

Handbook of Natural Language Processing
and Machine Translation

Joseph Olive - Caitlin Christianson - John McCary
Editors

Handbook of Natural Language
Processing and Machine
Translation

DARPA Global Autonomous Language Exploitation

@ Springer

Editors

Joseph Olive

Defense Advanced Research Projects Agency
IPTO

N Fairfax Drive 3701

Arlington, VA 22203, USA

joseph.olive @darpa.mil

John McCary

Defense Advanced Research Projects Agency
Bethesda Maryland, USA

john.mccary @gmail.com

ISBN 978-1-4419-7712-0
DOI 10.1007/978-1-4419-7713-7

Springer New York Dordrecht Heidelberg London

Library of Congress Control Number: 2011920954

© Springer Science+Business Media, LLC 2011

e-ISBN 978-1-4419-7713-7

Caitlin Christianson

Defense Advanced Research Projects Agency
Reston Virginia, USA
caitlin.christianson.ctr@darpa.mil

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the
publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts
in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is

forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as
such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Acknowledgements

First, I would like to thank the community for all of its hard work in making GALE a
success. | would like to thank the technical assistants Caitlin Christianson and John
McCary for all of their help with the program and this book. Special thanks to Paul
Dietrich for making GALE run smoothly.

We would like to thank the current DARPA management for its continued support
throughout the program, especially DARPA Director Regina Dugan, Deputy DARPA
Director Ken Gabriel, Information Processing Techniques Office (IPTO) Director Daniel
Kaufman, and IPTO Deputy Director Mark Luettgen. We would also like to thank
previous IPTO Directors and Deputy Directors Ron Brachman, Charles Holland, Barbara
Yoon, Charles Holland, and Charles Morefield for their help in launching the program,
continued support, and encouragement to write this book.

Special thanks to former DARPA Director Anthony Tether for having the vision and
the faith in us to fund the program so that it had a chance to succeed.

Finally, I would like to thank my wife Virginia Kayhart Olive. Without her great
personal sacrifice this project would not have been possible.

Introduction

Authors: Joseph Olive, Caitlin Christianson, and John McCary

“When | use a word, it means just what | choose it to mean — neither more nor less.”
Humpty Dumpty in Lewis Carroll’s Through the Looking Glass, or Alice in Wonderland

The meaning of what Lewis Carroll’s Humpty Dumpty says is abundantly clear to
him, but to others, it is virtually incomprehensible. Because the rules of his language are
entirely of his own devising, he is the only one who knows what he means. Translation
of one language into another poses a similar problem; knowing the usual meaning of a
word is not enough. To translate, it is necessary to convey the meaning of the entire
message, not just transfer words from one language to another. Because people can
perform this task so adeptly, it is easy to underestimate the challenge it poses to
computers. Although computational capabilities of machines exceed those of humans in
many ways, even the most advanced of today’s computers cannot match the language
ability that humans acquire naturally. To translate and extract information conveyed
through language, humans take advantage of a variety of cognitive abilities that no
computer can currently emulate. The Defense Advanced Research Projects Agency
(DARPA), however, specializes in tackling just such challenging problems. DARPA
researchers have attacked the problem of machine translation as part of the Global
Autonomous Language Exploitation (GALE) Program.

Like other programs at DARPA, GALE was initiated to fill a need for the Defense
Department. In the case of GALE, this need is to close the language gap — to make
relevant information, regardless of source language, accessible to English-speaking
personnel. The program’s goal is to create technology to automatically translate, analyze,
and distill the information that forms the overwhelming tidal wave of foreign language
material facing Defense Department personnel. The value of GALE technology is to be
creation of the ability not only to translate, but also to identify relevant information and
sort it from what is not, and to present a final product in a form both understandable and
useable.

While there is no existing parallel for such a capability, there have certainly been
fictionalized precedents to the idea behind GALE - the universal translator, capable of
translating between English and thousands of other languages, in the form of a compact
silver device worn on the chest of every Sar Trek crew member; the HAL 9000
computer, capable of reasoning and defending itself in 2001, Stanley Kubrick’s classic

vii

viii Introduction

futuristic film; and Sar Wars' robot C3PO, who speaks nearly every known language in
the universe.

For the purpose of research and development of automated translation and human
language processing capability in the GALE Program, language has been classified into
two input modes— speech and electronic text. A third important language input mode,
hardcopy document text, is the subject of another DARPA program. While research
related to each of GALE’s two input modes focuses on producing a correct translation
and extracting information, each mode of input presents singular problems that require
different research paths. Unlike text, which generally has orthographic separation, speech
signals are continuous, lacking word and phrase boundary markers. In speech, even
sentence boundaries are difficult to determine. In addition, the confusability of many
phonemes adds to the uncertainty. Because these difficulties are alleviated when a
computer carries out transcription using a more explicit orthographic system than those
used by human writers, machine translation researchers previously attempted to use
computers to transcribe speech into text and then translate that text.

In the GALE Program, researchers have begun to combine the processes of
transcription and translation, enabling information about possible translations to assist
transcription, and information about possible transcriptions and transcription ambiguities
to assist translation. An important benefit of using this method is that interactivity
between transcription and translation reduces instances of propagation of errors made
earlier in the process by providing opportunities for correction. This interactive technique
has yielded significant improvements in accuracy for both transcription and translation of
speech. In this way, GALE researchers have achieved revolutionary progress by
consistently and effectively blending previously distinct speech and text technologies.

Text input can also be problematic. In many languages, word boundaries are clear in
writing, but due to the lack of orthographic representation of other language elements,
such as prosody, it can still be difficult to know a writer’s intent. Scripts without word
boundaries introduce additional uncertainty in reading. Chinese writing, for example,
does not indicate word boundaries orthographically, a characteristic that can create
ambiguity. Semitic language scripts do indicate word boundaries, but often do not
include explicit vowel marking, thus creating ambiguities, since it can be uncertain which
vowels were intended. GALE researchers have undertaken extraordinary efforts to
address these and other obstacles in machine translation of text.

One of the greatest challenges in planning an approach for GALE was defining
precisely what tasks GALE’s natural language processing machines would be achieving.
Was it the ability to translate any language into English? Or was there an even higher
goal of retrieving what was relevant from the input? Would achieving such a goal mean
that GALE researchers would have to create technology that could extract relevant
information from translated material and operate on foreign language material directly?
Would GALE machines be able to perform all of these tasks well enough to enable
assessment and analysis of the volume of information now available to anyone connected
to the Internet or satellite television?

These questions have resulted in many challenges to GALE and refinements of the
program’s fundamental aspects.

Handbook of Natural Language Processing and Machine Translation iX

A Partial History of Human Language Technology Research at
DARPA

Author: Allen Sears

During the past four decades, DARPA has sponsored a wide variety of research on
human language technology — efforts that turned out to be stepping stones to GALE.

DARPA entered the speech recognition field in 1971 with the launch of the five-year
Speech Understanding Research (SUR) Program. Although its immediate impact was
limited, SUR included pioneering work with hidden Markov models, which lie at the
heart of all modern speech-to-text systems.

DARPA speech and text processing research proceeded at a relatively low level from
the late 1970s through the early 1980s, then accelerated in the second half of the 1980s.

On the speech side, the Spoken Language Program worked on automatic
transcription of grammatically constrained read speech with a 1000-word vocabulary,
advancing from speaker-dependent to speaker-independent transcription. In the early
1990s, the program moved on to include read speech from Wall Street Journal sentences,
progressing from a 5000-word vocabulary, through a 20,000-word vocabulary, to an
unlimited vocabulary. A companion program, WHISPER, made an initial foray into
automatic transcription of conversational telephone speech.

On the text side, the Written Language Program began working on technology to pull
facts out of short, semantically-constrained military reports. In the early and mid 1990s,
the TIPSTER program aggressively tackled the twin challenges of detecting relevant
documents and extracting information needed to fill templates, using naturally-occurring
English and Japanese documents as source data. And in the early 1990s, a modest
DARPA machine translation initiative explored competing approaches for translating
unconstrained foreign language text, laying important groundwork for future advances.

In the mid and late 1990s, DARPA’s Text, Radio, Video, Speech (TRVS) Program
worked on transcribing and analyzing broadcast news, emphasizing English, but
including some preliminary work on Arabic and Chinese. In the late 1990s, Topic
Detection and Tracking (TDT) attacked the problem of finding and following events
discussed in news reports. In the early 2000’s, Automatic Content Extraction (ACE)
made a fresh assault on the challenge of discovering and characterizing entities, relations
and events described in newswire plus automatically transcribed broadcast news.

Two major programs launched in the early 2000°s were particularly significant —

Effective, Affordable, Reusable Speech-to-Text (EARS) attacked challenges
posed by broadcast news and telephone conversations in English, Chinese, and Arabic.
In addition to improving the speed and accuracy of transcription, EARS worked on
automatic metadata extraction to make transcripts more readable by adding structure and
removing disfluencies.

Translingual Information Detection, Extraction, and Summarization (TIDES)
worked towards enabling English speakers to find and interpret required information
quickly and effectively regardless of language or medium. TIDES dealt with input from
a variety of sources including newswires and automatically transcribed broadcast news in

X Introduction

English, Arabic, and Chinese. It also included “surprise language experiments” that
showed how well and how quickly the technology could be ported to other languages.

To meet the challenges posed by real world data, DARPA researchers developed
increasingly sophisticated algorithms, moving away from symbolic approaches that relied
on hand-coded rules and towards statistical approaches that learned from large quantities
of sample data and were substantially language-independent. The shift from symbolic to
statistical approaches occurred over a number of years. It happened first in the speech
community, where a 1987 evaluation of automatic transcription algorithms put to rest the
notion that good speech-to-text systems could be built from hand-coded rules. The text
processing community followed suit, learning a great deal from the speech community.

Building on the advances in automatic transcription and translation achieved by
EARS and TIDES, DARPA produced two multilingual news monitoring systems (eTAP
and TALES) able to convert Arabic and Chinese broadcasts to English good enough for
English speakers to find relevant material. Deployed to military customers (CENTCOM
and PACOM), these systems were productively employed from 2004 onwards.

Three and a half decades of progress had begun to produce useful technology and
provided a strong foundation. It was time for a grander and more ambitious program,
GALE.

The GALE Program

Authors: Joseph Olive and Caitlin Christianson
Planning GALE

The most fundamental difference between GALE and its predecessor programs has
been its holistic integration of previously separate or sequential processes. In earlier
language programs, each of the individual component processes was carried out
individually: speech recognition, transcription, translation, information retrieval, content
extraction, and content presentation. GALE involves use of a distinctly new approach,
one by which researchers have sought to create systems able to execute these processes
simultaneously. Under this rubric, speech transcription algorithms aid translation and
vice versa. In addition, the processes of information retrieval, content extraction, and
content presentation have been joined into an activity referred to under GALE as
distillation, which has also been included in the interactive assistance framework of
transcription and translation. As is further detailed in the chapters that follow, this
combination of previously distinct processes has resulted in substantial technological
breakthroughs.

The GALE program focuses primarily on transcription, translation, and distillation of
information in two languages: Mandarin Chinese and Arabic. These two languages have
been chosen because of the high degree of difficulty posed by translation between each of
them and English, their relative linguistic distance from each other and from English, the
relatively high availability of data in both, and their immediate relevance to current
national security applications.

Handbook of Natural Language Processing and Machine Translation Xi

The Origin of the GALE Program

Around 2004, DARPA Director Anthony Tether asked two important questions
regarding human language technology programs at DARPA: who the end users were, and
at what level of accuracy the technologies would become useful. In part, these questions
arose from the reduction in word error rate (WER) that resulted from the EARS Program,
but it was not clear toward what goal this reduction was aimed. For dictation, WER
above 10 percent is not acceptable, but for a dialogue system, a much higher rate can be
tolerated as long as the system can enable a user to complete a specific task successfully.

Initial studies were conducted to determine answers to these questions, but the results
were not satisfactory, mainly due to the fact that the stimuli used did not represent a fine
enough grain to determine what level of accuracy was sufficient. For example, translation
quality testing was performed on only two intermediate levels of translation quality
between machine-generated translation quality and human-generated translation quality.
The stimuli consisted of translation in which either one or two of every three sentences
was machine generated and the remaining sentences were human generated.

To get better answers to the questions of language technology applications and the
quality of output required for these applications, it was necessary to design a new study.
With the help of retired Air Force Colonel Jose Negron, DARPA contacted Colonel
Rafael Sanchez-Carrasquillo, head of a group of language analysts at the Defense
Intelligence Agency to ask him if, based on his experience, he could answer DARPA’s
question about the level of accuracy at which a translation would become useful for
various analysis tasks. Colonel Sanchez-Carrasquillo agreed to provide assistance in
carrying out a study to determine the answer, so the next task was to create a set of
translations at accuracy levels between those of baseline machine translation and human
translation with quality gradations small enough to enable determination of the level of
accuracy necessary to enable performance of various tasks. With assistance from Kevin
Knight and Salim Roukos, two representatives of the machine translation community,
the following process was created. First, machine translation was corrected by a human
so that the edited translation reflected the meaning of the original document. Dividing
the number of edits by the number of words in the translated passage resulted in an
accuracy value of 55 percent for both Arabic and Spanish. Randomly-selected errors
were then removed 5 percent at a time to create ten translations, ranging from 55 percent
to 100 percent accurate relative to the human-translated standard. These translations of
varying accuracy were then presented to analysts from the intelligence community and
Defense Department, who were asked to determine what quality of translation would be
appropriate for gisting, triage, editing, or use without any alteration. While there was no
overwhelming consensus among the analysts as to the level of accuracy at which a
translation was felt to be useful, there was a sense that an accuracy level between 75
percent and 80 percent was required to gain a basic understanding of the meaning of a
passage. For a translation to be truly useful, however, the intelligence analysts chose the
90 percent mark. They stated that with translation at or above a 90 percent accuracy
level, they would choose to work with an existing translation, making edits improve its
quality, rather than starting from scratch. The 90" percentile was therefore determined to

Xii Introduction

be the standard for a translation to be deemed edit-worthy, and would become an
important programmatic target for GALE. It is important to note, however, that
translations created by human professionals often do not meet this mark without multiple
stages of revision.

Evaluation under GALE

Prior to GALE, many translation programs relied on the BLEU metric (See Section
5.2.2.2), an automatic system for evaluating translation quality by counting word or word
group matches between a machine-generated translation and multiple human-created
translations. The fact that this means of evaluation was automatic rather than manual
allowed algorithm developers to conduct numerous experiments in a relatively short
period of time, which enabled great progress in machine translation. Despite comparing
each machine translation to multiple human translations, however, there was no
guarantee that scores generated by BLEU would correlate with preservation of the
meaning of the source-language document in the translation.

Instead of using an automatic metric, it was determined that GALE machine
translation systems would be evaluated on the basis of whether their output accurately
conveyed the correct meaning of the source language in English, allowing for different
but equivalent word choice and word order. The evaluation standard used in GALE has
become known as human translation error rate (HTER) and is based on edit distance. For
GALE purposes, edit distance is determined as the number of edits an editor is required
to make to a machine-generated translation for it to accurately reflect the meaning of a
corresponding highly perfected human translation created through multiple translators
and multiple levels of revision, i.e. a “gold standard” translation. The process for
creating gold standard translations was developed in cooperation with National Virtual
Translation Center Technology Director Kathleen Egan and Stephanie Strassel of the
Linguistic Data Consortium.

The ultimate goal of the GALE Program has been set as achievement of 95 percent
accuracy in translation of Arabic and Chinese newswire text and broadcast news speech
into English text. Also, in response to requirements gathered from potential users of
GALE technologies, additional genres have been added, such as talk shows, newsgroups,
and weblogs. For these less formal genres, which pose a higher degree of difficulty to
both human translators and machine translation systems than do the more formal genres,
target accuracy has been set at 85 percent. At the end of GALE’s first year, the goals for
that year had been achieved, but DARPA’s director revised the targets to make the task
more difficult by specifying that future target accuracy levels would not be averages, but
minimums that had to be met for a certain percentage of documents in each test set. The
resulting goals follow a gradually increasing scale, specifying that translation accuracy of
95 percent must be achieved for 95 percent of documents in the relevant test set for
newswire, with slightly lower targets for the other, more difficult genres (See section
5.4.4.8.1 for all GALE targets).

To accomplish these ambitious targets for speech input, it was proposed that there be
combination of translation and transcription technologies, which had previously been
developed separately, so that errors in transcription would not necessarily be

Handbook of Natural Language Processing and Machine Translation xiii

irrecoverable in translation. For all translation, it was also proposed that there be
incorporation of a variety of algorithms, including algorithms relating to morphology,
syntax, semantics, and topic-dependent language models. In GALE, researchers have
also stopped relying on the unsustainable process of developing extremely large parallel
corpora, for which matching sets of heavily annotated transcripts in both English and a
corresponding foreign language must be obtained or created. This step has been taken
under GALE due to the fact that although machine translation accuracy does increase
when systems are trained with increasingly large amounts of parallel data, each degree of
accuracy improvement requires an exponentially larger amount of data.

GALE Data

The approach adopted in GALE represents a shift from the concept of employment of
increasingly large amounts of data to the use of smaller amounts of richer data. As there
was already a huge amount of newswire and broadcast news parallel data at the beginning
of the program, some new data has been added to these genres, but the greatest portion of
the funds for data collection have been invested in targeted collection of data to address
particular areas of difficulty, as well as annotation, such as treebanks, propbanks, careful
text alignment, etc. In addition, corpora used in GALE have been augmented by addition
of collections from other language programs such as the Text Retrieval Evaluation
Conference.

GALE Distillation

In view of the ever-increasing amount of information confronting those responsible
for maintaining the security of the United States, the decision was made that GALE
would not just address the most immediate challenges in human language processing of
transcription and translation, but also take human language technology research a step
further, towards determining how to use all the new information made accessible by
automatic transcription and translation.

To answer this challenge, GALE has included, as a second and integral step in the
language processing paradigm, the assessment, analysis, and presentation of translation
results in an easily readable and coherent format. This process consists of a combination
of information retrieval, content extraction, and content presentation, which have been
collectively termed distillation. Distillation is a concept entirely new in GALE, in which
relevant information is extracted from foreign language and English input and concisely
presented to the user in English. GALE distillation is not just a key-word search, and
does not involve summarization. Instead, it consists of utilization of language analysis to
identify information relevant to a user's query, with the aim of extracting all available
relevant information without redundancy and presenting it to the user in a functional
form.

Because warfighters and analysts often face time pressure, they do not have the
luxury of wading through many documents that present similar information. Therefore,
GALE distillation entails placing particular importance on targeted searches and
elimination of redundant results. GALE distillation includes a goal of combining

Xiv Introduction

redundant results and presenting users with a single, distilled version of what is
important, accompanied by multiple citations. Depending on the intended task of a user —
enabling military operations, conducting intelligence analysis, assisting policy
formulation, monitoring foreign perceptions — GALE systems are required to provide a
customized version of a given set of data, saving users hours, if not days or weeks, and
allowing a user’s valuable energy and insight to be focused on only the most important
information. Through translation in combination with distillation, GALE systems are
intended to increase the number of sources of information available by translating
previously inaccessible foreign language data and the efficiency of system users in
employing this newly-available data to conduct whatever task is required.

Like the GALE translation goals, GALE distillation performance targets have also
been set very high, with a final target of 95 percent recall and 90 percent precision. To
give system performance a meaningful standard of measurement, computer distillation
performance is compared to that of a human given the same requirements.

The research detailed in this book shows a snapshot of the results of the first three
years of groundbreaking progress under the GALE Program. As of the writing of this
book, two years of GALE research remain.

Contents

1 Data Acquisition and LinQUIStiC RESOUICES...........cccerveieiiniriie e 1
1.1 INEFOTUCTION ..ttt bbbt 1
1.2 Data Collection, Distribution, and Management.............ccocevcvreereneeieneseeneneenns 2
1.3 HUMAN ANNOLALIONoviiiiiiecece et s 14
1.4 AUtOMAtIC ANNOTATIONiiviiiieieieise e 64

2 Machine Translation from TeXtccccviiiiiiiiiceee e 133
P20 A 111 oo 13 Tod 1 o] o OSSPSR 133
2.2 Segmentation, Tokenization and PreproCessing........ccooevevveveresieesesesivesennens 135
2.3 WOId ATIGNMENT ..o eee s 164
2.4 Translation MOUEISooi i s 183
2.5 Language Modeling fOr SMT ..o 252
2.6 Search and COMPIEXITYooveiiiiiiirieee e 271
2.7 Adaptation and Data SEIECTION...........cociiiriiiieieisie e 297
2.8 System COMDBINALIONcccuiiiiieece e e e e reenreeas 324

3 Machine Translation from SPEECHccoeiiiiiiiiiine e 399
TS0 A 111 T [T oo SRS 399
3.2 Front ENA FRATUIESeouiiiiiieite ettt 401
3.3 Improved Speech AcOUStIC MOUEIScccveveiiiiciecece e 428
3.4 Language MOUEIS........c.oiiiiiei e 460
3.5 Language-Specific Models and Systems: Mandarin............ccccoceovvvvninncnencnnenn 485
3.6 Language-Specific Models and Systems: ArabiC...........ccccevevieiiiiveciiie e 520
3.7 Integration of Speech Recognition and Translationccccocvvneiencicinnnn 569

I 11 411 - U o] o SRR 617
o R 101 (T [N Tox o] OSSP 617
4.2 Template-Based Query DeVEIOPMENT.......c.cccvcveiiieiiieieceese s 618
4.3 Architecture and Implementation of a Distillation System............ccccccoevevrrnne 623
4.4 Enabling Technology Breakthroughs to Improve Distillation Capabilities........ 636
4.5 Distillation in an Integrated GALE SyStem.......cccvoiiiiiniiiiin e 690
4.6 Evaluating Distillation TEChNOIOGYccccooeiiiiininiiee s 716

5 Machine Translation Evaluation and Optimization............cccoeevievievievieninennn. 745
T8 A 111 oo [0 Tox 1 o] o OSSPSR 745
5.2 Automatic and Semi-Automatic MEASUIESccervreerereeiene e 758
5.3 Tasks and Human-in-the-Loop MEaSUIESc.ccvevvereerieeiie e enieesieesieeseneneeens 768

XV

XVi Contents

5.4 GALE Machine Translation Metrology: Definition, Implementation,

AN CaICUIALION ... 783

5.5 Use of Evaluation for Optimizationcccccovveieiieiiere i 812
5.6 Searching for Better Automatic MT MEtIiCSccovvirireriieieisse e 818

6 OPerational ENQINESccviiieieieciece sttt 845
G T A 11 oo [0 Tod o] USROS 845
6.2 Implementation of Operational ENGINEScccoooeiiiiieiieii e 846
6.3 Evaluation of Operational ENQINESccoiveiieieciiec e se s see e 905

CoNCIUAING REMATKS ..ottt 933

Contributors

Abhaya Agarwal Carnegie Mellon University, Pittsburgh, PA, USA

Jaewook Ahn University of Pittsburgh, Pittsburgh, PA, USA

James Allan University of Massachusetts Amherst, Amherst, MA, USA
Abhishek Arun University of Edinburgh, Edinburgh, UK

Sabine Atwell Defense Language Institute, Monterey, CA, USA

Necip Fazil Ayan SRI International, Menlo Park, CA, USA

Olga Babko-Malaya BAE Systems, Burlington, MA, USA

Robert Belvin HRL Laboratories, Malibu, CA, USA

Oliver Bender RWTH Aachen University, Aachen, Germany

Ann Bies Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA
Daniel M. Bikel IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Maximilian Bisani RWTH Aachen University, Aachen, Germany

Matthias Blume Fair Isaac Corporation, San Diego, CA, USA

Roger Bock BBN Technologies, Cambridge, MA, USA

Elizabeth Boschee BBN Technologies, Cambridge, MA, USA

Sebastién Bronsart National Institute of Standards and Technology, Gaithersburg, MD,
USA

Peter Brusilovsky University of Pittsburgh, Pittsburgh, PA, USA
William Byrne Cambridge University, Cambridge, UK
Marine Carpuat Columbia University, New York, NY, USA

Christopher Caruso Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

Vittorio Castelli IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Ozgur Cetin International Computer Science Institute, Berkeley, CA, USA
Achraf Chalabi Sakhr Software, Vienna, VA, USA

Pi-Chuan Chang Stanford University, Stanford, CA, USA

Upendra V. Chaudhari IBM T. J. Watson Research Center, Yorktown Heights, NY,
USA

Caitlin Christianson Defense Advanced Research Projects Agency, Arlington, VA, USA

XVii

XViii Contributors

Stephen M. Chu IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Christopher Cieri Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

Sean Colbath BBN Technologies, Cambridge, MA, USA

Steve DeNeefe Information Sciences Institute, University of Southern California,
Los Angeles, CA, USA

Michael Denkowski Carnegie Mellon University, Pittsburgh, PA, USA
Thomas Deselaers RWTH Aachen University, Aachen, Germany
Mona T. Diab Columbia University, New York, NY, USA

Frank Diehl Cambridge University, Cambridge, UK

Dan Ding Defense Language Institute, Monterey, CA, USA

Denise DiPersio Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

Bonnie Dorr University of Maryland, College Park, MD, USA

Loic Dugast SYSTRAN Software, Inc., San Diego, CA, USA

Chris Dyer University of Maryland, College Park, MD, USA

Abdessamad Echihabi Language Weaver, Los Angeles, CA, USA

Kathleen Egan Department of Defense, USA

Jason Eisner Johns Hopkins University, Baltimore, MD, USA

Ahmad Emami Johns Hopkins University, Baltimore, MD, USA

Edward A. Epstein IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Reem Faraj Columbia University, New York, NY, USA

Arlo Faria International Computer Science Institute, Berkeley, CA, USA

Benoit Favre International Computer Science Institute, Berkeley, CA, USA

David Ferrucci IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Radu Hans Florian IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
George Foster National Research Institute of Canada, Saskatoon, SK, Canada
Connie Fournelle BAE Systems, Burlington, MA, USA

Petr Fousek IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Marjorie Freedman BBN Technologies, Cambridge, MA, USA

Dayne Freitag Fair Isaac Corporation, San Diego, CA, USA

Handbook of Natural Language Processing and Machine Translation Xix

Lauren Friedman Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

Mark Fuhs Carnegie Mellon University, Pittsburgh, PA, USA

Pascale Fung The Hong Kong University of Science and Technology, Hong Kong,
China

Mark J.F. Gales Cambridge University, Cambridge, UK
Michel Galley Stanford University, Stanford, CA, USA
Jianfeng Gao Microsoft Corporation, Redmond, WA, USA
Qin Gao Carnegie Mellon University, Pittsburgh, PA, USA

Jean-Luc Gauvain The Computer Sciences Laboratory for Mechanics and Engineering
Sciences (LIMSI), Orsay Cedex, France

Niyu Ge IBM T.J. Watson Research Center, Yorktown Heights, NY, USA
Daniel Gillick International Computer Science Institute, Berkeley, CA, USA
Adria de Gispert Cambridge University, Cambridge, UK

Meghan Lammie Glenn Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

Christian Gollan RWTH Aachen University, Aachen, Germany
Martin Graciarena SRI International, Menlo Park, CA, USA
Jonathan Grady University of Pittsburgh, Pittsburgh, PA, USA
John Graettinger BBN Technologies, Cambridge, MA, USA

Stephen Grimes Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

Ralph Grishman New York University, New York, NY, USA

Francisco Guzman Carnegie Mellon University, Pittsburgh, PA, USA

Nizar Habash Columbia University, New York, NY, USA

Dilek Hakkani-Tur International Computer Science Institute, Berkeley, CA, USA
Greg Hanneman Carnegie Mellon University, Pittsburgh, PA, USA

Mary Harper University of Maryland, College Park, MD, USA

SaSa Hasan RWTH Aachen University, Aachen, Germany

Daqing He University of Pittsburgh, Pittsburgh, PA, USA

Kenneth Heafield Carnegie Mellon University, Pittsburgh, PA, USA

Georg Heigold RWTH Aachen University, Aachen, Germany

XX Contributors

Hynek Hermansky International Computer Science Institute, Berkeley, CA, USA

Martha Herzog Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,
MA, USA

Almut Silja Hildebrand Carnegie Mellon University, Pittsburgh, PA, USA
Dustin Hillard University of Washington, Seattle, WA, USA

Julia Hirschberg Columbia University, New York, NY, USA

Hieu Hoang University of Edinburgh, Edinburgh, UK

Bjorn Hoffmeister RWTH Aachen University, Aachen, Germany

Jon Holbrook Aptima, Inc., Woburn, MA, USA

Eduard Hovy Information Sciences Institute, University of Southern California,
Los Angeles, CA, USA

Roger Hsiao Carnegie Mellon University, Pittsburgh, PA, USA

Fei Huang IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Zhonggiang Huang University of Maryland, College Park, MD, USA

Dan Hunter BAE Systems, Burlington, MA, USA

Mei-Yuh Hwang University of Washington, Seattle, WA, USA

Hussny Ibrahim Defense Language Institute, Monterey, CA, USA

Abraham Ittycheriah IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Heng Ji New York University, New York, NY, USA

Qin Jin Carnegie Mellon University, Pittsburgh, PA, USA

Doug Jones Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,
MA, USA

Jeremy Kahn University of Washington, Seattle, WA, USA

Damianos Karakos Johns Hopkins University, Baltimore, MD, USA

Shahram Khadivi RWTH Aachen University, Aachen, Germany

Sanjeev Khudanpur Johns Hopkins University, Baltimore, MD, USA

Daniel Kiecza BBN Technologies, Cambridge, MA, USA

Brian Kingsbury IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Katrin Kirchhoff University of Washington, Seattle, WA, USA

Judith L. Klavans University of Maryland, College Park, MD, USA

Kevin Knight Information Sciences Institute, University of Southern California,
Los Angeles, CA, USA

Handbook of Natural Language Processing and Machine Translation XXi

Philipp Koehn University of Edinburgh, Edinburgh, UK

Gary Krug Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA,
USA

Roland Kuhn National Research Institute of Canada, Saskatoon, SK, Canada

Seth Kulick Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA,
USA

Hong-Kwang Kuo IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Lori Lamel The Computer Sciences Laboratory for Mechanics and Engineering
Sciences (LIMSI), Orsay Cedex, France

lan Lane Carnegie Mellon University, Pittsburgh, PA, USA
Alon Lavie Carnegie Mellon University, Pittsburgh, PA, USA
Audrey Le National Institute of Standards and Technology, Gaithersburg, MD, USA

Haejoong Lee Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

Xin Lei SRI International, Menlo Park, CA, USA

Gregor Leusch RWTH Aachen University, Aachen, Germany

Michael Levit International Computer Science Institute, Berkeley, CA, USA
Burn L. Lewis IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Xuansong Li Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

Zhifei Li Johns Hopkins University, Baltimore, MD, USA

Martha Lillie BBN Technologies, Cambridge, MA, USA

Xunying Andrew Liu Cambridge University, Cambridge, UK

Chi-kiu Lo The Hong Kong University of Science and Technology, Hong Kong, China
Tomasz Loboda University of Pittsburgh, Pittsburgh, PA, USA

Jun Luo University of Maryland, College Park, MD, USA

Xiaogiang Luo IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Jeff Ma BBN Technologies, Cambridge, MA, USA

Weiyun Ma Columbia University, New York, NY, USA

Xiaoyi Ma Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA, USA

Mohamed Maamouri Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

Jessica MacBride BBN Technologies, Cambridge, MA, USA

XXii Contributors

Nitin Madnani University of Maryland, College Park, MD, USA
Carl Madson SRI International, Menlo Park, CA, USA

Kazuaki Maeda Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

John Makhoul BBN Technologies, Cambridge, MA, USA

Arindam Mandal SRI International, Menlo Park, CA, USA

Lidia Mangu IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Christopher D. Manning Stanford University, Stanford, CA, USA

Daniel Marcu Language Weaver, Los Angeles, CA, USA

Mitchell Marcus University of Pennsylvania, Philadelphia, PA, USA
Marie-Catherine de Marneffe Stanford University, Stanford, CA, USA
Spyros Matsoukas BBN Technologies, Cambridge, MA, USA

Evgeny Matusov RWTH Aachen University, Aachen, Germany

Arne Mauser RWTH Aachen University, Aachen, Germany

Andrea Mazzucchi Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

Abdelkhalek Messaoudi The Computer Sciences Laboratory for Mechanics and
Engineering Sciences (LIMSI), Orsay Cedex, France

Scott McCarley IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
John McCary Defense Advanced Research Projects Agency, Arlington, VA, USA
Kathleen McKeown Columbia University, New York, NY, USA

Calandra Tate Moore University of Maryland, College Park, MD, USA

Nelson Morgan International Computer Science Institute, Berkeley, CA, USA
Smaranda Muresan Rutgers University, New Brunswick, NJ, USA

Hazem Nader Sakhr Software, Vienna, VA, USA

Udhyakumar Nallasamy Carnegie Mellon University, Pittsburgh, PA, USA
Prem Natarajan BBN Technologies, Cambridge, MA, USA

Hermann Ney RWTH Aachen University, Aachen, Germany

Tim Ng BBN Technologies, Cambridge, MA, USA

Kham Nguyen BBN Technologies, Cambridge, MA, USA

Long Nguyen BBN Technologies, Cambridge, MA, USA

Jan Niehues Institute for Theoretical Computer Science, Zirich, Switzerland

Handbook of Natural Language Processing and Machine Translation XXiii

Mohamed Noamany Carnegie Mellon University, Pittsburgh, PA, USA

Eric Nyberg Carnegie Mellon University, Pittsburgh, PA, USA

Douglas W. Oard University of Maryland, College Park, MD, USA

Joseph Olive Defense Advanced Research Projects Agency, Arlington, VA, USA
Mari Ostendorf University of Washington, Seattle, WA, USA

Sebastian Pado Stanford University, Stanford, CA, USA

Martha Palmer University of Colorado at Boulder, Boulder, CO, USA

Kishore Papineni IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Junho Park Cambridge University, Cambridge, UK

Robert Parker Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

Alok Parlikar Carnegie Mellon University, Pittsburgh, PA, USA

Kristen Parton Columbia University, New York, NY, USA

Matthias Paulik Carnegie Mellon University, Pittsburgh, PA, USA

Jason Pelecanos IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
John F. Pitrelli IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Christian Plahl RWTH Aachen University, Aachen, Germany

Daniel Povey Microsoft Corporation, Redmond, WA, USA

Sameer Pradhan BBN Technologies, Cambridge, MA, USA

Mark Przybocki National Institute of Standards and Technology, Gaithersburg, MD,
USA

Leiming Qian IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Yong Qin IBM China Research Lab, Beijing, China

Jerry Quinn IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Anna N. Rafferty University of California, Berkeley, CA, USA

Owen Rambow Columbia University, New York, NY, USA

Lance Ramshaw BBN Technologies, Cambridge, MA, USA

Suman Ravuri Columbia University, New York, NY, USA

Philip Resnik University of Maryland, College Park, MD, USA

Eric Riebling Carnegie Mellon University, Pittsburgh, PA, USA

Brian Roark Oregon Health & Sciences University, Portland, OR, USA

XXV Contributors

Monica Rogati Carnegie Mellon University, Pittsburgh, PA, USA
Antti-Veikko I. Rosti BBN Technologies, Cambridge, MA, USA

Ryan M. Roth Columbia University, New York, NY, USA

David Rybach RWTH Aachen University, Aachen, Germany

Salim Roukos IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Fatiha Sadat University of Quebec Montreal, Montreal, QC, Canada

Rami Safadi Sakhr Software, Vienna, VA, USA

Guruprasad Saikumar BBN Technologies, Cambridge, MA, USA

William Salter Aptima, Inc., Woburn, MA, USA

Gregory Sanders National Institute of Standards and Technology, Gaithersburg, MD,
USA

George Saon IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Ralf Schliter RWTH Aachen University, Aachen, Germany

Tanja Schultz Carnegie Mellon University, Pittsburgh, PA, USA

Richard Schwartz BBN Technologies, Cambridge, MA, USA

Holger Schwenk University of Le Mans, Le Mans, France

Allen Sears Corporation for National Research Initiatives, Reston, VA, USA
Jean Senellart SYSTRAN Software, Inc., San Diego, CA, USA

Libin Shen BBN Technologies, Cambridge, MA, USA

Wade Shen Lincoln Laboratory, Massachusetts Institute of Technology, Lexington,
MA, USA

Qin Shi IBM China Research Lab, Beijing, China

Heather Simpson Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

Adish Singla International Computer Science Institute, Berkeley, CA, USA
Jason Smith Johns Hopkins University, Baltimore, MD, USA

Matthew Snover University of Maryland, College Park, MD, USA

Dagobert Soergel University of Maryland, College Park, MD, USA

Hagen Soltau IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Zhiyi Song Linguistic Data Consortium, University of Pennsylvania, Philadelphia, PA,
USA

Jeffrey Sorensen IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Handbook of Natural Language Processing and Machine Translation XXV

Amit Srivastava BBN Technologies, Cambridge, MA, USA

William Staderman Defense Advanced Research Projects Agency, Arlington, VA,
USA

Daniel Stein RWTH Aachen University, Aachen, Germany
Jens Stephan SYSTRAN Software, Inc., San Diego, CA, USA
Andreas Stolcke SRI International, Menlo Park, CA, USA

Stephanie Strassel Linguistic Data Consortium, University of Pennsylvania,
Philadelphia, PA, USA

David Svoboda Carnegie Mellon University, Pittsburgh, PA, USA
Yik-Cheung Tam Carnegie Mellon University, Pittsburgh, PA, USA
Christoph Tillmann IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Marcus Tomalin Cambridge University, Cambridge, UK

Kristina Toutanova Microsoft Corporation, Redmond, WA, USA

Gokhan Tur SRI International, Menlo Park, CA, USA

Nicola Ueffing National Research Institute of Canada, Saskatoon, SK, Canada
Fabio Valente IDIAP Research Institute, Martigny, Switzerland

Dimitra Vergyri SRI International, Menlo Park, CA, USA

David Vilar RWTH Aachen University, Aachen, Germany

Paola Virga IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Stephan Vogel Carnegie Mellon University, Pittsburgh, PA, USA

Clare Voss University of Maryland, College Park, MD, USA

Kevin Walker Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

Lan Wang Cambridge University, Cambridge, UK

Wei Wang Language Weaver, Los Angeles, CA, USA

Wen Wang SRI International, Menlo Park, CA, USA

Zhigiang (John) Wang Fair Isaac Corporation, San Diego, CA, USA

Todd Ward IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Ralph Weischedel BBN Technologies, Cambridge, MA, USA

James V. White BAE Systems, Burlington, MA, USA

William Wong Language Weaver, Los Angeles, CA, USA

Phillip C. Woodland Cambridge University, Cambridge, UK

XXVi Contributors

Dekai Wu The Hong Kong University of Science and Technology, Hong Kong, China
Wei Wu University of Washington, Seattle, WA, USA

Zhaojun Wu The Hong Kong University of Science and Technology, Hong Kong,
China

Eric P. Xing Carnegie Mellon University, Pittsburgh, PA, USA

Jia Xu RWTH Aachen University, Aachen, Germany

Jinxi Xu BBN Technologies, Cambridge, MA, USA

Nianwen Xue Brandeis University, Waltham, MA, USA

Sibel Yaman International Computer Science Institute, Berkeley, CA, USA
Jin Yang SYSTRAN Software, Inc., San Diego, CA, USA

Yiming Yang Carnegie Mellon University, Pittsburgh, PA, USA

Yongsheng Yang The Hong Kong University of Science and Technology, Hong Kong,
China

Kai Yu Cambridge University, Cambridge, UK

Dalal Zakhary Linguistic Data Consortium, University of Pennsylvania, Philadelphia,
PA, USA

Alex Zamanian BBN Technologies, Cambridge, MA, USA

Rabih Zbib BBN Technologies, Cambridge, MA, USA

Richard Zens RWTH Aachen University, Aachen, Germany

Bing Zhang BBN Technologies, Cambridge, MA, USA

Pengyi Zhang University of Maryland, College Park, MD, USA

Shilei Zhang IBM China Research Lab, Beijing, China

Ying Zhang Carnegie Mellon University, Pittsburgh, PA, USA

Bing Zhao IBM T. J. Watson Research Center, Yorktown Heights, NY, USA
Sherry Zhao International Computer Science Institute, Berkeley, CA, USA
Jing Zheng SRI International, Menlo Park, CA, USA

Imed Zitouni IBM T. J. Watson Research Center, Yorktown Heights, NY, USA

Contributor affiliations are as of when the work described in this book was performed.

Chapter 1: Data Acquisition and Linguistic
Resources

Editors: Stephanie Strassel, Caitlin Christianson, John McCary, William Staderman, and Joseph Olive

1.1 Introduction

Author: Stephanie Strassel

All human language technology demands substantial quantities of data for system
training and development, plus stable benchmark data to measure ongoing progress.
While creation of high quality linguistic resources is both costly and time consuming,
such data has the potential to profoundly impact not just a single evaluation program but
language technology research in general. GALE's challenging performance targets de-
mand linguistic data on a scale and complexity never before encountered. Resources cov-
er multiple languages (Arabic, Chinese, and English) and multiple genres -- both struc-
tured (newswire and broadcast news) and unstructured (web text, including blogs and
newsgroups, and broadcast conversation). These resources include significant volumes of
monolingual text and speech, parallel text, and transcribed audio combined with multiple
layers of linguistic annotation, ranging from word aligned parallel text and Treebanks to
rich semantic annotation.

The GALE Program's ever-evolving technology goals have demanded a robust, flex-
ible, scalable data pipeline. Over the life of the program, resource creation has become
more efficient and adaptive, with increased emphasis on automation and utilization of
emergent GALE technology to improve and augment the data creation process. Since the
effort involved in linguistic resource creation is significant, coordination is critical. So
that data tagged in one task is readily available for exploitation in the next, GALE re-
quired implementation of an end-to-end annotation strategy resulting in selected data be-
ing consecutively transcribed, translated, word-aligned, and Treebanked, made available
for semantic annotation, then tagged for information content under the distillation task.
This pipelined approach has not only reduced costs but also offered the opportunity to
learn from multiple types of annotation carried out on the same source data. Also, be-
cause volume demands are high and resources necessarily limited, considerable effort has
been expended to utilize found data and to build upon existing resources wherever possi-
ble. Finally, all GALE linguistic data has been developed with broader distribution in
mind. This legacy of data has the promise of empowering research for many years to
come.

Section 1.2 covers the topic of data resource management, including large-scale
broadcast and text data collection. In order to meet the need of performers for more va-
ried, targeted, open-source data against which to test and train their systems, the Linguis-
tic Data Consortium (LDC) devised an unparalleled foreign language media collection

J. Olive et al. (eds.), Handbook of Natural Language Processing and Machine Translation, 1
DOI 10.1007/978-1-4419-7713-7_1, © Springer Science+Business Media, LLC 2011

2 Chapter 1: Data Acquisition and Linguistic Resources

strategy literally spanning the globe, with collection sites in the United States, North
Africa, Asia, and elsewhere. Beyond data collection, LDC has managed distribution of
hundreds of GALE corpora to dozens of sites, ensuring appropriate protections on blind
test data, releases of data designated for official use only, and other restricted data sets,
and implementing new approaches to enable sharing of resources within and across
GALE teams. Creation of these many resources has also required new technical solutions,
including infrastructure for data management, collection, annotation, and distribution.

Section 1.3 covers the wide range of human annotation tasks applied to the data col-
lected under GALE. Human annotation employed under GALE ranges from simple to
complex and from well-established to novel:

1. Integrated transcription and translation of training and test data (Section
1.3.1)

Parallel corpora manually aligned at the word level (Section 1.3.2)
Distillation queries and answers (Section 1.3.3)

New approaches to Treebanking (Section 1.3.4)

Integrated syntactic and semantic annotations, including parse trees, proposi-
tions, coreference, names, and word senses (Section 1.3.5).

a0

Section 1.4 includes reports on the use of algorithms for automatic annotation of data.
This topic is explored with regard to rich transcription of speech, segmenting and parsing
Arabic, Chinese word segmentation in the context of parsing, and parsing spoken
Chinese.

1.2 Data Collection, Distribution, and Management

1.2.1. Large Scale Multilingual Broadcast Data Collection to
Support Machine Translation and Distillation
Technology Development

Authors: Kevin Walker, Christopher Caruso, and Denise DiPersio

1.2.1.1. Choosing Broadcast Sources

LDC’s local collection

In the beginning of the GALE program, LDC’s priority was ramping up collection to
meet program targets, i.e., 1000 hours each of broadcast news (BN) and broadcast con-
versation (BC) in each of Arabic, Chinese and English.. Later, LDC added additional
receivers to the collection system to increase the range of its Arabic collection, respond-
ing to sponsor requests for greater representation of programming across the Arabic-
speaking region, particularly, the Gulf region and Irag. A number of Arabic sources were
available from free-to-air (FTA) satellites transmitting over the Philadelphia area. LDC
designed program surveys of the various sources that ran roughly twice per hour for sev-

Handbook of Natural Language Processing and Machine Translation 3

eral days, since these types of channels do not maintain scheduling information. LDC
also coordinated with Hong Kong University of Science and Technology (HKUST), Me-
dianet in Tunisia and MTC/ELRA in Morocco to obtain additional sources.

LDC’s GALE broadcast collection includes programming from the 26 Arabic
sources, 13 Chinese sources, and 3 English sources. Table 1.1 shows the combined total
number of hours of broadcast programming collected by LDC and remote sites in the first
four years of the GALE program through December 2009.

P1 Hours P2Hours P3Hours P4 thru12/09

1Arabic BN 751 3896 3944 4940
Arabic BC 700 2813 3125 3153
Chinese BN 918 1231 1055 1452
Chinese BC 1242 1484 1427 1729
English BN 558 655 632 511

English BC 1041 1234 1035 1351

Table 1.1: LDC broadcast collection for GALE

LDC’s outsourced collection

GALE’s goal to create end-to-end language systems meant that the broadcast collec-
tion should incorporate programming from as wide a variety of sources as possible. Ac-
cordingly, LDC obtained data collection assistance from several groups located within
geographical areas of interest with access to targeted satellite and local programming.
LDC’s broadcast collection programmer designed a portable collection platform that was
deployed outside of the continental US.

1.2.1.2. Broadcast Collection System Design and Operation

Part of the design intent driving the development of LDC’s broadcast collection sys-
tem was that it be modular and regularized. That meant that all of the recording nodes
should be interchangeable, that filenames and database fields should follow consistent,
formal rules and that signal interconnects should be consistent. The receivers feed into an
audio/video (A/V) matrix switch so that any source can be routed to any receiver simply
by changing an entry in the schedule.

Initial recordings consist of video, stereo audio, and, in the case of English source,
closed captions. LDC collects both audio and video data for each recording so that this
material can be reusable for a variety of research purposes and because having access to
the video portion of a given broadcast aids troubleshooting system functions and makes
auditing more reliable, more efficient, and less error-prone. Recordings are typically tran-
scoded to MPEG-4/AVC at 1Mbps shortly after capture.

The collections system is illustrated in the block diagram in Figure 1.1.

4 Chapter 1: Data Acquisition and Linguistic Resources

Figure 1.1: LDC Broadcast Collection Functional Block Diagram

Collection database

The database is the heart of the collection and contains all essential information: it is
a history of all of the recordings that have been made; it has configuration and status in-
formation for all recorders; it has information about all receivers and associates specific
programs of interest with the appropriate receiver; it contains a schedule of all recording
jobs that need to be executed, along with their status; and finally, it stores all audit judg-
ments associated with a given recording. Figure 1.2 depicts the collection database.

1.2.1.3. Automatic Speech Recognition (ASR) Technology

LDC has integrated three client ASR systems (from GALE research sites BBN, IBM
and SRI) into its daily collection processes for the duration of the GALE program. Tran-
scripts are automatically generated on the BBN and IBM systems for all locally-collected
Arabic and Chinese audio data. The text output is used for downstream data selection.
Audio data from LDC’s remote broadcast collections is not processed daily due to time
constraints, but is instead run as needed as part of the GALE evaluation data selection
process. Data is processed on the SRI system by request.

Handbook of Natural Language Processing and Machine Translation 5

Locally-collected broadcasts are automatically pooled onto a centralized server as
they are recorded and processed. This server then supplies the extracted audio portions to
the different ASR systems which generate transcripts for the previous day's broadcasts.

Figure 1.2: Broadcast Collection Database Entity Relationship Diagram

1.2.1.4. Portable Broadcast Collection Platform

LDC'’s portable broadcast collection platform is a digital video recording (DVR) sys-
tem capable of recording two streams of A/V material simultaneously. It supports analog
CATV (NTSC and PAL) and FTA DVB-S satellite programming and is capable of oper-
ating outside of the United States. It has a very small footprint and is suitable for trans-
portation as a piece of carry-on luggage. The portable platform and the main LDC collec-
tion system share the same code base and rely on a modular, unified hardware specifica-

6 Chapter 1: Data Acquisition and Linguistic Resources

tion. Improvements in the main collection platform, therefore, translate into benefits for
both platforms.

1.2.1.5. Conclusion

Using a highly-automated design and open source utilities, the GALE broadcast col-
lection system represents a significant achievement in delivering volumes of high-quality
broadcast data from multiple programming sources and geographic locations. The system
has performed impressively. Through GALE Phase 3, LDC had delivered over 11,000
hours of broadcast audio to GALE research sites. A large portion of that data has been
transcribed and translated as well, thus providing the GALE community with a consider-
able quantity of training, devtest and evaluation data.

1.2.2. Text Collection for Volume

Authors: Haejoong Lee, Denise DiPersio, and Robert Parker

1.2.2.1. Web Data Collection

GALE has required huge amounts of web data. With the launch of the program, the
goal was to collect two million words for each language. To date, the number has in-
creased to twenty million words for each language. LDC developed a web data collection
framework to support GALE. The web collection project for GALE currently collects
data from 47,857 weblogs or newsgroups, which are hosted by 94 web sites using the
framework.

In this section, we describe the details of the framework, and discuss benefits and li-
mitations of the framework, and a future development plan.

The framework also provides a common ground on which various management appli-
cations can be built. For example, a collection management GUI makes it possible for a
non-technical user to manage the entire collection process. Another program is capable of
producing a real time collection status report out of the tracking database. These tools
help streamline the collection process and reduce the management cost.

Data Model

Most weblog and newsgroup sites are structured in a similar way. This structure can
be generalized by a three-level hierarchy. At the top, there is a site that hosts individual
weblogs or discussion groups. The weblogs and discussion groups form the middle level.
Each of the weblogs or discussion groups in turn contains threads of messages, which
form the bottom level. In this hierarchy, we call the topmost entities sites, middle ones
groups, and bottom ones threads.

The basic data unit of the web data collection framework is a thread. Thread can be
viewed as a tree whose root node is either a blog post or an initial newsgroup post. Com-
ments by viewers for weblogs, and replies to a previous post for discussion groups form
the inner nodes and leaves of the tree.

Handbook of Natural Language Processing and Machine Translation 7

As an example, the weblog site blogspot.com is a site. This site hosts numerous web-
logs, which are groups, contributed by bloggers. Each weblog has blog posts, e.g. daily
coverage of presidential election. Such blog posts become threads.

Collection Process

Under the framework, a collection task is defined by a group of sub-processes running
in parallel. This includes harvesting, formatting, token counting and language identifica-
tion processes.

The harvester process identifies and downloads web documents in raw HTML format.
Downloaded HTML files are converted into SGML-based format by the separate format-
ting process.

The token counting process queries the tracking database to get a list of threads that
haven’t been counted. For each thread in the list, a token counting algorithm is applied to
get the token count. The result is the number of white-space-separated tokens for lan-
guages like Arabic and English, and number of characters for Chinese. The result is
stored in the tracking database.

Language identification is a process of verifying the language of a thread. When a
thread is downloaded, a new record for the thread is added to the thread table of the track-
ing database. By default, the language field of this record is set to the language of the
thread’s group. It is not uncommon for a group to have threads of different languages.
For example, some groups have both Arabic and English threads. Also, it is possible that
the language initially assigned to the group is wrong. Thus, it’s necessary to have a
process to verify the language of downloaded threads. For language identification, a lan-
guage model trained with character n-grams (1 < n < 5) of the target language is used.
For a given document, the language model returns a floating point number indicating the
likelihood of the document being in the language in question. This number is stored in the
tracking database.

Note that the same token counting and language identification programs can be used
across different sites. On the other hand, each site has its own harvester and formatter.
Thus, a collection process usually consists of one token counting process, one language
identification process, and several harvester processes with the same number of formatter
processes, all of which running in parallel.

1.2.2.2. Newswire Collection

As of the commencement of GALE in 2005, LDC was collecting newswire in the tar-
get languages from six Arabic sources, two Chinese sources and five English sources. In
late 2006, new web sources were added to support GALE (three additional Arabic and
four additional Chinese sources).

These new resources represented a 50% increase in LDC’s Arabic collection and a
56% increase in the Chinese collection. The average monthly volumes represented by the
GALE newswire collection from Phase 2 forward are 13.4 million words/month for
Arabic, 64.4 million characters/month for Chinese and 35.3 million words/month for
English.

8 Chapter 1: Data Acquisition and Linguistic Resources

Most of LDC’s GALE newswire sources are harvested from provider websites, but
some are received via satellite modem, FTP uploads and downloads, NNTP (Network
News Transfer Protocol), proprietary clients and email.

1.2.2.3. Future Work

LDC developed the web data collection framework during the early months of the
GALE program. Since then, it has been driving the web data collection project for
GALE. At the same time, it has been debugged, modified and improved. However, there
is still large room for improvement.

First of all, extracting information from the input HTML data is done by harvester and
formatter code crafted by human. This is time-consuming and sometimes becomes a bot-
tleneck during an early stage of a collection project. As an attempt to solve this problem,
automatic pattern learning algorithms such as (Pennman 2009) and (Holovaty 2007) are
being studied.

Another area requiring improvement is to automate the collection process, which cur-
rently requires human intervention on a regular-basis. Human intervention is needed be-
cause the harvester processes are often confronted by various types of errors such as a
bug in the script, temporary problem of a web server, a system problem or a formatting
problem of the HTML data it was trying to download, etc.

Although the time required to resolve such issues is minimal, automation that per-
forms analysis of errors followed by an appropriate action is desired for smoother data
collection process. Moreover, instead of harvesters being launched manually by a human,
a scheduler is being researched that initiates harvester and formatter processes just as fre-
quently as indicated by data volume that sites or groups produce. LDC is planning to add
these capabilities for fuller automation of the web data collection process.

LDC continues to work to refine its newswire procedures. This is particularly evident
in the evolution of the collection and processing of newswire data from the web. Initially,
the web collections were very simple bulk fetches from provider websites, resulting in the
collection of duplicate or unwanted content. Over time, LDC has developed more intelli-
gent web-crawling processes to reduce these issues, as well as to exploit newer technolo-
gies such as RSS (Rich Site Summary) and ATOM syndication. In addition, LDC has
instituted automated reporting to monitor the collection and conversion processes and to
provide alerts for any discrepancies.

1.2.2.4. Conclusion

LDC has collected a very large volume of text data for the GALE program. The
amount of text data LDC collects and processes each month is 242.8 million words: 151.2
million words of weblog and newsgroup data, and 91.6 million words of newswire data.*
Robust and efficient text collection infrastructures have been crucial for such a huge
achievement. The web data collection framework has provided a scalable and cost-
effective method for collecting web data for GALE. LDC continues to use the newswire
collection infrastructure for GALE with great success. It was developed in early 1990°s

! For Chinese data, 1.5 characters were counted as 1 word.

Handbook of Natural Language Processing and Machine Translation 9

and is evolving ever since. Further research and development for improvement on both
the web data collection framework and newswire collection infrastructure are in progress.

1.2.3. Distribution of GALE Resources

Author: Denise DiPersio

1.2.3.1. Introduction

The particular challenge posed by the GALE distribution objective — to distribute
significant volumes of data timely and efficiently while conforming with external licens-
ing and contractual arrangements — required an organization with expertise in distributing
a broad range of resources to many users. LDC was particularly well-suited for this task;
prior to GALE, it had distributed tens of thousands of corpora on media and via web
download under various licensing schemes to thousands of users worldwide.

The GALE distribution objective required the performance of five principle tasks:
creating a licensing structure; developing a data distribution plan for each GALE phase;
preparing the data for release; distributing the data sets; and establishing a Secure Copy
Server (SCP) server for rapid sharing of copyrighted data within GALE teams. Each of
these tasks is described below.

1.2.3.2. Licensing

LDC developed evaluation license agreements stipulating that GALE participants
would have to agree to use the data provided by LDC solely for GALE-related purposes.

1.2.3.3. Data Distribution Plan

GALE established ambitious goals for data collection, creation and distribution: 2000
hours each of broadcast news and broadcast conversation plus five million words of new-
sgroups and blogs a large portion of which was transcribed, translated and treebanked
in each of Arabic, Chinese and English each year. In order to assure that GALE sites re-
ceived a steady flow of data for training and testing purposes, LDC developed a plan to
provide quarterly data deliveries. In response to community feedback, LDC changed that
strategy to provide two large training data releases timed to be of maximum value to the
sites as they prepared for scheduled evaluations.

At the commencement of the program, LDC provided a kickoff release to GALE re-
search sites that included existing publications as well as previously unreleased data rele-
vant to the program. In the first year, new data was distributed in four quarterly releases.
Starting in the second year, training data releases were front-loaded at the request of
GALE sites in order to allow as much time as possible to prepare for the evaluation task.
In practice, this meant making two large distributions per phase, typically in the fall and
spring.

Midway through year 4, LDC had distributed nearly 7000 copies of 509 distinct corpo-
ra to 45 sites in 7 countries. That data includes 159 corpora from the LDC catalog desig-
nated as being relevant to GALE and approximately 200 new corpora. The latter consists
of various training, test and development data (“ecorpora” or corpora desginated for an

10 Chapter 1: Data Acquisition and Linguistic Resources

evaluation community such as GALE), FOUO corpora (“G-corpora,” only for use in the
GALE program), restricted corpora (“R-corpora,” data whose distribution is confined to a
limited group) and donated data.

1.2.3.4. Data Preparation

GALE task managers and programmers prepared the data, and conducted task-
specific data quality checks for content and format before it was mastered for release.
The Publications Group performed additional quality assurance that included: checks for
file integrity, permissions and file access; checking character ranges and parsing XML in
text files; and checking headers in audio files. For media releases, each duplicate was
automatically compared with the master using md5 checksums, and random manual
checks are conducted on duplicated media. For web download releases, the Publications
Group verifies content and completeness before preparing the download.

1.2.3.5. Data Distribution

There were two principal methods for distribution depending on the size of the data-
set. HTTP distributions were downloadable from LDC’s members’ web site by authenti-
cated GALE participants. Media distributions were shipped to all eligible participants
using established courier services.

1.2.3.6. SCP Server

The SCP server was established in year one in response to requests from sites to al-
low for rapid sharing of copyrighted data and annotations thereof within GALE teams at
different geographic locations. Such activity was otherwise prohibited by the GALE li-
cense agreement and by LDC’s agreements with data providers, that is, data could only
be shared within one organization at a single geographic site. For security reasons, access
to the server was by means of public/private key pairs only.

1.2.3.7. Conclusion

GALE has conferred a measurable benefit to the data needs of the linguistic research
community. Most of the data collected and/or created for use in GALE will be released in
the LDC catalog. As of this writing, some year one materials were already available, and
other data was in the pipeline. This is consistent with LDC’s mission to share linguistic
resources as broadly as possible.

Furthermore, GALE’s volume and distribution requirements provided the acid test
for existing processes and have resulted in the establishment of an efficient infrastructure
for data distribution. This includes the creation of stable master copies, media shipment
tracking, perseverance of downloadable releases and rapid data sharing via the SCP serv-
er. That infrastructure can now be propagated to other common task projects with relative
ease.

Handbook of Natural Language Processing and Machine Translation 11

1.2.4. Technical Infrastructure Supporting Large-scale
Linguistic Resource Creation
Authors: Kazuaki Maeda, Andrea Mazzucchi, and Christopher Cieri

1.2.4.1. Introduction

The DARPA GALE program set a new level of technical requirements for LDC due
to the quantity and diversity of training and evaluation data, including the manual and
automatic transcripts, manual and automatic trandations, found parallel text, word
aligned parallel text, distillation annotations and treebank annotations. This section pro-
vides an overview of the technical infrastructure supporting the GALE program at LDC.

1.2.4.2. Data Storage Infrastructure

The data storage requirements for GALE included large storage capability, flexible
expansion capability and solid data security. The size of the dynamic data, such as anno-
tations, software and documentation, exceeded more than 1TB for each phase of GALE,
which is more than 10 times larger than previous resource creation projects such as TDT
(Cieri et al. 2002). The size of the static data, such as audio, video, newswire and web
text data, is even larger. The total hours of broadcast news collection per phase, which
includes both video and audio data, grew from approximately 5,000 hours in Phase 1 to
more than 11,000 hoursin Phase 3. The volume of web text collection grew from almost
none before the GALE collection to approximately 7 million threads in Phase 4. The to-
tal size of the data storage for GALE has reached 90 TB as of this writing.

1.2.4.3. Software Infrastructure

The challenges presented by large-scale GALE data creation necessitate software
tools that maximize efficiency. Most of GALE data collection, annotation, and distribu-
tion tasks use custom-built software developed by LDC's technical staff. Software tools
are written to support annotation according to guidelines and other specifications, and to
output consistent data formats.

Annotation Taools: In order to maximize the efficiency of annotation software devel-
opment, we have adopted a common set of technologies for stand-alone annotation tools,
such as Python, Qt, PyQt and MySQL, which are compatible with those previously de-
veloped at LDC, such as AGTK (Maeda et al. 2006). This allows the developersto reuse
software components, and allows flexibility for alocation of software developers to
available tasks as all developers are familiar with these technologies. Other tools use
web-based technologies, such as PHP and Java Script. Annotation tools developed for
GALE include XTrans, the Translation QC Tool, the SU annotation tool, the Distillation
Annotation Toolkit, the broadcast audio auditing tool, and the GALE evaluation snippet
selection tool.

Annotation Workflow Management Tools: LDC has developed a custom annota-
tion workflow management system called AWS (Annotation Workflow System), used for

12 Chapter 1: Data Acquisition and Linguistic Resources

most in-house manual annotation tasks at LDC. LDC has also developed a workflow
management system, specifically for the Machine Translation (MT) Post-Editing task.
The MT Post-editing system is web-based, allowing MT Post Editors to log in, receive
their current assignments, annotate them, and submit them via the system (Maeda et al.
2008).

Parallel Text Alignment Tool: LDC has developed two toolKkits that are used for au-
tomatically aligning parallel text for GALE. One is the BITS (Bilingual Internet Text
Search) toolkit (Ma and Liberman 1999). The document alignment module of this toolkit
was used for the document aligning task. The other toolkit is called the Champollion
toolkit (Ma 2006). This toolkit was designed for sentence alignment of noisy data, and
proved to be very useful for aignment of parallel text harvested from web sites (Maeda et
al. 20084).

Content Duplication ldentification Tool: It is inevitable to have some degree of
content duplication in the raw collected data. For example, newswire agencies often dis-
tribute multiple versions of the same article with minor updates; the same clips may be
used in multiple broadcast programs. LDC runs a content duplication identification tool
on the evaluation snippets, and on the source files selected for translation training data.

Language ID Tool: A language identification tool isrun over LDC's web text collec-
tion to confirm that the majority of the collected text is in the target language. Thisisim-
portant for multilingual sources and noisy sources, such as newsgroup text, in which
postings in non-target languages are often observed.

Arabic Morphological Analyzer: The LDC Standard Arabic Morphological Ana-
lyzer (SAMA), which is based on the Buckwalter Arabic Morphological Analyzer (BA-
MA) (Buckwalter 2004), is run on the input data to the Arabic Treebank annotation task.
The BAMA tool was developed by former LDC staff member Tim Buckwalter, and has
been extended as the SAMA tool. The SAMA tool is extensively used in LDC's Arabic
language projects.

1.2.4.4. Training Data Creation

LDC isresponsible for creating the following types of training datafor GALE:

Broadcast

Web Text

Transcription

Parallel Text

Distillation

Word Alignment

Arabic Treebank

English Trandation Treebank

Handbook of Natural Language Processing and Machine Translation 13

1.2.4.5. Evaluation Data Creation

LDC aso creates development and evaluation data for GALE MT evaluation pro-
grams. While the basic data creation process is the same for the training data, the evalua-
tion data creation requires more detailed quality control and secure handling of the data.
The evaluation data process is done in close collaboration with the National Institute of
Standards and Technology (NIST), which administersthe GALE MT evaluation.

MT Evaluation Snippets: Unlike the training data, the GALE MT evaluation uses
snippets of documents or broadcast recordings. The evaluation snippets are created in the
following steps.

1. Datacollection

2. Program-level broadcast audit

3. Decision of evaluation epoch by GALE data committee

4. Manual selection of evaluation snippets

5. Transcription (for BC and BN) and SU annotation (for NW and WB)
6. Duplicate content identification

7. Down-sampling of evaluation pool by NIST

8. Initia translation

9. Complete QC of source and translation

10. Final selection of evaluation snippets by NIST

In each stage above, snippets that are found problematic or unsuitable are dropped
from the data set, so over-selection of data is crucial. For the Phase 4 evaluation, LDC
selected four times as much data for the initial pool than remained in the final evaluation
data set.

Data Security: All GALE evaluation data is protected with strict data security con-
trol. Evaluation data on the file servers is protected with Unix group access control, and
only LDC personnel who are working on the GALE program are permitted to be in this
restricted group.

1.2.4.6. Conclusion

The technical infrastructure described in this section represents the work done for
the GALE program, which is the largest scale language resource creation effort in the
history of LDC. Thisinfrastructure was built on our experience in GALE aswell as other
projects at LDC, and will be a fundamental resource for future work at LDC.

14 Chapter 1: Data Acquisition and Linguistic Resources

1.3 Human Annotation

1.3.1. Linguistic Resources for Transcription and Translation

Authors: Meghan Lammie Glenn, Lauren Friedman, Stephanie M. Strassel, Zhiyi Song, Gary Krug, Kazuaki
Maeda, Haejoong Lee, and Christopher Caruso

1.3.1.1. Introduction

The GALE program required significant volumes of new training data -- hundreds of
hours of transcribed and annotated speech, plus hundreds of thousands of words of paral-
lel text -- for each language and genre being evaluated in the program. As such, LDC's
initial focus was on developing efficient, scalable processes for data selection, transcrip-
tion and translation. The primary emphasis was on quantity and coverage, especially with
respect to training data for Machine Translation (MT) and Automatic Speech Recognition
(ASR) systems. Large volumes of Arabic and Chinese text and audio were collected to
provide background language models and data for unsupervised training, and a sizeable
portion of the collected data was then selected for manual transcription and translation.
Over time, as the archive of existing training data expanded and GALE system perfor-
mance improved, requirements for new linguistic resources evolved accordingly, shifting
from rapid, high volume resource production to a more refined and targeted selection of
material to address specific gaps in coverage. Each stage of the GALE program has moti-
vated advances in LDC's resource creation pipeline. New annotation tasks and guidelines,
quality control procedures and enabling infrastructure like annotation software and data
formats have been developed at regular intervals to keep apace with evolving program
requirements. As GALE system performance improves, LDC has increasingly relied on
ASR and MT system output to augment and improve the data production pipeline.

This section describes LDC’s methodology for creating linguistic resources for tran-
scription and translation, covering both training and evaluation data. We describe data
selection; annotation including transcription, translation, and pilot efforts; quality control
practices; and the novel technical infrastructure developed to support the unique demands
of GALE.

1.3.1.2. Training Data Production

Data Selection

Although some transcribed audio and parallel text may be harvested online or
adapted from existing resources, the bulk of the training data developed for GALE is
created manually. Training data production starts with selection of material for manual
transcription and translation. This material is chosen from Arabic and Chinese source
newswire, web text, broadcast news and broadcast conversation collected by LDC for
GALE, following procedural guidelines developed by LDC in consultation with NIST,
DARPA and GALE research teams. Detailed volume and genre requirements for each
round of selection are established by LDC and GALE sites, and refined at regular inter-
vals to meet evolving program goals.

Handbook of Natural Language Processing and Machine Translation 15

For each batch of data to be transcribed or translated, a selection pool is prepared that
adheres to requirements for (1) source and program variety, (2) genre balance, (3) broad-
cast/publication dates, and (4) content of existing transcript and translation resources. The
selection pool is heavily weighted to prefer sources and programs that are underrepre-
sented in previous training data releases. Priority is also given to recently collected data
and/or material from epochs close to the current evaluation epoch. Once the selection
pool is established, human annotators quickly review each candidate, excluding items
that do not meet requirements. Because GALE is primarily focused on transcription and
translation of Modern Standard Arabic (MSA) and Mandarin Chinese, candidates that
contain large volumes of non-MSA or non-Mandarin Chinese dialects are typically ex-
cluded from selection. Similarly, material whose content focus is deemed inappropriate -
coverage of sporting events, spam or other offensive material, soap operas, and the like -
is also excluded.

New Selection Methodology

After substantial volumes of high-quality, broad coverage training data for translation
and transcription became available during the initial phases of the program, there was
growing interest from GALE research sites and LDC alike in developing refined data se-
lection techniques that would especially target high-payoff data; i.e., novel material that
does not duplicate the salient features of existing training data, and material that is espe-
cially difficult for ASR and MT systems. In response to this need, LDC began working
closely with research teams to develop a series of “smart data selection” techniques to
guide selection of new transcription and translation training data. These new approaches
rely both on understanding the properties of existing training data (for instance, what n-
grams already occur in sufficient numbers in existing parallel text?), and on detecting
data on which system performance is unexpectedly poor.

Smart Data Selection for Transcription

As a starting point, LDC and GALE research teams collaborated to install production
MT and ASR systems at LDC, and to integrate these systems into LDC's regular collec-
tion pipeline (Section 1.). Collected audio recordings are run daily through the ASR sys-
tems, yielding two dozen or more hours of ASR output per language per day. GALE re-
searchers worked with LDC to develop a process that could leverage this resource by
tapping into a simple intuition: if multiple ASR output streams have high rates of agree-
ment with one another for a single recording, ASR error rates for that recording are prob-
ably low, whereas low agreement rates likely signal high ASR error rates. Audio record-
ings showing moderately high rates of disagreement among ASR systems could then be
targeted for manual transcription, to produce high-value training resources when com-
pared to resources selected using traditional methods.

To implement the new approach, segmented ASR output for Arabic and Chinese is
first stripped of all segmentation markers and converted into plain text for more accurate
comparison. The resulting files are then processed by sclite (Fiscus et al. 2006), a scoring
script developed by NIST, which generates a report of the word error and agreement rates
among the different systems for each show’s recording. The result of the process is a list
of programs ranked by scoring agreement for all programs in a given selection pool.

16 Chapter 1: Data Acquisition and Linguistic Resources

A pilot study conducted by LDC during GALE Phase 3, which compared the output
of two ASR systems, demonstrated a “sweet spot” between 30% and 80% agreement.
Annotators audited the ranked list of audio files and recorded information about each file,
noting lengthy music segments, foreign language speech, non-native speakers, commer-
cials, and the like. Recordings with 30% or lower agreement tended to contain extended
commercials, music programs, heavy regional speech variation, or recording errors.
Those with 80% or higher agreement tended to be “talking-head” style read speech,
usually by a single speaker. LDC leverages this information to exclude files from the two
extremes during selection. The programs between the 30% and 80% error range may con-
tain speech phenomena for which there is not yet enough training data for ASR systems.

Once the outlier programs have been removed from the selection pool, annotators re-
view the programs to further eliminate those which may not be suitable for GALE tran-
scription and translation due to their content or level of speaker interaction. The files ap-
proved during this process are then manually transcribed.

An added benefit to leveraging ASR technology and scoring recordings according to
the level of agreement among shows is that programs with exceptionally low or high le-
vels of matching segments may be further examined to determine the causes of variation,
enabling LDC to identify potentially problematic audio elements of broadcasts. Another
potential use for these reports would be to more quickly identify “challenge” sets of
broadcast genres for system development. This ASR-assisted selection approach has been
implemented to select half of all new training data transcripts.

Smart Data Selection for Translation

Starting in Phase 3, data selection for translation underwent a similar transformation.
Whereas previous selection methods produced full-document translations (a whole
newswire article, blog post or broadcast story), the new method targets selection of indi-
vidual high-yield sentences -- where high-yield is defined having features that are novel
compared to existing stores of training data. LDC collaborated with GALE research
teams, in particular IBM and SRI, to developed scripts to implement the novel selection
method. The process begins by establishing a table of n-grams for sentences in existing
training data sets. Next, LDC prepares a pool of candidate documents for a given lan-
guage and genre. The script is run over this data pool, and generates a list of candidate
sentences, scoring each according to its uniqueness against the table of existing n-grams.
Humans quickly scan the resulting ranked list of candidate sentences, discarding inappro-
priate material prior to manual translation. Initial feedback from GALE teams is positive,
and this sentence-based method is now exclusively used to select new translation training
data.

1.3.1.2.1. Training Data for Transcription

Manual Transcripts

While some manual transcription and related speech annotation activities are per-
formed by local LDC staff, we also maintain relationships with a number of international
partner sites and commercial agencies who possess the infrastructure and know-how to
rapidly produce high-volume, low-cost training transcripts and translations of sufficient
quality. All transcription partners undergo regular hands-on training conducted by LDC

Handbook of Natural Language Processing and Machine Translation 17

annotation staff, and all partners utilize LDC infrastructure including transcription guide-
lines and user interfaces, to ensure consistent quality. Moreover, small volumes of data
are regularly subject to dual, independent transcription to provide material for analysis of
human transcription variation and to ensure that inter-transcriber agreement both within
and across sites falls within an acceptable range.

Transcription Task Specifications

All transcribers, whether they are working at LDC or at one of our partner sites, are
required to follow formally-defined transcription specifications to ensure efficiency and
consistency among all transcripts, regardless of source language. Guidelines differ de-
pending on the purpose of the data, though the goal for all transcription approaches is
essentially the same — to produce a verbatim transcript with speaker and story identifica-
tion in the most efficient manner. Training data requirements place a higher value on pro-
curing large volumes of transcripts with less emphasis on gold standard perfection, whe-
reas evaluation data requirements reverse these priorities. This section describes the train-
ing data transcription approaches employed within GALE.

