁෨ሺࡿሻ   (6.8)                      ܍ܛܑܟܚ܍ܐܜܗ       ,ࡺሻࡺሺ෨܁

6.2.3.4. Performance Evaluation 

Arabic Experimental Data 
We used Arabic Broadcast News (BN) acoustic data consisting of approximately 103 

hours of spoken modern-standard Arabic, transcribed without diacritic markings, for our 

882 Chapter 6: Operational Engines  

The Combined decoder, in Figure 6.21, computes the score for each sentence class at 



 

experiments (Billa et al. 2002). This data is drawn from 10 different sources, which 
include Egyptian, Syrian, and Saudi broadcast radio and TV, and the Al Jazeera TV 
network. The transcriptions in this corpus are annotated with sentence boundaries. 
Approximately 96 hours of audio and transcriptions were drawn from this corpus to 
comprise the acoustic training set. We also used text articles drawn from Al Jazeera 
online website as additional text training data. 

 

Table 6.5: Arabic experimental data summary 

The remaining seven hours of audio from the Arabic BN corpus were divided into 
two sets, the SBD development (Dev) set and the SBD evaluation (Eval) set. 
Approximately sixteen hours of Arabic test data, both development and evaluation sets, 
from the DARPA EARS Rich Transcription Evaluations in 2003 and 2004 were manually 
transcribed with sentence boundaries at BBN and added to the SBD Dev and Eval sets 

Speech-to-Text performance, in terms of Word Error Rate (WER), on the Arabic speech 
in the two test data sets is also shown in this table. 

 
Chinese Experimental Data 

Training data for Chinese SBD consisted of approximately 50 hours of speech 
transcriptions from the FBIS and LDC STT training corpus that contains manual 
annotation of sentence boundaries and punctuation.  

The development and evaluation test sets were created with data drawn from five 
separate test data collections. 

 
1. LDC Mandarin Development set for BN Hub4 Speech Recognition 

Evaluation 1997.  
2. LDC Mandarin Evaluation set for BN Hub4 Speech Recognition 

Evaluation 1997.  
3. LDC Mandarin Evaluation set for BN Hub4 Speech Recognition 

Evaluation 1998.  
4. Mandarin EARS RT03+RT04 Development test set. 
5. Mandarin EARS RT03+RT04 Evaluation test set. 
 
Sets 1 to 3 contain manually annotated sentence boundaries from LDC while some 

files in sets 4 and 5 were manually annotated with sentence boundaries at BBN. Files 
without manual annotation in sets 4 and 5 were excluded from the development and 
evaluation test sets. Table 6.6 shows the composition of the data sets used for Chinese 
SBD experiments. The AMC STT performance, in terms of Character Error Rate (CER), 
is also shown for the test data sets. 

Handbook of Natural Language Processing and Machine Translation 883

respectively. All the data used in our experiments is summarized in Table 6.5. The AMC 

Set Duration 
(hours) 

# 
Words 

#  
Sentences %WER 

Acoustic Training 96 600K 20K - 
Text Training - 370K 21K - 
Dev 12 52K 2018 17.0 
Eval 11 47K 1911 19.4 



 

Evaluation Metric 
The reference and the hypothesized Rich Transcription are represented as an ordered 

sequence of generalized tokens that includes the word identity and the sentence boundary 
information. The two sequences of generalized tokens are aligned with respect to a 
generalized edit-distance function that preserves the Speech-to-Text (STT) Word Error 
Rate (WER) while optimizing the SBD error. Sentence Boundary Detection performance 
is computed from this alignment by examining the sentence boundary attributes of each 
pair of aligned tokens. We used the Sentence Boundary Detection Slot Error Rate (SER) 
in the equation below as our primary evaluation metric (Makhoul et al. 1999). For all our 
experiments, we will present the system SER and the Correct Rate, which is 1.0 minus 
the Deletion Rate. 

܀۳܁  ൌ ܛ܍܋ܖ܍ܚ܍܍܀#ܛܖܗܑܜ܍ܔ܍ା#۲ܖܗܑܜܚ܍ܛܖ#۷       (6.9) 

Results 
For each of the two languages, Arabic and Chinese, we evaluated three SBD systems: 

the Pre-GALE SBD system, the new discriminative SB tagging system without length 
constraints, and finally the new discriminative SB tagging system with length constraints. 
The empirical weights used in the combination framework were estimated using the 
Powell’s method to minimize the SBD SER on the development test set. The optimal 
weights were then used to hypothesize sentence boundaries in the speech transcripts of 
the evaluation test set. The SBD performance on the Arabic and Chinese Dev and Eval 

These results show that the new discriminative SBD system with local Bayesian 
decoding outperforms the Pre-GALE SBD system. There is a significant improvement in 
the correct percentage as well as in the SER performance for the new approach even with 
the restricted context imposed by the local Bayesian decoding framework. We expected 
the performance to degrade with the addition of the length constraints. However, as seen 
from the result tables, there is an insignificant change in performance for Arabic SBD 
even when the length-based penalty is added to the decoding equation although, 
surprisingly, Chinese SBD shows a modest improvement. We suspect that this 
improvement is related to the property of the Chinese language whereby Chinese 
sentences are much more well-defined structurally and are also much shorter, in average, 
than Arabic sentences. Imposing a sentence-penalty then that is influenced by the average 
sentence length turns out to be much more beneficial for Chinese than for Arabic. 
 

 

884 Chapter 6: Operational Engines  

sets is detailed in Table 6.7 and Table 6.8. 

Set Duration 
(hours) 

# 
Words 

#  
Sentences %CER 

Acoustic Training 50 420K 24K - 
Dev 4 41139 1362 12.5 
Eval 5 50863 1673 14.5 

Table 6.6: Chinese experimental data summary 



 

Engine Runtime Performance 
We compared the end-to-end system latency of the AMC engine with respect to the 

pre-GALE SBD and the new discriminative SBD systems. In both cases, the AMC was 
run continuously for five days on live audio feed captured from the Al Jazeera Arabic 
television channel via satellite. The end-to-end system latency is defined as the lag (in 
seconds) between the time at which a sentence is output from the AMC, and the time at 
which the audio corresponding to the beginning of the sentence was received at the input 
of the AMC. 

 

 
Figure 6.22: Improvement in end-to-end system latency 

sessions) due to the new SBD system with explicit length constraints. Peak latency 
dropped from over 300 seconds to below 80 seconds. The plot also shows the reduction 

Handbook of Natural Language Processing and Machine Translation 885

Figure 6.22 shows the improvements in both peak and average latency (over one hour 

System 
Arabic Dev Arabic Eval

% Corr. % SER %Corr. % SER 

Pre-GALE 75.6 53.6 75.4 49.3 

Discriminative SBD 
without length constraints 79.6 50.8 79.8 46.9 

Discriminative SBD with 
length constraints 79.9 51.4 80.3 46.0 

Table 6.7: Arabic SBD results 

System 
Chinese Dev Chinese Eval

% Corr. % SER %Corr. % SER 

Pre-GALE 70.3 48.4 66.5 59.7 

Discriminative SBD 
without length constraints 76.0 42.5 71.9 56.7 

Discriminative SBD with 
length constraints 79.4 44.5 76.6 54.6 

Table 6.8: Chinese SBD results 

 

 



in latency variation in the discriminative SBD-based AMC engine, which leads to robust 
operation in the field.   

We believe that the improvement in system latency is due to the following reasons: 
 
• An upper limit on the length of the hypothesized sentences, 
• An explicit sentence-length constraint in the SBD algorithm results in 

well-behaved sentence length on average, and 
• Incremental Bayesian decoding that does not require completed speaker 

turns before hypothesizing sentence boundaries. 

6.2.3.5. Conclusion 

We have demonstrated that the constrained, discriminative SBD system outperforms 
the previous system, on Arabic and Chinese speech, in terms of sentence segmentation 
performance. Adding sentence-length constraints has minimal effect on the sentence 
segmentation performance.  However, the peak system latency during live audio 
processing is significantly reduced.  

Perceptron models have a simple formulation, are easy to train, and perform 
surprisingly well. The Perceptron model we used for SBD was impoverished since we did 
not use all the available prosodic features. It would be interesting to learn if adding more 
prosodic features helps the Perceptron model. Model combination has always been 
beneficial for SBD. We need to examine more discriminative models that might combine 
effectively with the Perceptron model. Finally, we used a very simple logistic regression 
model to compute the sentence-length-based penalty score. Further research could 
examine a machine learning approach to compute the parameters of a similar model or 
propose new models for imposing length-based constraints in SBD systems. 

The Sentence Boundary Detection research described in this section was 
implemented in the AMC engine, which is offered as a turnkey product by BBN. The 
length of sentences in the new system and the quality of the segmentation has far-
reaching implications for solutions that integrate operational engines in GALE or beyond. 
These improvements have been partially responsible for the operational viability and 
robustness of the BBN operational engine, the AMC. Sentences hypothesized in Arabic 
and Chinese speech by this new discriminative SBD system were used as the common 
segmentation across the components for the GALE Interoperability Demo (IOD) (Pitrelli 
et al. 2008a). The AMC is also the core Rich Transcription engine for the BBN Broadcast 
Monitoring System, which is a turnkey product developed in partnership with the 
Technial Support Working Group (TSWG), which allows intelligence analysts to capture, 
monitor, and triage information from foreign television stations in real-time with low 
latency. The BBN BMS is deployed at multiple U.S. Government installations around the 
world and has been instrumental in transitioning GALE technology and research 
improvements into the field to aid in counter-terrorism, intelligence analysis, and 
language learning. 

886 Chapter 6: Operational Engines  



 

6.2.4. System Combination of Distributed Speech-to-Text, 
Translation, and Information Extraction Engines: The 
GALE Interoperability Demo (IOD) 

6.2.4.1.  Introduction 

Speech- and text-processing engines, such as speech-to-text and machine translation, 
are being assembled into ever-larger groups of engines, to achieve several goals: 

 
• to perform increasingly-complex tasks, such as transcription, translation 

into English, and extraction of information from foreign-language news 
broadcasts, 

• to facilitate system-combination techniques (Jayaraman et al. 2005; 
Fiscus 1997) to achieve higher accuracy, and 

• to provide fault-tolerance in case of failure of an engine. 
 

GALE's Language Exploitation Environment (LEE) working group has embarked on 
several activities to achieve interoperation of GALE engines using the Unstructured 
Information Management Architecture (UIMA) software framework (Ferrucci and Lally 
2004). By “interoperation”, we refer to single-point invocation of a group of engines, 
which we refer to as an “aggregate”. The GALE Type System (GTS) (Pitrelli et al. 
2008b) has been developed as a common set of data formats for such UIMA aggregates. 
The GALE Interoperability Demo (IOD) system (Pitrelli et al. 2008a) employs UIMA 
and GTS to interoperate 15 engines from seven remote sites spanning all three GALE 
consortia, to make Arabic broadcast news and Web sites browsable as English text 
grouped and summarized by topic, and playable as synthesized English speech. IOD 
inter-operates engines performing 11 distinct functions: 

 
• language/dialect identification, 
• gender determination / speaker detection, 
• speech-to-text (STT), 
• entity detection (ED), 
• machine translation (MT), 
• translation system combination (multi-engine machine translation or MEMT), 
• story-boundary detection, 
• topic-clustering of stories, 
• summarization of topic-clusters of stories, 
• headline generation, and 
• text-to-speech synthesis. 

 
These engines run on diverse computing platforms physically distributed across 

multiple states and countries at their home sites: 

Handbook of Natural Language Processing and Machine Translation 887

Authors: John F. Pitrelli, Salim Roukos, Edward A. Epstein, David Ferrucci, Greg Hanneman,  
Kenneth Heafield, Daniel Kiecza, Alon Lavie, Burn L. Lewis, Amit Srivastava, and Paola Virga 



 
• IBM, New York, 
• Carnegie Mellon University, Pennsylvania, 
• BBN, Massachusetts, 
• RWTH Aachen University, Germany, 
• University of Massachusetts at Amherst, 
• Columbia University, New York, and 
• Systran, France. 
 
Several principles guide the design of IOD, as more-fully detailed previously (Pitrelli 

et al. 2008a): 
 
1. Fault-tolerance: When practical, multiple engines performing the same 

function are employed, to yield robustness against failure of individual 
engines.  

2. Complementarity of engines: Different engines performing the same 
function may each in turn be best suited to process different types of 
input data, and so interoperating them followed by a system-combination 
engine can yield improved accuracy. 

3. Exploitation of multiple engine functions: An engine should take 
advantage of functions preceding it in the aggregate, by making use of 
their results when appropriate.  

4. Well-delineated functions: Some combinations of engines were tightly 
coupled and mutually optimized, e.g., STT and MT integrated to process 
audio. Mutual optimization of engines should be exploited for accuracy 
when practical, however, not in cases in which such coupling impedes 
interoperability with other engines, as IOD's goal is to achieve accuracy 
and functionality through interoperation.  

 
In short, IOD's goal is to use UIMA to interoperate engines, to exploit the 

complementary performance and function of engines by imposing minimal constraints 
upon each engine, such as input-output specifications to delineate functionality. 

For three years, the IOD aggregate of GALE engines has been invoked nightly, 
processing the audio from three to six hours of broadcast news from two Arabic news 
networks, Al Arabiya and Al Jazeera. A simpler “web aggregate” is also being run to 
process text from Arabic news Web sites. In addition, the UIMA Component Repository 
(UCR) and UIMA Component Container (UCC), described in Section 6.2.5, have been 
established at Carnegie Mellon University to provide GALE community members with 
Web-based access to configure their own aggregates of these and other engines to process 
audio and text data of their choosing. 

6.2.4.2. UIMA: Managing Engine Interoperation 

The widely-distributed engines that make up the IOD operate under the management 
of UIMA (Ferrucci and Lally 2004). UIMA is an architecture and software framework for 

888 Chapter 6: Operational Engines  



 

composing and deploying multi-modal analytics, adding structure to unstructured data 
such as text, audio, and video. The architecture is undergoing a standardization effort, 
referred to as the UIMA specification, by a technical committee within the Organization 
for the Advancement of Structured Information Standards (OASIS).3 IOD uses Apache 
UIMA, an open-source implementation of the UIMA Architecture.4 

 
Capabilities 

Some of the features Apache UIMA provides are: 
 

• An extensible type-system mechanism used to formalize the format for 
all input and output data, 

• A common analysis structure to organize and maintain a segment of data, 
(e.g., text, audio) and all the analysis results, 

• An extensible component-based framework that simplifies the 
integration and deployment of UIMA-compliant analytics, 

• Ability to create UIMA-compliant components from analytics written in 
Java, C++, Perl, Python and Tcl, 

• Support for Linux, Windows and other Unix-based OS, 
• Tools for developing and testing components individually, 
• Ability to run components as shared services on the Internet, 
• Ability to create custom analysis flow, with complex error-handling 

options, 
• Ability to process multiple data segments simultaneously through 

different stages in the aggregate, for increased throughput, 
• Ability to process the same segment through multiple engines in parallel 

to reduce latency, and 
• Ability to re-segment data. 
 
UIMA's capabilities are employed by IOD as follows. 
 

Data and Views 
Data is passed among UIMA components in the Common Analysis Structure (CAS) 

with the format and structure of the data defined by an application-specific type system. 
The GALE Type System (GTS) (Pitrelli et al. 2008b) has been created for aggregates of 
speech- and natural-language-processing engines, such as IOD. It is important to note that 
agreeing on a type system does not constitute a complete data-flow design for an 
aggregate such as IOD. Rather, it must be combined with usage conventions, such as, 
which types or attributes of types are optional and which required for each engine. 

Each CAS contains a “view” of the data being analyzed – for the IOD, a two-minute 
segment of audio from a news video, or a Web page. For multi-modal applications, 
UIMA supports multiple views within a CAS, each representing a different way to view 
the same basic data. In the IOD we create additional views as the CAS progresses 
                                                 
3 UIMA Architecture at OASIS: http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=uima 
4 Apache UIMA: http://incubator.apache.org/uima 

Handbook of Natural Language Processing and Machine Translation 889



through the aggregate – a source-language text view for the Arabic text from each STT 
engine, and a single target-language view for the English text comprising the merged 
translation. Each view initially contains only the data to be analyzed; engines add their 
results as annotations on the data. 

Most engines need access to only one type of view, and are not dependent on the 
existence of other views. STT uses just the audio view, MT and MEMT the source-
language views, and some monolingual engines such as summarization use the target-
language view. 