Quick Transcription

Quick transcription (QTR) for broadcast news and broadcast conversation aims to
quickly produce a (near-) verbatim transcript, time-aligned at the phrase or pause-group
level, with markup limited to story boundaries and speaker turns/IDs. The emphasis is on
efficiency, with a goal of producing fairly accurate transcripts in five to ten times real-
time (in other words, five to ten hours of transcription effort per hour of speech). QTR is
used only for training data production.

Quick Rich Transcription

Quick-Rich Transcription (QRTR) was defined at the outset of the GALE program
and is the default manual transcription method for GALE. The goal of QRTR is to bal-
ance efficiency and completeness, producing transcripts that are maximally useful for
downstream manual and automatic annotation tasks including translation, distillation and
Treebanking. Like QTR, QRTR results in verbatim, time-aligned transcript with story
boundaries and speaker turn identification, but QRTR also incorporates features like sen-
tence-unit (SU) identification and sentence-based time alignment. (LDC 2008).

The methodology for identifying sentence-units in spontaneous speech grew out of
work performed during the metadata extraction (MDE) evaluation of the DARPA EARS
program, which aimed to annotate verbatim transcripts of spontaneous speech in order to
make them maximally readable (LDC 2004). Annotations included removing disfluent
non-content words such as filled pauses or backchannels, and labeling each SU according
to its type, such as statement, question, or incomplete utterance.

QRTR incorporates SU annotation into the audio segmentation process, which is the
first stage of transcription. A sentence-unit (SU) is a natural grouping of words produced
by a single speaker. SUs have semantic and syntactic cohesion. When creating SU boun-
daries for spoken language, the transcriber’s goal is to identify a semantically and syntac-
tically cohesive group of words that constitute a reasonable sentence-like unit. The seg-
mentation remains consistent for all downstream tasks, permitting a mapping from the

18 Chapter 1: Data Acquisition and Linguistic Resources

source audio signal to the source transcript to the English translation and annotations for
each sentence-unit. Transcription rates for QRTR are targeted at 15 to 20 times real-time.

1.3.1.2.2. Overview of QRTR Rules

Transcription rules are consistent for all three source languages. The elements of a
quick rich transcript include: verbatim transcription, time-aligned story boundaries;
speaker turn, section and sentence-type identification; speaker identification, and stan-
dard treatment of common spoken phenomena (e.g., hesitation sounds, spoken letters or
numbers, and disfluencies).

Segmentation

Transcription begins with audio segmentation, which involves marking structural
boundaries including story boundaries, speaker turns and sentences. Speakers are identi-
fied by name where possible, or by a unique identifier, such as “speakerl”. Transcribers
also indicate the speaker’s type — male, female, child, or other — and native or non-
native speaker status. Story boundaries are inserted when there is a change in topic, and
stories are labeled according to their style: talking-head broadcast news sections are la-
beled “reports”; discussions or informal chats are labeled “conversations”. Musical inter-
ludes, commercials, public service announcements, and periods of silence are left un-
segmented, or in some instances may be segmented and labeled “non-trans” and left un-
transcribed.

Verbatim Transcription and Orthography

Once audio has been segmented into smaller units, annotators transcribe the content
of each segment. Transcribers use standard Mandarin Chinese, MSA, and North Ameri-
can English orthography. Special conventions are used to flag certain speech phenomena
like disfluencies, mispronounced words, and non-target language speech. Quality control
checks verify the format of the resulting file, as well, as overall transcript quality.

Foreign or Colloquial Speech

When transcribers encounter speech not in the target language, they identify the lan-
guage, but do not attempt to transcribe the region.

Colloquial speech regions are transcribed, but are marked as being “non-standard.”
Due to the prevalence of dialectal speech in Arabic broadcast conversation files, tran-
scribers mark speech that is not MSA as such, for example:

<non- MSA> </ non- VSA>

When the transcriber understands the dialect, he/she transcribes the utterance, for in-
stance:
<non- MBA> (WS </ non- MSA>

While transcribers do not label specific Arabic dialects during the transcription
process, identifying non-MSA regions at this stage may help downstream processing,

Handbook of Natural Language Processing and Machine Translation 19

error analysis, or setting the stage for Arabic linguists to revisit those regions as a sepa-
rate dialect annotation task.

Web Transcripts

To supplement manual transcription efforts, LDC routinely harvests available web
transcripts in Arabic, Chinese and English for sources that are part of our ongoing audio
collection, and conducts periodic searches to identify transcripts from new broadcast
sources. ? Plain text transcripts are extracted from HTML files, converted to UTF-8, and
divided into sentences based on punctuation characters. While web transcripts are typical-
ly verbatim or near-verbatim, the format differs considerably from LDC's native tran-
scription format in several ways. First, web transcripts are not time-aligned with the au-
dio; second, they do not follow LDC-style transcription conventions; finally, story boun-
daries and sentence units (SUs) have not been explicitly labeled.

Transcription Volume

LDC has released over 10,000 hours of training transcripts in Arabic, Chinese and
English from Phase 1 through Phase 4 of GALE. The total number of transcript hours
released, and the distribution of those transcripts by language and genre, varies from
phase to phase depending on the specific requirements expressed by the GALE research
teams, and also in part due to the availability of collected and audited broadcast data.

Language Genre | Phasel | Phase2 | Phase3 | Phase4
Arabic BC 454 798 667 459
BN 640 751 557 171
Chinese BC 975 478 280 262
BN 586 492 341 310
English BC 763 128 154 282
BN 507 122 151 65

Table 1.2: Volumes, in hours, of manual and web training transcripts distributed through Phase 4 of GALE.

1.3.1.2.3. Training Data: Translation

All statistical machine translation systems require significant linguistic resources for
system training; GALE required LDC to produce these materials on a larger scale and
with greater variety and agility than ever previously undertaken. In response, it was ne-
cessary for LDC to develop novel methods, technical infrastructure, and best practices to
create a pipeline that is flexible, scalable and efficient. While the quality of training data
is important, it must be balanced against the unwavering demand for high volume, low
cost, and rapid distribution -- in well-established translation genres like newswire, but
also in diverse and challenging new genres like talk shows and weblogs. As the GALE
program progresses, the translation pipeline must also become more refined, and the effi-
ciency of the processes and the quality of the data improve in tandem. This section fully

2 LDC’s web collection efforts are described in detail in Section 1.2.2.

20 Chapter 1: Data Acquisition and Linguistic Resources

describes the translation pipeline, which includes not only the actual translation process,
but also numerous preparation and quality control measures that shape the final product.

Before Translation

LDC conducts multiple data preparation stages before sending source documents to
translation agencies. First, all files put through the translation pipeline are either manually
selected or — if automatically selected — manually reviewed to reject non-target con-
tent, as previously discussed in the Data Selection section.

Corpus-wide Scans

Once the translation pool has been identified, the corpus is automatically scanned to
remove duplicate documents and to ensure that there is no overlap between the training
and evaluation sets. This crucial step further focuses the use of resources on novel data
and is one of many safeguards to preserve the integrity of evaluation sets.

SU Annotation

Selected data is segmented into SUs. SU segmentation is performed manually or au-
tomatically depending on the genre and timeline. In general, newswire data can be auto-
matically segmented; QRTR transcripts are manually segmented during transcription;
QTR transcripts and web documents must be manually segmented prior to translation.
Automatically-segmented data is manually checked and corrected to confirm that logical
semantic segments have been created. SU segmentation is preserved throughout the train-
ing data pipeline.

Pre-processing

Before the data pool is outsourced for translation, it is subsampled in order to achieve
the best diversity and balance among sources and genres, according to requests or re-
quirements for each dataset. The final set of segmented source data is then sent out in a
special UTF-8 text format where each numbered segment of source data is paired with a
corresponding blank numbered line. For example, an outgoing Arabic source file would
look like this:

<ar=1> Arabic text
<en=1> [blank line]
<ar=2> Arabic text
<en=2> [blank line]

Translators perform the translation one segment at a time, inputting the English on
the blank line for each source segment. This process was developed to create perfect
alignment at the sentence level between the source and translation. Using this translation
format, manual or automatic alignment at the sentence-level is not needed downstream;
the translation is aligned as it is generated.

These translator-ready files are then collected into “kits” for outsourcing to vetted
commercial translation agencies. Kits are customized for each agency based on target

Handbook of Natural Language Processing and Machine Translation 21

volume, agency expertise, file length, and level of difficulty. Different sources are distri-
buted evenly across agencies so that any observations about a particular source are not
invalidated by different agencies’ variability in style or quality.

Manual Translation

In addition to the technical infrastructure it has developed, LDC has also produced
extensive documentation to systematize and standardize large-scale human translation for
the GALE program. While variability cannot be completely eliminated in a human task
such as translation, where there will always be multiple correct translations, it is con-
trolled as much as possible through the provision and enforcement of detailed and rigid
translation guidelines developed for GALE, which instruct translators to emphasize accu-
racy and fidelity to the source text, and provide clear guidance on how to approach spe-
cial cases (LDC 2009).

These guidelines include instructions and examples to aid translators in approaching
documents collected for GALE, which differ significantly from the data translators usual-
ly encounter, as well as, requirements for how and by whom documents must be trans-
lated. LDC uses multiple translation teams for each language, and each team must have at
least one translator native in the source language and one native in the target language.

Translators are required to follow the guidelines’ specifications for translating speech
disfluencies, factual errors, filled pauses, proper names, and more. Instructions for han-
dling potential challenges — like typos, neologisms, emoticons, and other features of web
data — are also included. Addressing these special cases in the translation guidelines as-
sures consistency where there would otherwise be variability if individual translators re-
lied on their own best judgment. Furthermore, clear markup that indicates typos, transla-
tor uncertainty, and made-up words allows sites and evaluators to treat these instances
differently when necessary.

The translation guidelines are a living document, constantly updated to include more
examples and address new translation issues. Releases include READMEs to indicate
which version of the guidelines has been applied to each particular data set. Distinct
guidelines have been developed for Arabic and Chinese source languages so that lan-
guage-specific issues can be adequately addressed. Translation agencies are always re-
quired to use the most up-to-date version of the guidelines to ensure that all data is trans-
lated according the same standards.

1.3.1.2.4. After Translation

Post-processing and Sanity Checks

Once a set of data has been translated, incoming translations are processed using a
suite of scripts that extract the English lines from the merged source/translation docu-
ments and perform a bevy of sanity checks. These checks ensure that all files have been
returned, all files are correctly encoded, all source segments are present, all segments
have corresponding translations, and the data format is intact. Thus, most problems with
incoming translations are discovered automatically and can often be rectified automati-
cally as well. Identifying problems at this early stage allows LDC enough time to return
files to agencies for retranslation when errors cannot be easily fixed by LDC.

22 Chapter 1: Data Acquisition and Linguistic Resources

Manual Quality Control

Manual quality control (QC) occurs after this series of automatic sanity checks. Even
when translations are created by skilled translators and then proofread closely, erroneous
translations and areas of ambiguity frequently exist in raw translations. Certain genres
that are included in GALE, especially broadcast conversation and web data, provide par-
ticular challenges to human translators, as noted previously. In addition, since translation
iS not an exact science, two independent translators will typically produce two different
translations for an identical source document. However, human translations produced for
MT training and evaluation must be exact and fully expressive: the translation must con-
vey no more and no less information than the source.

The quality control processes undertaken for training and evaluation data are vastly
different. Evaluation translation quality control is discussed in detail in Section 1.3.1.3.
For training data, a subset of each translation delivery (between 10 and 20 percent of the
total word count) is checked by bilingual LDC annotators trained in the appropriate pro-
cedure. Annotators apply specific scoring mechanisms according to a rubric included in
the translation guidelines provided to agencies. Translation errors are categorized as: syn-
tactic, lexical, poor English usage, or typographic (significant spelling or punctuation
mistakes). Each category is given a certain number of points. Deliveries that receive a
failing score (too many points) are rejected and returned to the agency; payment is with-
held until corrections are completed on the entire translation set (not just the files that
were reviewed) and the revised translation delivery meets QC standards.

1.3.1.2.5. Training Data: Parallel Text Harvesting

LDC has also developed a set of software tools including BITS (Ma and Liberman
1999) to identify potential parallel text resources among online archives of multilingual
documents (Maeda, et al. 2008a). LDC uses this software to scan and harvest likely pa-
rallel documents from the web on a regular basis. These sources include newswire ar-
ticles from multilingual news agencies, such as Agence France Presse and Xinhua News
Agency.

Parallel text documents on the web come in a variety of formats. After harvesting,
files are converted to a text format with a predefined set of SGML or XML markups, and
the document mapping module of the BITS system is then run to identify pairs of possi-
ble parallel documents. Once pairs are identified, each document is automatically seg-
mented into sentences and then processed by the Champollion sentence aligner (Ma
2006) to create sentence mapping tables. For the GALE program, LDC has created and
distributed over 82,000 automatically harvested document pairs containing likely Arabic-
English parallel text, and over 67,000 document pairs for Chinese-English.

1.3.1.3. Evaluation and Development Data Production

One of the greatest challenges encountered in producing linguistic resources for
GALE is creating the gold standard source and reference sets for evaluation. The GALE
evaluation paradigm relies on a carefully constructed test set, which includes careful ma-
nual selection and transcription (for audio genres) of the evaluation data pool. On the sur-
face, creation of test data for machine translation is straightforward: take the set of evalu-

Handbook of Natural Language Processing and Machine Translation 23

ation documents and manually translate them. But, like any task involving human judg-
ment, “translation” is not a monolithic task and there are multiple decision points along
the way. As the provider of evaluation data, LDC must consider not only the fully articu-
lated requirements for test data — the type stated in an evaluation plan — but, also hid-
den assumptions and implicit requirements that are equally important in constructing ap-
propriate data for evaluation.

Data Selection

Evaluation data is selected carefully, according to very specific guidelines. An evalu-
ation epoch is first decided collaboratively by LDC, DARPA and NIST. LDC compiles
candidate files from that epoch to construct a pool of newswire, broadcast audio and web
data. Each candidate file (audio or text) is examined carefully to identify snippets that
meet the criteria specified in the selection task specification. These text and audio snip-
pets typically correspond to a topically cohesive story selected from each document or
recording. Information about topic category, presence of dialect, and acoustic and dialect
features of the audio file are noted by annotators.

Segmentation and Transcription

Segmentation for evaluation data is especially important, since MT output is scored
at the segment level. Poorly constructed segments can lead to ambiguity and then inaccu-
rate MT scores. Segmentation errors that affect the meaning or interpretation of the text
are always corrected, even if they are discovered at the final stage of the pipeline.

SUs are manually identified for the newswire and web snippets. Selected audio snip-
pets are carefully transcribed and segment boundaries identified by professional tran-
scription agencies and LDC annotators, following an enhanced version of the Quick Rich
Transcription (QRTR) specification. Transcription of evaluation data differs from the
training data approach in that it requires multiple manual reviews of a file to produce a
gold standard reference transcript. Transcribers first create a basic quick-rich transcript,
with speaker and sentence unit annotation and a verbatim transcript. Senior transcribers
then review each utterance carefully to verify the transcripts' accuracy, making modifica-
tions where necessary. The lead transcriber conducts a final review over all transcripts
before marking them complete, and the reference transcripts are then passed to the gold-
standard translation process.

Translation and Manual Quality Control

Transcribed and segmented files are reformatted into a human-readable translation
format, and assigned to the best professional translators for careful translation, following
LDC’s standard GALE translation guidelines (LDC 2009).

After translation, reference files undergo several additional stages of annotation and
quality control to correct errors, finalize and correct segmentation, improve translation
adequacy, add translation variants, standardize proper nouns, verify technical terms and
so on, with the ultimate goal of having gold standard translations that are absolutely faith-
ful to the source data in terms of meaning, fluency, structure and style.

In order to standardize the translations and produce an appropriate reference for eval-
uation, LDC has developed a six-step translation and QC process:

24 Chapter 1: Data Acquisition and Linguistic Resources

1) A source-language dominant bilingual translator produces a preliminary transla-
tion emphasizing accuracy;

2) A target-language dominant bilingual translator revises the translation to improve
fluency;

3) A source-language dominant bilingual annotator checks translation for errors and
omissions;

4) A source-language dominant bilingual senior annotator checks for remaining er-
rors, improves fluency, corrects and standardizes named entities;

5) A target-language dominant bilingual annotator improves fluency and adds trans-
lation variants where required,

6) A target-language monolingual annotator reviews for fluency and consistency, and
flags questionable regions.

Steps 1 and 2 are largely the same as those used in the creation of training data, but
additional quality control loops are added to meet the evaluation data standards. The
translations delivered after Step 2 are considered final and complete by the agencies; the
subsequent steps are an above-and-beyond layer added by LDC in order to ensure the
highest possible confidence in the released gold standard.

Steps 3 through 6 are performed in-house. In Step 3, the annotator focuses only on
correcting egregious errors. The main objective of Step 4 is to resolve any nuanced issues
with the translation, while verifying total fidelity to the source — a requirement for the
GALE evaluation. In Step 5, fluency problems are corrected and translation variants are
introduced to clarify regions of ambiguity.

Relative to Step 5, Steps 3 and 4 are extremely time-intensive. For the most recent
GALE evaluation, Step 3 averaged 25 minutes per Arabic document and 21 minutes per
Chinese document. (Each document is between 150 and 350 tokens, where a token is an
Arabic word or Chinese character.) Step 4 averaged 13 minutes per Arabic document and
15 minutes per Chinese document. Step 5, however, averaged just 6 minutes per docu-
ment for both languages, since the translation is generally in excellent condition by the
time it reaches Step 5.

The final check, Step 6, is a quick but thorough read-through of all of the transla-
tions, with an eye to any errors that may have been introduced inadvertently in previous
steps. The Step 6 reviewer must also ensure that the translations read as correct, fluent
English, independent of the source text. Each stage requires a different level of expertise,
and while six different translators might produce six different translations, the six-person
translation and QC team — who work independently but consecutively on one working
document — is designed to achieve a higher level of consistency and predictability. Step
5, where translation variants are introduced when required, is especially important for
ensuring that any alternate, but equally accurate interpretations of the source text are in-
cluded in the final translation reference.

Development Data
In addition to training and evaluation data, LDC produces development datasets,
which are typically small-volume, carefully-created datasets that resemble evaluation

Handbook of Natural Language Processing and Machine Translation 25

data in terms of preparation and total volume, and are carefully selected from the epoch
immediately before the evaluation collection epoch. In terms of production procedures,
devtest sets fall somewhere between the carefully controlled process for evaluation data,
and the high volume rapid turnaround approach taken for training data production. Re-
quirements for development data vary across phases, and are typically specified by
GALE research teams. For instance, in GALE Phase 4 LDC selected, transcribed, anno-
tated, and translated a large devtest corpus of over 600 snippets per language per genre. A
smaller subset of each phase's devtest set is typically enhanced with additional annotation
including word alignment and multilingual Treebanking.

1.3.1.4. Annotation Tools and Infrastructure

The constantly evolving data requirements of the GALE program have required LDC
to develop an innovative suite of supporting software and related technical infrastructure,
in order to construct an adaptable and extensible pipeline for transcription and translation
that appropriately balances concerns of quality, efficiency, complexity and flexibility.

XTrans

Among the challenges faced in creating manual transcripts for training or evaluation
purposes is the efficiency of the transcription software itself, since an efficient tool can
boost productivity and provide opportunities for richer annotation or research. Broadcast
recordings present the challenge of containing overlapping speech from multiple speakers
on a single audio channel. Creating segments and transcripts for such overlapping utter-
ances is a function that many currently available transcription tools lacked. To meet de-
mands for increased volumes of spontaneous speech, which often include conversations
among multiple, simultaneous speakers, LDC required an efficient and straightforward
tool for transcribing overlapping speech. Furthermore, the need to produce large volumes
of transcripts with a consistent file format across multiple languages promoted the devel-
opment of a new transcription tool.

Figure 1.3: Arabic broadcast conversation transcription session in XTrans.

XTrans, the resulting speech annotation toolkit (Glenn et al. 2009), supports a full
range of speech annotation tasks including quick and rich transcription and annotation of
broadcast audio, telephone speech and meetings. Powered by Qt’s international language
support, XTrans can be used for transcription tasks in many different languages. It is easi-
ly ported to most UNIX derivatives, Microsoft Windows and Mac OS X. XTrans consists

26 Chapter 1: Data Acquisition and Linguistic Resources

of several re-usable components such as text and waveform display. Most of the compo-
nents are written in Python with some components written in C++ (LDC 2007).

The Qt text widget also supports bi-directional text input for right-to-left (RTL) lan-
guages like Arabic. This functionality allows transcribers to insert English-language me-
tadata tags in the Arabic language transcript. Clicking on a segment in the transcript high-
lights the corresponding segment in the waveform, and vice versa.

XTrans alleviates the challenge of efficiently annotating multiple overlapping speak-
ers. The tool incorporates the concept of a virtual speaker channel (VSC). Each VSC cor-
responds to one speaker, rather than to any particular physical channel in a sound file. A
VSC may also be used to represent background noise or other non-speaker sound sources.
The addition of this feature allows transcribers to transcribe a potentially unlimited num-
ber of simultaneous speakers without having to resort to any cumbersome markup.

Figure 1.4: Close-up of overlapping utterances in XTrans.

Each speaker in the recording is randomly assigned a color by the tool. The segments
for that speaker are coded with the same color in the transcript window. The waveform
display also shows the span of each segment in the audio channel as a color-coded box.
Overlapping utterances are depicted in the waveform display by stacked boxes, as shown
in Figure 1.4. The overlapping segment information is then extrapolated from the times in
the transcript file, as shown by the start and end times of the two segments in the follow-
ing example:

Start | End | SpeakerlD Transcript

394 400 | speakerl B— 2)LIRATBR SR — B, A BRATH YR
KT, 1D, 17 GHEE R A

394.2 | 399 | speaker2 1EUE, UEYBNE, UENE U

Table 1.3: Overlapping segments in plain text transcript.

XTrans incorporates a number of quality control functions that improve the accuracy
of speaker identification by the transcriber, such as the ability to listen to random seg-
ments or all segments from a selected speaker. In addition, transcribers can listen to all
unsegmented audio “gaps” in the transcript, which assists in identifying regions of missed
speech. It is easily configured to make transcription efforts more efficient -- for instance,
all segmentation functions can be performed using keyboard shortcuts instead of a
mouse. Users may also add their own keybindings or modify existing keybindings to suit
their comfort and preference.

Handbook of Natural Language Processing and Machine Translation 27

Translation QCTool

The multi-stage translation quality control process for evaluation datasets is facili-
tated by QCTool, an annotation tool written in Python and based on XTrans. QCTool
allows annotators to view source documents and translations side-by-side and edit the
working copy of a translation. It also includes functionality for viewing and reverting to
previous translation versions, flagging sections for further review, playing back source
audio data, and displaying edits as they are made.

Figure 1.5: Screenshot of QCTool.

QCTool was developed by reusing and specializing components of XTrans. A simple
analysis shows that QCTool reused 99% of the XTrans code. About 8% of the QCTool
code was newly added, due to the object-oriented design of XTrans. For example, the text
display required enhancement to ensure that corresponding segments are aligned when
displayed on the tree panel text display. It is this approach that made the rapid develop-
ment of the tool possible.

As with LDC's other annotation tools, QCTool is fully integrated with LDC's Anno-
tation Workflow System (AWS), which manages documents, directories, permissions,
and assignments, and tracks annotator efficiency and progress. Together, QCTool and
AWS ensure that each intermediary version of the translation is stored for later training
and analysis. In LDC’s production pipeline, QCTool is integrated with AWS for Steps 3,
4 and 5 of the 6-step process.

Before entering the AWS workflow, the file contains two layers of text: source text
and a preliminary translation. At each step of the workflow, AWS adds an exact copy of
the previous translation layer. The annotator at each step works on the most recently add-
ed layer, which is displayed in the “Working Copy” panel, to correct and improve that
layer. One of the previous translations is displayed on the “Revision” panel, and the user
can select which revision to display. The source text is displayed on the “Source” panel.

QCTool uses a slightly modified version of the original data model used by XTrans.
The original data model is essentially a table where each row represents a segment or
sentence. The translation QC process involves several layers of such tables. For example,
source text, preliminary translation and corrections from additional QC steps each form a

28 Chapter 1: Data Acquisition and Linguistic Resources

layer. In QCTool, these layers are combined into one by means of a table ID; that is, each
row is augmented by an ID of the table it belongs to. The new data model is physically
stored using the same file format used by XTrans. However, only QCTool recognizes the
additional information to display each row in an appropriate text panel.

QCTool increases the speed and accuracy of the quality control process by giving the
annotator access to all of the relevant information in one place, and making it much easier
to visualize revisions and identify problematic regions.

Translation Pipeline Database

LDC’s core translation infrastructure is grounded in a custom MySQL database that
tracks every file at every stage of the translation pipeline and allows the steps outlined
above to be followed smoothly, efficiently, and consistently.

This database stores information on data features (e.g., token count, language, genre)
and partitions (devtest, training, evaluation); tracks assignments, deadlines, and payments
for outsourced translation; and captures information on data location and storage that is
exploited by downstream processing scripts. The database is also the backend for the
Translation Extranet, which allows files to be stored securely but easily accessed and ma-
naged by external agencies and LDC administrators via a simple web interface.

This database is the key to data management of this scale and complexity. Fields are
generally populated via batch imports, and files are added at the planning stages so that
each step in the pipeline can be tracked and recorded.

Querying allows programmers and managers to drill down and retrieve all of the re-
levant information associated with a particular file (e.g., which kit it belongs to, when it
was delivered, what the QC score was, which agency translated it, whether it has been
processed, etc.), as well as, all the files associated with a particular stage (e.g., processed
but not released), feature set (e.g., Arabic Broadcast News from Phase 2 Training), source
(e.g., Xinhua), translation agency, and so on. Processing scripts hook into the database to
improve efficiency and allow certain fields to be automatically updated in real time. Ad-
ditionally, reports synthesizing various points of interest can be generated on the fly for
better planning, management, and information-sharing.

Transcription and Translation File Format

1D Label Description Format
1 file file name or id Unicode
2 channel audio channel Int

3 start start time Float

4 end end time Float

5 speaker speaker name or id Unicode
6 speakerType speaker type Unicode
7 speakerDialect speaker dialect Unicode
8 transcript transcript Unicode
9 section section id Int

10 turn turn id Int

11 segment segment id Int

12 sectionType section type Unicode
13 suType SU type Unicode

Table 1.4: The 13 fields of a record, or segment, in XTrans .tdf format.

Handbook of Natural Language Processing and Machine Translation 29

The output of XTrans and QCTool is a simple Tab Delimited Format (TDF), which is
the primary file format for transcripts and translations produced at LDC. This file format
represents data as a set of “records”, which are in turn a set of “fields” separated by tab
characters. Each record refers to a particular segment in the transcript.

In addition to the body of segments, there are several lines of meta-information in the
.tdf file. The first line declares the above field specification for segments in the following

form:
file;unicode channel ;int start;float ...

The second and third lines specify where the location and types of the section bounda-
ries. For example,

;7 MM sectionTypes [u'report', u' nontrans', None]
;; MM sectionBoundaries [0.0, 425.3, 9999999. 0]

These lines mean that the first section starts at 0.0 second and its type is “report”, and
that the second section starts at 425.3 seconds and its type is “nontrans”, and this is the
last section (9999999.0 is always the last field in this line).

1.3.1.5. Pilot Annotation

LDC transcription and translation efforts aim to maximize the utility of data for
GALE teams; this vision includes producing pilot annotations and experimenting with
new approaches to provide researchers with additional resources to support system de-
velopment and testing.

Supralexical Annotation

In GALE Phase 3, LDC performed pilot annotation to enrich devtest and unseques-
tered evaluation transcripts from previous GALE phases. The supralexical annotation
pilot aimed to maximize usefulness of existing transcripts for research teams, and in-
volved in-line transcript annotation and named-entity annotation. The supralexical anno-
tation task was performed in two stages: the first stage required annotators to listen to the
audio file while annotating the transcript and included the following tasks:

e marking filled pauses

e confirming accuracy of speaker info (gender & native/non-native status)

e adding in-line notation about bandwidth, which included surrounding transcribed
words that sounded like telephone speech with <tel ephone>
</ t el ephone> tags, and digitally-transferred field reports with <fi el d re-
port> </field report >tags

e inserting speaker-created and background noises

e adding Arabic dialect descriptions for non-MSA utterances

Since Arabic dialect annotation is a specialist task, supralexical annotators only
changed non-MSA tags when they could confidently identify the dialect. Annotators
chose one of the following dialect descriptions: (1) Maghrebi, (2) Egyptian/Sudanese, (3)

30 Chapter 1: Data Acquisition and Linguistic Resources

Levantine, or (4) Gulf/Iragi. When annotators could not confidently identify dialect being
spoken, they retained the non-MSA tags from the original transcript. Any region not
tagged with a dialect ID or as hon-MSA was assumed to be MSA (LDC 2009).

The second stage of supralexical annotation involved marking named entities as Per-
son, Title, Organization, or Location (LDC 2006).

Approximate

Language # files BC # files BN total hours
Arabic 102 152 85
Chinese 157 144 10

Table 1.5: Data volumes annotated for the Phase 3 supralexical annotation pilot.

Translation Pilot Experiments

LDC'’s streamlined translation processes have led to a previously impossible level of
adaptability to new techniques or datasets and allow quick responses to innovative data
ideas. For example, LDC performed a pilot experiment called “MT Plus” wherein source
data was run through in-house MT systems and then sent out to translation agencies for
correction. GALE sites were interested in comparing MT-based translation to standard
from-scratch translation.

Pilot experiments have also been undertaken in translation from English into Arab-
ic/Chinese, in first-pass translation without quality control, and in sentence-level transla-
tion. LDC's efficient infrastructure means that resources are maximized and start-up costs
are minimized.

1.3.1.6. Conclusion

This section described LDC’s efforts to produce training and evaluation data, includ-
ing transcripts and translations, to support the DARPA GALE program. GALE's chal-
lenging performance targets demand linguistic resources on a scale and complexity never
before encountered. LDC has developed a robust and flexible pipeline, combining enabl-
ing technical infrastructure, detailed task specifications and fully documented best prac-
tices. Over the life of the program resource creation at LDC has become more efficient
and adaptive, with increased emphasis on automation and utilization of emergent GALE
technology to improve and augment the data pipeline. These combined efforts have
enabled LDC to meet and often exceed requirements for large volumes of translation and
transcription training data, high quality evaluation and development sets, and informative
annotation experiments that are responsive to the ever-evolving needs of system develop-
ers, evaluators and program sponsors.

Handbook of Natural Language Processing and Machine Translation 31

1.3.2. Word Alignment for Improved Machine Translation
Authors: Xuansong Li, Xiaoyi Ma, Stephen Grimes, Stephanie Strassel, Gary Krug, and Dalal Zakhary

1.3.2.1. Introduction

Manual word alignment annotation at LDC is a part of the GALE project and is an
ongoing five year effort. This project has produced Arabic-English and Chinese-English
word alignment corpora with the amounts of data shown in Table 1.6.

Genre | Phase1l | Phase 3 | Phase 4 | Total
BN 25 79 89 193
Arabic BC 31 105 n/a 136
NW 105 n/a 266 371
WEB | 94 26 85 205
BN 35 95 n/a 130
Chinese | BC 33 75 57 165
NW 102 n/a 149 251
WEB 102 33 126 261

Table 1.6: Data volume in thousands.

1.3.2.2. Data and Tool

Data type and source

Two types of source languages involved in the current task are Arabic and Chinese.
In the first year of the GALE project, the data types used included newswire, broadcast
news, broadcast conversation (talk shows, call-in shows), newsgroups and weblogs.
Newswire text came from tree-bank data while other types were harvested at LDC and
translated by different translation agencies. In Phase Three of GALE, data types were
reduced to broadcast news, broadcast conversation, and web (including newsgroup and
weblogs). These data are now or will be tree-banked. The data source is shown in Table
1.7 Table 1.8.

Genre Chinese Data Source

BN/BC | 2005-2006 CCTV, 2005 Phoenix TV, 2006 CCTVNEWS,
CCTV4, HUBEI 2007 Phoenix TV, CCTV, CCTVNEWS,
China Central TV 2005-2006, CCTV, 2005 Phoenix TV
NW 1994-1998 Xinhua

WEB Online, VOA

Table 1.7: Chinese data source.

Genre Arabic Data Source

2005 Aljazeera, 2001 Nile TV, 2005-2006 Al Arabiyah,
BN/BC | 2007 Saudi Nightly News, Dubai TV, Al Iragiyah, Kuwait
TV News, Lebanese Broadcast Corp, Saudi Nightly News
2005 Aljazeera,2001 Nile TV

NW 2002 An Nahar

WEB Online, VOA

Table 1.8: Arabic data source.

32 Chapter 1: Data Acquisition and Linguistic Resources

The data was selected from the released source of LDC GALE Phases 2 and 3.

Tokenization

For a more precise text and punctuation alignment, both the source and translation
were tokenized automatically, without human interventions. The tokenization of English
follows the same guidelines used in Penn English Treebank: split words by white spaces,
split clitics/contractions (such as: shouldn’t, I’m, etc.), separate punctuations from the
preceding/following words. Apostrophe S (“s) is treated as a separate token. Penn English
Treebank treats most hyphens as separate tokens; however, some are treated as part of
words. Arabic tokenization follows the ATB tokenization scheme by directly extracting
tree tokens from ATB for word alignment tasks.

Because of a lack of word boundary, Chinese tokenization is challenging due to seg-
mentation issues. We finally chose character-based files for tokenization with the follow-
ing considerations. First, word segmented files are normally automatically done by a
word segmentation tool and a predefined monolingual dictionary. Yielded errors need to
be manually corrected, which is another added process to word alignment itself. Second,
character-based system can be easily adapted to any existing segmentation system. Third,
character-based files provide the flexibility of ignoring a word boundary when necessary
and breaking down a two-character word to minimum semantic units, which greatly ben-
efits cross-cultural findings and more subtle linguistic descriptions. Fourth, the conveni-
ence of handling new words is obvious with character-based files, such as proper nouns
and newly coined words. These types of words usually require a great effort in manual
correction after the texts have been word-segmented. Finally, Chinese input texts at cha-
racter level can simplify data pre-processing. Therefore, in tokenization we treat each
Chinese character as a separate token. All hyphens are separate tokens. In addition, we
separate punctuations from the preceding/following characters.

Data structure and format
The input data, including both source and translation data, are in tab delimited format
(.tdf). The annotation results are stored in an xml-like format, as illustrated in Figure 1.6.
The key tags are:

Source: the source sentence (in Arabic or Chinese).

Translation: the English translation.

Matrix: a two dimensional array M indicating alignment among words. The rows

contain the indices to the English tokens and the columns, the into the
source (Arabic/Chinese) sentence tokens. The value of each cell can be 0, 1
or 2.

M([i, 0] represents the “Not Translated” English tokens, M|O0, j] represents the “Not
Translated” source tokens. A value of 1 indicates “Not Translated” and “Correct,” mean-
ing a word alignment cannot be found, but the meaning is conveyed in the translation. A
value of 2 indicates “Not Translated” and “Incorrect,” meaning a word alignment cannot
be found, and the translator has made an error (missing or inserted word), which is rare.
For example, if M[3,0] is 1, it indicates that the third English token is not translated, but
the translation is correct.

Handbook of Natural Language Processing and Machine Translation 33

If M[i,j]is 1 or 2, it indicates there is a link between English token i and source to-
ken j. A value of 1 indicates the translation is correct, and value of 2 indicates incorrect,
which is rare. There are cases where more than one English token are aligned to more
than one source token, in which case, links will be drawn between every English token
and every source token. For example, if English tokens i and i + k align to source token j
and j + 1, M[i,j], M[i + k,j],M[i,j + 1] and M[i + k,j + (] will be set to1 or 2, de-
pending on whether the translation is correct.

“Unaligned_sentence” between matrix tags indicates the sentences rejected by anno-
tators during annotation in cases where sentences are half translated, foreign text, stylistic
text of peculiar data types, or locally ill-formatted. For instance, in broadcast conversa-
tions, there are fragments of music which are represented as blank lines, and in new-
sgroups and weblogs, there is foreign text, email address or web links. All data are en-
coded in UTF8.

<segid=1>
<source_raw>¥#4thiE— B = H B (IE & R¥) </source_raw>
<source>HT 44t — A — H#,(12 & R¥)</source>

<translation_raw>Xinhua news Agency, Lhasa, February 2, (reporter Zhen Yang)</translation_raw>
<translation>Xinhua news Agency, Lhasa, February 2, (reporter Zhen Yang)</translation>
<matrix>
00000000011000000
01110000000000000
01110000000000000
01110000000000000
10000000000000000
00001100000000000
10000000000000000
00000011000000000
00000000100000000
10000000000000000
00000000000O0100000
00000000000011000
0000000000000O110
00000000000000110
00000000000000001
</matrix>

<time>100</time>
<comments> </comments>
</seg>

<seg id=2>

Figure 1.6: Data File Format.

Tool

The alignment tool is a simplified version of a JAVA-based word alignment tool de-
veloped by Carol Nichols (cl n23+@itt.edu) and Rebecca Hwa
(hwa@s. pi tt. edu) at the University of Pittsburgh (Nichols 2005). The original tool
has a client-server model and works for Chinese-English only, and the server side is very

34 Chapter 1: Data Acquisition and Linguistic Resources

CPU intensive. To better serve our task, the server side is discarded and only client side
(GUI interface) is kept. Instead of JAVA applet, the tool has been changed to work as a
stand-alone GUI application, and Arabic support has been added. The GUI interface has
been improved for both visualization and functionality of annotation. The tool presents
each pair of tokenized sentences vertically, which are clickable for one-to-one, one-to-
many, many-to-one, and many-to-many links. To handle noisy data or style features of
different data types which are not appropriate for alignment, a “reject-segment” button
was created to conveniently exclude the inappropriate data from alignment while main-
taining the integrity of source data.

1.3.2.3. Annotation Guidelines

Guideline compilation process

Guidelines compilation began with the annotation of a pilot set of files by native
Arabic and Chinese lead annotators. The first guidelines draft was written based on initial
annotation results, with reference to the Annotation Style Guide for the Blinker Project
(Melamed 1998). After several rounds of discussions, the draft was revised to form the
first version. Two Chinese annotators and two Arabic annotators then joined in and anno-
tated the trial sets according to these guidelines. Their annotation results were examined
carefully for differences, which were discussed and tackled again in revising the guide-
lines. These guidelines were consistently updated to tackle new findings. During the an-
notation process in Phasel and Phase 3, guidelines were updated several times due to
newly found untackled language phenomena or direct requirements from the GALE re-
search sites. The basic approaches of guidelines, however, remain the same.

Guideline approaches

Two versions of guidelines have been developed: Chinese-English and Arabic-
English. The same framework is adopted for the two types of guidelines, with the general
principles and strategies discussed first, then the specific rules and language issues. Am-
ple examples are provided to support the annotation rules. The most recently updated
word alignment guidelines GALE_Arabic_alignment_guidelines_v3.0.pdf and
GALE_Chinese_alignment_guidelines_v3.0.pdf can be accessed and downloaded from
http://projects.|dc.upenn. edu/ gal e.

Word alignment is a task performed between parallel texts, involving two languages
and addressing universal linguistic phenomena as well as cross-cultural features. To re-
spond to universal linguistic issues, general principles are discussed, while specific rules
are stipulated to tackle cross-culturally different topics.

Language universals

a. Alignment types:

Two types of links (translated-correct and translated-incorrect) and two types of mar-
kups (“not-translated correct” and “not-translated incorrect”) are established to capture
linguistic information and cross-cultural elements.

Handbook of Natural Language Processing and Machine Translation 35

b. Translated:

Pure linguistic translation equivalence refers to semantic “deep structure” equiva-
lence either with or without lexical/functional surface-structure equivalence. A word can
be translated in various ways. As long as the meaning is adequately expressed, the word
is semantically “translated” in spite of variations in surface-structure. Passive voice in
one language can be translated into active voice in another, or there may be divergences
in diction, as in:

=3 (happy) 3E(die) T.
Extrenmel y happy.

All such variant versions are semantic translations of the source, and thus “correct”
links. This is true for all languages. Aligning correct links is important to word alignment
task because valid translation pairs can be conveniently extracted to construct translation
lexicons. Most of the links in our task are of this kind. We designed “Translated incor-
rect” link type to cover instances where the text is improperly translated in meaning or
grammatically wrong.

c. Not-translated:

If a word is not translated or conveyed, thus causing information loss, then it is re-
garded as “not translated”, and naturally is “incorrect.” Therefore, “not-translated incor-
rect” refers to cases with a loss of deep structure meaning and an absence of surface
structure representation, as in the following example, “butter,” is missing in deep struc-
ture as well as surface structure in translation.

fi(he) E(buy) THT(m | k) El(butter) M(and) BE(egg) o

ol 5 3 5 culall (5 538
He bought m |k and eggs.

Translating cross-cultural thought inevitably involves translation variations, which
are realized by means of expansion, deletion, summarization, explanation, supplement,
combination, and reformation in the light of the special needs of readers. Such adapta-
tions and translation variations lead to superficial or surface structure changes, such as
overt additions or omissions. These words are extraneous. Deleting them, however,
would corrupt the correctness of the sentence, as with determiners which are absent in
Chinese but present in English. The additions or omissions are, from a cross-cultural
perspective, obligatory and systematic. Special grammatical rules in different languages
can be revealed by studying omissions or additions in translation. To this end, the “not-
translated correct” markup is designed to label these extras in source/translation.

Our primary concern is how to adequately categorize these superficially extraneous
words or phrases. They can be divided into two types: functional (grammatical) and se-
mantic. Furthermore, they can be either at word-level, sentence-level, or discourse level.
In English translations, the functional (synsemantic) words, such as prepositions, deter-
miners, subordinating conjunctions, certain particles, auxiliary, and modal verbs are
mostly word-level or local level tokens and cannot be neglected. They are so rudimental

36 Chapter 1: Data Acquisition and Linguistic Resources

in revealing the hidden information regarding constituent dependencies that leaving them
unaligned would lose valuable dependency information. Moreover, word-level synseman-
tic words contribute to revealing the complete semantic equivalence between languages,
without which the language would be unacceptable. Therefore, synsemantic words at the
word level are attached to their autosemantic head words and they jointly constitute
“translated correct” links. For instance, “the” can be attached to “reporter,” and “the re-
porter=>ic!35 (reporter)” is an aligned “translated correct” link. Describing word relations
at a local level by the attachment approach is import for word alignment tasks because
word relations can help to capture local level syntactic information.

Extraneous words at sentence level usually carry strong cross-cultural or discourse
significance. They are not important for semantic equivalence. Without them, the transla-
tions are still correct or acceptable. Therefore, these added words with no direct lexical
equivalence can be marked as “not translated correct.” They are not translated in the
sense that they have no written equivalents. However, they are correct in the sense that
they are needed for being more like English or Chinese, or they are grammatically
needed. Language idiosyncrasies play an important role here. Some words appear or dis-
appear depending on the peculiarities of a specific language. For instance, “%f (all)” in
the following example does not carry meaning, but it makes the Chinese sentence more
fluent. Marking these words is important to machine translation in the sense that a gram-
matical/rule-based translation model can choose to ignore such words.

E 3 (nation) = (every) &F (year) B (all) ¥k (allocate) &
(special) K (fund) A (use) F (for) ¥ B (develop) % & A

(handicapped) = (sports) & (activities).
Every vyear the nation allocates special funds to be
used in developing handicapped sports activities.

Currently, pragmatic and contextual features are also covered under “not-translated
correct” category. Discourse-level extraneous words rely on discourse clues and no di-
rect lexical correspondence could be found locally within a phrase or sentence. For these
cases, “not-translated correct” is the best solution. For instance, in the following example,
the word B (China) is omitted from translation and can be labeled as “not-translated
correct.” Here, 1 (Chinese) HEEk (volleyball) BA (team) is semantically equivalent to
“the volleyball team” if we carry on the same topic. However, if they are examined at the
word-level or locally, we can never say that these two terms are semantically equivalent.
They are equivalent only by adding discourse clues.

& E (Chinese)HEEK (volleyball) BA (team) BE B (yesterday) I iX (arrive) & E (the

U.S.)o HE(Chinese)#EEk(volleyball)BA (team)5 X (today) T & (afternoon) &
(and)Zitth(local) AL (New York)RA (team)# 1T (have) T tE3&(match).

Chinese volleyball team arrived in the U.S. yesterday.
The volleyball team had a game with the local New York
team this afternoon.

Handbook of Natural Language Processing and Machine Translation 37

Likewise, insertions or omissions of personal or genre stylistic features may not be
translated, and no pair equivalency can be detected. They are not very important semanti-
cally, thus are treated as “not-translated correct” if no match is found.

d. Minimum Match:

Another alignment issue concerns the recognition of link boundaries. The “minimum
match” approach is proposed for finding complete and minimal semantic translation
units. In word alignment, the principle of a word-for-word link is strictly followed, that
is, the smallest number of words will be preferred, such as the case “#%(fresh)” in “&%
(fresh) 1€ (flower)” is paired to “fresh” in “fresh flowers” instead of treating “#%(fresh){t
(flower)” as a whole correspondent to “fresh flowers.” This minimum unit approach is
important to word alignment because without these minimum unit alignments, minimum
syntactic structures units built on these units then cannot be adequately established.

However, some links are many-to-many links since they cannot be separated from
each other. Such cases include abbreviations like “1tt 5 (world) T2 4 (health) 4H 4R
(organization)>WTO,” idiomatic expressions/transliteration phrases like “3% (in line
with) 3k(head) ¥ (and) # (march)>keep abreast with,” “heart is racing=> #(hot) Ml
(blood) & (boil),” “in your dreams = (iedall & ” “the youngest child=> assall Al ”
and other inseparable cases. Hyphenated words in English are treated as one unit if the
subparts of hyphenated words are inseparable. However, if salient one-to-one links exist
on both sides, they are paired separately, especially with nonce words.

e. Language peculiarities:

While a hidden matching semantic structure of two languages with cross-cultural fea-
tures can be revealed by systematically reoccurring omissions/insertions, the study of
peculiarities of one language can indicate idiosyncrasies with no systematic matching
structure in other languages. A large part of the guidelines is reserved for these language
idiosyncrasies with specific rules, which have been augmented with new findings of lan-
guage peculiarities during annotation process. Arabic guidelines deal with Arabic specific
features, including equational sentences, empty subject, cliticization of determiners, pre-
positions, pronouns, and conjunctions, as well as idioms and particular Arabic interroga-
tive words with no equivalent in English. In Chinese-English alignments, featured idio-
syncratic topics include non-inflection, topicalization, measure words, duplication, tense
and aspects, various types of helping words, etc. Chinese Y, sometimes described as
“evil” or “notorious” due to its uncertain features, requires several annotation rules for a
comprehensive description. A glimpse of the following examples can well tell its multi-
function and extreme uncertainty idiosyncrasies: adjective modifier as in a); adverb mod-
ifier as in b); possession modifier as in c); noun modifier as in d); location (general) mod-
ifier as in e); clause modifier as in f); tense modifier as in g). During annotation, &9 is
either aligned to its counterparts as in c), d), and f) or attached to related words as in a),
b), e), and g).

a) d4(red) M->red (M attached to £4I)
b) &X(happy) #-> happily (H# attached to &%)

38 Chapter 1: Data Acquisition and Linguistic Resources

c) AE(China) B=m(product)> China's prouct(# aligned

to “*s”)
d A%E(life) B (cause)(> the cause of life(H aligned
to “of ")

e) =F(table) E(on) B (book)> book on the table (#
attached to kL)
f) Z&fi(experience)d(past) K% (war) B(DE) A(person) >
t hose who have experienced wars(# aligned to “who”)
g) EX(subnit)IRE(report)> report submtted (B

attached to %)

1.3.2.4. Evaluation

To test the inter annotation rate, dual annotation is done using AWS workflow sys-
tem, which blindly assigns a number of files to two annotators at the same time. The re-
sults are then computed to show the rate of difference. Because of translation quality and
genre of files, the agreement rate for newswire files is obviously higher, as shown in Ta-
ble 1.9, whereas the rate for web and broadcast news is relatively lower, with a range of
80%-90%. Table 1.9 shows the inter-annotator agreement of two annotators on 4 news-
wire files (F1, F2, F3, and F4). The first row of the table shows the total alignment links
from each annotator. The agreement is computed based on their common links. When re-
assigning the same file to the same annotator after an interval of about one month, the
intra annotation rate shows a good result of 95%-99% for the newswire data.

F1 links |F2 links |F3 links [F4 links
Pass [108-108 [190-185 |273-269 [215-218
Precision 1P 87% 85% 82% 85%
Recall 1P 87% 88% 83% 84%
F-score 1P 87% 86% 83% 85%
F1 links [F2 links |F3 links |F4 links
Pass [106-105 [182-182 |262-257 |220-216
Precision 2P 95% 95% 91% 90%
Recall 2P 96% 95% 93% 91%
F-score 2P 96% 95% 92% 91%

Table 1.9: Inter-annotator Agreement on 4 Newswire Files.

1.3.2.5. Future Work

Word alignment is a complex task requiring an exhaustive description of translation
unit equivalence between source and target languages. The work reported in this section
established a framework for alignment. With IBM we then jointly designed and deployed
an enhanced alignment and tagging annotation scheme as part of the Phase 4 Chinese-

Handbook of Natural Language Processing and Machine Translation 39

English alignment task. As a next step, this tagging scheme will be implemented for oth-
er language pairs including Arabic-English.

Another avenue for further research is the inclusion of additional levels of align-
ment. Initial investigations during Phase 4 on automatic post-processing to induce higher
level alignment proved fruitful; this has yielded a promising automatic annotation struc-
ture for creating multi-level alignments during Phase 5. The focus of Phase 5 word
alignment will be on infrastructure and technologies for streamlining the creation of mul-
ti-level parallel aligned Treebank corpora.

1.3.3. Distillation Training Data
Authors: Heather Simpson, Stephanie M. Strassel, Zhiyi Song, Robert Parker, Kazuaki Maeda

1.3.3.1. Introduction

Distillation is the final stage of language processing in the GALE program, in which
relevant information is extracted from foreign language and English input and concisely
presented to users in English. It is not a key-word search, and does not involve summari-
zation, but rather it utilizes language analysis techniques to identify information relevant
to a user’s query, with the aim of extracting all available relevant information and elimi-
nating redundancy in that information. The GALE Distillation evaluation is designed to
quantify the amount of relevant and non-redundant information a distillation engine is
able to produce in response to a given template query. Linguistic Data Consortium
creates and distributes linguistic resources for distillation system training, including
source data, annotations, inter-annotator agreement studies, annotation GUIs and soft-
ware, and annotation guidelines and related documentation.

1.3.3.2. Distillation Source Data

Creation of training data for distillation begins with selection of source documents
that provide the basis for human annotation. Distillation source data is derived from exist-
ing LDC corpora, combined with new material collected by LDC specifically for GALE.
To support a variety of approaches to distillation system development, LDC targets
source data in all three GALE languages (Arabic, Chinese and English) and all four ge-
nres (newswire, web text, and transcripts of broadcast news and broadcast conversation).
Selection of source material for each phase is informed by research sites' needs, and is
further guided by the particular evaluation requirements for each phase. In general an
effort is made to select documents that are likely to be most useful for system training;
for instance, documents that are rich in named entities and documents known to be rele-
vant to training data queries are favored over more general news documents. After semi-
automated selection, source documents undergo data formatting and processing as needed
to conform to the GALE program standard. Source data may be automatically or manual-
ly segmented into sentences prior to distribution and annotation, and documents are in-
dexed for use with Querier, LDC's internally developed search engine. After indexing,
the source data enters the annotation pipeline. Note that not all selected source data is

40 Chapter 1: Data Acquisition and Linguistic Resources

manually annotated, because not all documents prove relevant to the targeted training
queries, but at this stage all selected data is available for annotation.

In addition to training source data, LDC also selects, formats and distributes test data
to support the annual evaluation of Distillation engines. Evaluation source data require-
ments are specified by BAE Systems who is responsible for conducting the performance
evaluations and for providing the gold standard evaluation references. Evaluation source
data may be identical to training data (but with different queries); or it may be distinct,
depending on the current evaluation protocol. Evaluation data may also require additional
work by LDC prior to its distribution to BAE; for instance, in some cases LDC provides
English (human) translations of foreign language source text to enable analysis of those
texts by English-speaking judges at BAE.

1.3.3.3. Annotation Approaches

1.3.3.3.1. Query Annotation

Distillation annotation begins with queries. At the start of each GALE phase, BAE
Systems develops a set of query templates that are appropriate to that year's evaluation
focus. Query templates consist of argument variables for persons, organizations, dates,
locations, events, topics and so on; for instance “WHERE HAS [person] BEEN AND
WHEN?”. To satisfy training data requirements it is necessary to develop a large set of
specific training queries that conform to the available templates for each new phase of the
program, with argument variables replaced with specific entities and events. To ensure
consistency between evaluation and training data development approaches, BAE first
develops a dozen or more exemplar queries in English, then LDC continues to develop
additional queries as needed.

For the initial phases of Distillation, LDC created queries based on a search of exter-
nal news sources. This was an efficient method for query creation, but resulted in some
queries having little or no representation of answers in the corpus. In later phases LDC
improved upon the process by requiring annotators to search the training source data cor-
pus to generate new queries. Searching the source data for entities and events with at-
tested query answers is significantly more time-consuming, but results in a set of queries
with richer representation of answers. Query creation is facilitated by a simple GUI that
allows senior annotators to manually input queries intended for downstream annotation
into a form that output queries in the required query XML format. Because annotation of
each query may take place across languages, initial English queries are also translated by
LDC into Chinese and Arabic.

Once queries are in place, manual annotation begins. Native Arabic, Chinese or Eng-
lish annotators submit their assigned query into the search engine component of the anno-
tation toolkit. The tool returns a relevance ranked list of documents, which annotators
briefly review and label as relevant or off-topic. As soon as a document is labeled YES,
the annotator then extracts relevant snippets that are subject to further annotation. A snip-
pet is defined as a continuous string of text (noun phrase, clause and/or sentence) that
contains an answer to the assigned query. Annotators follow template-specific relevance
guidelines provided by BAE when determining whether a string of text is relevant to a
given query.

Handbook of Natural Language Processing and Machine Translation 41

Because snippets are extracted directly from a document, they often contain pronouns,
temporals and locative constructions whose reference is ambiguous within the selected
string. In such cases, annotators must attempt to disambiguate the pronoun or other word
based on information provided elsewhere in the document, as in the following example
where here can be resolved to a specific location based on document context:

Iraq's Deputy Prime Minister Tariq Aziz was to meet with Russian Foreign
Minister Andrei Kozyrev here [Moscow] on Wednesday.

For some phases of Distillation, snippet extraction and antecedent resolution is fol-
lowed by manual nuggetization. A nugget is a fact or a statement extracted from a snippet.
Nuggets describe any piece of information that an annotator considers a valid answer to
the query. If a snippet contains a fact that is unrelated to the query by any standard of re-
levance, no nugget is created for that fact. Any piece of information that might have some
relevsance to the query is nuggetized. For instance, the following sentence has three nug-
gets.

Pinochet, who is 82 and who stepped down as commander in chief of the Chilean
military, was arrested by the British police.

Nugget 1: Pinochet is 82

Nugget 2: Pinochet stepped down as commander in chief of the Chilean military
Nugget 3: Pinochet was arrested by the British police

Nuggets might provide a description of a named entity or assert that a certain event
took place. They may also provide temporal, locative, causal, or other types of informa-
tion that further describe an event. Detailed annotation guidelines created by LDC in-
struct annotators in the procedural approach to nuggetization.*

Some phases of Distillation also incorporate nugget co-reference, both within and
across languages. Semantically equivalent nuggets for a single query and a single lan-
guage are first grouped into “nugs” by senior annotators. Then, after all nugs for a given
query have been established for each language independently, one group of bilingual lead
annotators co-reference English and Arabic nugs, while a separate team of bilingual lead
annotators co-reference Chinese and English nugs. Arabic and Chinese nugs co-
referenced to the same English nug are automatically merged to create a trilingual “su-
pernug”. Arabic and Chinese nugs that remain unmapped to any English nug at this stage
are further reviewed, and English translations are created to enable further co-reference
between Chinese and Arabic nugs. This additional co-reference was provided in order to
improve systems’ performance in identification of redundant information. The resulting
list of supernugs for each query represents a complete list of “facts” in English, drawn
from all of the multilingual, multi-genre documents that were judged as relevant to the

query.

% possible nuggets are determined not only by the sentence content but also the constraints of the specific

query.
* See http://projects.ldc.upenn.edu/gale/Distillation/ for links to annotation guidelines.

42 Chapter 1: Data Acquisition and Linguistic Resources

The nugget co-reference task proved to be quite difficult and time-consuming. Anno-
tators struggled to agree whether the pairs of nuggets should be co-referenced, since
many nuggets contain related but not completely identical information as in the following
examples.

Nugget 1: 14 suicide bombers killed 28 weekend revelers
Nugget 2: 28 civilians were Killed

Nugget 1: Tariq Aziz was a minister in Saddam's government
Nugget 2: Tariq Aziz was an Iragi official in the Saddam regime

Although LDC's annotation guidelines provided detailed instructions and examples for
resolving such uncertainty, the task remained challenging and time-consuming. Later
phases of Distillation drop manual nuggetization and nugget co-reference altogether, in
response to BAE adopting automatic nuggetization as part of the evaluation protocol.

1.3.3.3.2. Entailment Annotation

To support Distillation's goal of identifying redundant and contradictory information,
and in lieu of nugget co-reference annotation which proved difficult for annotators to do
consistently, LDC developed a supplemental annotation task in Phase 2. In Entailment
Judgment annotation, ordered pairs of nuggets for each query were presented to annota-
tors and labeled as follows:

e Redundant: Nugget B is redundant with respect to nugget A if A entails B
and if nuggets A and B refer to the same event or fact.

e Equivalent: Nugget A entails nugget B and B entails A, and nuggets A and B
refer to the same event or fact.

e Contradictory: A and B contradict if assuming that A is true, it can never be
the case that B is also true.

e Not related: Nuggets A and B stand in an entailment relation but do not refer
to the same event or fact

e Not Sure: Annotator is not sure; especially used when it cannot be determined
whether nuggets refer to the same fact or event.

Portions of the data were also dually annotated for the purpose of assessing annotator
consistency. Entailment annotation proved to be an efficient annotation task when com-
pared to nugget co-reference, with significantly higher annotation consistency.

1.3.3.3.3 System Output Relevance Assessment

One additional annotation task introduced in later phases of Distillation is assessment
of system-extracted snippets. Systems process LDC-supplied training queries, and return
extracted snippets for LDC assessment. All extracted snippets are in English, either from
English source documents or foreign language snippets translated by GALE systems into
English. No limits are placed on the number of snippets extracted per query. Annotators

Handbook of Natural Language Processing and Machine Translation 43

judge each system snippet as Relevant or Irrelevant, following the existing relevance
guidelines. In later phases these categories were expanded to include Partially Relevant,
Too Little Information and I Don't Know. In some cases snippet relevance is impossible
to determine, either because of poor translation quality or lack of context. Such snippets
are judged as Unknown.

1.3.3.4. Challenges and Conclusions

To respond to evolving research approaches and evaluation protocols, LDC's ap-
proach to training data creation was slightly different for each phase. This presents a
number of challenges, most notably the need to define new annotation guidelines and
adapt annotation infrastructure like GUIs and data processing scripts. The most notable
changes over time were the addition of new templates, the changing approach to manual
nuggetization and nugget co-reference, and the introduction of the system assessment
task. During these task changes a primary concern was maintaining annotation consisten-
cy, both within LDC and between LDC and BAE. Although the process used by BAE to
develop gold standard evaluation data necessarily differs from LDC's approach to train-
ing data creation, BAE and LDC relied on the same annotation guidelines for templates,
judging relevance, and defining nuggets. Particularly in early phases of GALE annotation
managers from each organization met regularly to discuss approaches and review consis-
tency. Despite these mutual efforts some difficulties persist. In particular, relevance
guidelines proved to be underspecified when confronted with real-world data. Guidelines
for some templates, particularly unstructured and open ended ones, leave significant
room for subjective interpretation by the annotator. In such cases LDC introduced and
documented rules of thumb for the annotation team to follow. Still, studies on inter-
annotator consistency for relevance judgment on system-extracted (and machine trans-
lated) snippets ranges from 59-89%, depending on template and annotator (c.f. Babko-
Malaya, 2008).

Across the four phases of Distillation, LDC has distributed source data, transcripts
and translations plus relevant snippets, with optional nuggetization, for 1148 English,
Chinese and Arabic queries. Additionally, LDC has distributed entailment judgments for
60 English queries and has assessed relevance of system-extracted snippets for several
hundred queries.

1.3.4. Arabic Treebanking

Authors: Mohamed Maamouri, Ann Bies, Seth Kulick, Nizar Habash, Reem Faraj and Ryan Roth

1.3.4.1. Introduction

Collections of manually checked syntactic analyses of sentences, or treebanks, are an
important resource for building statistical parses and evaluating parsers in general. Rich
treebank annotations have also been used for a variety of applications such as tokeniza-
tion, diacritization, POS tagging, morphological disambiguation, base phrase chunking
and semantic role labeling.

44 Chapter 1: Data Acquisition and Linguistic Resources

Two prominent efforts in Arabic Treebanking existed prior to GALE: the Penn Arab-
ic Treebank (PATB) and the Prague Arabic Dependency Treebank (PADT). The main
difference between these two resources is the linguistic representation: PATB uses phrase
structure and PADT uses dependency representation. Both of these important efforts
employ complex and very rich linguistic representations that require extensive annotator
training. More concretely, the PATB provides tokenization, complex POS tags and syn-
tactic structure, in addition to diacritizations, lemma choices and some semantic tags
(such as TMP and LOC) to distinguish different modifiers. PATB annotation consists of
two phases: (a) Morphological/Part-of-Speech (=POS) tagging which divides the text into
lexical tokens and includes morphological, morphosyntactic and gloss information, and
(b) Syntactic analysis referred to as Arabic Treebanking (=Arabic TB) which characteriz-
es the constituent structures of word sequences, provides function categories for each
non-terminal node, and identifies null elements, co-reference, traces, etc. (similar to the
Penn English Treebank Il style) (Marcus et al. 1994; Marcus et al. 1993; Bies et al.
1995). In addition to the usual issues involved with the complex annotation of data, the
work on Arabic treebanking, spearheaded by the LDC’s PATB effort since 2001, has
caused the field to come to terms with a number of issues that are specific to a highly in-
flected language with a rich history of traditional grammar (Maamouri and Bies 2004) in
a variety of ways.

Within GALE, the work on Arabic treebanking was manifested in two efforts. First
was the continuing annotation and upgrading of the PATB with a focus on unifying the
different PATB parts. Second was a new exploratory annotation effort called the Colum-
bia Arabic Tree Bank (CATiB). CATIB contrasts with PATB (and PADT) in putting an
emphasis on faster production with some constraints on linguistic richness. Like PATB,
CATIB annotation also consists of two levels of annotation: POS and syntactic. Howev-
er, because of the different choices made in the CATIiB annotation style, these two levels
contain different amounts of information. Like PADT, CATIB uses a dependency repre-
sentation, however with much less morphological information and shallower syntactic
relations.

The intent behind both GALE Arabic treebanks is producing more data to serve
GALE targets such as improved machine translation using syntactic models. As a result
of these efforts, the GALE community now has available to it a variety of morphological-
ly and syntactically annotated Arabic data to use.

This section is divided into two parts describing these two GALE efforts.

1.3.4.2. Upgrading and Enhancing the Penn Arabic Treebank
Authors: Mohamed Maamouri, Ann Bies, Seth Kulick

1.3.4.2.1. Introduction

The LDC Arabic Treebank team has significantly revised and enhanced its annotation
guidelines and annotation procedures during GALE. The revision process was initiated
by the GALE sponsor and research teams based on lower than expected initial parsing
scores and a high level of inconsistencies in the annotation of the Arabic Treebank (ATB)

Handbook of Natural Language Processing and Machine Translation 45

data. Those inconsistencies were the initial targets for improvement in both guidelines
and annotator training.

In order to reduce the cognitive load on annotators, both morphological and syntactic
annotation guidelines were revised in several respects to be more closely aligned with
traditional grammar concepts already familiar to our annotators. We also determined that
many of the problems derived from an improper partitioning of the work between differ-
ent levels, both conceptually and in the actual annotation procedure. Conceptually, sub-
ordinating syntactic to semantic needs in certain constructions led to inconsistencies in
annotation, as different annotators gave higher priority to one or the other. In order to
address such concerns, the decision was made to subordinate semantic needs to syntactic
needs in constructions such as #lxl/idafa (noun-noun construct state structures) with
quantifiers. Overhauling some key aspects of the morphological/part-of-s peech guide-
lines, such as making new, more fine grained tags for comparatives, quantifiers and num-
erals, provided more information to the Treebank annotators and to the parser (Maamouri
et al. 2008).

The annotators then underwent a period of intensive training focused on the revised
annotation guidelines and difficult linguistic structures, as well as on consistency in gen-
eral. This training combined with the revised guidelines has resulted in a markedly high-
er rate of inter-annotator agreement and a more consistently annotated corpus.

We have now completed automatic and partial manual revisions to all of ATB1°,
ATB2% and ATB3’, bringing them into line as far as possible® with the new annotation
guidelines and greatly improving the annotation consistency and parsing results. The
success of this revision process and the improved outcome has been the result of a signif-
icant collaboration between data providers and end users.

1.3.4.2.2. Motivation for Enhanced Annotation

The revision process was initiated based on lower than expected initial parsing scores
and on an examination of inconsistencies in the annotation. Parser scores for a statistical
parser trained on ATB data were roughly 9 points in absolute f-measure below that of the
English Penn Treebank (WSJ) (see section 1.3.4.2.7 for more detail on these scores).
Inconsistencies within the Treebank annotation regarding the relationship between Mor-
phological/Part-of-Speech (POS) tags and the syntactic annotation as well as inconsisten-
cies in the annotation of certain syntactic constructions were shown to contribute to the
parser performance. Those inconsistencies were, therefore, the initial targets for im-
provement both in the guidelines and in annotator training.

Many of the inconsistencies derived from an improper partitioning of the work be-
tween different levels, both conceptually and in the actual annotation procedure. Concep-
tually, subordinating syntactic to semantic needs in certain constructions led to inconsis-
tencies in annotation, as different annotators gave higher priority to one or the other. For
example, a quantifier-noun sequence such as “every collection” in Arabic is traditionally

5 LDC2008E61 - Arabic Treebank Part 1 v 4.0
® LDC2008E62 - Arabic Treebank Part 2 v 3.0
" LDC2008E22 - Arabic Treebank Part 3 v 3.1
8 As far as possible within the current time constraints and without a full-scale entirely manual review.

46 Chapter 1: Data Acquisition and Linguistic Resources

expressed in terms of an 4ilal/idafa construction, in which the noun is considered depen-
dent on the quantifier, which itself is treated as a noun:

(NP every/all/each _one |-kul~u |- Jj
(NP col I ecti on/ group| maj onuwEapK| is sax))

However, in earlier ATB work, this structure was treated as flat

(NP every/all/each_one|-kul ~u]| - J_<
col l ection/group | maj omuwEapK| is gazxs)

in order to make what is often thought of as the “semantic head” (here, “collection”)
more easily accessible to users. However, annotators applied both interpretations, and
such structures were inconsistently annotated in the Treebank. The resolution of this type
of inconsistency among others led to substantial revision of the annotation guidelines.

1.3.4.2.3. Improvements to Annotation Guidelines and Procedures

More complete and detailed annotation guidelines overall were developed, and a pe-
riod of intensive annotator training focusing on the new guidelines and on specific incon-
sistently annotated constructions followed.

Both POS and Treebank guidelines were revised in several respects, balancing the
goals of (1) representing more finely-grained distinctions, and (2) aligning more closely
with traditional grammar concepts already familiar to annotators.

1.3.4.2.4. Morphological/Part-of-Speech Level

We overhauled some key aspects of the POS guidelines, such as making new tags for
comparatives and quantifiers, since tagging these simply as NOUN was not informative
enough for either the Treebank annotators or the parser. The POS tags for nouns and ad-
jectives in particular were revised to be more fine-grained. In addition to NOUN_PROP
(proper name), the core POS tag of NOUN is now further distinguished as

e NOUN (common noun)
e NOUN_NUM (number)
e NOUN_QUANT (quantifier)

The core POS tag of ADJ is also further distinguished as
e ADJ (common adjective)

e ADJ NUM (ordinal number)
e ADJ COMP (comparative adjective)

Handbook of Natural Language Processing and Machine Translation 47

The above greater distinctions among nouns and adjectives also follow traditional
Avrabic grammar categories.’

Additional POS changes were also made to more closely follow traditional Arabic
grammar categories, for example, the number of prepositions was drastically reduced
(most of those lexical items are now categorized as NOUN), and many particles are now
given several POS alternatives, again closely aligned with traditional categories. For ex-
ample, the word fa had one POS value only in previous Treebank annotation: CONJ. The
word fa now has four different POS tags available, corresponding to potentially different
syntactic contexts and following its four traditional categories: CONJ (for fa Al-EaTf/ <&
«skall | the fa of coordination), CONNEC_PART (for fA’ Al-rabT/%:J) <4 | the fa of con-
nection), RC_PART (for fa Al-jazA’/<LiaJ/ <5 | the fa of reward, response conditional),
and SUB_CONJ (for fa Al-sababiy~ap/4uwsll <& | the fa of causality).

A new POS category of pseudo-verbs has been added to account for the verbal beha-
vior of certain Arabic particles. These are “the sisters of &) <inna” (with the exception of
ol “>anna,” the complementizer “that”), a category regarded by Arabic grammarians as
having verbal properties, such as subcategorizing for a subject and a predicate or clausal
complement. Since these words display verbal behavior although they are not technically
verbs, they will now be given the POS tag “PSEUDO_VERB” and head a VP in the tree.

1.3.4.2.5. Syntactic/Treebank Level

In order to address concerns such as the inconsistent annotation of quantifiers, the
decision was made to subordinate semantic needs to syntactic needs in certain construc-
tions (for example, idafa with quantifiers).

As the idafa structure is a particularly frequent noun phrase structure, this decision
affects the annotation of a significant portion of the corpus. In idafa structures syntacti-
cally headed by common nouns, the semantic and syntactic head of the noun phrase will
be the same noun (as in the “grammar book” example below, where “book” is both the
semantic and the syntactic head of the noun phrase).

(NP (NOUN+CASE_DEF_NOM
o lis kitaAbu book)
(NP (NOUN+CASE_| NDEF_GEN
44 naHowK gramar)))
s~ s
(a) grammar book
Vs.

(NP (NOUN_QUANT+CASE_DEF_NOM |
every -kul~u —Js)
(NP (NOUN+NSUFF_FEM SG+CASE_| NDEF_GEN
. . col l ection maj omuwEapK 42 gax%)))
every collection

® For now we have chosen to retain the noun and adjective labels for active participles, passive participles and
gerunds/masdars, rather than switching to an entirely traditional representation of these categories.

48 Chapter 1: Data Acquisition and Linguistic Resources

However, in idafa structures that are syntactically headed by quantifiers (as in the
“every collection” example above), the semantic head of the noun phrase is not the quan-
tifier at all, but its dependent noun. The interaction of this idafa structure with the new,
more fine-grained POS tags allows the difference in semantic and syntactic heads to be
captured. The syntactic/Treebank annotation is based on the syntactic head (the quantifi-
er, “every”). However, the semantic head (the dependent noun, “collection”) is still easi-
ly accessible to end-users based on the POS tag NOUN_QUANT on the quantifier. This
interaction of the changes in POS and syntactic annotation guidelines also results in an
overall conceptual and practical improvement, since (1) a simple algorithm can recover
the necessary semantic information, and (2) inter-annotator agreement is higher.

As with the revision of POS guidelines, the revision of the syntactic annotation
guidelines also served to more closely align the Treebank annotation with traditional
Arabic grammar categories for several constructions. These include the treatment of
comparatives, numbers and numerical expressions and the treatment of several particular
pronominal constructions such as separating pronouns/Damiyr Al-faSl/J=ill xa and
anticipatory pronouns/Damiyr Al$a>n/gbil) s

Further revisions include a more careful and complete classification of verbs and
their argument structure and a more comprehensive approach to the contexts in which
gerunds or participles have a verbal reading. For example, a masdar/gerund, active parti-
ciple or passive participle followed by a PP complement to the regular verb form (PP-
CLR) is now shown with a verbal reading.

For a more complete description of the new annotation policies, see the Arabic Tree-
bank Morphological and Syntactic Annotation Guidelines (2008)."

1.3.4.2.6. Corrections of Previous Annotation Level

The initial POS annotation is still selected from the morphologically analyzed alter-
natives provided by the Buckwalter morphological analyzer (BAMA 2004)." However,
crucial to reducing the number of mismatches between POS tags and syntactic structures
is the ability of Treebank annotators to correct certain specified POS tags from the earlier
annotation level. The annotation tool has been revised so that Treebank annotators now
have the ability to correct specific POS tags such as CONJ - ADV or PREP - NOUN.
In addition, a careful set of quality control searches based on head rules leads to further
manual correction of POS tags in conflict with the tree structure.

1.3.4.2.7. Improvements in Inter-annotator Agreement and Training

Intensive annotator training focused on agreement and consistency and led to an im-
provement of inter-annotator agreement scores on the tree structures from an initial f-
measure of 86.98% to the much improved f-measure of 94.3%.

The ATB production workflow includes both automatic and manual error correction,
along with planned on-going annotator training, and it is hoped that these measures will
continue to improve the agreement further. In order to maintain a high rate of inter-

10 http:/iprojects.ldc.upenn.edu/ArabicTreebank/
™ Future new annotation will use the newly revised LDC Standard Arabic Morphological Analyzer (SAMA)
Version 3.1. LDC Catalog Number: LDC2009E73.

Handbook of Natural Language Processing and Machine Translation 49

annotator agreement, approximately 10% of each corpus is dual blind annotated during
production and put through the full workflow. The 94.3% score measured 293 sentences
of dual blind annotation from the ATB3 (Annahar) corpus, annotated independently by
two Treebank annotators. This score was computed using the standard evalb program
(not including function tags).

The initial agreement score was considered to be too low for the purpose of training
statistical parsers on the ATB data. The goal was to approach the reported score of
93.8% for the Chinese Treebank. This goal has how been not only met but surpassed,
and data produced with this level of agreement is expected to support on-going work on
improving parsing results.