 
Data Re-segmentation Capability 

UIMA supports a powerful type of component, the CAS Multiplier, which has the 
ability to produce new CASes. For each input CAS processed, a CAS Multiplier can emit 
zero or more new CASes, effectively splitting, merging, delaying, or arbitrarily re-
segmenting the input CASes. If an analytic needs more contextual information than is 
available in a single CAS, it can be implemented as a CAS Multiplier, releasing delayed 
CASes when sufficient context has been received. IOD initially segments audio data into 
manageable but arbitrary segments, and later uses a CAS Multiplier to re-segment the 
data into complete stories for the convenience of the analytics that follow. 

 
Scale-out, Load Balancing, and Parallelism 

Apache UIMA provides a flexible and powerful scale-out capability enabling UIMA 
components to be deployed as shared services, running in separate processes on the same 
or different machines. Apache UIMA uses the Apache ActiveMQ implementation of Java 
Message Service (JMS) to provide asynchronous connectivity between an application and 
its services. Multiple instances of a UIMA service can be deployed on the same or 
different machines, all processing CASes from the same input queue, hence providing 
dynamic load balancing. All components, the dedicated local ones as well as the shared 
remote ones, have their own input queue and processing thread, so multiple CASes can 
be active simultaneously, increasing throughput. Since STT is by far the slowest engine 
function in IOD, this scale-out capability has been exploited by deploying up to five 
instances of the slowest engines in order to achieve throughput close to real-time. 

If an application has a set of engines with no processing interdependences, UIMA 
can invoke them in parallel, reducing latency. The same CAS is sent to all, and UIMA 
merges the results returned from each. The engines must only add new entries to the 
CAS, leaving all existing data unmodified. In the IOD this is done for all of the STT 
engines, reducing their contribution to the latency to that of the slowest. 
 
Data-reorganization Components 

IOD requires data-reorganization components for a variety of purposes, including: 
 
• the creation of CASes at the beginning of the aggregate, and extraction 

of information from CASes at the end, 
• creating, from the early engines’ annotations, new views suitable for 

processing by subsequent engines, along with cross-references back to 
the original annotations, 

890 Chapter 6: Operational Engines  



 

• creating data structures within views to prepare for processing by 
subsequent engines, and 

• re-segmenting data into new CASes as needed by subsequent engines. 
 
From a research perspective, these components are very distinct from the engines in 

the high-level design of IOD. They perform relatively “mechanical” functions interfacing 
among the engines, as well as between the engines and the outside application. In 
contrast, “engines” are being improved experimentally on an ongoing basis in distributed 
research labs, and so are most conveniently hosted at their home sites. Despite this 
distinction between engines and data-reorganization components, from the perspective of 
the UIMA framework, all of these are simply “UIMA components”, simplifying 
development, debugging, and deployment. Specific details of how engines and data-
reorganization components interact in the IOD aggregate are described in order of 
process flow in the following section. 

 
Flow Control and Error Handling 

 
UIMA supports a customizable flow controller that manages the progress of each 

CAS through the sequence of components. It can specify which components may be run 
in parallel, and can change the flow depending on CAS content or on engine failure. 
UIMA supports a number of error-handling operations for each CAS sent to a remote 
service, e.g. a limit on processing time, the number of retry attempts, the number of errors 
that will trigger removal of the component or termination of the application, and also if a 
CAS can continue in the flow after the failure. If the failure of an engine does not affect 
any succeeding engines or the overall application, or if there are other engines performing 
the same function, then error handling should let the application continue processing that 
CAS. In this way, multiple engines provide fault tolerance. In the extreme case when all 
engines in the set fail, and the function is critical, the flow controller terminates the 
application. 

For the configuration depicted on the left side of Figure 6.23, a pre-processing step 
extracts two-minute audio segments from Arabic broadcast news video. The news show 
is later re-segmented into story segments as described below. The configuration on the 
right side of the figure uses many of the same components, along with an HTML 
detagger, to process Arabic news Web pages output by a Web crawler. Engines are 
operated as remote UIMA services, deployed, maintained and upgraded by their home 
sites in order to keep current with latest research developments. IOD users operate as 
UIMA clients in accessing these engines. One user is IBM, which runs the audio 
aggregate every night on current news sources and the Web aggregate on demand. 
Another is the UCC (Section 6.2.5) at Carnegie Mellon University, which allows users to 
configure their own aggregates from the IOD engine services, and to supply them with 
audio or text files. 

The following paragraphs detail the operation of the engines and the data-
reorganization components interleaved among them to facilitate their interoperation. 
 

Handbook of Natural Language Processing and Machine Translation 891



 
Figure 6.23: IOD system diagram. Bold boxes indicate engines; other rectangles represent data- 

reorganization components. Arrows represent data dependences; processing flow is top-to-bottom. 

CAS-creation data-reorganization components (UIMA “collection readers”) populate 
each CAS with the data to be analyzed. The “audio collection reader” creates a CAS for 
each two-minute audio segment, initializing it with an audio view and an AudioDocID 
containing attributes which represent data about the entire segment, such as that this is 
the Nth out of M segments in a show.5  The “web collection reader” creates a CAS for 
each news Web page, and a following HTML detagger strips out HTML tags and other 

                                                 
5 Typewriter font is used for names of data types defined by the GALE Type System; for more details on 
these types, please consult the GTS paper (Pitrelli et al. 2008b). 

892 Chapter 6: Operational Engines  



 

material to create a source-language text view, representing the segment as an Arabic 
plain-text string. 

The Language/dialect identification engine creates AudioLanguageID objects in 
the audio view, identifying the language and dialect between two time points in the audio. 

The Gender/speaker detection engine creates SpeakerID objects in the audio view, 
each labeling the span between two time points as containing speech by a specified 
gender, or by a speaker represented in the engine’s models. 

Speech-to-text (STT) engines add objects to the audio view as follows: 
 
AudioTokens, which label a word of speech onto a span between two time points 

(mandatory) 
SUs (sentence units), which label a span of time as containing one sentence of speech 

(preferred), 
SpeakerIDs (optional), and 
AudioLanguageIDs (optional).  
 
Note that UIMA aggregation may be hierarchical: what an aggregate considers an 

“engine” can in fact be another aggregate. An example is that the IOD aggregate's STT 
“engines” producing the above types are typically implemented as an aggregate, for 
example, of a speech-recognition engine producing AudioTokens and a sentence-
boundary-detection engine producing SUs. 

STT engines are normally the longest running components in IOD. Therefore, they 
are a priority for deploying multiple instances of an engine, as depicted by stacked boxes 
in Figure 6.23, currently ranging up to five instances per engine. 

Create source-language views is a data-reorganization component creating an Arabic 
text view corresponding to each STT engine. For each STT, the strings in its 
AudioTokens are concatenated into a single Arabic text string, which serves as a new 
representation of the content of the segment, to prepare for text only engines such as ED 
and MT. This component then creates in each new view a set of AudioXrefs, each 
associating a span of characters in the new view with a span of time in the audio view. It 
also creates Sentence annotations, which indicate that a span of string indices in the 
view corresponds to a sentence. These are derived by taking the SU boundary times from 
a selected STT engine and mapping them across the view alignment onto positions in the 
new view’s text string. 

Entity-Detection (ED) engines process each source-language view and create 
EntityMention objects associating an entity type such as “person” with a span of 
characters in the view. Optionally, ED engines may produce Entity objects reflecting 
coreference analysis associating a set of mentions with a single underlying entity. Also 
optionally, ED engines may produce EventMentions and Events analogous to the 
corresponding entity types, and RelationMention and Relation objects relating pairs 
of entities. In Web aggregates, an ED engine is responsible for creating Sentence objects. 

Prepare MT is a data-reorganization component which creates objects needed by MT 
engines, specifically, WordToken annotations which identify that a span of characters in 
the view string is a word, and Translatable annotations which serve to specify a 

Handbook of Natural Language Processing and Machine Translation 893



partitioning of text in each source-language view into units to be processed by MT 
engines. Currently, one Translatable is created for each Sentence. 

Machine Translation (MT) engines place target-language text strings in the CAS 
within one TranslationResult for each Translatable in each source-language 
view. In addition, MT engines create Alignment structures linking target-language 
words back to source-language words. 

The Multi-Engine Machine Translation (MEMT) engine creates a single translation 
of the content by mining the N x M translations resulting from the N STT engines and M  
MT engines. MEMT formats its output translation as TranslationResults and 
Alignments just as MT engines do. As MEMT’s function is inherently related to 
multiple-engine processing, it is therefore particularly relevant to interoperation, and so 
MEMT is described in further detail below. 

The Story-Boundary Detection (SBD) engine annotates each sentence boundary in a 
source language view with a score indicating how likely it is to be a story boundary. It 
requires two minutes of audio context before and after each boundary, so is implemented 
as a CAS Multiplier in order to delay the processing of each segment until the next one 
has been received. 

Story Segmentation is a data-reorganization component which takes in two-minute 
segments and emits story segments, and is therefore a CAS Multiplier. Boundaries are 
chosen by applying a threshold to the scores produced by SBD. Re-segmentation enables 
subsequent engines, such as topic clustering, to operate directly on the appropriate data, 
i.e. a complete story. Note: Re-segmentation is not necessary in Web applications since 
each Web page is assumed to comprise a story. 

Create target-language view is a data-reorganization component creating an English 
text view in each video and Web segment by concatenating the TranslationResult 
strings corresponding to a selected translation, typically that output by MEMT. This view 
enables monolingual-text functions like summarization and headline generation to focus 
on English text as their natural input. It also creates entity-related objects in the new view 
corresponding to any it finds in the source-language view, and creates cross-reference 
objects linking the new view and the appropriate source-language view. 

The Topic Clustering engine creates a single Topic object in each video-story 
segment and Web segment. Topic contains an identifier which represents a cluster of 
stories it determines to be about the same topic. For each client, the topic-clustering 
engine maintains a history about past segments in order to label the current segment. 

The Summarization engine also maintains a history and gives each CAS a Summary 
object containing a string providing an English summary of all stories in history to date 
sharing topic identifiers with the current CAS. 

The Headline Generation engine creates two objects in a typical CAS: a 
SummaryHeadline containing a headline derived from the CAS’s topic summary, and 
a StoryHeadline derived from the story in the CAS. 

The Text-to-Speech Synthesis engine creates an audio rendition of the target-language 
view string, matching detected gender in the case of a video segment. This engine makes 
use of multiple views, as it follows cross-reference links between the views to associate 
each target-language sentence with the gender annotations applied to the corresponding 
audio span. 

894 Chapter 6: Operational Engines  



 

Extracting Data from CASes are UIMA CAS consumers which end the aggregates by 
extracting the results from each CAS, saving the information in an XML structure 
enabling users of a custom Web application to browse the topics, stories, and parallel 
translations. 
 
Sliding Results Window 

Currently, IOD is run every night and maintains a four-day results window. The 
intermediate results prior to the first history-maintaining engine, topic clustering, are 
saved for three days, so that four days worth of data can be run through the final stages to 
produce the daily results. 

6.2.4.3. Multi-Engine Machine Translation 

Of particular note among IOD's engines is the translation-combination engine, 
Carnegie Mellon University's multi-engine machine translation (MEMT), because it 
particularly exploits interoperation of multiple engines. Specifically, IOD typically runs 
two or three STT and two or three MT engines; each resulting STT–MT system 
combination provides another possible target-language translation for any given segment 
of source-language audio. MEMT collects the translations resulting from each STT–MT 
combination in the IOD aggregate, and assembles a new synthetic translation that tends to 
be better than that from any single STT–MT output. To carry out fast online synthetic 
combination within the aggregate, it relies on minimal information from the incoming 
translations, requiring only the text string produced by each STT–MT combination and 
(optionally) alignment information tracing each target-language word back to the source-
language word that produced it. 

 
Combination Approach 

The translations for each source sentence are first word-aligned to each other based 
on exact string match, stem match, or synonymy match using WordNet synsets. MEMT 
then iteratively builds up collections of partial synthetic hypotheses of increasing length 
by selecting an unused word from one of the original inputs and adding it to the end of a 
hypothesis currently under construction. When a hypothesis is completed, it is scored and 
added to a list of final hypotheses. At the end of the process, the highest scoring 
hypothesis is selected as the MEMT output and is passed to the remainder of the IOD 
aggregate. Special constraints can be enforced for the creation of atomic phrases, or high 
quality contiguous sequences of words in an original input that we would like to keep 
together as a single unit in the synthetic MEMT output. 

Although we have preferred the synthetic combination method from the beginning 
(Jayaraman et al. 2005) as a way to produce a more flexible word ordering in the MEMT 
output, the MEMT system can be configured to perform hypothesis selection or fixed-
word-order combination in the style of a confusion network (Rosti et al. 2007). 

 
Integration into the IOD 

The online and distributed nature of the IOD environment enforces some key 
operating constraints on the MEMT system, while the richness of the data defined within 

Handbook of Natural Language Processing and Machine Translation 895



the GALE Type System (GTS) allows the algorithm to take additional information into 
account when constructing synthetic combinations. 

MEMT is designed to be robust to variation in number of translations of a sentence, 
and can handle cases in which some of the input translation alternatives are empty, due to 
the possibility of STT/MT engines being lost due to system or network failure. 

GTS includes detailed alignment information for mapping from audio segments to 
recognized source language words to translated targetlanguage words, which is 
maintained throughout the IOD's processing. This presents a particular challenge for 
MEMT, as it is simultaneously dealing with translations that were produced using 
different text views of the same audio, each of which has a different set of alignments. To 
solve this problem, we augment the output of the MEMT combination to additionally 
specify, for each word in its synthetic output, which word instance from which MT 
output was chosen. Our system is then able to assemble a consistent and correct set of 
alignments for the MEMT output by recovering the original alignment information for 
those words. 

6.2.4.4.  Adapting Existing Engines to UIMA Interoperation: Case Study, BBN   
STT 

BBN's Audio Monitoring Component (AMC) product produces in real-time a 
continuous rich transcript of foreign-language broadcasts.6 The transcript includes 
speaker information, sentence boundaries, and named entities. The integration of AMC 
into the IOD/UIMA framework was completed rapidly for several reasons: (1) AMC is a 
mature product producing XML-formatted transcripts which adhere to a strict schema 
contract, (2) GTS required only a subset of the AMC schema types and mapping these 
types was straightforward, and (3) UIMA provided the necessary infrastructure for quick 
integration, including simple framework installation, an API to generate annotations, and 
scripting language support. 

The MEMT component in IOD requires common sentence segmentation for all STT 
and MT engines. The sentence segmentation produced by AMC was adopted as a 
common segmentation for the demo for several reasons: The AMC sentence 
segmentation is produced by a tightly-coupled, rich transcription engine. Also, and more 
importantly, the AMC sentence segmentation is specifically tuned for human readability. 
Its sentences will, for example, not exceed a fixed upper-duration threshold. This 
behavior proved critical to ensure reliable performance of the MEMT component. AMC 
for IOD is hosted at BBN Technologies. Incorporation of AMC's ED remains work in 
progress, due to IOD's categorization of ED as a text-annotating rather than a speech-
annotating function. However, all other AMC functionality has been part of the entire 
history of IOD. 
 

                                                 
6 BBN BMS system: http://bbn.com/products_and_services/bbn_broadcast_monitoring_system/ (the BMS 
includes BBN's AMC STT engine) 

896 Chapter 6: Operational Engines  



 

6.2.4.5. Experiences and Observations 

Constraints on Engines 
Running an engine in the context of an aggregate imposes constraints which do not 

apply to running in isolation. Adding a new engine to an aggregate often creates new 
constraints on several other engines. Many of these constraints are low-level in nature; 
discussion here will be limited to illustrative examples. 

One example is that an engine's standard output often includes special codes for 
exceptional situations, such as one MT's “unk” for an unknown word. Isolated 
evaluations of engines account explicitly for such codes. However, in a growing 
aggregate, requiring engines to handle others' codes becomes impractical. In this 
example, subsequent engines may mistreat all appearances of “unk” as multiple 
occurrences of a single popular word, degrading the accuracy of algorithms dependent on 
word frequency, so MT needs another scheme for handling unknown words, such as 
attempting a transliteration. 

Another example is that interoperation can magnify the consequences of a 
malfunctioning engine. Outputting malformed data can cause a compounding of 
malfunction from the downstream engines. Therefore, interoperation imposes heightened 
requirements for engines to produce valid data. 

 
Performance Evaluation 

Rigorous evaluation of IOD accuracy is impeded by 
 
• the large number of interacting engines, 
• the complexity in obtaining ground-truth data against which to assess aggregates' 

outputs, and 
• the presence of several engine functions whose results' accuracy remains 

subjective, such as some of the text-processing engines. 
 