1.3.4.2.8. Revision Process and Quality Assurance

As described above, the annotation process for creating the original corpora consisted
of a level of POS/morphological annotation on the original tokens from the text file, fol-
lowed by separation of various clitic morphemes to create the tokens actually used for
treebanking.

The guideline revisions specified changes at various different levels, including toke-
nization and POS tags as well as the trees. As a result, there are cases in which different
decisions are now being taken in the morphological guidelines as to when the original
tokens should have been split or not. In order to modify the tokenization to match the
current guidelines, it was not possible to do so only by examining individual tokens in the
Treebank, since such tokens may themselves be part of a larger original token.

For example, while “limA*A” formerly existed in the ATB3-v2.0 corpus both as a
single token and also split into two tokens (“li” and “mA*A”), in the revised morphologi-
cal guidelines it is now treated as one token only. However, the annotation as it existed
in the ATB3-v2.0 corpus for the two-token analysis had already split up the word, and the
individual Treebank tokens “li” and “mA*A” were both acceptable tokens unto them-
selves. It was only in the context of being part of a larger original word that it could be
recognized that they needed to be merged back together for this revised release.

Therefore, we created a version of the corpus which associated each original token
from the source text file with the one or more Treebank tokens that together make up that
original token.”> We then modified the tokenization automatically based on that correla-
tion. This also helped to identify possible tags in some cases for when the range of POS
tags was restricted when part of a larger token (e.g., “mA” in the context of “bi+mA” has
a smaller range of possible tags compared to “mA” occurring by itself).

The software written for this process was not only useful for automatic changes to
adjust the tokenization, but also resulted in a characterization of all original tokens for,
roughly speaking, the closed class “function words” that were the focus of the POS revi-
sions. That is, all such tokens were automatically identified in terms of potential compo-
nent morphemes and possible POS tags for each morpheme (e.g., the “bimA” case just
mentioned). This helped ensure the consistency and accuracy of annotation at the token
level.

2 \we found this version to be so useful internally that as of ATB5, ATB releases will also include a version
of the corpus showing this mapping between the source text tokens and the Treebank tokens.

50 Chapter 1: Data Acquisition and Linguistic Resources

In addition to automatic revisions as above, we significantly improved the post-
annotation quality control (QC) process for the ATB. The QC process consists of a series
of specific searches targeting several types of potential inconsistency and annotation er-
ror, and we increased the number of error searches threefold during the ATB revision
process. These error searches are run after annotation is complete, and any errors found
via these searches are hand corrected.

1.3.4.2.9. Parsing Improvement and Analysis

An important goal is to evaluate the increase in parser accuracy as a result of the re-
visions described in this section, and to compare the current accuracy to that of parsing
on a more established source, namely the Wall Street Journal portion of the English Penn
Treebank (PTB). Using a previously proposed data split, we trained and tested on each
of the revised ATB1, ATB2 and ATB3 individually, as well as the combined ATB123
(738, 845 tokens/words in total), for both the newly revised versions and the older pre-
revision releases.*® In addition, we have trained and tested on an amount of PTB data
comparable in size to ATB3, since ATB3 is the largest of the three revised ATB corpora,
as well as for the combined ATB123.

The parser used was the Bikel adaptation of the Collins parser.** We ran the parser in
two modes. In both, the parser input contains the gold Part-of-Speech tags. The dev sec-
tion results in Table 1.10 columns 2-4 are for the mode in which the parser used the given
tags only for words with which it was unfamiliar from training, and otherwise was free to
choose its own tags. In the second mode, shown in Table 1.10 columns 5-7, the parser
was forced to use the given tag for each word.

Tags Parser’s own Supplied

Old New PTB Old New PTB
ATB3 775 81.0 87.6 78.5 83.2 87.2
ATB123 | 78.8 82.7 88.6 79.1 84.1 88.8

Table 1.10: Parser Results, with parser choosing its own tags and with parser forced to use given tags.

As can be seen in Table 1.10, there is improvement in the score for the parser with
the revised data, roughly halfway bridging the gap to the PTB score.” It is perhaps of
note as well that there is a greater distinction in the two ways of running the parser for
ATB as compared to PTB. This is perhaps indicative of greater tree/tag consistency in
the ATB, or perhaps of a greater share of the burden put on the pos tags. This is a matter
for further study, but in both parser modes there is noteworthy improvement for the new
compared to the old scores.

In order to better understand the source of the parser improvement, we performed a
dependency analysis, as was also done in Kulick, Gabbard and Marcus (2006). Each
parser output tree and corresponding gold tree is broken down into a collection of rela-
tions, which is a one-level slice of the context-free tree. We have selected some of the

3 http://nlp.stanford.edu/software/parser-arabic-data-splits.shtml

% http://www.cis.upenn.edu/~dbikel/software.html#stat-parser

15 Note, however, that due to differences in data and style of annotation, a comparison of scores across Tree-
banks is at best a rough indication of performance differences.

Handbook of Natural Language Processing and Machine Translation 51

most frequent relations for ATB123 and categorized them into two groups, shown in Ta-
ble 1.11. In this table, the columns are (1) the relation, (2) the frequency of that relation
in the new ATB123, and (3-5) the scores for ATB123-old, ATB123-new, and PTB.

The top portion of Table 1.11 shows relations that make up what might be called the
core syntactic structures. For example, the relation NP - NOUN NP is the idafa con-
struction.®® PP = PREP NP is the relation of the object of a preposition to the PREP, and
so on. A “base NP” (NPB) is an NP without another NP inside it. This table demon-
strates the improvement in the parser recovery of these core relations, which seems
strongly indicative of increased Treebank internal consistency. One place where there is
certainly room for improvement is with the S = NP VP relation, in which it seems likely
that the parser is getting confused over the optionality of the subject placement in Arabic.

Relation % of all relations | ATB123-old ATB123-new PTB
in ATB123-new f-measure f-measure f-measure

NP > NOUN NP | 16.75 90.4 97.4 n/a

PP - PREP NP 13.40 96.5 99.2 95.2
Base NP 12.71 84.1 90.2 95.0
VP - verb NP 11.59 92.1 94.1 93.3
SBAR->compl S | 2.59 91.1 92.9 92.0
S > NP VP 2.03 87.4 91.3 96.3
VP > VERBPP | 6.44 82.6 83.4 83.5
NP-> NPB PP 3.49 73.3 75.7 86.2
NP = NP PP 1.77 335 45.0 n/a

Table 1.11: Parser accuracy on core syntactic structure relations (top) and PP attachment relations (bottom).

The bottom portion of Table 1.11 shows the three relations having to do with PP at-
tachment. Here, while the score for attachment of a PP modifier to a VP is nearly iden-
tical to that of the PTB, the score is significantly lower for PP attachment to an NPB (the
very low scoring relation for PP attachment to an NP that is not an NPB does not even
exist in the PTB). The lower score for the NP > NPB PP relation is no doubt because of
the impact of the idafa structure upon the PP attachment problem, as has been discussed
in the literature (see e.g., Kulick et al. 2006 and Gabbard and Kulick 2008).

1.3.4.2.10. Conclusions

We have discussed some of the issues that arise when the Arabic Treebank syntactic
annotation is manually enhanced as the first step, ahead of the morphological/Part-of
Speech annotation. We outlined an automatic procedure that more closely aligns the POS
tags and the Treebank annotation, leading to increased parsing results and additionally
providing the annotation pipeline with improved error checking and quality control. The
importance of the interaction between POS tags and the tree structure is shown by the
increase in parsing results obtained by forcing the parser to use the given tags resulting
from this procedure, also indicating the important role that a POS tagger would play in a

18 Note that this right branching structure is also used for tamyiz in some constructions. See the ATB syntac-
tic guidelines for details on those constructions.

52 Chapter 1: Data Acquisition and Linguistic Resources

full Arabic NLP pipeline. In future work, we intend to investigate whether certain of the
tags may be more crucial for the parser to get right. It seems reasonable that many of the
“function word” particles are particularly crucial.

Revising the annotation of the existing Arabic Treebank corpora to reflect the newly
updated guidelines has provided a significantly improved resource to the community.
Additional annotation of new data in the improved guidelines style will follow.

The improved ATB guidelines, improving inter-annotator agreement scores, and an
expected continuing improvement in parsing scores are the result of a fruitful collabora-
tion between data producers, sponsors and end users, along with the support and time to
effect the change. It is hoped that such collaboration will continue to benefit both annota-
tion production and NLP applications in the future.

1.3.4.3. The Columbia Arabic Treebank
Authors: Nizar Habash, Reem Faraj and Ryan Roth

1.3.4.3.1. Introduction

Under time restrictions, the creation of a treebank faces a tradeoff between linguistic
depth and treebank size. This is especially the case for morpho-syntactically complex
languages such as Arabic or Czech. Linguistic depth provides the advantage of providing
many linguistic features that may be useful for a variety of applications. This comes at
the cost of slower annotation as a result of longer guidelines and more intense necessary
annotator training. As a result, the deeper the annotation, the slower the annotation
process and the smaller the size of the treebank. And consequently, the less data there is
to train tools that can benefit from more data.

Two basic ideas inspire the Columbia Arabic Treebank (CATIB) approach. First,
CATIB avoids annotation of redundant linguistic information. For example, nominal case
marks and state (definite, indefinite, construct) in Arabic are determined automatically
from syntax and morphological analysis of the words and needn’t be specified by human
annotators. Of course, some information is not easily recoverable in CATIB, such as
phrasal co-indexation and full lemma disambiguation. Second, CATIB uses a linguistic
representation and terminology inspired by Arabic’s long tradition of syntactic studies.
This makes it easier to train annotators. CATiB uses an intuitive dependency representa-
tion and relational labels inspired by Arabic grammar such as idafa (a syntactic construc-
tion used for indicating a possession relationship between two nouns) in addition to the
universally recognizable predicate-argument labels of subject and object.

1.3.4.3.2. CATIiB Linguistic Annotation Profile

CATIB uses the same tokenization scheme of the PATB and PADT. However, unlike
these resources, the CATiB POS tag set is much smaller. Whereas PATB uses over 400
(tokenized) tags specifying every aspect of Arabic word morphology such as definiteness,
gender, number, person, mood, voice and case; CATIB uses six POS tags: NOM (nomin-
als such as nouns, pronouns, adjectives and adverbs), PROP (proper noun), VRB (verb),
VRB-PASS (passive verb), PRT (particles such as prepositions or conjunctions) and PNX

Handbook of Natural Language Processing and Machine Translation 53

(punctuation). CATIB uses a dependency representation that models predicate-argument
structure (subject, object, etc.) and Arabic nominal structure (idafa [possessive construc-
tion], tamyiz [specification construction], modification). Here are all the relations: SBJ
(subject of verb or topic of simple nominal sentence), OBJ (object of verb, preposition, or
deverbal noun), TPC (topic in complex nominal sentences containing an explicit prono-
minal referent), MOD (general modifier of verbs or nominals), IDF (idafa in nominal
constructions) and TMZ (tamyiz in nominal constructions). No empty categories are
made explicit and no co-indexation of phrases. A detailed discussion of the CATIB
guidelines is presented by Habash et al. (2009). Although the CATIB tag set is small, it is
appropriate for human annotation purposes. We are able to reproduce a parsing-tailored
tag set [size 36] (Kulick et al. 2006) automatically at 98.5% accuracy using features from
the annotated trees. Details of this result will be presented in a future publication.

1.3.4.3.3. CATiB Annotation Process

Although CATIB is independent of previous annotation projects, we made sure to
build on top of existing resources and lessons learned. In our CATIB pipeline, we token-
ize using the MADA+TOKAN toolkit, trained on PATB (Habash and Rambow 2005).
We initially parse using the MALT parser trained also on a converted version of the
PATB (Nivre et al. 2007). The generated trees are then manually checked and modified
using the Tred toolkit produced by the team that developed the PADT (Pajas 2002).

Our annotators are all educated native Arabic speakers — although not necessarily in
Arabic linguistics or linguistics in general. The training process took place over two
months (150 hours on average). This is much faster than the reported six months training
for PATB. The speed of annotation of POS and syntax in production mode is over 540
tokens/hour. The speed of verifying the tokenization is over 5K words/hour. In PATB
annotation, the reported speed of syntactic annotation alone (no POS) is similar to CA-
TiB’s. When combining this speed with the speed of the PATB POS annotation step, we
get an effective 250-300 tokens/hour — almost half the CATiB speed.*’

We were able to create the CATiB manual from scratch; interview, hire and train an-
notators; and produce over 228K annotated words all in the span of seven months. In ad-
dition to annotation of new data, we automatically converted PATB trees to our CATIB
representation — this task is possible primarily because we use less linguistic information.
Collectively, the CATIB version 1.0 release contains over 1M tokens (841K words,
31,319 trees), including annotated and converted data.

Our basic inter-annotator agreement scores are around 91.6% on unlabeled parent at-
tachment (for sentences <= 40 tokens) and reach up to 94.7%. A serial annotation expe-
riment, where the annotators corrected already-annotated output, gives results reaching
up to 97.8% at 30% overall speed reduction. These results are generally comparable to
previous efforts that take longer time to train and annotate. More details about CATiB
results are presented by Habash and Roth (2009).

17 parsonal Communication with Mohamed Maamouri.

54 Chapter 1: Data Acquisition and Linguistic Resources

1.3.5. OntoNotes: A Large Training Corpus for Enhanced
Processing

Authors: Ralph Weischedel, Eduard Hovy, Mitchell Marcus, Martha Palmer, Robert Belvin, Sameer Pradhan,
Lance Ramshaw, Nianwen Xue

1.3.5.1. Introduction

This section describes a large multilingual richly annotated corpus that is being made
available to the community. We emphasize quality and consistency, targeting interanno-
tator agreement rates at 90%. The data covers multiple genres in English, Chinese, and
Arabic, including a significant amount of parallel data. The annotation, intended to cap-
ture a skeletal representation of literal meaning, includes parse trees, predicate argument
structures, word senses localized in an ontology, coreference, and name types. The re-
source is delivered as an integrated database, supporting combined queries that access
multiple annotation layers. Annual incremental releases are distributed via the LDC.

Text
Aaﬂk
Word Sense PropBank Co-reference
wrt Ontology
\ l 4 Names
OntoNotes
Annotated Text

Figure 1.7: Levels in OntoNotes.

1.3.5.2. Motivation, Goals, and Rationale

As shown in Figure 1.7, to the baseline structure of parse trees and propositions, On-
toNotes adds:

e Referring expressions and the textual phrases they refer to
e Terms disambiguated by word sense and localized in an ontology
e Named Entities

Based on our interpretation of the criteria for successfully applying learning algo-
rithms, our guiding principle has been to find a “sweet spot” in the space of

e Inter-tagger agreement, so that human agreement as a ceiling on algorithm per-
formance is as high as possible.

e Productivity, so that the amount of training data is maximized, given a budget,

e Depth of representation, so that the added semantic features are as deep as poss-
ible.

Handbook of Natural Language Processing and Machine Translation 55

The methodology described here was tested prior to entering production mode,
where pilot rounds of annotation were conducted to find the sweet spot above. In particu-
lar, only those classes of co-reference satisfying the methodology above during the pilot
study are annotated. The methodology has been applied for word sense, with the sense
inventory for each word being selected according to the criteria above.

Another dimension of the OntoNotes product is the integration of all of the annota-
tions in a database (Pradhan et al. 2007a), which has at least two benefits:

e Consistency checks on entering each annotation element flag many incon-
sistencies across annotations for manual correction.
e The data may be searched for phenomena of interest.

This section illustrates annotation primarily of English, though OntoNotes covers
Arabic and Chinese as well. In the next sections, we describe each of the component an-
notations: treebanking, proposition banking, word sense, ontology creation, coreference,
and names. The section concludes with a summary of related work.

1.3.5.3. Treebanking

The Treebank style in OntoNotes for English is a modification of the Treebank 1l
style for the Penn Treebank (Marcus et al. 1993; Marcus et al. 1994). For Chinese, the
style follows the Chinese Treebank (Xue et al., 2005). (Arabic Treebank annotation is
being performed at the Linguistic Data Consortium.) These are annotated with informa-
tion to make predicate-argument structure easy to decode, including function tags and
markers of “empty” categories that represent displaced constituents.

To facilitate merging of the syntactically annotated material with the PropBanked
material, both the Treebank style and PropBank style were modified to correct for some
small mismatches between the annotations (Babko-Malaya et el. 2006). The major
changes to the Treebank stylebook involved modifying the list of verbs considered to
take so called “small clauses” to conform to the argument structures assigned by Prop-
Bank, and changing the structures of resultatives to match the PropBank analysis.

The internal consistency of the newly syntactically annotated material for English has
been tested, and is quite good. The principal annotator for English reannotated sampled
material a year after the original annotation. The F-measure of the newly annotated ma-
terial against the initial annotation by the EVALB measure was 98.5.

A major editing pass of the OntoNotes Treebank materials is now underway to
achieve full consistency with all materials treebanked under the GALE project. The first
modification retrofits much of the OntoNotes treebanked materials to conform with the
current LDC syntactic style for NPs, crucially adding branching structure whenever the
default right branching structure of pre-head modifiers is violated. The second modifica-
tion changes the tokenization so as to split on most token-internal hyphen. This elimi-
nates some anomalies that resulted from the earlier tokenization, which was based entire-
ly on white space. In “the New York-based company”, for example, the old tokenization,
with “York” attached to “-based” made it impossible to annotate “New York”.

56 Chapter 1: Data Acquisition and Linguistic Resources

1.3.5.4. PropBanking

PropBanking focuses on annotating the argument structure of verbs, and provides a
corpus annotated with semantic roles, including participants traditionally viewed as ar-
guments and adjuncts. The style for English is that of the 1M word Penn Treebank II
Wall Street Journal corpus (Palmer et al. 2005). In addition to annotating verbs we are
also applying Nombank style annotation to just those nouns with predicate-argument
structures that can participate in event coreferences, such as nominalizations and eventive
nouns. Links from the argument labels in the Frames Files to FrameNet frame elements
and VerbNet thematic roles have been added. This style of annotation has also been suc-
cessfully applied to other genres and languages. For Chinese, the style is that of (Xue &
Palmer 2009) The same style has also been applied to Arabic (Diab et al. 2007).

1.3.5.5. Word Sense

One of the daunting challenges was attaining 90% annotator agreement for word
sense, since, for example, WordNet inter-annotator agreement averages in the low 70s.
Building on results in grouping fine-grained WordNet senses into more coarse-grained
senses that led to improved inter-annotator agreement (ITA) and system performance
(Palmer et al. 2007), we have developed a process for rapid sense inventory creation and
annotation that includes critical links between the grouped word senses and the Omega
ontology (Philpot et al. 2005).

word
Sense creatio

Sense creation:
definitions, examples, etc.
(1 person)

Annotation !

Pre-annotation: 50 instances
(2 people)

not ok

Results: ok agreement?

lok

Full annotation: all instances
(2 people)

!

Results: ok agreement?

lok

Adjudication: fix remainder
(1 person)

not ok

Store results
in database

Figure 1.8: Annotation Procedure

Handbook of Natural Language Processing and Machine Translation 57

Figure 1.8 shows the empirical process for proposing meaningful sense distinctions
and determining if they could be annotated at 90% accuracy. A 50-sentence sample of
instances is annotated and immediately checked for inter-annotator agreement for all
verbs and any noun with frequency over 100. ITA scores below 90% lead to a revision
and clarification of the groupings by the linguist. It is only after the groupings have
passed the ITA hurdle that each individual group is linked to a conceptual node in the
ontology. In addition to higher accuracy, we find at least a three-fold increase in annota-
tor productivity.

The same methodology has been applied to English, Arabic, and Chinese; the only
difference is the starting point for suggesting sense inventories. For English, WordNet
has been our starting point of choice. For Chinese, diverse sources are reviewed before
hypothesizing an inventory, including entries in web-accessible dictionaries, print dictio-
naries, samples from the corpora to be annotated and general web searches. For Chinese
verbs, the starting point has been the course-grained senses in the frame files created for
the PropBank annotation, although print and electronic dictionaries are also consulted.
Similar research including access to Arabic WordNet is carried out for each Arabic word
prior to authoring its sense inventory file.

1.3.5.6. Verbs

WNL1: “Can you drive a truck?”,

WN2: “drive to school,”,

WN3: “drive her to school,”,

WN12: “this truck drives well,”

WN13: “he drives a taxi,”,

WN14: “The car drove around the corner,”,
WN:16: “drive the turnpike to work,”
WN4: “He drives me mad.,”

WNS5: “She is driven by her passion,”

G2: force to a position or stance WNG6: “drive back the invaders,”

NP drive NP/PP/infinitival WN7: “She finally drove him to change jobs,”
WN15: “drive the herd,”

WN22: “drive the game.”

G3: to exert energy on behalf of something NP | WN11: “What are you driving at?,”

GI: operating or traveling via a vehicle
NP (Agent) drive NP, NP drive PP

drive NP/infinitival WN10: “He is driving away at his thesis.”
G4: cause object to move rapidly by striking it WN9: “drive the ball into the outfield ,”
NP drive NP WN17 “drive a golf ball,” WN18 “drive a ball”

Table 1.12: Four Groups for “drive”, Compared to the WordNet Senses

The word sense inventories for English verbs come initially from grouping related
WordNet senses (Palmer, et. al. 2007). Subcategorization frames and semantic classes of
arguments play major roles in determining the groupings, as illustrated by the grouping
for the 22 WN 2.1 senses for drive in Table 1.12. The groupings are also linked to the
ontology (see Section 1.3.5.5). In addition to improved annotator productivity and accu-
racy, we have found a corresponding improvement in word sense disambiguation perfor-
mance. Training on this new data, Dligach and Palmer (2008) report 83% accuracy for
verbs using a Support Vector Machine and rich linguistic features, which is almost 20%
higher than state-of-the art performance on ungrouped, fine-grained senses (Chen and

58 Chapter 1: Data Acquisition and Linguistic Resources

Palmer, 2005). The sense inventories for Chinese and Arabic verbs are created by start-
ing with the PropBank frame files and subdividing the verb entries into more fine-grained
senses where deemed appropriate.

1.3.5.7. Nouns

Noun annotation follows a procedure similar to that for verbs. The noun senses are
created starting with WordNet and other dictionaries. We aim to double-annotate, at the
target agreement level, the 1100 most frequent polysemous English nouns in the entire
corpus before the end of 2009, while maximizing overlap with the sentences containing
annotated verbs. We have lower targets for the other two languages, which were started
later.

Certain nouns carry predicate structure. To ensure conformity with verbs, the struc-
ture of nominalizations (destruction) and eventive nouns (party) is created and assigned
by the verb specialists at Colorado.

In order to speed up annotation, we investigated a form of active learning, in which
nouns with high agreement in a subset of the whole corpus were used as training data by
an automated annotation learner. Unfortunately, different sense distributions across cor-
pora meant that we could not always use results from one year to automatically annotate
another year’s data. We investigated various strategies to bootstrap the learning, by mix-
ing into the training data small amounts of annotated data from the new corpus. The re-
sults show that even 50 instances from the new distribution permit learning that is accu-
rate enough for about 50% of the high-frequency nouns (Zhu and Hovy 2007; Zhu et al.
2008).

The OntoNotes (release 1.0) verb and noun word sense data was used in the Semeval-
1 (Pradhan et al. 2007b) Overall accuracy over 100 lemmas (65 verbs and 35 nouns)
from WSJ corpus, for the best performing system was 86% — with average over verbs
being 78% and over nouns being 89%.

1.3.5.8. Coverage Issues

There are far too many polysemous lexical items for any project to provide exhaus-

tive coverage. Therefore the prioritization of items for annotation is of pressing concern.

Clearly high frequency items provide the most leverage, but they often have a pre-
dominant sense (as much as 90% of the data) which can overwhelm annotators with
hundreds or even thousands of repetitive examples that will provide little if no system
performance improvement. For example, 183 of the 186 instances of the word “bank”
in the Ontonotes portion of the WSJ corpus are cases of the first of the 10 senses (a fi-
nancial institution). In all corpora combined, 607 of the 640 instances of “investment”
are the third sense (the activity of investing money for profit). With this type of data,
double blind manual annotation and adjudication is not really necessary.

Of course, prior to the manual annotation the entropy of a word’s sense distribution
is unknown. When we are partially through annotation of a given word and it is clear
that the majority of its instances fall into one sense, we can then dispense with full
double-annotation of all senses, and allow one of the “annotators” to be a trained clas-
sifier. This method is described in more detail by Zhu and Hovy (2007). This allows for

Handbook of Natural Language Processing and Machine Translation 59

somewhat quicker annotation progress to be carried out for the most common senses, so
more time can be devoted to human annotation of rarer words and senses.

The desired aim is a balance between sufficient coverage of high frequency items
and maximal coverage of low frequency ones. For these rare words and senses the great-
est challenge is finding enough instances to provide adequate training material. We are
also exploring techniques such as language modeling for preselecting instances of rare
senses from a new corpus (Dligach and Palmer 2009). In addition we have implemented
a data selection plan which supplements our “whole document” based annotation ap-
proach with lexical samples for specific lexical items which require greater coverage.

1.3.5.9. Ontology

Standard dictionaries simply list the senses for each word. To support synonym
access, inheritance of features and other properties such as predicate frames, links to in-
stances, and so on, we group together the senses that share the same meaning, and then
arrange them into a shallow taxonomy that we call the Omega Ontology (Philpot et al.
2005) following the process of Figure 1.9.

Word Sense
Inventory
i Ontologizing
Collect synonyms
(1 person)

|

Create sense pools +— |
(1 person)

'

Validate sense pools
(2 pelople)

Results: ok agreement?

i ok not ok

Taxonomize pools
(3 people)

Store results
in ontology

Figure 1.9: Process for adding to the Ontology.

A manual procedure forms sense pools by selecting and grouping together individual
noun and verb senses that convey the same meaning. (Sense pools correspond to Word-
Net’s synsets, but are generally less fine-grained.) Each sense pool contains one or more
definitions, examples, features, and pointers to the individual senses that comprise it,
from which one can access their respective annotated sentences. It is thus possible to

60 Chapter 1: Data Acquisition and Linguistic Resources

assemble for each meaning a set of sentences that contain different target words, each
expressing that meaning, in order to train more-powerful sense disambiguation engines.

All sense pools are attached into Omega’s Upper Model (Hovy et al. 2009), a net-
work of some 120 nodes that represent very abstract conceptualizations. Reference to
VerbNet semantic classes has been helpful in creating nodes for the verb upper level on-
tology (Palmer et. al. 2009). To date, about 5000 noun-derived and 3500 verb-derived
pools (from English sources) have been created and attached, by multiple annotators who
compare their decisions to ensure quality, using a specialized interface. Work is under-
way to create sense structures also for the other two languages and either merge them into
English-derived pools or attach them to the Upper Model separately. In addition, we
have started creating sense structures for the 3000-odd monosemous English nouns oc-
curring in the corpus, and merging or inserting them into Omega.

1.3.5.10. Coreference

The coreference annotation in OntoNotes connects coreferring instances of specific
referring expressions, primarily NPs that introduce or access a discourse entity. For ex-
ample, “Elco Industries, Inc.”, “the Rockford, Ill. Maker of fasteners”, and “it” could all
corefer. (Non-specific references like “officials” in “Later, officials reported...” are not
included, since coreference for them is frequently unclear.) In addition, proper noun pre-
modifiers and verb phrases can be marked when coreferent with an NP, such as linking,
“when the company withdrew from the bidding” to “the withdrawal of New England
Electric”.

Unlike the coreference task as defined in the ACE program, attributives are not gen-
erally marked. For example, the “veterinarian” NP would not be marked in “Baxter Black
is a large animal veterinarian”.

However, the sense of “be” is marked so that attributive information is annotated.
Adjectival modifiers like “American” in “the American embassy” are also not subject to
coreference.

Appositives are annotated as a special kind of coreference, so that later processing
will be able to supply and interpret the implicit copula link.

All of the coreference annotation is being doubly annotated and adjudicated. Over the
first two years, the overall average agreement between individual annotators and the ad-
judicated result for non-appositive coreference using the MUC coreference scorer was
86%.

Pradhan et al. (2007) report baseline performance on the OntoNotes coreference data
using a standard feature set. Coreference decoding contrasts with decoding other layers
in that system performance on coreference still lags very much behind the ITA, in spite of
the latter being very high. This is most likely due to the fact that richer semantic and
word-knowledge components, in addition to annotation granularity and consistency, are
important in identifying co-referring entities. Better learning strategies combined with
the accompanying layers in OntoNotes would likely help bridge this gap in the future.

Handbook of Natural Language Processing and Machine Translation 61

1.3.5.11. Names

Names are also annotated using an 18-type superset of the ACE name guidelines.
This supplemental annotation is done in a single pass.

1.3.5.12. Database

Since we are delivering multiple levels of annotation (syntax, propositions, corefe-
rence, word sense, ontology, and names), several questions arose:

1. How could we ensure that all the components are consistent with each
other, avoiding engineering/formatting inconsistencies?

2. Should the annotations be delivered as independent pieces provided in an
integrated representation?

3. What representation would best facilitate use of this information as train-
ing data for systems that will be incorporated into applications? Can this
representation also support leveraging these additional knowledge
sources during the training process?

Syntax Propositions

e6:
transfer,
T ATG2:t0

%

ArgQ~
99" [Arat e

N\
yﬁL/ e er BN S e 3 R
- o / an
e= VAR AN
[7 Pakistan's Abdul he nuclear Iran _ Libya North

nuclear Qadegr technologys — __“we — Korea
/_department, Khan ——F =
4 ; £ T

SN = — .

Y L :
of L3 has Lol S and/ nation. originator engineering ﬂd‘"“‘
o th
The Pakistan's Abdul admitted he ./ Nuclear _ran, Libya or |)
K subject area
founder Nuclear Qadeer technalpgy orea farge geopolitical entity causal agent g
department Khan - \ ; /

geopolitical entity event
~.

| cognition

. |
social object ... tangible object ... Mental object ... tangible event

- e e fom -
object event
e2 = e7 . o

Coreference summum genus Concepts

Figure 1.10: Simplified diagram of the interconnections between annotation layers.

We have created a corpus with diverse levels of semantic information integrated in
one database (Pradhan et al. 2007a). Figure 1.10 illustrates some of the interconnections
captured. The database contains these multiple annotation levels on texts in each of the
three target languages.

Each document is stored as a sequence of sentence strings. The token table identifies
the word substrings by their offsets, and those tokens in turn are the leaves of a parse tree
showing the syntactic structure of the sentence. Supplementary link tables implement
many-to-many relations whereby PropBank, word sense, and coreference annotations can
be associated with parse tree nodes. Link tables are also used to connect the OntoNotes
word senses with the associated PropBank frames. For parallel text that is available in
multiple languages, the database also supplies alignment information that maps from each
sentence to the associated sentence(s) in the other language.

62 Chapter 1: Data Acquisition and Linguistic Resources

This process of integrating these disparate types of annotation into a single database
identified several types of inconsistencies between the layers. Some of these were theo-
retical differences For example, the original freestanding PropBank annotation used mul-
tiple pointers for a single argument whose immediate value was a trace node that pointed
to another, more distant tree node. In the integrated annotation, each PropBank argument
is a single syntactic constituent, since the Treebank already provides the trace informa-
tion.

There were also cases where the syntactic analysis implied by the original PropBank
annotation clashed with that in the Treebank. For example, for the phrase “keep their
markets active”, the original PropBank analysis had “their markets” and “active” both as
arguments of “keep”, while the Treebank treated “active” as the predicate of a small
clause. The two groups each made some changes to resolve these inconsistencies (Babko-
Malaya et al. 2006).

Other clashes that showed up in the database merge were just incidental, for example,
tree structure changes that had been made by one set of annotators but not communicated
to the other groups. Resolving all of these inconsistencies helped to ensure a clean, con-
sistent final product, where the relationships between all the layers and within the layers
themselves can be efficiently captured in the database schema.

We have also provided an object layer on top of the database layer, written in Python.
This layer implements a Python object type for almost every database table. These ob-
jects directly represent data values like inverse pointers that are not stored explicitly in
the database, and they thus allow for more efficient and flexible data manipulation than
when working directly at the level of the underlying database tables, particularly when
working across multiple layers. It can also output representations of each individual lay-
ers by itself, or a human-readable representation that combines the information in all the
layers.

This object layer facilitates defining custom views of the data as well as extracting
cross-layer features for use in analysis or in predictive models, neither of which was easi-
ly possible before. For example, one could use this API to find out the distribution of
named entity types that occur as ARGO arguments of the predicate “say”, combining in-
formation from the Treebank, PropBank, and names layers.

1.3.5.13. Related Work

PropBank | (Palmer et al. 2005), developed at UPenn, captures predicate argument
structure for verbs; NomBank provides predicate argument structure for nominalizations
and other noun predicates (Meyers et al. 2004). PropBank Il annotation (eventuality
ID’s, coarse-grained sense tags, nominal coreference and selected discourse connectives)
has been applied to a small (100K) parallel Chinese/English corpus (Babko-Malaya et al.
2004). The OntoNotes representation extends these annotations, and allows eventual in-
clusion of additional shallow semantic representations for other phenomena, including
temporal and spatial relations, numerical expressions, deixis, etc.

One of the principal aims of OntoNotes is to enable automated semantic analysis.
One state-of-the-art algorithm for semantic role labeling for PropBank style annotation
(Pradhan et al. 2005) achieves an F-score of 81.0 using an SVM model. OntoNotes will
provide a large amount of new training data for similar efforts.

Handbook of Natural Language Processing and Machine Translation 63

Other related work falls into two classes: the development of resources for specific
phenomena or the annotation of corpora. An example of the former is Berkeley’s Frame-
Net project (Baker et al. 1998), which produces rich semantic frames, annotating a set of
examples for each predicator (including verbs, nouns and adjectives), and describing the
network of relations among the semantic frames. An example of corpora annotation is
the Salsa project (Burchardt et al. 2006), which produced a German lexicon based on the
FrameNet semantic frames and annotated a large German newswire corpus. A second
example, the Prague Dependency Treebank (Hajic et al. 2001), has annotated a large
Czech corpus with several levels of (tectogrammatical) representation, including parts of
speech, syntax, and topic/focus information structure. The Tsinghua Chinese Treebank
TCT (Zhou 2003) contains some 2 million Chinese characters, of which half has been
treebanked, and manually annotated for syntactic and certain semantic relations, such as
causality and conditionals. It covers various genres

Finally, the IL-Annotation project (Reeder et al. 2004) focused on the representations
required to support a series of increasingly semantic phenomena across seven languages
(Arabic, Hindi, English, Spanish, Korean, Japanese and French). In intent and in many
details, OntoNotes is compatible with all these efforts, which may one day all participate
in a larger multilingual corpus integration effort.

1.3.5.14. Summary

English Chinese Arabic
NW 550 K 250 K 300K
BN 200 K 300 K 200 K
BC 200 K 150 K -
Web 300K 150 K -

Table 1.13: Planned corpus (token counts).

The plan for the full OntoNotes corpus is shown in Table 1.13, covering three lan-
guages and four genres (NewsWire, Broadcast News, Broadcast Conversation, and Web
text), and including significant amounts of parallel bilingual data. OntoNotes Version 2.0,
released by the LDC in early 2008, covered NW and BN in English and Chinese and NW
in Arabic. Version 3.0, to be released in June 2009, will add coverage of BC data in Eng-
lish and Chinese, with additional Arabic NW. It is our hope that this annotation will pro-
vide an enduring resource for the community.

64 Chapter 1: Data Acquisition and Linguistic Resources

1.4 Automatic Annotation

1.4.1. Speech Segmentation and Its Impact on Spoken
Document Processing
Authors: Mari Ostendorf, Benoit Favre, Ralph Grishman, Dilek Hakkani-Tir, Mary Harper, & Dustin Hillard

1.4.1.1. Introduction

Dramatic improvements in automatic speech recognition (ASR) technology make it
now possible to explore how language processing techniques designed for text can be
applied to spoken language. Ever increasing collections of information are available as
speech recordings, including news broadcasts, talk shows, meetings, debates, lectures,
hearings, oral histories, and webcasts, among other types of human-directed (vs. comput-
er-directed) communications. ASR can automatically transcribe (albeit imperfectly) the
speech in such spoken documents into a stream of words. But to derive content of inter-
est, one would like to be able to apply language processing techniques that have tradi-
tionally been developed for written input.

A challenge for the processing of most classes of spoken documents - as compared
with text documents - is the lack of overt segmentation information. Text input typically
contains punctuation that segments words into sentences and subsentential units. Sen-
tences are further organized into higher-level units such as speaker quotes, paragraphs,
sections, chapters, articles, and so on, via formatting. In contrast, when spoken language
is processed by an automatic speech recognizer, the output is simply an unannotated
stream of words, as shown in the example below. Human listeners can easily segment
such spoken input, arriving at the formatted version that follows. To do so they draw on a
range of cues, not all of which are fully understood.

Automatic segmentation is still far from human performance, but significant progress
has been made by combining lexical information from a word recognizer, with spectral
and prosodic cues. Lexical sequence information provides cues related to syntactic and
semantic constraints, and is thus helpful in finding sentence and clause boundaries. For
ex-ample, a sentence in English is not likely to end with a determiner. Such cues are,
however, subject to degradation from word recognition errors. Lexical cues can also be
fairly domain-specific, and may thus perform poorly when training and test data come
from different speaking contexts. Spectral information provides cues to speaker and show
changes, as well as to non-speech events such as laughter. Prosodic features such as fun-
damental frequency, duration, and energy patterns provide information about multiple
types of segment boundaries. For example, pitch tends to drop before the ends of sen-
tences, and to an even lower value at the end of a topic or paragraph-like unit. Boundaries
are often accompanied by pauses and by durational lengthening of phones directly pre-
ceding the boundary.

Handbook of Natural Language Processing and Machine Translation 65

Unformatted Word Transcripts

with more american firepower being considered for the persian gulf defense secretary
cohen to-day issued by far the administration’s toughest criticism of the u. n. security
council without mentioning russia or china by name cohen took dead aim at their reluc-
tance to get tough with iraq frankly i find it uh incredibly hard to accept the proposition
that in the face of saddam’s uh actions that uh members of the security council cannot
bring themselves to declare that this is a fundamental or material breach uh of uh con-
duct on his part i think it challenges the credibility of the security council in europe to-
day secretary of state albright trying to gather support for tougher measures was told by
the british and french ...

Formatted transcripts

Reporter: With more American firepower being considered for the Persian Gulf, de-
fense secretary Cohen today issued by far the administration’s toughest criticism of the
U.N. Security Council. Without mentioning Russia or China by name, Cohen took dead
aim at their reluctance to get tough with Irag.

Cohen: Frankly I find it incredibly hard to accept the proposition that in the face of
Saddam’s actions that members of the Security Council cannot bring themselves to dec-
lare that this is a fundamental or material breach of conduct on his part. | think it chal-
lenges the credibility of the Security Council.

Reporter: In Europe today, Secretary of State Albright trying to gather support for
tougher measures was told by the British and French ...

Over the past decade, researchers have explored methods for improving computa-
tional models for various levels of segmentation, showing that combining both acoustic
and lexical cues provides significant gains in accuracy over a naive pause-based segmen-
tation. More importantly, as will be shown here for a variety of language processing
tasks, these segmentations also lead to much better task performance than pause-based
segmentations. The experiments described represent a survey of the work of different
groups over different time periods controlling for different aspects of segmentation, so
the results are not directly comparable. However, the findings together tell a consistent
story, specifically that many language processing tasks benefit from linguistic structure
(beyond pause units) and that optimizing segmentation for the task is a useful strategy,
i.e., the best tradeoff of recall and precision varies depending on the task.

In the remainder of this section, we describe different types of segmentation useful
for spoken document processing, outline popular methods for feature extraction and
computational modeling, survey recent results showing the impact of segmentation in
several language processing applications, and summarize the findings and open ques-
tions.

1.4.1.2. Segmentation in Spoken Language

Language processing technology for text leverages sentence boundary and punctua-
tion information, and the spoken language versions of this technology build on these sys-
tems. Thus, sentence segmentation is of particular importance for automatic spoken doc-
ument analysis and understanding. Sentence boundaries are also important for aiding

66 Chapter 1: Data Acquisition and Linguistic Resources

human readability of the output of automatic speech recognition systems (Jones et al.
2005).

Sentence-level information is but one of many useful levels of structure in language,
as evidenced by the additional forms of punctuation (for example, commas) often availa-
ble in text. For some language analysis tasks, such as parsing and entity extraction, sub-
sentence punctuation is of additional value. However, many of these applications may
benefit more from an alternative to punctuation: prosodic phrase boundaries. Speakers
naturally group words into semantically coherent phrases indicated by timing and pitch
cues; these prosodic phrase boundaries often coincide with major syntactic constituent
boundaries (particularly those marked with commas and semi-colons) but have a much
flatter structure than syntax. They provide smaller (and potentially more useful) units for
processing.

Applications of segmentation above the sentence level depend on genre. For exam-
ple, topic segmentation is important when processing news broad-casts that include mul-
tiple stories. Similarly, speaker tracking and possibly role or identity recognition can pro-
vide useful structure in genres with multiple speakers. Simply knowing who is speaking
(even without an associated name) can improve the read-ability of a speech transcript
when there is more than one person talking. Speaker tracking is also useful for automatic
analysis of conversation or meeting dynamics and for attribution in question answering.
Both speaker and topic segmentation can be useful in speech recognition, for acoustic and
language model adaptation, respectively.

1.4.1.3. Computational Modeling Techniques

Two very different types of segmentation algorithms are used: audio diarization and
structural segmentation. Audio diarization aims to segment an audio recording into
acoustically homogeneous regions, given only features extracted from the audio signal.
Audio diarization techniques can include a variety of tasks, such as distinguishing speech
from music or advertisements from news. The term structural segmentation is used here
to include tasks that represent linguistic structure (commas, sentences, story/discourse),
for which algorithms leverage both acoustic and lexical cues. The two classes of algo-
rithms are treated separately below, followed by a discussion of how different types of
segmentation may be combined. We provide an overview of the most popular methods in
each case, with the disclaimer that technology is still evolving in this field.

1.4.1.4. Speaker Diarization

Much of the foundation for speaker diarization comes from speaker recognition re-
search; some of the earliest systems were developed to support work on speaker identifi-
cation in broadcast news. A typical speaker diarization system may be broken down into
several “standard” components (Tranter and Reynolds 2006), with the two main compo-
nents being “segmentation” and “clustering.” During the segmentation step (or “speaker
change detection”), boundaries between acoustic events (typically due to a change of
speaker) are located to create homogeneous segments of audio. The dominant approach
to segmentation involves computing a generalized log likelihood ratio at candidate boun-
daries, comparing the likelihoods of the data using two distributions for the subsets of

Handbook of Natural Language Processing and Machine Translation 67

data to the left and right of the boundary vs. a single distribution for the combined set. To
determine the cut-off point, typically some form of regularization or prior is used, such as
the Bayesian Information Criterion, which effectively adds a penalty for increased num-
bers of parameters. Then, during clustering, all of the segments belonging to the same
speaker are grouped together. The most common approach for the initial speaker cluster-
ing is hierarchical agglomerative clustering, which begins with a large number of clusters
that are merged pair-wise. The number of speakers is not known a priori, so various heu-
ristics are used to determine the stopping point. Determining the number of speakers can
be difficult in applications where some speak only briefly (e.g., in news sound bites),
since they tend to be clustered with other speakers.

The segmentation and clustering steps may be iterated until some stopping criteria is
satisfied. In subsequent passes, different models may be used, such as hidden Markov
models (HMMs) for joint segmentation and clustering. Multi-pass methods are useful for
the challenge of handling speaker overlap (in talk shows) and handling noisy conditions
(reporters calling in from the field). The most common features used in audio diarization
are cepstral features and their derivatives, as in speech recognition except without the
normalization aimed at factoring out speaker and channel differences since these are ex-
actly the types of differences that are targeted in diarization.

Speaker diarization performance is typically measured by diarization error rate
(DER), which measures the percentage of time that a system incorrectly labels the audio
recording based on an automatic mapping of hypothesized speaker clusters to reference
speakers according to maximal overlap.'® Diarization error rates vary depending on the
number of speakers, speaker overlap, and acoustic conditions. Hence, DER can vary
widely, e.g., from roughly 2% to 12% for different broadcast news sources (Tranter and
Reynolds 2006).

1.4.1.5. Structural Segmentation

There are two basic modeling approaches used for structural segmentation: 1) detec-
tion of boundary events, and 2) whole constituent modeling. The approaches can also be
combined. Both models are applied after speech recognition, and take advantage of the
alignment between words (and the phones therein) and the acoustic speech signal.

Boundary event detection is essentially a sequence tagging problem: for each word in
the sequence, assign a boundary label indicating the constituent (or none) ending at that
point. As such, any computational model for tagging is applicable here. HMM-like mod-
els dominated early work in speech segmentation (Stolcke and Shriberg 1996). Given the
word sequence W and the prosodic features F, the most likely event sequence E is given

by:

E = argmaxP (E|F,W) ~ argmax P(W,E) P(F|E)
E E

The transition probabilities (in P(W, E)) are obtained from an n-gram language mod-
el, also referred to as a hidden-event language model, that characterizes the event labels

'8 http://www.nist.gov/speech/tests/rt/rt2007/

68 Chapter 1: Data Acquisition and Linguistic Resources

and words jointly. The observation posteriors P(F|E) are generated from a prosody mod-
el, e.g., a decision tree classifier or neural network. HMMs that are discriminatively
trained have also been used for sentence boundary detection (Tomalin and Woodland
2006).

Maximum entropy (Maxent) and conditional random field (CRF) classifiers have also
been investigated for boundary event detection (Huang and Zweig 2002; Liu et al. 2006).
Unlike HMMs, Maxent and CRF approaches provide more freedom to incorporate con-
textual information and to combine word-based and prosodic features. Both use the ex-
ponential form for the conditional probabilities. For example, in Maxent:

1
P(E;|W,F) = mexp (Z A gk (Ei, W, F))
! k

A CRF models sequence information, whereas Maxent individually classifies each
data sample. The weights (1) for the features are estimated to maximize the conditional
probabilities of the training set. Liu et al. (2006) compare HMM, Maxent, and CRF ap-
proaches for sentence segmentation of broadcast news and conversational speech, finding
that the CRF leads to the best results but by a small margin and at a higher computational
cost. Another approach that can accommodate a rich variety of features is based on com-
bining Boostexter with a hidden-event language model (Zimmermann et al. 2006). Boos-
texter is based on the principle of boosting that combines many weak classifiers, each
having a basic form of one level decision trees using confidence-rated prediction. It has
the advantage of good performance with a relatively low cost implementation.

Whole constituent modeling considers both the beginning and the end time of a seg-
ment in determining boundary location. For many problems, the cues are local to the
boundary, such as for prosodic phrase boundaries. For others, the cues extend over the
entire phrase, and the whole constituent approach is preferable. Whole constituent model-
ing is also useful when a maximum or minimum length constraint is needed. The chal-
lenge of modeling the full constituent is in decoding. Since it is impractical to consider all
possible constituent onset times, the search space is often reduced by restricting the set of
candidate boundaries. Whole constituent modeling has been used for sentence segmenta-
tion, story segmentation, and in speaker modeling where both acoustic and lexical cues
are incorporated. In sentence segmentation for translation (Matusov et al. 2006), an ex-
plicit sentence length model is incorporated in a log-linear combination of language mod-
el and prosody model scores. Posterior probabilities identified via boundary event detec-
tion can be included in the combination for further improvements (Matusov et al. 2007).
In story segmentation, whole constituent modeling is needed for characterizing the topi-
cal coherence of sentences in the segment and extracting position-based information
about lexical cue words (Rosenberg et al. 2007).

The modeling approaches described above rely on various word-based and prosodic
features. Lexical features typically consist of word n-grams and part-of-speech n-grams.
These features are useful for identifying short utterances in spontaneous speech such as
backchannels (“uhhuh”, “yeah”), for characterizing sequences of words that are unlikely
to be split by a sentence boundary (“the problem™), and for representing words that are

Handbook of Natural Language Processing and Machine Translation 69

likely to start a new sentence (such as “I”). Syntactic features have also been used to im-
prove sentence boundary detection (Roark et al. 2006a; Favre et al. 2008). The features
have different representations in different modeling approaches, for example, an n-gram
language model in the HMM framework or word tuple indicators in discriminative clas-
sifier approaches.

Prosodic features reflect information about duration, pause, intonational and energy
contours. Features can be extracted from automatic alignments of word and phone tran-
scriptions with the speech signal. Duration features (such as word, pause, and phone du-
rations) are obtained directly from alignment time marks. Since different phones have
different baseline durations, duration features are typically normalized for phonetic con-
tent. In addition they may be normalized by speaker or speaking rate. Pause duration is
known to be important for segmentation, but it poses some challenges because of editing
in broadcast news and speaker overlap in conversational speech. Useful pitch and energy
features tend to capture differences across the word boundary in question, as well as
slopes and normalized level of pitch or energy just before a boundary. In the case of both
pitch and energy, features must be appropriately normalized (by speaker for pitch; by
channel for energy).

Sentence segmentation is reported either using an F-measure or the sentence error
rate, which computes error rate as the number of incorrect boundaries over the total num-
ber of boundaries using the mdeval tool.'® Performance depends on speech genre and re-
cognizer error rate. Conversational genres tend to have shorter sentences but higher error
rates. With the caveat that performance continues to improve, example F-measures on
automatically transcribed speech are roughly 65% for broadcast news (Favre et al. 2008a)
and 64% for broadcast conversations in English. The F for Mandarin broad-cast news is
about 75% (Matusov et al. 2007).

1.4.1.6. Multi-level Segmentation

Since the various types of segmentation are generally interdependent and since auto-
matically detected boundaries can be errorful, soft predictions (boundary posteriors) at
the different levels can be considered jointly to improve performance. Speaker bounda-
ries based purely on acoustic information often do not align perfectly with sentence
boundaries that are based on speech recognizer output. Higher accuracy speaker bounda-
ries can be obtained by adjusting boundary times to match those of nearby sentence
boundaries. Similarly, improved story boundary detection is achieved by considering
candidate boundary points at more locations than the automatically detected sentence
boundaries, either by lowering the threshold for sentence detection (e.g. from probability
0.5 to probability 0.1) or simply by considering all boundaries with a 250ms or greater
length pause (Rosenberg et al. 2007). Taking into consideration the higher-level informa-
tion associated with story boundary detection can potentially feedback into improvements
in sentence segmentation. The use of soft decisions on segment boundaries also makes it
possible to tune the boundary detection threshold or operating point for specific applica-
tions. Work described in the next section shows that this is indeed useful, though the best
operating point varies with the different tasks.

9 http://www.nist.gov/speech/tests/rt/2004-fall/

70 Chapter 1: Data Acquisition and Linguistic Resources

1.4.1.7. Applications

Spoken document processing can involve a combination of several tasks, typically
starting with speech recognition and speaker segmentation, followed by some basic lin-
guistic analysis such as part-of-speech tagging and parsing, and then involving higher
level processing such as translation and information extraction. Automatic segmentation
touches on all of these problems, but we will focus on stages after speech recognition. In
the examples here, the segmentation types used (speaker, sentence, comma, intonational
phrase, and story) employ the basic algorithms described in Section 1.4.1.3. The specific
methods vary with genre and with the time period of the work, since this is still an area of
research and the best case configurations are evolving.

1.4.1.8. Speaker Role and Identity Recognition

In broadcast news, most speech is from anchors and reporters, but there are excerpts
from speeches or interviews, sometimes referred to as “soundbites.” Detecting soundbites
and associating them with particular speakers is important for information extraction and
attribution in question answering. Using the example in Section 1.4.1.1, the task is to as-
sociate the speech segments produced by Cohen with his name, given speaker diarization
results and ASR transcripts.

Data from Mandarin broadcast news has been used for soundbite and speaker name
recognition (Liu and Liu 2007) using a classification frame-work. Each speaker turn is
labeled with one of three roles: anchor, reporter, or soundbite. The features used are
based on textual information (mainly word n-grams) from the current segment, the pre-
ceding and the following segments. Speaker name recognition takes advantage of the
coded behavior typical of broadcast news (i.e., reporters often naming the next or pre-
vious speaker). Hypothesized names from the current and neighboring segments are clas-
sified in terms of whether or not it is the speaker’s name for a target soundbite segment
using keywords and position of the name in the sentence.

In experiments with Mandarin broadcast news, word errors and sentence segmenta-
tion errors have different impacts on the soundbite detection and name recognition tasks
due to the types of cues they use. For soundbite detection, segmentation errors were more
harmful than word errors, with degradation in F-measure of 12% vs. 2%, respectively,
com-pared to detection on oracle transcripts. Incorrect sentence segmentation leads to
missed cue words to soundbites. For name recognition, the opposite is true: 1% degrada-
tion of F-measure due to segmentation errors, compared to 15% with word errors. Since
many soundbite speaker names are infrequent, they are less reliably recognized than other
words.

1.4.1.9. Tagging and Parsing

Part-of-speech (POS) tagging is the process of marking up a sequence of words with
their parts of speech (e.g., noun, verb). Parsing produces a structural analysis of a word
sequence with respect to a grammar. High quality automatic sentence segmentation is
important for utilizing these techniques most effectively, both for accuracy and for ad-
dressing length-dependent complexity issues. Experiments on the impact of comma pre-

Handbook of Natural Language Processing and Machine Translation 71

diction on POS tagging accuracy of Mandarin broadcast news speech showed that per-
formance was significantly better when using the automatic commas compared to a
matched train/test condition without sentence-internal punctuation (Hillard et al. 2006).
Other work on parsing English conversational speech showed a significant effect of sen-
tence segmentation on parsing whether using the reference word transcriptions (Kahn et
al. 2004) or ASR transcripts (Harper et al. 2005): automatic sentence segmentation can
recover roughly half the loss in parsing performance due to using pause-based segmenta-
tion compared to hand-labeled references (roughly 10 points F-measure recovered).

Further experiments (Roark et al. 2006a; Harper et al. 2005) showed that optimizing
sentence segmentation thresholds specifically for parse accuracy (vs. sentence segmenta-
tion accuracy) yielded greater improvements in parsing (from F of 64.8 to 65.7). When
optimizing for parse accuracy, the system tended to produce shorter segments than when
optimizing for sentence segmentation accuracy, i.e. trading off precision for recall. The
shorter sentence-like segments also benefited a parsing language model used in speech
recognition, leading to significant improvements in the SParseval score when word se-
quences and parses are chosen jointly.

1.4.1.10. Information Extraction

Information Extraction (IE) aims at finding semantically defined entities in docu-
ments and characterizing relations between them. Like many text processing tasks, IE
systems typically benefit from handwritten punctuation. Studies show that when punctua-
tion is removed, there is an associated loss in performance. For example, missing com-
mas have a dramatic impact on IE (Makhoul et al. 2005), with performance loss typically
bigger than that observed when moving from reference to ASR output (for a range of
word error rates on English news). Similar results were reported for name tagging on
Mandarin broadcast news (Hillard et al. 2006), and it was shown that half of the lost per-
formance was recovered with automatic comma prediction (from F of 84.9 to 85.4).

Another study (Favre et al. 2008a) confirmed these observations for English IE on
speech, and found that optimizing sentence and comma prediction thresholds for IE per-
formance is more effective than optimizing these thresholds separately for punctuation
prediction accuracy: improvements in the ACE scores are from 15.6 to 18.4 for relations,
and 47.0 to 48.2 for entities. Error analysis showed that punctuation errors can result in
merged noun phrases or split entities. The best case performance was obtained by jointly
optimizing comma and sentence boundary thresholds, but allowing the thresholds to vary
in detecting entities vs. relations.

1.4.1.11. Machine Translation

In machine translation (MT), sentence segmentation helps provide translations with
proper punctuation, but it also impacts word choice since sentence boundaries are incor-
porated in the language model and they constrain the possible phrase translations. Many
systems limit sentence lengths for complexity reasons, which motivates a constituent-
based approach to sentence segmentation. The translation application also motivates a
new type of feature, introduced by Matusov et al. (2007) to characterize phrase coverage
of the words that span the candidate boundaries to ensure that word sequences with good

72 Chapter 1: Data Acquisition and Linguistic Resources

phrasal translations will not be broken by a segment boundary. The phrase coverage fea-
ture is a bigram language model probability. Depending on whether the bigram probabili-
ty is high or low, there is likely to be a good phrasal translation in the system or not, re-
spectively.

Different sentence segmentation algorithms have been evaluated on large vocabulary
Arabic-to-English and Chinese-to-English broadcast news translation tasks using the
phrase-based MT system of RWTH (Mauser et al. 2006). The explicit length modeling of
the whole constituent model (using a less sophisticated prosody model and without the
phrase coverage feature) did not do as well as the boundary detection approach in terms
of sentence segmentation accuracy, but it did lead to better MT performance. MT per-
formance improves by combining the two methods, but the best result was achieved by
using the phrase coverage feature, increasing BLEU from 18.1 for fixed-length segments
to 21.2 for the MT-optimized sentence predictions. The sentence boundary precision is
reduced significantly when the phrase coverage feature is used, but this does not affect
the translation because the context at the erroneously inserted boundaries was not cap-
tured in MT training anyway. As in the parsing work, MT experiments have shown that a
lower detection threshold is better for translation of Chinese (0.2 vs. the minimum error
threshold of 0.5), favoring recall over precision or shorter segments. A separate study on
Arabic-to-English translation found that longer sentences are better (Matsoukas et al.
2007). Shorter sentences in Chinese are likely to help limit reordering errors, while for
Arabic (which has less long distance reordering), longer segments likely provide addi-
tional context without much increased risk of reordering mistakes.

While punctuation marks predicted in ASR output can be useful for predicting target
language punctuation, they can be also used to guide the MT process. Matusov et al.
(2007) used automatically predicted Chinese commas as soft boundaries for reordering in
MT search. Reordering across a comma is found to be highly unlikely and is penalized by
modifying the lexicalized reordering model of the phrase-based MT system (Zens and
Ney 2006), with reduced penalties for lower confidence predictions. In experiments on
the Chinese-to-English task, the soft comma constraints did not result in a significant im-
provement in standard MT development scoring methods (BLEU and TER). However, the
word order in several translated sentences was subjectively better when the soft boundary
penalty was applied.

1.4.1.12. Conclusions

In summary, the fact that most language technology used in spoken document
processing is designed in large part from written text argues that speech must be made to
look more like text for achieving good performance. An important challenge in this re-
spect is speech segmentation, including sentence segmentation at a minimum, but ideally
also speaker and topic segmentation for formatting and adaptation, as well as sub-
sentence punctuation and/or intonational phrase prediction. Both event-based and consti-
tuent-level computational models have been developed for these problems, many of
which combine lexical and acoustic cues in detecting boundaries. While these algorithms
are far from perfect, in most applications they provide a much better solution than simple
pause-based segmentation. Oracle results suggest that further improvements to segmenta-

tion algorithms would be useful, though improvements to word recognition have higher
impact for some tasks.

Handbook of Natural Language Processing and Machine Translation 73

In the various applications surveyed here, there is a consistent finding that tuning the
segmentation thresholds for the application leads to significant performance improve-
ments over using the threshold that minimizes segmentation error. In many cases (but not
all), higher recall is more effective (i.e. shorter sentences), but the optimal threshold va-
ries. This raises the question as to how best to meet the needs of multiple language
processing modules, particularly when they all operate on the same hypothesized tran-
script. One solution is to use a low threshold (more hypothesized boundaries) with confi-
dences associated with the boundaries, so that different downstream modules can use
their own threshold. Alternatively (or in addition), the need for different thresholds may
reflect a need for different types of structures, including subsentence units such as intona-
tional phrases or syntactic chunks.

1.4.2. CADIM Arabic Tools: Morphological Analysis,
Disambiguation and Generation, Tokenization,
Diacritization, Lemmatization, POS Tagging and Base
Phrase Chunking

Authors: Mona T. Diab, Nizar Habash, Owen Rambow, and Ryan M. Roth

1.4.2.1. Introduction

In this section, we describe some of the NLP tools we developed over the past num-
ber of years to process Modern Standard Arabic and Arabic Dialect text. We present a
series of tools that vary in their dependence on explicit linguistic rules and linguistic
depth, and that target a variety of NLP tasks. AL-MORGEANA and MAGEAD are mor-
phological analysis and generation systems. AL-MORGEANA extends on the Buckwal-
ter analyzer and MAGEAD handles Arabic dialects. MADA is a system for morphologi-
cal disambiguation including POS tagging, lemmatization and diacritization. TOKAN is a
general tokenizer for Arabic that works with MADA. AMIRA is a suite of shallow lin-
guistic processing tools with limited dependence on explicit linguistic rules; AMIRA per-
forms tokenization, POS tagging, and base phrase chunking. We compare some of the
functionality of our different systems. We also present several of the NLP applications
that have successfully used our different systems.

Morphological Analysis refers to the process by which a word (defined orthographi-
cally for our purposes) has all of its possible morphological analyses determined. Each
analysis also includes a single choice of core part-of-speech (such as noun or verb; the
exact set is a matter of choice). A morphological analysis can be either form-based, in
which case we divide word into all of its constituent morphemes, or functional, in which
case we also interpret these morphemes. For example, in broken (i.e., irregular) plurals, a
form-based analysis may not identify the fact that the word is a plural, since it lacks the
usual plural morpheme, while functional analysis would.

74 Chapter 1: Data Acquisition and Linguistic Resources

Morphological disambiguation refers to the choice of a morphological analysis in
context. This task for English is referred to as part-of-speech (POS) tagging, since the
standard POS tagset, though only comprising 46 tags, completely disambiguates English
morphologically. In Arabic, the corresponding tagset comprises up to 330,000 theoreti-
cally possible tags, so the task is much harder. Reduced tagsets have been proposed for
Arabic as well, in which certain morphological differences are conflated, making the
morphological disambiguation task easier. The term POS tagging is usually used for
Arabic with respect to some of the smaller tagsets.

Tokenization (also sometimes called segmentation) refers to the division of a word
into clusters of consecutive morphemes, one of which typically corresponds to the word
stem, usually including inflectional morphemes. There are two parameters. First, we need
to choose which types of morphemes to segment and how to present them (the tokeniza-
tion scheme). There is no single correct tokenization scheme. Second, we need to decide
whether after removing some morphemes, we regularize the orthography of the resulting
segments, since the concatenation of morphemes can lead to spelling changes on their

boundaries. For example, the Ta-Marbuta (5 p) appears as a regular Ta (< t) when fol-
lowed by a pronominal clitic. ° Usually, the term segmentation is only used when no or-
thography regularization takes place. Orthography regularization is desirable in NLP be-
cause it reduces data sparseness, as does tokenization itself.

Lemmatization is the mapping of a word form to its corresponding lemma (also
known as a citation form), the canonical representative of its lexeme. A lexeme is a lex-
icographic abstraction: it is the set of all word forms that differ only in inflection and
possible cliticization, processes which are (almost) always productive. The lemma is a
conventionalized choice of one of these word forms to stand for the set. Usually, a lex-
eme is assumed to have one sense, so that homonyms (such as the multiple meanings of
English word ‘bank’) are considered two lexemes. If the sense distinction is removed
from the definition of lexemes, one sometimes uses the term vocable, which is a purely
morphological characterization of a set of word forms. In this chapter, we use the term
lexeme without the semantic dimension, i.e., we collapse the concepts of lexeme and
vocable.

Diacritization is the process of adding missing diacritics (short vowels, the marker
of the absence of a short vowel, and the gemination marker). Diacritization is closely re-
lated to morphological disambiguation and to lemmatization: for an undiacritized word
form, different morphological analyses often correspond to different diacritizations (for
example, voice in MSA), and different lemmas can be seen to lead to different diacritiza-
tions as well. Often, the choice of the diacritic on the last written letter of the word (with-
out the possessive or object clitic which may be attached) is particularly hard, since it
requires syntactic information: in verbs, this diacritic often expresses mood, and in nouns
and adjectives, it expresses syntactic case. Thus, it is often common to define a simpler
diacritization task which does not choose the word final diacritic.

20 Arabic romanization is in the Buckwalter transliteration scheme (Buckwalter, 2002).

Handbook of Natural Language Processing and Machine Translation 75

Base phrase chunking is a syntactic task, in which non-recursive multiword syntac-
tic phrases are identified without actual parsing. The relevant notion of phrase needs to be
clearly defined depending on where and how these syntactic chunks can be used, and in
Avrabic, this is not as straightforward as in English due to the complexity of some of the
syntactic structures of noun phrases.

The Columbia Arabic and its Dialects Modeling (CADIM) group has produced a set
of tools to address these tasks. In this chapter we will present the functionality of several
of our basic tools that have been widely used in the NLP community and in our own re-
search. This chapter is a survey chapter, it is meant to highlight the various tools that we
have and how they compare with one another. We will also refer to some of the applica-
tions where we used our tools.

Our tools can be classified coarsely into a set of deep and shallow processing tools as
they vary in their dependence on explicit linguistic representations in their machinery.
The deep processing tools depend on explicitly expressed linguistic analyses as an essen-
tial component in the processing of the text, and require corpora that have been annotated
at this level. The shallow processing tools, on the other hand, learn from surface repre-
sentations where the morphological information and linguistic knowledge is implicitly
represented and the system learns pattern generalizations without reference to explicitly
represented linguistic units.

1.4.2.2. ALMORGEANA

ALMORGEANA is a system for Arabic Lexeme-based Morphological Generation
and Analysis (Habash 2007).*

Desiderata: We chose the following desiderata for the design of ALMORGEANA
(and also MAGEAD, Section1.4.2.3): (1) coverage of the language of interest in terms of
both lexical coverage (large scale) and coverage of morphological and orthographic phe-
nomena (robustness); (2) a complete mapping between surface word forms to/from a
functional representation of morphology; (3) full reversibility of the system so it can be
used as an analyzer or a generator; (4) usability in a wide range of natural language
processing applications such as MT or IR; and finally, (5) availability for the research
community.

Lexicon: ALMORGEANA is built on top of the publicly available large-scale data-
base of the Buckwalter Arabic Morphological Analysis (BAMA) (Buckwalter 2002;
Buckwalter 2004). The database consists of six components: three morphological data-
bases for prefixes, stems, and suffixes; and three tables showing the compatibility of en-
tries from the three morphological databases with each other (prefix-stem, stem-suffix
and prefix-suffix). Unlike BAMA, which focuses on analysis to a surfacy form-based
representation, ALMORGEANA analyzes to, and generates from the functional (lexeme-
and-feature) level of representation. To that effect, the ALMORGEANA lexicon extends
the BAMA morphological databases with lexeme and feature keys, which are used in

A previous publication about ALMORGEANA focused on the generation component of the system which
was named Aragen (Habash, 2004).

76 Chapter 1: Data Acquisition and Linguistic Resources

analysis and generation. This work on ALMORGEANA is close in spirit to the exten-
sions to BAMA in the functional morphology system, ELIXIRFM (Smrz 2007).

Analysis: Analysis in ALMORGEANA is similar to BAMA: the word is segmented
into prefix-stem-suffix triples, whose individual presence and bi-lateral compatibility is
checked against the BAMA database. The difference lies in an extra step that uses lexeme
and feature keys associated with stem, prefix and suffix string sequences to construct the
lexeme and feature output. The output of ALMORGEANA includes all possible analyses.
Each analysis consists of the diacritized form of the word, its lexeme, its morphological
features, and an English gloss. For example the word <sUi |lktb “for the books’ returns
the following analysis:

lilkutubi=[kitAb_1 POS:N I+ Al+ +PL +GEN]=books

Here, lilkutubi is the diacritized form of the word. Inside the square brackets, we find
the nominal lexeme kitAb_1 ‘book’, the proclitic preposition I+ ‘to/for’, the definite ar-
ticle Al+ ‘the’, the feature +PL ‘plural’ and the feature +GEN ‘genitive case’. Most of the
information in the feature set is directly derivable from the morpheme tags in the BAMA
output for the same word: li/PREP+AI/DET+kutub/NOUN+i/CASE_DEF_GEN. How-
ever the feature +PL indicating plurality is not. It is part of the extension done in AL-
MORGEANA in processing the BAMA databases.

The challenge of out-of-lexicon words during analysis is handled in two ways similar
to BAMA. First, simple spelling expansion is used for cases with common spelling varia-
tions such Alef-Hamza- Above (1 >) spelled without the Hamza (= *) as Alef (! A), and Ya
(¢ y) spelled without the dots as Alef-Magsura (< Y). Second, a back-off analysis mode
can be turned on in which prefix and suffix matching and compatibility is used but unat-
tested stems can be hypothesized. A full description is given by Habash and Rambow
(2005).

Generation: In generation, the input is a lexeme and feature set. The generated out-
put is a fully inflected and diacritized word. For example, [kitAb_1 POS:N I+ Al+ +PL
+GEN] generates lilkutubi. The process of generating from lexeme and features is similar
to analysis except that lexeme and feature keys are used instead of string sequences. First,
the feature set is expanded to include all forms of under-specified obligatory features,
such as case, gender, number, etc. Next, all lexeme and feature keys in the ALMOR-
GEANA lexicon that fully match any subset of the lexeme and expanded feature set are
selected. All combinations of keys that completely cover the lexeme and expanded fea-
ture set are matched up in prefix-stem-suffix triples. Then, each key is converted to its
corresponding prefix, stem or suffix string. The same compatibility tables used in analy-
sis are used to accept or reject prefix-stem-suffix triples. Finally, all unique accepted
triples are concatenated and output. In the case that no surface form is found, a back-off
solution that attempts to regenerate after discarding one of the input features is explored.

See (Habash 2007) for more details on ALMORGEANA and an evaluation of its per-
formance.

Handbook of Natural Language Processing and Machine Translation 77

1.4.2.3. MAGEAD

MAGEAD is a morphological analyzer and generator for the Arabic language family,
by which we mean both MSA and the spoken dialects. We shall collectively refer to
MSA and its dialects as Arabic variants. For a fuller discussion of MAGEAD (including
an evaluation), see (Habash et al. 2005; Habash and Rambow 2006). For an excellent
discussion of related work, see (Al-Sughaiyer and Al-Kharashi 2004).

MAGEAD relates (bidirectionally) a lexeme and a set of linguistic features to a sur-
face word form through a sequence of transformations. In a generation perspective, the
features are translated to abstract morphemes which are then ordered, and expressed as
concrete morphemes. The concrete templatic morphemes are interdigitated and affixes
added, and finally morphological and phonological rewrite rules are applied. In this sec-
tion, we discuss our organization of linguistic knowledge, and give some examples; a
more complete discussion of the organization of linguistic knowledge in MAGEAD is
presented by Habash et al. (2006).

Lexeme and Features: Morphological analyses are represented in terms of a lexeme
and features. We define the lexeme to be a triple consisting of a root, a morphological
behavior class (MBC), and a meaning index. We do not deal with issues relating to word
sense here and therefore do not further discuss the meaning index. It is through this view
of the lexeme (which incorporates productive derivational morphology without making
claims about semantic predictability) that we can both have a lexeme-based representa-
tion, and operate without a lexicon (as we may need to do when dealing with a dialect).
In fact, because lexemes have internal structure, we can hypothesize lexemes on the fly
without having to make wild guesses (we know the pattern, it is only the root that we are
guessing). Our evaluation shows that this approach does not wildly over-generate.

We use as our example the surface form, <_»2)l Aizdaharat (Azdhrt without diacrit-
ics) ‘she/it flourished’. The MAGEAD lexeme-and-features representation of this word
form is as follows:

(1) Root:zhr MBC:verb-VIIl POS:V PER:3 GEN:F NUM:SG ASPECT:PERF

Morphological Behavior Class: An MBC maps sets of linguistic feature-value pairs
to sets of abstract morphemes. For example, MBC verb-VI1I maps the feature-value pair
ASPECT:PERF to the abstract root morpheme [PAT_PV:VIII], which in MSA corres-
ponds to the concrete root morpheme V1tV2V3, while the MBC verb-l1l maps AS-
PECT:PERF to the abstract root morpheme [PAT_PV:II], which in MSA corresponds to
the concrete root morpheme 1V22V3. We define MBCs using a hierarchical representa-
tion with non-monotonic inheritance. The hierarchy allows us to specify only once those
feature-to-morpheme mappings for all MBCs which share them. For example, the root
node of our MBC hierarchy is a word, and all Arabic words share certain mappings, such
as that from the linguistic feature conj:w to the clitic w+. This means that all Arabic
words can take a cliticized conjunction. Similarly, the object pronominal clitics are the
same for all transitive verbs, no matter what their templatic pattern is. We have developed
a specification language for expressing MBC hierarchies in a concise manner. Our hypo-

78 Chapter 1: Data Acquisition and Linguistic Resources

thesis is that the MBC hierarchy is variant-independent, i.e. dialect/MSA independent.
However, as more variants are added, some modifications may be needed. Our current
MBC hierarchy specification for both MSA and Levantine, which covers only the verbs,
comprises 66 classes, of which 25 are abstract, i.e., only used for organizing the inherit-
ance hierarchy and never instantiated in a lexeme.

MAGEAD Morphemes: To keep the MBC hierarchy variant-independent, we have
also chosen a variant-independent representation of the morphemes that the MBC hie-
rarchy maps to. We refer to these morphemes as abstract morphemes (AMs). The AMs
are then ordered into the surface order of the corresponding concrete morphemes. The
ordering of AMs is specified in a variant-independent context-free grammar. At this
point, our example (1) looks like this:

[Root:zhr][PAT_PV:VIII] [VOC_PV:Vill-act] + [SUBJUF_PV:3FS]

Note that as the root, pattern, and vocalism are not ordered with respect to each other,
they are simply juxtaposed. The ‘+” sign indicates the ordering of affixival morphemes.
Only now are the AMs translated to concrete morphemes (CMs), which are concatenated
in the specified order. Our example becomes:

(3) <zhr,V1tV2V3,iaa> +at
Simple interdigitation of root, pattern and vocal-ism then yields the form iztahar+at.

MAGEAD Rules: We have two types of rules. Morphophonemic/phonological rules
map from the morphemic representation to the phonological and orthographic representa-
tions. For MSA, we have 69 rules of this type. Orthographic rules rewrite only the ortho-
graphic representation. These include, for examples, rules for using the shadda (conso-
nant doubling diacritic). For Levantine, we have 53 such rules.

For our example, we get /izdaharat/ at the phonological level. Using standard MSA
diacritized orthography, our example becomes Aizdaharat (in transliteration). Removing
the diacritics turns this into the more familiar <_223 Azdhrt. Note that in analysis mode,
we hypothesize all possible diacritics (a finite number, even in combination) and perform
the analysis on the resulting multi-path automaton.