We have begun to define a formal framework for evaluation of such aggregates 

(Murthy et al. 2008). 
 

Upgrading Engines 
Frequently, an engine somewhere in the aggregate is improved, and the improvement 

is validated by a unit test; however, care must be taken in the presence of a downstream 
engine whose classifier is trained on output data from the engine to be upgraded, often 
necessitating ripple-forward re-training. 

6.2.4.6. Conclusions 

The IOD has demonstrated that it is possible to build a useful application from the 
combination of many powerful analytic engines deployed on a variety of platforms and 
languages at sites around the world. The UIMA development environment facilitated the 
independent development and testing of each component, making it easy for this diverse 
mixture of companies and universities to collaborate efficiently. 

Handbook of Natural Language Processing and Machine Translation 897



Natural language processing technologies have advanced to the point that large 
aggregates of NLP engines can provide useful output on tasks requiring such 
combinations of engines. In spite of their computing-platform variations and distributed 
locations, UIMA enabled the IOD team of seven GALE sites to collaborate on 
interoperating 15 engines to transcribe, translate, and extract information from Arabic 
news video and Web content daily. Results are available showing English text headlines 
hyper-linked to topic summaries, story headlines, and story translations.7 

The type system and data-reorganization components developed for IOD could be 
used as an experimental test bed for a collaborative effort evaluating the effectiveness of 
various combinations of engines developed by separate groups. Many research areas 
involving the interoperation of engines could be explored, e.g. the effectiveness of 
system-combination techniques on transcriptions and entities as well as on translations, 
the benefits to MT of using the source-language entities, the value of independent gender 
and/or speaker detection to STT, etc. 

 
Acknowledgements 

 
 

6.2.5. The UIMA Component Repository (UCR) and UIMA 
Component Container (UCC): A Facility for Flexible 
Exchange and End-User Configuration of Operational 
NLP Engines 

6.2.5.1. Introduction 

As part of our work on the GALE Language Exploitation Environment (LEE), the 
LEE working group specified a common annotation type system for speech- and text 
processing engines (Pitrelli et al. 2008b) using the Unstructured Information 
Management Architecture framework (UIMA).8  This common type system has been used 
to integrate a variety of different components from different organizations into the GALE 
Interoperability Demo (IOD), an aggregate analysis engine that supports daily processing 
of emerging news in foreign-language video (Pitrelli et al. 2008a). Although the 

                                                 
7 Video: http://rosetta.watson.ibm.com:8888/iod/ 
Web: http://rosetta.watson.ibm.com:8888/iod/?web=1 
8 The latest version of UIMA is currently being developed as an Apache Incubator project: 

http://incubator.apache.org/uima 

898 Chapter 6: Operational Engines  

Authors: Eric Nyberg, Eric Riebling, Burn L. Lewis, and David Svoboda 

The authors thank James Allan, Bob Armstrong, Shilpa Arora, Manuel Bardea, Oliver Bender, Eric 
Brown, Jaroslaw Cwiklik, Bret Ehlert, Gopi Flaherty, Martin Franz, Andre Gauthier, Isaac Harris, Abe 
Ittycheriah, Nanda Kambhatla, Francis Kubala, Daben Liu, Evgeny Matusov, Kathy McKeown, Justin 
Merrill, Uma Murthy, Udhyakumar Nallasamy, Eric Nyberg, Leiming Qian, Jerome Quinn, Ganesh 
Ramaswamy, Eric Riebling, George Saon, Barry Schiffman, Jean Senellart, Sergey Sigelman, Olivier Siohan, 
Sara Rosenthal, David Svoboda, Alan Watkins, William Wong, and Jian-Ming Xu for their contributions to 
IOD. 



 

development of the shared type system and IOD was motivated primarily by the 
requirements of the GALE program, the shared type system and aggregate component 
architecture support a degree of modularity and interoperability which in turn imply a 
significant opportunity for low-cost component and aggregate reuse. 

This section describes two additional capabilities developed by the GALE LEE team: 
the UIMA Component Repository (UCR), a Web-based portal designed to support 
efficient component dissemination and reuse; and the UIMA Component Container 
(UCC), a Web-based portal for run-time execution of aggregate analysis engines. 

6.2.5.2. UIMA Component Repository (UCR) 

The UIMA Component Repository (UCR) consists of a Web-based user interface to a 
relational database which stores UIMA components (Collection Readers, Annotators, 
CAS [Common Analysis Structure] Consumers) along with associated metadata about 
each component.  Users may submit their own component in one of two ways. They may 
publish only the component’s descriptor (an XML file which indicates how the 
component can be invoked as a service), or if they wish to disseminate the binary (and 
optionally source) code for their component, users can upload it to the UCR in a special 
.zip format (UIMA Processing Engine ARchive [PEAR] format). There are two types of 
users: registered and unregistered. All users may browse and download components or 
descriptors, but only registered users may upload components. The specific use cases 
supported by the UCR are listed in the following subsection. 

 
Capabilities 

The UCR supports the following user actions: 
 
• Register User. New users register by selecting a username and password, and 

providing a valid email address. 
• Join Mailing List. The site provides an interface for subscription to a LISTSERV 

mailing list for UCR users. 
• Browse Components. The site supports a variety of  browsing options for 

displaying components: All Components, Components by Category, Components 
by Submitter, and Commercial (costs money) vs. Noncommercial (free) 
Components. 

• Search Components. The site provides a simple keyword-based search capability 
that matches the user’s keywords with the component titles and descriptions; an 
advanced search capability allows the user to specify search terms to be matched 
against particular component metadata fields (name, description, developer 
name, input and output annotation types). 

• Download Component or Descriptor. The user may download either the 
component code (PEAR file) or XML component descriptor for the component 
being viewed. 

• View Component Type Tree. When the annotation type system is provided with 
the Component (a PEAR file is present), the system provides a capability for 
viewing the annotation type hierarchy within the Web browser. 

Handbook of Natural Language Processing and Machine Translation 899



• Rate Component. A simple 1-5 stars rating system is provided to registered users 
so that they may provide feedback on individual components; the average rating 
is displayed when a user displays a component. 

• Announce Component. The user provides the metadata and descriptor for the 
component, but does not provide the PEAR file (component code). 

• Publish Component. The user provides the metadata, descriptor and code for the 
component, encoded in a UIMA PEAR file. 

 
The UCR also provides additional resources for the user, such as site help, a UIMA 

FAQ, tutorial videos, and community links to additional off-site resources. 
 
 

The UCR is designed as a Web application based on a typical three-tier Model-View-
Controller Web application architecture.  The underlying data model is a relational 
database schema which persists information about components and their metadata, users, 
user roles, type systems, licensing information, and runtime requirements. The primary 
interface to the UCR is a set of Java servlets, which access static page content via HTML 
and Java Server Pages, and dynamic content (e.g., results of component searching and 
browsing) via a set of actions defined in Apache Struts. Struts actions are implemented to 
use a specialized data access object (DAO), which utilizes the Java Database 
Connectivity (JDBC) library to access the underlying relational model. The current 
architecture is shown in Figure 6.24. 

 
Deployment 

The UCR was first deployed on the Web in July 2006.9 UCR currently runs on Red 
Hat Linux servers using Apache Tomcat as the servlet container and PostgreSQL as the 
relational database. In addition to the public deployment, we have also deployed an 
access-restricted enterprise instance of UCR to support dissemination of components 
within the GALE community. As of January 2009 the public deployment supports 15 

                                                 
9 http://uima.lti.cs.cmu.edu 

900 Chapter 6: Operational Engines  

 
Design 

 
Figure 6.24: UCR Architecture 

Tomcat Servlet Container

Java Servlets

Apache Struts

Java Database Connectivity

Postgres
RDBMS

Java Server Pages

U
C

R
 W

eb
 A

pp
lic

at
io

n

UCR Database

Client Web Browser

Tomcat Servlet Container

Java Servlets

Apache Struts

Java Database Connectivity

Postgres
RDBMS

Java Server Pages

U
C

R
 W

eb
 A

pp
lic

at
io

n

UCR Database

Client Web Browser



 

unique component submitters, and 43 distinct components have been uploaded; the 
broader community includes 87 users who have subscribed to the UCR mailing list. 

6.2.5.3. UIMA Component Container 

The UIMA Component Container (UCC) was created to support Web configuration 
and deployment of completed UIMA engine aggregates, which integrate various 
components of GALE IOD. The UCC allows any user with access to a Web browser and 
the Internet to upload data and process it with aggregates of IOD engines, eliminating the 
need to pre-install and manually configure the UIMA SDK and the IOD components, 
which are accessed as remote Web services. Users may upload speech and/or text data, 
select components to run, and queue processing jobs which run asynchronously; as jobs 
are completed, the resulting output is placed in a directory for later retrieval. 

 
Capabilities 

The UCC supports the following user actions: 
 
• Upload Data. The user may upload data files (text or PCM audio) to be 

processed.  
• Configure Pipeline. Based on the input data which has been selected, the user 

may choose from the available components to be run by the pipeline. 
• Create Job. The user selects a particular set of input files to be processed by the 

configured analysis engine. 
• Queue Job. The user queues the configured job for processing. 
• View Jobs. The user may view the contents of the job queue, as well as the status 

of their submitted job(s). 
• Cancel Job. The user may cancel a running job, which is terminated and removed 

from the job queue. 
• View Output. The user may view the text and/or speech output from any 

completed job. 
• View Log. The user may view the log for completed as well as in-progress jobs. 
 

Design 
 

 
Figure 6.25: UCC Architecture 

Handbook of Natural Language Processing and Machine Translation 901

 

Tomcat Servlet Container

Java Servlet

Client Web
Browser

Apache MQ
Message Broker

UIMA AS

Local File System

input

output Deployment
Descriptor

Analysis
Engine

Descriptor

Distributed Services

STT1 STT2

MT1 MT2

MEMT SBD

ED1 ED2

TTS

TL SUM HDL

STT3

MT3

Tomcat Servlet Container

Java Servlet

Client Web
Browser

Apache MQ
Message Broker

UIMA AS

Local File System

inputinput

outputoutput Deployment
Descriptor

Deployment
Descriptor

Analysis
Engine

Descriptor

Analysis
Engine

Descriptor

Distributed Services

STT1 STT2

MT1 MT2

MEMT SBD

ED1 ED2

TTS

TL SUM HDL

STT3

MT3



The UCC is designed as a servlet Web application that stores job input and output on 

other languages), and output is English text and optionally synthetic speech audio.  Based 
on the options selected by the user, an analysis engine descriptor and deployment 
descriptor are created for the configured pipeline. Configured jobs are queued and 
executed within an UIMA Asynchronous Engine (AE).  The AE runs a local Collection 
Reader and CAS Consumer to read and write data from/to the local input and output 
directories; the components in the pipeline are accessed as distributed services. An 
Apache ActiveMQ message broker instance provides a mapping from the component 
namespace used in the deployment descriptor to the actual IP addresses of the nodes 
running the deployed services. This lightweight design does not require that any 
component code be delivered to the UCC or run locally, simplifying the integration 
process and reducing the level of processing resources required to deploy the UCC.  

The UCC Web interface uses a simple string protocol to transmit the names of 
selected services to the UCC Web application. Services are named based on provider and 
service type, and pipelines are specified by appending these name strings together, e.g.: 

  
IOD.artxt.IBM-ED.BAS-ED.IBM-MT.RWTH-MT.CMU-MEMT   
 
There can be more than one provider for a given service.  For example, three 

different organizations provide Speech-to-Text engines. When more than one provider of 
the same service is selected, the services are run in parallel.  Different services are 
presented to the user for selection, based on whether the chosen input data is text or 
audio. 

 
Deployment 

The UCC runs as an Apache Tomcat Web application.  For each queued job, an 
analysis engine descriptor (specifying the components) and a deployment descriptor 
(specifying how to locate the components as Web services and run the pipeline) are 
created from the string description of the pipeline provided by the HTML forms interface. 
These descriptors are used to create an instance of a UIMA Asynchronous Engine, which 
reads the input data and connects to multiple remote Asynchronous Engines that provide 
various NLP services via the Apache ActiveMQ Message Broker.  The current set of 

• STT: Speech-to-Text (BBN, IBM, Carnegie Mellon University) 
• ED: Entity Detection (IBM, BasisTech) 
• MT: Machine Translation (IBM, RWTH Aachen, Systran) 
• MEMT: Multi-Engine Machine Translation (Carnegie Mellon University) 
• SBD: Story Boundary Detection (IBM) 
• TTS: Text-to-Speech (IBM) 
• TL: Topic Labeler (UMA) 
• SUM: Summarizer (CU) 
• HDL: Headline Generator (IBM) 

902 Chapter 6: Operational Engines  

the local file system (see Figure 6.25).  Input may be Arabic text or Arabic audio (no 

services and providers integrated in the UCC IOD pipeline (see Figure 6.25) includes: 



 

6.2.5.4. Experiences and Observations 

When components are uploaded to the UCR as PEAR files, they are validated using 
built-in library code that is part of the UIMA SDK. In practice, some submitted UCR 
components failed to validate.  In addressing this issue, we learned that the validation 
process is sensitive to the version of Java used to compile the component code, which 
must be identical to or earlier than the version of Java used to compile and run the UCR. 
In our case this required upgrading the UCR and the enclosing Tomcat container to run 
under Java 6. 

We also learned that components submitted to the UCC should not depend on 
external code, services, file structure, or environment variables. We revised the UCC help 
documentation to encourage developers to test their components using the UIMA PEAR 
installer before submitting them to the UCR.  This mirrors the UCC run-time 
environment, and has helped developers to create more environmentally independent 
components. 

Incremental revisions to the UCC design were required as more services were added 
to the IOD pipeline.  The original design required developers to run a Perl script to 
generate Analysis Engine Descriptors and Deployment Descriptors for each possible 
combination of services, and then run a separate script to remove files for ill-formed 
service combinations.  This process proved unwieldy as the number of possible 
descriptors grew to several hundred.  The revised design allows the UCC to generate 
custom descriptors based on the services chosen by the user.  A file containing Analysis 
Engine and Deployment Descriptor 'snippets' for each remote AE is used to generate the 
custom descriptor for each job's specific pipeline.  This approach is much more efficient, 
significantly reducing the number of descriptors that comprise the UCC Web application. 

The mechanism for adding new services can still be improved.  Although the use of 
pre-defined descriptor snippets helps, the names of services referenced within the 
snippets file must be coordinated with service references within the Java code.  We plan 
to refactor the code to use service names which are defined in an easily-maintained 
central location. 

It is difficult to report progress on the processing of individual documents (UIMA 
CASes) within pipelines configured using the UCC.  Because of the presence of CAS 
Multiplier components (to support parallel execution of services), the number of output 
CASes can exceed the number of input documents.  Although the UCC currently presents 
“M of N” CASes processed as part of its status display, these numbers do not make sense 
to the user if M exceeds N.  Better approaches may be to simply report the number of 
CASes currently being processed or the percentage of work completed, based on seconds 
of audio or characters of text. 

Because the Asynchronous Engine instance runs in a separate thread from the UCC 
servlet (which returns immediately after a job is queued), UCC does not provide dynamic 
status information during execution; the user must manually refresh a “View Job Status” 
page. This solution is less than satisfactory for long-running jobs which require constant 
monitoring (e.g., during debugging). A better solution would be to implement some form 
of “push” technology (e.g., AJAX) to improve usability.  

Handbook of Natural Language Processing and Machine Translation 903



Due to the nature of the GALE Interoperability Demo, some services (such as the 
Topic Labeler and Summarizer) are required to save state as streams of documents are 
processed. Since each remote service receives documents to process as separate service 
requests, an additional mechanism is required to indicate that a job is a continuation of an 
earlier job from the same user, so that components know whether to re-initialize any state 
variables. To address this requirement, we added a new capability to the UCC that allows 
the user to specify whether a job represents a new session, or whether it is a continuation 
of a previous session from that user. Another component (Story Boundary Detection) 
requires that all documents in a job are to be processed in order, and therefore, saves state 
between documents, as well as, any out-of-order documents. To help SBD recognize 
overlapping or incomplete jobs UCC adds a unique job ID to each request. 

6.2.5.5. Conclusions 

We have described the UIMA Component Repository and UIMA Component 
Container, two capabilities which are designed to promote re-use and easy re-deployment 
of text and audio analysis components configured as UIMA asynchronous analysis 
engines. Although the current implementations of UCR and UCC meet the basic 
capability requirements, there are several areas which are targeted for ongoing 
improvement: 

 
• The UCR does not explicitly manage or reason about the Java version 

level and UIMA SDK compliance of submitted components; currently 
developers must re-compile and re-submit their own components, and 
users who download components may be required to recompile them. 

• The UCR cannot execute a single component on sample test data in order 
to determine is suitability for an intended task before it is downloaded. 

• The UCC requires significant effort to deploy a new pipeline; it would be 
useful to provide a wizard capability for generation of snippets files for 
automatic compilation of descriptors. 

• The UCC persistence mechanism (using the local file system of the 
server) will be difficult to scale unless it is re-implemented using a more 
flexible and powerful persistence mechanism (e.g., a relational database). 

• Some users of the UCC may prefer a deployment which supports 
streaming data to/from the UCC server in real time, eliminating the 
requirement for manual data upload/selection and local data storage. 

 
We plan to address these issues in ongoing refinements to the UCR and UCC 

packages. 
 
 

Acknowledgements  
The authors thank Shilpa Arora, Eric Brown, Luis Chavez, Yurdaer Dogonata, David Ferrucci, Tong-

Haing Fin, Lei Fong, Greg Hanneman, Kimberly Kettner, Nanda Khambatla, Alon Lavie, Humberto Lezama, 
Justin Merrill, James Rankin, Hideki Shima, and Django Wexler for their contributions to the UCR and/or 
UCC. 

904 Chapter 6: Operational Engines  



 

6.3 Evaluation of Operational Engines 

Authors: Daqing He, Peter Brusilovsky, Jonathan Grady, Jaewook Ahn, Yiming Yang, and Monica Rogati 

6.3.1.1. Introduction 

As part of our participation in the development of evaluation tools for GALE 
systems, we developed the “Exploration and Discovery Information Evaluation” (EDIE) 
framework to assist with the development of the Rosetta system and its components.10 
Along with the series of experiments testing the Rosetta system, we also developed 
associated evaluation methodologies and metrics, which make EDIE a complete 
framework for user-centered utility evaluation.  

The GALE program aims to develop and apply technologies to deliver pertinent and 
consolidated multilingual/multimedia information in easy-to-understand forms for 
military personnel and monolingual English-speaking analysts to use in response to direct 
or implicit requests. Therefore, utility evaluation, which specifically examines how well 
the technologies can facilitate such delivery, is vital to the development of GALE 
systems. Our EDIE work concentrated on informing the design and development of 
GALE systems through user-centered utility evaluation. Our primary application focused 
on the Rosetta system and the Carnegie Mellon Adaptive Filtering Engine (CAFÉ). Our 
experience shows that EDIE itself is a valuable contribution to the GALE program. The 
goal of this section, therefore, is to introduce EDIE and the accompanying evaluation 
design principles to the GALE community. 

6.3.1.2. EDIE for Evaluating GALE Systems  

EDIE was designed at the beginning of the GALE program to enhance the 
development of the GALE systems by providing robust utility evaluation. At that point, 
the utility evaluation issues in the GALE systems were still at the discussion stage. The 
fundamental challenges that EDIE, as an evaluation framework, was designed to address 
are: can any existing information access tasks be borrowed to model GALE user context? 
Can a set of task characteristics be proposed to simulate a least one type of GALE tasks? 
How should a performance-based user evaluation of GALE systems be organized? 

6.3.1.2.1. GALE Analyst’s Activity as Task-based Information 
Exploration  

When interacting with a GALE engine, the information needs and corresponding 
search processes of military personnel and intelligence analysts are often heavily 
influenced by the complex tasks assigned. These types of search activities can be 
modeled as task-based information exploration (TBIE), which is a primary research topic 

                                                 
10 See section 6.3.2.2 for details on the design of the Rosetta system. 

Handbook of Natural Language Processing and Machine Translation 905

6.3.1. The EDIE Framework for User-centered Evaluation of 
GALE Systems 



in information access (White et al. 2006). Existing evaluation frameworks such as Text 
REtrieval Conference (TREC) are limited in evaluating TBIE, because the metrics and 
the methodologies are not adequate in the context of highly interactive exploratory 
search. 

6.3.1.2.2. The Simulated Tasks 

In order to achieve realistic user-centered utility evaluation of GALE systems, the 
EDIE framework simulates the tasks that an analyst performs while working with this 
class of systems. The following characteristics were assumed:   

 
• EDIE tasks resemble real-world work assigned to analysts. All EDIE 

tasks start with a topic statement that simulates a Request For 
Information (RFI), and result in a short summary that resembles a two 
page “point paper.” A subject has to explore large volumes of data from 
various sources to generate such a summary. 

• EDIE tasks are complex. Each task requests information about a seminal 
event and its associated aspects. Therefore, these tasks usually include 
several subtasks that are connected to the overall task.  

• EDIE tasks are dynamic. Events naturally evolve over time, so an EDIE 
task has to track the development of the events over several sessions 
before the final point paper can be generated. 

• EDIE tasks collect information at sub-document (snippet) level. 
Although documents still play important roles in GALE searches, the 
useful information is typically contained in sentences or paragraphs 
(called snippets). With their small size, but high density of useful 
information, these snippets are perfect for investigation or report writing. 
  

Among the existing test collections, we chose the TDT4 corpus developed for the 
Topic Detection and Tracking evaluation (Allan 2002) as the initial dataset in EDIE. We 
redesigned 18 EDIE tasks based on TDT topics using the assumed characteristics noted 
above as the guidelines.   

In addition to the description of the task and subtasks, each EDIE task also contains 
brief background information, including a seed story (i.e., a document relevant to the 
scenario). This helps to establish some consistency in the minimum background 
knowledge. Figure 6.26 shows a real EDIE task. 

 

906 Chapter 6: Operational Engines  



 

 
Figure 6.26: An EDIE task 

Human annotators were recruited to mark up the “ground truth” for each EDIE task 
(i.e., to mark-up the documents relevant to each task). To reduce subjectivity, at least two 
annotators worked on each task.  

The annotations were collected based on using a much higher level of detail than a 
traditional document-level ground truth: 

 
• annotations were made at the snippet level; 
• annotations were independently collected under three aspects: topical 

relevance, novelty, and utility. We ask the annotator to provide utility 
annotation directly to us so that we may study the utility as a function of 
combining topic relevance and novelty. 

• annotations were collected at three levels of judgment: highly 
relevant/novel/useful, slightly relevant/novel/useful, and not 
relevant/novel/useful;  
 

In total, we annotated snippets for all 18 tasks. The annotation files are available at 
http://amber.exp.sis.pitt.edu/gale/GALE-resources.html 

 

G40001 – Galapagos Oil Spill 
 
Background:  
San Cristobal is a place near the Galapagos Islands in the Pacific Ocean. 
 
Short description of the task: 
An Ecuadorian oil tanker has spilled fuel near the Galapagos Islands, affecting the local fishing 
industry and threatening local beaches and wildlife. Your tasks are to suggest 1) how and where ocean 
currents may spread the oil, and 2) what actions should to be taken after the oil leak event caused by 
the oil tanker Jessica near the Galapagos Island. You should investigate possible support that can be 
provided by the U.S,, as well as potential legal actions against the responsible persons. 
 
From the documents, find snippets of text that contain answers to each of the following questions: 
 
1. On what date did the oil spill occur? 
2. Where is the location of the oil spill? 
3. What type of vehicle was involved in the event? 
4. How many gallons of fuel were spilled? 
5. What is the cause of the spill? 
6. Who is responsible for the spill? 
7. What animals have been affected by the leaked fuel? 
8. Who put efforts in relieving the pollution? 
9. Any support from other countries? 
10. What is the impact on the local people, environment, animals and plant life? 
11. What are the penalties/lawsuits for those responsible?  

Handbook of Natural Language Processing and Machine Translation 907



6.3.1.2.3. Human-Centered, Multi-Stage, Multi-Aspect Utility Evaluation 

EDIE assumes controlled laboratory experiments to assess the GALE systems. As the 
GALE systems are highly interactive, evaluations using EDIE do require that human 
subjects conduct task-based exploration and interact with the information system. Human 
subjects’ interaction behaviors and interaction processes are important aspects for 
observation and evaluation.  

More importantly, EDIE assumes that analysts’ information exploration behaviors 
contain two major stages (or loops): information foraging and sense-making (Pirolli and 
Card 2005). During the foraging stage, analysts use their domain and search knowledge 
to collect potentially useful information from various media and sources. In the sense-
making stage, analysts then process, organize, and distill the collected information into a 
coherent form so that it can be integrated into their state of knowledge. Because of the 
different nature of foraging and sense-making, we believe that the evaluation of systems, 
which targets information analysis, should consider both stages. 

As indicated by the annotation work presented in the section about simulated tasks, 
EDIE focuses on examining multiple aspects of the utility of the selected snippets. Both 
the topical relevance and the novelty of the snippets are critical. In addition, we examine 
the final utility of the snippets by tracking whether and how the snippets are used by the 
analysts in their final reports.  To capture the event development and the need to handle 
duplicate information, EDIE also simulates the multiple sessions in utility search.  

6.3.1.2.4. Utility Evaluation Metrics 

EDIE adopted several evaluation measures. The first type of measures focused on 
system retrieval effectiveness. This includes measuring the accuracy and coverage of 
identified information (i.e., precision and recall) and measuring the utility of the obtained 
information for a specific task. All these measures concentrate on snippet level 
examination, rather than document level. 

An example of the proposed measures of system performance is a snippet level 
precision that takes advantage of the fact that two human annotators generated the ground 
truth. The formula (6.10), which is derived from the work of Allan (2003), calculates the 
precision of a snippet i selected by a human subject, where ݈݈ is the character length of 
the common text chunk between the snippet i and the corresponding ground truth; ݓ is 
the weight of the ground truth combining the mark-ups of both annotators. The value of 
the weight ݓ can be one of five ad hoc assigned levels: 0, 0.25, 0.5, 1, 1.25, 2. ݈݊݉ is 
the character length of the part of the snippet i that has no overlap with the ground truth. 
Here the 0.5 associated with ݈݊݉ is the penalty weight. 

 ∑ ∑࢝ൈ ࢝ൈ ∑ ൈ.        (6.10) 

The second type of measures focused on formal user performance, on user activity 
patterns mined from transaction logs, and on subjective evaluation obtained via 
questionnaires and interviews. Our idea of formal user performance is similar to that of 
Marchionini and Shneiderman (1988), where the measures examine the paths and 

908 Chapter 6: Operational Engines  



 

 

decisions taken by the users during the process of completing their tasks. All these 
measures have been expanded to evaluate the information foraging and sense-making 
stages separately. 

The utility measure in EDIE also deserves special mention (Yang et al. 2007). To be 
most precise, utility should be judged on the point paper, which is the final product of the 
task. However, the varying abilities of the subjects to produce a coherent report are 
beyond the scope of evaluating a GALE system. Therefore, EDIE’s utility measure 
examines both: the process of snippet selection (i.e., foraging) and organization (i.e., 
sense-making). Together, the quality of snippet selection and organization reflect the 
system’s utility. The measure also imposes a word limit on the final selected snippets so 
that the final snippet selections more closely resemble the point paper in size. At the same 
time, the word limit brings in a cost function for tradeoff - should it include as much 
available relevant information to a specific question or should it cover as many required 
questions within the specified word limit?   

6.3.1.3. Applications of EDIE in Evaluating GALE Systems  

In this section, we will briefly present the involvement of EDIE in evaluating several 
GALE systems and components. The goal is to reveal EDIE’s usages in the context of the 
GALE systems. 

6.3.1.3.1. CAFÉ Utility Evaluation  

 
Figure 6.27: Information foraging in CAFÉ system: assembling text fragments in the shoebox 

This evaluation examined an innovative adaptive filtering engine CAFÉ, which is 
one of the major engines supporting Rosetta (Yang et al. 2007). Figure 6.27 shows the 
information foraging interface in CAFÉ. The left side of the right window shows the 
snippets recommended for examination. Analysts can select any part of the snippets and 
add them to the right side of the right window. The right side is called “the shoebox,” 
which is a container for holding the snippets that the analysts find potentially useful for 
the final results. At any time, the analysts can click on a snippet to see the corresponding 
full document in a pop-up window, which is shown as the left window in Figure 6.27.  

Handbook of Natural Language Processing and Machine Translation 909



 

Figure 6.28 shows the sense-making interface for CAFÉ. Here, all the snippets in the 
shoebox that were collected by the analysts during the information foraging stage are 
displayed at the left side of the screen. The analysts can delete any snippet, or label the 
snippet as related to one of the sub-task questions. Once the snippet is labeled, it will 
appear at the right side of the screen which shows the content associated with each sub-
task question. 
 

 
Figure 6.28: Sense-making in CAFÉ: selecting and organizing fragments in the shoebox 

The goal of this evaluation was to confirm our hypothesis that adaptive filtering 
provides value in both stages of GALE searches (at least in comparison with a traditional 
Google-like search) and to measure the effect of CAFÉ. This study was conducted with 
eight subjects in July and August, 2006. The baseline system was a state-of-the-art 
snippet retrieval engine based on Indri (He and Demner-Fushman, 2003). Eight tasks 
were selected among the 18 possible scenarios.  

Our study confirmed the usefulness of the CAFÉ engine, and also confirmed that 
there is a strong need to have adaptive engines in GALE systems. The results 
demonstrated that CAFÉ can generate ranked lists of snippets of significantly higher 
precision than the baseline system. CAFÉ users waste significantly less effort finding 
useful information and could find more useful information in various stages of their 
exploration. The details of this CAFÉ study were published by He et al. (2008). 

6.3.1.3.2. Evaluation of CAFÉ’s Profile Update Model  

The goal of this study was to assess the value of keeping the list of recommended 
items up-to-date in the information foraging stage of a GALE search. To make the 

910 Chapter 6: Operational Engines  



 

appropriate design decision for CAFÉ and similar GALE systems, it was important to 
know how frequently the user’s profile and the list of recommended items should be 
updated in GALE. The literature analysis revealed two popular approaches: some systems 
do it once per session (thus, it is called the between-session update strategy), whereas, 
others update whenever there is feedback entered into the system (called the instant 
update strategy).  
 

 

To choose the approach which works best for the GALE system, we designed a 
controlled experiment with human users performing realistic tasks using two versions of 
the Rosetta CAFÉ engine that have the same underlying adaptive filtering engine, but 
with two different update strategies. Figure 6.27 and Figure 6.28 show the Rosetta CAFÉ 
engine with the between-session update strategy. Figure 6.29 shows the Rosetta CAFÉ 
engine with the instant update strategy.  

The study was conducted in the summer and winter of 2006. We recruited 15 subjects 
and used two task scenarios from EDIE.  

Our results demonstrated that the optimal update strategy to achieve both adaptability 
and stability for GALE system lies between the instant update and the between-session 
strategies. The between-session strategy helped to find information with better utility, and 
received better responses from subjects about its usefulness and usability. However, it 
prolonged the selection of useful snippets, whereas the instant update strategy helped 
subjects to obtain almost all of their selected snippets (> 98%) within the first five 
minutes of the search sessions. The detail of this study was published in by He, 
Brusilovsky, Grady, Li, and Ahn (2007). 

Handbook of Natural Language Processing and Machine Translation 911

 

 
Figure 6.29: CAFÉ engine in Rosetta system 



6.3.1.3.3. Evaluation of Task Model Usage  

Figure 6.30: TaskSieve system 

The goal of the third study was to explore the value of the task model in the 
information foraging stage of an analyst’s work. In order to better support the analyst 
during a specific task, GALE systems should maintain a task model, which represents the 
task-related information obtained through interacting with the analyst. TaskSieve was 
developed as a prototype for GALE systems to explore how to design such a task model 
and how to employ it to improve user performance. 

Ten subjects participated in the TaskSieve study in October, 2007.  Each subject was 
randomly assigned to four tasks selected from EDIE tasks; they each performed two tasks 
on TaskSieve and the other two on a traditional search system. The sequence of tasks was 
randomized as well. 

The results showed that it is important to integrate a task model for GALE searches. 
The task model enables a foraging system to keep more relevant items at the top of 
ranked lists, as compared to Google-like traditional search systems. At the same time, 
analysts can conduct more productive searches: the average precision values of 
TaskSieve’s ranked lists gathered in the first ten minutes - when users were still relatively 
unfamiliar with the assigned task - were higher than those of the traditional search 
system’s final ten minutes. Thus, TaskSieve users could select more relevant information 
earlier in their search sessions.  

The results of this study were published by Ahn et al. (2008). 