We follow (Kiraz 2000) in using a multi-tape representation. We extend the analysis
of Kiraz by introducing a fifth tier. The five tiers are used as follows: Tier 1: pattern and
affixational morphemes; Tier 2: root; Tier 3: vocalism; Tier 4: phonological representa-
tion; Tier 5: orthographic representation. In the generation direction, tiers 1 through 3 are
always input tiers. Tier 4 is first an output tier, and subsequently an input tier. Tier 5 is
always an output tier.

We have implemented multi-tape finite state automata as a layer on top of the AT&T
two-tape finite state transducers (Mobhri et al. 1998). We have defined a specification lan-
guage for the higher multi-tape level, the new MORPHTOOLS format. Specification in
the MORPHTOOLS format of different types of information such as rules or context-free

Handbook of Natural Language Processing and Machine Translation 79

grammars for morpheme ordering are compiled to the appropriate LEXTOOLS format
(an NLP-oriented extension of the AT&T toolkit for finite-state machines, (Sproat
1995)). For reasons of space, we omit a further discussion of MORPHTOOLS. For de-
tails, see (Habash et al. 2005).

From MSA to Levantine: We have modified MAGEAD so that it accepts Levantine
rather than MSA verbs. Our effort concentrated on the orthographic representation; to
simplify our task, we used a diacritic-free orthography for Levantine developed at the
Linguistic Data Consortium (Maamouri et al. 2006). Changes were done only to the re-
presentations of linguistic knowledge, not to the processing engine. We modified the
MBC hierarchy, but only minor changes were needed. The AM ordering can be read off
from examples in a fairly straightforward manner; the introduction of an indirect object
AM would, for example, require an extension of the ordering specification. The mapping
from AMs to CMs, which is variant-specific, can be obtained easily from a linguistically
trained (near-)native speaker or from a grammar handbook. Finally, the rules, which
again can be variant-specific, require either a good morphophonological treatise for the
dialect, a linguistically trained (near-)native speaker, or extensive access to an informant.
In our case, the entire conversion from MSA to Levantine was performed by a native
speaker linguist in about six hours.

1.4.2.4. MADA

MADA (Morphological Analysis and Disambiguation for Arabic) is a utility that,
given raw Arabic text, adds as much lexical and morphological information as possible
by disambiguating in one operation part-of-speech tags, lexemes, diacritizations and full
morphological analyses. This task is not trivial, due to the morphological complexity of
the language. The complexity of the morphology together with the underspecification of
the orthography creates a high degree of ambiguity. On average, a word form in the Penn
Arabic Treebank (Maamouri et al. 2004) has about 12 morphological analyses.

MADA'’s approach distinguishes between the problems of morphological analysis
(what are all the different readings of a word without regard to context) which is handled
by a morphological analyzer such as ALMORGEANA or MAGEAD, and morphological
disambiguation (what is the correct reading in a specific context). MADA is a morpho-
logical disambiguation system. Once a morphological analysis is chosen in context, we
can determine its full POS tag, lemma and diacritization in a single step. Knowing the
morphological analysis also allows us to tokenize and stem deterministically; this is han-
dled by TOKAN (Section 1.4.2.5) once MADA has finished processing the text.

MADA operates in stages. First, it uses ALMORGEANA (Section 1.4.2.2) internally
to produce a list of potential analyses for each word encountered in the text; at this point,
word context is not considered. MADA then makes use of up to 19 features to rank the
list of analyses. For each feature, a classifier is used to create a prediction for the value of
that feature for each word in its context. Fourteen of the features use Support Vector Ma-
chine (SVM) classifiers; the remaining features capture information such as spelling vari-
ations and n-gram statistics.

Each classifier prediction is weighted using a tuning set, and the collection of feature
predictions is compared to the list of potential morphological analyses. Those analyses

80 Chapter 1: Data Acquisition and Linguistic Resources

that more closely agree with the weighted set of feature predictions receive higher-
ranking scores than those, which do not; the highest scoring analysis is flagged as the
correct analysis for that word in that context.

Once MADA has finished, the user has access to the full morphological analysis for
each word in the input. The user may then extract any or all of the analysis information.
This is why MADA can be used for a multitude of tasks, including part-of-speech and
morphological feature tagging, lemmatization, predicting full diacritization, glossing,
stemming and others. Since MADA selects a complete analysis from ALMORGEANA,
all decisions regarding morphological ambiguity, lexical ambiguity, tokenization, diacri-
tization and POS tagging in any possible POS tag set are made in one fell swoop (Habash
and Rambow 2005; Habash and Rambow 2007; Roth et al. 2008). MADA has over 96%
accuracy on basic morphological choice (including tokenization but excluding syntactic
case, mood, and nunation) and on lemmatization. MADA has over 86% accuracy in pre-
dicting full diacritization (including syntactic case and mood). Detailed comparative
evaluations are provided in the following publications: (Habash and Rambow 2005; Ha-
bash and Rambow 2007; Roth et al. 2008).

The operation of MADA is versatile and highly configurable. Starting with version
2.0, MADA applies weights to each of the 19 features it uses for better accuracy; these
weights are determined on a tuning set and are optimized for different purposes, such as
tokenization, diacritization, or POS tagging. These weight sets are included with the
package and should be chosen by the user depending on how MADA will be used. How-
ever, users can also choose to set these weights directly themselves. By default, MADA
attempts to rank complete analyses in terms of overall correctness. By choosing an alter-
native feature and weight set, it is possible to have MADA focus more specifically on
getting a particular analysis aspect correct. For example, users can achieve a 0.4% abso-
lute improvement in POS tagging accuracy if they use the weight set that was tuned for
POS tagging, as opposed to the default set. However, the accuracy of the other MADA
outputs (the lexeme prediction, for example) may suffer. Starting with version 2.1, MA-
DA also includes a morphological back off procedure, which can be turned on or off by
the user (see Section 1.4.2.2).

1.4.2.5. TOKAN

TOKAN is a general tokenizer for Arabic that provides an easy-to-use resource for
tokenizing MADA disambiguated Arabic text into a large set of possibilities (Habash and
Sadat 2006; Habash 2007). The decision on whether an Arabic word has a conjunction or
preposition clitic is made in MADA; but the actual tokenization of the clitics including
handling various morphotactics and spelling regularization is done in TOKAN. The toke-
nization scheme can be used as parameter in machine learning for a variety of applica-
tions, such as machine translation, or named-entity recognition (see Section 1.4.2.8.).

Handbook of Natural Language Processing and Machine Translation 81

LS 5 G)k 5 4 s Gt) (g

Input wsynhY Alrlys jwith bzyArp AlY trkyA
Gloss and will finish | the president | tour his with visit to Turkey
English | The president will finish his tour with a visit to Turkey.
Scheme
ON wsynhy Alrlys jwith bzyArp <lY trkyA
D1 w+ synhy Alr}lys jwlith bzyArp <ly trkyA
D2 w+ s+ ynhy Alr}ys jwlth b+ zyArp <lY trkyA
D3 w+ s+ ynhy Al+ r}ys jwlp +h b+ zyArp <lYy trkyA
WA w+ synhy Alr}ys jwlth bzyArp <lY trkyA
TB1 w+ synhy Alr}ys jwlp +h b+ zyArp <lY trkyA
TB2 w+ s+ ynhy Alrlys jwlp +h b+ zyArp <ly trkyA
MR w+ s+ y+ nhy Al+ rlys jwl +p +h b+ zyAr +p <lY trkyA
LEM >nhY rlys jwlp zyArp <ly trkyA
POS1 V N N N P PN
POS2 VBP NN NN NN IN NNP
ENX w+ s+ >nhYysp Al+ r}yswy jwlpny +h b+ zyArpww | <IYw | trkyAnne

+S3MS
DIAC wasayunohiy Alra}iyosu jawolatahu | biziyArapK | <ilaY | turokiyA

Table 1.14: Some of the preprocessing schemes supported by TOKAN: ON (orthographic normalization),
D1, D2 and D3 (different degrees of decliticization), WA (wa+ decliticization), TB1 and TB2 (old and new
Arabic Treebank tokenization, respectively), MR (morphemes), LEM (lemmatization), POS1 and POS2
(two possible POS tag sets), ENX (a tokenization equivalent to D3+LEM+PQOS2 with markers for verbal
subject) and DIAC (diacritization).

TOKAN takes as input a MADA-disambiguated file and a tokenization scheme de-
scription that specifies tokenization target. Consider the following specification:

“w+ f+ b+ k+ I+ s+ Al+ REST +/ + POS +P; +0O: -DIAC”

This scheme separates conjunctions, prepositions, verbal particles, the definite article and
pronominal clitics and it adds the basic POS tag to the form of the word. The scheme also
specifies that diacritics be generated. An analysis of the word |leilSwus
wasayukAtibuhA ‘and he will correspond with her’ would be tokenized as “wa+ sa+
yukAtibu/V +hA.” A simpler scheme such as “w+ f+ REST” would simply produce “w+
sykAtbhA.” See (Habash and Sadat, 2006) for a detailed description of several schemes
that have become commonly followed since that work was published. TOKAN has a
large number of other features that allow the user to perform different kinds of ortho-
graphic normalizations or control how the output is ordered and presented as it may fit
different needs of different systems. Table 1.14 exemplifies a few of the TOKAN sup-
ported schemes with the same sentence.

Internally, TOKAN uses morphological generation (through ALMORGEANA) to
recreate the word once different clitics are split off. This approach of back generation
allows us to modify the morphological content in a word including, for instance, delet-
ing/defaulting specific features of a word easily. We do this to guarantee the form of the
generated word is normalized and consistent with other occurrences of that word. For
example, simply splitting the pronominal clitic off a word with Ta-Marbuta (¢ p) would
keep the Ta-Marbuta in its word-internal form (regular letter Ta,=t). With TOKAN,
the Ta-Marbuta is generated as appropriate (e.g., <is> jwlth ‘his-visit’ is tokenized

into o+ 4 s jwlp+h “visit +his’, not s+ &l sa jwlt+h (which is not a valid spelling).

82 Chapter 1: Data Acquisition and Linguistic Resources

1.4.2.6. AMIRA

AMIRA is a set of tools built as a successor to the ASVMT toolkit developed at Stan-
ford University (Diab et al. 2004) and described in detail by Diab et al. (2007b). The
toolkit includes a tokenizer, a part of speech tagger (POS) and a base phrase chunker
(BPC), also known as a shallow syntactic parser. The technology of AMIRA is based on
supervised learning with no explicit dependence on knowledge of deep morphology,
hence, in contrast to the previous tools, it relies on surface data to learn generalizations.
In general the tools use a unified framework, which casts each of the component prob-
lems as a classification problem. The underlying technology uses Support Vector Ma-
chines in a sequence-modeling framework using YAMCHA.? The AMIRA tools are
highly accurate, very fast, and robust. They allow for a limited number of variable user
settings depending on the disambiguation granularity. The AMIRA tools have been wide-
ly used for different NLP applications due to their speed and high performance, such as
MT, IR, Parsing, NER, and IE.

From the user perspective, the different components of the tool suite could be in-
voked sequentially, taking raw text in any encoding and producing clitic tokenized, POS
tagged and/or base phrase chunked data. They could also be applied directly on some
given text. For example POS tagging could be applied on raw text without explicitly in-
voking tokenization. We briefly review the three main components of the AMIRA suite.

1.4.2.7. AMIRA-TOK

A tokenization scheme is a convention chosen by the researcher, and there are many
possibly tokenization schemes. For AMIRA-TOK we focus primarily on clitic tokeniza-
tion. Clitics in Arabic are typically affixes that latch onto base words. They are mor-
phemes that have a syntactic role and affect the orthography and phonology of words.
AMIRA tools do not rely on morphological analysis or generation tools in any of its
processes. 2 Hence, AMIRA-TOK learns clitic tokenization generalizations from the clit-
ic segmentations present in the Penn Arabic Treebank (PATB) directly without relying on
rules explicitly.

AMIRA Clitics: In addition to the standard PATB clitic tokenization, AMIRA-TOK
can also segment off the nominal definite article J' Al. Accordingly, we have modified
the training data to include segmentation of the J' Al.%* The motivation behind segment-
ing off the Al is that it has a positive impact on higher order NLP applications especially
those involving correspondence to other languages where the definite article is a stand
alone word. Moreover, this segmentation reduces the sparseness associated with nominal
forms.

In total, AMIRA-TOK segments off the following set of clitics: conjunction proclit-
ics (prefixes) sw, < f, prepositional proclitics <! k, & I, < b, future marker proclitic u= s,
verbal particle proclitic d I, definite article proclitic J! Al), and pronominal enclitics (suf-

22 http://chasen.org/~taku/software/yamcha/
2 For example, the definite article preceding sun letters in Arabic.
A clear demarcation of the definite article J) Al is present in the fully vowelized version of the PATB.

Handbook of Natural Language Processing and Machine Translation 83

fixes) indicating possessive/object pro-nouns. In general, nominals can have 0- 3 possible
proclitics from the conjunction, prepositions and definite article set. Verbs can have 0- 2
proclitics from the set of conjunctions and the future clitic marker.?

Since multiple proclitics are allowed in Arabic, they follow a specific order if
present. The definite article J! Al is always closest to the base word, followed outwardly
by the prepositions, then by the conjunctions. Likewise for the verbal proclitics, the fu-
ture marker or verbal particle is the clitic affixed to the verb directly, followed outwardly
by the conjunction. Accordingly, in the example <bwslb 5 wbAlHsnAt, ‘and by
the virtues’, the proclitic tokenization will be rendered as follows: s w+< b+ JAI+
<lisa HsnAt where 5w is the conjunction and, < b is the preposition ‘by’, and J! Al is the
definite article ‘the’.

The modeling of clitic tokenization in AMIRA-TOK is exactly the same.

Character Chunking: For AMIRA-TOK, we apply a chunking scheme on the cha-
racter level casting the problem as a chunk boundary identification and chunk classifica-
tion problem. We use an 10B annotation scheme, every character in our data (including
punctuation) is annotated as: inside a chunk (1), outside a chunk (O), or beginning of a
chunk (B). For the | and B tags, we have five possible classes: Pre-fix 1, Prefix 2, Prefix
3, Word, Suffix. This leads to a total of 11 classes in the data: O, B-PREL1, I-PRE2, B-
PRE2, I-PRE2, B-PRE3, I-PRE3, B-WORD, I-WORD, B-SUFF, I-SUFF.

Given raw data, the words are segmented into a series of chunks corresponding to the
different classes above. Our goal is to produce text where all the word tokens (modulo the
clitics) are bona fide words in a dictionary and increasing the level of regularity in the
text as a means of normalization. Note that AMIRA-TOK does not perform lemmatiza-
tion. For example, in our running example <l s wbAIHsnAt, ‘and by the virtues’, the
clitic tokenization AMIRA-TOK reduces it maximally to <liwa +J) +o +5 w+ b+ Al+
HsnAt, where <l HsnAt is kept in its plural form and not reduced to the singular lem-
ma form 4i.s Hsnp.

Morphotactic Restorations: AMIRA-TOK does not produce stemmed words, which
are not valid Arabic words. Accordingly, we apply some heuristics to reverse the effect of
morphotactics such as the loss of | A in the definite article J' Al when in the context of the
proclitic preposition J | “for’. For example, the input word 2>.ls wllblAd, ‘and for the
countries’, is clitic tokenized as w+I+I+blAd in the system output from the classification.
A post-hoc fix is applied to ensure the consistency of the output. The final output is ren-
dered 3L +J+J+ s w+I+Al+blAd. Most of these morphotactic restorations can be deter-
ministically applied.

However, some morphotactics are not deterministic such as those involving the no-
minal feminine marker (Ta-Marbuta), the Alef-Magsura, and word final Hamzas. In
AMIRA-TOK, we currently handle the former two cases: the Ta-Marbuta and the Alef-
Magsura.

% Prepositions and definite articles, by definition, do not affix onto verbs and similarly, future marker o= s
and verbal clitic J | clitic do not prefix onto nominals and do not co-occur.

84 Chapter 1: Data Acquisition and Linguistic Resources

Ta-Marbuta Normalization: The Ta-Marbuta (¢ p) is a word final nominal femi-
nine marker that is realized as a < t preceding a pronominal enclitic. ~ Accordingly, a
stem after token cliticization ending with a <t could either be a verb (not a Ta-
Marbuta) or a noun (possibly a Ta-Marbuta). In aa# Ciws+ot sw+b+Hsnt#hm, ‘and by
their virtue’, the word-final <t in Hsnt is a 3 p converted to < t in the context of the en-
clitic » hm: aa#fiius+ot+ 5 w+b+Hsnp#hm. As part of AMIRA-TOK, the <t is converted
to the corresponding & p. This allows for more accurate POS tagging later as the base
word Hsnp will correctly be identified as a noun rather than verb.

Alef-Magsura Normalization: The Alef-Magsura (s Y) always occurs word finally. It is
letter that graphically looks like a dotless Ya (¢ Yy), yet phonologically sounds like an
Alef ' A). In the context of a pronominal enclitic, it changes to an orthographic ! A. For
example a noun such as ~alac ESAhm ‘he-went-against them’, is initially segmented
into aa#lac ESA#hm yet the stem final | A should be an Alef-Magsura (s Y): s#ac
ESY#hm. In this case the resulting verb stem = ESY would be confused with the noun
Lac ESA “stick’. In most cases the variation of Y and ! A is a lexical distinction relating
to the underlying root of the word or the word pattern. Accordingly, AMIRA-TOK con-
verts these word final ' Ainto s Y.

Both Ta-Marbuta and Alef-Magsura normalization are lexically determined; hence,
we apply another layer of learning to the problem of classifying word final letters. A stem
final < t either remains a regular < t or is converted to 3 p, and the stem final ! A either remains
an ! A or is converted to a < Y. As a result, the end output from the AMIRA-TOK s valid
surface form words with clitic tokens. AMIRA-TOK performs at a very high F-score
measure of 99.2% evaluated using standard Conlleval evaluation metrics.

User Interface: In the current version of AMIRA-TOK, the user is allowed ample
flexibility in deciding the form of output they would like. The user can decide what level
of clitic segmentation they desire, and whether tokenization should be indicated with
spaces (changing the token count) or with a plus sign only (preserving token count). We
have specified several schemes as illustrated in Table 1.15.

Handbook of Natural Language Processing and Machine Translation 85

WbAIHsnAt wllblAd Fbmktbthm wsngwlhA
Arabic Cliall Sl peiiSad Ll g8 g
Gloss . and+by+the+ and-+for+the then+by+libraries | and+will+we_s
Translation virtues + countries +their ay+it

And by the And for the Then by their And we will say

virtues countries libraries it
Scheme
PATB w+ b+ AlHsnAt w+ |+ AlblAd f+ b+ mktbt #hm w+ s+ nqwl #hA
AMIRA-TOK w+ b+ Al+ HsnAt | w+ I+ Al+ blIAd | f+ b+ mktb_h #hm | w+ s+ nqwl #hA
Conjunction-only w+ bAIHsnAt w+ lIblIAd f+ bmktbthm w+ snqwlhA
Conjunction-only+Suffix w+ bAIHsnAt w+ lIblAd f+ bmktb_h #hm w+ sngqwl #hA
Preposition-only w+b+ AlHsnAt w+l+ AlblAd f+b+ mktbthm wsnqwlhA
Preposition-only+Suffix w+b+ AlHsnAt w+l+ AlblAd f+b+ mktb_h #hm wsngwl #hA
Al-only wb+Al+ HsnAt wli+Al+ blAd Fbmktbthm wsngwlhA
Al-only+Suffix wb+Al+ HsnAt wli+Al+ blAd fomktb_h #hm wsngwl #hA
future marker-only WbAIHsnAt willblAd Fbmktbthm w+s+ nqwlhA
future marker+Suffix WbAIHsnAt wilblAd fomktb_h #hm w+s+ nqwl #hA
All Prefix Only WbAI+ HsnAt wll+ blAd fb+ mktbthm ws+ nqwlhA
Suffix only WbAIHsnAt wilblAd fomktb_h #hm wsngwl #Ha
All Prefixes+Suffix wbAIl+ HsnAt wil+ blAd fb+ mktbthm ws+ nqwl #hA

Table 1.15: Some of the different AMIRA-TOK clitic tokenization schemes in the change token count mode

1.4.2.8. AMIRA-POS

Part-of-speech tagging is the process by which every word in running text is assigned
a POS tag from a predefined tag set. AMIRA-POS assumes the text is clitic tokenized.

AMIRA POS Tag Sets: The POS tag set (ERTS) used by AMIRA-POS has 72 tags;
it is a subset of the full morphological set defined over tokenized text. ERTS is a superset
of the reduced PATB tag set (RTS) that comprises 25 tags. In addition to the information
contained in the RTS tags, ERTS encodes additional morphological features such as
number, gender, and definiteness on nominals. For example, in RTS nouns are tagged as
either NN or NNS, indicating only number. In ERTS, nouns tags represent definiteness
and gender in addition to number; furthermore, we add the dual as a value to the number
feature. A full description of ERTS is presented by Diab (2007a).

POS Tagging: We adopt an SVM-based classification approach using character n-
grams as features in our sequence models. Interestingly, the accuracy of the ERTS tagger
is 96.13% and the accuracy of the RTS tagger is 96.15%. This suggests that our choice of
information to include in our ERTS tag set reflects a natural division in the syntactic
space. In previous work, (Diab 2007 and 2007a), we showed that using ERTS improves
the quality of downstream processing such as base phrase chunking.

User Interface: The user has the flexibility to in-put raw or tokenized text in a
scheme that is consistent with one of the schemes defined by AMIRA-TOK. Consequent-

86 Chapter 1: Data Acquisition and Linguistic Resources

ly the user may request that the POS tags be assigned to the surface forms. Internally, in
case of the raw input, AMIRA-POS runs AMIRA-TOK on the raw text and then per-
forms POS tagging. The output can be presented as tokenized and POS tagged, or without
tokenization where the POS tag is assigned to the surface words. In this latter case, the
ERTS tag set is appended with the clitic POS tags to form more complex POS tags. The
user can choose to either tag with ERTS or RTS.

1.4.2.9. AMIRA-BPC

Base phrase chunking is the process by which a sequence of adjacent words is
grouped together to form syntactic phrases such as NPs and VPs. An English example of
base phrases would be [ITnp [Would eat]y p [red luscious apples]ne [on Sundays]ee . BPC is
the first step towards shallow syntactic parsing. Many applications such as information
extraction and semantic role labeling in English have been proven to benefit tremendous-
ly from BPC at a relatively low loss in performance when compared to the use of deep
syntactic parsing.

Chunking: AMIRA-BPC produces the longest possible base phrases with not much
internal recursion. The internal recursion is done as a deterministic post process. We have
modified the BPC rules to be more appropriate for the Arabic language (Diab 2007).
Nine types of chunked phrases are recognized using a phrase 10B tagging scheme (de-
scribed earlier in Section 1.4.2.6); Inside (I) a phrase, Outside (O) a phrase, and Begin-
ning (B) of a phrase. The nine chunk phrases identified for Arabic are ADJP, ADVP,
CONJP, PP, PRT, NP, SBAR, INTJ, VP. Thus the task is a one of 19 classification tasks
(since there are | and B tags for each chunk phrase type, and a single O tag). The training
data is derived from the PATB using the CHUNKLINK software.”® CHUNKLINK flat-
tens the tree to a sequence of base (non-recursive) phrase chunks with their I0B labels.
For example, a token occurring at the beginning of a noun phrase is labeled as B-NP. We
have adapted the CHUNKLINK software to the Arabic language.

However we do acknowledge that an appropriate size of a chunk is most dependent
on an end application.

The AMIRA-BPC component is very fast and extremely accurate. The system yields
an F1 mea-sure of 96.33%. Different research groups have shown the utility of BPC for
different applications such as Machine Translation and information ex-traction specifical-
ly in Named Entity Recognition (NER) (Benajiba et al. 2008; Benajiba et al. 2009).

User Interface: AMIRA-BPC can accept any level of preprocessing on input text.
AMIRA-BPC internally uses ERTS POS tag set. However, the user may request the RTS
as the POS tag set, we have an internal mapping process from ERTS to the RTS POS tag
set. Also AMIRA-BPC can produce the BPC tags on any form of AMIRA-TOK consis-
tent schemes in addition to raw input text.

% http://ilk.uvt.nl/team/sabine/chunklink/README.html

Handbook of Natural Language Processing and Machine Translation 87

1.4.2.10. Comparison of CADIM Tools

In this section, we compare and contrast the different CADIM tools discussed so far
in terms of their design, functionality and performance.

ALMORGEANA

MADA » TOKAN

MAGEAD

AMIRA-TOK — AMIRA-POS —» AMIRA-BPC

Figure 1.11. The MADA suite and the AMIRA suite.

Design: As for their design, it may help to contextualize the different tools in terms
of their basic use in two suites: The MADA suite and the AMIRA suite (see Figure 1.11).
Within the MADA suite, we have an explicit morphological analysis step handled by
ALMORGEANA or MAGEAD. Currently, ALMORGEANA is fully integrated and we
plan to integrate MAGEAD. MAGEAD uses a different approach to morphology than
ALMORGEANA. The difference, however, should not be evident for MSA. MAGEAD’s
advantage over ALMORGEANA is the ease of extensibility to new dialects. The second,
in fact core, component in the MADA suite, is the MADA system, which disambiguates
the analyses produced by the morphological analyzers. Finally, the TOKAN component
makes use of the morphological generation power of ALMORGEANA and MAGEAD to
tokenize the disambiguated analysis through regeneration.

In the AMIRA suite, the three components focus on tokenization (AMIRA-TOK),
POS tagging (AMIRA-POS) and base-phrase chunking (AMIRA-BPC), in that order.

The AMIRA-BPC component is unique in that it has no parallel in the MADA suite.
In fact the output of TOKAN can be designed to look like the output of AMIRA-TOK
followed by AMIRA-PQS, and then be used as input to AMIRA-BPC.

In terms of their design, AMIRA-TOK and AMIRA-POS are different from the
MADA suite in that they take a two-step approach to POS tagging: tokenize then tag. In
comparison, MADA has a different approach that breaks the problem into three steps
(analyze, disambiguate, generate), which are orthogonal to AMIRA’s split. In the AMI-
RA suite, the three components focus on tokenization (AMIRA-TOK), POS tagging
(AMIRA-POS) and base-phrase chunking (AMIRA-BPC), in that order.

Although there are three steps in MADA, the decision for tokenization and POS tag-
ging is done together in one-fell-swoop. One way of distinguishing these tools is in terms
of the depth of linguistic knowledge needed. AMIRA is shallow in that it focuses on
form-based morphology (specifically cliticization) learned from annotated data; whereas
MADA uses deeper lexically modeled functional morphology. Another difference be-
tween the current MADA suite and the AMIRA-TOK and AMIRA-PQOS suite is that the
former may produce no analysis for a given word if it does not exist in the underlying

88 Chapter 1: Data Acquisition and Linguistic Resources

morphological tools while the AMIRA suite always produces a hypothesized tokenization
and POS tag for every word in the text.

In terms of their training needs, the MADA suite expects the presence of both a mor-
phological analyzer and training data for supervised learning, whereas the AMIRA suite
only needs annotated training data. The training data could be created through any num-
ber of ways, including the use of morphological analyzers followed by human annotation
as is done at LDC; but this is not a requirement for the AMIRA suite. These different yet
similar requirements put similar limits on the kind of extensions that could be done in
either approach. For example, going to an Arabic dialect would require the presence of
some morphological analyzer/generator for the dialect for MADA, but not AMIRA.
However, both need some amount of annotated data to train on.

Functionality: Base-phrase chunking is only handled in the AMIRA suite, but it is in
fact a separate module that can be used independently with the MADA suite. The other
four applications are handled at once in MADA as part of its common morphological dis-
ambiguation process. AMIRA does not handle lemmatization or diacritization. As for
tokenization and POS tagging, since MADA goes deeper than AMIRA, a wider set of
possible tokenization schemes and POS tags can be output by MADA. Although AMIRA
is more limited by comparison, it does handle the most commonly used tokenizations and
POS tags. Researchers interested in exploring a large number of different sets of tokeni-
zations as features in their systems should consider MADA. Researchers only interested
in limited comparisons or specific applications, whose to-kenizations and POS tags are
supported by AMIRA should consider AMIRA.

Performance: It is hard to compare the performance of AMIRA and MADA suites.
Previous attempts by Habash and Rambow (2005) show that similar performance is poss-
ible on tasks that are shared: specific PATB tokenization and POS tags. AMIRA can be
significantly faster than MADA; however, MADA needs to be run only once and a much
larger number of tokenizations and POS tags (in addition to other outputs not supported
by AMIRA) can be produced by running the fast TOKAN step.

Applications: In terms of functionality, we consider five applications: tokenization,
diacritization, POS tagging, MADA, TOKAN, and the AMIRA suites have been and are
being used by 50+ academic and commercial research institutes around the world, includ-
ing University of Washington, University of Massachusetts, University of Maryland,
University of Sus-sex, Dublin City University, Cambridge University, SRI, BBN, Fair
Isaac Inc., SketchEngine LLC, MIT, RWTH Aachen, Polytechnic University of Catalu-
nya (UPC), Copenhagen Business School, Polytechnic University of Valencia (UPV),
and the National Research Center of Canada, among others. The tools have been cited in
numerous publications and have been shown to improve performance in a variety of NLP
applications such MT, IR, and IE.

MADA+TOKAN for NLP applications: In the context of machine translation (MT)
from Arabic to English, Habash and Sadat (2006) and Sadat and Habash (2006) explored
the use of different preprocessing schemes and their combination. Their results have been

Handbook of Natural Language Processing and Machine Translation 89

followed by different groups of researchers working on Arabic-English MT (Costa-jussa
et al. 2006; Crego et al. 2006; Vilar et al. 2008). Diab et al. (2007a) explored the use of
MADA-generated diacritizations for MT. Elming and Habash (2007) and Elming et al.
(2008) improved automatic word alignment for Arabic-English MT using combinations
of different tokenization schemes generated by MADA+TOKAN. See (Habash 2007) for
more details on different representations of Arabic morphology for MT. Badr et al.
(2008) used MADA in the context of English-to-Arabic MT. MADA has also been used
to produce features for Named Entity Recognition (NER) (Farber et al. 2008; Benajiba et
al. 2008).

AMIRA for NLP applications: The AMIRA suite has been successfully used by
several groups in the context of text MT, specifically for alignment improvement and
reordering within the context of statistical MT (Crego and Habash 2008), and also for
identifying difficult source language text (Mohit and Hwa 2007). Moreover, the AMIRA
suite was used in the context of speech MT (Stroppa and Way 2006). The AMIRA suite
was explored for the purposes of cross language information retrieval in work by Larkey
et al. (2007). AMIRA has been used to produce POS tag and BPC features for NER,
which significantly boost the performance of the Arabic NER system (Benajiba et al.
2008; Farwell et al. 2007).

Case Study of a Complex ASR+MT system: In the following example we show how
MADA+TOKAN can be incorporated into an MT project that is based loosely on the SRI
GALE project Nightingale. Figure 1.12 shows the overall architecture of the project. The
MT process needs to make use of data from both text sources and audio sources via au-
tomatic speech recognition (ASR). The ASR process processes audio files, but needs to
build reliable language models from text sources first. The subsystems ASRLM and
MTTEXT process raw Arabic script before passing important information to the ASR
and MT components, respectively. The MTASR subsystem processes ASR output for use
in MT. These three subsystems use specific instantiations of MADA+TOKAN with dif-
ferent input and output specifications.

Speech Source Arabic
Source Text MTTEXT

e
i

ASRLM LEGEND
mm) Arabic Script Text

- Buckwalter Text

Figure 1.12. Example of an ASR/MT pipeline. MADA and TOKAN are used in the ASRLM, MTASR, and
MTTEXT subsystems.

90 Chapter 1: Data Acquisition and Linguistic Resources

The ASRLM subsystem cleans the raw data and converts the UTF-8 encoding into
Buckwalter transliteration. A separate utility is used to convert numeric digits to word
expressions (Habash and Roth 2008), as is required for ASR. The subsystem then runs
MADA and uses the toolkit’s stem orthographic normalization tool to remove spelling
variations. The subsystem consequently runs TOKAN to produce an output suitable for
ASR; here, TOKAN uses a basic readoff scheme that produces only the fully diacritized
words without further tokenization. Finally, punctuation is removed. This provides the
ASR system with nicely formatted, fully diacritized data, which is what the acoustic
component of the ASR component produces.

The MTASR subsystem takes the output of ASR (which originally came from the
audio files), cleans it, and runs MADA+TOKAN, using a tokenization scheme that splits
off conjunctions and particles, (a tokenization scheme known as ‘D2”). Stem orthograph-
ic normalization is also used to collapse words with common spelling variants. The same
numerical utility used in ASRLM is also used here to tag numerical expressions (which
may be digital or expressed as words). The Buckwalter-transliterated data is converted
back to UTF-8 prior to sending the data to the MT system.

The MTTEXT subsystem processes text for MT. It cleans the raw data and converts
UTF-8 to Buckwalter transliteration. MADA+TOKAN (with stem orthographic normali-
zation, number tagging and UTF-8 conversion) are used here to produce the same tokeni-
zation (D2) as the MTASR subsystem, making the output of MTTEXT and MTASR
identical. The result is that the MT system can draw on similarly formatted ASR-derived
and text-derived data for training and development.

1.4.3. Chinese Statistical Parsing
Authors: Mary Harper and Zhonggiang Huang

1.4.3.1. Introduction

This section describes several issues that are fundamental to achieving accurate Chi-
nese parsing given available Chinese resources and the challenges of the Gale processing
pipeline. For Gale, our parsing algorithm was expected to accurately parse various differ-
ent materials, ranging from newswire text, which tends to be grammatically well formed,
to n-best ASR outputs, many of which are poorly formed sentences. To address this chal-
lenge, we have re-implemented and enhanced the Berkeley parser to handle unknown
Chinese words efficiently, parse difficult sentences robustly, and operate more efficient-
ly. We also address issues related to training the parser for several different genres given
a limited number of available training trees, the importance of matching word segmenta-
tion to the treebank segmentation standard to support accurate parsing, and the need for
standardized tokenization for managing the types of things that will appear as input to the
parser. Understanding and handling these issues is a prerequisite for achieving adequate
parsing performance levels. We also investigate self training with automatically labeled
in-domain data to enhance parsing performance given the limited number of trees in the
Chinese treebanks.

There have been several attempts to develop high quality parsers for Chinese (Bikel
and Chiang 2000; Levy and Manning 2003; Petrov and Klein 2007a), but the state-of-the-

Handbook of Natural Language Processing and Machine Translation 91

art performance, around 83% F measure on Penn Chinese Treebank, achieved by the
Berkeley parser (Petrov et al. 2006; Petrov and Klein 2007a) falls far short when com-
pared to English.*” As pointed out by Levy and Manning (2003), there are many linguis-
tic differences between Chinese and English, as well as structural differences between
their corresponding treebanks, and some of these make it a harder task to parse Chinese.
Additionally, the fact that the available treebanked Chinese materials are far more limited
than those for English also increases the difficulty of building high quality Chinese pars-
ers. While there have been some investigations using treebanks to determine what makes
Chinese hard to parse, here we attempt to learn about and control the factors that chal-
lenge Chinese parsers as applied to materials that are less controlled than a treebank.

Research that involves only parsing treebank test sets in some sense masks the chal-
lenges of providing high quality syntactic analyses for Chinese text and speech. First,
Chinese documents are not segmented into words that conform to the word segmentation
standard used by the Chinese treebank. Second, the Chinese treebanks contain punctua-
tion, letters, and digits that are typically full-width; whereas, it is not uncommon for ma-
terials to contain mixtures of full- and half-width representations. It is in fact unlikely that
the treebank would cover the combination of possible character types that may be ob-
served in Chinese documents. Third, the treebank data is quite limited compared to the
resources available for English parsing of newswire and speech genre, and so we must
develop strategies to effectively parse materials in the text and speech genre covered by
the GALE program given the resources at hand: Chinese Treebank 6 (CTB6) with parsed
newswire and broadcast news sentences and Chinese Broadcast Conversation Treebank
(BCTB) with parsed broadcast conversation sentences.

We will focus our parsing investigations in this section on the Chinese newswire and
broadcast conversation genres because of the availability of tree-banks representative of
these genres. Unfortunately, the broadcast news treebank does not fully capture the spo-
ken aspects it should represent in that it contains symbolic expressions that can be verba-
lized in a variety of ways. Although we can map this treebank to a verbalized form, this
mapping is unfortunately less variable than an exact transcription of the corresponding
speech would be. To maximize parsing performance, we process the treebanks differently
for the newswire and broadcast conversation genres and train the models to match genre
conditions. We evaluate genre matched parsers on a test set drawn from the respective
newswire and broadcast conversation treebank.

1.4.3.2. Experimental Data

We used the Penn Chinese Treebank 6.0 (CTB6) and the Chinese Broadcast Conver-
sation Treebank (BCTB) in our parsing studies, as well as a set of unlabeled sentences to
support the use of semi-supervised self-training (see Table 1.16).

CTB6 contains 28k parsed sentences, including news articles from Xinhua news
agency (China-Mainland), Information Services Department of HKSAR (Hong Kong),
and Sinorama magazine (Taiwan), as well as broadcast news from ACE evaluation
(which we call CTB6BN). The news articles from the first three sources, with a total of

27 In some cases, the parse results do not take into account the brackets of gold trees for sentences that do not
produce a final parse in the score, and so the reported results are more optimistic than they should be.

92 Chapter 1: Data Acquisition and Linguistic Resources

19k sentences, constitute the former Penn Chinese Treebank 5 (CTB5) and are the prima-
ry source of labeled data used for newswire experiments. Since the CTB5 corpus was
collected during different time periods from different sources with a diversity of topics, in
order to obtain a representative split of train-test-development sets, we divide it into
blocks of 10 files in sorted order and for each block use the first file for development, the
second for test, and the remaining for training. Although CTB6BN consists of parses for
broadcast news transcriptions, it exhibits many of the characteristics of newswire text (it
contains many nonverbal expressions, e.g., numbers and symbols, and is fully punc-
tuated). Because of this similarity, we evaluate using this corpus as additional labeled
training data for training the newswire model in Section 1.4.3.7.

Genre Train Dev Test Unlabeled
eTB CTB5 CTB5
14,925 (~405k
NW () 1,904 1,975 210k
CTB5+CTB6BN (~51K) (~52K) (~6255k)
24,416 (~679Kk)
BC
8,149 (~110K)
CTB5+CTB6BN BC BC 210k
BC 24,412 (~584K) 1297 | 1497 | 5ioay
(~14k) (~17k)
BC+CTB5+CTB6BN
32,561 (~695K)

Table 1.16. Number of sentences and words (in parentheses) of the data splits used in our experiments.

BCTB contains 11k parsed sentences from three broadcast conversation sources (i.e.,
CCTV, CNN with Chinese translations, and Phoenix TV). In contrast to the CTB6BN
data, the words in this treebank are fully verbal; however, most of the sentences in the
treebank are punctuated. We manually selected the train-test-development split of the
files to balance the number of sentences in each set. Since BCTB may be too small to
train an accurate grammar for parsing speech, we also augment the training set with a
verbalized version of CTBS, as discussed in Section 1.4.3.7.

In addition to the above two labeled treebanks, we also utilize a greater number of
unlabeled sentences for investigating the use of semi-supervised self-training in Section
1.4.3.8. For the newswire experiments, 210k unlabeled sentences are selected from three
newswire sources covering materials from China Mainland, Taiwan, and Hong Kong. For
broadcast conversation experiments, 210k unlabeled sentences are selected from tran-
scribed broadcast conversations.

We have developed a set of scripts to clean up the treebank trees used in our investi-
gations. We remove comments and then delete empty nodes and non-terminal-yield unary
rules, e.g., NP—VP, using tsurgeon (Levy and Andrew 2006). As non-terminal-yield un-
ary rules are less likely to be posited by a statistical parser, it is common for parsers
trained on the standard Chinese treebank to have substantially higher precision than re-
call. This gap between bracket recall and precision is alleviated without loss of parse ac-
curacy by deleting the non-terminal-yield unary rules.

Handbook of Natural Language Processing and Machine Translation 93

1.4.3.3. SParseval Scoring

The SParseval tool (Harper et al. 2005; Roark et al. 2006) was originally designed to
support English speech-based bracket and head dependency scoring (recall, precision,
and F-score) at the level of a demarcated chunk of speech such as a conversation side,
while also supporting more traditional text-based scoring methods that require the input
to the parser to match perfectly in words and sentence segments to the gold standard. The
tool was developed to address the fact that output from an automatic speech recognition
system is likely to contain word errors and the automatic segmentation of these words
into sentences is likely to differ from those in the gold standard parses (Harper et al.
2005). To calculate the bracket scores in the face of word and sentence segmentation er-
rors, the tool utilizes information from a word-level alignment between the yields of the
systZ%m parses and reference parses in a transcript chunk (e.g., a conversation side or sto-
ry).

We extended the functionality of this tool to support the scoring of Chinese parses
when the word segmentation of the input to the parser differs from the gold standard
word segmentation in order to investigate the effect of word segmentation algorithms on
parse quality. We use bracket scores with word alignment as the metric for evaluating
word segmentation impact. To score parses with different word segmentations using this
tool, we align the words in a gold standard file with the words in a test file and score the
brackets with punctuation removed.?

1.4.3.4. Parsing Model

The Berkeley parser (Petrov et al. 2006; Petrov and Klein 2007a) is an efficient and
effective parser that introduces latent annotations (Matsuzaki et al. 2005; Prescher 2005)
to refine the syntactic categories and learns PCFG grammars based on these latent anno-
tations. We have re-implemented and enhanced the Berkeley parser to handle unknown
Chinese words efficiently, parse difficult sentences robustly, and operate more efficient-
ly. * We will describe our enhancements in detail in the remainder of this section.

1.4.3.4.1. Unknown Word Handling

The Chinese word formation process can be quite complex (Packard 2000), and it
differs substantially from the English process. Although Chinese morphology is generally
considered less informative of the part-of-speech (POS) type of the entire word, its cha-
racters do reflect some information about a Chinese word. The last characters in a Chi-
nese word are, in some cases, most informative of the POS type, while for others, it is the
characters at the beginning or the middle of a word.

%8 The tool can also provide scores based on all of the head dependencies extracted from the system and ref-
erence trees, as well as a more focused set of open class dependencies, which involve open class content
words.

2 When evaluating test parses that have the same word segmentation as the gold standard parses, SParseval
provides scores on a sentence-by-sentence basis, just like EVALB.

%0 The major motivation for re-implementation is to allow more generic and flexible state-tying operations
that are important for some algorithms we are developing.

94 Chapter 1: Data Acquisition and Linguistic Resources

The Berkeley parser has some built-in ability to handle certain classes of unknown
Chinese words such as digits and dates. For words outside of these classes, the parser ig-
nores character-level information and relies only on the rare-word part-of-speech tag sta-
tistics. In our approach, which is similar to (Huang et al. 2007), we employ a rather sim-
ple, but effective method to estimate the word emission probability, p(w|s), of an un-
known word w given the latent state s of some syntactic category. We use the geometric
average of the emission probability of the characters in the word, i.e., p(ck|s) with ¢,
being the k-th character of the word, to estimate the word emission probability:

pwl ="] P
CKEW,P(ck|s)=#0

n = |{cx € w|P(ckls) # 0}].

where

characters unseen in the training data are ignored in the computation of the geometric
average. In case there is any character in the word that was previously seen in the training
data, but only with other latent annotations, then we back off by using the rare word sta-
tistics from the state s regardless of the word.

As we can see in Table 1.17, the character based unknown word handling method
improves performance on both recall and precision when evaluated on CTB5.

Treebank Unk Recall | Precision F
default 82.12 82.88 82.50
character | 82.84 83.22 83.03

Table 1.17. The effect of the character-based unknown word handling method.

CTB5

1.4.3.4.2. Robustness

Although the grammars trained by the Berkeley parser are compact, parsing can still
be computationally expensive because of the many fine-grained latent states to consider
in the computation of inside-outside probabilities in the chart. Fortunately, Petrov and
Klein (Petrov and Klein 2007a) developed an efficient coarse-to-fine parsing strategy that
starts from simpler grammars and prunes away unlikely chart items before parsing using
the more complex grammars. In practice, the pruning thresholds are chosen to balance the
parsing accuracy and speed.

Setting pruning thresholds to support robust but efficient parsing can be challenging
over the range of parsing tasks we support in the GALE project; our parser is expected to
parse various different materials, ranging from newswire text, which tends to be gram-
matically well formed, to n-best ASR outputs, many of which are poorly formed sen-
tences. It is not uncommon for thresholds that work well for parsing treebank materials to
fail to parse less well-formed sentences we are expected to process. To support more ro-
bust parsing, we incrementally lower pruning thresholds when the current thresholds fail
to parse a sentence and then restore the default thresholds after finishing parsing that sen-

Handbook of Natural Language Processing and Machine Translation 95

tence. With this strategy, we were able to more fully parse sentences in the GALE
processing pipeline. We balance this with a parsing time threshold to address cases when
sentences are too long to parse in a reasonable amount of time, returning an empty parse
when the time threshold is exceeded.

In addition to variable pruning thresholds, we made several other minor changes to
the parser to improve robustness. For example, we added smoothing for the word emis-
sion probabilities associated with a word tag pair w, t to eliminate zeros when a frequent-
ly observed word w does not co-occur with tag t in the training data.

1.4.3.4.3. Parallelization

The time needed to train a single-threaded Berkeley parser is acceptable for a corpus
of moderate size. For example, it takes roughly one day to train a grammar on
CTB5+CTB6BN. However, the training speed becomes a bigger issue when applying
self-training strategies. For example, in the self-training experiments described in Section
1.4.3.8, the automatically labeled training data is an order of magnitude larger than the
treebank training set, and it takes several weeks to finish training a more complex gram-
mar. In our re-implementation of the parser, we parallelized the Expectation-
Maximization step, the most computationally intensive component of the training code to
take advantage of the computing power of multi-core/multi-CPU machines. The resulting
training code is about 7 times faster with 10 threads on a 16-core machine than the single
threaded version. We parallelized the parsing code as well to improve the decoding
speed. The MapReduce framework (Dean and Ghemawat 2005) is also naturally applica-
ble to both grammar training and sentence parsing, and this framework will be explored
in future work.

1.4.3.5. Word Segmentation and Parsing

Written Chinese text consists of sequences of characters with no delimiters between
words, and yet for word-based NLP applications (tagging, parsing, MT), word segmenta-
tion is a prerequisite. The output of word segmentation algorithms may vary depending
on their different definitions of words and system engineering requirements. While word
segmentation, in and of itself, is worthy of study, as shown in the efforts in the SIGHAN
Chinese Word Segmentation Bakeoffs (Sproat and Emerson 2003), in this section we fo-
cus on the effect of word segmentation on parse accuracy. Discrepancies in word seg-
mentation compared to the gold standard are likely to be the source of significant error
when comparing the parse of those words to the gold standard parse of the gold standard
word segmentation. Consistency between the words in the gold standard trees and the
input to the parser is likely to be an important factor for achieving greater parse accura-
cies.

Here we will use the Penn Chinese Treebank (CTB) Segmentation Standard (Xia
2000) because that is the resource we use to train our Chinese parser (Xue et al. 2002;
Xue et al. 2005). In the rest of this section, we will first describe the word segmentation
algorithms we use and then evaluate the effect of those algorithms on parse accuracy. As
described in Section 1.4.3.3., the Sparseval tool with alignment will be used to score

96 Chapter 1: Data Acquisition and Linguistic Resources

parses, because there can be mismatches between the yields of the test parses and gold
standard trees.

1.4.3.5.1. Word Segmentation Algorithms

Parse accuracy can be substantially affected by the word segmentation algorithm and
how it is trained. A word segmentation algorithm that is trained on treebank data is likely
to produce a word segmentation that is more consistent with the treebank, and so is likely
to result in parses with greater parse accuracy. We evaluated three different segmenters.

The first is Fair Issac’s extension of the LDC segmenter (LNUplus) with an expanded
dictionary (it adds words from the NYU name dictionary and the lexicon used by the
University of Washington word segmenter), and instead of using a greedy left-to-right,
longest dictionary entry match at each point, it uses dynamic programming to find a seg-
mentation that maximizes mean token length. This is strictly a dictionary-driven segmen-
ter, and the dictionaries it uses were not optimized to conform with CTB6.

The University of Washington word segmenter (UW) (Hwang et al. 2006) uses a
very large segmentation dictionary that includes frequent words extracted from GALE
acoustic data transcripts, Chinese Gigaword2, and the Chinese treebank 6.0. It then uses
the longest-first-match algorithm to segment the training data comprised of GALE acous-
tic data transcripts and Chinese Gigaword, and then trains an n-gram LM on these
sources and the Chinese treebank 6.0 data duplicated 5 times to weight the source more
heavily. The language model uses a vocabulary of 70K words, with the remaining words
mapped to a garbage word. This n-gram LM is then used to provide the maximum like-
lihood segmentation for a sentence. This word segmenter uses information provided by
CTBS6, but it is not optimized for the treebank.

The Stanford Chinese Word Segmenter (Tseng et al. 2005; Chang et al. 2008) uses
conditional random fields with character identity, morphological, and character redupli-
cation features extracted from the training data. The current segmenter also uses external
lexicon features (Chang et al. 2008) to segment more consistently. We trained several
versions of the Stanford segmenter:

 Stanford (all) is trained using the entire Chinese Penn Treebank. This represents an
upper bound on the parsing accuracy for the parser given this word segmentation
approach (since the training set contains the test sentences).

 Stanford (parser) is trained using the same training data split of the Chinese Penn
Treebank as the parser, i.e., the CTB5+CTB6BN training set. The same dev set in
Table 1.16 is used for development.

 Stanford (parser+LDC) is trained under the same conditions as Stanford (parser)
except that the training data is augmented with an additional file that was segmented
by LDC and contains 16,448 sentences.

» Stanford (parser+LDC+self-labeled) is trained under the same conditions as Stan-
ford (parser+LDC) except that the training data is augmented with Gale data files
that were segmented using Stanford (parser). Hence, this segmenter was trained on
175,852 sentences in total (24,416 from CTB5+CTB6BN training, 16,448 LDC
hand-segmented, and 134,988 automatically word segmented).

Handbook of Natural Language Processing and Machine Translation 97

» Stanford (parser+LDC+UW-labeled) is trained under the same conditions as Stan-
ford (parser+LDC) except that the training data is augmented with the same Gale da-
ta files as in Stanford (parser+LDC self-labeled) segmented using the UW segmen-
ter.

1.4.3.5.2. Results and Discussion

In Table 1.18, we compare the word segmentation and parsing performance of each
of the segmentation algorithms and training conditions described in Section 1.4.3.5.1.
The parser is our re-implementation of the Berkeley parser described in Section 1.4.3.4.
The parser was trained on the CTB5+CTB6BN training set (i.e., treebank data only), and
this parser was used to parse the CTB5 test set re-segmented by each of the word seg-
mentation models. The resulting parses were then compared with the gold standard using
aligned bracket scoring from the Sparseval tool as described in Section 1.4.3.3.

Models Word Segme_ntation Par_se_r

Recall | Precision F Recall |Precision| F
Treebank Segmentation 100 100 100 || 83.58 | 84.00 |83.79
LNUplus 81.70 82.50 82.10 || 67.46 | 68.29 |67.87
uw 86.60 91.60 89.00 || 71.15 | 76.71 |73.83
Stanford (all) 99.40 99.40 99.40 || 83.12 | 83.45 |83.28
Stanford (parser) 95.70 96.60 96.20 |[80.49 | 81.65 [81.07
Stanford (parser+LDC) 96.10 96.90 96.50 || 80.59 | 81.75 |81.16
Stanford (parser+LDC+self-labeled) 97.50 97.60 97.50 || 81.84 | 82.27 |[82.05
Stanford (parser+LDC+UW-labeled) 89.00 90.50 89.80 || 74.13 | 75.98 [75.04

Table 1.18: Results on the Chinese Treebank 6.0 test set for different models and training configurations.

It is not surprising that the best parsing performance is obtained using the treebank’s
gold standard word segmentation. Parses of the sentences processed by the LNUplus and
UW segmenters had significantly lower parse scores than was obtained given the gold
standard word segmentation. ** Since neither segmenter was tuned to the treebank’s word
segmentation standard, the errors in word segmentation harm the parse accuracies great-
ly. The UW segmenter’s use of the treebank data improves its word segmentation accura-
cy relative to the LNUplus segmenter; however, the use of training data that is inconsis-
tent with the treebank’s standard plays a role in the 10% drop in parse accuracy.

To get at the upper bound parsing performance of the Stanford segmenter, we eva-
luated parsing accuracy when it was trained on the entire treebank. Although parse accu-
racy in this case is slightly lower than that obtained with gold standard word segmenta-
tion, it is clear that match to the gold standard words is an important factor for obtaining
accurate Chinese parses. The Stanford segmenter was able to produce fairly accurate
word segmentations when trained on the same treebank data as the parser and achieved
parse F-scores within 3% of those obtained using gold standard word segmentations. It is
notable that retraining the Stanford segmenter using additional LDC-segmented data and
self-labeled data improves both word segmentation and parsing scores. When adding au-

$1We used Bikel’s randomized parsing evaluation comparator to determine the significance (p < 0.05) of
difference between two parsers’ output.

98 Chapter 1: Data Acquisition and Linguistic Resources

tomatically labeled data to the training set, it is important that it is consistent with the
treebank word segmentation standard, as can be observed by the decline in performance
obtained by adding data segmented by the UW segmenter. The use of consistently self-
labeled data to re-train the segmenter improves parse performance by 1% F-measure over
using the treebank training data alone. If parsing accuracy is important for downstream
applications, then using a word segmenter that is tuned to the treebank standard is vital
for achieving performance levels that are within 1-2% of those obtained with perfect
word segmentation.

1.4.3.6. Text Tokenization

The UW Decatur (Zhang and Kahn 2008) text normalization process was developed
to standardize the text pipeline stream for the Nightingale team. The value of this norma-
lization for parsing lies with the fact that a parser that is trained to match its input condi-
tions will perform better than a parser that must process highly varying data that is harder
to model. For example, if we train the parser on the treebank, which largely contains full-
width punctuation, but the input to the parser contains only half-width punctuation, then
the parsing performance would be reduced due to the fact that the treebank contains only
a few half-width punctuation tokens.* While it is a simple matter to create a second set of
training trees with all punctuation converted to half-width and mix it with the original
treebank training, it may not cover all the ways in which full and half-width punctuation
occur in real-world data. However, it is a simple matter to apply the Decatur normaliza-
tion to our treebank by converting all full-width letters, digits, and punctuation marks to
their half-width equivalents and train on the normalized trees. The Decatur tokenizer
would then be applied to all input coming through the Nightingale pipeline to ensure that
we have a good match between training and test conditions.

To ensure that the Decatur tokenization does not harm parsing performance signifi-
cantly, we compare a parser trained on the original treebank CTB5 training set and tested
on the original CTBS5 test set with one trained based on Decatur normalized training and
tested on the Decatur normalized CTB5 test set. As can be seen in Table 1.19, the parsing
performance is slightly degraded by the normalization process, largely due to the fact that
some punctuation distinctions are collapsed. However, because Decatur normalization
will be carried out on all input to the parser, it eliminates a lot of the variability in the
input that it would be hard to anticipate to adequately train the parser for the Gale pipe-
line.

CTB5 Recall | Precision F
Original 82.84 83.22 83.03
Decatur 82.66 83.14 82.90

Table 1.19: Performance of the parser on CTB5 before and after Decatur normalization.

%2|f we accidentally parse sentences using a model trained with a mismatching representation of punctuation,
say the sentence contains full-width punctuation but the parser was trained with parses containing half-width
punctuation, then the parse accuracy would be quite low, dropping from 82.90 to 72.16 F score. This reduc-
tion in parse accuracy results because the punctuation marks are not recognized as such.

Handbook of Natural Language Processing and Machine Translation 99

1.4.3.7. Genre Mapping

Newswire stories contain a wide variety of textual phenomena, including words,
symbolic expressions, and punctuation, using both full and half-width representations.
When parsing newswire text, it is beneficial to normalize the input to the parser and map
the training trees to the same normalized style to match the conditions in which the parser
will be used. Additionally, it is important to fully utilize existing treebank resources to
train the parser, given the limited amount of training data. Hence, we investigate the ef-
fect of combining trees from the broadcast news genre with the newswire training trees
when training a newswire model. Table 1.20 shows the benefit of adding text normalized
broadcast news data for training a better grammar for newswire. As we can see, the
grammar trained on the combination of CTB5 and CTB6BN has a significantly better
performance when evaluated on the CTBS5 test set, due to the increase in domain matched
training data. In an attempt to further boost performance, we will investigate the effect of
combining automatically parsed newswire genre-matched trees with treebank training
trees to further improve the newswire model in section 1.4.3.8.

Training Data Recall | Precision F
CTB5 82.66 83.14 82.90
CTB5+CTB6BN 83.36 83.95 83.65

Table 1.20: Results on the Chinese CTBS test set for grammars trained on different configurations.

When parsing automatically transcribed broadcast conversation speech, the parser
will need to process speech transcripts that are segmented into SUs using automatic sen-
tence boundary detection; hence, words will be fully verbal (i.e., no symbolic expres-
sions) and there will be no punctuation. While there is a small treebank that matches this
genre, access to a greater diversity of speech-based trees is important for training as accu-
rate a model as possible.

Because the annotated BC treebank is quite limited in size, a grammar trained only
on BC treebank alone is quite poor as can be observed in Table 1.21. It is a natural idea to
use CTB6 to enhance the training corpora for BC grammars. However, the textual nature
of the CTB5 sub-corpus presents a challenge. One obvious difference is that the tran-
scripts of the BC treebank are verbalized, i.e., all numbers, dates, and other phenomena
are orthographically transcribed while CTB5 contains many symbolic forms. Although
CTB6BN should be orthographically transcribed as speech, it contains digits and other
symbolic expressions that make it inconsistent with the BC treebank. To address the
mismatch between the CTB6 and BC treebanks in order to use CTB6 as additional train-
ing material for BC grammars, we have developed scripts to speech normalize (i.e., ver-
balize) the CTB6 treebank. The normalization procedure considers the part-of-speech tag
of a word, as well as its context to determine how to verbalize the word. The major nor-
malization operations include:

e Verbalize all sequences of digits based on their context. If the context suggests
that a sequence of digits represents a number, this number is verbalized accord-

ing to how it is pronounced, e.g., 12.4% is verbalized to& 4> + — s V4 (twelve

100 Chapter 1: Data Acquisition and Linguistic Resources

point four percent). Otherwise each digit is verbalized as it is pronounced indivi-

IS5Ed

dually, e.g., 03012 is verbalized to 2 =2——.(zero three zero one two).

e Special care is taken to verbalize digits in temporal nouns. For example, 1998 is
verbalized to —JLJL/\(year nineteen ninety eight), 5.4 to 7.J4(The May 4th

Movement), 10:12 to +4>+ —F#»(ten minutes twelve seconds), etc.

e Split foreign names with first and last names delimited by a dot or hyphen into
two names. Web and email addresses are also split into separate tokens with *.”
and ‘@’ verbalized.

e Remove all punctuation.

Table 1.21 shows the benefit of adding the speech normalized CTB6 for training a bet-
ter grammar for conversational speech. As we can see, although the grammar trained on
speech normalized CTB6 has a much lower performance when evaluated on the BC test
set, its combination with the small amount of in-domain BC training data boosts the per-
formance significantly, outperforming the grammar trained on BC training data alone. *
We will also investigate the use of additional automatically parsed BC genre-matched
sentences in the self-training manner to further improve parsing performance on BC data
in section 1.4.3.8.

Training Data Recall | Precision F
BC 76.89 76.48 76.69
CTB5+CTB6BN 72.85 71.66 72.25
BC+CTB5+CTB6BN 78.95 78.96 78.96

Table 1.21: Results on the Chinese BC test set for grammars trained on different configurations.

1.4.3.8. Parser Self-training

To support self training in a semi-supervised setting, manually labeled training data is
used to train an initial parser, which is then used to parse additional unlabeled data to
combine with the manually labeled data to retrain a new parser. Early investigations us-
ing self-training for parser training were fairly unsuccessful at improving in-domain pars-
ing. Charniak (1997) reported that self-training does not improve the performance of a
context-free grammar trained on the WSJ training set. Steedman et al. (2003) reported
some degradation using a lexicalized tree adjoining grammar parser (Sarkar 2001) and a
minor gain using Collins lexicalized PCFG parser (Collins 1999); however, this gain was
obtained using a poor parser trained on few sentences and was expected to level out
quickly on a larger training set. One might conclude from these investigations that either
the self-labeled data does not provide useful information or the training algorithm used
for the parsers does not learn useful information from the self-labeled data.

Recently, McClosky et al. (2006) used semi-supervised training of a re-ranking pars-
er (Charniak and Johnson 2005) and obtained exciting positive results on WSJ over a
strong baseline. Their state-of-the-art re-ranking parser consists of two components, a

% If we had not normalized the treebank data for speech, the parsing accuracy would have been far worse due
to a mismatch between the training and testing conditions.

Handbook of Natural Language Processing and Machine Translation 101

lexicalized probabilistic 50-best parser and a discriminative reranker, which re-orders and
selects the best of the 50-best parses returned by the first generative parser by utilizing a
rich set of features that could not be feasibly used by the first parser. They used this two-
stage parser to parse millions of unlabeled news article sentences and retrained the first
parser using the combination of the original labeled data and the reranker-labeled data.
Although they did not fully explain why this two stage method works, they suggest that
the parse trees selected by the superior reranker provides guidance for retraining the first
parser, which in turn produces better 50-best parses for the reranker. It should be noted
that they also reported that no improvement was obtained from self-training their genera-
tive parser.

Genre Training Data Recall | Precision F
CTB6 83.36 83.95 83.65
+unlabeled 84.28 85.28 84.78
BCTB+CTB6 78.95 78.96 78.96
+unlabeled 79.54 79.44 79.49

Table 1.22: The performance of self-training on both NW and BC.

NwW

BC

We have investigated the self-training capability of our parser on both newswire and
broadcast conversation by utilizing a moderately large amount of unlabeled in-domain
data. As described in Section 1.4.3.2, 210k unlabeled sentences are used for both the
newswire and broadcast conversation genres. The results are presented in Table 1.22. For
the NW task, self-training gains one point on F measure over the grammar trained using
the treebank CTB6 alone. This improvement is even greater than the benefit of adding
CTB6BN to CTB5. The improvement on the BC task is smaller but consistent across dif-
ferent random runs. Given that the number of words for self-training BC is much smaller
than for the NW task, use of additional genre-matched data is an important next step. All
the improvements are statistically significant. We also tried self-training using a Chinese
port of Charniak’s generative parser on our data set but obtained no significant improve-
ment.

We observed that many of the rule parameters of the grammar trained on CTB6 alone
have zero probability. On one hand, this is what we want because the grammar should
learn about impossible rule expansions. On the other hand, this might also be a sign of
over-fitting. In contrast, the grammar obtained using self-training contains far more non-
zero rules than the grammar trained on CTB6 alone. This suggests that one of the benefits
of using automatically labeled data is smoothing. The nature of the EM algorithm aims to
adjust the model parameters to increase the likelihood of the training data. The greater the
number of free parameters, the more power EM has to learn from and fit the training data.
Resulting grammars may not generalize well when the training data is too small in size.
We believe that the addition of automatically labeled data helps to prevent the EM algo-
rithm from over-fitting the correctly labeled training data while learning with more latent
states. This hypothesis will be investigated further in future work.

102 Chapter 1: Data Acquisition and Linguistic Resources

1.4.3.9. Conclusions

In this section, we have explored issues such as unknown word handling and word
segmentation in parsing Chinese, and conducted experiments that highlight the fact that
greater newswire parse accuracy can be achieved by training on the combination of
newswire and broadcast news parses, than by training on newswire parses alone. Addi-
tionally, we have found that self-training with a large amount of unlabeled data further
improves parsing performance. We conjecture based on our analyses that the EM training
algorithm is able to exploit the information available in both gold and automatically la-
beled data with more complex grammars while being less affected by over-fitting the
treebank. Self-training should also benefit other discriminatively trained parsers with la-
tent annotations (Petrov and Klein 2007; Petrov and Klein 2008), although training would
be much slower compared to using generative models, as in our case.

In future work, we will evaluate the impact of using larger quantities of self-labeled
data. As the amount of data increases, it will also be important to investigate the impact
of weighting the self-labeled data. It is quite possible that the errors in the automatically
labeled data could limit the accuracy of the self-trained model, especially when there is a
much greater quantity of automatically labeled data than the gold standard training data,
so by weighting the posterior probabilities computed for the gold and automatically la-
beled data the information provided by the gold trees will not be swamped by the errors
in the automatically labeled trees. Another approach would be to introduce the automati-
cally labeled data at different stages of training rather than at the outset, because it is
possible that a later introduction of the automatically labeled data, after well-founded an-
notations are learned from the treebank, would result in more effective learning. We will
also investigate methods for automatic data selection of the automatically labeled sen-
tences in order to choose those that would be most helpful for self-training.

1.4.4. Evaluating the Impact of Word Segmentation on
Chinese Parsing

Author: Nianwen Xue

1.4.4.1. Introduction

Because Chinese does not have conventional word delimiters like white spaces, it is
generally assumed that a prerequisite in Chinese language processing is to perform au-
tomatic word segmentation. Despite the enormous literature on Chinese word segmen-
tation and syntactic parsing, to our knowledge, there has not been a thorough evaluation
on the impact of word segmentation on Chinese parsing. As a result, there are often
conflicting views on how much of a problem Chinese word segmentation is for later
processing stages.

Word segmentation (or tokenization) has long been recognized as the first step in
Chinese language processing and it is a problem that has generated a lot of research inter-
est in the NLP community in the last few decades (Chen and Liu 1992; Sproat et al.
1996; Xue 2003; Gao et al. 2005; Low et al. 2005; Zhao and Kit 2008; Huang et al.

Handbook of Natural Language Processing and Machine Translation 103

2008). There has been a steady improvement in word segmentation accuracy as the re-
search shifted from early dictionary lookup approaches to statistical approaches (Sproat
and Shih 1990; Sproat et al. 1996) and machine learning-based character-tagging ap-
proaches (Xue 2003; Gao et al. 2005; Zhao et al. 2006; Zhao and Kit 2008). It is still a
very much active area of research in the Chinese language processing community, and
the primary forum has been the successive SIGHAN Chinese word segmentation ba-
keoffs (Sproat and Emerson 2003; Emerson 2005; Levow 2006; Jin and Chen 2008).34
Early successes came with the Maximum Match (Maxmatch) algorithm, a greedy search
algorithm based on dictionary lookup. Given a text string, the algorithm looks for the
longest word in the dictionary that matches the text from the current position. If there is a
match, the current position is advanced past each character in that word. If there is no
match, the algorithm starts again at the next character. There are some inherent problems
with the Maxmatch algorithm. The performance of the Maxmatch algorithm is tied close-
ly to the completeness of the dictionary. Since a complete dictionary is impossible to
come by, given that new words such as names constantly find their way into the lan-
guage, Chinese word segmentation is insolvable by the Maxmatch algorithm alone. In
addition to new words, some character sequences are inherently ambiguous and the
Maxmatch algorithm would consistently get it wrong in contexts where shorter words are
the correct segmentation. For example, there are two perfectly legitimate segmentations
for the character sequence “/>-A”, depending on the context, e.g., “—/one NCL A
Iperson” vs. “AN Alindividual Fr#8%t/income tax”. The Maxmatch algorithm would con-
sistently get the latter but miss the former. To address the weaknesses of the Maxmatch
algorithm, statistical approaches such as mutual information were proposed to capture the
strength of the internal binding between the two characters within a word (Sproat and
Shih 1990). However, mutual information based approaches have their own limitations.
Mutual information for words longer than two characters is hard to define, and it is not
straightforward to incorporate a dictionary in this framework, thus losing the benefit of a
dictionary, in spite of the fact that no dictionary is complete. More recently, Chinese
word segmentation has been formulated as a character tagging problem where each cha-
racter in the text is labeled with a tag indicating its position within a word (Xue 2003).
Combined with supervised machine learning methods this approach has consistently out-
performed other approaches in the SIGHAN Bakeoffs (Xue and Shen 2003; Low et al.
2005; Zhao and Kit 2008) and produces state-of-the-art results. Top performing systems
have consistently achieved accuracy that are in the high nineties (above 95%) using a
wide range of benchmarks.

As large-scale hand-parsed Chinese corpora such as the Chinese Treebank (Xue et al.
2005) became available, there as has been considerable work done on Chinese parsing as
well (Levy and Manning 2003; Bikel 2004). However, Chinese parsers, at least by North
America based researchers, are mostly extensions of English parsers. The same basic as-
sumptions and methodologies are carried over from English to Chinese. With rare excep-
tions such as Luo (2003), most Chinese parsers assume word-segmented sentences as
input and parsing accuracy is reported assuming gold standard word segmentation. In
real-world applications, however, Chinese text has to be automatically segmented and
there is inevitable degradation in parser performance caused by segmentation errors. As

% SIGHAN is a special interest group under ACL focusing on Chinese language processing. Website:
www.sighan.org

104 Chapter 1: Data Acquisition and Linguistic Resources

far as we know, no formal evaluation on the effect of automatic word segmentation on
parsing accuracy has been performed, although in informal settings in the GALE com-
munity there has been talk that parsing accuracy drops substantially when automatic word
segmentation is used as input. The goal of this section is to elucidate this issue by per-
forming a formal analysis and see how much impact word segmentation has on syntactic
parsing.

1.4.4.2. Methodology

To perform such an analysis we obviously need i) training and test data, ii) a Chinese
word segmenter, iii) a Chinese parser, and iv) an evaluation metric. For training and test
data we use the Chinese Treebank 6.0 (CTB6.0).* CTB 6.0 has three main sources: Xin-
hua newswire, Sinorama magazine articles, and broadcast news.*® The LDC release of
CTB 6.0 has a recommended training set, development set, and test set and the data split
can be found in CTB 6.0 documentation. The test set can be further divided into three
subsets: the Xinhua newswire, the Sinorama and the broadcast news test sets. The train-
ing set has 639,697 words, consisting of roughly equal amount of Xinhua newswire, Si-
norama and broadcast news data. The test sets also have roughly the same size: the Xin-
hua test set has 24,801 words, the Sinorama test set 28,879 words and the broadcast news
test set 27,744 words. Both our word segmenter and parser are trained on the training set
as a whole and tested separately on each of the three test sets. The Chinese parser we use
is the Bikel parser (Bikel 2004) retrained on this training set without any further optimi-
zation, so the parsing results we present in this section may not be the best possible per-
formance it can achieve. However, we believe that the performance is good enough so
that whatever conclusion we draw from our experiments here will not be affected by the
accuracy of the parser. The word segmenter is a Maxent-based Chinese word segmenter
we developed in-house. The test data is first segmented by the Maxent word segmenter,
and then parsed by the Bikel parser, and evaluated with the SParseval metric (Roark et al.
2006) and the CParseval metric we developed proposed. It is reasonable to assume that
word segmentation accuracy will have a great impact on parsing accuracy as the latter
takes the former as input, so it is important to use a state-of-the-art word segmenter so as
to evaluate the impact of word segmentation on Chinese parsing given the current state of
the art. It is also important to look at the evaluation metric very closely and examine the
assumptions based on which the evaluation metrics are formulated. In the next two sec-
tions, we will look at these two aspects in greater detail.

1.4.4.3. Word Segmentation

The word segmenter we used for our experiment is an improved version of the word
segmenter described by Xue (2003). The word segmenter formulates Chinese word seg-
mentation as a character-tagging problem. The idea is to label each character in a sen-
tence with its position in a word, and then reconstitutes the words in a sentence based on
the character position labels. There are four possible positions for a character: in the be-

% Available from the Linguistic Data Consortium. Website: www.ldc.upenn.edu
% A small amount of Hong Kong news has been folded into Xinhua newswire section in CTB 6.0.

Handbook of Natural Language Processing and Machine Translation 105

ginning (LL), in the middle (MM), in the end (RR), or a word by itself (LR). Based on
this formulation, the word sequence in (1a) would be labeled as (1b). The training data
for the segmenter is derived from the training set in CTB 6.0 and a Maxent classifier is
trained to tag un-seen data. The labeled data is then converted back to word sequences.

a. EBHIAAELREINAEENEFLERETER
b. E/LL ¥/RR it/LL ®I/RR ZI/LR Z&N/LR

H/LL £/RR /LR 3R/LL I/RR A/LL

#/RR E/LL A/RR %./LL 7=/RR E/LL

fB/RR H/LL F/RR #E/LL TT/RR

C. Shanghai plans to reach the goal of 5,000 dollars in per capita GDP by the end of
the century.

The features used in the (Xue 2003) are fairly simple and they are character unigrams
and bigrams extracted from a five character window, consisting of the current character
(Cy), the previous two characters (C_; and C_,), and the next two characters (Cy, C,), as
well as, the tags of the previous two characters (T_y, T—,). The full list of features is de-
scribed below:

a. Character unigrams: current character (Cop), the previous (next) two
characters (C_;, C,, Co, Cq, Cy)

b. Character bigrams: the conjunction of the previous (next) character
and the current character (C_,C, , Co Cy) , the previous two characters
(C_1C-,) and the next two characters (C; C,), the previous and the
next character (C_;C;)

c. Tags: the tags of the previous two characters (T_; and T_,)

This simple tagset is effective in predicting shorter words, but often makes mistakes
with longer words such as numbers (e.g. — B &+ 7<=+t /\/1256.78), time expressions
(e.9. ZFEENF/2009), idioms (e.g. — B T R/clear at first sight) and names (e.g. FI/R
K FL/Algeria), which often consist of four or more characters. To address these short-
comings, the improved segmenter used in our experiments also uses regular expression-
based features, features extracted from a name list and an idiom list. These features are:

a. The position of the current character (C,) in a number, where the val-
ues for the position are “In” (left of a number),”rn” (right of a num-
ber) or “mn” (middle of a number). For example, if the current posi-
tion is &, then its position is “mn” in—B A +/<=t/\

b. The position of the current character in a time expression, where the
values for the position are “It” (left of a time expression), “rt” (right of
a time expression), or “mt” (middle of a time expression). For exam-
ple, the position of = is “It” in —ZFEFENF if it is the current
character.