6.3.1.3.4. Evaluation of Usages of Named Entities  

This study was designed to assess the value of named entities (NE) in supporting 
both the information foraging and sense-making stages of the analyst’s work. In GALE, 
named entities which refer to people, locations, organizations, events etc. can deliver 

912 Chapter 6: Operational Engines  

 



 

important information.  NameSieve is a GALE prototype system that supports named 

 

Figure 6.31: NameSieve system 

NameSieve provides a simple and intuitive interface to manipulate NEs. Augmenting 
the conventional ranked list returned by a search engine, NameSieve extracts NEs from 
the set of retrieved documents and organizes them into tabs corresponding to the “editor’s 
four-Ws” (Who, What, Where, and When). More frequently occurring names are 
displayed in larger sizes.  Each name can be chosen to serve as a filter via a single mouse 
click. It allows users to post-filter initial search results and, thus, to focus on information 
relevant to their tasks. 

A named entity tagger developed by IBM was used for the name extraction from the 
search results. Some heuristics, including Wikipedia article title matching, were used for 
noise elimination. 

Ten subjects participated in the study (from December 2007 to March 2008).  The 
experimental results showed that the NE-based filtering was actively used by the 
subjects, frequently switching to look for the Who, What, and Where information.  The 
active usage of the NEs led to improvements in the information filtering results.  The 
system performance measured by the precision at ranks five and ten was significantly 
higher in NameSieve with its NE filters than in the baseline system. Subjects were able to 
make better annotations for the topic using the NameSieve system.  In their feedback, the 
subjects expressed positive opinions about NameSieve, especially as they accumulated 
more experience on the search task and had more opportunity to compare the NameSieve 
with the baseline systems.  

Handbook of Natural Language Processing and Machine Translation 913

entity-based information exploration (Figure 6.31).  
 

 



6.3.1.4. Discussion and Conclusion 

In this contribution, we presented EDIE, an evaluation framework designed for 
assessing and comparing technologies created for GALE systems. EDIE includes a 
human-centered, multi-stage, and multi-aspect evaluation methodology; 18 realistic, 
complex, and dynamic information exploration tasks; and a set of evaluation metrics. A 
set of EDIE tasks built on the basis of the TDT4 test collection offers passage-level 
ground truth data annotated on multiple aspects of relevance. All components feature 
valuable innovations.  

Our work brought to light some interesting and important insights related to the 
evaluation side of the GALE systems. First, the usage of multiple sessions in EDIE was 
important for capturing the dynamic development of the event and the tasks. According 
to the results collected from our experiments, this feature indeed showed the complexity 
of the tasks, the changes in systems performance, and the changes in analysts’ behaviors 
over different sessions.  

Second, it was also very helpful to assess separately the information foraging stage 
and the sense-making stage in GALE searches. This helped to assess how GALE systems 
are able to support each of these two stages.   

Third, our work provided important insights on the evaluation of information 
exploration systems. Existing information retrieval systems are designed to work well 
within existing evaluation frameworks - i.e., produce strong topical relevance. However, 
as our studies hint, topical relevance does not equal better user support. Therefore, this 
gives us a basis to argue that evaluation involving human users is essential for evaluating 
GALE systems in order to obtain truly meaningful and useful testing results. 

Finally, we observed that the GALE systems’ performance may vary a great deal 
from one task to another. This phenomenon was observed for every type of performance 
measure explored. Not only do specific performance measures depend upon the specifics 
of the individual task, but the performance between systems focusing on different 
information access approaches may fluctuate. This data allows us to argue that instead of 
perfecting a single specific information access approach such as the Rosetta information 
filtering, GALE utility systems should use a combination of approaches and engines. 
Given the large variety of tasks, one engine’s advantages can cover the other’s weakness 
in a specific group of tasks.  

We hope that this work will contribute to the establishment of evaluation approaches 
for GALE systems and other similar TBIE systems. We also hope that the EDIE 
framework will be further utilized to explore various innovations related to user study 
design and utility evaluation parameters. 

 
 
 

 

914 Chapter 6: Operational Engines  



 

6.3.2. Formative Evaluation for Multilingual Multimedia 
Search and Sense-Making 

6.3.2.1. Introduction 

This section describes the iterative development of Rosetta, a distillation system for 
multilingual (Arabic, Chinese, English, Spanish) multimedia (television, Web) streaming 
content.  The process involved close collaboration between the IBM T.J. Watson 
Research Center (IBM), the University of Maryland, the University of Pittsburgh, and 
Carnegie Mellon University.  The fundamental challenge was process-system co-design: 
as new technical capabilities were introduced, new work processes were sometimes 
needed to best leverage those capabilities; those new work processes in turn help to 
identify new technical requirements.  The result was a virtuous cycle of innovation. 

Rosetta integrates six key technologies to support search and sense-making: 
Automatic Speech Recognition (ASR), Machine Translation (MT), Information 
Extraction (IE), Information Retrieval (IR), User Modeling (UM), answer pinpointing for 
Question Answering (QA), and summary generation from structured knowledge 
representations.  The focus of the work reported in this section was on design innovation 
and process innovation for integrated architectures (e.g., ASR→MT→IR→IE→QA), in 
which GALE technologies are used together to accomplish challenging and realistic 
tasks. 

6.3.2.2. The Rosetta System 

The Rosetta system consists of three major components: the data collection sub-
system, the data processing pipeline, which integrates the ASR, MT and IE components, 
and the Web application, which integrates IR, UM, QA and summarization components.   

Rosetta captures foreign language news broadcasts from Dish Network and performs 
daily crawl of foreign language Web sites. Rosetta’s data processing pipeline is 
developed on top of IBM’s Unstructured Information Management Architecture (UIMA) 
platform and features a series of data processing components (or “annotators” in UIMA 
terminology) analyzing input data sequentially. The list of major data annotators in 
Rosetta includes: ASR, MT, and IE. The Rosetta Web application consists of a browser-
based end-user client GUI, and a J2EE back-end server Web application. A browser-
based client design was chosen for maximum cross-platform compatibility.  Extensive 
use of Web 2.0 technologies such as AJAX (Asynchronous JavaScript and XML) gives 
the client a desktop-like feel and enables it to support advanced features not commonly 
found in conventional Web applications. 

Rosetta provides the user with four major modes for information access, each of 
which can be selected using a tab in the upper left of the screen shots in the following 
figures. These major modes are organized from left to right in an order that we think of as 
going from most focused to most general. 

 

Handbook of Natural Language Processing and Machine Translation 915

Authors: Douglas W. Oard, Judith L. Klavans, Dagobert Soergel, Pengyi Zhang, Peter Brusilovsky,  
Daqing He, Tomasz Loboda, and Leiming Qian 



 
Figure 6.32: The biography mode 

The Biography and Templates modes are driven by the full ASR, MT, IE, QA 

display of all information about a person that is known to the system, with drill-down 
available to a supporting document for each item. In the Template mode, the user can 
choose from a set of 15 predefined question templates, filling in required arguments. The 
output is a list of snippets that are selected and ordered, based on their likelihood of 
providing the answer. The CAFÉ mode exposes the user to GALE user modeling 
technology (Yang et al. 2007). Rosetta allows each user to create multiple “tasks,” each 
corresponding to a project that the user is working on over time. The search history, 
document bookmarks, and notes are all task-specific.  When users access documents in 
Rosetta, their actions are tracked and made visible by the system as “footprints” that can 
act as reminders. For example, a document that has been visited will be highlighted 
differently when it shows up again, and users can also select a span of text and add it to 
the “Notes” tab.  Carnegie Mellon University’s Adaptive Filtering Engine (CAFÉ) also 
uses this evidence to iteratively improve search results. The user first issues a simple 
query to obtain a list of result snippets from the CAFÉ engine. He can then provide 
explicit feedback to the CAFÉ engine by rating individual passages as useful (which 
results in adding it to the notes), irrelevant (which immediately removes it from the 
view), or redundant (by marking it as “not new”). The CAFÉ engine also accumulates 
implicit feedback when the user is working in other modes. For example, if a user finds a 
document using the Search mode and adds some text from this document to his notes, 
which will be interpreted as “relevant” feedback by CAFÉ. 

 

916 Chapter 6: Operational Engines  

pipeline. As Figure 6.32 shows, the Biography mode produces an extensive structured 

 



 

 
Figure 6.33: The CAFÉ mode 

The feedback helps CAFÉ refine the system’s internal model of the user’s task, 

the output after just a few feedback iterations. The original query was “UN food 
scandal;” after adaptive filtering, most of the top passages retrieved are about the food 
scandal and the role of U.N. secretary Kofi Annan and his son, which in this case are 
right on target. 

The Search mode utilizes the GALE ASR, MT, and IR technologies. It allows the 
user to do conventional keyword search using English queries to find foreign-language 
multimedia content. Among the four tabs, Search is probably most familiar to most users. 
For video results, the user can stream the video online with English closed captioning, 
look at the document in a “Storyboard” type of view, and download the video file 
together with its captions for local playback. For Web results, the user can look at the 
non-structured textual content, or submit the cached Web page for on-demand translation. 

Rosetta has an elaborate event logging mechanism, able to capture nearly every user 
action (down to mouse movement and keyboard strokes) and log those events and the 
associated event context at the server. The events are logged asynchronously in the 
background so that they do not impact the system’s performance. This functionality 
makes Rosetta well suited for user studies.  

One of the most popular features is the ability to create a Microsoft Word report 
directly from inside Rosetta. The user can select a span of text or an image and click a 
button to create a new report in Word, he can further add more material to the report and 
edit the report freely, and each snippet of information contained in the report also links 
back to the original document. The user never has to leave Rosetta to compile a report. 

Handbook of Natural Language Processing and Machine Translation 917

which can then result in identification of additional useful passages. Figure 6.33 shows 

 
 



6.3.2.3. Formative Evaluation 

We conducted 52 formative user study sessions at the University of Maryland and the 
University of Pittsburgh between June 2006 and May 2007.  In this section we describe 
those studies in four clusters. 

 
Initial Eye-tracking Experiments 

 

 
Figure 6.34: Heat map showing gaze locations for early version of Templates mode 

In an attempt to gain insight into the way users employed the CAFÉ and Templates 
modes, we used eye tracking to collect user gaze data in several user studies. We 
employed the Tobii 1750 remote eye-tracking device (http://www.tobii.com), which 
introduced virtually no intrusion in the subject's working environment. The exploratory 
insights we gained resonated with the more complete and convincing body of evidence 

“heat map” for an early version of Templates mode, illustrating a case in which the user 
may have paid little attention to the control widgets near the top of the screen (in the dark 
grey “cold” region) because they were placed too far from the focal region (around the 
Issue Query button in the lower left, where the circular red “hot” region is). 

 
Formative Evaluation for Template QA 

In order to evaluate the utility of the Templates mode we ran a controlled experiment 
that compared it with a Search mode based on the Indri retrieval engine. The study was 
run at the University of Pittsburgh and involved ten graduate students. As surrogates for 
intelligence analysts, we recruited study participants who were pursuing advanced 
degrees in Information Sciences, were native English speakers, and had either 1) taken a 
masters-level course in information retrieval, or 2) had an extensive background in 
journalism. Each participant was asked to perform two 40-minute search tasks with 
Rosetta in a counterbalanced design, one task using only the Search mode and one task 

918 Chapter 6: Operational Engines  

described in the following subjections. For example, Figure 6.34 depicts a fixation-count 

 



 

using only the Templates mode. Prior to starting the tasks, each subject received 15 
minutes of training on the Templates mode. All subjects were familiar with generic 
search systems that are similar to the Search mode.  Each task required the participant to 
interact with a large collection of documents to find answers to several questions that had 
been provided to them in written form. The outcome of their work was a collection of 
text passages that they had marked as relevant. An analyst could later use these passages 
to compile a report, but that was not done as a part of this study. 

We found that the rate of accumulation of putatively relevant text passages for 
subjects using Templates was significantly higher than for subjects using Search. That 
supports the view that it was easier to find relevant pieces of information when using 
Templates. Further, we found that subjects issued significantly more queries when using 
Search. As a result, the inter-query time was significantly longer for the Templates mode, 
which provides evidence that average results of Template search brought more interesting 
information for users to analyze. Query log analysis indicated that this difference reached 
a statistically reliable level after 20 minutes. Therefore, for similar studies, we 
recommend not employing short sessions.  We hired three annotators to judge the topical 
relevance of each text passage collected by our participants. Our comparison of the two 
modes with respect to the relevance of the results also favored the Templates mode. 

Our early version of the Templates mode offered a choice between 16 question types.  
We found that four question types accounted for 77% of all questions (and that six 
question types accounted for 89% of all questions). This is an instance of the well-known 
Pareto (80/20) principle.  Of course, the specific questions involved surely depended on 
the specific tasks that we assigned.  Nevertheless, this serves to remind us that identifying 
the most heavily used functions can help to focus optimization effort. 

Two additional formative evaluation studies that were focused on CAFÉ are 
described in section 6.3.1.3.   

 
Scenario-based Integrated Evaluation 

Well designed studies with static collections are particularly useful for comparing the 
utility of alternative components, but for understanding how complete systems will 
actually be used we wanted to get as close to the real setting as possible.  In our case, this 
called for additional user studies using live content.  We therefore chose a study design in 
which tasks were designed in near real-time and executed simultaneously by all 
participants (i.e., without counterbalancing).  Our principal goal was to explore process-
system co-design: the coupled iteration between new system capabilities and new ways of 
using the resulting system.   

A cohort of information studies graduate students at the University of Maryland was 
trained as surrogates for intelligence analysts.  An initial training session was 
supplemented with brief lectures at the start of each session on aspects of an analyst’s 
tasks and methods that were relevant to that day’s scenario.   A second cohort of graduate 
students performed observational data collection and analysis.  Observation notes were 
automatically integrated with system logs in real time; complementary data were 
collected from post-session interviews, and both structured questionnaires and brief free-
style reaction papers were obtained from participants.  Sessions were generally scheduled 
about two weeks apart, thus allowing some time to implement system improvements.  

Handbook of Natural Language Processing and Machine Translation 919



Summary reports from each session, a requirements tracking database, and weekly 
teleconferences facilitated information flow between the development and evaluation 
teams.  These studies provided important guidance for user interface refinement, which 
has been previously reported (Zhang et al. 2007).  Here, we focus on what was learned 
about how users actually employ integrated GALE technologies. 

Every session that we ran focused principally on Arabic and/or Chinese content 
(although during training we did make some use of English content).  In some cases, the 
translations were based on ASR transcripts; in other cases the translations were of Web 
content.  We can, therefore, think holistically of our system as a device for assessing the 
utility of ASR, MT, or ASR-MT cascades for certain tasks.  Consistent with previously 
reported results, we found that cascading present ASR and MT systems often proved to 
be adequate for tasks that involved identifying topics, sometimes proved to be adequate 
for tasks that involved detection of specific factual content, and rarely proved to be 
adequate for tasks that required detection of nuance.  We also found that our participants 
had more difficulty making use of present Chinese MT systems than present Arabic MT 
systems, which corresponds well to the reported differences in Translation Error Rate 
(TER) results in machine transition evaluations. 

Remarkably often, our participants proved to be adept at using context and (when 
present) multiple media (e.g., photos or videos) to infer the correct meaning of 
misrecognized and/or mistranslated terms.  For example, several spellings of the same 
name could be recognized if they appeared next to pictures of the same person.  
Moreover, our participants learned that using systematically misrecognized and/or 
mistranslated terms as query terms could sometimes improve results in the Search mode.  
For example, in a task scenario about Iran's nuclear program, a participant recognized the 
mistranslated expression “nuclear file” as actually meaning “nuclear program” and used 
the misrecognized term with good results in subsequent queries.  Similarly, a participant 
recognized “berating women” as the intended meaning of what had been misrecognized 
as “brainstorming women.” 

Our participants were repeatedly observed to spontaneously post-edit incorrect 
translation results, either using the Notes facility or the Microsoft Word editor in Rosetta.  
Moreover, when asked to suggest system enhancements, they repeatedly requested the 
ability to provide feedback to the system about mistranslations.  Of course, user study 
participants may be more focused on the system design, so we do not know whether this 
preference would also be present in operational users of such systems.  Even if the 
translation system were not adapted, some benefit to future searchers might also accrue 
from simply memorizing the edits to individual documents.  Rosetta now includes this 
capability. 

Earlier user studies had shown that fatigue could become a problem in complex tasks 
when translations were not easily readable.  For this reason, Rosetta includes several 
features that are designed to help focus the user on specific information (e.g., the snippets 
in the CAFÉ and Templates mode, and highlighting query terms in Search mode result 
summaries).  These generally proved to be useful, and we believe that investigating 
additional techniques for helping to guide the user’s focus would be useful. 

One unexpected and potentially important result was that we repeatedly observed 
participants engaged in a behavior akin to what journalists might think of as “fact 

920 Chapter 6: Operational Engines  



 

checking from multiple sources.”  In this case, they were not seeking to verify the 
correctness of the report, but rather the correctness of the translation.  Our participants 
quickly learned that the same pre-translation input typically resulted in the same post-
translation output, so they typically dismissed exactly identical output as unhelpful 
duplication.  When they saw the same fact paraphrased in a different way, however, they 
tended to develop greater confidence in both translations.  We are now exploring how we 
might use this type of cross-source evidence as a basis for unsupervised estimation of 
translation quality. 

We generally left our participants free to use whichever system modes they found 
most useful, although in some cases we did ask them to use specific modes in order to 
gain insight into specific usability issues.  The Search mode was initially most familiar to 
our participants, and not surprisingly they initially chose to use it most often.  This 
persisted over time, and an interesting trend emerged: the further to the right the tab was 
(i.e., the more general the tool), the more often it was used.  Such an outcome would not 
have been predicted from what we had seen earlier in more controlled settings, where 
Templates and CAFÉ had both shown substantial advantages.  Interview and self-report 
data suggest that the cause was not a reluctance to use new tools; indeed, our participants 
were all volunteers, and hence could reasonably be described as early adopters of new 
technologies.  Rather, the cause of this effect seems to be twofold.  First, more 
specialized tools are naturally useful in fewer situations.  For example, we had a template 
asking about the relationship between two people (which might be an event), but no 
template asking about the relationship between two events (which might be a person).  
Second, our least sophisticated tool (Search) had to expose the most context to the user 
(for the simple reason that the user had to do more of the job).  As our tools became 
progressively more sophisticated, we adjusted the focus vs. context tradeoff more in favor 
of focus (although with the full context still available on demand).  This became most 
extreme in the Biography mode, where the initial display included a large number of very 
short results.  With the context less easily accessible, our participants seemed to have 
more trouble assessing the quality of the system’s results.   

Because information seeking is often an iterative process, this difficulty with 
assessing results may have had the additional effect of making exploratory use of new 
capabilities somewhat more challenging as well.  Indeed, we saw some evidence of that 
from the way in which participants used CAFÉ.  Positive feedback was often provided, 
and our participants often seemed to be able to develop some degree of confidence from 
seeing the results of positive feedback.  Negative feedback was used far less often, and 
our users expressed serious reservations about using it in interviews and self-report data.  
Their reasoning was generally that when they used positive feedback they could see what 
they were then getting as future results, but when they used negative feedback they had 
no way of seeing what they then did not get as future results.  In this case, the context that 
they would need extends beyond individual documents – they would also need some way 
of skimming documents that would have been displayed to them had the negative 
feedback not been provided. 

Handbook of Natural Language Processing and Machine Translation 921



6.3.2.4. Conclusion and Future Work 

Looking back over our full set of studies, we can draw several broad conclusions.  
More obviously, and most importantly, there are things that we could learn through user 
studies that we could not have seen as easily (if at all) in “batch-mode” experiments.  Just 
as we use TER as a predictor of Human-assessed Translation Error Rate (HTER) during 
development, we should be using HTER as a predictor of actual utility during 
development, but then we should check that prediction from time to time using actual 
user studies.  User studies are more expensive than HTER (which is in turn far more 
expensive than automatic TER scoring), so we need not do user studies every year.  But 
unless we do user studies periodically, it would be hard to know for sure whether we are 
headed in the right direction. 

Another conclusion that we can draw is that user studies are not all created equal.  
Highly structured user studies are useful early in a development process when the 
questions focus on capability, but studies situated in settings that are as representative as 
possible of the envisioned application are also needed at some point if we are to iterate 
between system design and discovery of the most effective way to use the resulting 
systems.  Indeed, a sequence of increasingly realistic studies may be needed if we are to 
optimally balance cost and insight.  For example, when actual intelligence analysts later 
used our systems, we learned that some of the behaviors that we had observed with 
students (e.g., seeking background information) were less common with actual analysis 
(who of course started with more background).   

Ultimately, the most important benefit of our formative evaluation process may have 
been the bridges that we built between research communities.  Just as GALE has brought 
speech and translation researchers together to study how best to translate spoken content, 
we have brought component developers together with system developers, and system 
developers together with process developers (i.e., real users).  After all, the ultimate 
cascade does not end with transcription, translation, retrieval, extraction, or 
summarization; it ends with use. 

 

6.3.3. Utility Assessment for the GALE Program 

6.3.3.1. Introduction 

The systems developed under GALE aim to improve timeliness and quality of 
information available to users via a comprehensive system that supports transcription, 
translation, and distillation of multiple languages in text and audio formats. The purpose 
of the Utility Evaluation is to qualitatively and quantitatively assess the performance and 
utility of the GALE systems in providing these capabilities to the user as he or she 
interacts with the system. We describe the task definition and environment for the Utility 
Evaluation, the scenarios used for testing, and the requests for information (RFI’s) issued 
to support them. We further describe how we captured user feedback through written and 
group feedback sessions, and user performance based on evaluation of final products 
generated by analysts using GALE systems. 

922 Chapter 6: Operational Engines  

Authors: Connie Fournelle, Jon Holbrook Dan Hunter, and William Salter 



 

The findings of the user-centric Utility Evaluation complement the findings of the 
technology-centric Evaluation, which measures the amount of on-target information a 
GALE system is able to produce in response to a specific, formatted query, and compares 
GALE system performance to humans completing the same task without GALE tools. 
The utility of an automated system can be evaluated in terms of the performance of a 
human user when paired with that system to perform realistic tasks, which may in turn be 
influenced by a number of factors, including the ease with which that system can be used, 
as well as, users’ desire and willingness to use the system. 

6.3.3.2. Utility Evaluation Goals and Methodology 

Evaluation Goals 
In the context of this evaluation, the term “user” refers to both DoD intelligence 

analysts and operations personnel. System users were DIA Lead Analysts employed by 
BAE-Information Technology (BAE -IT) – operational analysts with at least five years of 
experience with independent project-level responsibility under general supervision – who 
used the GALE systems during the testing sessions of the evaluation, as well as, the 
baseline system. The Utility Evaluation was not intended to establish a performance 
baseline of these analysts, but rather to provide users with exposure to GALE technology, 
and create a venue for them to give early feedback on the effectiveness of the technology; 
this feedback can consequently have a direct impact on the research and development 
activity as it is underway, rather than waiting for the operational needs and research 
direction to potentially diverge as the program progresses. 

 
Utility Methodology 

There were two types of roles for participants in the evaluation: system users and 
judges. System users were DIA Lead Analysts (mean age = 33 years, SD = 10.0) 
employed by BAE Systems– operational analysts with an average of 8.7 years of 
experience (SD = 6.8) performing intelligence-related work – who interacted with the 
GALE systems during the evaluation. Sixteen system users participated in the Utility 
Evaluation each day. Thirteen of the system users had previous military experience. All 
system users were fluent speakers of English; none had any familiarity with spoken or 
written Arabic or Chinese. The first day of the evaluation familiarized the system users 
with the goals of the GALE program and the systems under evaluation; on days two-
through-five, users employed the GALE systems and a baseline system to generate 
reports. The reports were evaluated by judges drawn from two different pools of people: 
BAE Systems principal analysts – analysts with at least eight years of technical 
leadership including assisting in decision-making in major program operations and 
supervisory responsibilities – and senior Operations Specialists – operations officers with 
recent experience in Iraq/Afghanistan. Five judges (mean age = 46 years, SD = 12) 
participated in the Utility Evaluation (three Principal Analysts and two Operations 
Specialists). 

During the Utility Evaluation, system users were provided with scenarios that 
described the context, scope, and requirements for the tasks they were to perform using 
the provided systems. All scenarios were generated in conjunction with or under the 
guidance of intelligence analysts. 

Handbook of Natural Language Processing and Machine Translation 923



All-source intelligence analysts typically operate within specific domains of expertise 
(e.g., geo-graphic region, politics, economics, etc.). Because the intelligence analysts 
serving as system users in the Utility Evaluation were presented with scenarios 
potentially outside their domains of expertise, each scenario included a section that 
outlined information related to the scenario topic that the analysts might be assumed to 
already know if operating in their real working environment. 

Each scenario included one or more Requests for Information (RFIs) that define the 
task(s) that the analysts were asked to perform and the product(s) they were asked to 
generate. These products, based on those intelligence analysts produce in their everyday 
jobs, involved writing short (½- to 2- page) prose briefings (e.g., “executive summaries”). 

All scenarios were limited to the 1.5-hour testing sessions. That is, a single scenario – 
with multiple RFIs – was to be completed during each testing session. 

Each system user interacted with one system per day over four days. In addition to 
the three GALE systems under evaluation, users employed a baseline system developed 
using commercial-off-the-shelf (COTS) technologies, including the desktop search tool 
Copernic. Users’ work stations included Microsoft Word for the generation of work 
products. Each of the work stations was connected via a remote connection to offsite 
software and databases. Connection to other remote sites (e.g., Google, Wikipedia, etc.) 
was not permitted at any point during the testing sessions. The TDT5 and GALE Y1 
corpora (LDC2004E41 and LDC2006E21, respectively), available from the Linguistic 
Data Consortium, were used in the testing sessions of the Utility Evaluation. 

6.3.3.3. Evaluation Measures 

Measuring the utility of any system requires identifying ways in which that system 
aids the user performing her real-world job. Because human behavior in real-world 
settings is complex, we evaluated a range of quantitative and qualitative measures of 
performance. The performance measures can be categorized into three broad classes: 

 
• System-based measures: these include total time spent in product 

generation, proportion of time spent in System versus Text Editor (e.g., 
MS Word), frequency of switches between System and Text Editor, and 
changes in the ratio of time spent in System versus Text Editor over the 
time course of product generation. 

• Self-report measures: All system users participated in debriefing sessions 
each day of the evaluation that included structured interviews and 
questionnaires concerning their experience with the system they used 
that day. 

• Observer-based measures: Human factors specialists observed users’ 
interactions with the systems and identified issues with users’ 
interactions. Judges (described above in Section 2.2) rated each work 
product on Likert-scale measures of whether the work product was 
supported by evidence, thorough, organized, relevant, compelling, and 
actionable. Judges were not provided with information about which users 
or which GALE systems contributed to a particular work product. 

924 Chapter 6: Operational Engines  



 

6.3.3.4. Utility Evaluation Results 

Product Evaluations 
Five judges (i.e., three senior analysts and two military operations specialists) rated 

each work product using a seven-item instrument that measured the degree to which the 
work products were supported by evidence, thorough, organized, relevant, compelling, 
and actionable, as well overall quality. These judges were also asked to rank order all of 
the products for each RFI from best to worst. All ratings/rankings were performed 
independently of the other judges, and were performed without any knowledge of which 
analyst generated the work product or which system the analyst used. 

A statistical analysis of the ratings revealed no statistically significant difference (at 
the level p < 0.05) among the systems used for either the simple mean or weighted mean 
of the ratings of the work products. (The weighted mean combined ratings on highly 
correlated variables.) 

System users were divided into two groups based on their years spent doing 
intelligence-related work. A median split along this dimension yielded a low experience 
group (m = 3.9 years of intel experience, SD = 1.5) and a high experience group (m = 
12.9 years of intel experience, SD = 6.9). Comparisons of overall product ratings for 
products generated using the Baseline system revealed a marginal effect of system user 
experience, F(1,28) = 3.9, p =.058, with products from high experience users (4.23) rated 
higher than products from low experience users (3.48). However, among GALE systems, 
no differences were found between ratings of products from high and low experience 
users, F < 1. Given that the Baseline system is similar to the search tools that analysts 
regularly use, it is not surprising that high experience users were better able to utilize the 
Baseline system than low experience users. Among the GALE systems, the finding of no 
effect of user experience on product ratings may indicate a) that the GALE systems 
function in a way that is sufficiently different from the search tools that analysts regularly 
use that user experience had little impact of performance in the evaluation, and/or b) the 
GALE systems provided sufficient support to the less experienced user to boost 
performance closer to that of more experienced users. This issue is one that may warrant 
further study in future evaluations. 

 
Usability Evaluations 

After completion of each scenario, system users completed a 14-item questionnaire 
designed to address various aspects of system usability, or the ease with which users felt 
they were able to interact with the systems. For each item on the questionnaire, system 
users were asked to rate on a 7-point scale the system they had just used to complete that 
scenario. 

 
Usefulness Evaluations 

After each testing session, participants completed a 12-item questionnaire designed to 
assess the usefulness of the systems, that is, the degree to which system features would be 
valuable to the users’ job performance. Users were asked to rate the usefulness on 7-point 
scales of various aspects of the system they had just used. Analysis of overall usefulness 
ratings revealed a significant effect of System, F(3,56) = 7.2, p < .001. Two of the GALE 

Handbook of Natural Language Processing and Machine Translation 925



systems were rater higher than Baseline (3.26) with scores of (5.39) and (4.64), p = .001 
and p = .02, respectively. 

 
Overall Results 

 
Question Low 

Anchor (I)
Mean High Anchor 

(7)
Would be helpful 
in doing my job Not helpful 5.77a Very helpful 

Ease of finding info for 
products 

Baseline 
easier 

5.46a GALE easier 

Confidence in finding 
all available info  Not confident 4.40 Very confident 

Ease drill-down/ 
Follow-up search results Not easy 5.03a Very easy 

Ease of using results 
to prepare products Not easy 5.63a Very easy 

Easier to use to find 
information 

Current 
system 

4.23 GALE 
  

Creates higher 
workload 

Current 
system 4.07 GALE 

Enables finding more 
relevant info Baseline 5.54a GALE 

Enables higher quality 
Product generation Baseline 5.64a GALE 

Table 6.9: User evaluation of GALE systems (a  means p <.05 in comparison with Midpoint of scale). 

At the conclusion of testing, system users were asked nine questions designed to 
capture users’ impressions of how the GALE systems might help intelligence analysts 
perform their jobs, as well as, comparisons of the GALE systems with users’ current 
search tools and with the Baseline system. For the purpose of answering these questions, 
users were asked to think of the GALE systems in terms of the most effective of the three 
systems they used during the evaluation. 

The results are shown in Table 6.9, below. Responses were on a scale from one-to-
seven inclusive, with the low and high anchors indicated for each questions. These results 
indicated that users believed that GALE technologies would be helpful in doing their 
jobs, were generally easy to use, and were more effective than the Baseline system. Users 
rated the GALE systems equivalent to their current systems in terms of ease of use and 
overall work-load. Users’ confidence in the GALE systems to find all available 
information did not differ from the scale midpoint, which is consistent with findings for 
this same question from the System Trust instrument, on which the GALE systems were 
rated as equivalent to or below Baseline. Users’ comments about the overall potential of 
the GALE technologies were generally positive: 

 
“The concept of the systems are really good and should help the open-

source community when it’s done.” 

926 Chapter 6: Operational Engines  



 

“All of the systems have features that should be part of the final 
product.” 
 
A feature of the GALE systems that was frequently mentioned as a valuable feature 

was the ability to do template directed search in addition to key-word search. However, 
users also indicated areas for improvement, including expanding the flexibility of the 
search options, and designing the interface to maximize efficiency of use. 

6.3.3.5. Related Work 

Gonzalo and Oard (2004) describe a set of experiments conducted by five teams 
using a common experimental design to test hypotheses about the utility of cross-lingual 
information retrieval systems. The experiments bear some similarity to the utility 
evaluation described in this section, but there are important differences. 

The experiments are similar to the one described here in that each experiment 
involved the use of different IR systems by a group of subjects and the answers produced 
by the subjects were evaluated by an independent group of judges (or “assessors”). 
Significant differences are that the queries were very specific (e.g., “What year was 
Thomas Mann awarded the Nobel Prize?”) rather than open-ended as were the queries 
used in the GALE Utility Evaluation; the systems compared were in general variations on 
automated IR systems so that a baseline for standard IR retrieval tools such as Google 
was not established; and finally, the answers produced by the subjects were evaluated on 
the basis of whether they were correct (valid and supported by documentation), un-
supported (valid, but not supported by documentation), or incorrect. The GALE utility 
evaluation in contrast allowed the judges to additionally express judgments about the 
degree to which a work product is relevant, well organized, and actionable, and it 
collected evaluations from the users themselves on their experience with the different 
systems. 