106 Chapter 1: Data Acquisition and Linguistic Resources

c. The position of the current character in an idiom, where the values of
the position are “li” (left of an idiom), “ri” (the right of an idiom), or
“mi”, (the middle of an idiom). For example, the position of & is “ri”
in the idiom —B T A&

d. Whether the current character starts or ends a name. For example,
if the character sequence CoC; matches the first two characters of a
name, the feature “StartName” is extracted. If the current and the pre-
vious character match the last two characters of a name, then the fea-
ture “EndName” is added. For example, if Co=F and C; =R, then the
feature “Start-Name” is extracted given BaJZR & F)L is in the name
list.

Adding these features to the classifier cleaned up the errors with numbers, time ex-
pressions, names and idioms and improved the overall word segmentation accuracy sig-
nificantly. Table 1.23 presents the word segmentation accuracy for each of the three test
sets described in Section 1.4.4.2 when trained on the entire training set. For reasons that
are not entirely clear, the accuracy for the Sinorama data is significantly lower than the
other two sources, the Xinhua newswire and the broadcast news. The accuracy for the
broadcast news is slightly lower, as expected because it is transcribed from speech data
and is slightly noisier. Overall, the accuracy is comparable to that of the best systems in
the SIGHAN bakeoffs. This allows us to measure the impact of word segmentation on
syntactic parsing given the current state of the art.

genre precision recall f-score
bn 95.36 95.51 95.44
xinhua 96.80 96.25 96.52
Sinorama 93.18 92.46 92.81

Table 1.23: Word Segmentation Accuracy.

1.4.4.4. Evaluation Metric: SParseval vs. CParseval

In over a decade, most of results on parsing are re-ported with the Evalb software us-
ing the Parseval metric, which measures the precision (the number of matched constitu-
ents between the treebank parse and the parser output to the total number of constituents
in the parser output) and recall (the number of matched constituents to the total number
of constituents in the treebank) and the F1 measure, which is a harmonic mean between
precision and recall.

A key assumption for the Parseval metric is that there is a complete match between
word tokens in a treebank parse and those in the parser output for a given sentence, an
assumption that does not hold when parsing Chinese with automatic word segmentation
as input.*” One can imagine a trick that uses the characters instead of words as terminals
in the parse tree. However, such a metric is essentially a combined metric of word seg-
mentation and parsing, and given the reasonable assumption that word segmentation is

¥ http://nlp.cs.nyu.edu/evalb

Handbook of Natural Language Processing and Machine Translation 107

substantially easier than syntactic parsing because the latter builds larger structures, the
resulting accuracy is inflated and is incomparable with parsing accuracy reported for oth-
er languages using the Parseval metric.

The SParseval metric (Roark et al. 2006), which is developed to evaluate parsing ac-
curacy on transcribed speech data and does not assume total match between word tokens
in the gold standard parse and the parser output, seems like a natural alternative. So SPar-
seval is the first evaluation metric we tried. When examining the evaluation results, we
noticed that the metric penalizes word segmentation errors severely, even though word
segmentation is not the target of the evaluation. For example, the two parses in the exam-
ple below only differ in the segmentation of £ ¥K(“the whole world”). However, when
the two parse trees are compared, the SParseval metric returns a recall (precision as well
since there is the same number of constituents in the two parse trees) of 11/13 = 0.84.
Apparently, both layers of NP that dominate this character sequence are considered to be
wrong by the SParseval metric due to the different segmentations of this character string.
The SParseval seems to be overly harsh, especially considering that there are cases in
Chinese where reasonable people differ as to what the correct word segmentations are.

To address this problem, we developed an alternative CParseval metric that assumes
a constituent is correctly parsed if it spans over the same character sequence as a consti-
tuent in the gold standard parse. This metric factors out word segmentation errors when
evaluating syntactic parses. With this metric, there is a complete match between (a) and
(b), below.

a. (IP (NP-SBJ (NP (NN£ 1K)
(QP (OD = 1)
(CLP (M M)
(NP-PN (NR £ fE)
(NN *RE)))
(VP (ADVP (AD EN))
(PP-LOC (P 7£)
(NP (PN iX £)))
(PP-DIR(P)
(NP (NN 22X)))
(VP (VV F D))
(PU,)

b. (IP (NP-SBJ (NP (NN £)(NN Ek))
(QP (ODE F)
(CLP (M M)
(NP-PN(NRI& i f2)
(NNKE)))
(VP (ADVP (AD ENf))
(PP-LOC (P £)
(NP (PN iX E£)))
(PP-DIR(P [a1)
(NP (NN 224X)))
(VP (VV FF)
(PU,))

108 Chapter 1: Data Acquisition and Linguistic Resources

Translation: The fifth Disney World around the globe is going to be open here to the pub-
lic soon.

1.4.4.5. Experimental Results

With the evaluation metrics in place, we are ready to report parsing evaluation re-
sults. The parsing results are reported for the Bikel parser retrained on the training set and
tested on the three test sets described in Section 1.4.4.2. The accuracy is reported in terms
of labeled F1 measure and all nodes in the tree are counted, including unary nodes. There
are three points of comparison in the results presented Table 1.24. The results are for all
three sources (Xinhua, Sinorama and Broadcast news) of CTB 6.0, and the parser takes
both gold standard and automatic word segmentations as input, and the parser output is
evaluated against both SParseval and CParseval metrics.

When gold standard word segmentation is used as input, the CParseval metric consis-
tently returns slightly lower parsing accuracy, indicating CParseval is not generally a
more lenient metric than SParseval. However, when automatic word segmentation is used
as input to the parser, the accuracy returned by the CParseval metric is consistently high-
er, indicating a significant number of errors reported with the SParseval metric are due to
incorrect word segmentation. The constituents built on top of wrongly segmented words
may not be incorrect in that they still span over the correct character strings.

Genre Seg SParseval (f1) CParseval (f1)

Xinhua gold 80.37 79.52
Xinhua auto 75.93 77.13
Sinorama gold 71.37 70.20
Sinorama auto 63.41 65.96
BN gold 79.39 78.51
BN auto 74.56 76.44

Table 1.24: Comparing SParseval and CParseval.

The third point to notice is that Sinorama data is substantially harder to parse than the
other two sources, and there is also a larger divide between the parsing accuracy for gold
standard and automatic word segmentations and presumably this is due to the lower word
segmentation accuracy for this data set. Over-all, the parsing performance degradation
caused by using automatic word segmentation ranges from 2% to 4% using the CParseval
metric, and from 4% to 8% using the SParseval metric.

Table 1.25 presents results with unary nodes included or excluded, using just the CPar-
seval metric. When unary nodes are excluded from calculation, the accuracy is consis-
tently higher for all three sources and for both experimental conditions (when gold stan-

Handbook of Natural Language Processing and Machine Translation 109

dard word segmentation or automatic word segmentation is used as input to the Bikel
parser). It is also interesting to note that the difference is around 2% by F1 measure for all
experimental conditions.

Genre Seg F1(w/ounary) F1 (w/ unary)

Xinhua gold 81.47 79.52
Xinhua auto 79.04 77.13
Sinorama gold 72.72 70.20
Sinorama auto 68.36 65.96
BN gold 80.60 78.51
BN auto 78.47 76.44

Table 1.25: CParseval labeled accuracy with and without unary nodes.

1.4.4.6. Conclusion

This section reports an attempt to formally evaluate the impact of automatic word
segmentation on syntactic parsing. Given a state-of-the-art word segmenter, the degrada-
tion in parsing performance when using the automatic word segmentation as input ranges
from 4% to 8% in F1 score by the SParseval metric, depending on the source. We also
described the CParseval metric that factors out the word segmentation errors from the
parsing accuracy calculation. By this metric the parsing accuracy degradation is 2% to
4% in F1 score. The substantial drop in accuracy floated around informally in the GALE
community is likely a result of lower word segmentation accuracy and overly harsh eval-
uation metrics.

1.4.5.Combining Discriminative Re-ranking and Co-training
for Parsing Mandarin Speech Transcripts
Author: Wen Wang

1.4.5.1. Introduction

Discriminative re-ranking has significantly improved parsing performance, and co-
training has proven to be an effective weakly supervised learning algorithm to bootstrap
parsers from a small in-domain seed labeled corpus using a large amount of unlabeled in-
domain data. In this section, we present systematic investigations on combining discri-
minative re-ranking and co-training, including co-training reranked parsers and co-
training rerankers. We show that combining discriminative re-ranking and co-training
could improve the F-measure by 1.8%—2% absolute compared to co-training two state-of-
the-art Chinese parsers without re-ranking for parsing Mandarin broadcast news and con-
versation transcripts.

Parsing aims at resolving structural ambiguity. State-of-the-art statistical parsers re-
quire treebanks to estimate their parameters, but their performance degrades when there
is mismatch on genres/domains between the training treebank and the data to parse. Fur-
thermore, creating a high-quality in-genre/in-domain treebank for the data to parse is ex-

110 Chapter 1: Data Acquisition and Linguistic Resources

pensive and difficult. However, under the GALE program, there are new genres besides
newswire text, namely, broadcast news (BN), broadcast conversation (BC), newsgroup
(NG), and web log (WL). Generating high-quality parse trees for Chinese data in these
genres can be useful for various tasks within GALE, including syntax-guided translation
and reordering models for Chinese-to-English machine translation (MT), name entity de-
tection, and structured language modeling for automatic speech recognition (ASR) on
Mandarin BN and BC audio.

In our earlier research (Wang 2008), we employed the weakly supervised co-training
technique on two state-of-the-art parsers, Charniak's parser and the Berkeley parser, to
bootstrap them from a newswire Chinese treebank and a small amount of BN and BC
seed annotated treebank with a large amount of unlabeled BN and BC transcripts, in or-
der to achieve high parsing accuracy on Mandarin BN and BC transcripts. By employing
co-training, we obtained 2.2% — 2.6% absolute improvement on F-measure for parsing
BN and BC transcripts. F-measure is based on labeled Precision (LP) and labeled Recall
(LR). LP is the number of correct constituents divided by the number of constituents

found by the parser, and LR is the number of correct constituents divided by the number

2PR

of constituents in the gold parse. F -measure is defined as F1= TR the other hand,

discriminative re-ranking for parsers (Collins and Koo 2005; Charniak and Johnson
2005) has produced significant improvement on parsing accuracy. In this section, we ex-
plore the effectiveness of combining discriminative re-ranking and co-training to further
improve parsing performance on Mandarin BN and BC transcripts.

1.4.5.2. Discriminative Re-ranking

We first describe our use of the RankBoost-based discriminative re-ranking approach
that was originally developed by Collins and Koo (Collins and Koo 2005) for parsing.
This approach allows us to investigate the impact of various features on Mandarin pars-
ing performance. The re-ranking algorithm takes as input a list of candidates produced by
a Chinese parser and reranks these candidates based on a set of features. For training the
reranker for the parsing task, there are n sentences {s; : i = 1,---,n} each with ni candi-
dates {x; ; = 1,--,m;} along with the log-probability L(x;;) produced by the parser.
Each parsing candidate x; ; in the training data has a score Score(x; ;) that measures
the similarity between the candidate and the gold reference. For parsing, we use parse
accuracy as the similarity measure. Without loss of generality, we assume that x; ; has the
highest score, i.e. Score(x;;) = Score(x;;) forj = 2,++,n;. A set of indicator
functions {hy : k = 1,-,m}is used to extract binary features, {hy(x;;): k = 1,
,m } on each example x; ; . Each indicator function h, is associated with a weight para-
meter , that is real valued. In addition, a weight parameter a, is associated with the
log-probability L(x;;) . The ranking function of candidates x;; is defined as
aoL(x; ;) + X1 ay hy(x; ;). The objective of the training process is to set the parame-
ters @ = {ay, @y, **, &, } to minimize the loss function Loss(@) (which is an upper
bound on the training error), as Loss(@) = X; XL, S e Mii@ where S; ; is the weight
function that gives the importance of each example, and M; ; (@) is the margin (Collins

Handbook of Natural Language Processing and Machine Translation 111

and Koo 2005). All the a; 's are initially set to zero. Then a greedy sequential optimiza-
tion method is used in each boosting round to select the feature that has the most impact
on reducing the loss function and then update its weight parameter accordingly.

Collins' method allows multiple updates to the weight of a feature. Huang et al.
(2007) found that for those strong features, Collins' weight update formula can increase
their weight (in absolute value) in only one direction. Although these features are strong
and useful, setting weights too large can be harmful in that it limits the use of other fea-
tures for reducing the loss. Based on this analysis, Huang et al. (2007) have developed an
update-once method, in which the weight update is limited so that once a feature is se-
lected in a certain iteration and its weight parameter is updated, no update will be con-
ducted on it again. In this way, the weights of the strong features will not be allowed to
prevent other features from being considered during the training procedure. Huang et al.
observed that the update-once method could select significantly more features compared
to Collins' original method and produce better reranking performance. In this section, we
employed this update-once strategy for updating feature weights

For the work described in this section, we employed the features described by Collins
and Koo (2005). Note that before generating these features, we applied headword perco-
lation on the trees that are the output of parsers, as employed by Collins and Koo (2005).
Features include rules (all context-free rules in the tree), bigrams (adjacent pairs of non-
terminals to the left and right of the head), grand-parent rules (same as rules, but also in-
cluding the non-terminal above the rule), head-modifiers (all head-modifier pairs, also
including the grandparent non-terminal), and PPs (lexical trigrams involving the heads of
arguments of prepositional phrases) and so on. More details are presented by Collins and
Koo (2005).

1.4.5.3. Co-training

Co-training was first introduced by Blum and Mitchell (Blum and Mitchell 1998) as a
weakly supervised learning method and can be used for boot-strapping a model from a
seed corpus of labeled examples, which is typically quite small, augmented with a much
larger amount of unlabeled examples, by exploiting redundancy among multiple statistic-
al models that generate different views of the data. Informally, co-training can be de-
scribed as picking multiple classifiers (“views”) of a classification problem, building
models for each view and training these models on a small set of labeled data, then on a
large set of unlabeled data, sampling a subset, labeling the sampled subset using the mod-
els, selecting examples from the labeled results, adding them to the training pool, and
iterating this procedure until the unlabeled set is all labeled.

In Figure 1.13, when calling the classifier that provides additional training data for
the opposite classifier the teacher and the opposite classifier the student, since the labeled
output from both classifiers h; and h;, is noisy, an important question is which newly la-
beled examples from the teacher should be added to the training data pool of the student.
This issue of example selection plays an important role in the learning rate of co-training
and the performance of resulting classifiers. In previous work, investigated four example
selection approaches, namely, naive co-training, agreement-based co-training, max-
score, and max-t-min-s (Wang 2008). We also developed the max-score and max-t-min-s

112 Chapter 1: Data Acquisition and Linguistic Resources

approaches (Wang et al. 2007). We also compare the performance of co-training to self-
training. Self-training in this work simply adds all examples in the labeled cache to the
training pool in each iteration (Nigram and Ghani 2000).

Input: S is a seed set of labeled data.
Ly, is labeled training data for h;.
Ly, is labeled training data for h,.
U is the unlabeled data set.
C is the cache holding a small subset of U.
1Ly «5S
2 Ly, «S
3 Train classified hy on Ly,
4 Train classified h, on Ly,
5 | repeat
6 | Randomly partition U into C where |C| = u and U’
7 | Apply hy hyto assign labels for all examplesin C
8 | Select examples labeled by h;and add to Ly,
9 | TrainhyonLy,
10 | Select examples labeled by h, and add to L,
11 | Train hyon Ly,
12| U«U'
13 until U is empty

Figure 1.13: General co-training algorithm.

In previous work (Wang 2008), we systematically investigated applying weakly su-
pervised co-training approaches to improve parsing performance for parsing Mandarin
BN and BC transcripts, by iteratively retraining two competitive Chinese parsers, Char-
niak's re-ranking parser (Charniak and Johnson 2005) and the Berkeley parser (Petrov et
al. 2006), from a small set of treebanked data and a large set of un-labeled data. Com-
pared to parsers trained only on the small in-domain seed labeled corpus, the parsers re-
sulting from co-training could gain 6.8% absolute on BN and 7.3% absolute on BC based
on the F-measure.

Overall, compared to parsers trained on all available treebank data including in-
domain and out-of-domain treebanks, co-training yields a 2.2%— 2.6% absolute gain on
BN and 2.4% — 2.5% absolute gain on BC based on the F-measure (and 1.5% — 1.9% ab-
solute gain on BN and 1.7% — 2.0% absolute gain on BC over self-training (Wang
2008)). In this section, we investigate the combination of discriminative re-ranking and
co-training on Charniak's maximum-entropy inspired parser (Charniak 2000) (i.e., the
parser without re-ranking compared to the parser of Charniak and Johnson (2005)) and
the Berkeley parser (also originally without re-ranking). For co-training parsers, we em-
ployed the max-t-min-s example selection approach, as it is computation-ally inexpensive
and also produced the best performance (Wang 2008).

Handbook of Natural Language Processing and Machine Translation 113

1.4.5.4. Combining Re-ranking and Co-training

Both Charniak and Berkeley parsers support generating N-best parses for re-ranking
purposes. In fact, Charniak and Johnson have implemented a discriminative reranker us-
ing a MaxEnt estimator to find the feature weights and when using the reranker to rerank
50-best parses from Charniak's Maximum-entropy inspired parser, it improved F-measure
by 1.3% absolute on sentences of length less than 100 words in Wall Street Journal Penn
Treebank section 23 (Charniak and Johnson 2005).

In this work, we adopted this reranker for Charniak's parser, implemented the Rank-
Boost-based re-ranking algorithm described in Section 1.4.5.2 to rerank 50-best from the
Berkeley parser, and then investigated two ways to combine re-ranking and co-training.
The direct combination approach is for each iteration of co-training, instead of generating
1-best parse directly from the no-re-ranking, standard Charniak and Berkeley parsers, 50-
best parses are generated from each parser and then reordered by their cor-responding
rerankers, respectively. Then the 1-best parses after re-ranking for the unlabeled data are
selected and added to the training pool of the parsers. In this section this approach is de-
noted co-training reranked parsers. Note that for this approach the features and feature
weight parameters for rerankers remain the same during the co-training procedure.

Different from the original binary classification problems on which co-training was
developed, parsing contains a number of smaller decisions about which constituents are
probable, and inherently each parser includes good and bad decisions on how to
create/attach different constituents. On the other hand, re-ranking is closer to binary clas-
sification than parsing, as it tries to decide whether or not a parse hypothesis is the best
parse for the sentence, so it is explicit to maximize agreement between rerankers, as the
principled agreement-based example selection approach could be applied here, which
could guarantee co-training to improve parsing accuracy. Hence, we hypothesize that co-
training rerankers could better fit the co-training algorithm. For effectiveness, rerankers
can consider features that span the entire tree of a parse (while parsers generally consider
only local features). For efficiency, co-training rerankers requests unlabeled data to be
parsed just once, compared to multiple parsing iterations for co-training reranked parsers.
The output will be reranked many times, but this is much more efficient than training and
running parsers. Hence, in this work, we also investigated co-training our RankBoost-
based reranker with Charniak's and Johnson's MaxEnt reranker and applied the co-trained
rerankers to the two standard parsers. This second approach is denoted co-training re-
rankers.

1.4.5.5. Data

For selecting parsers and also contributing to training parsers, we used Chinese Tree-
bank 5.2 released by LDC (denoted as CTB). Chinese Treebank 5.2 contains 500K
words, 800K characters, 18K sentences, and 900 data files. Under the GALE program,
the BN genre follows its tradition and consists of “talking head” style broadcasts, i.e.,
generally one person reading a news script. The BC genre, by contrast, is more conversa-
tional and spontaneous, consisting of talk shows, interviews, call-in programs, and round-
tables.

114 Chapter 1: Data Acquisition and Linguistic Resources

The evaluation of co-training for parsing Mandarin BN and BC transcripts is con-
ducted on the GALE OntoNotes released Mandarin BN and BC treebanks. The BN tree-
bank is from the Mandarin TDT4 collection, and the BC treebank is from GALE Manda-
rin BC data and translations from English BC data. The Mandarin BN treebank includes
300K words and 814 data files, and the BC treebank 100K words and 16 data files.

To create a seed corpus and a test set for evaluating parsing accuracy, for BN and BC
respectively, we divided the whole BN/BC treebank into blocks of 10 files by sorted or-
der. Within each block, the first file is used for co-training development and the second
for testing parsing accuracy. The remaining eight files are used as part of the seed anno-
tated corpus for co-training. The resulting BN test set is denoted BN-test and the seed
annotated corpus BN-seed. The BC test set is de-noted BC-test and the BC seed anno-
tated corpus BC-seed. BN-test includes 31K words and 1,565 sentences. BC-test includes
11K words and 1,482 sentences. The large set of unlabeled data for BN parsing includes
Hub4 1997 Mandarin BN acoustic transcripts, LDC Chinese TDT {2,3,4} corpora, Chi-
nese Gigaword 3.0, and all GALE released BN audio transcripts, denoted BN-unlabeled.
For BC parsing, we add all GALE released BC audio transcripts denoted BC-unlabeled.
After word segmentation, BN-unlabeled comprises around 1.4 billion words and BC-
unlabeled around 11 million words.

1.4.5.6. Selecting Parsers for Co-training

Parser ||F-measure
Charniak |83.2%
Stanford 2.0%
Berkeley |{83.5%
Bikel 2.9%

Table 1.26: F-measure of all four parsers on the CTB test set. The train/dev/test split is described in Section
1.455.

To select the two parsers for co-training, we investigated four publicly available
parsers, namely, Charniak's maximum-entropy inspired parser (Charniak 2000), the Stan-
ford unlexicalized parser (Klein and Manning 2003), Berkeley parser (Petrov et al. 2006),
and Dan Bikel's reimplementation of Michael Collins' Model 2 parser (Collins 1999). To
select two from them in our co-training setup, we considered two important factors: accu-
racy and mutual complementariness. To evaluate parser accuracy, we consider the F-
measure. Using the train/dev/test split described in Section 1.4.5.5, Table 1.26 shows the
F-measure of all four parsers on the test set.

The co-training principle requires the two views to be conditionally independent or
weakly conditionally independent. This means that we need to select parsers that are
complementary on their learning patterns and error types. To measure the structural com-
plementariness between parsers, we adapted the measure of structural consistency be-
tween parsers and modified the objective function for maximizing the structural comple-
mentariness between parsers to be selecting parsers with the minimal structural consis-
tency.

Handbook of Natural Language Processing and Machine Translation 115

Note that to measure the structural consistency between the bracketing parses from
parsers and gold standard parses, Black, Garside, and Leech (Black et al. 1993) defined
the metric average crossing brackets (ACB), the mean number of times per sentence that
a bracketed sequence from one parser overlaps with the gold standard from the treebank
such that neither is properly contained in the other. Although ACB does not account for
all types of conflicting constituency, it is a practical measure for the structural consisten-
cy between two sets of parse trees.

By using the output from one parser B as the gold set, we can calculate the pair-wise
ACB g of parser A on parser B. The ACB values on the CTB test set among all six
pairs from the four parsers are ordered as {Charniak, Stanford}, 2.11; {Berkeley,
Stanford}, 2.09; {Charniak, Bikel}, 2.05; {Berkeley, Bikel}, 2.01; {Charniak, Berkeley},
1.99; {Bikel, Stanford}, 1.87. Since we need to achieve the best combination of maximiz-
ing parsers' accuracy and maximizing their mutual complementariness (i.e., maximizing
their pair-wise ACB), we selected Charniak's maximum-entropy inspired parser and the
Berkeley parser for co-training.

1.4.5.7. Experimental Results and Discussions

Training Condition F-measure (%)
Charniak Berkeley
1. BN-seed 75.1 75.2
2. CTB 79.1 79.1
3. CTB+BN-seed 80.4 80.5
4. co-training initialized as
Condition 3, max-t-min-s 82.3 82.6

Table 1.27: Overall parsing accuracy F-measure (%) on the Mandarin BN treebank test set, BN-test, after
applying co-training using Charniak's maximum-entropy inspired parser and the Berkeley parser, both with-
out re-ranking.

Table 1.27 shows the parsing accuracy F-measure (%) on BN-test under various
parser training conditions on Charniak's parser and the Berkeley parser without re-
ranking. As can be seen from the table, training Charniak's parser and the Berkeley parser
using only the small training set of BN treebank, i.e., BN-seed, resulted in relatively poor
parsing performance, at 75.1% F1 for Charniak’s parser and 75.2% for the Berkeley pars-
er. Using the larger full CTB corpus for training improves parsing performance signifi-
cantly and adding BN-seed to CTB brought additional gain. However, co-training using
CTB plus BN-seed as the initial training pool significantly improved the performance of
the two parsers over directly training on CTB plus BN-seed, with 1.9% absolute and
2.1% absolute improvement on F-measure for Charniak's parser and the Berkeley parser,
respectively.

For co-training carried out in these experiments, we used cache size as 10K sen-
tences. Table 1.28 shows the F-measure from the two no-re-ranking parsers on BC-test
under various training conditions. The condition BN-co-trained denotes the BN-seed
treebank and the final annotated BN-unlabeled data after applying max-t-min-s co-
training to the two parsers initialized on the BN-seed treebank. BN-co-trained signifi-
cantly outperforms CTB, indicating greater similarity between the two speech genres

116 Chapter 1: Data Acquisition and Linguistic Resources

compared to CTB vs. BC. Using CTB and BN-seed to initialize the two parsers and then
co-training on the BN-unlabeled data achieved further gain on parsing performance, de-
noted by (CTB+BN)-co-trained. Consistent with Table 1.27 it is always helpful to add
the small in-genre seed treebank into training, as (CTB+BN)-co-trained+BC-seed out-
performs (CTB+BN)-co-trained. Co-training on BC-unlabeled also produced consistent
improvement on F-measures.

Overall, we gained 2.5% absolute on F-measure on BC-test over the two parsers from
co-training. Using the same BC-unlabeled data for co-training, we also compared initia-
lizing the two parsers with the condition of CTB only and the condition of adding the
small BN-seed and BC-seed corpora, and observed that adding this small in-genre seed
corpus always outperforms initializing with CTB only, by 1% on BN and 1.4% on BC.

Training Condition F-measure (%)
Charniak Berkeley
1. BC-seed 72.0 72.8
2. CTB 73.4 73.7
3. BN-co-trained 4.7 74.8
4. (CTB+BN)-co-trained 75.6 75.7
5. (CTB+BN)-co-trained+BC-seed 76.8 77.0
6. co-traini_ng initialized as Condition 5, 79.3 795
max-t-min-s

Table 1.28: Overall parsing accuracy F-measure (%) on the Mandarin BC treebank test set, BC-test, after
applying co-training using Charniak's maximum-entropy inspired parser and the Berkeley parser, both with-
out re-ranking.

Training Condition BN-test F-measure (%) | BC-test F-measure (%)
Charniak Berkeley Charniak Berkeley
co-training standard parsers 82.3 79.3 79.5 82.6
co-training reranked parsers 83.8 81.0 81.1 84.0
co-training rerankers 84.0 81.5 81.5 84.4

Table 1.29: Overall parsing accuracy F-measure (%) on BN-test and BC-test, after applying co-training using
Charniak's maximum-entropy inspired parser and the Berkeley parser, both without re-ranking and with re-
ranking.

The results from the two approaches of combining discriminative re-ranking and co-
training, as proposed in Section 1.4.5.4, are shown in Table 1.29. The results of co-
training standard parsers are the last rows in Tables 1.27 and 1.28. When co-training
reranked parsers, the rerankers were trained on CTB+BN-seed for BN and CTB+BN-
seed+BC-seed for BC and remained the same during co-training. When co-training
rerankers, the rerankers were initialized on CTB+BN-seed for BN and CTB+BN-
seed+BC-seed for BC and updated during co-training. For both combination approaches,
co-training explored BN-unlabeled for BN and BC-unlabeled for BC as unlabeled data,
respectively.

As can be seen, co-training reranked parsers (using the max-t-min-s example selec-
tion approach) significantly outperforms co-training without re-ranking, by 1.5% absolute

Handbook of Natural Language Processing and Machine Translation 117

and 1.4% absolute gain on F-measure on the two parsers on BN-test, and 1.7% absolute
and 1.6% absolute gain on F-measure on the two parsers on BC-test. For co-training re-
rankers, as discussed in Section 1.4.5.4, it is feasible now for us to employ the more
principled agreement-based example selection approach during co-training since we can
simply train each reranker multiple times on different subsets of the automatically labeled
data and examine which partition of the data produced the maximum agreement among
the rerankers.

As a reminder, for co-training reranked parsers, we still used the max-t-min-s ap-
proach as it is computationally efficient and also proved to be very effective for co-
training parsers (Wang 2008). As can be seen from the tables, co-training rerankers
produced a small yet consistent gain over co-training reranked parsers, by 0.2% —
0.4% absolute improvement on BN-test and 0.4% — 0.5% absolute improvement on BC-
test, raising the absolute improvement on F-measure up to 1.8% on BN-test and 2% on
BC-test, from combining discriminative re-ranking and co-training compared to co-
training only.

118 Chapter 1: Data Acquisition and Linguistic Resources

References

Al-Sughaiyer, I. A. and I. A. Al-Kharashi. 2004. Arabic Morphological Analysis Tech-
niques: A Comprehensive Survey. Journal of the American Society for Information
Science and Technology 55(3):189-213.

Babko-Malaya, O. 2008. Annotation of Nuggets and Relevance in GALE Distillation
Evaluation. Proceedings of the International Conference on Language Resources and
Evaluation. Marrakech, Morocco.

Babko-Malaya, O., A. Bies, A. Taylor, S. Yi, M. Palmer, M. Marcus, S. Kulick and L.
Shen. 2006. Issues in Synchronizing the English Treebank and PropBank. Proceedings of
the Workshop on Frontiers in Linguistically Annotated Corpora.

Babko-Malaya, O., M. Palmer, N. Xue, A. Joshi and S. Kulick. 2004. Proposition Bank
I1: Delving Deeper. Proceedings of the Human Language Technologies Conference/
Meeting of the North American Chapter of the Association for Computational Linguistics
Frontiers in Corpus Annotation Workshop.

Babko-Malaya, O., Z. Song, R. Zakhary, S. Strassel and J. Medero. 2006. GALE Y1 -
Distillation Training Query Answer Keys V7.0. LDC2006E15.

Badr, I., R. Zbib and J. Glass. 2008. Segmentation For English-To-Arabic Statistical Ma-
chine Translation. Proceedings of the Human Language Technologies Conference/ Meet-
ing of the North American Chapter of the Association for Computational Linguistics.
Short Papers: 153-156. Columbus, Ohio.

Baker, C.F., C. J. Fillmore and J. B. Lowe. 1998. The Berkeley FrameNet Project. Pro-
ceedings of the International Conference on Computational Linguistics/Meeting of the
Association for Computational Linguistics pp. 86-90.

Benajiba, Y., M. Diab and P. Rosso. 2008. Arabic Named Entity Recognition Using Op-
timized Feature Sets. Proceedings of the 2008 Conference on Empirical Methods on Nat-
ural Language Processing pp. 284-293. Honolulu, Hawaii.

Benajiba, Y., M. Diab and P. Rosso. 2009. Arabic Named Entity Recognition: A Feature-
Driven Study. IEEE Transactions on Audio, Speech & Language Processing 17(5): 926-
934.

Bies, A. and M. Ferguson, K. Katz and R. MaclIntyre, Eds. 1995. Bracketing Guidelines
for Treebank Il Style. Penn Treebank Project, University of Pennsylvania, CIS Technical
Report MS-CIS-95-06.

Bikel, D.M. 2004. On the Parameter Space of Generative Lexicalized Statistical Parsing
Models. Ph.D. thesis, University of Pennsylvania.

Bikel, D.M. and D. Chiang. 2000. Two Statistical Parsing Models Applied To The Chi-
nese Treebank. Proceedings of the Second Chinese Language Processing Workshop.

Black, E., R. Garside and G. Leech. 1993. Statistically-driven Computer Grammars of
English: The IBM/Lancaster Approach. Rodopi, Amsterdam.

Handbook of Natural Language Processing and Machine Translation 119

Blum, A. and T. Mitchell. 1998. Combining Labeled and Unlabeled Data With Co-
Training. Proceedings of the Conference on Learning Theory.

Buckwalter, T. 2002. Buckwalter Arabic Morphological Analyzer Version 1.0. Linguistic
Data Consortium, University of Pennsylvania. LDC Catalog No.: LDC2002L49.

Buckwalter, T. 2004. Buckwalter Arabic Morphological Analyzer Version 2.0. Linguistic
Data Consortium, University of Pennsylvania. LDC Catalog No.: LDC2004L02.

Burchardt, A., K. Erk, A. Frank, A. Kowalski, S. Pado and M. Pinkal. 2006. Consistency
And Coverage: Challenges for Exhaustive Semantic Annotation. Proceedings of The
German Society for Linguistics Conference (DGfS).

Chang, P.C., M. Gally and C. Manning. 2008. Optimizing Chinese Word Segmentation
for Machine Translation Performance. Proceedings of the Meeting of the Association for
Computational Linguistics Third Workshop on Statistical Machine Translation.

Charniak, E. 1997. Statistical Parsing with a Context-Free Grammar and Word Statistics.
Proceedings of the International Conference on Artificial Intelligence.

Charniak, E. 2000. A Maximum-Entropy-Inspired Parser. Proceedings of the Meeting of
the North American Chapter of the Association for Computational Linguistics.

Charniak, E. and M. Johnson. 2005. Coarse-to-fine Nbest Parsing and MaxEnt Discri-
minative Reranking. Proceedings of the 43rd Meeting of the Association for Computa-
tional Linguistics.

Chen, J. and M. Palmer. 2005. Towards Robust High Performance Word Sense Disam-
biguation of English Verbs Using Rich Linguistic Features. Proceedings of the Interna-
tional Joint Conference on Natural Language Processing pp. 933-944.

Chen, K.J. and S. H. Liu. 1992. Word Identification for Mandarin Chinese Sentences.
Proceedings of the International Conference on Computational Linguistics pp. 101-107.

Cieri, C., S. Strassel, D. Graff, N. Martey, Ka. Rennert and M. Liberman. 2002. Corpora
for topic detection and tracking. James Allen, editor, Topic Detection and Tracking:
Event-based Information Organization. Kluwer Academic Publishers.

Cieri, C. and Liberman, M. 2000. Issues in Corpus Creation and Distribution: The Evolu-
tion of the Linguistic Data Consortium. Proceedings of the International Conference on
Language Resources and Evaluation.

Cieri, C., S. Strassel, M. Glenn and L. Friedman. 2007. Linguistic Resources in Support
of Various Evaluation Metrics. Automatic Procedures in MT Evaluation Workshop: MT
Summit XI.

Collins, M. 1999. Head-Driven Statistical Models for Natural Language Parsing. Ph.D.
thesis, University of Pennsylvania.

Collins, M. and T. Koo. 2005. Discriminative Reranking For Natural Language Parsing.
Computational Linguistics, 31(1):25-70.

120 Chapter 1: Data Acquisition and Linguistic Resources

Costa-jussa, M.R., J.M. Crego, A. de Gispert, P. Lambert, M. Khalilov, J.A.R. Fonollosa,
J.B. Marifio and R. Banchs. 2006. TALP Phrase-Based System and TALP System Com-
bination. Proceedings of the International Workshop on Spoken Language Translation
pp. 123-129. Kyoto, Japan.

Cowan, M. 2009. GNU W(get. http://www.gnu.org/software/wget.

Crego, J.M. and N. Habash. 2008. Using Shallow Syntax Information to Improve Word
Alignment and Reordering for SMT. Proceedings of the Third Workshop on Statistical
Machine Translation pp. 53-61. Columbus, Ohio.

CRL Lesser Studied Languages Center. 2009. http://crl.nmsu.edu/say/

Dean, J. and S. Ghemawat. 2005. MapReduce: Simplified Data Processing on Large
Clusters. Proceedings of the Sixth Symposium on Operating System Design and Imple-
mentation (OSDI’04).

Diab, M. 2007. Improved Arabic Base Phrase Chunking with a New Enriched Pos Tag
Set. Proceedings of the 2007 Workshop on Computational Approaches to Semitic Lan-
guages: Common Issues and Resources pp. 89-96. Prague, Czech Republic.

Diab, M. 2007a. Towards An Optimal Pos Tag Set For Modern Standard Arabic
Processing. Proceedings of the Conference on Recent Advances in Natural Language
Processing. Borovets, Bulgaria.

Diab, M., K. Hacioglu and D. Jurafsky. 2004. Automatic Tagging of Arabic Text: From
Raw Text to Base Phrase Chunks. Proceedings of the Human Language Technologies
Conference/ Meeting of the North American Chapter of the Association for Computation-
al Linguistics. Boston, MA.

Diab, M., M. Alkhalifa, S. EIKateb, C. Fellbaum, A. Mansouri, M. Palmer. 2007. Se-
mEval-2007 Task 18: Arabic Semantic Labeling. Proceedings of the International Work-
shop on Semantic Evaluations.

Diab, M., M. Ghoneim and N. Habash. 2007a. Arabic Diacritization In The Context Of
Statistical Machine Translation. Proceedings of the Machine Translation Summit. Co-
penhagen, Denmark.

Diab, M., K. Hacioglu and D. Jurafsky. 2007b. Automatic Processing of Modern Stan-
dard Arabic Text. Arabic Computational Morphology: Knowledge-based and Empirical
Methods. Abdelhadi Soudi, Antal van den Bosch and Glnter Neumann, eds. Springer.

Dligach, D. and M. Palmer. 2008. Novel Semantic Features for Verb Sense Disambigua-
tion. Proceedings of the Meeting of the Association for Computational Linguistics.

Dligach, D. and M. Palmer. 2009. Using Language Modeling to Select Useful Annotation
Data. Proceedings of the Human Language Technologies Conference/ Meeting of the
North American Chapter of the Association for Computational Linguistics. Boulder, Col-
orado.

Elming, J. and N. Habash. 2007. Combination of Statistical Word Alignments Based on
Multiple Preprocessing Schemes. Proceedings of the Human Language Technologies

Handbook of Natural Language Processing and Machine Translation 121

Conference/ Meeting of the North American Chapter of the Association for Computation-
al Linguistics Companion VVolume, Short Papers: 25-28. Rochester, New York.

Elming, J., N. Habash and J. Crego. 2008. Combination Of Statistical Word Alignments
Based On Multiple Preprocessing Schemes. Cyril Goutte, Nicola Cancedda, Marc Dy-
metman and George Foster, eds., Learning for Machine Translation. MIT Press.

Emerson, T. 2005. The Second International Chinese Word Segmentation Bakeoff. Pro-
ceedings of the Fourth SIGHAN Workshop on Chinese Language Processing pp. 123-
133. Jeju Island, Korea.

Farber, B., D. Freitag, N. Habash and O. Rambow. 2008. Improving NER in Arabic Us-
ing a Morphological Tagger. Proceedings of the International Conference on Language
Resources and Evaluation. Marrakech, Morocco.

Farwell, D., J. Giménez, E. Gonzélez, R. Halkoum, H. Rodriguez and M. Surdeanu.
2007. The UPC System for Arabic-to-English Entity Translation. Proceedings of the Au-
tomatic Content Extraction Conference.

Favre, B., D. Hakkani-Tur, S. Petrov and D. Klein. 2008. Efficient Sentence Segmenta-
tion Using Syntactic Features. Proceedings of the IEEE/Meeting of the Association for
Computational Linguistics Workshop on Spoken Language Technologies.

Favre, B., R. Grishman, D. Hillard, H. Ji, D. Hakkani-Tur and M. Ostendorf. 2008a.
Punctuating Speech for Information Extraction. Proceedings of the International Confe-
rence on Acoustics, Speech and Signal Processing pp. 5013-5106.

Fellbaum, C. ed. 1998. WordNet: An On-line Lexical Database and Some of its Applica-
tions. MIT Press.

Fiscus, J., J. Ajot, N. Radde and C. Laprun. 2006. Multiple Dimension Levenshtein Edit
Distance Calculations for Evaluating Automatic Speech Recognition Systems During
Simultaneous Speech. Proceedings of the International Conference on Linguistic Re-
sources and Evaluation.

Fraser, A. and D. Marcu. 2007. Measuring Word Alignment Quality for Statistical Ma-
chine Translation. Computational Linguistics 33(3):293-303

Friedman, L. and S. Strassel. 2008. Identifying Common Challenges for Human and Ma-
chine Translation: A Case Study from the GALE Program. Proceedings of the Meeting of
the Association for Machine Translation in the Americas. Waikiki, Hawaii.

Friedman, L., H. Lee and S. Strassel. 2008. A Quality Control Framework for Gold Stan-
dard Reference Translations: The Process and Toolkit Developed for GALE. Translating
and the Computer 30 Proceedings. London, UK.

Friedman, L., S. Strassel and M. Glenn. 2008. Explicit and Implicit Requirements of
Technology Evaluations: Implications for Test Data Creation. Proceedings of the Inter-
national Conference on Language Resources and Evaluation. Marrakech, Morocco.

Gabbard, R. and S. Kulick. 2008. Construct State Modification in the Arabic Treebank.
Proceedings of Meeting of the Association for Computational Linguistics Short Papers.

122 Chapter 1: Data Acquisition and Linguistic Resources

Gao, J.F., M. Li, A. Wu and C.N. Huang. 2005. Chinese Word Segmentation and Named
Entity Recognition: a Pragmatic Approach. Computational Linguistics, 31(4):531-574.

Glenn, M. and S. Strassel. 2006. Shared Linguistic Resources for the Meeting Domain.
Proceedings of the Classification of Events, Activities, and Relationships Evaluation and
RT Evaluation.

Glenn, Meghan Lammie, Haejoong Lee and Stephanie M. Strassel. 2009. XTrans: a
speech annotation and transcription tool. Proceedings of Interspeech 2009, Brighton, UK.

Habash, N. 2004. Large Scale Lexeme Based Arabic Morphological Generation. Pro-
ceedings of the Conference on Automated Processing of Natural Languages (TALN-04)
pp. 271-276. Fez, Morocco.

Habash, N. 2007. Arabic Morphological Representations for Machine Translation. Arabic
Computational Morphology: Knowledge-based and Empirical Methods. Abdelhadi Sou-
di, Antal van den Bosch and Giinter Neumann, eds. Springer.

Habash, N. and F. Sadat. 2006. Arabic Preprocessing Schemes for Statistical Machine
Translation. Proceedings of the 7th Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics/ Human Language Technologies Conference pp.
49-52. New York, New York.

Habash, N. and O. Rambow. 2005. Arabic Tokenization, Morphological Analysis, and
Part-of-Speech Tagging in One Fell Swoop. Proceedings of the Meeting of the Associa-
tion for Computational Linguistics. Ann Arbor, Michigan.

Habash, N. and O. Rambow. 2006. Magead: A morphological analyzer for Arabic and its
dialects. Proceedings of the 21st International Conference on Computational Linguistics
and 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Aus-
tralia.

Habash, N. and O. Rambow. 2007. Arabic Diacritization through Full Morphological
Tagging. Proceedings of the Human Language Technologies Conference/ Meeting of the
North American Chapter of the Association for Computational Linguistics.

Habash, N. and R. Roth. 2008. Identification of Naturally Occurring Numerical Expres-
sions in Arabic. Proceedings of the International Conference on Language Resources
and Evaluation. Marrakech, Morocco.

Habash, N. and R. Roth. 2009. CATIiB: The Columbia Arabic Treebank. Proceedings of
the Conference of the Association for Computational Linguistics. Suntec, Singapore.

Habash, N., O. Rambow and G. Kiraz. 2005. Morphological Analysis and Generation for
Arabic Dialects. Proceedings of the Meeting of the Association for Computational Lin-
guistics, Workshop on Computational Approaches to Semitic Languages. Ann Arbor, MI.

Habash, N., A. Soudi and T. Buckwalter. 2007. On Arabic Transliteration. Arabic Com-
putational Morphology: Knowledge-based and Empirical Methods. Abdelhadi Soudi,
Antal van den Bosch, and Giinter Neumann, eds. Springer.

Handbook of Natural Language Processing and Machine Translation 123

Habash, N., R. Faraj and R. Roth. 2009. Syntactic Annotation in the Columbia Arabic
Treebank. Proceedings of the International Conference on Arabic Language Resources
and Tools (MEDAR). Cairo, Egypt.

Hajic, A.J., B. Vidova-Hladka and P. Pajas. 2001. The Prague Dependency Treebank:
Annotation Structure and Support. Proceeding of the IRCS Workshop on Linguistic Da-
tabases, pp. 105-114.

Haji¢, J., O. SmrZ, P. Zemanek, J. Snaidauf and E. Beska. 2004. Prague Arabic Depen-
dency Treebank: Development in Data and Tools. Proceedings of the Network for Euro-
Mediterranean Language Resources Conference on Arabic Language Resources and
Tools. Cairo, Egypt.

Harper, M., B. Dorr, J. Hale, B. Roark, I. Shafran, M. Lease, Y. Liu, M. Snover, L.Yung,
A. Krasnyanskaya and R. Stewart. 2005. The Johns Hopkins Summer Workshop Final
Report on Parsing and Spoken Structural Event Detection. Johns Hopkins University.

Hillard, D., Z. Huang, H. Ji, R. Grishman, D. Hakkani-Tur, M. Harper, M. Ostendorf and
W. Wang. 2006. Impact of Automatic Comma Prediction on POS/Name Tagging Of
Speech. Proceedings of the IEEE/Meeting of the Association for Computational Linguis-
tics Workshop Spoken Language Technology pp. 58-61.

Holovaty, A. 2007. Templatemaker. http://code.-google.com/p/templatemaker/.
Hovy, E.H., A. Philpot, et al. 2009. The Omega Upper Model. Unpublished ms.

Huang, C.R., T.S. You, P. Simon and S.K. Hsieh. 2008. A Realistic and Robust Model
for Chinese Word Segmentation. Proceedings of the Conference on Computational Lin-
guistics and Speech Processing (ROCLING-2008). Taiwan.

Huang, J. and G. Zweig. 2002. Maximum Entropy Model for Punctuation Annotation
from Speech. Proceedings of the International Conference on Spoken Language
Processing pp.917-920.

Huang, Z., M. Harper and W. Wang. 2007. Mandarin Part-of-speech Tagging and Dis-
criminative Reranking. Proceedings of the Conference on Empirical Methods on Natural
Language Processing.

Hwang, M.Y., X. Lei, W. Wang and T. Shinozaki. 2006. Investigation on Mandarin
Broadcast News Speech Recognition. Proceedings of the International Conference on
Spoken Language Processing.

Jin, G. and X. Chen. 2008. The Fourth International Chinese Word Segmentation Ba-
keoff. Proceedings of the Sixth SIGHAN Workshop on Chinese Language Processing.
Hyderabad, India.

Jones, D., E. Gibson, W. Shen, N. Granoien, M. Herzog, D. Reynolds and C. Weinstein.
2005. Measuring Human Readability of Machine-Generated Text: Three Case Studies in
Speech Recognition and Machine Translation. Proceedings of the International Confe-
rence on Acoustics, Speech, and Signal Processing pp. 1009-1012.

124 Chapter 1: Data Acquisition and Linguistic Resources

Kahn, J.G., M. Ostendorf and C. Chelba. 2004. Parsing Conversational Speech Using
Enhanced Segmentation. Proceedings of the Human Language Technologies Confe-
rence/ Meeting of the North American Chapter of the Association for Computational Lin-
guistics pp. 125-128.

Kiraz, G.A. 2000. Multi-tiered Nonlinear Morphology Using Multi-tape Finite Automata:
A Case Study on Syriac and Arabic. Computational Linguistics 26(1):77-105.

Klein, D. and C. Manning. 2003. Accurate Unlexicalized Parsing. Proceedings of the 41st
Meeting of the Association for Computational Linguistics pp. 423- 430.

Kruijff-Korbayova, I., K. Chvéatalov4, O. Postolache. 2006. Annotation Guidelines for
Czech-English Word Alignment. Proceedings of the International Conference on Lan-
guage Resources and Evaluation pp. 1256-1261.

Kulick, S., R. Gabbard and M. Marcus. 2006. Parsing the Arabic Treebank: Analysis and
Improvements. Proceedings of the Treebanks and Linguistic Theories Conference. Pra-
gue, Czech Republic.

Larkey, L.S., L. Ballesteros and M.E. Connell. 2007. Light Stemming for Arabic Infor-
mation Retrieval. Arabic Computational Morphology: Knowledge-based and Empirical
Methods. Abdelhadi Soudi, Antal van den Bosch, and Glinter Neumann, eds. Springer.

Le, S, Y. Jin, L. Duand Y. Sun. 2000. Word Alignment of English-Chinese Bilingual
Corpus Based on Chunks. Proceedings of the 2000 Joint SIGDAT conference on Empiri-
cal Methods on Natural Language Processing and Very Large Corpora/ The 38th Annual
Meeting of the Association for Computational Linguistics 13: 110 — 116.

Levow, G.A. 2006. The Third International ChineseWord Segmentation Bakeoff: Word
Segmentation and Named Entity Recognition. Proceedings of the Fifth SIGHAN Work-
shop on Chinese Language Processing. Sydney, Australia.

Levy, R. and C. Manning. 2003. Is it Harder to Parse Chinese, or the Chinese Treebank.
Proceedings of the 41st Annual Meeting of the Association for Computational Linguis-
tics. Sapporo, Japan.

Levy, R. and G. Andrew. 2006. Tregex and Tsurgeon: Tools for Querying and Manipu-
lating Tree Data Structures. Proceedings of the International Conference on Language
Resources and Evaluation.

LDC. 2004. Simple Metadata Annotation Specification, Version 6.2.
http://projects.ldc.upenn.edu/MDE/Guidelines/SimpleMDE_V6.2.pdf

LDC. 2006. Simple Named Entity Guidelines for Less Commonly Taught Languages,
Version 6.5.
http://projects.ldc.upenn.edu/LCTL/Specifications/SimpleNamedEntityGuidelines\VV6.5.pdf

LDC. 2007. Using XTrans for Broadcast Transcription: A User Manual, Version 3.0.
http://projects.ldc.upenn.edu/gale/Transcription/XTransManualV3.pdf

Handbook of Natural Language Processing and Machine Translation 125

LDC. 2008. GALE P3 Supra-Lexical Annotation Experiment Guidelines.
http://projects.ldc.upenn.edu/gale/Transcription/Supra-lexicalAnnotation v0.6.pdf

LDC. 2009. GALE Website. http://projects.ldc.upenn.edu/gale/index.html

Liu, F. and Y. Liu. 2007. Soundbite Identification Using Reference and Automatic Tran-
scripts of Broadcast News Speech. Proceedings of the Automatic Speech Recognition
and Understanding Workshop pp. 653-658.

Liu, Y., E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf and M. Harper. 2006. Enrich-
ing Speech Recognition with Automatic Detection of Sentence Boundaries and Dis-
fluencies. IEEE Transactions on Audio, Speech, and Language Processing 14(5):1526—
1540.

Low, J.K., H.T. Ng and W.Y. Guo. 2005. A Maximum Entropy Approach to Chinese-
Word Segmentation. Proceedings of the Fourth SIGHAN Workshop on Chinese Lan-
guage Processing pp. 161-164. Jeju Island, Korea.

Luo, X.Q. 2003. A Maximum Entropy Chinese Character-Based Parser. Proceedings of
the Conference on Empirical Methods on Natural Language Processing. Sapporo, Japan.

Ma, X. 2006. Champollion: A Robust Parallel Text Sentence Aligner. Proceedings of
LREC-2006, Genoa, Italy.

Ma, X. and M. Liberman. 1999. BITS: A method for bilingual text search over the web.
Proceedings of the Machine Translation Summit VII.

Maamouri, M. and A. Bies. 2004. Developing an Arabic Treebank: Methods, Guidelines,
Procedures, and Tools. Proceedings of the International Conference on Computational
Linguistics. Geneva, Switzerland.

Maamouri, M., A. Bies and S. Kulick. 2008. Enhancing the Arabic Treebank: A Colla-
borative Effort toward New Annotation Guidelines. Proceedings of the International
Conference on Language Resources and Evaluation.

Maamouri, M., A. Bies and T. Buckwalter. 2004. The Penn Arabic Treebank : Building a
Large-scale Annotated Arabic Corpus. Proceedings of the Network for Euro-
Mediterranean Language Resources Conference on Arabic Language Resources. Cairo,

Egypt.
Maamouri, M., A. Bies, T. Buckwalter, M. Diab, N. Habash, O. Rambow and D. Tabessi.

2006. Developing and Using a Pilot Dialectal Arabic Treebank. Proceedings of the Lan-
guage Resource and Evaluation Conference. Genoa, Italy.

MacWhinney, B. 2001. From CHILDES to Talkbank. Research on Child Language Ac-
quisition. M. Almgren, A. Barrefia, M. Ezeizaberrena, I. Idiazabal and B. MacWhinney
eds., pp. 17-34. Somerville, MA: Cascadilla.

Maeda, K., H. Lee, J. Medero and S. Strassel, 2006. A new phase in annotation tool de-
velopment at the Linguistic Data Consortium: The evolution of the Annotation Graph

126 Chapter 1: Data Acquisition and Linguistic Resources

Toolkit. Proceedings of the Fifth International Conference on Language Resources and
Evaluation.

Maeda, K., H. Lee, S. Medero, J. Medero, R. Parker and S. Strassel, 2008. Annotation
tool development for large-scale corpus creation projects at the Linguistic Data Consor-
tium. Proceedings of the Sixth International Conference on Language Resources and
Evaluation.

Maeda, K., X. Ma and S. Strassel, 2008a. Creating sentence-aligned parallel text corpora
from a large archive of potential parallel text using BITS and Champollion. Proceedings
of the Sixth International Conference on Language Resources and Evaluation.

Makhoul, J., A. Baron, I. Bulyko, L. Nguyen, L. Ramshaw, D. Stallard, R. Schwartz and
B. Xiang. 2005. The effects of speech recognition and punctuation on information extrac-
tion performance. Proceedings of the European Conference on Speech Communication
and Technology (Eurospeech) pp. 57-60.

Marcus, M. G. Kim, M.A. Marcinkiewicz, R. MaclIntyre, A. Bies, M. Ferguson, K. Katz
and B. Schasberger. 1994. The Penn Treebank: annotating predicate argument structure.
Proceedings of the Human Language Technologies Workshop.

Marcus, M., B. Santorini and M. A. Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computational Linguistics 19: 313-330.

Marcus, M., G. Kim, M.A. Marcinkiewicz, R. Maclntyre, A. Bies, M. Ferguson, K. Katz
and B. Schasberger. 1994. The Penn Treebank: Annotating Predicate Argument Struc-
ture. Proceedings of the Human Language Technology Workshop. San Francisco, Cali-
fornia.

Matsoukas, S., I. Bulyko, B. Xiang, K. Nguyen, R. Schwartz and J. Makhoul. 2007. Inte-
grating Speech Recognition and Machine Translation. Proceedings of the International
Conference on Acoustics, Speech, and Signal Processing pp. 1281-1284.

Matsuzaki, T., Y. Miyao and J. Tsujii. 2005. Probabilistic CFG with Latent Annotations.
Proceedings of the Meeting of the Association for Computational Linguistics.

Matusov, E., A. Mauser and H. Ney. 2006. Automatic Sentence Segmentation And Punc-
tuation Prediction For Spoken Language Translation. Proceedings of the International
Workshop on Spoken Language Translation pp. 158-165.

Matusov, E., D. Hillard, M. Magimai-Doss, D. Hakkani-Tur, M. Ostendorf and H. Ney.
2007. Improving Speech Translation by Automatic Boundary Prediction. Proceedings of
the International Speech Communication Association Conference (Interspeech) pp.
2449-2452.

Mauser, A., R. Zens, E. Matusov, S. Hasan and H. Ney. 2006. The RWTH Statistical
Machine Translation System for the IWSLT 2006 Evaluation. Proceedings of the Inter-
national Workshop on Spoken Language Translation pp. 103— 110.

Handbook of Natural Language Processing and Machine Translation 127

McClosky, D., E. Charniak and M. Johnson. 2006. Effective Self-training for Parsing.
Proceedings of the Human Language Technologies Conference/ Meeting of the North
American Chapter of the Association for Computational Linguistics.

Melamed, D. 1998. Annotation Style Guide for the Blinker Project, IRCS Technical Re-
port #98-06. http://www.cs.nyu.edu/~melamed/ftp/papers/stylequide.ps.gz

Meyers, A., R. Reeves, C. Macleod, R. Szekely, V. Zielinska, B. Young and R. Grish-
man. 2004. The NomBank Project: An Interim Report. Proceedings of the Frontiers in
Corpus Annotation Workshop, held in conjunction with the Human Language Technolo-
gies Conference/ Meeting of the North American Chapter of the Association for Compu-
tational Linguistics

Mohit, B. and R. Hwa. 2007. Localization of Difficult-to-translate Phrases. Proceedings
of the Second Workshop on Statistical Machine Translation pp. 248-255, Prague, Czech
Republic.

Mohri, M., F. Pereira and M. Riley. 1998. A Rational Design for a Weighted Finite-state
Transducer Library. Automata Implementation, Lecture Notes in Computer Science
1436:144-58. D.Wood and S. Yu, eds. Springer.

Nichols, C. and R. Hwa. 2005. Word Alignment and Cross-lingual Resource Acquisition.
Proceedings of the Meeting of the Association for Computational Linguistics Poster and
Demonstration Sessions.

Nigram, K. and R. Ghani. 2000. Analyzing the Effectiveness and Applicability of Co-
training. Proceedings of the Conference on Information and Knowledge Management.

Nivre, J., J. Hall, J. Nilsson, A. Chanev, G. Eryigit, S. Kubler, S. Marinov and E. Marsi.
2007. MaltParser: A language-independent System for Data-driven Dependency Parsing.
Natural Language Engineering 13(2), 95-135.

Packard, J. 2000. The Morphology of Chinese. Cambridge University Press.

Pajas, P. 2002. Tree Editor TrEd. Charles University, Prague.
http://ufal.mff.cuni.cz/~pajas/tred/.

Palmer, M., D. Gildea and P. Kingsbury. 2005. The Proposition Bank: A Corpus Anno-
tated with Semantic Roles. Computational Linguistics 31(1).

Palmer, M., H. Dang and C. Fellbaum. 2007. Making Fine-grained and Coarse-grained
Sense Distinctions, Both Manually and Automatically. Journal of Natural Language En-
gineering 13:2, 137-163.

Palmer, M., J. Hwang, S. W. Brown, K. K. Schuler and A. Lanfranchi, 2009 Leveraging
Lexical Resources for the Detection of Event Relations. Proceedings of the AAAI 2009
Spring Symposium on Learning by Reading.

Penman, R.B. 2009. Web Scraping Made Simple with SiteScrapper.
http://code.google.com/p/site-scraper/.

128 Chapter 1: Data Acquisition and Linguistic Resources

Petrov, S., L. Barrett, R. Thibaux and D. Klein. 2006. Learning Accurate, Compact, and
Interpretable Tree Annotation. Proceedings of the Meeting of the Association for Compu-
tational Linguistics pp. 433— 440. Sydney, Australia, July.

Petrov, S. and D. Klein. 2007. Discriminative Log- Linear Grammars with Latent Va-
riables. Proceedings of the Conference on Neural Information Processing Systems.

Petrov, S. and D. Klein. 2007a. Improved Inference for Unlexicalized Parsing. Proceed-
ings of the Human Language Technologies Conference/ Meeting of the North American
Chapter of the Association for Computational Linguistics.

Petrov, S. and D. Klein. 2008. Sparse Multi-Scale Grammars for Discriminative Latent
Variable Parsing. Proceedings of the Conference on Empirical Methods on Natural Lan-
guage Processing.

Philpot, A., E.H. Hovy and P. Pantel. 2005. The Omega Ontology. Proceedings of the
International Joint Conference on Natural Language Processing ONTOLEX Workshop.

Pradhan, S., L. Ramshaw, R. Weischedel, J. MacBride, L. Miccuilla. 2007. Unrestricted
Coreference: Identifying Entities and Events in OntoNotes. Proceedings of the Interna-
tional Conference on Semantic Computing.

Pradhan, S., E. Hovy, M. Marcus, M. Palmer, L. Ramshaw and R. Weischedel. 2007a.
OntoNotes: A Unified Relational Representation. International Journal of Semantic
Computing 1:4 405-419

Pradhan, S., E. Loper, D. Dligach and M. Palmer. 2007b. SemEval-2007 Task 17: Eng-
lish Lexical Sample, SRL and All Words. Proceedings of the International Workshop on
Semantic Evaluations.

Pradhan, S., W. Ward, K. Hacioglu, J. Martin, D. Jurafsky. 2005. Semantic Role Labe-
ling Using Different Syntactic Views. Proceedings of Meeting of the Association for
Computational Linguistics.

Prescher, D. 2005. Inducing Head-Driven PCFGs with Latent Heads: Refining a Tree-
Bank Grammar for Parsing. Proceedings of the European Conference on Machine Learn-
ing.

Reeder, F., B. Dorr, D. Farwell, N. Habash, S. Helmreich, E.H. Hovy, L. Levin, T. Mita-
mura, K. Miller, O. Rambow, A. Siddharthan. 2004. Interlingual Annotation for MT De-

velopment. Proceedings of the Meeting of the Association for Machine Translation of the
Americas.

Roark, B., M. Harper, E. Charniak, B. Dorr, M. Johnson, J.G. Kahn, M. Ostendorf, Y.
Liu, J. Hale, A. Krasnyanskaya, M. Lease, I. Shafran, M. Snover, R. Stewart and L.
Yung. 2006. SParseval: Evaluation Metrics for Parsing Speech. Proceedings of the In-
ternational Conference on Language Resources and Evaluation. Genoa, Italy.

Roark, B., Y. Liu, M. P. Harper, R. Stewart, M. Lease, M. Snover, I. Shafran, B. Dorr, J.
Hale, A. Krasnyanskaya and L.Yung. 2006a. Reranking for Sentence Boundary Detection

Handbook of Natural Language Processing and Machine Translation 129

in Conversational Speech. Proceedings of the International Conference on Acoustics,
Speech, and Signal Processing pp. 545-548.

Rosenberg, A., M. Sharifi and J. Hirschberg. 2007. Varying Input Segmentation for Story
Boundary Detection in English, Arabic, and Mandarin Broadcast News. Proceedings of
the International Speech Communication Association Conference (Interspeech) pp.
2589-2592.

Roth, R., O. Rambow, N. Habash, M. Diab and C. Rudin. 2008. Arabic Morphological
Tagging, Diacritization, and Lemmatization Using Lexeme Models and Feature Ranking.
Proceedings of the Meeting of the Association for Computational Linguistics Short Pa-
pers. Columbus, Ohio.

Sadat, F. and N. Habash. 2006. Combination of Arabic Preprocessing Schemes for Statis-
tical Machine Translation. Proceedings of the International Conference on Computation-
al Linguistics and Meeting of the Association for Computational Linguistics pp. 1-8.
Sydney, Australia.

Sarkar, A. 2001. Applying Co-training Methods to Statistical Parsing. Proceedings of the
Meeting of the North American Chapter of the Association for Computational Linguistics.

Shriberg, E., R. Dhillon, S. Bhagat, J. Ang and H. Carvey. 2004. The ICSI meeting re-
corder dialog act (MRDA) Corpus. Proceedings of the Special Interest Group on Dis-
course and Dialogue Conference.

Smrz, 0. 2007. Functional Arabic Morphology. Formal System and Implementation.
Ph.D. thesis, Charles University in Prague, Prague, Czech Republic.

Sproat, R. 1995. Lextools: Tools for finite-state linguistic analysis. Technical Report
11522-951108- 10TM, Bell Laboratories.

Sproat, R. and C. L. Shih. 1990. A Statistical Method for Finding Word Boundaries in
Chinese Text. Computer Processing of Chinese and Oriental Languages 4(4):336-351.

Sproat, R. and T. Emerson. 2003. The First International Chinese Word Segmentation
Bakeoff. Proceedings of the Second SIGHAN Workshop on Chinese Language
Processing. Sapporo, Japan.

Sproat, R., C. Shih, W. Gale and N. Chang. 1996. A Stochastic Finite-State Word-
segmentation Algorithm for Chinese. Computational Linguistics 22(3):377-404.

Steedman, M., M. Osborne, A. Sarkar, S. Clark, R. Hwa, J. Hockenmaier, P. Ruhlen, S.
Baker and J. Crim. 2003. Bootstrapping statistical parsers from small datasets. Proceed-
ings of the Meeting of the European Chapter of the Association for Computational Lin-
guistics.

Stolcke, A. and E. Shriberg. 1996. Automatic Linguistic Segmentation of Conversational
Speech. Proceedings of the International Conference on Spoken Language Processing
pp. 005-1008.

130 Chapter 1: Data Acquisition and Linguistic Resources

Strassel, S. 2004. Linguistic Resources for Effective, Affordable, Reusable Speech-to-
Text. Proceedings of the International Conference on Language Resources and Evalua-
tion. Lisbon, Portugal.

Strassel, S. and Cole, A. W. 2006. Corpus Development and Publication. Proceedings of
the International Conference on Language Resources and Evaluation.

Strassel, S. et al. 2006. Integrated Linguistic Resources for Language Exploitation Tech-
nologies. Proceedings of the International Conference on Language Resources and Eval-
uation.

Stroppa, N. and A. Way. 2006. MATREX: DCU Machine Translation System for IWSLT
2006. Proceedings of the International Workshop on Spoken Language Translation pp.
31-36. Kyoto, Japan.

Tomalin, M. and P. Woodland. 2006. Discriminatively Trained Gaussian Mixture Models
for Sentence Boundary Detection. Proceedings of the International Conference on
Acoustics, Speech, and Signal Processing pp. 549-552.

Tranter, S. and D. Reynolds. 2006. An Overview of Automatic Speaker Diarization Sys-
tems. IEEE Transactions on Audio, Speech, and Language Processing 14(5):1557-1565.

Tseng, H., P.C. Chang, G. Andrew, D. Jurafsky and C. Manning. 2005. A Conditional
Random Field Word Segmenter. Proceedings of the Fourth SIGHAN Workshop on Chi-
nese Language Processing.

Vilar, D., D. Stein, Y. Zhang, E. Matusov, A. Mauser, O. Bender, S. Mansour and H.
Ney. 2008. The RWTH Machine Translation System for IWSLT 2008. Proceedings of the
International Workshop on Spoken Language Translation pp. 108-115. Hawaii, USA.

Wang, W. 2008. Weakly supervised training for parsing Mandarin broadcast transcripts.
Proceedings of the International Speech Communication Association Conference (Inters-
peech). Brisbane, Australia.

Wang, W., Z. Huang and M. P. Harper. 2007. Semisupervised Learning for Part-of-
speech Tagging of Mandarin Transcribed Speech. Proceedings of the International Con-
ference on Acoustics, Speech, and Signal Processing.

Xia, F. 2000. The Segmentation Guidelines for the Penn Chinese Treebank (3.0). Univer-
sity of Pennsylvania Institute for Research in Cognitive Science Technical Report No.
IRCS-00-06.

Xue, N. 2003. Chinese Word Segmentation as Character Tagging. International Journal
of Computational Linguistics and Chinese Language Processing 8(1):29-48.

Xue, N. and L. Shen. 2003. Chinese Word Segmentation as LMR Tagging. Proceedings
of the 2nd SIGHAN Workshop on Chinese Language Processing. Sapporo, Japan.

Xue, N. and M. Palmer. 2009. Adding Semantic Roles to the Chinese Treebank. Natural
Language Engineering 15(1): 143-172.

Handbook of Natural Language Processing and Machine Translation 131

Xue, N., F. Xia, C. Chiou and M. Palmer. 2005. The Penn Chinese Treebank: Phrase
Structure Annotation of a Large Corpus. Natural language Engineering 11(2): 207-238.

Xue, Ni., F.D. Chiou and M. Palmer. 2002. Building a Large-scale Annotated Chinese
Corpus. Proceedings of the Meeting of the Association for Computational Linguistics.

Zens, R. and H. Ney. 2006. Discriminative Reordering Models for Statistical Machine
Translation. Proceedings of the Human Language Technologies Conference/ Meeting of
the North American Chapter of the Association for Computational Linguistics Workshop
on Statistical Machine Translation pp. 55-63.

Zhang, B. and J.G. Kahn. 2008. Evaluation of Decatur Text Normalizer for Language
Model Training. Technical report, University of Washington.

Zhao, H. and C. Kit. 2008. Unsupervised Segmentation Helps Supervised Learning of
Character Tagging For Word Segmentation and Named Entity Recognition. Proceedings
of the Sixth SIGHAN Workshop on Chinese Language Processing pp. 106-111. Hydera-
bad, India.

Zhao, H., C.N. Huang, M. Li and B.L. Lu. 2006. Effective Tag Set Selection in Chinese
Word Segmentation via Conditional Random Field Modeling. Proceedings of the 20th
Pacific Asia Conference on Language, Information and Computation pp. 87-94.Wuhan,
China.

Zhou, Q. 2003. Build a Large-scale Syntactically Annotated Chinese Corpus. Springer
Lecture Notes in Computer Science 2807: 106-113.

Zhu, J. and E.H. Hovy. 2007. Active Learning for Word Sense Disambiguation with Me-
thods for Addressing the Class Imbalance Problem. Proceedings of the Conference on
Empirical Methods on Natural Language Processing.

Zhu, J., H. Wang and E.H. Hovy. 2008. Multi-Criteria-based Strategy to Stop Active
Learning for Data Annotation. Proceedings of the International Conference on Computa-
tional Linguistics.

Zimmermann, M., D. Tur, J. Fung, N. Mirghafori, L. Gottlieb, E. Shriberg and Y. Liu.
2006. The ICSI+ Multilingual Sentence Segmentation System. Proceedings of the Inter-
national Speech Communication Association Conference (Interspeech).

Chapter 2: Machine Translation from Text
Editors: Nizar Habash, Joseph Olive, Caitlin Christianson, and John McCary

2.1 Introduction
Author: Nizar Habash

Machine translation (MT) from text, the topic of this chapter, is perhaps the heart of
the GALE project. Beyond being a well defined application that stands on its own, MT
from text is the link between the automatic speech recognition component and the
distillation component. The focus of MT in GALE is on translating from Arabic or
Chinese to English. The three languages represent a wide range of linguistic diversity and
make the GALE MT task rather challenging and exciting.

There are two big camps when it comes to how to do MT: rule-based MT (RBMT)
and statistical machine translation (SMT). RBMT is characterized with the explicit use
and manual creation of linguistically informed rules and representations. In its pure form,
RBMT includes techniques such as Transfer MT and Interlingual MT. SMT in its pure
form is corpus based, i.e., learned from examples of translations called parallel/bilingual
corpora. The distinction and nomenclature of both of camps can be deceptive since
explicit linguistic rules can be probabilistic and can be learned automatically, of course.
There has been a large push for integrating components from the two camps into what is
called hybrid approaches. Currently the most successful of such attempts and the
general MT research direction in GALE, builds on statistical corpus-based approaches by
adding linguistics constraints or features.

The rest of this introduction will contextualize the reader with the basic story of how
translation happens in the SMT pipeline. This is important to understand the relevance of
the different sections in this chapter, which will be briefly described at the end of this
section.

The most important resource in the SMT approach is the corpus of paired source and
target texts or parallel corpus (e.g., Arabic and English versions of the UN corpus). An
initial step before a parallel text can be used involves cleaning it and preprocessing it to a
representation that allow us to learn from it optimally. This includes identifying pairs of
sentences within the paragraphs and reducing the sparsity in the text through some form
of tokenization. Next comes the automatic alignment step, which learns in an unsupervised
manner what pairs of words in the paired sentences are translations of each other. Once
this is completed, a translation model can be learned that relates words and sequences

J. Olive et al. (eds.), Handbook of Natural Language Processing and Machine Translation, 133
DOI 10.1007/978-1-4419-7713-7_2, © Springer Science-+Business Media, LLC 2011

134 Chapter 2: Machine Translation from Text

of words in the source language to words or sequences of words in the target language.
Translation models typically include various additional statistics reflecting the likelihood
of a certain translation pair, which are learned from the corpus. A translation model
relates source to target language, but it does not model the fluency of the target language.
To address this, a different type of a model, called a language model is used to rank
complete sentences in the target language. In their simplest form, language models are
built for sequences of words or n-grams. Since language models are monolingual they
typically can be built with much more data that parallel text. Translation of a sentence
then involves combining entries from the translation and language models to produce
target sentences in what is called decoding. The search space for decoding can be very
large especially when techniques such as distortion, which allow words to move around
to model syntactic differences, are used. Efficient and accurate decoding for MT is an
important area of research. The output of a decoder is a ranked list of optimal sentences
in the target language. Every single step described here uses numerous parameters that
can be manually set or automatically learned to maximize the system’s overall
performance against some automatic evaluation measure. Linguistically informed
constraints, or features, can be used also to help each and every step from preprocessing
and alignment through decoding. Finally, since in the GALE project, there are many
researchers working on MT in each competing team, an important area in MT research is
MT system combination, which investigates how to use the output from multiple systems
to produce an output superior to all of them.

This chapter addresses different aspects of the SMT pipeline. 2.2 addresses the
question of the optimal token form for Arabic and Chinese to learn MT over. The
challenges for Arabic and Chinese are different but the goal is the same: learning better
translation models that are robust to the data sparsity challenge. Improvements to the
automatic word alignment problem are presented in 2.3. Automatic word alignment is
truly the backbone of statistical MT. However, improvements in it are hard to translate to
MT improvements. In 2.4, six translation models are presented. These models vary
widely in the degree and type of linguistic constraints or back offs they use. 2.5 presents
important extensions to simple n-gram language models that address efficiency and
linguistic abstraction/depth. 2.6 discusses issues and improvements to the MT decoding
problem. 2.7 presents two takes on the issue of how to optimally select training data
adapted to the test text. Since SMT systems tend to be biased to the training corpora used
to build them, these approaches try to anticipate this bias and use it. Finally 2.8 presents a
number of approaches used in different GALE teams to combine the various systems
developed to maximize overall performance.

Handbook of Natural Language Processing and Machine Translation 135

2.2 Segmentation, Tokenization and Preprocessing

2.2.1. Preprocessing Arabic for Arabic-English Statistical
Machine Translation

Authors: Adria de Gispert, William Byrne, Jinxi Xu, Rabih Zbib, John Makhoul, Achraf Chalabi, Hazem
Nader, Nizar Habash, Fatiha Sadat

2.2.1.1 Introduction

Statistical machine translation (SMT) is robust when it comes to the choice of input
representation: the only requirement is consistency between training and evaluation. This
leaves a wide range of possible preprocessing choices, even more so for morphologically
rich languages such as Arabic. We use the term ‘preprocessing’ to describe various input
modifications that can be applied to raw training and evaluation texts for SMT to make
them suitable for model training and decoding, including different kinds of tokenization,
stemming, part-of-speech (POS) tagging and lemmatization. We refer to a specific kind
of preprocessing as a ‘scheme’ and differentiate it from the ‘technique’ used to obtain it.
Identifying a proper preprocessing scheme and technique is important to SMT because
tokenized words are the most basic units of translation. Improper tokenization methods
can cause a high out-of-vocabulary (OOV) rate and the loss of useful lexical context and
hence hurt MT performance.

In this section, we will examine the impact of morphological preprocessing. In our
experiments, we used two morphological disambiguation systems, Sakhr Morphological
Tagger and MADA (Habash and Rambow 2005). While the use of morphological
preprocessing of Arabic text for SMT can be traced at least to 2003 (Lee et al. 2003), we
hope that our findings using three different techniques on small and medium sized data
sets and two different sophisticated analyzers/disambiguatirs on very large data sets will
complement existing work in this area.

2.2.1.2 Linguistic Facts and Motivation

Arabic is a morphologically complex language with a large set of morphological
features. These features are realized using both concatenative (affixes and stems) and
templatic (root and patterns) morphology with a variety of morphological and
phonological adjustments that appear in word orthography and interact with orthographic
variations.

136 Chapter 2: Machine Translation from Text

We focus here on Arabic’s set of attachable function words (or clitics) distinct from
inflectional features such as gender, number, person and voice. These clitics are written
attached to the word, and thus, increase its ambiguity. We can classify three degrees of
cliticization that are applicable in a strict order to a word base:

[CONJ+ [PART+ [Al+ BASE +PRONI]]

At the deepest level, the BASE can have a definite article Al+ “the' or a member of
the class of pronominal enclitics, +PRON, (e.g. +hm “their/them'. Pronominal enclitics
can attach to nouns (as possessives) or verbs and prepositions (as objects). The definite
article doesn't apply to verbs or prepositions. +PRON and Al+ do not co-exist on nouns.
Next comes the class of particle proclitics (PART+), which includes single-letter
prepositions and other functional particles, e.g., b+ “by/with' and s+ “will'. At the
shallowest level of attachment we find the conjunctions (CONJ+) w+ “and' f+ “so'. They
can attach to all words. An archaic question particle proclitic >+ can attach before
conjunctions, but it has almost completely disappeared in modern standard Arabic.

Clitics sometimes interact with the phonological and orthographic forms of the word
they attach too. One common example is the feminine ending +p (Ta Marbuta), which
can only be word final. In medial position, it is turned into the letter +t (see example 3
second reading below). Another example is the deletion of the Alif (A) of the definite
article Al+ when preceded by the proclitic I+, but no other proclitic (see example 4 first
reading below).

The following examples show the decomposition into clitics and base words
including cases of orthographic adjustment (bolded) and ambiguous readings that results
in different decompositions:

1. wsygAblhm: w+ s+ ygAbl +hm
and will he-meet them
‘and he will meet them’
2. wbydh: w+ b+ yd +h
and with hand his
“and with his hand’

3. wktbthA: w+ ktbt +hA w+ ktbp +hA
and wrote-she it and scribes her
‘and she wrote it’ ‘and her scribes’
4. wlljnp: w+ I+ Al+jnp w+ I+ 1jnp
and for the paradise and for a-committee
‘and for paradise’ ‘and for a committee’

All of these phrases are written as one word in Arabic.

Handbook of Natural Language Processing and Machine Translation 137

These phenomena and examples highlight three issues related to preprocessing. First,
ambiguity in Arabic words is an important issue to address. For example, to determine
whether a clitic should be split off requires that we determine that said clitic is indeed
present in the word we are considering in context — not just that it is possible given an
analyzer or, worse, because of regular expression matching.

Secondly, once a specific analysis is determined, the process of splitting off or
abstracting off a word feature must be clear on what the form of the resulting word
should be so that no unnecessary ambiguity is added.

Third, the degree of splitting to consider (e.g., only conjunctions, conjunctions and
prepositions, etc.) needs to be determined empirically and may vary from system to
system and depending on the size of available corpora. Under splitting increases sparsity,
while over splitting adds ambiguity and requires higher accuracy of preprocessing tools
which, when failed, introduce errors and noise.

For a given parallel text, the Arabic vocabulary size is significantly larger than the
English one. In the LDC parallel news corpora used in the experiments described below,
for instance, the average English sentence length is 33 words compared to 25 words on
the Arabic side. The larger vocabulary size on the Arabic side creates problems in
sparsity and variability in estimating translation models, since Arabic words do not
appear as often in the training data as their English counterparts. This is a general
problem when applying statistical machine translation systems to language pair with
significant vocabulary size difference. If a language F has a larger vocabulary than a
language E, problems in analysis dominate when translating from F into E (due to a
relatively larger number of out-of-vocabulary words in the input) whereas, generation
problems dominate when translating from E into F.

Several authors have addressed these issues by attempting to reduce the differences
in vocabulary size between language pairs. Broadly speaking, the general trend is to find
procedures which can perform morphological analysis and disambiguation of the more
inflected languages in order to segment words into subword units, with the aim of
reducing sparsity in statistical models trained on the data. This potentially reduces the
OOV rate, since a compound word might not have occurred in the training data, but its
subwords are more likely to occur. These techniques have the largest impact for tasks
with relatively small-sized resources although gains are still possible when large parallel
corpora are available. For a summary of recent work in this area, see the publications of
de Gispert (2006) and de Gispert and Marino (2008).

Note that the application of morphological splitting on the source side is conveniently
simpler than applying it on the target side, since no recombination is needed in this case.

138 Chapter 2: Machine Translation from Text

2.2.1.3 Arabic Preprocessing: Schemes and Techniques

A scheme is a specification of the form of preprocessed output; whereas a technique
is the method used to create such output. In this section we examine four techniques and
nine schemes. Not all schemes can be created using all techniques. Additional schemes
we do not discuss here are described by Sadat and Habash (2006).

The different techniques we consider illustrate three degrees of linguistic knowledge
dependence. First is a very light and cheap baseline technique. It simply uses greedy
regular expression (REGEX) matching to split off prefix/suffix substrings that look like
clitics indicated by specific schemes. REGEX technique cannot be used with complex
schemes requiring lexical resources.

The second type of techniques is more expensive, requiring the use of a
morphological analyzer. The Buckwalter Arabic Morphological Analyzer (BAMA)
(Buckwalter 2002) is used to obtain possible word analyses. Using BAMA prevents
incorrect greedy REGEX matches. Since BAMA produces multiple analyses, we always
select one in a consistent arbitrary manner (first, in a sorted list of analyses).

The third type of techniques is yet more expensive. It involves a disambiguation
system that requires an analyzer and a disambiguated training corpus. One such tool is
the Morphological Analysis and Disambiguation for Arabic (MADA) tool. MADA is an
off-the-shelf resource for Arabic disambiguation (Habash and Rambow 2005), which
selects among BAMA analyses using a combination of classifiers trained on the Penn
Arabic Treebank (Maamouri and Bies 2004). For BAMA and MADA, applying a
preprocessing scheme involves using the general tokenizer tool TOKAN (Habash 2004;
Habash 2007a). A second similar tool we experiment with is the Sakhr Morphological
Tagger. The Sakhr tagger was trained on a manually tagged corpus of seven million
words with morphological, lexical and syntactic features and used maximum likelihood
Viterbi decoding to decide the best tag sequence for a sentence.

As for preprocessing schemes, we define next nine preprocessing schemes for Arabic
studied in this section. Table 2.1 exemplifies the different schemes for the same sentence.

e ST: Simple Tokenization is the baseline preprocessing scheme. It is
limited to splitting off punctuations and numbers from words and
removing any diacritics that appear in the input. This scheme requires no
disambiguation.

o Decliticizations (D1, D2 and D3): D1 splits off the class of conjunction
clitics only. D2 splits off the class of particles beyond D1. Finally, D3
splits off what D2 does in addition to the definite article and pronominal
clitics.

Handbook of Natural Language Processing and Machine Translation

MR: Morphemes. This scheme breaks up words into stem and affixival
morphemes. It is identical to the initial tokenization used by Lee (2004).
EN: English-like. This scheme is intended to minimize differences
between Arabic and English. It decliticizes similarly to D3; however, it
uses lexeme and English-like POS tags instead of the regenerated word
and it indicates the pro-dropped verb subject explicitly as a separate
token.

Sakhr Morphological Analysis is the output of the Sakhr Tagger.

Split (cliticizing) Morphemes is comparable to D3 except that
orthographic adjustments are not done.

PREF+STEM+SUF is a version of Split Morphemes that collapses the

prefixes (specifically proclitics) and suffixes (specifically enclitics).

139

Arabic Text (ST)

wb*Ik ElynA An nEArDhA bkl AlwsA}

English translation

and thus we have to oppose it with all means

D1

w+ b*lk ElynA An nEArDhA bkl AlwsA}

D2 w+ b+ *Ik ElynA An nEArDhA b+ ki AlwsA}l

D3 w+ b+ *Ik EIY +nA An nEArD +hA b+ kI Al+ wsA}l

MR w+ b+ *Ik EIY +nA An n+ EArD +hA b+ kl Al+ wsA}

EN w+ b+ *Ik/DT EIY/IN +nA An/IN EArD/VBP +S:1P +hA b+ kI/NN Al+

wsylp/NN

Sakhr Morphological
Analysis

AND-OR*BE*DEM-SM PREP*PRLG ANN VPC-1DP*PRLN*PRLA &
BE*QNTFR AL*N-PF

Split Morphemes

w+ b+ *Ik Ely +nA An nEArD +hA b+ kI Al+ wsA}l

PREF+STEM+SUFF

wb+ *Ik Ely +nA An nEArD +hA b+ kI Al+ wsA}l

Table 2.1: Example Arabic sentence (in simple tokenization, ST), its translation and different preprocessing
schemes: D1, D2 and D3 (different degrees of decliticization), MR (morphemes) and EN (an English-like
tokenization), Sakhr morphological processor output and decompositions.

2.2.1.4 Experiments with Preprocessing for Portage

Portage

Portage is a phrase-based SMT system (Sadat et al. 2005). For training, Portage uses
IBM word alignment models (models 1 and 2) trained in both directions to extract phrase
tables. Maximum phrase size used is 8. Trigram language models are implemented using
the SRILM toolkit (Stolcke 2002). Decoding weights are optimized using Och’s
algorithm (Och 2003) to set weights for the four components of the log-linear model:
language model, phrase translation model, distortion model and word-length feature. The
weights are optimized over the BLEU metric (Papineni et al. 2002). The Portage decoder,
Canoe, is a dynamic-programming beam search algorithm, resembling the algorithm
described by Koehn (2004a).

140 Chapter 2: Machine Translation from Text

Experimental Data

For translation model training data, we use an Arabic-English parallel corpus of
about five million words available from the Linguistic Data Consortium (LDC): Arabic
News (LDC2004T17), eTIRR (LDC2004E72), English translation of Arabic Treebank
(LDC2005E46) and Ummah (LDC2004T18). We created the English language model
from the English side of the parallel corpus together with 116 million words from the
English Gigaword Corpus (LDC2005T12) and 128 million words from the English side
of the UN Parallel corpus (LDC2004E13). Arabic preprocessing was varied using the
proposed schemes and techniques. English preprocessing comprised down-casing,
separating punctuation from words and splitting off “’s”. The same preprocessing was
used on the English data for all experiments. Only Arabic preprocessing was varied.
Decoding weight optimization was done on 200 sentences from the 2003 NIST MT
(MTO03) evaluation test set. Testing is done with the 2004 NIST MT evaluation test set
(MT04). Both MT03 and MTO04 have one Arabic source and four English reference
translations. We use the evaluation metric BLEU-4 (Papineni et al. 2002).

Results and Discussion

We conducted all possible combinations of schemes and techniques discussed in
Section 2.2.1.2 with different training corpus sizes: 1%, 10% and 100%. The results of
the experiments are summarized.

Across different schemes, EN performs the best under low-resource condition and D2
performs best under large-resource condition. Across techniques and under low-resource
conditions, MADA is better than BAMA, which is better than REGEX. Under large-
resource conditions, the differences among techniques are not statistically significant,
though they are generally consistent across schemes.

MADA BAMA REGEX
1 10 100 1 10 100 1 10 100
ST 94 229 346 | 94 229 346 | 94 229 346
D1 131 269 36.1| 129 265 356 | 114 255 348
D2 142 277 371|137 279 36.2| 120 255 358
D3 165 287 343 | 159 283 342|136 261 340
MR 116 275 344|142 275 334 | nfa nla nla
EN 175 284 345|163 279 340 | nfa nla nla

MT04

Table 2.2: Results of the experiments reported in BLEU. The test set presented is MT04 with three
techniques (MADA, BAMA and REGEX) and in three training sizes (1%, 10% and 100%). Rows represent
different schemes.

An oracle analysis shows that combination of output from all six schemes has a large
potential improvement over all of the different systems, suggesting a high degree of
complementarity: for MT04 under MADA with 100% training, a 19% improvement in

Handbook of Natural Language Processing and Machine Translation 141

BLEU score (from 37.1 in D2 to 44.3) can be reached by selecting for each input sentence
the output with the highest sentence-level BLEU score. Obviously, this is an optimistic
score that only identifies the topline performance of a combination system. Sadat and
Habash (2006) demonstrate that a combination of a large number of schemes can give a
BLEU score of 38.67 on the MTO04 data set (4.2% relative increase, 22% of the difference
to the combination top line). Additional experiments and detailed analysis and discussion
are presented by Habash and Sadat (2006).

2.2.1.5 MADA-Based Arabic Word Tokenization for TTM

Experimental Data

The two Agile newswire sets contain around 1500 segments of data from the NIST
and GALE sets. The two news group Agile sets contain between 1500 and 3000 segments
from the NIST and GALE web test sets. The NIST test sets for news groups contain
about 2100 segments each taken from the GALE Phase 1 quarter 4 LDC web data. The
NIST newswire test sets contain about 2000 sentences each from the NIST MT02_05
Arabic-to-English test sets. The broadcast news set contains about 21k words of Arabic
broadcast news recognized by a STT system. The parallel training data used is from
GALE Phase 2.

We used tokenization scheme ‘D2’ in our experiments, which entails only the
segmentation of some prefixes, specifically conjunctions and prepositions. Further
segmentation of Arabic words into more and shorter tokens was not found to improve
translation results, which is consistent with results presented in the previous section.

without MADA with MADA

num. sents. 6489720 6489720
num. words 139.3 M 156.8 M
vocabulary 612.4 k 4216 kK

Table 2.3: MADA morphosyntactic processing and Arabic corpus statistics

Table 2.3 compares the GALE Phase 2 parallel corpus statistics with and without the
MADA based Arabic tokenization. As is apparent, there is a very significant vocabulary
reduction of around 30% when applying tokenization using MADA.

Experimental Results

To study whether this strong Arabic vocabulary reduction benefits our Translation
Template Model (TTM) system (Blackwood et al. 2008a), various translation
experiments for different conditions have been carried out. After MADA-based Arabic
corpus processing, alignment and translation models are retrained from scratch to build
independent systems for translating from analyzed Arabic into English. Table 2.4 shows
the TTM scores obtained in the newswire sets for the baseline system and by applying the
MADA tokenization in corpus preprocessing. Note that two different language models

142 Chapter 2: Machine Translation from Text

are compared in this experiment. While ‘ptext-v2x1’ is trained on both English sides of
the Arabic-English and Chinese-English parallel texts+Giga Word 11 Xinhua+Giga Word
Il AFP, ‘ptext-v2x2’ is a much larger model, trained on Bitext UN data+Bitext
News+Giga Word Il Xinhua+Giga Word Il AFP. Clearly, the use of MADA produces
significant improvements both in BLEU and TER. As shown in Table 2.4, this positive
impact is also present for newsgroup and speech sets, where differences of more than 1.0
BLEU are observed.

Newswire News Groups Broadcast

News
Language Model BLEU TerR BLEu TeErR BLEU TER
baseline Ptext-v2x1 4487 46.34 13.18 68.38 17.96 64.93
with MADA 4567 4555 1416 67.48 18.77 64.72
baseline Ptext-v2x1 46.33 45.22 11.97 69.27
with MADA 4713 4448 13.24 68.12

Table 2.4: Baseline TTM results on newswire, news groups and broadcast news data sets with and without
MADA

We also report the effect on the Minimum Error Training (MET) applied to our
baseline TTM system. Table 2.5 compares the MET scores for the baseline and the
MADA-based system. Clearly, the improved performance of baseline TTM due to
morphosyntax-based word tokenization still holds when applying MET, yielding
improvements between 0.8 and 1.3 BLEU points for both newswire and newsgroup data.
TER scores show similar improvements. Additionally, MET BLEU scores do not
fluctuate over the newsgroup data, steadily improving across iterations. These results
demonstrate that morphological analysis can improve translation performance over a
variety of conditions and that it interacts well with other components of the translation
system.

MET Newswire News Groups

iteration BLEu TeErR BLEU TER
Baseline 1 4750 46.03 5.37 128.20
with MADA 48.73 45.24 1456 76.06
Baseline 3 47.98 45.32 14.80 70.02
with MADA 48.70 44.21 16.05 69.50

Table 2.5: Effect of MET with and without MADA. Tuned on newswires and news groups

Finally, we apply integrated lattice rescoring tools to include several additional
models, namely a second-order Phrasal Segmentation Model (PSM) (Blackwood 2008)
and a Word Alignment Model 1 implemented via MTTK (Machine Translation Tool Kit)
(MOD1) (Deng and Byrne 2006; Deng and Byrne 2008). First, Finite State Machine
(FST) composition is used to apply a weighted second-order Phrasal Segmentation Model
and a Phrase Insertion Penalty and to search for their optimal weights over the tuning set,
producing a new set of lattices. Then, a second alignment of these lattices using weighted

Handbook of Natural Language Processing and Machine Translation 143

Model 1 word-to-word p(e|f) probabilities (from MTTK) is performed with an additional
word insertion penalty (Blackwood et al. 2008a). Results comparing these lattice
rescoring steps applied to the baseline and the MADA-based system are shown in Table
2.6.

Two basic conclusions can be drawn from these tables. On the one hand, the
significant differences already observed in baseline TTM scores between the regular
system (without MADA) and the system incorporating MADA-based Arabic tokenization
still hold after MET and lattice rescoring is applied. In fact, final BLEU improvements are
of about 1.3 points (except in news groups test, where they are 0.9) and TER reductions
are more than 1 point for newswire and about 2 points for newsgroup data.

. News
Newswire

Groups
BLEu TeErR BLEU TER
Baseline 47.98 4532 1480 70.02
with MADA T TM*MET 4590 4421 1605 69.50
Baseline +PSM 49.65 45.00 1552 70.01
with MADA 5052 4427 16.13 68.52
Baseline 4962 4472 1583 69.42
with MADA ~ TPSM*MODL oyon 1356 1669 67.70

Table 2.6: Effect of Phrasal Segmentation Model lattice rescoring (PSM) and MTTK Model 1 lattice
rescoring (MOD1) applied to MET lattices with and without MADA.

While Model 1 rescoring did not significantly improve the results after Phrasal
Segmentation Model in the baseline system, this changes when applying it on the MADA
version. Clearly, there is a positive interaction between vocabulary reduction and word
alignment models. MADA training has improved both the alignment models trained on
the underlying parallel text and the translation system based on the alignments. Overall,
the use of morphosyntax-based Arabic word tokenization is found to be useful in
improving the TTM translation system.

2.2.1.6 Experiments using Sakhr's Morphological Tagger with BBN’s
Hierarchical SMT System

This section describes experiments on the use of the Sakhr Arabic Morphological
Tagger to split prefix and suffix morphemes of Arabic words. We show that splitting the
affixes of both training and test data using the Sakhr Morphological tagger reduces out of
vocabulary rates and improves both TER and BLEU scores.

Based on the POS information from the Sakhr tagger, the morpheme boundaries can
then be easily determined by matching the surface forms of the limited list of affixes.
When one morpheme is a substring of another, care has to be taken not to match the
substring morpheme before the superstring morpheme. If a word has several prefixes or

144 Chapter 2: Machine Translation from Text

suffixes, they are concatenated into a single composite prefix or suffix in order to avoid
unnecessarily long sentences that complicate training and decoding. The most general
form of a decomposed word is, then, PREF+STEM+SUFF.

The experiments were performed using the BBN Hierarchical SMT system (Shen et
al. 2008). The system was trained on GALE Phase 2 parallel training data. The
vocabulary size was reduced from 0.76 million words to 0.42 million words.

For newswire and web data, we tuned on Agile devset and tested on Agile testsets.
All tuning is done on the BLEU score.

Test Set Affix Splitting | TER (%) |BLEU (%) |OOV Rate
newswire No 43.81 47.10 0.51%
Yes 42.82 47.87 0.19%
web No 69.70 16.77 3.75%
Yes 63.31 18.61 0.97%

Table 2.7: Impact of morphological analysis using Sakhr tagger on BLEU, TER & OQV rates.

Table 2.7 shows the impact of affix splitting on the TER AND BLEU scores. The
improvement in BLEU is 0.8 and 1.8 points for newswire and web data respectively. The
TER improvement is around 1% on newswire. On the web data, the TER improvement is
very large, 6.4%, which correlates to a large reduction in OOV rate shown in the same
Table. The large difference in MT scores between the newswire and web data is mostly
due to the existence of four reference translations for the newswire data and only one for
the web data.

2.2.1.7 Comparison between Sakhr Morphological Tagger and MADA

We performed experiments to compare the two affix splitting methods on identical
test sets and obtained mixed results. We provide only a summary here in order to save
space. For the TTM system, MADA is better than SAKHR by about 0.5 BLEU point.
However, for the BBN Hierarchical system, SAKHR is better than MADA by
approximately 0.5 BLEU point. More experiments are needed to determine if the
discrepancy is due to fundamental differences in the systems or small differences in data
preprocessing.

2.2.1.8 Conclusions

Experiments with two Arabic morphological analysis and disambiguation systems
showed that morphologically aware tokenization significantly reduced data fragmentation
and improved Arabic-to-English SMT. One area for future work is to combine different
morphological splitting algorithms for Arabic MT. For example, simple MBR hypothesis
combination schemes can be used to exploit these differences in morphological analyses

Handbook of Natural Language Processing and Machine Translation 145

yielding improvements of around 1.5 BLEU relative to that of the best individual system
(de Gispert 2009)

2.2.2. Customizing Chinese Word Segmentation for Improved
Machine Translation
Authors: Pi-Chuan Chang, Michel Galley, Niyu Ge and Christopher D. Manning

2.2.2.1 Introduction

While occasionally experimenting with other tools, for Chinese-English machine
translation (MT), the GALE Rosetta consortium has uniformly used an automatic word
segmentation of the Chinese input according to the Chinese Treebank word segmentation
standard (Xue et al. 2005), as produced by the Stanford Chinese segmenter (Tseng et al.
2005). This segmenter is a feature-based conditional random field (CRF) model, which
had produced competition-winning performance in formal evaluations (Emerson 2005).
However, during the GALE Phase 2 evaluation, we became aware that although the CRF
segmenter gives a very good F-measure on a segmentation evaluation and generates a
very good recall rate on out-of-vocabulary (OOV) words, it did not operate in a way that
was most congenial to improving MT performance, at either training or test time. Since
the CRF segmenter tried to identify unknown words and compounds, the issue could be
that it produced a large vocabulary relative to a lexicon-based segmenter. However, as
the experiments below show, the truth turned out to be more complex than this. Based on
a series of experiments, we improved the Stanford CRF segmenter with lexicon-based
features that improve the consistency of segmentation and yield better MT performance.
Also, since the optimal granularity of words for phrase-based MT is unknown, we
introduced an extra feature in the CRF segmenter which we can use to adjust average
word size and, thus, can further improve MT performance. The lexicon-based features
reduced the MT training lexicon by 29.5%, reduced the MT test data OOV rate by 34.1%
and led to a 0.38 BLEU point gain on the test data (MT05). When we tuned the CRF
model to adjust word size to directly optimize the performance of MT, we found that
words slightly shorter than the CTB standard were optimal and that we could improve
performance by 0.52 BLEU (on MTO05).

2.2.2.2 Experimental Setting

Chinese Word Segmentation

For directly evaluating segmentation performance, we train each segmenter on the
SIGHAN Bakeoff 2006 training data (the UPUC data set) and then evaluate on the test
data. The training data contains 509K words and the test data has 155K words. The
percentage of words in the test data that are unseen in the training data is 8.8%. Detail
of the Bakeoff data sets can be seen in the work of Levow (2006). In order to
understand how each segmenter performs on OOV words, we will report the segmentation

146 Chapter 2: Machine Translation from Text

F-measure, the in-vocabulary (IV) recall rate, as well as, OOV recall rate of each
segmenter.

Phrase-Based Chinese-to-English MT

In order to allow easier comparisons, we used the MT system Moses, an open source,
state-of-the-art, phrase-based system (Koehn et al. 2003). We build phrase translations by
first acquiring bidirectional GIZA++ (Och and Ney 2003) alignments and using Moses’
grow-diag alignment symmetrization heuristic." We set the maximum phrase length to a
large value (10), because some segmenters described later in this section will result in
shorter words, therefore it is more comparable if we increase the maximum phrase length.
During decoding, we incorporate the standard eight feature functions of Moses as well as
the lexicalized reordering model. We tuned the parameters of these features with
Minimum Error Rate Training (MERT) (Och 2003) on the NIST MTO03 Evaluation data
set (919 sentences) and then test MT performance on NIST MT02 and MTO05 Evaluation
data (878 and 1082 sentences, respectively). We report MT performance with uncased
scores using the original BLEU metric (Papineni et al. 2001).

The MT training data was subsampled from the GALE Phase 2 training data using a
collection of character 5-grams and smaller n-grams drawn from all segmentations of the
test data. Since the MT training data is subsampled with character n-grams, it is not
biased towards any particular word segmentation. The MT training data contains
1,140,693 sentence pairs; on the Chinese side there are 60,573,223 non-whitespace
characters and the English sentences have 40,629,997 words.

Our main source for training our 5-gram language model was the English Gigaword
corpus and we also included close to one million English sentences taken from LDC
parallel texts: GALE Phase 1 training data (excluding FOUO data), Sinorama, Xinhua
News and Hong Kong News. We restricted the Gigaword corpus to a sub-sample of 25
million sentences, because of memory constraints.

2.2.2.3 Understanding Chinese Word Segmentation for Phrase-Based
MT

In this section, we experiment with lexicon-based and feature-based segmenters and
find that segmentation performance doesn’t always correlate positively with MT
performance. We introduce a feature-based CRF that uses lexicon features and show that
this segmenter combines desirable characteristics from both the feature-based and
lexicon-based segmenters.

! In our experiments, this heuristic consistently performed better than the default,
grow-diag-final.

Handbook of Natural Language Processing and Machine Translation 147

Lexicon-Based and Feature-Based Segmenters

We compare the performance of a simple maximum matching lexicon-based model
(MaxMatch) and a CRF segmenter with only basic features. We trained a CRF model
with a set of basic features: character identity features of the current character, previous
character and next character and the conjunction of previous and current characters as
zero-order templates. We will refer to this segmenter as CRF-basic.

CRF-basic MaxMatch CRF-Lex
F measure 0.877 0.828 0.940
OO0V Recall 0.502 0.012 0.729
1V Recall 0.926 0.951 0.970
MTO5 (test) BLEU 30.35 30.73 30.95
MTO5 (test) METEOR 58.57 59.08 59.71

Table 2.8: The segmentation and MT performance of CRF-basic, MaxMatch and MaxMatch

Table 2.8 shows that the feature-based segmenter CRF-basic outperforms the
lexicon-based MaxMatch by 5.9% relative F-measure because CRF-basic has a greater
OOQV recall rate. We see that a feature-based segmenter like CRF-basic clearly has a
stronger ability to recognize unseen words. On MT performance, however, CRF-basic is
0.38 BLEU points worse than MaxMatch on the test set. The results show that better
segmentation F-measure does not always lead to a better MT BLEU score, because the
segmentation F-measure ordering is CRF-basic > MaxMatch, while, in terms of MT
performance, MaxMatch > CRF-basic.

To better understand what factors other than segmentation F-measure can affect MT
performance, we introduce another CRF segmenter CRF-Lex that includes lexicon-based
features by using external lexicons. More details of CRF-Lex will be described in the
next section. In Table 2.9, we list some statistics of each segmenter to explain this
phenomenon. First we look at the lexicon size of the MT training and test data. While
segmenting the MT data, CRF-basic generates an MT training lexicon size of 583K
unique word tokens and MaxMatch has a much smaller lexicon size of 39K. CRF-Lex
uses lexicon features in the feature-based framework, and it successfully reduced the
lexicon OOV rate. From Table 2.8 and Table 2.9, we see that the hybrid feature-based
segmenter CRF-Lex outperforms MaxMatch in MT performance despite its larger
lexicon size. This is because CRF-Lex generalizes better on OOV words and more
importantly, has better consistency (Chang et al. 2008)

Segmenter ICRF-basic Maxatch CRF-Lex
MT Training LexiconSize | 583147 39040 411406
MT Test Lexicon Size 5443 5083 5164

MT Test Lexicon OOV rate 7.40% 0.49% 4.88%

Table 2.9: MT Lexicon Statistics of three segmenters

148 Chapter 2: Machine Translation from Text

Making Use of External Lexicons if a Feature-Based Sequence Model

Lexicon-based Features Linguistic Features

(1.1) Lpegin(Cr)in € [—2/1] (2.1) Gy € [-2,1]

(1.2) Lyia(Cr);n € [-2,1] (2.2) ChoqCyim € [-1,1]

(1.3) Lgna(Cp)in € [-2,1] (2.3) €, C;m € [1,2]

(1.4) Lgna(C_1) + Lgna(Co) + Lgna(Cy) (2.4) Single(Cy);n € [-2,1]

(1.5) Lgna(C—2) + Lgnq(C_1) + Lgegin(Co) (2.5) UnknownBigram(C_,C,)
+ Lpia(Co) (2.6) ProductiveAf fixes(C_,Cy)

(1.6) Lgng(C_2) + Lgng(C—1) + Lpegin(C-1) (2.7) Reduplication(C_,C,),n €
+ LBegin(Co) + LMid (Co) [0'1]

Table 2.10: Features for CRF-Lex

In this section we describe how we use external lexicons in our feature-based
segmenter to improve its consistency. We add lexicon-based features from external
lexicons (i.e., not part of the segmentation training data) to improve the consistency of
the CRF model. We built a CRF segmenter with all the features listed in Table 2.10
(CRF-Lex). The linguistic features are adopted from Ng and Low (2004) and Tseng et al.
(2005) and comprise character identity n-grams, morphological and character
reduplication features. Our lexicon-based features are adopted from Shi and Wang
(2007), where Lgegin(Co), Lmia (Co) and Leng (Co) represent the maximum length of words
found in a lexicon that contain the current character as either the first, middle or last
character and we group any length equal or longer than six together. The linguistic
features help capturing words that were unseen to the segmenter, while the lexicon-based
features constrain the segmenter with external knowledge of what sequences are likely to
be words.

The external lexicons we used for the lexicon-based features come from various
sources including named entities collected from Wikipedia and the Chinese section of the
UN website, named entities collected by Harbin Institute of Technology (Jiang et al.
2005), the ADSO dictionawy,2 EMM News Explorer,3 Online Chinese Tools,* Online
Dictionary from Peking University and HowNet.” There are 423,224 distinct entries in all
the external lexicons.

The MT lexicon consistency of CRF-Lex in Table 2.9 shows that the MT training
lexicon size has been reduced by 29.5% and the MT test data OOV rate is reduced by
34.1%.

2 http://www.adsotrans.com

8 http://press.jrc.itNewsExplorer/nome/en/latest.html
* www.mandarintools.com

% www.keenage.com

Handbook of Natural Language Processing and Machine Translation 149

2.2.2.4 Optimal Average Token Length for MT

Since the word segmentation standard under consideration (Chinese Treebank (Xue
et al. 2005)) was neither specifically designed nor optimized for MT, it seems reasonable
to investigate whether a different segmentation granularity segmentation is more effective
for MT — many of the differences between segmentation standards turn on to what extent
compound words are kept together or split apart. In this section, we present a technique
for directly optimizing a segmentation property — characters per token average — for
translation quality, which yields significant improvements in MT performance.

Our CRF segmenter makes a binary decision on labels: the prediction y. = +1
indicates the t" character of the sequence is preceded by a space and where y, = -1
indicates there is none. In order to calibrate the average word length produced by our
CRF segmenter, i.e., to adjust the rate of word boundary predictions (y.= +1), we apply a
relatively simple technique (Minkov et al. 2006), originally devised for adjusting the
precision/recall tradeoff of any sequential classifier. Specifically, the weight vector w and
feature vector of a trained linear sequence classifier are augmented at test time to include
new class conditional feature functions to bias the classifier towards particular class
labels. In our case, since we wish to adjust the frequency of word boundaries, we simply
add a single feature that votes for a word boundary and then we can adjust the weight Ay
of that feature appropriately so as to maximize MT performance. Table 2.11 displays how
changes of the bias parameter A, affect segmentation granularity.® Since we were
interested in analyzing the range of MT performance between CTB segmentation and
segmentation into individual characters, we performed a grid search in the range between
Ao = 0 (maximum-likelihood estimate) and A, = 32 (a value that is large enough to split
the data into 1 character words). For each Ao value, we ran an entire MT training and
testing cycle, i.e., we resegmented the entire training data, ran GIZA++, acquired phrasal
translations that abide to this new segmentation, ran MERT and evaluated on segmented
data using the same 2, values.

% | 1 0 1 2 4 8 2
len | 1.64 1.62 1.61 159 155 1.37 1

Table 2.11: Effect of the bias parameter A, on the average number of character per token on MT data.

® Note that character-per-token averages provided in the ta-ble consider each non-Chinese word (e.g., foreign
names, num-bers) as one character, since our segmentation post-processing prevents these tokens from being
segmented.

150 Chapter 2: Machine Translation from Text

BLEU[%)] scores
33 T T —— =

J . MT03(dev) -
 l s MT02 —

325 | e x TMT05 —x— o

32 r

315

M+

305

30

bias

Segmentation performance

‘ " Precision ——
T Recall -]
" F measure -—x—
0.9
088
0.86
0.84
0.82

bias

Figure 2.1: A bias towards more segment boundaries (10 > 0) yields better MT performance and worse
segmentation results.

Segmentation and MT results are displayed in Figure 2.1. First, we observe that
adjusting the precision and recall tradeoff by setting negative bias values (A = 2) slightly
improves segmentation performance. We also notice that raising Ao yields relatively
consistent improvements in MT performance, yet causes segmentation performance (F-
measure) to be increasingly worse. While the latter finding is not particularly surprising,
it further confirms that segmentation and MT evaluations can yield rather different
outcomes. We chose the value Ao= 2 on another dev set (MT02). On the test set MT05, A
= 2 yields 31.47 BLEU, which represents a quite large improvement compared to the
unbiased segmenter (30.95 BLEU). Further reducing the average number of characters per
token yields gradual drops of performance until character-level segmentation (A, 32,
29.36 BLEU).

Here are some examples of how setting A, = 2 shortens the words in a way that can
help MT.

e separating adjectives and pre-modifying adverbs: 1R k(very big) — 1R (very)

K(big)
e separating nouns and pre-modifying adjectives: wifiJi (high blood pressure)
— 1 (high) ffx (blood pressure)

Handbook of Natural Language Processing and Machine Translation 151

e separating compound nouns: WE (Department of Internal Affairs) — Wi
(Internal Affairs) #s(Department).

2.2.2.5 A Comparison across Segmenters

When incorporated into the Rosetta MT systems, the CRF-Lex segmenter shows
consistent improvement over other segmenters on the GALE test set DEV07. We finally
describe the experimental setup for comparing word segmenters used in Rosetta systems.

Segmenter #Words OOV Rate BLEUrIn4-ci
Character 25,715 0.1% 11.60
Harbin 17,634 2.2% 11.65
FB Maximum Match 17,558 1.2% 11.16
Stanford CRF-Lex 16,768 1.1% 12.10

Table 2.12: Test Data Statistics and Machine Translation Results

Four different segmenters are compared. The first is character segmentation. The
second segmenter is a similar to a lexicon-based MaxMatch segmenter, but it uses the
forward-backward algorithm to maximize the sentence probability of the segmented
words. The third segmenter is the Harbin word segmenter by HIT, which uses a mixture
of language models and some MAXENT model rescoring (Jiang et al. 2005). The fourth
segmenter is the Stanford CRF-Lex segmenter. The test data is half of the text portion of
GALE DEVO0T7. The test set statistics are shown in Table 2.12. The OOVs in the character
input are all non-Chinese words.

The MT decoder used for these experiments is an IBM phrase-based statistical MT
system. The first step of the experiment is character-level sub-sampling from the 10M
sentence Chinese-English parallel corpus. The sub-sampling selects those parallel
sentence pairs that are have at least one n-gram overlap with the training data. We match
up to 5-gram in the sub-sample process. The sub-sampled training corpus is then
segmented by the four segmenters resulting in four sets of training data for each style of
segmentation. We then measure the OOV rate of the segmenters on the corresponding
training corpus. The HMM model and Block Model (Zhao et al. 2005) are used to
produce word alignments on the training data. Phrase pair translations are extracted from
the word alignments. We use a smoothed 5-gram English LM built on the English
Gigaword corpus and the English side the Chinese-English parallel corpora distributed by
LDC from years 2000 to 2005. The reordering used in the decoding is phrase level
reordering. Up to two phrases are allowed to be skipped over. The metric of evaluation is
case insensitive BLEUr1n4 with one reference translation. The results are presented in
Table 2.12. The numbers are much lower than those for MT03/MTO5, because this test
set has only one reference translation, whereas the NIST test sets have four reference
translations. Here we see that the CRF-Lex segmenter outperforms all other segmenters
by a significant margin.

152 Chapter 2: Machine Translation from Text

2.2.2.6 Conclusion

We have investigated what segmentation properties can improve machine translation
performance. We found that a feature-based CRF segmenter combined with lexicon
features has better consistency and the ability to recognize new words. We also found
that neither character-based nor a standard word segmentation standard are optimal for
MT and show that an intermediate granularity is much more effective. We find that either
character segmentation or the state-of-the-art Harbin segmenter performs about 0.5
BLEUrln4 points better than a baseline FB Maximum Match segmenter, but that the
improved Stanford segmenter is another 0.5 BLEUr1n4 above the performance of these
segmenters.

2.2.3. Combination of Alternative Word Segmentations for
Chinese Machine Translation
Authors: Jinxi Xu and Roger Bock

2.2.3.1 Introduction

Word segmentation is important to Chinese machine translation (MT) because
tokenized words are the most basic units of translation. We address the problem of word
segmentation using two techniques. One technique is to segment the parallel training data
using an ensemble of complementary segmentation algorithms and combine the
alignments in order to mitigate the impact of segmentation errors. The other is to decode
input sentences as sequences of characters to reduce mismatches between training
examples and test data. While similar ideas appeared in earlier studies (Xu et al. 2005a;
Zhang et al. 2008; Dyer et al. 2008), in this work we used segmenters that are
complementary to maximize the benefit of combination.

2.2.3.2 Motivation

Unlike in languages written in Western scripts, there are no spaces between words in
Chinese text. Word segmentation, i.e., detecting word boundaries in running text, is
therefore a prerequisite for Chinese MT. Word segmentation is a tricky issue for a
number of reasons. First, due to input ambiguity (e.g., “xiang bei-jing/to Bejing” vs
“xiang-bei jing/northward capital”), error-free segmentation is not possible. Second,
segmentation inconsistency is a big problem. Due to the often murky distinction between
words and phrases, the same string may have multiple valid segmentations. For example,
“ai-zhi-bing” can be segmented as either “ai-zhi/AIDS bing/disease” or “ai-zhi-
bing/AIDS”. Inconsistent segmentations cause fragmentation of training data and
mismatches between training and test. Third, choosing the right word granularity is not
easy. While shorter words are desirable with limited training (fewer OOV words), longer

Handbook of Natural Language Processing and Machine Translation 153

words are more desirable with abundant training (less ambiguity). Determining the right
granularity usually requires costly experimentation.

We propose two techniques to address the above issues. One technique is to combine
different segmentation algorithms to mitigate the problem of segmentation errors in word
alignment. Another technique is to address the issues of segmentation consistency and
word granularity by using character-based translation. The two techniques will be
described in detail in the next two sections.

2.2.3.3 Combination of Different Segmentation Algorithms

The first technique we use is to combine different segmentation algorithms.
Specifically, we tokenize the parallel training data using each segmenter and run GIZA++
separately for each. Then we concatenate the alignment files from different segmenters
and use the combined alignment file for training the translation model (i.e., rule
extraction). The advantage of this approach is that it mitigates the segmentation errors.
While each segmenter may make mistakes for a given string, there is a good chance that
one of the segmentations is correct and that the decoder will prefer it over the erroneous
ones.

In our experiments, we used the following word segmentation algorithms, which
were chosen for their complementary characteristics:

e L2R: Left to right greedy longest word match. This algorithm scans the input left
to right for the longest dictionary entry that matches the input and then
increments the start position before searching for the next word. It uses a
predefined lexicon with 52K Chinese words.

e L2R’: The same as L2R, except that it uses a smaller lexicon with 18K words.
The lexicon was derived by removing infrequent words (words with a small
number of occurrences in the parallel training data) from the L2R lexicon.

e R2L: Similar to L2R, except that it scans words right to left.

e Stat: Uses a trigram language model trained on 5M words of manually segmented
text, consisting of the Chinese Treebank corpus and the Academic Sinica
Balanced Corpus (Huang and Chen 1995). The algorithm builds a lattice of
segmentation alternatives of the input and searches for the segmentation path
with the greatest language model score.

e Stat’: Similar to Stat, except that it uses a unigram language model trained from
the Chinese Gigaword corpus. To train the language model, we first segmented
the Gigaword corpus using the L2R method.

Table 2.13 shows the degree of overlap between each pair of segmenters, measured
by their F score. If one segmenter outputs a tokens and the other b tokens and the number

154 Chapter 2: Machine Translation from Text

of shared tokens is c, their F score is (2 + %) /2. We can see the segmenters are rather
different: the F score varies from 84.3% to 93.8%.

F L2R L2R’ R2L Stat Stat’
L2R 100 915 93.8 85.0 87.9
L2R’ 91.5 100 93.0 84.3 86.7
R2L 93.8 93.0 100 87.9 90.8
Stat 85.0 84.3 87.9 100 914
Stat’ 87.9 86.7 90.8 914 100

Table 2.13: Segmentation overlaps (F scores) between different segmenters.

2.2.3.4 Character-Based Translation

The second technique we use is to address the issues of segmentation
consistency and word granularity by using character-based translation.
Specifically, we convert word-aligned training data into character-aligned data, by
splitting Chinese words into characters (English words are not affected) and
replicating the alignment links accordingly. We do not run GIZA++ directly on
character-tokenized data, because the drastic difference in sentence lengths can
result in many unaligned characters. The character-aligned data is then used for
model training (i.e., rule extraction). In decoding, the input sentences are
translated as sequences of characters. Due to the use of phrases in the translation
rules, character-based translation allows the test and training data to be matched at
different levels (phrases, words and even subwords). We hypothesize that with
more sources of evidence (e.g., English LM score) at its disposal, the decoder can
do a better job of selecting the optimal segmentation for a given input than with a
fixed word segmentation algorithm.

2.2.3.5 Experiments using Phrasal Decoding

The experiments described in this and the following sections use a number of data
sets for tuning and testing. These data sets have been constructed from various GALE
and NIST evaluation data sets. They contain different subsets of the Chinese NIST
MTO04-08 tests, as well as subsets of the GALE Phase 2 development and evaluation data.
The Agile Chinese newswire development and test sets are around 1500 sentences each.
The Agile Chinese development and test v2 sets are around 2000 sentences each. It is
worth noting that when a data set is divided, the division always respects document
boundaries, so that no two sentences from the same document end up in different sets.

For fast turnaround, we used a phrase-based decoder in the experiments described in
this section. The findings are validated using a slower but more accurate hierarchical
decoder in the next section. We used the Agile development set for tuning and the Agile

Handbook of Natural Language Processing and Machine Translation 155

test set for testing. Translation models were trained using the GALE Phase 2 Chinese
parallel training data.

Table 2.14 shows that character-based translation trained with the L2R segmenter is
better than word-based translation using the same segmenter. The improvement, as seen
by comparing the first and second rows, is 0.3 in BLEU and 0.6 in TER. Combining
alignments of different segmenters (Comb for training, Char for decoding in the table)
produced an additional improvement of 0.2 in BLEU and 1.1 in TER, as seen by
comparing the second and seventh rows. The results show that both segmentation
combination and character-based translation improve MT performance. The Comb
system is also better than all word-based systems in terms of TER and BLEU.

Training Decoding

BLEU TER
segmenter segmenter

L2R L2R 31.2 61.3
L2R Char 315 60.7
L2R’ L2R’ 31.3 60.6
R2L R2L 31.4 60.8
Stat Stat 30.6 61.6
Stat’ Stat’ 31.2 61.0
Comb Char 31.7 59.6

Table 2.14: Impact of character-based decoding and segmentation combination. In the Comb run, alignments
from individual segmenters were combined. Char indicates character-based translation.

2.2.3.6 Experiments with Hierarchical Decoding

To further demonstrate the benefits of character-based translation and segmentation
combination, we performed experiments using a state of the art hierarchical decoder
(Shen et al. 2008). For model training, we used the GALE Phase 3 Chinese parallel data.
We used the Agile development v2 set for tuning and the Agile test v2 set for testing.
Note that the results in this section are not directly comparable to those in the previous
section due to the differences in training and test data.

Training Decoding

BLEU TER
segmenter segmenter

L2R L2R 36.7 56.1
L2R char 37.2 56.0
Comb char 37.2 55.2

Table 2.15: Impact of character based translation and segmentation combination with a hierarchical decoder.
In the Comb run, alignments were trained using three segmenters, L2R, L2R’ and Stat.

The results in Table 2.15 show that character-based translation improved over word-
based translation by 0.5 in BLEU and 0.1 in TER. By combining alignment files from
different segmentations, there is an additional 0.8 improvement in TER, but no improvement

156 Chapter 2: Machine Translation from Text

in BLEU. The total improvement over the word-based baseline is 0.5 in BLEU and 0.9 in
TER. The improvements are in line with those described in the previous section.

2.2.3.7 Discussion

In our experiments, we concatenated the aligned training data from different
segmenters in rule extraction. Obviously, not all segmenters are equally useful. A
refinement is to weight the alignments from different segmenters (or exclude some
segmenters altogether) based on performances on the development set. While performing
such an experiment is straightforward, due to the limitation of time we leave it for future
work.

While character-based decoding is similar to decoding a segmentation lattice (Dyer
et al. 2008), it has two advantages. First, it incurs a smaller overhead in translation table
size, since rules with the same unsegmented source string are merged. In our
experiments, the character-based phrase translation table (extracted from the combined
alignments) was only 40% larger than that of the word-based translation table (left to
right word segmentation). Due to a compact translation table, the overhead in decoding
speed is also small: Character-based decoding was only 45% slower than the word-based
baseline. We expect lattice-based methods will result in a much larger translation table
and a significant reduction in decoding speed. A disadvantage with character-based
decoding is that it cannot assign weights to different segmentations of the input in scoring
translation theories, while lattice-based methods do not have this problem.

2.2.4. Synchronous Learning of Chinese Word Segmentation
and Word Alignment

Authors: Jia Xu, Jianfeng Gao, Kristina Toutanova, and Hermann Ney

2.2.4.1 Introduction

Chinese sentences are written in the form of a sequence of Chinese characters; words
are not separated by white spaces. This is different from most European languages and
poses difficulty in many natural language processing tasks, such as machine translation.

It is difficult to define “correct” Chinese word segmentation (CWS) and various
definitions have been proposed. The common solution in Chinese-to-English translation
has been to segment the Chinese text using an off-the-shelf CWS method and to apply a
standard translation model given the fixed segmentation. The most widely applied
method for MT is unigram segmentation, such as segmentation using the LDC (LDC
2003) tool, which requires a manual lexicon containing a list of Chinese words and their
frequencies. The lexicon and frequencies are obtained using manually annotated data.
This method is sub-optimal for MT, because words out of the manual lexicon cannot be

Handbook of Natural Language Processing and Machine Translation 157

generated. In addition to unigram segmentation, other methods have been proposed. For
example, Gao et al. (2005) described an adaptive CWS system and Andrew (2006) and
Chang et. al. (2008) employed a conditional random field model for word segmentation.
However, these methods are not specifically developed for the MT application, where
Chinese word segmentation and translation model training are separate steps although
they influence each other.

In the work of Xu et al. (2004), word segmentations are learned from word
alignments. We refine this method by integrating the Chinese word segmentation into the
word alignment training so that the word segmentation and alignment can be learned
synchronously and their effects on each other can be considered in the training. We
present a log-linear model derived from a generative model which consists of a word
model and two alignment models, representing the monolingual and bilingual
information, respectively. The model is trained using Gibbs sampling. Alternative
segmentation boundaries and realignments of words due to the change of these
boundaries are taken into account in the sampling process. New Chinese words are
generated using Dirichlet Process and the lexicon is updated dynamically. In this way,
two problems are solved: adaptation to the parallel training corpus and out of vocabulary
words.

Our experiments on both large (GALE) and small (IWSLT) data tracks of Chinese-
to-English translation show that our method improves the performance of state-of-the-art
machine translation systems.

2.2.4.2 Review of the Baseline System

In statistical machine translation, we are given a Chinese sentence in characters
cX = ¢, ...cx which is to be translated into an English sentence el = e, ...e;. In order to
obtain a more adequate mapping between Chinese and English words, cX is usually
segmented into words flj = f1 ... fy in preprocessing.

In our baseline system, we apply the commonly used unigram model to generate the
segmentation. Given a manually compiled lexicon containing words and their relative
frequencies, the best segmentation is the one that maximizes the joint probability of all
words in the sentence, under the assumption that words are independent of each other.
However, a human collected lexicon can hardly cover all Chinese words in various
domains. Words out of the lexicon list are dropped during word segmentation and might
not be able to contribute to the translation any more. Inaccurate word distributions can
also result in sub-optimal segmentation.

Once we have segmented the Chinese sentences into words, we train standard
alignment models in both directions with GIZA++ (Och and Ney 2002) using models
of IBM-1 (Brown et al. 1993), HMM (Vogel et al. 1996) and IBM-4 (Brown et al.
1993). The translation system uses a phrase-based decoder with a log-linear model
described by Zens and Ney (2004). The feature weights are tuned on the development

158 Chapter 2: Machine Translation from Text

set using a downhill simplex algorithm (Press et al. 2002). The language model is a
statistical n-gram model estimated using modified Kneser-Ney smoothing.

2.2.4.3 Semi-supervised Word Segmentation

We introduce a semi-supervised approach to perform Chinese word segmentation as
illustrated in Figure 2.2. The inputs to the system are the bilingual training data, including
a set of Chinese sentences in characters and its English translations, a manual Chinese
word lexicon, such as LDC lexicon, as well as the test corpus on character level. First, we
segment the Chinese training corpus with a unigram segmenter using the manual lexicon
and get an initialized training corpus in words. Then, we perform the synchronous
training of Chinese word segmentations and word alignments to maximize the likelihood
of a log-linear model. Optimal word segmentations and alignments are generated as
outputs. By counting the Chinese word frequencies of the generated training corpus, we
obtain a lexicon. To combine this lexicon with a manual lexicon, we interpolate the
probabilities of each word entry in both lexicons linearly. This combined lexicon is
applied to segment the test corpus using unigram segmentation. The optimal Chinese
word segmentations of the training and test data, as well as, the alignments of the training
data, are the system outputs, which will be used further into the decoder.

Figure 2.2: Semi-supervised CWS process.

Handbook of Natural Language Processing and Machine Translation 159

2.2.4.4 Generative and Log-linear Model

Observations
Chinese characters | ¢f | /NEZITALM
English sentence e1

Children play cards

Hidden variables
Alignment normal | a! | e.g. (cards, 4),(cards, i)
Alignment inverse bl | e.g. (4K, cards),(#, cards)

Chinese words fi | eg. NEIUAG

Table 2.16: Observations and hidden variables of the generative model.

As a solution to the problems with the conventional approach to CWS mentioned in
Section 2.2.4, we propose a generative model for CWS in this section and then extend the
model to a more general, but deficient model, a log-linear model in which most features
are derived from the sub-models of the generative model.

As shown in Table 2.16, the generative model assumes that a corpus of parallel
sentences (cX, el) is generated along with a hidden sequence of Chinese words flj and a
hidden word alignment b! in the inverse direction for every sentence. The joint
probability of the observations (cX,e!) can be obtained by summing over all possible
values of the hidden variables flj and b! and each value is computed as following:

PrcK,el, £, b]) = Pr(f)s(f], cK)pPr (el, biIf)) 2.1)
A
~=P(f])"P (el blIf)Y2P (], allel)™ 22)

6 (flj ,cK) is 1 if the characters of the sequence of words flj are cX and to 0 otherwise, Z

is the normalization factor. We can drop the conditioning on cK in Pr (e, bl|f/),
because the characters are deterministic given the words.

In Equation 2.2, we put the monolingual model and the translation models in both
directions together into a single model, where each of the component models is weighted
by a scaling factor. This model can be viewed as a weighted linear combination of the log
probabilities of sub-models. The weights, which are optimized on a development dataset,
have empirical justifications. Since different sub-models are trained on different datasets,
their dynamic value ranges can be so different that it is inappropriate to combine their log
probabilities through simple addition. Moreover, some models may be poorly estimated
due to for example the lack of large amount of training data. Therefore, empirical results

160 Chapter 2: Machine Translation from Text

have demonstrated that the use of scaling factors that reflect the relative contribution of
different sub-models often improves the performance.

In practice, we do not renormalize probabilities and our model is thus deficient
because it does not sum to 1 over observations. However, the model works very well in
our experiments. Similar deficient models have been used successfully before, such as in
IBM models (Och and Ney 2002).

Monolingual Chinese sentence model

We use the Dirichlet Process unigram word model (Xu et al. 2008) to introduce new
Chinese word types and to learn word distributions automatically from unlabeled data,
where the parameters of a distribution over words G are first drawn from the Dirichlet
prior DP (a,P,) . Words are then independently generated according to G. The
probability of a sequence of Chinese words in a sentence is thus:

Pr(f]) =T_, P () 2.3)

Translation model

We employ the Dirichlet Process inverse IBM model 1 to generate English words and
alignments given the Chinese words. In this model, for every Chinese word f (including
the null word), a distribution over English words Gy is first drawn from a Dirichlet
Process prior DP(a, Py(e)), where for Py(e) we use the empirical distribution over
English words in the parallel data. Then the probability of an English sentence and
alignment given a Chinese sentence in words is given by

1
Pr(ed,bilf) = Mies 737 Py, Ceilfi) @4

where the probability of e; is distributed according to Gy, . This is the same model form

as inverse IBM model 1, except we have placed Dirichlet Process priors on the Chinese
word specific distributions over English words.’

In practice, we observed that using a word alignment model in one direction is not
sufficient then added a factor to our model which includes the word alignment in the
other direction, i.e., a Dirichlet Process IBM model 1. We ignore the detailed description
here, because the calculation is the same as that of the inverse IBM model 1. According
to this model, for every English word e (including the null word), a distribution over
Chinese words G. is first drawn from a Dirichlet Process prior DP(a, Py(f)). Here, for

7 fy,, is the Chinese word aligned to ei and Gy, is the distribution over English words conditioned on the word
fp, . Similarly, e,, is the English word aligned to fj in the other direction and G, is the distribution over

J
Chinese words conditioned on e,,.

Handbook of Natural Language Processing and Machine Translation 161

the base distribution P,(f) we used the same spelling model as for the monolingual
unigram Dirichlet Process prior as described by Xu et al. (2008). The probability of a
sequence of Chinese words flf and a word alignment a{ given a sequence of English
words e} is then computed in the same way.

Gibbs Sampling Training

It is generally impossible to find the most likely segmentation according to our
Bayesian model using exact inference, because the hidden variables do not allow exact
computation of the integrals. Nonetheless, it is possible to define algorithms using
Markov chain Monte Carlo (MCMC) that produce a stream of samples from the posterior
distribution of the hidden variables given the observations. We applied the Gibbs sampler
(Geman and Geman 1984), one of the simplest MCMC methods, in which transitions
between states of the Markov chain result from sampling each component of the state
conditioned on the current value of all other variables. For a complete discussion of
Gibbs sampling training and the word segmentation and realignment algorithm used in
our experiment see (Xu et al. 2008).

The Gibbs sampler for our model works as follows: For each iteration we sample on
each character position by fixing other segmentations and alignments, then we compare
hypotheses considering the segmentation and the related alignments of this position. Each
position has two alternative segmentations: a boundary exists, or not. The change of a
segmentation boundary causes relinking alignment points to parts or groups of the
original words. In the work of Xu et al. (2008) all alignment alternatives are discussed in
detail. Together with the boundary versus no-boundary state at each character position,
we sample a set of alignment links between English words and any of the Chinese words
related to this position given all other word alignments and segmentations in the parallel
corpus fixed. After sampling by using the posterior probabilities of each candidate, we
choose one of these candidates and perform the same operation for the next position. This
process is usually terminated until the result is converged.- - Since we only implemented
the IBM model 1 in both directions for computational efficiency, more advanced word
alignment models are applied by repeatedly aligning the corpus using GIZA++.

2.2.4.5 Translation Experiments

We performed experiments using our models on a large and a small data track. We
evaluated performance by measuring WER (word error rate), PER (position-independent
word error rate), BLEU (Papineni et al. 2002) and TER (translation error rate) (Snover et
al. 2006) using multiple references.

162 Chapter 2: Machine Translation from Text

Translation Task: Large Track GALE Translation

We first report the experiments on the GALE machine translation task (GALE 2008).
The bilingual training corpus is a superset of corpora in the news, conversation domains
collected from different sources provided under the GALE program. As shown in Table
2.17, the training corpus in each language contains more than seven million sentences
after the bilingual sentence segmentation (Xu et al. 2005b). We took LDC (LDC 2003) as
baseline method to compare. The word segmentation using Gibbs Sampling (GS) and
baseline method generated 92.8 and 93.9 million Chinese running words respectively.

Chinese English
LDC | GS |
Sentences[M] 7.57
Running Words[M]| 93.9 | 92.8 102
Vocabulary[K]] 112 121 347
Singletons[K]| 38.1 | 38.3 152

Train

Sentences 1943
Running Words[K]| 44.3 | 44.3 53.2
Test Vocabulary[K]| 6.78 | 6.60 6.15

00Vs (R.W.) 15 17 246
O0Vs (invoc.) 13 14 158

Table 2.17: Statistics of corpora in task GALE.

The CWS model parameters are not optimized but fixed as applied in the IWSLT task
because of the computational complexity. The log-linear model scaling factors in the
decoder as mentioned in Section 2.2.4.2 are neither optimized and we took the values
optimized on the baseline system for convenience. The resulting systems were evaluated on
the test corpus in 2008 including all domains with 1943 sentences. We only list the
statistics of the first English reference.

Starting from the unigram segmentation as initial word segmentation, we performed
Gibbs sampling with only one iteration, which takes several hours, on the training corpus
because of the large computational requirement. After that, we merged the GS generated
lexicon with a weight of 0.4 and the manual LDC lexicon with a weight of 0.6 using
linear combination on the probabilities of the word entries. Then we performed the
unigram segmentation on the test corpus using the combined lexicon.

As shown in Table 2.18, on the test data, the BLEU score was improved by 0.5%
absolutely or more than 1.8% relatively using GS with combined lexicon. The TER score was
also enhanced significantly, 0.8% absolutely and 0.9% relatively.

Method WER PER BLEU [TER
LDC 73.0 495 28.2 |67.1
Unigram 73.0 49.7 28.4 167.2
GS with combined lexicon | 72.5 48.6 28.7 166.3

Table 2.18: Translation performance with the baselines (LDC, unigram) and GS method on GALE [%].

Handbook of Natural Language Processing and Machine Translation 163

We can see that although the semi-supervised word segmentation is not yet
converged, it can still outperform a supervised one in MT. One of the reasons is probably
the training and test corpora contain many words and words have different frequencies in
our MT data from they do in the manually labeled CWS data.

Task: Small Track IWSLT

The Chinese training corpus of the IWSLT task was segmented using the unigram
segmenter as baseline method (Baseline) and our GS method. The parameter
optimizations were performed on the Dev2 data with 500 sentences and evaluations were
done on both the Dev3 and the Eval data, i.e., the evaluation corpus of (IWSLT 2007).

The model weights of GS were optimized using the Powell (Press et al. 2002)
algorithm with respect to the BLEU score. We obtained the optimal number of iterations
of the GIZA++ word alignment update as four.

Test Method WER | PER | BLEU | TER
Dev2 Unigram (Baseline) | 38.2 | 31.2 | 55.4 | 37.0
GS 36.8 | 30.0 | 56.6 | 355
Dev3 Unigram (Baseline) | 335 | 275 | 604 | 32.1
GS 323 | 266 | 61.0 |[314
Characters 493 | 418 | 354 | 475
LDC 46.2 |140.0 | 39.2 |45.0
Eval ICT] 45.9 1404 | 40.1 |44.9
Unigram (Baseline) | 46.8 | 40.2 | 41.6 | 45.6
9-gram 46.9 | 404 | 40.1 |45.4
GS 45.9 140.0 | 416 | 44.8

Table 2.19: Translation performance with different CWS methods on IWSLT[%)].

For a fair comparison, we evaluated on various CWS methods including translation
on characters, LDC (LDC 2003), ICT (Zhang et al. 2003), unigram, 9-gram and GS.
Improvements using GS can be seen in Table 2.19. Under all test sets and evaluation
criteria, GS outperforms the baseline method. The absolute WER decreases with 1.2% on
the Dev3 and with 0.9% on the Eval data over the baseline. In the BLEU score there is no
change on the Eval set between the baseline and the GS, because the Eval data has a
lower vocabulary coverage with the Dev2 than the other test sets such as the Dev3 do.
The optimization of many parameters leads to a slight over-fitting of the model, so that
the parameters may not be optimal for the Eval translation.

We compared the translation outputs using the GS with those using the baseline
method. On the Eval data, 196 sentences have different translations out of 489 lines,
where 64 sentences from the GS are better, 33 sentences are worse and the rests have
similar translation qualities. Table 2.20 shows two examples from the Eval corpus. We
list segmentations produced by the baseline and the GS methods, as well as the

164 Chapter 2: Machine Translation from Text

translations generated using these segmentations. The GS method generates better
translation results than the baseline method in these cases.

a) Baseline AT ?
do you have a ?

GS T 5 ?
do you have a shorter way ?
REF is there a shorter route ?

b) Baseline i Rk i 440
please show me the in .

GS T A YRR B
please show me the total price .
REF can you tell me the total amount?

Table 2.20: Segmentation and translation outputs with baseline and GS methods.

2.2.4.6 Conclusion and Future Work

We showed that it is possible to learn Chinese word boundaries during the word
alignment training so that the translation performance of Chinese-English MT systems is
improved.

We presented a Bayesian generative model for parallel Chinese-English sentences,
which uses word segmentation and alignment as hidden variables and incorporates both
monolingual and bilingual information to derive word segmentation and alignment for
MT.

Starting with initial word segmentation, our method learns both new Chinese words
and word distributions using the Dirichlet Process. In a small data environment and a
large data environment, our method outperformed the standard Chinese word
segmentation approach in terms of the Chinese-English translation quality. In future
work, we plan to enrich our models to better represent the true distribution of the data.

2.3 Word Alignment

2.3.1. Word Alignment Revisited

Authors: Francisco Guzman, Qin Gao, Jan Niehues, and Stephan Vogel

2.3.1.1 Introduction

Word alignment can be considered the backbone of Statistical Machine Translation.
Even when Statistical Machine Translation (SMT) shifted from a word-based to a phrase-
based paradigm, word alignment remained the base for most phrase-based (Koehn et al.
2003), hierarchical (Chiang 2007) and syntactic SMT systems (Zollmann and Venugopal
2006; Marcu et al. 2006). Generative models have the advantage that they are well suited
for a noisy-channel approach. Unsupervised training can be used to align a large amount

Handbook of Natural Language Processing and Machine Translation 165

of unlabeled parallel corpora. Nonetheless, they have a major disadvantage, because these
models are completely unsupervised, they can hardly make use of the increasingly
available manual alignments. Also, given their complexity, to incorporate other
information, such as POS tags, word frequencies etc., is a non-trivial task. Moreover,
because the IBM models are not symmetric, the alignments for different directions are
quite different, which makes the search for a symmetrized combination of the word
alignments a challenging procedure.

Given the fact that the word alignments serve as a starting point of the SMT pipeline,
improving their quality has been a major focus of research in the SMT community.
However, the quality of word alignment is not directly related to the quality of
translation. In fact, only weak correlation between alignment error rate (AER) and BLEU
scores has been reported (Fraser and Marcu 2006b). The mismatch between the quality of
word alignment models and that of phrase-based or syntactic based SMT may lead to the
phenomenon of “improved” word alignment resulting in decreased translation quality
(Vilar et al. 2006). This calls for more careful analysis of word alignment errors to better
understand the impact of alignment errors and alignment characteristics on the entire MT
pipeline. Recently, different efforts have focused on the symmetrization of the word
alignment models (Matusov et al. 2004; Liang et al. 2006b), the inclusion of annotated
data in the training of generative models (Fraser and Marcu 2006a) and the use of
discriminative models (Blunsom and Cohn 2006; Taskar et al. 2005; Niehues and Vogel,
2008). One of the advantages of these discriminative models is that the word alignment
quality can be tuned towards a given word alignment quality measurement.® Moreover,
their conditional probability model allows the inclusion of different features, enabling
that any available knowledge source can be used to find the best alignment.

In this work, we present the results of an extensive error analysis of the word
alignments created by the generative models, using the well-known toolkit GIZA++ (Al-
Onaizan et al. 1999; Gao and Vogel 2008). By characterizing the errors, we hope to shed
light on the behavior of the aligners, as well as, to identify some opportunities for
improvement. We also present our work on a discriminative word alignment framework,
as presented by Niehues and Vogel (2008), which is easy to enhance with new features.
We believe that proper analysis of the alignment behavior, coupled with the use of
discriminative word alignment, can help to overcome many of the weaknesses of the
generative models.

2.3.1.2 Error Analysis

To analyze the errors in automatically generated word alignments we compare the
Viterbi alignments generated by GIZA++ against a gold standard of hand aligned data. In

® For some measurements, smoothing is required.

166 Chapter 2: Machine Translation from Text

some gold standards, there is a distinction between sure and possible links. Sure links
represent the hand alignments made by the annotator for which he is sure of the
alignment. Possible links are those which represent a degree of uncertainty, e.g., where
different annotators differ in the manual alignment. However, in this study, we include
only sure links. Based on the differences between Viterbi and hand alignments, there are
three basic quantities that we can measure: the number of links in which these two
alignments agree, i.e., true positives (tp); the number of links that are present in the
output of the aligner, but not in the gold standard, i.e., false positives (fp); and the
number of links that are present in the gold standard, but not in the output of the aligner,
i.e., false negatives (fn). There are several metrics that are used for measuring the quality
of a word alignment, but most of them are based on these three quantities. Error measures
included Alignment Error Rates, Precision and Recall:

e Alignment Error Rate: AER, as defined by Och and Ney (2003), takes Sure and
Possible links into account.

__]Aus||AuP|

AER A+S

(2.5)

Without the distinction into sure and possible links, the metric is related to the F
measure:
AER=1-—22 _—1-F 2.6)
2tp+fp+fn
e Precision: This measure gives us a notion of how accurate is the output of the
aligner. It is the ratio of the correct to all generated links.
tp
tp+fp

Precision = 2.7

e Recall: This measures how well we cover the desired links, i.e. those in the hand
alignments, with the automatically generated ones. That is, of all the links in the
gold standard, what is the amount of links that are also present in the aligner
output.

tp
tp+fn

Recall = (2.8)

For some time, AER has been the predominant metric in the area. However, recent
studies have raised some concerns. Fraser and Marcu (2006b) showed that when the
distinction between sure and possible alignments is made, AER is biased towards
precision, rather than being balanced between precision and recall and suggest using
weighted F-measure to have control over this balance. In this study, we chose to use
AER, given that are not making use of possible alignments and that the optimal
coefficient for the weighted F-measure depends on the language being analyzed.

Handbook of Natural Language Processing and Machine Translation 167

Data Analysis

In this section, we present a detailed error analysis of the Viterbi alignments,
resulting from training the standard sequence of word alignment models IBM1, HMM,
IBM3 and finally IBM4, in both directions, i.e., source to target (S2T) and target to
source (T2S). We used the modified GIZA toolkit (Gao and Vogel, 2008). In addition, we
generated the combined alignment, using the grow-diag-final heuristics implemented and
used in the MOSES package (Koehn et al. 2007). In our analysis we use alignments for
Arabic-English and Chinese-English. The data sets used for training and the data sets that
we used for evaluation are summarized in Table 2.21.

Training Corpora Evaluation Corpora
#sentences #words |#sentences #words Avg. Sen. Len. (std)
Ato Arabic 7.7™M 218M 14K 287K 20.5(10.)

E English 7.7M 216M 14K 358K 25.7 (12.)
Cto Chinese | 11.0M 309M 19K 375K 19.4 (12))
E English 11.0M 273M 19K 463K 23.9 (15.)

Table 2.21: Statistics of corpora used in GIZA++ training and evaluation test sets

From the statistics we can see that the English sentences are on average longer than
the Arabic and Chinese sentences. Therefore, it is to be expected that source words often
need to be aligned to several English words (i.e., English words have higher fertility), or
that many English words are not aligned to Chinese or Arabic source words. This poses a
problem for the generative models, because they can align at most one source word to a
target word. Therefore, a greater asymmetry is to be expected.

Alignment [#Links GS [#Links [Precision [Recall [AER
Arabic-English

IBM4 S2T 275,386 | 73.6 60.2 |33.7

IBM4T2S | 336,995 |339,281 68.6 69.0 (311

combined 334,469 73.2 726 |27.0
Chinese-English

IBM4 S2T 359,485 51.9 35.3 |57.9

IBM4 T2S 527803 [451,222 | 66.4 56.7 |38.7

combined 437,241 | 677 56.1 |385

Table 2.22: Statistics of the different alignments (GS = Gold Standard Alignment).

In Table 2.22, we summarize the results for the evaluation of Arabic-English and
Chinese-English. As expected, IBM4 models from source-to-target perform worse than
the target-to-source ones. This difference is more striking for the Chinese-English case,
where the AER difference is almost 20 points. What can be observed for the source-to-
target cases is that the aligner is omitting many alignments, which leads to low recall,

168 Chapter 2: Machine Translation from Text

while precision remains higher. In the hand-aligned data Chinese and Arabic words are
often aligned to more than one English word, which cannot be replicated in the
asymmetric IBM Models.

Unaligned Words

As an additional consequence of the symmetry we also expect an unbalance between
the number of “NULL” alignments, i.e., source words aligned to the virtual “NULL
words” and the number of target words that are left unaligned. Looking at the statistics of
unaligned words for the output of GIZA++, as well as, the behavior of symmetrization
heuristics, we can get a better sense of the impact of the underlying structure of these
models. Table 2.23 gives the percentage of NULL-Alignments (words aligned to the
NULL word) and the percentage of words not aligned. We also show these numbers for a
symmetrized alignment and for the discriminative word alignment (DWA) described later
in Section 2.3.1.3.

Alignment INULL Alignments | Unaligned Words
Arabic-English

Manual 8.5% 11.8%

Alignment

IBM4 S2T 3.5% 30.0%

IBM4 T2S 5.3% 15.7%

combined 5.5% 7.80%

DWA 17.6% 18.7%
Chinese-English

Manual 7.80% 11.9%

Alignment

IBM4 S2T 5.5% 23.8%

IBM4 T2S 6.4% 34.5%

combined 14.6% 14.6%

DWA 16.7% 23.7%

Table 2.23: Statistics for unaligned words and null-alignments

Compared to the hand aligned data, GIZA++ tends to have less NULL alignments,
but a larger number of unaligned words. Depending on the language considered as source
and target, we see that up to one third of the target words are not aligned. This highlights
a weakness of the generative alignment models. On the other hand, the heuristic
symmetrization (grow-diag-and) generates alignments which are more balanced between
the number of NULL alignments and unaligned words and reasonably close to the hand
alignment. In contrast, the discriminative alignment is sparser, leaving more source and
target words unaligned. This is especially true for Chinese-English where we observe a
large number of unaligned English words, which will impact the phrase pairs extracted
from this kind of alignment.

Handbook of Natural Language Processing and Machine Translation 169

Alignment Errors: Sentence Level Analysis

Now, we analyze the distribution of alignment errors over all sentence pairs. The
distribution of the per-sentence AER shown in Figure 2.3 is almost Gaussian. However,
we see a peak at AER=0. This is partially an artifact of the bucketing: to achieve an AER
of 0.1 the sentence has to be already in the range of 10 words.

Figure 2.4 shows some Arabic-English sentence pairs, which were perfectly aligned.
Manual inspection revealed that all the perfectly aligned sentence pairs have no long
distance reordering.

Distribution of AER per sertence
'

1200

1000

800 -

600

frequency

400

200 -

1 12

Figure 2.3: AER distribution for the Arabic-English alignment generated by GIZA++ S2T. The vertical axis
shows the counts of sentences versus their corresponding AER evaluation in the horizontal axis.

S ST o Tl o 1T oy O ol

King Hussein Begins Fourth Phase of Chemotherapy
1-122335445667787

Wiviy b g Glla Al LagSall B (ol anilny 995 0
Robin Cook Dismisses Any British Government Intervention in
Pinochet Case

1-1223-34-47-56-65-78-8 10-99-10

e 40 by La® 120 o Gl o oStisd] pusitady
UNSCOM employs about 120 persons in Iraq , including 40 in-

spectors .
2-11253647-53-64-7899-1010-1111-12

Figure 2.4: Examples of perfectly aligned sentences of the Arabic-English alignment generated by GIZA++
S2T.

Finally, it is interesting to see how well the alignment model scores correlate to the
alignment quality. A high correlation would allow us to select sentence pairs, for which

170 Chapter 2: Machine Translation from Text

the alignment is more likely correct. In Figure 2.5 a scatter plot shows the correlation
between the alignment error rate and the normalized alignment log probability (i.e.
divided by the number of words in the sentence). We see a weak correlation, which might
not be sufficient for a reliable data selection. We also observe a series of bands (at approx
0.3, 0.5, 0.6, etc.) which correspond to the discrete nature of AER, i.e. a sentence pair of
length 2/2 can only have AERs of f0, 0.25, 0.5, 0.75, 1g.

Figure 2.5: Scatter plot of AER per Sentence versus Model Cost of the Arabic-English alignment generated
by GIZA++ S2T. In the vertical axis, we observe the per sentence AER versus the normalized model cost
from GIZA++ in the horizontal axis.

Alignment Errors: Word Level Analysis

Figure 2.6: Distribution of AER per frequency of English words of the Chinese-English alignment generated
by GIZA++ S2T. The vertical axis shows the per word AER versus the log frequency of the English words
displayed along the horizontal axis.

Handbook of Natural Language Processing and Machine Translation 171

The distribution of words in the training corpus typically follows a Zipf curve. This
leads to the question if generating correct alignments is more problematic for very low
frequency words (as there is not much evidence from the data), or for high frequency
words, as they are seen co-occurring with almost every other word. In Figure 2.6 the
AER with respect to word frequency is displayed, showing that indeed both high
frequency words and low frequency words have higher alignment error rates than the mid
frequency words. The word frequencies for this analysis were estimated with the counts
over the corpus in Table 2.21.

Stop Sign “.” Determiner “the”

\%‘g:‘gse TP FP FN S&;?jge Agrmt FP FN

1176 6540 4114 @NUM 3 19 573
. 10325 2231 2071 %E 0 2 507

3 389 9 X 96 200 593
T 0 248 0 i) 1 3 367
2 1 229 0 BT 0 3 363
9 0 177 1 — 10 54 297
) 0 116 3 | 2 12 293
i 0 110 0 NG 0 0 213
RiE 0 98 0 &) & 0 4 211
@NUM 1 97 15 TR 0 0 208

Table 2.24: Summarization of alignments of high frequency English words “the” and “.” extracted from
Chinese-English alignment generated by GIZA++ S2T

The errors in high frequency words are, of course, more problematic, as they add
more to the overall alignment error rate. As we saw in Table 2.22, there are some
disparities between the number of errors for the two alignment directions, in particular,
the false negatives differ substantially. We, therefore, analyzed the errors for these words
in more detail to see, which words contribute most to these errors. Figure 2.7 shows the
distribution of the misalignments (fp) and missing links (fn) for the most frequent English
words in the GIZA source to target alignments for Chinese. The most frequently
misaligned word is the stop sign. On the other side, the word for which the required link
is missing most often is the word “the” on the English side. In Table 2.24 we present
some examples that illustrate those cases. As we can see from the distribution, the stop
sign is misaligned more than half of the time. Other punctuation marks have also high
alignment error rates. One conclusion that we can draw from looking at this table is that
for Chinese, very frequent words such as the stop sign get often aligned to content words.
On the other hand, there are many cases in which the English determiner “the” is missing
from the alignment. This kind of behavior could be avoided if we could integrate some

172 Chapter 2: Machine Translation from Text

linguistic information into the generative models. Fortunately, there are other alignment
models (such as the Discriminative Model), which enable us to do so.

Figure 2.7: Alignment errors for high frequency English words from the Chinese-English alignment
generated by GIZA++ S2T

2.3.1.3 Discriminative Word Alignment

In recent years several authors (Moore 2005; Taskar et al. 2005; Blunsom and Cohn
2006) proposed discriminative word alignment frameworks and showed that this leads to
improved alignment quality. One main advantage of the discriminative framework is the
ability to use all available knowledge sources by introducing additional features. In this
study, we use the discriminative model presented by Niehues and Vogel (2008), which
uses a conditional random field (CRF) to model the alignment matrix.

The structure of the described CRF is quite complex and there are many loops in the
graph structure, so the inference cannot be done exactly. Consequently, an approximation
algorithm has to be used. For this implementation, the belief propagation algorithm
introduced by Pearl (1988) is used. This algorithm is not exact in loopy graphs and it is
not even possible to prove that it converges, but by Yedidia et al. (2003), it was shown
that this algorithm leads to good results.

Handbook of Natural Language Processing and Machine Translation 173

The weights of the CRFs are trained using gradient descent for a fixed number of
iterations. The default method of training CRFs is to maximize the log-likelihood of the
correct solution, which is given by a manually created gold standard alignment. However,
in our experiments, the tuning process consists on a two step optimization: first we
optimize towards maximum likelihood, then towards AER. This sequence has been
shown to provide the best results (Niehues and Vogel 2008).

Baseline Features

In the model we are using, there are three different types of factored nodes
corresponding to three groups of features. The first group of features is made up of those
that depend only on the source and target words and are called local features. For
instance, the lexical features, which represent the lexical translation probability of the
words, belong to this group. In addition, there are source and target normalized lexical
features for every lexicon. The source normalized feature, for instance, ensures that all
translation probabilities of one source word to the different target words in the sentences
sum up to one. The next group of features is made up of fertility features. They model the
probability that a word translates into one, two, three or more words, or does not have
any translation at all. The third group contains first order features, which model
dependencies between different links. They are used to model relative positions of words,
i.e., word reordering (also called distortion) within sentences. For further reference on the
detail of these features, please see the work of Niehues and Vogel (2008).

For our experiments the features for the baseline are set as follows: IBM4 lexicons
both directions, IBM4 fertilities, IBM4 Viterbi alignments as well as source/target
normalization features, identity feature, relative position feature, as well as, the following
directions for the first order features: (1,1),(1,2),(2,1),(1,-1),(0,1),(1,0).

New Discriminative Features

One of the purposes of performing the extensive analysis in Section 2.3.1.2 was to
recognize the weaknesses of the generative models and, therefore, incorporate new
knowledge into the DWA in the form of new features. Such features, along with the
existing ones are expected to refine the alignment models and to result in an improvement
of alignment quality. To facilitate the integration of such information, we devised a new
class-based feature, which scores the GIZA++ alignments that are used for discriminative
training, according to the class of the source and target words.

This class-based feature is a local feature and is defined as the conditional probability
of a link between words f;and e; given the classes of the words C(f;) and C(e;); and the
alignments provided by GIZA++ in both directions. Using this feature, we can couple any
kind of information regarding the class of words (whether they are POS tags, frequency

174 Chapter 2: Machine Translation from Text

based classes, etc.) with the alignment information from GIZA++. Then, we use this
probability to provide a degree of confidence for the GIZA++ alignments.

This degree of confidence for the GIZA++ alignments has to be estimated according
to labeled data, during a feature training phase. This information is then integrated into
the DWA as a weighted link feature. The estimation for the class-based feature is
obtained through a simple MLE:

_ legcle)LsatGidLeas G LraGid)]

Pl) = p (| CUD, €(€) Liae G), Leas (G, 1)) = (2.9)

|c(F).C(e))Ls2e (b Leas ()|

where C(fj) is the class of the source word, C(e;) is the class of the target word, Ly (j, i)
a binary function indicating the existence of a link between the words f; and e; in a
certain alignment set (source to target, target to source, hand aligned).

We tested this kind of feature using a frequency-based classification of the source
and target words. That is, we split the words into different classes according to their
frequency. These classes are computed in such a way that they have similar number of
word-counts. In the current implementation, the number of frequency based classes is set
to ten for source and ten for target words.

2.3.1.4 Experiments and Results

In our experiments we wanted to compare the output of the Discriminative Word
Aligner (DWA) to that of the Viterbi alignments from GIZA++, as well as, the combined
alignment typically used for phrase extraction. As we stated before, the DWA allows one
to combine several sources of information. Among them are the Viterbi alignments, the
IBM-4 lexicons and IBM4 fertilities and relative position features. For the experiments
described in this section, we also tested the frequency-class feature described in the
previous section. This feature was trained using the data set previously defined for
analysis (Table 2.21). 2552 Arabic-English and 2000 Chinese-English sentences were
used for evaluation and the results of the alignment results are shown in Table 2.25.

From these results we can conclude the following: First, discriminative word
alignment improves over just heuristically combining the Viterbi alignments from the
generative alignment models. This is more significant for Arabic, where the gain is of 4.3
points. Whereas for Chinese is only of 2.6. Adding the frequency feature improves the
precision for both Arabic and Chinese, however, leads also to a drop in coverage, giving
a modest improvement in AER only for the Chinese to English alignment.

Handbook of Natural Language Processing and Machine Translation 175

Alignment Alignment Quality
Precision | Recall [AER
Arabic-English
GIZA S2T 71.9 67.4 30.4
GIZA T2S 64.5 72.7 31.6
combined 68.0 76.5 28.0
DWA - baseline 80.5 72.5 23.7
DWA+Freg-class 83.7 69.6 24.0
Chinese-English
GIZA S2T 51.7 34.9 58.3
GIZA T2S 66.5 56.9 38.7
combined 68.0 56.3 38.4
DWA - baseline 72.9 57.4 35.8
DWA+Freg-class 75.8 56.7 35.1

Table 2.25: Alignment quality results for the different aligners

2.3.1.5 Conclusions and Future Work

We analyzed word alignments resulting from the standard generative word alignment
models. This analysis revealed fundamental problems with those alignment models. Most
notably, while all source words are aligned to exactly one target word or the NULL word,
a high percentage of the target words are not aligned. Symmetrizing the alignment using
heuristics to combine the Viterbi alignments for both directions, while reducing the
number of unaligned words, does often not result in any substantial improvement in the
alignment quality. On the other side, discriminative word alignment, which can
incorporate additional information, can lead to significant improvement over the
generative alignment models.

One additional problem with the word alignment remains unexplored in this study:
how do changes in word alignment relate to translation quality. Again, as we use
heuristics to extract phrase pairs from the word alignment, an improvement in alignment
error rate does not necessarily translate into better phrase tables and, thereby, into better
translations. To fully benefit from discriminative word alignment the phrase extraction
process needs to be adjusted.

2.3.2. Improved Word Alignment Algorithms for Arabic-
English and Chinese-English

Authors: Abraham Ittycheriah, Fei Huang, Salim Roukos, and Abhishek Arun

2.3.2.1 Introduction

In word alignment algorithms, we seek a correspondence between words and phrases
in a source sequence, S = [s3, sz. .. sx] and a target sequence of words, T = [ts, tz ... tu].
In this section, we document recent improvements in the Arabic-English and Chinese-
English word alignment algorithms utilizing the basic algorithm presented by

176 Chapter 2: Machine Translation from Text

Ittycheriah and Roukos (2005). Word Alignment as a statistical algorithm was first
presented by Brown et al. (1993). The IBM Models 1-5 have been incorporated into the
GIZA++ toolkit, which is the basis for many machine translation approaches (for
example see the work of Koehn et al. (2007)). Word alignment remains dominated by
unsupervised approaches (Brown et al. 1993; Vogel et al. 1996; Cherry and Lin 2003;
Liang et al. 2006a); this is largely due to the success of sentence alignment algorithms to
produce parallel corpora and, therefore, produce vast quantities of data for unsupervised
approaches to word alignment. A survey of word alignment techniques is presented by
Och and Ney (2003). Ittycheriah and Roukos (2005) showed that a small quantity of
supervised data together with Model 1 statistics from the unsupervised corpora yield
significant improvements in alignment accuracy.

Alignments are specified by means of a variable attached to each target element that
specifies which one source element it is attached to; this requirement reduces the space of
alignments from 2Is+1ITI to |S+1[I7l. Many-to-many alignments are often warranted in
natural language especially in the case of idioms, but initially we ignore these and focus
on the remainder of the words and return to this via post-processing mechanisms. °

The statistical alignment problem seeks the optimal alignment A,

A" = argmaxpc 4 p(4|S,T) (2.10)
where A is the set of all possible alignment configurations that satisfy the above

requirement on alignments. Following the developments of Ittycheriah and Roukos
(2005), an alignment can be considered as a series of alignment decisions,

p(AIST) = p(a}'|t}!, s¥ (2.11)

= HM o P(a; |t1) 51, (11 (2.12)

This is then factored into a transition model and an observation model with a
weighting parameter «,

p(A|ST) —-H Lop(aila;)*p(a;ltd!, st ai)¢ (213)

where i- refers to all previous decisions up to i.

® We extend the source sequence to have an extra item called the NULL cept (Brown et al., 1993) to which
we align spontaneous target words. In our notation from above |S+1| =K+Iand |T|=M

Handbook of Natural Language Processing and Machine Translation 177

Transition Model

The transition model serves as a shape function and is larger for those source
positions where it is likely to transition to next in the alignment process. The transition
model primarily serves to minimize the distance in terms of source positions between
consecutive alignments. Two additional concepts are captured in the transition model:

Frontier

In the alignment process, we align target words from left to right and the frontier is
the right-most state (source word) that has a previous target word aligned to it. The
frontier notion captures the frequent noun and adjective reversals in Arabic and the long
jumps after a “DE” construction in Chinese.

Fertility
The number of target words aligned to a source word determines the fertility of the
source word. In this aligner, the translation model is specified as,
1 1 1
pailaiy) = —| +——] (214)

Z(aj—) Ldist(ajai-1) ns(ap)

Where ns(i) represents the fertility or state visits for state i, Z(a;_;) is the
normalization constant and

dist(a;, a;_1) = min(|a; — a;_41, |la; — f;]) + €. (2.15)

Here € is a penalty for a zero distance transition and is set to 1 in the experiments below;
fi is the frontier position and a;_, is the previous alignment position. An example
alignment for Chinese-English is shown in Figure 2.8. In the example, aligning the period
in English has a frontier at source position 11 (because “on the functioning” which occurs
earlier in the target string is aligned to position 11) and, therefore, the jump is 1, whereas
without the frontier notion, the jump would be 5.

Figure 2.8: An Alignment Example

178 Chapter 2: Machine Translation from Text

Observation Model

The observation model is formulated using the maximum entropy formulation (Berger
et al. 1996) and it models the probability that the source and target elements are aligned.
The model details are,

y=¥(a) (2.16)
x = [tih sf,ab] (217)
PIx) = s exp Niidi(x,y) 2.18)

where y is the future, x is the history and Z(x) is the normalizing constant,

Z(x) = Xyrexp X Aii(x, y") (2.19)

and ¢;(x, y") are binary valued feature functions. The function i selects the source word
at the position being aligned or an attribute of this position and is the key difference to
the traditional formulations of maximum entropy. The future space is the set of source
positions in the current source sentence and in order to generalize the features, we
parameterize this space by the attributes observed at the source positions. Thus, the
partition function, Z(x), is a summation over all attributes observed at source positions
that are available for the current decision, a;. The model parameters, A;, are solved using
the 11S algorithm (Della Pietra et al. 1995) and converges in less than ten iterations. The
features investigated so far in this model for each language pair, are presented below.

Arabic Feature Set

e Word Pairs (Lexical): Word based features that define the alignment link. These
are very similar to the Model 1 type features except that singleton source and
target words are classed. The classing of these rare words ensures that the model
has support for unseen words.

e Context: Lexical items to the left and right of both the source and target positions
being aligned.

e Segmentation: In Arabic, the words can be segmented into a detailed
representation (Lee et al. 2003) and these features ask a question about a target
word and the morpheme in Arabic. An example is “Al#” and “the”. In addition,
in English we use a crude stemmer, which operates on long words (if the word is
longer than 6 characters, it keeps the characters from position 3 to 7; for example,
on “morpheme” it keeps just “rphe”).

e Classing (WordNet): To group English synonyms, this feature type asks the
question about the source word and the target WordNet id (Miller 1990).

Handbook of Natural Language Processing and Machine Translation 179

Spelling Feature: Due to the small quantities of training data, the out-of-
vocabulary rate of this aligner is rather high and this feature measures the
spelling overlap between the source and target words. Often names and numbers
have high overlap in their spellings. For Arabic, we Romanize the word with
vowels in order to maximize the overlap with the English word and measure a
string kernel distance between the two tokens.

Dynamic Features: These features capture the notion that if we align a
preposition or other introductory word, the next words in both languages are
likely to be aligned.

Distortion Feature: This feature measures the distance from the previous aligned
word; the distance is clipped to the range [-5,5].

Target Head Feature: This feature is a trigram consisting of the current source
and target word and its head word. This feature captures only source and target
words that occur in the supervised training data, whereas, the M1-proxy feature
presented below is more general.

M1-proxy Feature. This feature is designed to align a spontaneous target word
with the source word that is aligned to its head target word. For example, in
Figure 2.9, consider the article “the” in “the constitutional assembly”, which
should be aligned to the same source word (source position 5) as “assembly”. In
most sentence pairs, articles occur several times in the same sentence and can be
a significant cause of alignment errors. Since the target sentence is being aligned
from left to right, the article is aligned before its head word. The M1-proxy
feature utilizes Model 1 probabilities in conjunction with a parse tree as an
indicator feature function. Note that this feature function provides a look ahead
mechanism for the current decision of where to align the article.

Figure 2.9: Arabic Alignment Example (MTO03)

In addition to features used in the Arabic aligner, the following features are utilized
for Chinese-English word alignment:

Character Features: These features ask questions about the Chinese characters
that compose a word and the English word being aligned in the current alignment
decision.

180 Chapter 2: Machine Translation from Text

e Spelling Features: For Chinese, we utilize the Pinyin form of the word to
measure the string edit distance to the English word being aligned in the current
alignment. Parse Label Features. This feature utilizes syntactic information, i.e.,
the labels of the source and target constituents that cover the source and target
words. Because words within a constituent are often translated together, this
feature will ensure the words under certain parse tree labels (such as NP) are
more likely to be aligned together.

Smoothing the Observation Model
Parallel corpora tend to be significantly larger than the hand aligned data and we
utilize the IBM Model 1 probability matrix to smooth the observation model,

1 . . \B 1-8
p(a;l..) = EPME(ailti L sk, ab) le(Sailti) (2.20)

where B controls the amount of smoothing. Higher order models could be used for
smoothing, but Model-1 is found to be empirically better than a similar HMM probability
matrix. Experiments in varying B are discussed below. During the search below, we
require only a score for the observation model and thus drop the normalization Z.

2.3.2.2 Search Algorithm

The search process is a left-to-right beam (Viterbi) search aligning the target
sequence to its source counterparts. Since words repeat in both source and target
sequences, two hypotheses can only be merged if their alignment histories have been
identical over a significant range of target words. This range has to be the maximum
length between repeating words and in our experiments we find that a search history size
of 30 is optimal. Since the average length of sentences is typically around this number,
for most sentences very little merging occurs in the search process. The number of paths
is controlled by the beam size, which is set to around 500 paths.

2.3.2.3 Experimental Data

Training data is comprised of the 35K parallel sentences for Arabic and 10.4K
sentences for Chinese. Alignment performance is measured using the balanced F-measure
(Fraser and Marcu 2007) and, we additionally report precision and recall figures.

Arabic
Although Arabic-English human alignments are done using unsegmented Arabic,
recent machine translation systems built for GALE evaluations benefit from doing

Handbook of Natural Language Processing and Machine Translation 181

segmentation as performed in the Arabic Treebank (ATB). Mapping from unsegmented
to segmented Arabic is done by a Model-1 type alignment of the tokens that are
segmented. This introduces some error in the supervised corpus, but is small compared to
the overall alignment error rate.

Chinese

Chinese word alignments are done at a character level, which allows any
segmentation of the source into words and then alignments can be mapped to this word
segmentation. This allows the annotation to be independent of the word segmentation
decision.

2.3.2.4 Experimets

Testing of the above model is done for Arabic-English on the MTO3 test set provided
as part of LDC2006G09 with the same projection of unsegmented tokens to segmented
tokens as was done for the training material. Chinese-English is tested on 512 sentences
drawn randomly from a parallel corpus of over 10M sentence pairs.”® As baselines, in
Table 2.26, we present results of an HMM algorithm (Vogel et al. 1996; Ge 2004) as well
as GIZA++ alignments (IBM Model 4).

Features

In Table 2.26, the effect of incrementally adding each feature type is shown for
Arabic-English. The Word Pairs feature type reduces the F-measure error (100 - F) of
the HMM aligner by 48% and over the GIZA++ baseline by 37%. Adding the features
shows a steady improvement in performance and with all the feature types, the system
achieves an F-measure of 89.1 which is an F-measure error reduction of 55% over HMM
and 46% over GIZA++. In order to compare to previous published results, on the same 50
sentences of MTO3 used by Ittycheriah and Roukos (2005), we obtain an F-measure of
90.2. This result is not directly comparable since it is on segmented input and the number
of input tokens is different from the previously published result.

For Chinese-English, Table 2.27 shows the alignment scores when adding the
features incrementally. The Word Pairs feature improves the F-measure error over the
HMM algorithm by 17% and over GIZA++ by 4.6%. The Character features improve the
F-measure by 1.0 point absolute and the parse label feature adds 0.6 point. Utilizing all
the features, the F-measure error is reduced by 38.6% over the GIZA++ algorithm.

A further refinement of the word alignment is to remove unlikely alignment links
according to a confidence measure of the alignment links (Huang 2009). This leads to
higher alignment precision, but lower recall. The link confidence filtering increased the

19 Both test sets are available from the authors for GALE participants.

182 Chapter 2: Machine Translation from Text

precision by 8 points while reducing the recall by 3.5 points and improved the overall F-
measure by 1.4 points.

#featur #feature

System es P R F Sytem S P R F
HMM 770 | 746 |758 HMM 62.7 |48.6 |54.7
GIZA++ 76.8 |83.4 [80.0 GIZA++ 67.0 |55.3 |[60.6
Word Pairs 163K [88.6 |[86.3 |87.4 Word Pairs 65K 66.2 |59.0 |624
+Context 175K |89.8 [86.3 |88.0 +Char 92K 673 |60.1 [635
+Spelling 175K | 90.0 |86.6 |88.3 +Context 122K 673 |60.7 |[63.8
+Segmentation | 178K | 90.1 | 86.7 |884 +Spelling 122K 672 |60.7 [638
+WordNet 272K | 90.1 [86.9 |[885 +WordNet 201K 69.0 |623 |[655
+Distortion 292K |89.2 |[88.3 |88.8 +ParseLabel 219K 69.6 |63.0 |66.1
+Dynamic Word | 292K | 89.2 |88.3 |[88.7 +M1 Proxy 219K 70.8 |644 |[675

+Target Head 293K [89.3 [885 |88.9 c I}ng
onfidence

*MiProxy | 204K 894 |888 [89.1 Filtering NA | 792 |60.9 |689

Table 2.26: Arabic-English Word

Alignment Performance. Table 2.27: Chinese-English Word

Alignment Performance.

Smoothing

Here we study the effect of the relative weight between the transition weight (a) and
the observation model and the smoothing parameter (5) between Model 1 and the
maximum entropy (ME) model. First, in Figure 2.10 we fix the Model 1 weight to be 0.1
and vary the transition weight from 0 to 0.9. Next, in Figure 2.11 we fix the transition
weight to 0.45 and vary the ME weight from 0 to 0.55. The graphs show a stable
performance around the optimal thresholds, which set the Transition Model weight to
0.45, Maximum Entropy Model weight to 0.45 and Model 1 weight to 0.1. These values
are used in both Arabic-English and Chinese-English.

F-measure vs. Transition Weight F-Measure vs. MaxEnt Weight
1 1
09 0.9
OB.'. ., O_Br'r’.'_’r‘_.—_.\.
07 o7
o 06 w 06
= =
% 05 9 o5
@« +#}
£ 04 = 04
I.L uw
03 0.3
0.2 0.2

01 o1

0
o 01 02 03 04 O5 06 O7 08 09

1]

(1] 01 02 03 0.4 05 0.6
Transition Weight A
MaxEnt Weight
Figure 2.10: Effect of Transition Figure 2.11: Effect of Maximum
Weight versus the Observation Model Entropy Model Weight versus Model 1

Weight for Arabic English. Weight.

Handbook of Natural Language Processing and Machine Translation 183

2.3.2.5 Conclusion

In this section, we have extended the work of Ittycheriah and Roukos (2005) to
include several new features and showed its application to the Chinese-English word
alignment problem. We showed significant improvement over standard algorithms such
as GIZA++'s IBM Model 4. The resulting alignments are utilized in the DTM2 system
(Ittycheriah and Roukos 2007) for both Arabic-English and Chinese-English systems.

2.4 Translation Models

2.4.1. Arabic-English Machine Translation Using the Direct
Translation Model
Authors: Abraham Ittycheriah and Salim Roukos

2.4.1.1 Direct Translation Models

Statistical machine translation (SMT) takes a source sequence, S = [s; S ... Sk] and
generates a target sequence, T* = [t; t, ... t;], by finding the most likely translation
given by:

T* = argmaxy p(T|S) (2.22)

This work builds on that of Ittycheriah and Roukos (2007) and in particular we
document our system improvements and methodology since GALE Phase 1 in this
Section. This section is self-sufficient as we describe in some detail the model and newer
experiments. In the seminal paper of Brown et al. (1993), Equation 2.21 was factored
using the source-channel model into

T* = argmax; p(S|T) p*(T), (2.22)

where the two models, the translation model, p(S|T) and the language model, p(T), are
estimated separately: the former using a parallel corpus and a hidden alignment model
and the latter using a typically much larger monolingual corpus. The weighting factor
A is typically tuned on a development test set by optimizing a translation accuracy
criterion such as BLEU (Papineni et al. 2002). Equation 2.22 is a special case of a
Maximum Entropy (log-linear) model described by Papineni et al. (1997), called the
Direct Translation Model (DTM) with two feature functions. Och and Ney (2002)
reintroduced the DTM to machine translation by using a larger number of feature
functions (about a dozen or so) along with the use of phrase pairs. The proposed phrase-
based DTM is:

T* = argmaxy XM _; Amhm (S, T), (2.23)
where one recognizes the exponential model using m feature functions, hn,(.) and the

features weights (scaling factors) are trained using either the maximum entropy principle
or more typically by optimizing a translation error metric on a development test set.

184 Chapter 2: Machine Translation from Text

Typically, the Direct Translation Models for machine translation have been limited to a
dozen or so feature functions. Another key ingredient to the proposed phrase-based DTM
model proposed by Och and Ney (2002) is the use of phrases. Briefly, we call a phrase
pair of p source words and r target words a “block”. A sentence pair (S,T) can be seen as
a sequence b? of B blocks. The phrase-based SMT achieved a significant improvement in
translation quality over the source channel model by the use of phrase-pairs in defining
the feature functions. The phrase pair library is extracted from a parallel corpus using a
word alignment model (such as Model 4 in GIZA or a MaxEnt alignment (Ittycheriah and
Roukos 2005)) to align source words to targets words and additional heuristics are used
to extract phrase pairs from the aligned parallel corpus. Given a source sentence, we
maximize over all possible target sentences and covering of the source sentence by the
available phrase library (implicitly defining a block alignment defined by the best scoring
hypothesis):

T* = argmaxy Y1 Amhm (S, T) (2.24)
= argmaxs gy Zm=1Amhm (b?) (2.25)
= argmax Y1 A Dieq Ain (by|b;2) (2.26)

b7 (s)

where b5;(S) covers the input sentence S and produces the target sentence T. The feature
functions h(.) are decomposed by the sequence of blocks covering the sentence pair (S, T)
as shown in Equation 2.26, above. For some feature functions such as the block unigram
cost and the block Model 1 cost in either direction, h(b) depends only on the current
block b while for other feature functions such as the n-gram language model, they depend
on the current block and as many previous blocks as needed to cover the n-gram target
word history. Note that a distortion model has been used in some phrase-based systems
and that is captured by the distance in words between the last source word of block b;-;
and the first word of the source side of the next block b;; we sometimes refer to this
distance as the “jump”, denoted by the variable j. As indicated earlier, current phrase-
based systems use a dozen or so feature functions such as the log unigram frequency of a
block b, the Model 1 scores in both directions for block b, the n-gram language model
score of the target sentence, the number of words in T, the number of blocks, etc. and the
feature weights A, are estimated by optimizing an error criterion such as MER (Och
2003). To summarize each of the feature functions h,,(.) is typically a continuous valued
function and is typically determined separately by a maximum likelihood estimate (with
smoothing in some cases, e.g. the language model) and they are combined with a global
set of weights (a small number on the order of a dozen or so). One can see that the
phrase-based DTM uses a “block” alignment between source and target sentences and a
small number of feature weights.

In our proposed DTM approach (DTM2), we factor the model as:
p(T|S) = TliZ1p (bilbi-, S) (227)

Handbook of Natural Language Processing and Machine Translation 185

where b;- is the sequence of previous blocks producing the partial target sentence left to
right and covering a subset of the source sentence S and we abuse the notation by only
allowing blocks b; that are consistent with source sentence S and the partially generated
target sentence up to this point. We make explicit the “jump” step between blocks by
showing the jump variable in Equation 2.27 as:

p(b;|b;_,S) = p(b;,jlb;_,S) (2.28)
We use a Maximum Entropy model for p(b;|b;_, S)
p(bylb;_,S) =2 P=D 64y 31 A (S, b), by) (229)

where p,(.) is a prior distribution, Z is a normalizing term and ¢,, (S, b2, j, b;) are the
features of the model. The feature functions ¢n,(.) are binary valued but are numerous
trying to capture detailed aspects of the translation process as described in Section 2.4.1.2
and each has its own weight A,; these feature weights are jointly estimated using the
Maximum Entropy Principle (MaxEnt) in contrast to the independently estimated feature
functions typically used in today's phrase-based systems. The prior distribution utilized in
this work is the normal unigram phrase prior. The definition of the features will be
discussed in detail below, however, because we can enumerate all possible futures, this
model can be trained using MaxEnt. The set of phrases for each source word or sequence
of words then limits the possible target translations. This greatly reduces the number of
futures from one of being proportional to the vocabulary size to the number phrases that a
source word is part of. Improved Iterative Scaling (Della Pietra et al. 1995) is utilized to
solve for the feature weights A,,. MaxEnt allows a very rich definition of features derived
from the whole source sentence S, various analyses of the sentence such as word
segmentation, morpheme segmentation, part-of-speech tagging and parsing and the
partial target sentence produced at each point, denoted as t/;. We describe our rich set of
features in Section 2.4.1.2. The blocks used in our work consist of phrases of lengths
(m,n) and were categorized by Ittycheriah and Roukos (2007) into:

1. n =0, source word producing nothing in the target language (deletion block),

2. m =0, spontaneous target word (insertion block),

3. m=1andn = 1, asource word producing n target words including the possibility
of a variable (denoted by X) which is to be filled with other blocks from the
sentence (the latter case called a discontinuous block)

4, m > 1 and n = 1, a sequence of source words producing a single target words
including the possibility of a variable on the source side (as in the French ne...pas
translating into not, called multi-word singletons) in the source sequence

5. m>1andn> 1, anon-compositional phrase translation.

Although initial experiments were carried out only on types 1 and 3, the current
effort incorporates all types of blocks except Type 2. The phrases are derived from

186 Chapter 2: Machine Translation from Text

the alignment and in particular the word position shown in Figure 2.12. Examples of
phrases and their categorization is given in Table 2.28.

Word Position | Source Phrase [Target Phrase Categorization (Type)
1 wit e 0 Deletion (1)
2 ftHt opened Normal (3)
3 mrAkz the X centers | Normal with Variable (3)
8,9 AIsAEp $num $num Multi-source word (4)
11,12 Altwgyt AlmHIy local time Non-compositional (5)

Table 2.28: Complex Phrase Examples

In row 5, “Altwqgyt AImHIly” seems to have a simpler word to word alignment, but
we are limited to the alignment provided by the word alignment algorithm. The algorithm
extracts more complex phrases whenever a simple block extraction fails. Thus, the
resulting phrases still form a minimalist set.

Figure 2.12: Arabic Parse Example

2.4.1.2 Features

The features used in this model are all binary questions about the phrase that is being
generated and the previous generations. The features can be categorized into the

following broad categories:

1. Lexical Features: These are internal features to a phrase pair. They examine the
source word(s), target word(s) and the jump from the previously translated source
word and the size of the source phrase and target phrase. The target size indicates
the “fertility” of this phrase and the source size allows the feature to be specific
for different phrase sizes. As an example, for the Arabic word “mrAkz” above,
the feature when it generates “the” is,

Handbook of Natural Language Processing and Machine Translation 187

1 if s=mrAkz, t =the, j=3

t,j = 2.30
¢(t.),s) {0 otherwise (2:30)

where the jump of 3 is obtained because the previous target word is the boundary
which is aligned to the source boundary and we need to jump 3 words on the
source side to produce the target “the” from the Arabic “mrAkz”.*! The feature
when “mrAkz” generates the word “centers” has a jump of —1 since the previous
target word comes from the next Arabic word “AlAqgtrAE”. The jump captures
the complex generation story involved with the variable.

2. Lexical Context Features: These examplify the lexical neighbors of the
generation. The previous target words and the neighborhood of the source word
are examined.

3. Arabic Segmentation Features: An Arabic segmenter is utilized to produce
detailed morphemes; these features examine Cartesian product of the Arabic
segments together with the English words. Segments which are exclusively
identified to only certain English words are restricted to those words by means of
a dictionary.

4. Part-of-Speech Features: For each language part-of-speech taggers provide
additional class information which are used in this feature type.

5. Coverage Features: These features examine the state of the source positions
surrounding the current generation point. The state can be (a) covered: meaning
that this source position has already generated an English phrase, (b) partial:
indicating that this source position has generated some text, but is waiting for a
variable to be filled, (c) uncovered: indicating that the source position is still
open to future generation events.

|Count |Alpha|Jump[Source| Target | Label |Coverage |Orientation
1] 178 [1.156| -1 | FtHt |opened | NP-SBJ 1 1
2| 26 [1.323| -2 | FtHt |opened | NP-SBJ 1 1
3| 142 |1.154| 1 | FtHt |opened [NP-OBJ 0 1
41 18 |1569| 1 | FtHt |opened | PRT 0 -1

Table 2.29: Features for “ftHt” (Source position 2 in Figure 2.12

6. Parse Node Coverage Feature: A source parser produces parse trees as shown
in Figure 2.12. This feature examines if when jumping the current source position
there is a parse node that covers the intervening range. The parse node can be in
one of four coverage states: (1) uncovered, (2) covered, (3) partial, (4) mixed:

1 Strictly speaking the jump is 2 since the first Arabic word w# uses a deletion block (that produces a null
target) and these are handled left to right, but for the sake of simplifying the presentation we do not discuss
deletion blocks further.

188 Chapter 2: Machine Translation from Text

this state is when the range of source positions of this parse node are in a mixed
state of coverage. The feature also indicates the orientation of the parse node,
whether it is to the right or left of the current generating source position. In the
example shown in Figure 2.12, source position 2 is a verb which is generating the
English word “opened”. The Parse Node Coverage feature indicates that the next
source position which has an NP-SBJ label above is in a covered state. This
feature only fires when the decoder proposes to translate the verb after the NP-
SBJ has been covered. The features for this verb are displayed in Table 2.29.

2.4.1.3 Translation Decoder

A beam search decoder similar to phrase-based systems (Tillmann and Ney 2003) is
used to translate the source sentence into the target sequence. The decoder is a skip-
window width decoder where the source sentence is traversed left to right. Each
hypothesized target sequence remembers:

1. Coverage status (both Complete and Partial covered states)
2. The last covered source position

The coverage status indicator is scanned to find the first open source position and a
window of source positions is then proposed as generating the next target phrase. As is
normally done in phrase based systems, the following meta-feature functions are
computed with their weights given in parenthesis:

1. Maximum Entropy model score p(¢;,j|s) (0.35)

2. The phrase pair unigram score (0.01)

3. Model 1 score, p(s|t) (0.2)

4. Language Model score (0.3): This is implemented as a foreground 5-gram LM
which encompasses all monolingual, as well as, the target side of the parallel
corpus with weight of 0.2; the second component is a domain 4-gram LM, which
trained on just the parallel corpus with a weight of 0.1.

5. Word count score (-0.15)

These are weighted in the log domain and added to form the score for this extension.
The weights are tuned on the MTO06 data set for both Arabic and Chinese. The word
count weight is negative indicating a boost in the score for phrases that produce more
target words. Word count weight is the only parameter that varies for the languages and
in Chinese the system typically produces less target words than is desired and thus, we
use a weight of -0.2. Performance is not very sensitive to small changes in the remaining
parameters. Since the phrases employed in DTM are simple, a more extensive search is
required to find the right ‘re’-ordering of the phrases. For Arabic, the skip parameter is 4
and window width is variable between 5 and 14. The longer window width is applied
when the part-of-speech tag of the Arabic word indicates it’s a verb.

Handbook of Natural Language Processing and Machine Translation 189

GALE Phase 3 Experiments and Analysis

Recent experiments on Arabic-English were carried out on the GALE Dev07
(LDC2007E16) corpus. This corpus has 579 sentences (21K words) in the newswire
section and this is utilized as the test data below. As the training data increases with more
recent material, older tests are less reliable predictors of performance as a certain amount
of contamination occurs from the training data. Hence, here we repeat the experiments
carried out by Ittycheriah and Roukos (2007) and also contrast the new PARSE-based
features. Also, in GALE the official metric is Human TER by which means that human
references are created and system's output are post-edited to match the meaning of this
reference and then TER (Snover et al. 2006) is computed between the system output and
the post-edited system. We utilize a combination of metrics in an effort to get a better
correlation to HTER. This combination is essentially equally weighting BLEU and TER
which is presented below as (TER-BLEU)/2.

Sub-Sampling

For the Arabic-English language pair, we have about 7.8 million sentence pairs. Test
sets typically come from more recent material and sub-sampling is a method by which a
parallel corpus is derived that is closer to the test set. In order to do this, n-grams up to
order 15 are collected from the test set. For each n-gram, we require 20 examples from
the larger parallel corpus and for the DevO7 test set we obtain a total of 295,913
sentences on which to train the DTM model. Model 1 is trained on all of the training data.
Sub-sampling typically yields 1 to 2 BLEU point improvements over a general system.

Experiments

A feature ablation study is carried out on Dev07 and is presented in Table 2.30. The
different feature types have slight variation between test sets, but the general trend is that
newer feature sets improve the scores. Of course, features are developed in an error-
driven approach and hence, this is not entirely surprising. The baseline phrase decoder is
a multi-stack decoder that utilizes n, m phrases and is trained on a similar sub-sampled
corpus.

Analysis

e Component Errors: Part-of-speech tags and Parse structures are used in the
features and when these algorithms make errors, often the final result is
impacted.

e Alignment Errors: The derivation of the algorithm is predicated on a word
alignment between the source and target sentences. Since we have limited the
training to just the alignments provided, errors made by the aligner are a
significant part of the errors in the translation system. This is in contrast to many
approaches which still question the utility of improving alignments.

e Model Errors: A fundamental assumption made in this model is that the number
of translations for each source sequence can be limited to 15 to 20. This
assumption is a poor one for frequent Arabic words which can translate into a
number of frequent English phrases.

190

Chapter 2: Machine Translation from Text

Search Errors: Restricting the search to a skip of 4 source words and a window
width of up to 14 words is still restrictive and a few sentences require a more
significant search.

Feature Types # offeats TER Bleu (T-B)/2
Baseline Phrase Decoder 41.53 52.90 -5.68
Lexical Features 524528 40.89 52.63 -5.87
+Lexical Context Features | 2312573 | 40.09 54.8 -7.15

+Lexical Trigram Context | 3402358 | 40.12 54.28 -7.08
+Segmentation Features | 3574173 | 40.01 54.33 -7.16
+Variable Features 3584318 | 40.11 54.20 -7.04
+Coverage Features 371939 40.06 54.30 -7.12
+POS Features 3818413 | 39.96 55.06 -7.55
+ParseFeats 4063782 | 39.78 55.37 -7.79

Table 2.30: Dev07 Feature Study.

The errors that the system makes can be categorized into:

Component Errors: Part-of-speech tags and Parse structures are used in the
features and when these algorithms make errors, often the final result is
impacted.

Alignment Errors: The derivation of the algorithm is predicated on a word
alignment between the source and target sentences. Since we have limited the
training to just the alignments provided, errors made by the aligner are a
significant part of the errors in the translation system. This is in contrast to many
approaches which still question the utility of improving alignments.

Model Errors: A fundamental assumption made in this model is that the number
of translations for each source sequence can be limited to 15 to 20. This
assumption is a poor one for frequent Arabic words which can translate into a
number of frequent English phrases.

Search Errors: Restricting the search to a skip of 4 source words and a window
width of up to 14 words is still restrictive and a few sentences require a more
significant search.

2.4.1.4 Conclusion and Future Work

We have presented a novel formulation for the translation model. The model
incorporates millions of features to learn the neighboring context to guide the search
process in choosing the right word choice and order for the translating the source
sentence. A feature ablation study shows that the platform is able to incorporate more
sophisticated features with a resulting gain in a few automatic metrics. In the future, we
intend to incorporate a statistical model for choosing the window of source positions to
translate.

Handbook of Natural Language Processing and Machine Translation 191

2.4.2. Factored Translation Models
Authors: Philipp Koehn and Hieu Hoang

2.4.2.1 Introduction

Phrase-based translation models form a strong baseline for statistical machine
translation, especially since they make few assumptions about the training data. However,
a number of translation problems, especially handling morphology and reordering are
rooted in linguistic properties that are not well addressed by these models. There have
been many pursuits motivated by the integration of linguistic knowledge into phrase-
based translation models. One promising direction is to follow the structural insight that
language is fundamentally recursive and hence translation models should also be
structured in the form of recursive (or hierarchical) rule applications (Chiang 2007).

We are concerned here with another direction: the insight that many translation
problems require a linguistic vocabulary that goes beyond the notion that language is a
sequence (or tree structure) of word tokens. Several properties of words may matter for
translation, such as their part-of-speech, their morphological features, or their syntactic or
semantic behavior.

To integrate such diverse properties of words into phrase-based translation models,
we propose to represent words not as mere tokens from a finite vocabulary, but as vectors
of factors. In this section, we outline factored translation models and show how they may
be used to address problems such as reordering, rich morphology, syntactic agreement
and other characteristics of language that pose problems for translation.

2.4.2.2 Related Work

A wide range of prior work exists on the idea of integrating linguistic information
into phrase-based statistical machine translation models.

Morphology — Statistical models for morphology as part of a statistical machine
translation system have been developed for inflected languages (Nieen and Ney 2001,
2004). Morphological features may be replaced by pseudo-words (Goldwater and
McClosky 2005). Morphological annotation is especially useful for small training
corpora (Popovic™ et al. 2005). For highly agglutinative languages such as Arabic, the
main focus is splitting off affixes with various schemes (Habash and Sadat 2006), or by
combination of such schemes (Sadat and Habash 2006). A straight forward application of
the morpheme splitting idea may not always lead to performance gains (Virpioja et al.
2007). Yang and Kirchhoff (2006) present a backoff method that resolves unknown
words by increasingly aggressive morphological stemming and compound splitting.
Denoual (2007) uses spelling similarity to find the translation of unknown words by
analogy. Talbot and Osborne (2006) motivate similar work by reducing redundancy in
the input language, again mostly by morphological stemming. Lemmatizing words may
improve word alignment performance (Corston-Oliver and Gamon 2004). Using the
frequency of stems in the corpus in a finite state approach may guide when to split (El
Isbihani et al 2006), potentially guided by a small lexicon (Riesa and Yarowsky 2006).

192 Chapter 2: Machine Translation from Text

Splitting off affixes may also be a viable strategy when translating into morphologically
rich languages (Durgar El-Kahlout and Oflazer 2006). Different morphological analyses
may be encoded in a confusion network as input to the translation system to avoid hard
choices (Dyer 2007a, b). This approach may be extended to lattice decoding and tree-
based models (Dyer et al. 2008).

Generating rich morphology — Generating rich morphology poses different
challenges. Often relevant information is distributed widely over the input sentence or
missing altogether. Minkov et al. (2007) use a maximum entropy model to generate rich
Russian morphology and show improved performance over using the standard approach
of relying on the language model. Such a model may be used for statistical machine
translation by adjusting the inflections in a post-processing stage (Toutanova et al. 2008).
Translation between related morphologically rich related languages may model the
lexical translation step as a morphological analysis, transfer and generation process using
finite state tools (Tantug et al. 2007a). But also, splitting words into stem and morphemes
is a valid strategy for translating into a language with rich morphology as demonstrated
for English—-Turkish (Oflazer and Durgar El-Kahlout 2007) and English—Arabic (Badr et
al. 2008), and also for translating between two highly inflected languages as in the case
of Turkman-Turkish language pairs (Tantug et al. 2007b). Translating unknown
morphological variants may be learned by analogy to other morphological spelling
variations (Langlais and Patry 2007). For very closely related languages such as Catalan
and Spanish, translating not chunks of words, but chunks of letters in a phrase-based
approach achieves decent results and addresses very well the problem of unknown words
(Vilar et al. 2007).

Translating tense, case and markers — Schiehlen (1998) analyses the translation
of tense across languages and warns against a simplistic view of the problem. Murata et
al. (2001) propose a machine learning method using support vector machines to predict
target language tense. Ye et al. (2006) propose to use additional features in a conditional
random field classifier to determine verb tenses when translating from Chinese to
English. Ueffing and Ney (2003) use a preprocessing method to transform the English
verb complex to match its Spanish translation more closely. A similar problem is the
prediction of case markers in Japanese (Suzuki and Toutanova 2006), which may be done
using a maximum entropy model as part of a treelet translation system (Toutanova and
Suzuki 2007), or the prediction of aspect markers in Chinese, which may be framed as
classification problem and modeled with conditional random fields (Ye et al. 2007).
Another example of syntactic markers that are more common in Asian than European
languages are numeral classifiers (as in three sheets of paper). Paul et al. (2002) present a
corpus-based method to generate them for Japanese and Zhang et al. (2008a) present a
method for generating Chinese measure words. Dorr (1994) presents an overview of
linguistic differences between languages, called divergences (Gupta and Chatterjee
2003).

Handbook of Natural Language Processing and Machine Translation 193

Translation of chunks and clauses — To approach the problem of the translation of
a sentence, one strategy is to break up the problem along syntactic lines, be it clauses
(Kashioka et al. 2003) or syntactic chunks (Koehn and Knight 2002; Schafer and
Yarowsky 2003a, b). This strategy also allows for special components for the translation
of more basic syntactic elements such as noun phrases (Koehn and Knight 2003) or noun
compounds (Tanaka and Baldwin 2003). Owczarzak et al. (2006) and Mellebeek et al.
(2006) break up each sentence into chunks, translating the chunks separately and
combine the translations into a transformed skeleton. Hewavitharana et al. (2007)
augment a phrase-based model with translations for noun phrases that are translated
separately.

Syntactic pre-reordering — Given the limitations of the dominating phrase-based
statistical machine translation especially with long-distance reordering for syntactic
reasons, it may be better to treat reordering in preprocessing by a handcrafted component,
which has been explored for German-English (Collins et al. 2005), Japanese—English
(Komachi et al. 2006), Chinese-English (Wang et al. 2007) and English—Hindi
(Ramanathan et al. 2008). Zwarts and Dras (2007) point out that translation
improvements are due to both a reduction of reordering needed during decoding and the
increased learning of phrases of syntactic dependents. Nguyen and Shimazu (2006) also
use manual rules for syntactic transformation in a preprocessing step. Such a reordering
component may also be learned automatically from parsed training data, as shown for
French—English (Xia and McCord 2004), Arabic-English (Habash, 2007b) and Chinese—
English (Crego and Marifio 2007). The latter work encodes different orderings in an input
lattice to the decoder. Li et al. (2007) propose a maximum entropy pre-reordering model
based on syntactic parse trees in the source language. It may be beneficial to train
different such pre-reordering models for different sentence types (questions, etc.) (Zhang
et al. 2008b). Preprocessing the input to a machine translation system may also include
splitting it up into smaller sentences (Lee et al. 2008).

POS and chunk-based pre-reordering — Reordering patterns may also be learned
over part-of-speech tags, allowing the input to be converted into a reordering graph
(Crego and Marifio, 2006) or enabling a rescoring approach with the patterns as features
(Chen et al. 2006). The reordering rules may also be integrated into an otherwise
monotone decoder (Tillmann 2008). Such rules may also be used in a separate reordering
model. Such rules may be based on automatic word classes (Costa-Jussa™ and Fonollosa,
2006; Crego et al. 2006), which was shown to outperform part-of-speech tags (Costa-
Jussa® and Fonollosa 2007), or they may be based on syntactic chunks (Zhang et al.
2007a, b; Crego and Habash 2008). Scoring for rule applications may be encoded in the
reordering graph, or done once the target word order is established, which allows for
rewarding reorderings that happened due to phrase-internal reordering (EIming 2008a, b).

Syntactic reranking — Linguistic features may be added to an n-best of candidate
translation to be exploited by a reranking approach. This was explored by Och et al.
(2004) and by Koehn and Knight (2003) for noun phrases. Sequence models trained on
part-of-speech tags (Bonneau Maynard et al. 2007), or CCG supertags (Hassan et al.

194 Chapter 2: Machine Translation from Text

2007), may be also used in reranking. To check if the dependency structure is preserved
during translation, the number of preserved dependency links or paths may be a useful
feature (Nikoulina and Dymetman 2008).

2.4.2.3 Definition of Factored Models

Factored translation models integrate additional linguistic markup at the word level.
Each type of additional word-level information is called a factor. The type of information
that may be useful could consist of word, lemma, part-of-speech, morphology, word
class, etc. The translation of lemma and morphological factors separately would help with
sparse data problems in morphologically rich languages. Additional information such as
part-of-speech may be helpful in making reordering or grammatical coherence decisions.
The presence of morphological features on the target side allows for checking agreement
within noun phrases or between subject and verb.

As we argue above, one example to illustrate the short-comings of the traditional
surface word approach in statistical machine translation is the poor handling of
morphology. Each word form is treated as a token in itself. This means that the
translation model treats, say, the word house completely independent of the word houses.
Any instance of house in the training data does not add any knowledge to the translation
of houses.

In the extreme case, while the translation of house may be known to the model, the
word houses may be unknown and the system will not be able to translate it. While this
problem does not show up as strongly in English — due to the very limited
morphological inflection in English — it does constitute a significant problem for
morphologically rich languages such as Arabic, German, Turkish, Czech, etc.

Thus, it may be preferably to model translation between morphologically rich
languages on the level of lemmas and, thus, pooling the evidence for different word
forms that derive from a common lemma. In such a model, we would want to translate
lemma and morphological information separately and combine this information on the
output side to ultimately generate the output surface words.

Figure 2.13: Example factored model: morphological analysis and generation, decomposed into three
mapping steps (translation of lemmas, translation of part-of-speech and morphological information,
generation of surface forms).

Such a model can be defined in a straight forward way as a factored translation
model. See Figure 2.13 for an illustration. Note that factored translation models may also

Handbook of Natural Language Processing and Machine Translation 195

integrate less obviously linguistic annotation such as statistically defined word classes, or
any other annotation. For further details, refer to the work of Koehn and Hoang (2007).

Training Factored Models

The training of factored models follows closely the training method for traditional
phrase-based models. The training data (a parallel corpus) has to be annotated with the
additional factors. For instance, if we want to add part-of-speech information on the input
and output side, we need part-of-speech tagged training data. Typically, this involves
running automatic tools on the corpus, since manually annotated corpora are rare and
expensive to produce. Next, we establish a word alignment for all the sentences in the
parallel training corpus using standard methods.

Each mapping step forms a component of the overall model. From a training point of
view this means that we need to learn translation and generation tables from the word-
aligned parallel corpus and define scoring methods that help us to choose between
ambiguous mappings.

Phrase-based translation models are acquired from a word-aligned parallel corpus by
extracting all phrase-pairs that are consistent with the word alignment. Given the set of
extracted phrase pairs with counts, various feature functions are estimated, such as
conditional phrase translation probabilities based on relative frequency estimation or
lexical translation probabilities based on the words in the phrases.

The models for the translation steps may be acquired in the same manner from a
word-aligned parallel corpus. For the specified factors in the input and output, phrase
mappings are extracted. The set of phrase mappings (now over factored representations)
is scored based on relative counts and word-based translation probabilities. See Figure
2.14 for an illustration.

Figure 2.14: Training: Extraction of translation models for any factors follows the phrase extraction method
for phrase-based models.

The generation models are probability distributions that are estimated on the output
side only. In fact, additional monolingual data may be used. The generation model is
learnt on a word-for-word basis. For instance, for a generation step that maps surface
forms to part-of-speech, a table with entries such as (fish,NN) is constructed. As feature
functions we may use the conditional probability distributions, e.g., p(NN|fish), obtained
by maximum likelihood estimation.

An important component of statistical machine translation is the language model,
typically an n-gram model over surface forms of words. In the framework of factored
translation models, such sequence models may be defined over any factor, or any set of

196 Chapter 2: Machine Translation from Text

factors. For factors such as part-of-speech tags, building and using higher order n-gram
models (7-gram, 9-gram) is straight forward.

2.4.2.4 Applications

The framework of factored translation models has many applications, which we
outline in this section. Additional factors may be supplied to the input and the output.
They may be used in the reordering model or the translation model.

Enriching the Input

When tackling language pairs such as Chinese-English, we often have to create
output words and phrases from input that is under specified. Chinese is less richly
annotated than English. For instance, it lacks determiners, plural/singular distinction in
nouns and verb tenses.

This annotation is not strictly required to bring across the same meaning, since the
information may be provided by other means, for instance by mentioning the number of
objects or time of the event a few sentences earlier in the document. During the
translation process with today’s models, however, we do need the information in a very
local context when translating a word or a phrase.

We may obtain the needed information from the context and add it as additional
factor at the word level. For instance, by co-reference resolution, we can connect up the
mentions of an entity and distribute information about singular/plural throughout the
entity chain.

We explored the use of factored translation models in such a scenario (Avramidis and
Koehn 2008) to add annotation for verbs and noun phrases and showed improvements in
selecting the correct morphological variants in the output (reducing verb translation
errors from 19% to 5.4% and noun case translation errors from 9% to 6%).

Enriching the Output

A key component of statistical machine translation systems is the language model,
which is typically an n-gram model. Since language models of order 5 are considered
large, this limits the reach of the component that ensures fluent output to a relatively
small local window. Especially for morphologically rich languages, even a 5-gram
language model does not have sufficient coverage and frequently backs off to lower order
models.

Factored language models (Bilmes and Kirchhoff 2003) were proposed to address
these challenges by allowing backoff to more robust histories, such as part-of-speech
tags. In the factored translation model framework, we may use sequence models over
specific factors, such as part-of-speech tags that are not strictly language models, but
serve the same purpose: ensuring fluent output of the translation system.

Sequence models over part-of-speech tags may use much larger windows (we used 7-
gram and 9-gram models), due to the much smaller vocabulary, the Penn tree bank tag set
has 46 different tags. Such longer-range models ensure grammatical coherence beyond
what surface word models are able to address.

The use of additional factors has been explored in various ways. The approach has
been shown to be successful for integrating part-of-speech tags (Koehn and Hoang 2007),

Handbook of Natural Language Processing and Machine Translation 197

word class factors (Shen et al. 2006), CCG super-tags (Birch et al. 2007), morphological
tags (Koehn and Hoang 2007; Badr et al. 2008), and shallow syntactic tags (Cettolo and
Bertoldi 2008). More complex use of additional output factors have been explored as well
(Bojar 2007).

The additional output factors may be either generated by a factored model consisting
of a translation step (creating the output word) and a generation step (creating the
additional output factor), or by a factored model that creates all output factors in one step.
Our experiments have shown that the latter configuration typically performs better.

Factored Reordering

The problem of reordering is recognized as one of the hardest problems when
translating between syntactically different languages. Much of the motivation for
grammar-based translation models comes from the fact that the output from phrase-based
systems is often ungrammatical due to failure to place words in the right output language
order.

Reordering between languages is often best described using syntactic concepts: In
Arabic-English translation, the verb has to be moved after the subject. In Chinese-English
translation, prepositional phrases have to be moved after the noun phrase they modify.
Hence, the idea is to use syntactic properties such as part-of-speech tags or syntactic
chunk labels during translation.

The lexicalized reordering model (Tillmann 2004; Koehn et al. 2005) commonly
used in phrase-based models provides an avenue for using linguistic information during
reordering. However, instead of using the lexical identity of phrases to inform reordering
decisions, we may use their part-of-speech tags.

Part-of-speech tags may inform larger reordering patterns, or reordering templates.
For instance, we may find a useful 5-word pattern to reorder words based on their part-of-
speech tags, but not the underlying 5-word phrase translation. This motivates the
factored template model (Hoang and Koehn 2009). This variant of factored translation
models allows the use of longer phrases for some factors. In essence, the part-of-speech
template drives midrange reordering decisions of the traditional phrase-based translation
model.

Morphological Analysis and Generation

Our motivating example was to deal with morphological rich languages the same
way rule-based systems deal with them: We want to translate word lemmas and their
morphological information separately, thus having a more general model that allows us to
increase coverage and robustness.

Our experiments in this area (Koehn and Hoang 2007) have shown two important
points. First, enabling the translation of morphological variants not observed in training,
but explainable in terms of its morphological analysis, increases coverage and reduce the
number of unknown words. Second, relying only on a morphological analysis and
generation model leads to a worse performance. The reason for this lies in part in
increased decoding complexity and thus, more room for search errors, but also in the
many additional independence assumptions that are introduced. In fact, the model, as
shown in Figure 2.13 does not use the source word at all anymore, just its morphological

198 Chapter 2: Machine Translation from Text

analysis. Our experiments have shown that we ultimately achieve gains in performance
by using alternative decoding paths, which means allowing the construction of translation
options both through the surface translation model and the morphological model.

Basic models that treat words as tokens work best, if these tokens have been observed
frequently in training. For rare or unseen words, the problem of data sparsity does often
not allow for correct estimation of translation rules and thus, the morphological model is
able to help out.

This leads us to define backoff models for translation. Just as language models back
off from higher n-gram models to lower n-gram models, we may back off from one
translation model to another, if the first one has no coverage. We already reported on
methods that use alternative decoding paths, i.e., may chose between different translation
models. Backoff implies a sequence of translation models, where the lower-priority
models are only used in the higher-priority models do not apply.

The experience in language models has shown the advantage of interpolated backoff.
It may always be better to include estimates from lower-order language models. We may
handle backoff translation models the same way, but as in language modeling, the
interpolation calculations may be done during training, not decoding. We will report in
future papers on experimental results with backoff models.

2.4.2.5 Conclusion

We introduced factored translation models, a framework to use additional annotation
at the word level to improve statistical machine translation models in two ways: (1) by
allowing more general models that are estimated on richer statistics, such as lemma
translation models, part-of-speech or morphological sequence models, and (2) by
introducing additional linguistic knowledge, which may be exploited, for instance, during
reordering.

We have shown that the framework allows for improvements through enriching the
input, enriching the output, richer reordering models and translation models based on
morphological analysis.

We plan in future work to apply the idea of factored translation models to tree-based
approaches, thus creating a formalism that could be described as probabilistic
synchronous unification grammar.

2.4.3. Soft Syntax Features and Other Extensions for
Hierarchical SMT

Authors: Daniel Stein, David Vilar and Hermann Ney

2.4.3.1 Introduction

Translation based on word groups (so called phrases) has proven to be an effective
approach to statistical machine translation and a great improvement over the initial word-
based approaches first presented in the seminal IBM paper of Brown et al. (1993).
However, these models are still limited. They do not consider long range dependencies,
as the phrases must be contiguous both in the source and the target language and the

Handbook of Natural Language Processing and Machine Translation 199

reordering of the phrases is not directly modeled and is normally applied in a heuristic
way.

The hierarchical phrase based translation model (Chiang 2007) addresses these issues
by allowing “gaps” in the phrases. In this way the reorderings are integrated in the
translation process and non-contiguous word groups can be translated in a consistent
way.

In this work, we briefly review the hierarchical phrase-based approach and explore
various refinements to the phrase extraction algorithm and the effect on the final
translation quality. Additionally, we add syntax information to the extracted phrases, and
computing features, which measure how well the extracted phrases correspond to
linguistic structures. We expect that including this additional information will help the
translation process selecting the most appropriate translation units. This becomes of
greater importance for the hierarchical model, as the extraction process allows for a high
number of phrases, most of them originating due to the high flexibility of the extraction
algorithm and of limited use for the translation.

The advantages of our approach in comparison to other recent syntax-based
approaches is, on the one hand, its simplicity, and thus, flexibility, which allows it also to
be integrated with standard phrase-based approaches, and on the other hand, the
possibility to use syntax information both on the source and target languages.

2.4.3.2 Related Work

The hierarchical phrase based approach was first presented by David Chiang in 2005
(Chiang 2005), and further detailed in 2007 (Chiang 2007). Already in 2005, Chiang
proposes the use of syntactic information together with his new hierarchical approach,
but without success.

Some recent publications have shown that the use of syntax for translation achieves
significant improvements. One prominent example is the work by the ISI group (e.g.,
(Galley et al. 2004; Marcu et al. 2006)). This work departs from the standard phrase-
based approach by defining new translation units and extraction procedures, but the
investigators try to still keep the advantages of phrase-based translation (DeNeefe et al.
2007).

Our work differs from the above mentioned mainly in that we extract the syntactic
information already at the training phrase and it is integrated in the search process as an
additional model in the base log-linear combination that underlies most state-of-the-art
statistical machine translation systems. Therefore, no modification of the search
algorithms is needed and we can also make use of syntactic information for both
languages, source and target. Most of the previous work was limited only to the target
language side, as the correspondences between the syntactic structures of both languages
are hard to define.

2.4.3.3 Hierarchical Phrase Based Translation

Details of the system are described by Vilar et. al. (2008). The extraction process
starts with the same phrase-extraction procedure as in the standard phrase-based
translation, i.e., sequences of source and target words that are aligned only to each other.

200 Chapter 2: Machine Translation from Text

We then proceed to generate new rules as follows: for each of the extracted phrase pairs,
smaller sub-phrases are sought. If found, the corresponding parts are substituted by a
non-terminal and linked together by the relation. This process is then iterated with the
new extracted rules, until the desired maximum number of non-terminals is achieved.
Note however, that only standard phrases are made into gaps.

For phrase-based training, the phrases get scored by relative frequencies, whereas for
the hierarchical phrases, the counts of the originating standard phrases get distributed
among all the generated hierarchical rules. These scores are computed for the translation
directions source-to-target and target-to-source, which get combined log-lineally with
additional IBM1-like word level scores at the phrase level, word and phrase penalty
scores at generation time.

The decoding process is basically a parsing of the source sentence according to the
defined grammar, keeping track of the target language translation contexts in order to
compute language model scores during the translation process. The parsing is carried out
via the CYK+ algorithm (Chappelier and Rajman 1998), which allows for a CYK-style
parsing without transformation of the original grammar. The forest of possible parses is
compactly represented in a hypergraph structure. This hypergraph gets traversed in a top-
down manner, generating the target language in the process, including language model
computations. This pass is done in a lazy way, using the cube growing algorithm. The
details can be found in the work of Huang and Chiang (2007).

2.4.3.4 Experiments

In this section we present experimental results for the methods introduced in Vilar
et al. (2008) on the GALE 2008 development and test data sets. A parsed subset of the
training data was kindly provided by the University of Maryland (Huang et al. 2008) and
used for the training of the syntax components of our system. The statistics of the parsed
data can be found in Table 2.31.

Chinese English

number of running sentences 671701
number of running words 2905698 21603468
parsed categories 59 -

Table 2.31: Statistics of the parsed data

We analyze the effect of different extraction heuristics (a binary feature activated for
hierarchical phrases, an extended glue rule, ...), as well as, different approaches to
include syntax information in the form of soft-syntax features. For more details refer to
the above-mentioned paper.

The results on the whole corpora are presented in Table 2.32. It can be seen from this
table that the performance of the hierarchical system can be improved by incorporating
additional information. The inclusion of the extended glue rule improved the system
performance, however, the other heuristic features do not seem to help in the translation
process, despite being beneficial for other corpora. The syntactic features show mixed
results. While the binary feature seems to help improve the overall quality of the

Handbook of Natural Language Processing and Machine Translation 201

translation, the other smoothing methods seem to yield over fitting on the development
corpus.

dev Test
BLEU TER BLEU TER
base 24.6 64.5 24.1 64.2
glue2 25.2 64.2 245 64.1
all 25.1 64.2 24.2 64.2

hierarch 24.4 64.4 23.8 64.1
paste+hierarch | 24.4 64.7 23.7 64.2

paste 24.7 64.3 24.1 64.5
binary 25.1 64.3 24.4 64.1
linear 24.6 65.1 23.8 64.0

log 23.8 65.7 23.2 65.9

relative 24.8 64.4 24.0 64.7

Table 2.32: Results on the GALE dev- and test data. Training was conducted with help of only partially
parsed corpora.

The combination of heuristic and syntactic features helps in comparison to the
baseline, but, regarding the improvements by the other scores, was expected to be higher.
We believe this to be the result of shortcomings of the Downhill Simplex Method used
for optimization, since a total 15 different scores have to be optimized. This is probably
bigger than the maximum number of variables that can be estimated reliably using this
method, a finding consistent with that of Chiang et al. (2008). We expect that this effect
can be avoided by switching to other optimization techniques like the Margin Infused
Relaxed Algorithm (MIRA) and will conduct these experiments in future work.

BC BN NW WT
BLEU TER BLEU TER BLEU TER BLEU TER
base 25.1 61.3 25.9 62.0 25.7 62.1 19.6 TER
glue2 24.8 61.4 26.2 62.0 26.4 61.7 19.8 65.9
all 24.1 61.4 26.0 61.8 26.2 62.0 194 65.7

hierarch 241 | 615 25.2 62.5 256 619 | 194 66.0
paste+hierarch | 23.8 61.7 25.5 62.1 25.8 61.8 19.2 66.0

paste 24.3 61.6 25.6 62.1 26.2 62.0 19.5 65.9
binary 24.6 61.5 25.9 62.1 26.4 61.5 20.1 66.2
linear 24.0 62.0 25.3 62.9 25.8 62.7 19.3 65.7
log 234 62.7 24.7 63.6 25.1 63.3 18.8 66.7
relative 24.5 61.7 25.7 62.3 25.7 62.0 19.6 67.6

Table 2.33: Results on the GALE test data, split by genre

Table 2.33 shows the results for each of the genres composing the test corpus. The
biggest improvement using the binary syntactic feature can be seen on the newswire data,
followed by the webtext data. This is to be expected, as the broadcast news and
especially, the broadcast conversation data are more speech-like data and the sentences
tend to have a poorer grammatical structure.

202 Chapter 2: Machine Translation from Text

reference | Well | think it’s hard to say . Why ?
baseline | This i feel that we are very hard to say . Why ?
syntactical | | think that now it is difficult to say . Why is it s0 ?

reference |Therefore , we would like to further intensify law enforcement .
baseline [We would like to further increased enforcement .
syntactical |We would like to further increased the intensity of law enforcement .

Reference The reason is that people are afraid to spend their money . Is that right ?
baseline This reason is that people rich do not want to spend , right ?
syntax This reason that is to say , people dare not to spend money , right ?

Figure 2.15: Sample sentences with changes due to syntactical feature

Figure 2.15 shows some example sentences where the translation using the syntactic
features was improved.

2.4.3.5 Conclusions

We have analyzed the effect on translation quality of different extraction heuristics
for a hierarchical phrase-based translation system. We also have shown how to include
syntactic information at the training phase. In this way, we can include syntactic
information from both languages at translation time without the need of modification on a
decoder. Experiments were reported on the GALE 2008 task, where some syntactic
features helped to improve the translation quality. The flexibility of this method also
allows it to be included in other systems such as standard phrase-based systems or even
syntax-oriented systems, which normally take the target syntax into account. Including
these features the source syntax can also be involved in the translation process.

2.4.4. Two String-to-Tree Translation Models
Authors: Steve DeNeefe, Libin Shen, Kevin Knight, Daniel Marcu, Wei Wang, Ralph Weischedel & Jinxi Xu

2.4.4.1 Introduction

String models are popular in statistical machine translation (MT). Approaches
include word substitution systems (Brown et al. 1993), phrase substitution systems
(Koehn et al. 2003; Och and Ney 2004), and synchronous context-free grammar systems
(Wu and Wong 1998; Chiang 2007), all of which train on string pairs and seek to
establish connections between source and target strings. By contrast, explicit syntax
approaches seek to directly model the relations learned from parsed data, including
models between source trees and target trees (Gildea 2003; Eisner 2003; Melamed 2004;
Cowan et al. 2006), source trees and target strings (Quirk et al. 2005; Huang et al. 2006),
or source strings and target trees (Yamada and Knight 2001; Galley et al. 2004).

It is unclear which of these pursuits will best explain human translation data, as each
has advantages and disadvantages. A strength of phrase models is that they can acquire
all phrase pairs consistent with computed word alignments, snap those phrases together
easily by concatenation and reorder them under several cost models. An advantage of

Handbook of Natural Language Processing and Machine Translation 203

syntax-based models is that outputs tend to be syntactically well formed, with reordering
influenced by syntactic context and function words introduced to serve specific syntactic
purposes.

This section has two parts. In the first part (Section 2.4.4.2), we present a comparison
of phrase-based and syntax-based rule extraction methods and phrase pair coverage.
Additionally, we do a careful study of several syntax-based extraction techniques, testing
whether (and how much) they affect phrase pair coverage and whether (and how much)
they affect end-to-end MT accuracy. For this comparison, we choose a previously
established statistical phrase-based model (Och and Ney 2004) and a previously
established statistical string-to-tree model (Galley et. al. 2004).

In the second part (Section 2.4.4.3), we discuss the string-to-dependency-tree
translation model, a syntactic extension of the hierarchical phrase-based model (Chiang
2005) that produces target dependency structures. This model represents the source side
of a translation rule as a string and the target side as a dependency structure. It
incorporates a dependency LM as a feature in decoding in order to exploit long-distance
word relations, which cannot be captured by a traditional n-gram language model.

2.4.4.2 Improving Syntax-Based MT with Phrase-Based MT

Syntax-Based MT

In this section, we describe our syntax-based translation system. This system accepts
a foreign string (e.g., Chinese or Arabic) as input and it searches through a multiplicity of
English tree outputs, seeking the one with the highest score (see Figure 2.16). The string-
to-tree framework is motivated by a desire to improve target language grammaticality.
For example, it is common for string-based MT systems to output sentences with no verb.
By contrast, the string-to-tree framework forces the output to respect syntactic
requirements, for example, if the output is a syntactic tree whose root is S (sentence),
then the S will generally have a child of type VP (verb phrase), which will in turn
contain a verb.

Another motivation is better treatment of function words. Often, these words are not
literally translated (either by themselves or as part of a phrase), but rather they control
what happens in the translation, as with case-marking particles or passive-voice particles.
Finally, much of the reordering we find in translation is syntactically motivated and this
can be captured explicitly with syntax-based translation rules.

204 Chapter 2: Machine Translation from Text

Figure 2.16: the syntax-based translation system accepts a foreign string and produces a set of candidate
translation trees with confidence weights

Here are some examples of translation rules and the roles that they play in the
translation of a sentence:

« phrase pairs with syntax decoration:

NHE=EH

« extra contextual constraints:

(this rule translates ¥ to sai d, but only if some Chinese sequence to the right
of 3% is translated into an SBAR- C)

 non-constituent phrases:

Handbook of Natural Language Processing and Machine Translation 205

« non-contiguous phrases, effectively “phrases with holes”:

« purely structural (no words):

* re-ordering:

206 Chapter 2: Machine Translation from Text

Figure 2.17: a syntax-based training example

To prepare training data for such a system, we begin with a bilingual text that has
been automatically processed into segment pairs. Our sentence splitting method ensures
that the segments be single sentences on the English side, while the corresponding
Chinese segments may be sentences, sentence fragments, or multiple sentences. We then
parse the English side of the bilingual text using a re-implementation of the Collins
(2003) parsing model, which we train on the Penn English Treebank (Marcus et al.
1993). Finally, we word-align the segment pairs according IBM Model 4 (Brown et al.
1993). Figure 2.17 shows a sample (tree, string, alignment) triple.

We build two generative statistical models from this data. First, we construct a
smoothed n-gram language model (Kneser and Ney 1995; Stolcke 2002) out of the
English side of the bilingual data. This model assigns a probability P(e) to any candidate
translation, rewarding translations whose sub-sequences have been observed frequently in
the training data.

Second, we build a syntax-based translation model that we can use to produce
candidate English trees from Chinese strings. Following previous work in noisy-channel
SMT (Brown et al. 1993), our model operates in the English-to-Chinese direction. We
envision a generative top-down process by which an English tree is gradually
transformed (by probabilistic rules) into an observed Chinese string. We represent a
collection of such rules as a tree-to-string transducer (Knight and Graehl 2005). In order
to construct this transducer from parsed and word-aligned data, we use the GHKM rule
extraction algorithm of Galley et al. (2004). This algorithm computes the unique set of
minimal rules needed to explain any sentence pair in the data. This is, in effect, a non-
overlapping tiling of translation rules over the tree-string pair. If there are no unaligned
words in the source sentence, this is a unique set. Figure 2.18 shows the set of seven

Handbook of Natural Language Processing and Machine Translation 207

minimal rules extracted from the example (tree, string, word alignment) triple in Figure
2.17 if the unaligned 77 is ignored. This set, ordered into a tree of rule applications, is
called the derivation tree of the training example. Unlike the ATS model described next,
there are no inherent size limits, just the constraint that the rules be as small as possible
for the example.

Figure 2.18: rules extracted from the training example in Figure 2.17 (ignoring unaligned Chinese words)

Notice that rule 6 is rather large and applies to a very limited syntactic context. The
only constituent node that covers both i and ny is the S, so the rule rooted at S is
extracted, with variables for every branch below this top constituent that can be explained
by other rules. Note also that t o becomes a part of this rule naturally. If the alignments
were not as constraining (e.g., if my was unaligned), then instead of this one big rule
many smaller rules would be extracted, such as structural rules, e.g.,

and function word insertion rules, e.g.,

208 Chapter 2: Machine Translation from Text

We ignored unaligned source words in the example above. Galley et al. (2004) attach
the unaligned source word to the highest possible location, in our example, the S. Thus it
is extracted along with our large rule 6, changing the source language sequence “I% VBD,
VBN; VB, NN; JJ PERIOD,”. This treatment still results in a unique derivation tree no
matter how many unaligned words are present.

In the work of Galley et al. (2006), instead of a unique derivation tree, the extractor
computes several derivation trees, each with the unaligned word added to a different rule
such that the data is still explained. For example, for the tree-string pair in Figure 2.17, #
could be added not only to rule 6, but alternatively to rule 4 or 5, to make the new rules.

This results in three different derivations, one with the 73 character in rule 4 (with
rules 5 and 6, as originally shown), another with the 7; character in rule 5 (with rules 4
and 6, as originally shown) and lastly, one with the 75 character in rule 6 (with rules 4 and
5, as originally shown) as in the original paper (Galley et al. 2004). In total, ten different
rules are extracted from this training example.

Translation rules are extracted and counted over the entire bilingual training corpus, a
count of one for each time they appear in a training example. These counts are used to
estimate several features, including maximum likelihood rule probability features such as
P(rule|eroor), P(ewords|fwords) and P(fwords|ewords). We smooth the rule counts with Good-
Turing smoothing (Good 1953).

With these models, we can decode a new Chinese sentence by enumerating and
scoring all of the English trees that can be derived from it by applying the rules to the
Chinese string. The final score of each translation is a weighted product of P(e), the rule
probabilities and several other models. One model rewards longer translations, offsetting
the language model's desire for short output. Other models punish rules that drop Chinese
content words or introduce spurious English content words. A handful of binary features
indicate special-purpose rules for translating names/numbers/dates, handling unknown
words, copying source-side ASCII text into the translation, or gluing together unparsable
or especially long sentences. We also include lexical smoothing models (Gale and
Sampson 1996; Good 1953) to help distinguish good low-count rules from bad low-count
rules. We optimize the relative weights for these models through minimum error-rate
training (Och 2003).

To search efficiently, we employ the CKY dynamic programming parsing algorithm
(‘Yamada and Knight 2002; Galley et al. 2006). This algorithm builds English trees on top
of Chinese spans. In each cell of the CKY matrix, we store the non-terminal symbol at
the root of the English tree being built up. We also store English words that appear at the
left and right corners of the tree, as these are needed for computing the P(e) score when

Handbook of Natural Language Processing and Machine Translation 209

cells are combined. For CKY to work, all transducer rules must be binarized to contain at
most two variables. A more efficient search can be gained if this binarization produces
rules that can be incrementally scored by the language model (Melamed et al. 2004;
Zhang et al. 2006). Finally, we employ cube pruning (Chiang 2007) for further efficiency
in the search.

2.4.4.2.1 Phrase-Based Extraction

The Alignment Template system (ATS) described by Och and Ney (2004) is
representative of statistical phrase-based models. The basic unit of translation is the
phrase pair, which consists of a sequence of words in the source language, a sequence of
words in the target language and a vector of feature values which describe this pair's
likelihood. Decoding produces a string in the target language, in order, from beginning to
end. During decoding, features from each phrase pair are combined with other features
(e.g., reordering, language models) using a log-linear model to compute the score of the
entire translation.

i felt obliged to do ny part

-
® B 5 R - 5.
Figure 2.19: a phrase-based training example

The ATS phrase extraction algorithm learns these phrase pairs from an aligned,
parallel corpus. This corpus is conceptually a list of tuples of (source string, target string,
word alignments) which serve as training examples, one of which is shown in Figure
2.19.

For each training example, the algorithm identifies and extracts all pairs of (source
sequence, target sequence) that are consistent with the alignments. It does this by first
enumerating all source-side word sequences up to a length limit L and for each source
sequence, it identifies all target words aligned to those source words. For example, in
Figure 2.19, for the source phrase A 3{L/X, the target words it aligns to are fel t,

obl i ged and do. These words and all those between them, are the proposed target
phrase. If no words in the proposed target phrase align to words outside of the source
phrase, then this phrase pair is extracted.

The extraction algorithm can also look to the left and right of the proposed target
phrase for neighboring unaligned words and extracts phrases. For example, for the phrase
pair £ 3{t < felt obliged, the word to is a neighboring unaligned word. It
constructs new target phrases by adding on consecutive unaligned words in both
directions and extracts those in new pairs, too (e.g., f5if= < felt obliged to).For
efficiency reasons, implementations often skip this step.

Figure 2.20 shows the complete set of phrase pairs up to length 4 that are extracted
from the Figure 2.19 training example. Notice that no extracted phrase pair contains the
character 3. Because of the alignments, the smallest legal phrase pair, &5 Ti{F/X i
felt obliged to do ny, isbeyond the size limit of 4, so it is not extracted in this
example.

210 Chapter 2: Machine Translation from Text

H > felt
HR=AT > felt obliged
FRER <« felt obliged to do
=T > obl i ged
RITER > obliged to do
AN <+~ do
— P part
—H7) <~ part
—4 7. <~ part .
7. TR

“~

Figure 2.20: phrases up to length 4 extracted from the example in Figure 2.19

As with GHKM, phrase pairs are extracted over the entire training corpus. Due to
differing alignments, some phrase pairs that cannot be learned from one example may be
learned from another. These pairs are then counted, once for each time they are seen in a
training example and these counts are used as the basis for maximum likelihood
probability features, such as P(f|e) and P(e|f).

2.4.4.2.2 Differences in Phrasal Coverage

Chinese Arabic
LDC2003E07 |LDC2004T17
Document IDs LDC2003E14 |LDC2004T18
LDC2005T06 |LDC2005E46
of segments 329,031 140,511
of words in foreign corpus 7,520,779 3,147,420
of words in English corpus 9,864,294 4,067,454

Table 2.34: parallel corpora used to train both models

Both the ATS model and the GHKM model extract linguistic knowledge from
parallel corpora, but each has fundamentally different constraints and assumptions. To
compare the models empirically, we extracted phrase pairs (for the ATS model) and
translation rules (for the GHKM model) from the same parallel training corpora,
described in Table 2.34. The ATS model was limited to phrases of length 10 on the
source side and length 20 on the target side. A superset of the parallel data was word
aligned by GIZA union (Och and Ney 2003) and EMD (Fraser and Marcu 2006a). The
English side of training data was parsed using an implementation of Collins' model 2
(Collins 2003).

Table 2.35 shows the total number of GHKM rules extracted and a breakdown of the
different kinds of rules. Non-lexical rules are those whose source side is composed
entirely of variables: there are no source words in them. Because of this, they potentially
apply to any sentence. Lexical rules (their counterpart) far outnumber non-lexical rules.
Of the lexical rules, a rule is considered a phrasal rule if its source side and the yield of
its target side contain exactly one contiguous phrase each, optionally with one or more

Handbook of Natural Language Processing and Machine Translation 211

variables on either side of the phrase. Non-phrasal rules include structural rules,
reordering rules and non-contiguous phrases. These rules are not easy to directly compare
to any phrase pairs from the ATS model, so we do not focus on them here.

Statistic Chinese Arabic
total translation rules 2,487,110 | 662,037
non-lexical rules 110,066 15,812
lexical rules 2,377,044 | 646,225
phrasal rules 1,069,233 | 406,020
distinct GHKM-derived phrase pairs 919,234 | 352,783
DIStInCt. corpus-speufl_c GHKM- 203,809 75,807
derived phrase pairs

Table 2.35: a breakdown of how many rules the GHKM extraction algorithm produces and how many phrase
pairs can be derived from them

Phrasal rules can be directly compared to ATS phrase pairs, the easiest way being to
discard the syntactic context and look at the phrases contained in the rules. The second to
last line of Table 2.35 shows the number of phrase pairs that can be derived from the
above phrasal rules. The number of GHKM-derived phrase pairs is lower than the
number of phrasal rules, because some rules represent the same phrasal translation, but
with different syntactic contexts. The last line of Table 2.35 shows the subset of phrase
pairs that contain source phrases found in our development corpus.

Source of phrase pairs Chinese Arabic

GHKM-derived 203,809 75,807
ATS 295,537 133,576
Overlap between models 160,901 75,038
GHKM only 42,908 769
ATS only 134,636 58,538
ATS-useful only 1,994 2,199

Table 2.36: comparison of corpus-specific phrase pairs from each model

Table 2.36 compares these corpus-specific GHKM-derived phrase pairs with the
corpus-specific ATS phrase pairs. Note that the number of phrase pairs derived from the
GHKM rules is less than the number of phrase pairs extracted by ATS. Moreover, only
slightly over half of the phrase pairs extracted by the ATS model are common to both
models. The limits and constraints of each model are responsible for this difference in
contiguous phrases learned.

GHKM learns some contiguous phrase pairs that the phrase-based extractor does not.
Only a small portion of these are due to the fact that the GHKM model has no inherent
size limit, while the phrase based system has limits. More numerous are cases where
unaligned English words are not added to an ATS phrase pair while GHKM adopts them
at a syntactically motivated location, or where a larger rule contains mostly syntactic
structure, but happens to have some unaligned words in it. For example, consider Figure
2.21. Because basi c and wi | | are unaligned, ATS will learn no phrase pairs that

212 Chapter 2: Machine Translation from Text

translate to these words alone, though they will be learned as a part of larger phrases.

Figure 2.21: Situation where GHKM is able to learn rules that translate into basi c andwi | | , but ATS is
not

GHKM, however, will learn several phrasal rules that translate to basi c, based on
the syntactic context

and one phrasal rule that translates into wi | |

Since we are working with noisy data and noisy alignments, the quality of such
additional phrases will vary. For example, the first translation of (literally: *one” or

Handbook of Natural Language Processing and Machine Translation 213

“a”) to basi ¢ above is a phrase pair of poor quality, while the other two for basi ¢ and
one forwi | | are arguably reasonable.

However, Table 2.36 shows that ATS was able to learn many more phrase pairs that
GHKM was not. Even more significant is the subset of these missing phrase pairs that the
ATS decoder used in its best translation of the corpus.** According to the phrase-based
system these are the most “useful” phrase pairs and GHKM could not learn them.™ Since
this is a clear deficiency, we will focus on analyzing these phrase pairs (which we call
ATS-useful) and the reasons they were not learned.

Category of missing ATS-useful phrase pairs Chinese |Arabic

Not minimal 1,320 1,366
Extra target words in GHKM rules 220 27
Extra source words in GHKM rules 446 799
Other (e.g. parse failures) 8 7
Total missing useful phrase pairs 1,994 2,199

Table 2.37: reasons that ATS-useful phrase pairs could not be extracted by GHKM as phrasal rules

Table 2.37 shows a breakdown, categorizing each of these missing ATS-useful
phrase pairs and the reasons they were not able to be learned. The most common reason
is straightforward: by extracting only the minimally-sized rules, GHKM is unable to learn
many larger phrases that ATS learns. If GHKM can make a word-level analysis, it will do
that, at the expense of a phrase-level analysis. Galley et al. (2006) propose one solution to
this problem and Marcu et al. (2006) propose another, both of which are shown in Figure
2.18.

The second reason is that the GHKM model is sometimes forced by its syntactic
constraints to include extra words. Sometimes this is only target language words and this
is often useful: the rules are learning to insert these words in their proper context. Most of
the time, source language words are also forced to be part of the rule and this is harmful:
it makes the rules less general. This latter case is often due to poorly aligned target
language words (such as the # in our Section 2.4.4.2 rule extraction example), or
unaligned words under large, flat constituents.

Another factor here: some of the phrase pairs are learned by both systems, but
GHKM is more specific about the context of use. This can be both a strength and a
weakness. It is a strength when the syntactic context helps the phrase to be used in a
syntactically correct way, as in

12j.e. highest scoring.
¥ GHKM may ultimately be able to produce the same translation via a different, possibly lower scoring
route.

214 Chapter 2: Machine Translation from Text

where the syntax rule requires a constituent of type SBAR-C. Conversely, its weakness is
seen when the context is too constrained. For example, ATS can easily learn the phrase
EFEL <> prime minister

and is then free to use it in many contexts. But GHKM learns 45 different rules, each that
translate this phrase pair in a unique context. Figure 2.22 shows a sampling. Notice that
though many variations are present, the decoder is unable to use any of these rules to
produce certain noun phrases, such as “current Japanese Prime Minister Shinzo Abe”,
because no rule has the proper number of English modifiers.

Figure 2.22: a sampling of the 45 rules that translate £ to pri me mi ni ster

2.4.4.2.3 Coverage Improvements

Each of the models presented so far has advantages and disadvantages. In this
section, we consider ideas that make up for deficiencies in the GHKM model, drawing
our inspiration from the strong points of the ATS model. We then measure the effects of
each idea empirically, showing both what is gained and the potential limits of each
modification.

Composed Rules. Galley et al. (2006) proposed the idea of composed rules. This
removes the minimality constraint required earlier: any two or more rules in a parent-
child relationship in the derivation tree can be combined to form a larger, composed rule.
This change is similar in spirit to the move from word-based to phrase-based MT models,
or parsing with a DOP model (Bod et al. 2003) rather than a plain PCFG.

Sizelimit(n)| Chinese | Arabic
0 (minimal) 2,487,110 662,037

2 12,351,297 2,742,513
3 26,917,088| 4,824,928
4 55,781,061 8,487,656

Table 2.38: increasing the size limit of composed rules significantly increases the number of rules extracted

Handbook of Natural Language Processing and Machine Translation 215

Because this results in exponential variations, a size limit is employed: for any two or
more rules to be allowed to combine, the size of the resulting rule must be at most n. The
size of a rule is defined as the number of non-part-of-speech, non-leaf constituent labels
in a rule’s target tree. For example, rules 1-5 shown in Figure 2.18 have a size of 0 and
rule 6 has a size of 10. Composed rules are extracted in addition to minimal rules, which
means that a larger n limit always results in a superset of the rules extracted when a
smaller n value is used. When n is set to 0, then only minimal rules are extracted. Table
2.38 shows the growth in the number of rules extracted for several size limits.

In our previous analysis, the main reason that GHKM did not learn translations for
ATS-useful phrase pairs was due to its minimal only approach. Table 2.39 shows the
effect that composed rule extraction has on the total number of ATS-useful phrases
missing. Note that as the allowed size of composed rule increases, we are able to extract a
greater percentage of the missing ATS-useful phrase pairs.

Size limit (n) | Chinese | Arabic

0 (minimal) 1,994 2,199
2 1,478 1,528
3 1,096 1,210
4 900] 1,041

Table 2.39: Number of ATS-useful phrases still missing when using GHKM composed rule extraction

Unfortunately, a comparison of Table 2.38 and Table 2.39 indicates that the number
of ATS-useful phrase pairs gained is growing at a much slower rate than the total number
of rules. From a practical standpoint, more rules means more processing work and longer
decoding times, so there are diminishing returns from continuing to explore larger size
limits.

Method | Chinese | Arabic

composed alone (size 4) 900 1,041
SPMT model 1 alone 676 854
composed + SPMT model 1 663 835

Table 2.40: ATS-useful phrases still missing after different non-minimal methods are applied

SPMT Model 1 Rules. An alternative for extracting larger rules called SPMT model
1 is presented by Marcu et al. (2006). Though originally presented as a separate model,
the method of rule extraction itself builds upon the minimal GHKM method just as
composed rules do. For each training example, the method considers all source language
phrases up to length L. For each of these phrases, it extracts the smallest possible syntax
rule that does not violate the alignments. Table 2.40 shows that this method is able to
extract rules that cover useful phrases and can be combined with size 4 composed rules to
an even better effect. Since there is some overlap in these methods, when combining the
two methods we eliminate any redundant rules.

Note that having more phrasal rules is not the only advantage of composed rules.
Here, combining both composed and SPMT model 1 rules, our gain in useful phrases is
not very large, but we do gain additional, larger syntax rules. As discussed by Galley et
al. (2006), composed rules also allow the learning of more context, such as -

216 Chapter 2: Machine Translation from Text

This rule is not learned by SPMT model 1, because it is not the smallest rule that can
explain the phrase pair, but it is still valuable for its syntactic context.

Restructuring Trees. Table 2.41 updates the causes of missing ATS-useful phrase
pairs. Most are now caused by syntactic constraints, thus we need to address these in
some way.

Category of ATS-useful phrase pairs |Chinese |Arabic
Too large 12 ¢
Extra target words in GHKM rules 218 a
Extra source words in GHKM rules 124 792
Other (e.g. parse failures) 0 7
Total missing useful phrase pairs 663 835

Table 2.41: Reasons that ATS-useful phrase pairs are still not extracted as phrasal rules, with composed and
SPMT model 1 rules in place

Figure 2.23: Head-out binarization in the target language: S, NPB and VP are binarized according to the head
word

GHKM translation rules are affected by large, flat constituents in syntax trees, as in
the pri me mi ni st er example earlier. One way to soften this constraint is to binarize
the trees, so that wide constituents are broken down into multiple levels of tree structure.
The approach we take here is head-out binarization (Wang et al. 2007), where any
constituent with more than two children is split into partial constituents. The children to
the left of the head word are binirized one direction, while the children to the right are
binarized the other direction. The top node retains its original label (e.g. NPB), while the
new partial constituents are labeled with a bar (e.g. NPB). Figure 2.23 shows an example.

Table 2.42 shows the effect of binarization on phrasal coverage, using both
composed and SPMT rules. By eliminating some of the syntactic constraints we allow
more freedom, which allows increased phrasal coverage, but generates more rules.

Handbook of Natural Language Processing and Machine Translation 217

Category of missing ATS-useful phrase pairs | Chinese | Arabic

Too large 16 12
Extra target words in GHKM rules 123 12
Extra source words in GHKM rules 307 591
Other (e.g. parse failures) 12 7
Total missing useful phrase pairs 458 622

Table 2.42: Reasons that ATS-useful phrase pairs still could not be extracted as phrasal rules after
binarization

2.4.4.2.4 Effect of Coverage Improvements on Translation

of lines

Dataset Chinese Arabic

NIST 2002 MT eval

sentences < 47 tokens) 925 696

Development set

Test set NIST 2003 MT eval 919 663

Table 2.43: Development and test corpora

To evaluate translation quality of each of these models and methods, we ran the ATS
decoder using its extracted phrase pairs and the syntax-based decoder using all the rule
sets mentioned above. Table 2.43 describes the development and test datasets used, along
with four references for measuring BLEU.

. Chinese Arabic
Experiment Dev Test Dev Test
Baseline ATS 34.94 32.83] 5046 50.52
Baseline GHKM (minimal only) 38.02 37.67| 49.34 49.99
GHKM composed size 2 40.24 39.75] 50.76 50.94
GHKM composed size 3 40.95 40.44 51.56 51.48
GHKM composed size 4 41.36 40.69] 51.60 51.71
GHKM minimal + SPMT model 1 39.78 39.16] 50.17 51.27]
GHKM composed + SPMT model 1 42.04 41.071 51.73 51.53
\With binarization 42.17 41.26] 52.50 51.79

Table 2.44: Evaluation results (reported in case-insensitive NIST BLEu4)

Table 2.44 shows the case-insensitive NIST BLEU 4 scores for both our development
and test decodings. The BLEU scores indicate, first of all, that the syntax-based system is
much stronger at translating Chinese than Arabic, in comparison to the phrase-based
system. We believe this is due to the difference in reordering models. While the phrase-
based system's reordering comes primarily through the monolingual language model, the
syntax rules themselves contain structural reordering decisions learned from the bilingual
corpus. Thus syntax-based translation is better able to model the large amount of long-
distance reordering required to translate between Chinese and English. The smaller
improvements on Arabic-to-English translation reflect the fact that less large scale
reordering is necessary.

The BLEU scores also show that syntax-based translation quality benefits from
improved phrasal coverage. In addition, rule composition is not only helpful in
comparison to minimal rules, but even in addition to SPMT model 1. This indicates that

218 Chapter 2: Machine Translation from Text

the size 4 composed rules of Galley et al. (2006) bring more than just improved phrasal
coverage.

2.4.4.2.5 Discussion

Both the ATS model for phrase-based machine translation and the GHKM model for
syntax-based machine translation are state-of-the-art methods. Each extraction method
has strengths and weaknesses as compared to the other, and there are surprising
differences in phrasal coverage; neither is merely a superset of the other. We have shown
that it is possible to gain insights from the strengths of the phrase-based extraction model
to increase both the phrasal coverage and translation accuracy of the syntax-based model.

However, there is still room for improvement in both models. For syntax models,
there are still holes in phrasal coverage and other areas need progress, such as decoding
efficiency. For phrase-based models, incorporating syntactic knowledge and constraints
may lead to improvements as well.

2.4.4.3 Improving Hiercrachical MT with Dependency Trees

A dependency tree is an alternative grammatical representation to capture long-
distance relations between words. For a given sentence, each word has a parent word
which it depends on, except for the root word. Figure 2.24 shows an example of a
dependency tree. Arrows point from children to their parent. In this example, the word
find is the root.

find

TR

boy will it interesting

/

the

Figure 2.24: The dependency tree for sentence the boy will find it interesting

Dependency trees are simpler in form than CFG trees since there are no constituent
labels. Furthermore, dependency relations directly model the semantic structure of a
sentence. Their simplicity and expressive power make dependency trees a desirable prior
model on MT output.

Standard hierarchical phrase-based MT (Chiang 2007) can be viewed as a
hierarchical string-to-string model. It does not require explicit syntactic representation on
either side of the rules: both the source and target are strings with NTs. Decoding are
solved as chart parsing.

We extend this model by adding dependency trees to the target side of the model.
Our SMT system uses a linear model on a log scale to rank translation hypotheses. To
simplify this discussion, we assume a translation model has three dimensions and selects
the best hypotheses S'. for input Sraccording to:

S'e = argmax P(S,|Se)"* P(Sf|Se)"2P(Se)"s
Se

Handbook of Natural Language Processing and Machine Translation 219

where w;, w, and ws are weights. P(S.) is the prior probability of the English string S.
using a string language model (LM). In this work we use the terms n-gram LM and string
LM interchangeably.

Our decoder uses a dependency LM as the prior. The selecting function becomes

D" = argmax P(D|Ss)"* P(Sf|D)"2P(D)"s
D

where P(D) is the dependency LM score of an English dependency tree D.

In practice, we use both a dependency LM and a string LM, as well as several other
features in our decoder. Later in this section, we will list the full set of features in our
decoder.

2.4.4.3.1 Transfer Rules

A string-to-dependency grammar G is a 4-tuple G =(R, X, T, T.), where R is a set
of transfer rules. X is the only non-terminal, similar to the Hiero system (Chiang 2007). Tr
is a set of terminals in the source language and T. is a set of terminals in the target
language.*

A string-to-dependency transfer rule R € Ris a4-tuple R =(Sf, S., D, A), where Sf
€ (Ty u { X})" is a source string, S. € (T. U { X})" is a target string, D represents the
dependency structure for S. and A is the alignment between Sy and S.. Non-terminal
alignments in A must be one-to-one.

In order to exclude undesirable structures and reduce search space, we only allow
dependency structure D's that are either single-rooted (e.g., a complete constituent) or
multi-rooted consisting of several sibling dependency trees. We will call such
dependency structures well-formed in the rest of the work. In addition, the same well-
formedness requirement will be applied to partial decoding results. We operate over well-
formedlgtructures in a bottom-up style in decoding. See the work of Shen et al. (2008) for
details.

Figure 2.25: single-rooted well-formed structures

% We ignore the left hand side here because there is only one non-terminal X. Of course, this formalism can
be extended to have multiple NTs.

15 single-rooted structures were called fixed structures and multi-rooted structures are called floating
structures by Shen et al. (2008).

220 Chapter 2: Machine Translation from Text

Figure 2.26: multi-rooted well-formed structures

Now we show some examples of single-rooted and multi-rooted well-formed
structures. We represent dependency structures with graphs. Figure 2.25 shows some
examples of single-rooted structures and Figure 2.26 shows some examples of multi-
rooted structures.

2.4.4.3.2 Rule Extraction

Now we explain how we get string-to-dependency transfer rules from training data.
The procedure is similar to that used by Chiang (2007), except that we maintain tree
structures on the target side, instead of strings.

We first use GIZA++ (Och and Ney 2003) to generate forward and backward word
level alignment. We take a union of the alignment in both directions. We use a statistical
CFG parser to parse the English side of the training data and extract dependency trees
with Magerman's rules (Magerman 1995). Then we use heuristic rules to extract transfer
rules recursively based on word alignments and target dependency trees. The rule
extraction procedure is as follows:

1. Initialization:
Al the 4-tuples (P}, P,™™, D, A) are valid phrase alignments, where source

phrase Pf” is aligned to target phrase P, under alignment A. *® D is a well-

formed dependency structure for P,"™. All valid phrase templates are valid rules
templates.
2. Inference:

Let (P, P™", D,,A) be avalid rule template and (P, P>t D,,A) avalid
phrase alignment, where [p, q] < [i, j], [, t] < [m, n], D, is a sub-structure of D,
and at least one word in Pf” but not in F}p'q is aligned. We create a new valid rule
template (P's,P',, D', A), where we obtain P’ by replacing pr,q with label X in
Pf"’j and obtain P', replacing by replacing P;** with X in P,”*". Furthermore, we
obtain D’ by replacing sub-structure D, with X in D;.

6 gy Pf” aligned to P,"™™, we mean all words in Pf” are either aligned to words in PJ"*" or unaligned and

vice versa. Furthermore, at least one word in PJ"*"is aligned to a word in ;™™ .

Handbook of Natural Language Processing and Machine Translation 221

An example is shown in Figure 2.27.

Figure 2.27: Replacing it with X in D,

To make the grammar size manageable, each transfer rule can have at most two NTs
and at most seven elements (words and NTs) in the source side.

2.4.4.3.3 Decoding

Following previous work on hierarchical MT (Chiang 2005; Galley et al. 2006), we
decode using as chart parsing. We view the target dependency as a hidden structure of the
input string. The task of decoding is then to find the best hidden structure for the input
given the transfer grammar and the language models.

The parser scans all source cells in a bottom-up style and checks matched transfer
rules according to the source side. Once there is a completed rule, we build a larger
dependency structure by substituting component dependency structures for their
corresponding NTs in the target side of the rule.

Hypotheses, i.e., candidate dependency structures, are organized in a shared forest, or
AND-OR structures. An AND-structure represents an application of a rule over
component OR-structures and an OR-structure represents a set of alternative AND-
structures with the same state.

Figure 2.28: An example of AND-OR structures

For example, Figure 2.28 shows part of the AND-OR structures to generate
translation take a visit. The top OR structure for the whole translation can be built from

222 Chapter 2: Machine Translation from Text

one of the three AND structures, which in turn share OR structures as building blocks.
The text within the parentheses of the OR structures represent the states.

A state keeps the necessary information about hypotheses under it, which is needed
for computing scores for higher level hypotheses during dynamic programming. For
example, with an n-gram string LM in decoding, a state keeps the leftmost n — 1 word
and rightmost n — 1 words shared by hypotheses in that state. Due to the use of a
dependency LM in decoding, the state information also includes boundary information
about dependency structures for the purpose of computing dependency LM scores for
larger structures.

2.4.4.3.4 Dependency Language Model

For the dependency tree in Figure 2.24, we calculate the probability of the tree as
follows, which is sometimes called a 3-gram sibling model.

Prob = Pr(find)
x Py, (will|find-as-head)
x Py, (boy|will, find-as-head)
x P, (the|boy-as-head)
X Ppg (it|find-as-head)
x Pp (interesting|it, find-as-head)

Here Pr(X) is the probability that word x is the root of a dependency tree. P, and Pg
are left and right side generative probabilities respectively. Let wy, be the head and
wy,, Wy, ..., wy_be the children on the left side from the nearest to the farthest. Suppose
we use a 3-gram dependency LM,

PL(wy,, Wy, .., wy, [wy-as-head) = P (w, |wp-as-head)
X Pp(wy, |wy,, wy-as-head)
X ... X PL(WLTLlWLn—l' WLn—Z)
In the above formulas, w;-as-head represents the event that w is used as the head,
while w;, represents the event that w,, is a sibling word. This subtle difference is very

important, because we need to distinguish a head word from sibling words in context. Pg
is similarly computed.

Dependency Decoder Implementation Details
The features in the decoder include:

Probability of the source side given the target side of a rule
Probability of the target side given the source side of a rule
Forward and backward lexical translation probability
Number of target words

Number of concatenation rules used

String LM score

oaprwNE

Handbook of Natural Language Processing and Machine Translation 223

7. Dependency LM score
8. Discount on ill-formed dependency structures

The values of the first four features depend on the rules only and therefore are
computed offline. Following Chiang (2005), we also use concatenation rules like X — XX
for backup. The 5th feature counts the number of concatenation rules used in a
translation. In decoding, we also allow dependency structures that are not well-formed by
treating them as phrasal structures. However, such ill-formed structures are penalized
with a discount.

We tune the weights with several rounds of decoding optimization. Following Och
(2003), the k-best results are accumulated as the input to the optimizer. Powell's method
is used for optimization with 20 random starting points around the weight vector of the
last iteration. For improved results, we rescore 1000 best translations, generated using the
technique described by Huang and Chiang (2005), by replacing 3-gram string LM scores
in the output with 5-gram string LM scores. The algorithm for tuning rescore weights is
similar to the one for tuning decoder weights.

2.4.4.3.5 Experiments

We experimented with two translation models:

e Dbaseline: hierarchical string to string translation, using our own replication of the
Hiero system (Chiang 2007)

e str-dep: string-to-dependency system. It uses rules with target dependency
structures and a dependency LM in decoding.

We use the Hiero model as our baseline because it is the closest to our string-to-
dependency model. They use similar rule extraction and decoding algorithms. Both
systems use only one non-terminal label in rules. The major difference is that our model
represents target translations as dependency structures while Hiero represents them as
strings. Thus, the comparison will show the contribution of using dependency
information in decoding.

All models were tuned on BLEU (Papineni et al. 2001) and evaluated on BLEU, TER
(Snover et al. 2006) and METEOR (Banerjee and Lavie 2005) so that we could detect
over-tuning on one metric. For both Arabic-to-English and Chinese-to-English MT, we
tuned on NIST MT02-05 and tested on MT06 and MT08 newswire sets.

The training data for Arabic-to-English MT contains 29M Arabic words and 38M
English words. The training data for Chinese-to-English MT contains 107M Chinese
words and 132M English words.

The dependency LMs were trained on the same parallel training data. For that
purpose, we parsed the English side of the parallel data. Two separate models were
trained: one for Arabic from the Arabic training data, and the other for Chinese from the
Chinese training data. Traditional 3-gram and 5-gram string LMs were trained on the
English side of the parallel data as well as the English Gigaword corpus V3.0 in a way
described by Bulyko et al. (2007).

224

Chapter 2: Machine Translation from Text

Model

Arabic-English

Chinese-English

baseline
str-dep

337,542,137

35,801,341

193,922,173
41,013,346

Table 2.45: Number of transfer rules

Table 2.45 shows the number of transfer rules extracted from the training data. The
transfer rules were filtered on the tuning and test sets. The constraint of well-formedness
greatly reduced the size of the rule set. The size of the string-to-dependency rule set is
about 10% to 20% of the baseline rule set size.

MTO06 MTO08
Model BLEU TER METEOR BLEU TER METEOR
Lower | mixed | lower | mixed lower | mixed | lower | mixed
Decoding (3-gram LM)

Baseline | 47.50 | 45.48 | 44.79 | 46.97 66.17 | 4841 | 46.13 | 43.83 | 46.18 67.45
str-dep | 48.75 | 46.74 | 43.43 | 45.79 67.18 | 49.58 | 47.46 | 42.80 | 45.08 68.08
Rescoring (5-gram LM)
baseline | 50.38 | 48.33 | 42.64 | 44.87 67.25 | 50.50 | 48.35 | 42.78 | 44.92 67.98
str-dep | 51.24 | 49.23 | 42.08 | 44.42 67.89 | 51.23 | 49.11 | 42.01 | 44.15 68.65

Table 2.46: BLEU, TER and METEOR percentage scores on Arabic-English newswire test sets.

Table 2.46 and Table 2.47 show the BLEU, TER and METEOR scores on MT06 and
MTO08 for Arabic-English and Chinese-English translation respectively.

For Arabic-to-English MT, our string-to-dependency decoder improved BLEU by 1.3
on MTO06 and 1.2 and MTO08 before 5-gram rescoring. For Chinese-to-English MT, the
improvements in BLEU were 1.0 on MT08 and 1.4 on MTO08. After rescoring, the
improvements became smaller, but still noticeable, ranging from 0.8 to 1.3. TER and
METEOR scores were also improved for all conditions, suggesting there was no metric
specific over tuning.

MTO06 MTO08
Model BLEU TER METEOR BLEU TER METEOR
Lower | mixed | lower | mixed lower | mixed | lower | mixed
Decoding (3-gram LM)

Baseline | 36.40 | 34.79 | 54.98 | 56.53 5725 | 31.64 | 29.56 | 57.35 | 59.37 54.93
str-dep 37.44 | 3562 | 54.64 | 56.47 57.42 | 33.05 | 31.26 | 56.79 | 58.69 55.18
Rescoring (5-gram LM)
baseline | 37.88 | 36.18 | 53.80 | 55.45 57.44 | 33.06 | 31.21 | 55.84 | 57.71 55.18
str-dep 38.91 | 37.04 | 53.65 | 55.45 57.99 | 34.34 | 32.32 | 55.60 | 57.60 55.91

Table 2.47: BLEU, TER and METEOR percentage scores on Chinese-English newswire test sets.

Table 2.48 shows the interaction between string and dependency LMs. With a tri-
gram string LM, a bigram dependency LM is almost as good as a trigram dependency
LM. This shows that dependency relations, even in bigram, provide useful prior
knowledge unavailable in a larger string n-gram LM. If we use a weaker (bigram) string
LM in decoding, the improvement given by a dependency LM is more significant.

Handbook of Natural Language Processing and Machine Translation 225

Arabic-English | Chinese-English

String LM| Dep LM | MT06 | MTO08 | MT06 | MTO08
2 - 39.92 39.87 29.83 26.35

2 2 43.96 43.93 32.87 28.48

3 - 46.64 47.37 36.02 31.26

3 2 48.55 49.43 37.59 32.64

3 3 48.75 49.58 37.44 33.05

Table 2.48: Lower-cased Bleu scores with various n-gram LMs

2.4.4.3.6 Discussion

Here is an example in the tuning set which may provide some insight how the
dependency LM helps to improve translation quality.

* Reference: Meriam is a member of the Gulf country Bahrain’s royal family
* Baseline: Mei-Li-an is the Gulf state of Bahrain ’s royal family members
* Str-dep: Mei-Li-an is a member of the Gulf state of Bahrain’s royal family

In the baseline translation, is ... members is not a valid combination. However, they
are not in a local string window, so the decoder cannot rule it out. However, members
directly depends on is in a dependency structure, so that the decoder uses an alternative
rule and obtains a better translation.

2.4.4.3.7 Related Work

The well-formed dependency structures defined here are similar to the data structures
in previous work on mono-lingual parsing (Eisner and Satta 1999; McDonald et al.
2005). Charniak et al. (2003) described a two-step string-to-CFG-tree translation model.
It first built a target parse forest for the input and then used a syntax-based language
model to select the best translation. Unlike our work, the syntax LM was not used in
forest generation, possibly due to the complexity of the syntax-based LM. In contrast, the
simplicity of dependency LMs makes one step decoding possible in our decoder.

2.4.4.4 Conclusions

This section presents two string-to-tree machine translation models, each using trees
to guide large-scale sentence structure changes when translating between languages. One
model is based on target-side constituency trees and is improved through a careful
comparison with a phrase-based MT model. The other model uses target-side dependency
trees to exploit long-distance word relations not captured by traditional n-gram language
models, improving on a hierarchical phrase-based MT model. While differences exist in
both models, they both succeed by learning a better, more syntactic model to structure the
target language output.

226 Chapter 2: Machine Translation from Text

2.4.5. Forest Re-ranking for Machine Translation Using the
Direct Translation Model
Authors: Zhifei Li and Sanjeev Khudanpur

2.4.5.1 Introduction

Discriminative training has been attempted for the task of statistical machine
translation (SMT) both in a small-scale setting (i.e., finding optimal weights among a
small set of generative models) and in a large-scale setting (i.e., training optimal weights
for thousands/millions of features). In this section, we focus on the large-scale
discriminative training.

In the small-scale setting, minimum error rate training (Och et al. 2003) has become
the de facto standard in SMT systems. Smith and Eisner (2006) propose an annealed
minimum risk approach, while Zens et al. (2007) give a systematic experimental
comparison for different training criteria. Shen et al. (2004) use perceptron-inspired
algorithms to tune weights for tens of features. Chiang et al. (2008) use an online max-
margin method to tune tens of syntax features for a hierarchical system.

Large-scale discriminative training for SMT is nontrivial due to several reasons.
Learning a discriminative model normally involves in running an iterative training
algorithm, which may require decoding the training data at each iteration. The decoding
process is computationally expensive. In particular, the decoding of a single sentence
often takes several CPU-seconds and the parallel corpora available for discriminative
training typically contain millions of sentence pairs. Therefore, a single decoding pass
over the training data may take tens of CPU-days. Another reason that makes
discriminative training nontrivial for a SMT task is that the number of features needed to
improve MT performance is enormous. For example, the number of phrase pairs
extractable from the training bitext alone runs into the tens of millions.

To address these problems, previous approaches have resorted either to an n-best
approximation (e.g., Watanabe et al. (2007)), to a computationally cheap baseline system
(e.g., a monotone translation system as assumed in Liang et al. (2006a)), or to a small-
scale setup (e.g., only sentences less than fifteen words are used as by Blunsom et al.
(2008)).

In this section, we present a scalable discriminative re-ranking framework, which
discriminatively re-ranks hypotheses on a hyper-graph, instead on an n-best list.
Specifically, for each sentence, we generate a hyper-graph using a baseline SMT system
and save it to disk. In each iteration of the discriminative training, the learning algorithm
updates towards an oracle tree in the fixed hyper-graph. The re-ranking approach has the
advantage of being simple and scalable (since it does not require re-decoding the training
data at each iteration of training).

Our hyper-graph-based discriminative re-ranking approach is particularly appealing
since a hyper-graph compactly encodes exponentially many hypotheses, representing a
much larger hypothesis space than an n-best. In this respect, the hyper-graph-based re-
ranking occupies an intermediate position between re-ranking on a fixed n-best and
redecoding the training data at each iteration. To support the hyper-graph-based
discriminative training for SMT, we use an oracle extraction algorithm that is able to

Handbook of Natural Language Processing and Machine Translation 227

efficiently extract oracle trees from hyper-graphs and a hyper-graph pruning algorithm
that substantially reduces the required disk space for saving hyper-graphs without
degrading the hyper-graph quality.'’ The scalability of our approach is also due to our
simple yet effective data selection and feature selection algorithms, by which an equally
good or better model is obtained using a fraction of the training data and features.*® Our
hyper-graph-based discriminative re-ranking approach is analogous to a lattice-based
discriminative training approach for speech recognition (Woodland and Povey, 2002) and
a forest re-ranking approach to monolingual parsing (Huang, 2008), both of which have
been shown to be quite effective for their respective tasks.

We report experimental results for both the n-best and hyper-graph-based
discriminative re-ranking on Hiero (Chiang, 2007), showing that our approach is able to
improve over a full-scale state-of-the-art hierarchical machine translation system.

2.4.5.2 Hiero and Hyper-graphs

In Hiero (Chiang 2007), a synchronous context-free grammar (SCFG) is extracted
from automatically word-aligned corpora. An illustrative grammar rule for Chinese-to-
English translation is

X o (Xl X1, X1 0f Xo)

where the Chinese word # means of and the alignment, encoded via subscripts on the
nonterminals, causes the two phrases around # to be reordered around of in the
translation. Given a source sentence, Hiero uses a CKY parser to generate a hyper-graph,
encoding many hypotheses (derivation trees along with the translation strings).

Formally, a hyper-graph is a pair (V,E), where V is a set of nodes (vertices) and E is
a set of hyper-edges, with each hyper-edge connecting a set of antecedent nodes to a
single consequent node. In parsing parlance, a node corresponds to an item in the chart
(which specifies aligned spans of input and output together with a nonterminal label). The
root node corresponds to the goal item. A hyper-edge represents an SCFG rule that has
been “instantiated” at a particular position, so that the non-terminals on the right and left
sides have been replaced by particular antecedent and consequent items; this corresponds
to storage of back pointers in the chart.

We write T(e) to denote the set of antecedent nodes of a hyper-edge e. We write I(v)
for the set of incoming hyper-edges of node v (i.e., hyper-edges of which v is the
consequent), which represent different ways of deriving v.

7 The details of the oracle extraction algorithm have been presented in Li and Khudanpur (2009).
18 The details of the data selection method have been discussed in Li and Khudanpur (2008).

228 Chapter 2: Machine Translation from Text

Hyper-graphs

Figure 2.29: A toy hyper-graph in Hiero. When generating the hyper-graph, a trigram language model is
integrated. Rectangles represent items, where each item is identified by the non-terminal symbol, source span
and left- and right-side language model states. An item has one or more incoming hyper-edges. A hyper-
edge consists of a rule and a pointer to an antecedent item for each non-terminal symbol in the rule.

2.4.5.3 Discriminative Modeling

We first describe a general discriminative re-ranking framework, inspired by Roark
et al. (2007) for n-gram language modeling in speech recognition.

Global Linear Models
A linear discriminant aims to learn a mapping from an input x € X'to an output y € Y,
given

training examples (xi, yi),i=1---N,

a representation @ : X x Y — Rd mapping each possible (x, y) to a feature vector,
a function GEN(x) <Y that enumerates putative labels for each x € X and

a vector a € R of free parameters.

HwbdE

In general, for a SMT task, x is a sentence in the source language; GEN(x)
enumerates possible translations of x into the target language and can be the set of strings
in an n-best list or hyper-graph. y is the desired translation: either a reference translation
produced by a bilingual human or a so-called oracle translation in GEN(x) that is most
similar to such a human reference. In our training, y is an oracle tree (which contains a

Handbook of Natural Language Processing and Machine Translation 229

translation string as well) since we use the perceptron algorithm, which, unlike the
conditional random field used by Blunsom et al. (2008), cannot easily treat the derivation
trees as latent variables.

Given an input x, the model assigns every hypothesis y € GEN(x) a score,

S(X, Y) = (D(X, Y) o= Z] (I)] (X' Y) aja (2.31)

where j indexes the feature dimensions.

The learning task is to obtain the “optimal” parameter vector from training
examples, while the decoding task is to search over GEN(x) to obtain the y that has the
maximum score s(x,y). These tasks are discussed in the next sections.

Parameter Estimation

Given a set of training examples, a parameter estimation algorithm is used to find an
optimal by maximizing a certain objective function of the training data. Different
algorithms use different objective functions, e.g.,, maximum conditional likelihood
(Blunsom et al. 2008), minimum risk (Li and Eisner 2009), or max-margin (Chiang et al.
2008). We use the averaged perceptron algorithm (Collins 2002) due to its simplicity and
suitability to large data settings. Given a set of training examples, the algorithm
sequentially iterates over the examples and adjust the parameter vector, as illustrated
below:

Perceptron(x, GEN(x), y)

1. a«< 0 Winitialize as zero

2. fort—1toT

3 fori—1to N

4, 7l e argmax, caey ¢y (D(xi,z) ‘q
5 if (zi #y0)

6 aco+0(xhyl) - ox], 2
7. returna

After iterating over the training data a few times, an averaged model,
EZTZ L N al, is computed and is used for testing, where o represents the parameter
T t=1y Zi=1at p p p

vector after seeing the i-th example in the t-th iteration, N represents the size of the
training set and T is the number of iterations of the perceptron algorithm.

Decoding/Inference

During the perceptron training-time (see line-4 in the perceptron iteration loop) as
well as the test time, the following decision rule is normally used to select the optimal
outputy’,

230 Chapter 2: Machine Translation from Text

y = argmax ccey o) s(x,y) (2.32)

This is called Viterbi decoding. Other decision rules like minimum risk (Tromble et
al. 2008) or variational decoding (Li et al. 2009b) can also be used. The decoding
complexity depends on the size and structure of GEN(x) (e.g., n-best or hyper-graph).

2.4.5.4 Discriminative Forest Re-ranking

Discriminative Re-ranking

The above framework (models, parameter estimation and decoding) is quite general
and can be applied in many structured prediction tasks. We use it as a re-ranking
framework: train a discriminative model to re-rank the hypotheses (encoded either in an
n-best list or a hyper-graph) produced by a baseline SMT system. The re-ranking
approach has the advantage of being simple and scalable (as we do not need to re-decode
the training data following each iteration of training).

Each component @;(x,y) of the feature vector can be any function of the input x and
the output y. To facilitate re-ranking, we first define a baseline feature ®y(x,y), which is
the score assigned to y by the baseline SMT system.™ We then need to define many
additional re-ranking features. For example, an n-gram feature might be:

®;(x,y) = Count of the bigram “the of” in y.

Given the feature- and the parameter-vectors, the total score assigned to an output y €
GEN(x) for a given input x is

s(x,y) = BPo(x,¥) + Yjer1,r ;P (x, ¥), (2.33)

where S is the weight for the baseline feature and F is the number of discriminative re-
ranking features. To find the optimal weight g for the baseline feature, one could simply
treat @, as a feature in the discriminative re-ranking model and set the value of via the
perceptron algorithm. This, however, may lead to undertraining (Sutton et al. 2006) of
the discriminative re-ranking features in the re-ranking model: the baseline feature is
strongly indicative of the overall goodness of y for x, relative to any single discriminative
re-ranking feature which indicates the local goodness of y. Therefore, we use a fixed
value for during the discriminative training, as suggested by Roark et al. (2007).

In the general framework described so far, two algorithms are specific to the size and
structure of GEN(x): decoding and oracle extraction. When GEN(x) is an n-best list as
in Li and Khudanpur (2008), these two algorithms are straightforward as we can simply
perform a brute-force linear search over the n-best list to obtain the Viterbi or oracle
translation. It will be more complex when GEN(x) is a hyper-graph, which encodes
exponentially many hypothesis. We will present the decoding algorithm and review the
oracle extraction algorithm (Li and Khudanpur, 2009) in the following sections.

19 This score itself is often a linear combination of several models, with the relative weights among these
models obtained via a minimum error rate training procedure (Och et al., 2003).

Handbook of Natural Language Processing and Machine Translation 231

Decoding on Hyper-graphs
The decoding algorithm that finds y* on a hyper-graph, as defined in 2.4.5.2, is
outlined below:

Decoding-on-Hyper-graph(GEN(x))

For vin topological order P each node
$ « negative infinity
For ee/(v) P each incoming hyper-edge
s(e) « BPy(e) + Xjep,r @ Pj(e)
s(e) < s(e) + Xjere) S(W)
If s(e) >S(u) W better derivation?
d() « (e, 1)
$(v) « s(e)
return d (goal)

©CoNo MWD E

Recall that the total score assigned to an output yeGEN(x) for a given input x is
defined in 2.4.5.3. For each node v, the algorithm adjusts its Viterbi derivation d(v) and
Viterbi score $(v) by applying the discriminative model . To update the Viterbi
derivation d(v), the algorithm processes each in-coming hyper-edge e€I(v). A hyper-
edge e’s score s(e) is the model score on that hyper-edge (see line-4 above) plus the
Viterbi scores of all its antecedent nodes u€eT(e) (see line-5). If e leads to a better
derivation, d(v) is updated with (e, 1), the best derivation along the hyper-edge e. The
algorithmic complexity is linear with the hyper-graph size, that is, O(|E|).

Oracle Extraction on Hyper-graphs

While a hyper-graph represents a very large set of translations, it is quite possible that
the reference translations are not contained in the hyper-graph, due to pruning or inherent
deficiency of the translation model. In this case, we want to find the translation in the
hyper-graph that is most similar to the reference translations, with similarity computed by
BLEU (Papineni et al. 2002). Such maximally similar translation will be called oracle
translation and the process of extracting them oracle extraction. As mentioned, we use
oracle tree (instead of oracle string) in our training. In Hiero, many distinct derivation
trees may yield the oracle string. This is called spurious ambiguity. Among all the trees
yielding the oracle string, we define the one with the best baseline model score as the
oracle tree.

Oracle extraction on a hyper-graph is a nontrivial task because computing the
similarity of any one hypothesis requires information scattered over many items in the
hyper-graph and the exponentially large number of hypotheses makes a brute force linear
search intractable. Therefore, efficient algorithms that can exploit the structure of the
hyper-graph are required. We present an efficient oracle extraction algorithm (Li and
Khudanpur 2009), which involves two key ideas. Firstly, we view the oracle extraction as

232 Chapter 2: Machine Translation from Text

a bottom-up model scoring process on a hyper-graph, where the model is an n-gram
model “trained” on the reference translation(s) and the score is the BLEU value. This
algorithm, however, requires maintaining a separate dynamic programming state for each
distinguished sequence of “state” words and the number of such sequences can be huge,
making the search very slow. Secondly, therefore, we present a novel look-ahead
technique, called equivalent oracle-state maintenance, to merge multiple states that are
equivalent for similarity computation. Our experiments show that the equivalent oracle-
state maintenance technique significantly speeds up (more than 40 times) the oracle
extraction.

2.4.5.5 Supporting Algorithms for Scalable Discriminative Training

In this section, we present several supporting algorithms in the hyper-graph-based
discriminative training framework, to make it scalable to big training sets and to a large
number of features.

Hyper-graph Pruning

Saving the hyper-graphs on the disk requires a lot of storage space and also incurs
I/O overheads. Therefore, we adopt a hyper-graph pruning algorithm, which substantially
reduces the required disk space without degrading the hyper-graph quality too much.
Specifically, we run an inside-outside algorithm to compute the Viterbi inside score B(v)
and the Viterbi outside score a(v) for each node v and then compute the merit af3(e) for
each hyper-edge e. A hyper-edge e gets pruned if its merit is worse than the score of the
best derivation in the hyper-graph by a relative threshold p. A node v gets pruned if all its
incoming hyper-edges get pruned. We use a development set to find the optimal p in
terms of the tradeoff between disk space and hyper-graph quality (as measured by oracle
BLE BLEU). Our algorithm is similar to that used by Huang (2008) for monolingual
hyper-graphs.

Feature Selection

The perceptron algorithm previously described itself can be thought as a feature
selection algorithm as it incrementally adds features into the model whenever they are
activated. Due to this, however, the model size can grow arbitrary large, which imposes
difficulty in our SMT task as the number of possible features is enormous. For example,
the number of phrase pairs extractable from the parallel corpora can easily run into tens
of millions. On the other hand, one can employ a dedicated feature selection algorithm
and constrain the perceptron algorithm such that it updates only on the selected features.

We propose to use only the features that are present in the test sets. Specifically,
before the discriminative training, we traverse all the hyper-graphs in the test sets and
collect all the features present in these hypergraphs.?’ This method is extremely simple
and computationally cheap. In machine learning terminology, it is called directed ad hoc
inference, inference that occupies an intermediate position between inductive-deductive

20 Of course, this does not peek at the reference translations.

Handbook of Natural Language Processing and Machine Translation 233

inference and transductive inference (Vapnik 2006). Intuitively, we can view this as an
intermediate learning paradigm between the regular supervised training and the
unsupervised clustering (e.g., k-nearest neighbors).

Data Selection

We can present all the training examples (i.e., hyper-graphs together with the
corresponding oracle trees) to the discriminative training algorithm. Alternatively, we can
carry out a data selection procedure that selects a subset of these examples. Data selection
is useful for speeding up the training procedure as most training algorithms require
computational time proportional to the size of training data. It also has potential to
improve the model quality. We adopted the data selection procedure proposed by Li and
Khudanpur (2008).

2.4.5.6 Feature Functions

Baseline Model Feature: The baseline feature ®y(x,) is the score assigned to y
by the baseline SMT system, which is a linear combination of several models, with the
relative weights among these models obtained via a minimum error rate training
procedure (Och et al. 2003).

Language Model Features: The count of each n-gram in the English yield of the
derivation tree y constitutes a feature.

Translation Model Features: The count of each rule in the derivation tree y
constitutes a feature. The rule can be any flat/hierarchical phrase in Hiero.

Boundary n-gram Features: In Hiero, a hierarchical rule combines small
translation units into a larger one. The combination creates n-grams that cross the
boundary between the terminal words in the hierarchical rule and the LM state words in
the antecedent items. Some of these boundary n-grams may never appear in monolingual
corpora including the English side of the bitext. Clearly, the boundary n-gram features
form a strict subset of the general n-gram features defined before. For example, all the n-
grams inside a flat rule and all the unigrams do not belong to the set of boundary n-
grams.

2.4.5.7 Experimental Results

We report results using an open source MT toolkit, called Joshua (Li et al. 2009a),
which implements Hiero (Chiang 2007).

Data Resources

We compile a parallel dataset (about 4M sentence pairs) consisting of corpora
distributed by LDC for the NIST Chinese-English MT evaluation, from which we select
about 1M sentences pairs (about 28M words in each language) as the parallel training
data using a sampling method based on the n-gram matches between training and test sets
in the foreign side. The language model training data consists of a 130M words subset of
the English Gigaword (LDC2007T07) and the English side of the parallel corpora.

234 Chapter 2: Machine Translation from Text

Baselines and Discriminative Training Data

One could train a single baseline SMT system on the entire parallel corpus and
decode all the source language sentences using this system, for discriminative training.
However, this may lead to a significant mismatch during actual test conditions. In
particular, the hyper-graphs generated on the training data will have better translation
quality than on unseen test data. To avoid this pitfall, we partition the parallel data into 30
disjoint sections and train 30 baseline SMT systems. To decode sentences from a
particular section, we use a baseline system that excludes that section. We carry out this
jackknife training for both the TM and LM training.

For each baseline system, we use the GIZA toolkit (Och and Ney 2000), a suffix-
array architecture (Lopez 2007), the SRILM toolkit (Stolcke 2002), and minimum error
rate training (MERT) (Och et al. 2003) to obtain word alignments, translation models,
language models and the optimal weights for combining these models, respectively. The
baseline LM is a trigram LM with modified Kneser-Ney smoothing (Chen and Goodman
1998). %! The MERT is performed on the NIST MT’03 evaluation data set.

Goodness of the Oracle Translations

Table 2.49 reports the BLEU scores of the oracle translations on four NIST evaluation
data sets on which we will report performance later. This table sets an upper bound on
improvements possible using the discriminative model. In general, the oracle BLEU score
in a hyper-graph is much better than that in a 500 unique n-best strings (corresponding to
thousands of distinct derivation trees). This shows that a hyper-graph provides a much
better basis for re-ranking than an n-best. Moreover, the oracle BLEuU score increases very
slowly along with the increase of n for the n-best derivation trees. Huang (2008) observed
a similar trend for monolingual parsing.

Oracle
Task: | 1-best 500-unique-best [Hyper-graph
MT’03 35.0 40.7 47.1
MT’04 35.7 44,0 52.8
MT’05 32.6 41.2 51.8
MT’06 28.3 35.1 37.8

Table 2.49: Oracle and 1-best Bleu Scores (4-gram Bleu with four references) on MT Sets.

Goodness of Hyper-graph Pruning

Figure 2.30 shows the tradeoff between disk space (in terms of number of hyper-
edges needed to be stored) and hyper-graph quality (in terms of the oracle BLEu score) on
a dev set. Clearly, as the threshold p increases, less number of hyper-edges are pruned
and the oracle BLeu score decreases less. We choose p = 7 for the remaining experiments.

21 \We use a trigram LM because the decoding of the whole training set (about 1M sentences) is too
computationally expensive if we use a larger order LM.

Handbook of Natural Language Processing and Machine Translation

Figure 2.30: Tradeoff between Disk Space and Hyper-graph Quality by varying threshold p.

Results on NIST MT Bench

mark Tests

235

For the experiments reported here, we perform data selection as described in Li and
Khudanpur (2008) and select 610K sentence pairs from about 1M for training various
perceptron models. The optimal £ for the baseline feature is found using MT04 as a

tuning set.

Table 2.50 reports the BLeu results for one baseline system, two discriminative n-best
re-ranking systems and five discriminative hyper-graph re-ranking systems. BLM means
the boundary n-gram language model feature set. In n-best re-ranking, we consider only
the regular language model features.? Clearly, the n-best discriminative training is able
to improve the baseline significantly. Also, the “WFS” (with feature selection) model,
containing about 160K features, achieves comparable performance to “NFS” (no feature
selection) that contains about 1444K features.

System MT04 | MTO5 | MTO06
Baseline Joshua 35.7 32.6 28.3
N-best NFS 36.6 33.2 29.3
WEFS 36.5 335 29.2
LM 35.9 33.0 28.2
Hyper- BLM 35.9 33.0 28.4
graph ™ 36.1 33.2 28.7
TM+LM 36.0 33.1 28.6
TM+BLM | 36.1 33.0 28.6

Table 2.50: BLEU Scores for MT Sets under Various Models. The MTO04 set is used for tuning some hyper-

parameters in the re-ranking model.

22 \We consider only unigram and bigram for language model features. Adding trigram features does not lead

to much improvement. Roark et al. (2007) observed a similar trend for a speech recognition task.

236 Chapter 2: Machine Translation from Text

In the hyper-graph-based discriminative re-ranking, we always carry out feature
selection. From the test sets (MT03-MT06) we SELECTED 1.5M features for LM and
BLM and 1.8M for TM. As is clear in Table 2.50, while the hyper-graph-based
discriminative training outperforms the baseline on all three test sets, the improvements
in BLEu are slightly less than that from n-best based training. This may be due to
overfitting in hyper-graph based training as it yields many more features than n-best
based training. Also, all our features so far are “local” and Huang (2008) also observes
that forest-based re-ranking in monolingual parsing does not outperform n-best based re-
ranking when only local features are used. We propose to investigate these issues in the
near future.

2.4.5.8 Conclusions

In this section, we present a scalable discriminative training framework for statistical
machine translation. The framework can be used both for n-best and hyper-graph-based
re-ranking. In the context of hyper-graph-based re-ranking, we employ an oracle
extraction algorithm to efficiently extract an oracle trees from a hyper-graph. To make
the hyper-graph-based method scalable, we adopt several efficient algorithms: hyper-
graph pruning, data selection and feature selection. We show that both n-best and hyper-
graph-based re-ranking improve over a full scale state-of-the-art hierarchical machine
translation system (Chiang 2007). However, the hyper-graph-based re-ranking under
performs the n-best re-ranking, which is quite surprising and the reasons remain to be
investigated.

Our framework forms a solid basis for feature engineering and incorporating better
machine learning methods in statistical machine translation.

2.4.6. Lexical Semantics for Statistical Machine Translation
Authors: Dekai Wu, Pascale Fung, Marine Carpuat, Chi-kiu Lo, Yongsheng Yang, Zhaojun Wu

2.4.6.1 Introduction

Error analysis shows statistical machine translation models to continue to be prone to
errors that are likely to benefit from stronger models of semantics. Lexical semantics, in
particular, is the obvious first target, given the lexical orientation inherent to SMT
approaches. There are two main aspects of lexical semantics — senses and roles — both
of which bear exploration in the context of SMT:

Sense disambiguation uses clues in the input context to predict the correct meaning of
input lexemes that are ambiguous, thus making or influencing decisions on translation
lexical choice.

Semantic role labeling identifies a sentence's shallow semantic predicate-argument
frames, independent of syntax or language: who did what to whom, for whom or what,
how, where, when and why, which generally should be preserved in translation.

In both these areas of lexical semantics, a large body of work exists, not only in the
linguistic tradition, but also, more recently, in extensive empirical and machine learning

Handbook of Natural Language Processing and Machine Translation 237

oriented evaluations. Yet surprisingly, the application of semantic modeling to SMT has
received little or no attention. Leveraging such modeling approaches to improve the
adequacy of translation would seem highly desirable in the face of the types of semantic
errors made by today's more n-gram based, fluency-oriented SMT systems.

We approach this promise with caution, however, given the painful lessons learned
through the historical difficulty of making syntactic models contribute to improving SMT
accuracy. The past decade has at last seen increasing amounts of evidence that SMT
accuracy can indeed be improved via tree structured and syntactic models (Wu 1997; Wu
and Wong 1998; Wu and Chiang 2007; Chiang and Wu 2008; Wu and Chiang 2009)
despite numerous disappointing attempts (Och et al. 2004). Improving SMT accuracy
ultimately required making major adaptations to the original linguistic models. We,
therefore, anticipated it would be at least as difficult to successfully adapt even more
abstract types of semantic modeling to SMT, and indeed, it has turned out to be
remarkably challenging to improve SMT using either kind of lexical semantics, as we
will discuss in the respective following sections.

Sense disambiguation: We describe a generalized Phrase Sense Disambiguation
approach, the first successful model to incorporate the predictions of a word sense
disambiguation system within a typical phrase-based SMT model. The model yields
consistent improvement in translation quality across multiple test sets, according not only
to BLEU, but to all eight most commonly used automatic evaluation metrics. While
preserving the exact structure and feature engineering of state-of-the-art word sense
disambiguation (WSD) modeling, success required a simultaneous combination of three
other critical adaptations to traditional WSD sense inventories, lexeme definitions and
task integration.

Semantic role labeling: We describe results from a series of empirical studies
designed to assess more precisely the realistic utility of semantic roles in improving SMT
accuracy. The experiments reported study several aspects key to success: (1) the
frequencies of types of SMT errors where semantic parsing and role labeling could help,
and (2) if and where semantic roles offer more accurate guidance to SMT than merely
syntactic annotation, and (3) the potential quantitative impact of realistic semantic role
guidance to SMT systems, in terms of BLEU and METOR scores.

2.4.6.2 Semantic SMT: Senses

2.4.6.2.1 Phrase Sense Disambiguation

Phrase Sense Disambiguation (PSD) is a task-driven definition of Word Sense
Disambiguation (WSD) modeling for SMT. Most SMT systems make little use of
contextual information in translation lexical choice. In contrast, WSD research has
established that rich context features are useful in stand-alone translation disambiguation
tasks. However, early attempts at using context-rich approaches from WSD methods in
standard SMT systems surprisingly did not yield the expected improvements in
translation quality (Carpuat and Wu 2005).

PSD leverages the feature engineering and learning models developed for standalone
WSD, while building on key modeling strengths of current SMT systems. Phrasal SMT
architectures directly integrate lexical collocation preferences into lexical choice by the

238 Chapter 2: Machine Translation from Text

means of phrasal translation lexicons. The PSD approach argues that disambiguation
targets must be exactly the same phrases as in the SMT phrasal translation lexicon, so
that the sense disambiguation task is identical to lexical choice for SMT.

As a result, PSD constrasts with the conventional standalone WSD perspective. We
present comparative empirical evidence and data analysis showing why PSD succeeds
where its predecessors failed, via a combination of three critical modeling changes:

1. The sense disambiguation model must be trained to predict observable senses
that are the direct lexical translations of the target lexeme being disambiguated. PSD
sense inventories are exactly the phrasal translations learned in the SMT translation
lexicon. In contrast, most conventional WSD models are instead trained to predict hidden
senses drawn from an artificially constructed sense inventory. This differs even from
previous WSD approaches that make use of word translations as a source of WSD labels,
but use manually-defined word-based translation lexicons rather than learned phrasal
translations (Dagan and Itai 1994; Gale et al. 1992) and still make a distinction between
sense labels and SMT translation candidates (Brown et al. 1991).

2. Sense disambiguation must be redefined to move beyond the particular case of
single word targets and instead to generalize to multi-word phrase targets. PSD targets
are permitted to be phrasal lexemes composed of smaller lexemes, while standalone
WSD targets are typically defined as single words, as in Senseval tasks (Kilgarriff and
Rosenzweig 1999; Kilgarriff 2001; Mihalcea et al. 2004).

3. The sense disambiguation model must be fully integrated into the runtime
decoding. Unlike earlier models attempting to utilize single-word sense disambiguation
(e.g., Carpuat and Wu 2005), it is not possible to represent phrasal sense predictions as
input annotations since they cover overlapping spans in the input sentence. PSD is fully
integrated into the decoding search itself, as opposed to preprocessing or post-processing
stages.

Unlike the static, pre-trained context-independent translation probability models
found in nearly all current SMT models, the Phrase Sense Disambiguation approach
delivers dynamically-computed, context-dependent, phrasal translation probabilities to
the decoder. Whereas, current SMT systems make very little use of contextual
information to select a translation candidate for a given input language phrase, PSD
employs a rich array of lexical, collocational and syntactic context features from the input
source-side sentence, drawing upon the feature engineering of the Senseval WSD
evaluations. We present analysis confirming that the most important predictive context
features are not available in conventional phrase-based SMT models. Further empirical
analysis shows that PSD enables the SMT system to make use of more and longer
phrases, including phrases that were not seen very frequently in training. Even when the
segmentation is identical, the context-dependent lexicons yield translations that match
references more often than conventional lexicons.

2.4.6.2.2 PSD uses the same training data as the SMT system

PSD training does not require any other resources than SMT training, or any manual
sense annotation. We employ supervised WSD classifiers, since Senseval results have

Handbook of Natural Language Processing and Machine Translation 239

amply demonstrated that supervised models significantly outperform unsupervised
approaches (see for instance the English lexical sample tasks results described by
Mihalcea et al. (2004)).

Training examples are annotated using the phrase alignments learned during SMT
training. Every input language phrase is sense tagged with its aligned output language
phrase in the parallel corpus. The phrase alignment method used to extract the PSD
training data, therefore, depends on the one used by the SMT system. This presents the
advantage of training PSD and SMT models on exactly the same data and eliminates
domain mismatches between SMT parallel corpora and conventional WSD training data.
In addition, this allows PSD training data to be generated entirely automatically, since the
parallel corpus is automatically phrase aligned in order to learn the SMT phrasal bi-
lexicon.

2.4.6.2.3 PSD generalizes conventional WSD features to phrasal targets

The PSD models are based on the machine learning classifiers and context features
used in the conventional WSD models developed for the Senveval-3 Chinese Lexical
Sample Task. However, generalizing the PSD target to multi-word phrases requires
generalizing some of the context features as well.

In order to formally define the PSD feature set, consider the input sentence:
WiWo Wi_oWi_1 Wi WiWj 1 Wi oWy Where w;, for any j, is a single word, p; is the part
of speech of w;, w;_wy is the PSD phrasal target (a single word if i=k or a multi-word
phrase if k > 1).

The feature set for the PSD phrasal target w; _wy, is defined as:

e part of speech of target phrase, which is defined as the POS sequence of its single
word components: p; px
part of speech of previous word: p;_4;
part of speech of next word: py 1
identity of previous word: w;_4;
identity of next word: wy,, 4
bag of word sentence context: {w; for j =1, ..., N|p; = noun, verb or adjective}
if the target is a single word and a verb, identity of the first noun at the right of
the target (approximation for verb-object dependency)

e if the target is a single word and a noun, identity of the next word if it is a noun,

I.e., W41 If pry1iS @ noun (approximation for head noun)

e if the target is a single word and a noun, POS of the next word if it is a noun, i.e.,

Pr+1 1T Prs1 1S @ noun (note that there are several possible POS for nouns)

e if the target is a single word and an adjective, identity of the first noun at the right
of the target (approximation for modified noun).

The WSD provenance makes this a significantly richer feature set than previous
lexical choice models employed in SMT. Note that some of these features were
engineered for Chinese WSD. Shallow parse features can similarly be defined for other
specific languages.

240 Chapter 2: Machine Translation from Text

2.4.6.2.4 PSD is fully integrated into the SMT decoding

Conventional phase-based SMT systems are designed to use static phrasal translation
lexicons since all translation probabilities and related scores are not dependent of context.
In contrast, the PSD context-dependent translation lexicon needs to be dynamically
computed as scores for each phrase-pair change for each occurrence of the input language
phrase. It is therefore non-trivial to incorporate PSD into an existing phrase-based
architecture, since the decoder is not set up to easily accept multiple translation
probabilities that are dynamically computed in context-sensitive fashion.

Using PSD scores, therefore, requires making significant changes in the
implementation of translation candidate scoring. Note that a generic strategy to overcome
this obstacle in any phrasal SMT system is to use a calling architecture that reinitializes
the decoder with dynamically generated lexicons on a per-sentence basis.

In practice, in a given input sentence, we may replace each word by an identifier
which uniquely represents the occurrence of the word in context. A new translation
lexicon is created for these input identifiers using the standard context-independent
scores augmented with the new context-dependent PSD score.

2.4.6.2.5 Evaluation

We evaluate the impact of PSD in translation quality within a standard phrase-based
SMT architecture.

Experimental setup

The evaluation is conducted on two standard Chinese to English translation tasks. We
follow standard machine translation evaluation procedure using automatic evaluation
metrics. Since our goal is to evaluate translation quality, we use standard MT evaluation
methodology and do not evaluate the accuracy of the WSD model independently.

Preliminary experiments were conducted using training and evaluation data drawn
from the multilingual BTEC corpus, which contained sentences used in conversations in
the travel domain and their translations in several languages. A subset of this data was
made available for the IWSLTO6 evaluation campaign (Paul 2006); the training set
consists of 40000 sentence pairs and each test set contained around 500 sentences. We
used only the pure text data and not the speech transcriptions, so that speech-specific
issues would not interfere with our primary goal of understanding the effect of integrating
WSD in a full-scale phrase-based model.

A larger scale evaluation was conducted on the standard NIST Chinese-English test
set (MT-04), which contained 1788 sentences drawn from newswire corpora and,
therefore, of a much wider domain than the IWSLT data set. The training set consisted of
about 1 million sentence pairs in the news domain.

Basic preprocessing was applied to the corpus. The English side was simply
tokenized and case-normalized. The Chinese side was word segmented using the LDC
segmenter.

Handbook of Natural Language Processing and Machine Translation 241

A standard baseline SMT system

Our aim is to lay out an approach that can be expected to work in any reasonably
common phrase-based SMT implementation. Since our focus is not on a specific SMT
architecture, we chose the widely-used, off-the-shelf, phrase-based, decoder Moses
(Koehn 2004a). Moses implements a beam search decoder for phrase-based statistical
models and presents the advantages of being freely available and widely used.

The phrase bi-lexicon was derived from the intersection of bidirectional IBM Model
4 alignments, obtained with GIZA + + (Och and Ney 2003). A trigram language model
with Kneser-Ney smoothing was trained on the English side of the corpus using the SRI
language modeling toolkit (Stolcke 2002).

The log-linear model weights were learned using Chiang's implementation of the
maximum BLEU training algorithm (Och 2003), both for the baseline and for the WSD-
augmented system.

PSD consistently helps translation quality

Table 2.51 shows that, remarkably, PSD consistently improves translation quality as
measured by all eight metrics on both the IWSLT and on the NIST data sets. Examples of
actual translations are given in Figure 2.31.

Test Exper. BLEU | NiST [METEOR|METEOR| TER | WER PER CDER
Set (no syn)
IWSLTO6 SMT 42,21 | 7.888 | 65.40 | 63.24 | 40.45 | 45.58 | 37.80 | 40.09
Testl |SMT+PSD| 42.38 | 7.902 | 65.73 | 63.64 [39.98 [45.30 | 37.60 | 39.91
IWSLTO6 SMT 41.49 |8.167 | 66.25 | 63.85 | 40.95 | 46.42 | 37.52 [40.35
Test2 |SMT+PSD| 41.97 [8.244 | 66.35 | 63.86 | 40.63 | 46.14 | 37.25 [40.10
IWSLTO6 SMT 49.91 |9.016 | 73.36 | 70.70 | 35.60 [40.60 | 32.30 | 35.46
Test3 [SMT+PSD| 51.05 | 9.142 | 74.13 | 71.44 | 34.68 | 39.75 | 31.71 | 3458
SMT 20.41 | 7.155 | 60.21 [56.15 | 76.76 | 88.26 | 61.71 | 70.32
SMT+PSD | 20.92 | 7.468 | 60.30 | 56.79 | 71.34 | 83.87 | 57.29 [67.38

NIST

Table 2.51: results on the IWSLTO6 & NIST dataset: integrating the WSD translation predictions improves
all metrics across all different available test sets.

PSD integrates useful context in translation decisions

PSD modeling improves lexical choice even in the IWSLT data set. Even in this
single domain task, there are genuine sense ambiguities in translation that are addressed
by context modeling. Even in a corpus where sentences are only about 10 words long, 18
features per occurrence of a Chinese phrase are observed and used in training PSD
models on IWSLT data.

Examining the weights learned by the maximum entropy classifiers for each feature
class showed that among the highly useful contextual features are the context-dependent
POS and full-sentential bag-of-word context.

242 Chapter 2: Machine Translation from Text

IN R BEANERERT

GLOSS not any congressmen vote against he/him
SMT Without any congressmen voted against him.
SMT+PSD No congressmen voted against him.

IN BEFERTHBERARN MR ASENSEERTEEEM,

GLOSS Russia in Chechnya implement [de] policy and towards CIS neighbor [de] attitude
even more cause US anxiety.

SMT Russia’s policy in Chechnya and CIS neighbors attitude is even more worried that the
United States.

SMT+PSD Russia’s policy in Chechnya an its attitude toward its CIS neighbors cause the
United States still more anxiety.

ETEENABRRIE?

GLOSS as for the U.S. [de] human rights condition?
SMT As for the U.S. human rights conditions?
SMT+PSD As for the human rights situation in the U.S.?

REERNTHRBEANNFEER

GLOSS my visit is for pray for Japan [de] peace and prosperity.

SMT The purpose of my visit to Japan is pray for peace and prosperity.
SMT+PSD The purpose of my visit is to pray for peace and prosperity for Japan.

Figure 2.31: Examples of the impact of PSD modeling on actual translations, drawn from the NIST test set

PSD modeling improves phrasal segmentation for translation

Since automatic evaluation metrics aggregate the effects of very different factors, we
also conducted additional data analysis to better understand the contribution of context-
dependent PSD modeling (Carpuat and Wu 2008). Interestingly, improvements in
translation quality are not only due to better lexical choice for a given target, which could
be expected given improvements in metrics such as BLEU, NIST and METEOR, but also
due to better phrasal segmentation of the input sentences and better use of the input
phrases available in the lexicon. Specifically:

e For the exact same parallel training data, more and longer phrases are used in
decoding, including phrases that were seen only few times in training: this
suggests that context modeling help better exploit the available vocabulary.

e After compensating for differences in phrasal segmentation, the decoder selects
better translations with context-dependent PSD modeling than with conventional
context-independent translation probabilities.

These observations are consistent with previous contrastive studies which showed
that generalizing to fully phrasal PSD as opposed to conventional single-word WSD is
crucial to obtain reliable improvements in translation quality (Carpuat and