6.3.3.6. Conclusions and Recommendations 

We have described the testing framework for the GALE utility evaluation and some 
of the salient results of that evaluation. In general, the results reflect favorably on the 
GALE systems, especially in light of users’ initial unfamiliarity with the systems and the 
limited training time available. We conclude with some recommendations for tool design 
and future evaluations that are suggested by our analysis of the evaluation results. 

In terms of tool design, it would be beneficial to combine key word search 
capabilities present in current search tools used by analysts with the template-based 
search capabilities of the GALE systems, since the two kinds of search capabilities turned 
out to have complementary strengths and weaknesses. Template-based search showed 
strength when there was a large amount of information relevant to a given query since it 
allowed for more focused search. When there was little information relevant to a query, 
however, it proved difficult for users to discover that with template-based search because 
they could not be sure that all possibilities for filling in template parameters had been 
exhausted. Having both key word and template-based search capabilities in the same tool 
would enable analysts to search more efficiently without wasting time on futile searches. 

Handbook of Natural Language Processing and Machine Translation 927



Another design issue that emerged from user feedback was that of tuning the system 
to adjust the level of irrelevant information returned. Many users expressed distrust in a 
system if it returned too much irrelevant information. One solution to this problem would 
be to make the sensitivity of the system an adjustable parameter under the control of the 
user. Another would be for the system to associate a relevance level with returned 
information; if the relevance level is strongly correlated with the user’s own judgments of 
relevance, which would increase the user’s trust in the system. 

Even at the current state of development, analysts rated the GALE systems as useful 
overall. However, users do not perceive technologies in the same way as technology 
developers. Specifically, it is not always apparent to system users which aspects of the 
system are the most difficult to engineer or which aspects of the system are the primary 
focus of the developer’s attention and resources. Rather, users’ experience with a system 
is primarily through its user interface, and fundamental under-the-hood technologies may 
go completely unnoticed and/or unappreciated by system users. This being the case, there 
may be a number of low-cost and low-effort features that could be implemented in a 
GALE tool that, while not the primary focus of the GALE program, can dramatically 
impact users’ satisfaction with and willingness to use the system, which will facilitate 
transition of the systems into operational settings. 

Similarly, when users are evaluating a new technology designed to support or extend 
their current tasks, to the extent that the tool provides functionality that overlaps with 
their current tools, users expect the new technology to provide at a minimum all of the 
functionality of their existing tools in addition to any new features. While this may seem 
somewhat unreasonable to the developer of the new technology, user satisfaction with 
any technology designed to replace existing technology requires that the new technology 
not be viewed as a step backward. Specifically, in the Utility Evaluation users expressed 
dissatisfaction with the keyword search capabilities of the GALE tools (e.g., no or limited 
ability to use wildcards). Although keyword search is not the focus of the GALE 
program, if GALE technologies are intended to replace current keyword search tools, The 
GALE technologies must be able to perform all of the functions of current keyword 
search tools. An important distinction to make is that new technologies do not have to 
instantiate this functionality in the same way as existing technology, but providing that 
functionality is an important key to successful transition. 

Finally, with regard to possible future utility evaluations, user comments on training 
time and training content were offered frequently and training was mentioned in all four 
broad categories of the post-scenario surveys (e.g., Workload, Usability, Usefulness, and 
Trust), as well as, the End-of-Evaluation survey, Daily Debriefs, and Group Debrief. 
These comments, as well as observations by the evaluation team, indicate clearly that 
analysts thought they might have been more successful in answering the RFIs had they 
received more training. 

To facilitate training in future utility evaluations, we suggest a more specified 
approach to the training. Training should include a brief lecture-style introduction, but the 
majority of the training session should comprise supervised hands-on interaction for the 
analysts. 

 
 

928 Chapter 6: Operational Engines  



 
Handbook of Natural Language Processing and Machine Translation 929

 
References 
Ahn, J., P. Brusilovsky, D. He, J. Grady, and Q. Li.  2008. Personalized Web Exploration 
with Task Models. Proceedings of the International World Wide Web Conference. 
Beijing, China. 

Allan, J., ed. 2002. Topic Detection and Tracking: Event-based Information 
Organization. Kluwer Academic Publishers. 

Allan, J. 2003. HARD Track Overview in TREC 2003 High Accuracy Retrieval from 
Documents. Proceedings of the 12th Text Retrieval Conference. Gaithersburg, MD. 

Bemish, N. 2008. Broadcast Monitoring Tools Open Doors to Other Cultures, 
Information. Communiqué - A Defense Intelligence Agency Publication 21(2). 

Billa, J., M. Noamany, A. Srivastava, D. Liu, R. Stone, J. Xu, J. Makhoul, and F. Kubala. 
2002. Audio Indexing of Arabic Broadcast News. Proceedings of the International 
Conference on Acoustics, Speech, and Signal Processing pp. 15-18. Orlando, FL. 

Chandra, A., D. Kozen, and L. Stockmeyer. 1981. Alternation. Journal of the Association 
for Computing Machinery 28(1)pp. 114-133. 

Colbath, S., F. Kubala, D. Liu, and A. Srivastava.  2000. Spoken Documents: Creating 
Searchable Archives from Continuous Audio. Proceedings of the 33rd Hawaii 
International Conference on System Sciences vol.3. Maui, HI. 

Collins, M.  2002.  Discriminative Training Methods For Hidden Markov Models: 
Theory And Experiments With Perceptron Algorithms. Proceedings of the Conference on 
Empirical Methods in Natural Language Processing (EMNLP) 2002 pp.1–8. 
Philadelphia, PA. 

Ferrucci, D. and A. Lally.  2004. UIMA: An Architectural Approach to Unstructured 
Information Processing in the Corporate Research Environment. Natural Language 
Engineering 10(3-4): pp. 327–348. 

Fiscus, J. G.  1997. A Post-Processing System to Yield Reduced Word Error Rates: 
Recognizer Output Voting Error Reduction (ROVER). Proceedings of the Institute of 
Electrical and Electronics Engineers Automatic Speech Recognition and Understanding 
Workshop pp. 347–354. Santa Barbara, CA. 

Gilmore, G. J. 2007.  Modern Missions Rely on Languages, Cultural Awareness, Official 
Says. American Forces Press Service, April 27.  

Gonzalo, J, and D. W. Oard.  2004. iCLEF 2004 Track Overview: Pilot Experiments in 
Interactive Cross-Language Question Answering. Proceedings of the Multilingual 
Information Access for Text, Speech, and Images, Fifth Workshop of the Cross-Language 
Evaluation Forum pp. 310-322. Revised Selected Papers Series, Springer-Verlag, LNCS 
(3491) pp. 310-322. Bath, UK. 



930 Chapter 6: Operational Engines  

He, D., and D. Demner-Fushman.  2003. HARD Experiment at Maryland: from Need 
Negotiation to Automated HARD Process. Proceedings of the 12th Text Retrieval 
Conference pp. 707-714. Gaithersburg, MD. 

He, D., P. Brusilovsky, J. Ahn., J. Grady, R. Farzan,  Y. Peng, Y. Yang, and M. Rogati.  
2008. An Evaluation of Adaptive Filtering in the Context of Realistic Task-Based 
Information Exploration. Information Processing and Management 44(2): pp. 511-533. 

He, D., P. Brusiloviksy, J. Grady, Q. Li, and J-W. Ahn.  2007. How Up-to-date Should It 
Be? The Value of Instant Profiling and Adaptation in Information Filtering. Proceedings 
of the International Conference on Web Intelligence  pp.699-705. Silicon Valley, CA. 

He, D., P. Brusilovsky, J-W. Ahn, J. Grady, R. Farzan, Y. Peng, Y. Yang, and M. Rogati.  
2008. An Evaluation of Adaptive Filtering in the Context of Realistic Task-Based 
Information Exploration. Information Processing and Management 44(2): pp. 511-533. 

Huang, J., and G. Zweig.  2002. Maximum Entropy Model for Punctuation Annotation 
from Speech. Proceedings of the International Conference on Speech and Language 
Processing( ICSLP) pp. 917-920. 

Jayaraman,  S., and A. Lavie.  2005. Multi-engine Machine Translation Guided by 
Explicit Word Matching. Proceedings of the 10th Annual Conference of the European 
Association for Machine Translation  pp.143–152. Budapest, Hungary. 

Jones, D. and W. Shen.  2006. Two New Experiments for ILR-Based MT Evaluation. 
Proceedings of the Association for Machine Translation in the Americas. Boston, MA. 

Kubala, F., S. Colbath, D. Liu, A. Srivastava, and J. Makhoul.  2000.  Integrated 
Technologies for Indexing Spoken Language. Communications of the Association for 
Computing Machinery 43: pp. 48–56. 

Kubala, F., S. Colbath, D. Liu, and J. Makhoul. 1999.  Rough'n'Ready: a Meeting 
Recorder and Browser. Association for Computing Machinery Computing Surveys 
31(2es). 

Liu, D., and F. Kubala. 1999.  Fast Speaker Change Detection for Broadcast News 
Transcription and Indexing.  Proceedings of the 6th European Conference on Speech 
Communication and Technology (EuroSpeech) 3: pp. 1031-1034.  

Liu, D., D. Kiecza, A. Srivastava, and F. Kubala.  2005.  Online Speaker Adaptation and 
Tracking for Real-Time Speech Recognition. Proceedings of the International Speech 
Communication Association Conference (Interspeech) pp. 281-284.  

Liu, D., J. Ma, D. Xu, A.Srivastava, and F. Kubala.  2002.  Real-Time Rich-Content 
Transcription Of Chinese Broadcast News. Proceedings of the International Conference 
on Speech and Language Processing (ICSLP) pp. 1981-1984. 

Liu, Y., E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf, B. Peskin, and M. Harper.  
2004. The ICSI-SRIUW Metadata Extraction System. Proceedings of the International 
Conference on Spoken Language Processing pp. 577-580. Jeju Island, Korea. 



 
Handbook of Natural Language Processing and Machine Translation 931

Makhoul, J., F. Kubala, F., T. Leek, D. Liu, L. Nguyen, R. Schwartz, and A. Srivastava.  
2000.  Speech and Language Technologies For Audio Indexing. Proceedings of the IEEE 
88: pp. 1338–1353. 

Makhoul, J., F. Kubala, R. Schwartz, and R. Weischedel.  1999.  Performance Measures 
for Information Extraction.  Proceedings of the DARPA Broadcast News Workshop 
pp. 249-252. Herndon, VA. 

Marchionini, G., and B. Shneiderman.  1988. Finding Facts Vs. Browsing Knowledge in 
Hypertext Systems.  IEEE Computer 21(1): pp. 70-79. 

Matusov, E., A. Mauser, and H. Ney. 2006. Automatic Sentence Segmentation and 
Punctuation Prediction for Spoken Language Translation. Proceedings of the 
International Workshop on Spoken Language Translation (IWSLT) pp. 158-165. Kyoto, 
Japan. 

Murthy, U., J. Pitrelli, G. Ramaswamy, M. Franz, and B. Lewis.  2008. A Methodology 
and Tool Suite for Evaluation of Accuracy of Interoperating Statistical Natural Language 
Processing Engines. Proceedings of The International Speech Communication 
Association Conference (Interspeech) pp. 2066–2069. Brisbane, Australia. 

Nyberg, E., E. Riebling, R. C. Wang, and R. Frederking. 2008. Integrating a Natural 
Language Message Pre-processor with UIMA. Proceedings of LREC Workshop on 
Enhanced Operability for Large HLT Systems. Marrakech, Morocco. 

Pirolli, P., and S. Card.  2005.  The Sensemaking Process and Leverage Points for 
Analyst Technology as Identified through Cognitive Task Analysis. Proceedings of the 
International Conference on Intelligence Analysis. McLean, VA. 

Pitrelli, J., B. Lewis, E. Epstein, D. Kiecza,  M. Franz, J. Quinn, G. Ramaswamy, A. 
Srivastava, and P. Virga.  2008a. Aggregating Distributed STT, MT, and Information 
Extraction Engines: The GALE Interoperability Demo System. Proceedings of The 
International Speech Communication Association Conference (INTERSPEECH) 
pp. 2743–2746. Brisbane, Australia. 

Pitrelli, J., B. Lewis, E. Epstein, J. Quinn, and G. Ramaswamy. 2008b. A Data Format 
Enabling Interoperation of Speech Recognition, Translation, and Information Extraction 
Engines: The GALE Type System. Proceedings of The International Speech 
Communication Association Conference (Interspeech) pp. 1654–1657. Brisbane, 
Australia. 

Rosti, A., N. Ayan, B. Xiang, S. Matsoukas, R. Schwartz, and B. Dorr. 2007. Combining 
Outputs from Multiple Machine Translation Systems. Proceedings of The Annual 
Conference of the North American Chapter of the Association for Computational 
Linguistics (NAACL) pp. 228–235. Rochester, NY. 



932 Chapter 6: Operational Engines  

Shepard, S., S. Colbath, K. Egan, and F. Kubala. 2002. Oasis Translator's Aide. 
Proceedings of the Second international Conference on Human Language Technology 
Research pp. 389-390. San Diego, CA. 

Srivastava, A., and F. Kubala. 2003. Sentence Boundary Detection in Arabic Speech. 
Proceedings of the European Conference on Speech Communication and Technology 
(EuroSpeech) pp. 949-952.  Geneva, Switzerland. 

Stolcke, A. and E. Shriberg. 1996. Automatic Linguistic Segmentation of Conversational 
Speech. Proceedings of the International Conference on Spoken Language Processing 
pp. 1005–1008. Philadelphia, PA. 

Stolcke, A., E. Shriberg, R. Bates, M. Ostendorf, D. Hakkani, M. Plauche, M., G. Tur, 
and Y. Lu. 1998. Automatic Detection of Sentence Boundaries And Disfluencies Based 
On Recognized Words. Proceedings of International Conference on Spoken Language 
Processing (ICLP) pp. 2247-2250. Sydney, Australia. 

White, R. W., G. Muresan, and G. Marchionini.  2006. Evaluating Exploratory Search 
Systems. Proceedings of the Association for Computing Machinery's Special Interest 
Group on Information Retrieval Conference.  Seattle, WA. 

Yang, Y., A. Lad., N. Lao, A. Harpale, B. Kisiel, M. Rogati.  2007. Utility-based 
Information Distillation Over Temporally Sequenced Documents. Proceedings of the 
International Association for Computing Machinery  Special Interest Group on 
Information Retrieval Conference on Research and Development in Information 
Retrieval. pp. 31-38. Amsterdam, Netherlands. 

Zhang, P., E. Plettenberg, J. Klavans, D. Oard, and D. Soergel.  2007. Task-based 
Interaction with an Integrated Multilingual, Multimedia Information System: 
A Formative Evaluation.  Proceedings of the Joint Conference on Digital Libraries. 
Vancouver, Canada. 

  



 

Concluding Remarks  

Authors: Joseph Olive and Caitlin Christianson 
 
The achievements made in the first three years of the GALE Program have been 

astonishing. Arabic newswire translation accuracy has increased from an approximate 
average of 55 percent before GALE to an average of 92 percent at the end of the third 
year of GALE, and Arabic broadcast news translation accuracy increased from an 
approximate average of 35 percent to an average of 89 percent during that same period.1 
Chinese translation, a much more difficult task than Arabic translation, was initially far 
less accurate but has shown a similar trend of improvement. DARPA has also compared 
the quality of GALE machine translation of text from both structured and unstructured 
genres to two versions of human translation: a translation created by a single person 
without subsequent editing, and translation that has been edited by a second translator. 
The results showed that for Arabic, the translations produced by GALE systems were 
comparable to the human-generated translations that had not undergone any editing – 
indicating that GALE Arabic translation was approaching edit-worthy quality. The results 
for Chinese translation showed that a Chinese-English translation created by a single 
human generally required more editing than did an Arabic-English translation, which 
confirmed the difficulty of Chinese-English translation, even for humans.  This difficulty 
is reflected in the fact that while translation of Chinese has improved greatly during the 
first three years of the GALE Program, at the end of the third year, it is still not at the 
level of accuracy of an un-edited human translation. 

The enormous improvements in machine translation accuracy achieved during the 
first three years of GALE were enabled by a variety of factors.  First of all, GALE was 
adequately funded, so it was possible to assemble a large, creative, and devoted 
community.  GALE researchers were able to expand on previous research, which 
consisted mostly of phrase-based translation, with the introduction of many new 
translation methods, which are described in this book.  Some of the most prominent 
among the new machine translation developments achieved under GALE were use of 
morphology to reduce the out-of-vocabulary (OOV) rate and help with syntactic analysis, 
creation of novel algorithms for acoustic modeling, implementation of topic-dependent 
language models, adoption of long-distance language modes, and integration of 
hierarchical translation, syntax, and rule induction. 

Great achievements have also been made in the GALE Program in the area of 
distillation.  GALE distillation systems have shown a capability to respond to queries 
producing only relevant information and collapsing all redundancies into integrated 
responses with citations to all relevant documents. GALE distillation engines are 
responsive to queries.  An engine does not merely produce a response that matches all or 
some of the words in a query, but is actually aware of word functions (i.e. who did what 
to whom).  Since distillation involves multilingual search, systems are capable of 

                                                            
1 Pre-GALE baseline should be considering approximate due to the limited amount of data on 
which the calculation was based. 

J. Olive et al. (eds.), Handbook of Natural LanguageProcessing  
DOI 10.1007/978-1-4419-7713-7, � Springer ScienceþBusiness Media, LLC 2011

and Machine Translation, 933



 

matching similar documents, even in instances in which a translation is not perfect, 
working both in the source language and in the target language (English).  In addition, 
distillation queries also assist translation, especially in the case of OOV words, which are 
often names. The queries actually enable the translation engines to disambiguate words 
and assign meanings to unfamiliar words. 

With distillation quality measured as a percentage relative to human performance on 
a query basis, our latest results show that for 55 percent of the queries in all languages 
and genres, GALE distillation systems are able to produce more information than humans 
and that for more than 70 percent of the queries in English, GALE distillation systems are 
able to produce more information than humans. Since testing includes reduction of scores 
for both irrelevant and redundant responses, it is clear that the distillation process could 
result in a substantial increase in efficiency.   

Finally, there is the important question of what will come after GALE.  At the GALE 
kick-off meeting, someone asked what would be left if all GALE targets were to be met.  
If one observes what has been accomplished under GALE, the answer becomes quite 
simple. All that is necessary to envision the near future of human language processing at 
DARPA is to analyze the goals of the GALE Program.  

GALE was designed to achieve success in a narrow but extremely important area of 
human language processing. GALE research was intended to address transcription, 
translation, and distillation of news material, and has been expanded to address also talk 
shows, weblogs, and newsgroups.  These three additional genres do involve language that 
is not scripted or edited, but they are far from being truly conversational and informal.  
Also, GALE was designed to involve analysis of two languages, Arabic and Chinese – 
both interesting, both extremely different from English and each other, and both 
important to the U.S. government.  There are, however, more than 6,000 languages in the 
world, at least 200 of which are of interest to the U.S. government.  It is not feasible to 
spend the amount of time and financial resources allocated to the GALE Program to 
address each of these. Although much of the technology developed through GALE 
involves language-independent learning from parallel corpora, such data is not available 
for all language pairs.  In addition, in order to achieve the quality of GALE translation, 
extensive additional data annotation has been necessary. Similarly, in order to improve 
distillation performance and increase the number of languages handled by distillation, it 
will be necessary to increase capabilities in syntactic, pragmatic, and semantic analysis. 

There is also the issue that while Chinese translation quality has increased under 
GALE,  and it will likely continue to be improved in the final two years of the program, 
processing of Chinese will likely still require a great deal of improvement. Achieving 
extremely high quality Chinese-English translation will require additional research and 
innovation to deal with word segmentation, word order, inherent ambiguities, and other 
challenges.  

After the conclusion of the GALE program, it will next be necessary to tackle the 
task of addressing informal genre materials, such as e-mail, messaging, and natural 
conversation for Arabic and Chinese, as well as English.  Success at this task will require 
better handling of dialects, regional accents in speech, incomplete or grammatically-
inaccurate sentences, misspelled words, and ambiguous references, among other issues.  
The tireless efforts of the researchers involved in GALE and previous research programs 

934 Concluding Remarks



 

have established a solid foundation for dealing with these and other newly-emerging 
human language processing problems. Additional research will still be necessary to 
develop means to cope with the difficulties involved in dialect identification, aspects of 
language modeling, parsing of the types of sentences mentioned above, and more. 

Another area for research is development of processing and translation of new 
languages, especially those for which few resources exist.  Even when it is possible to 
obtain or create large parallel corpora, use of these data tends to result in translation that 
does not meet the quality standard for usability for many purposes and does not produce 
output that is optimally useful for search, extraction, information retrieval, and 
information analysis. To reach the levels that have been attained for Arabic-English 
translation in the GALE Program, researchers carried out and employed annotation like 
treebanking, careful word alignment, and predicate argument annotation. Because these 
types of linguistic data enrichment are extremely expensive and time consuming, 
additional research is needed to develop means to derive such annotations automatically 
from accurate and comprehensive bilingual dictionaries, small parallel corpora, and large 
monolingual corpora in the desired languages. When dealing with speech input, there is 
also a need to discover ways to adapt the acoustic models from previously-researched 
languages to new languages. This adaptation is necessary because phoneme sets often 
differ substantially between languages.  

Another way in which GALE technology is limited is that it is passive, in the sense 
that one reads or listens to information translated and processed from a foreign language. 
In this mode of operation, errors are transmitted but do not accumulate. In cases where 
translation is intended to be used for interaction, such as with multi-lingual conversation 
messaging, and chat, errors can cause misunderstandings or even derail the entire 
interaction. Obviously, the highest grade of translation is necessary for such purposes, but 
it would also be advantageous for a translation system to be able to assess its confidence 
in the accuracy of the translations it produces and construct clarifying dialogues to ensure 
that the translations are correct. 

Such a human-machine dialogue would also be useful for applications other than 
translation of one human language into another, such as serving as an enabler of 
command and control management, filling knowledge bases, and translating human 
languages into computer languages. For these applications, multimodal communication, 
using modes like eye gaze, gesturing, pointing, drawing, and more, would enhance the 
communication helping with disambiguation and increasing efficiency. 

In addition to the limitations of GALE research with regard to language, genre, and 
interaction mode, there is also the fact that GALE research involves only broadcast-
quality speech transmission signals. To deal with other, more challenging modes of 
transmission, it will be necessary to expand the capabilities developed under GALE to 
address the challenges posed by different transmission media and environmental noise 
factors. 

Finally, to achieve full language comprehension, it will be necessary to ground 
language in the real world. One means of doing so would be to use visual and tactile 
information to teach a machine the meanings of words so that the machine is able to 
understand the properties and functions of objects, the consequences of actions, such as 
the state of the world before and after an action, and what happens during an action and 

 
Handbook of Natural Language Processing and Machine Translation 935



 

why.  Such knowledge, coupled with the ability to reason, would enable machines to 
learn language and its subtleties. 

The ongoing efforts of GALE researchers have resulted in vast contributions to and 
will continue to advance language processing research, but GALE is only a beginning. 
 

 

936 Concluding Remarks


	Cover
	Handbook of Natural LanguageProcessing and MachineTranslation
	ISBN 9781441977120
	Acknowledgements
	Introduction
	Contents
	Contributors
	Chapter 1: Data Acquisition and Linguistic Resources
	1.1 Introduction
	1.2 Data Collection, Distribution, and Management
	1.2.1Large Scale Multilingual Broadcast Data Collection to Support Machine Translation and Distillation Technology Development
	1.2.2Text Collection for Volume
	1.2.3Distribution of GALE Resources
	1.2.4 Technical Infrastructure Supporting Large-scale  Linguistic Resource Creation

	1.3 Human Annotation
	1.3.1. Linguistic Resources for Transcription and Translation
	1.3.2Word Alignment for Improved Machine Translation
	1.3.3. Distillation Training Data
	1.3.4. Arabic Treebanking
	1.3.5. OntoNotes: A Large Training Corpus for Enhanced Processing

	1.4 Automatic Annotation
	 1.4.1 Speech Segmentation and Its Impact on Spoken Document Processing
	1.4.2. CADIM Arabic Tools: Morphological Analysis, Disambiguation and Generation, Tokenization, Diacritization, Lemmatization,  POS Tagging and BasePhrase Chunking
	1.4.3. Chinese Statistical Parsing
	1.4.4. Evaluating the Impact of Word Segmentation on Chinese Parsing
	1.4.5. Combining Discriminative Re-ranking and Co-training for Parsing Mandarin Speech Transcripts

	References

	Chapter 2: Machine Translation from Text
	2.1 Introduction
	2.2 Segmentation, Tokenization and Preprocessing
	2.2.1. Preprocessing Arabic for Arabic-English Statistical Machine Translation
	2.2.2.Customizing Chinese Word Segmentation for Improved Machine Translation
	2.2.3. Combination of Alternative Word Segmentations for Chinese Machine Translation
	2.2.4. Synchronous Learning of Chinese Word Segmentation and Word Alignment

	2.3 Word Alignment
	2.3.1Word Alignment Revisited
	2.3.2Improved Word Alignment Algorithms for Arabic- English and Chinese-English

	2.4 Translation Models
	2.4.1Arabic-English Machine Translation Using the Direct Translation Model
	2.4.2Factored Translation Models
	2.4.3. Soft Syntax Features and Other Extensions for Hierarchical SMT
	2.4.4. Two String-to-Tree Translation Models
	2.4.5. Forest Re-ranking for Machine Translation Using the Direct Translation Model
	2.4.6. Lexical Semantics for Statistical Machine Translation

	2.5 Language Modeling for SMT
	2.5.1. Distributed Language Modeling

	2.6 Search and Complexity
	2.6.1. Improvements for Beam Search in Statistical Machine Translation
	2.6.2. Handling Complexity in Decoding
	2.6.3. Lattice Decoding for Hierarchical Models

	2.7 Adaptation and Data Selection
	2.7.1. BiTAM: Bilingual Topic AdMixture Models for Bilingual Topic Exploration, Word Alignment and Translation
	2.7.2. Active Learning Based Data Selection for Machine Translation

	2.8 System Combination
	2.8.1. Combination of Machine Translation Systems via Hypothesis Selection
	2.8.2. Confusion Network Decoding for MT System Combination
	2.8.3. Serial System Combination for Integrating Rule-Based and Statistical Machine Translation

	References

	Chapter 3: Machine Translation from Speech
	3.1 Introduction
	3.2 Front End Features
	3.2.1. Introduction
	3.2.2. MLP-Based Feauture Extraction for Speech Transcription
	3.2.3. Combining MLP and PLP Features for Speech Transcription
	3.2.4. Multiple Feauture Speech Recognition
	3.2.5. Data-Driven Extraction of Spectral-Dynamics Based Posterior

	3.3 Improved Speech Acoustic Models
	3.3.1. Introduction
	3.3.2. Combining Discriminatively Trained Features, Transforms, and Models for GALE Speech-to-text Task
	3.3.3. Unsupervised Training and Directed Manual Transcriptions for Mandarin Speech-to-Text
	3.3.4. Integration of Large Margin Concept into Standard Discriminative Training Criteria
	3.3.5. Approaches to Speech Recognition based on Speaker Recognition Techniques

	3.4 Language Models
	3.4.1. Introduction
	3.4.2. On the Use of Continuous Space Neural Network Language Models
	3.4.3. Rapid Unsupervised Topic Adaptation A Latent Semantic Approach

	3.5 Language-Specific Models and Systems: Mandarin
	3.5.1. Introduction
	3.5.2. Towards the State of the Art in Automatic Mandarin Broadcast Speech Transcription
	3.5.3. The CMU-InterACT Mandarin Transcription System for GALE
	3.5.4. Advances in Mandarin Speech-to-Text Transcription for Broadcast News and Conversations
	3.5.5 Improving Speech Transcription for Mandarin-English Translation

	3.6 Language-Specific Models and Systems: Arabic
	3.6.1. Introduction
	3.6.2. Explicit and Implicit Modeling of Short Vowels for Arabic STT
	3.6.3. Statistical Modeling of Pronunciation Lexica
	3.6.4. CMU-InterACT 2008 Arabic Speech Recognition System for GALE
	3.6.5 Arabic Speech Transcription at IBM
	3.6.6 Recognition Units in Arabic Automatic Speech Recognition
	3.6.7. Development of the SRI/NIGHTINGALE Arabic ASR System

	3.7 Integration of Speech Recognition and Translation
	3.7.1. Introduction
	3.7.2. Improving Machine Translation of Spoken Language
	3.7.3. Lattice-Based Viterbi Decoding Techniques for Speech Translation
	3.7.4. Optimizing Speech-to-Text System Combination for Machine Translation

	References

	Chapter 4: Distillation
	4.1Introduction
	4.2 Template-Based Query Development
	4.2.1. The Templates
	4.2.2. Relevancy Determination

	4.3 Architecture and Implementation of a Distillation System
	4.3.1. Architecture of a Generic GALE Distillation System
	4.3.2. Distillation at BBN – The AGILE System
	4.3.3. Distillation at SRI The NIGHTINGALE System

	4.4 Enabling Technology Breakthroughs to Improve Distillation Capabilities
	4.4.1. SERIF Language Processing — Effective Trainable Language Understanding
	4.4.2. Statistical Sentence Extraction for Multilingual Information Distillation
	4.4.3. Snippets: Using Heuristics to Bootstrap a Machine Learning Approach
	4.4.4. Using Structural Semantic Information for Language Understanding Problems
	4.4.5. Improving Answer Identification by Merging Distiller Responses
	4.4.6. Identifying Conflicting Information in Texts

	4.5 Distillation in an Integrated GALE system
	4.5.1. Using Query-Time Information to Improve Multi-lingual Search and Response Generation
	4.5.2. Handling Out-of-Vocabulary Terms Using Query Driven Retranscription
	4.5.3. Name Extraction and Translation for Distillation

	4.6 Evaluating Distillation Technology
	4.6.1. Assessing Distillation Technology
	4.6.2. Error Analysis and Future Directions for Distillation

	References

	Chapter 5: Machine Translation Evaluation and Optimization
	5.1 Introduction
	5.1.1. Historical Background
	5.1.2. Human Subjective Judgments

	5.2 Automatic and Semi-Automatic Measures
	5.2.1. Automatic and Semi-Automatic Measures: Introduction
	5.2.2. Automatic Measures
	5.2.3. Semi-automatic Measures

	5.3 Tasks and Human-in-the-Loop Measures
	5.3.1. Tasks and Human-in-the-Loop Measures: Introduction
	5.3.2. Document-Exploitation Task Accuracy
	5.3.3. Using United States Government Language Proficiency Standards for MT Evaluation
	5.3.4. Concluding Remarks on Task-based Evaluation

	5.4 GALE Machine Translation Metrology: Definition, Implementation, and Calculation
	5.4.1. GALE Machine Translation Metrology: Introduction
	5.4.2. GALE Machine Translation Metrology: From TER to HTER
	5.4.3. GALE Machine Translation Metrology: Post-editing
	5.4.4. GALE Machine Translation Metrology: Machine Translation Assessment

	5.5 Use of Evaluation for Optimization
	5.5.1. Effect of MT Evaluation Measures on Optimization

	5.6 Searching for Better Automatic MT Metrics
	5.6.1. Searching for Better Automatic MT Metrics: Introduction
	5.6.2. Metric for Evaluation of Translation with Explicit Ordering (METEOR)
	5.6.3. Translation Edit Rate Plus (TER-Plus)
	5.6.4. Using Surface Span in Syntax-aware MT Evaluation (SEPIA)
	5.6.5. Expected Dependency Pair Match (EDPM)
	5.6.6. Metric Using Large Chunks of Hierarchy (MULCH)
	5.6.7. The Stanford RTE-based Metrics (RTE and RTE+MT)

	References

	Chapter 6: Operational Engines
	6.1 Introduction
	6.2 Implementation of Operational Engines
	6.2.1. Bridging the Gap between Research Advances and Operational Users
	6.2.2. Operational Integration of STT and MT for Rich Transcription and Translation of Speech
	6.2.3. Discriminative Sentence Boundary Detection for Robust Operational Engines
	6.2.4. System Combination of Distributed Speech-to-Text, Translation, and Information Extraction Engines: The GALE Interoperability Demo (IOD)
	6.2.5. The UIMA Component Repository (UCR) and UIMA Component Container (UCC): A Facility for Flexible Exchange and End-User Configuration of Operational NLP Engines

	6.3 Evaluation of Operational Engines
	6.3.1. The EDIE Framework for User-centered Evaluation of GALE Systems
	6.3.2. Formative Evaluation for Multilingual Multimedia Search and Sense-Making
	6.3.3. Utility Assessment for the GALE Program

	References

	Concluding Remarks

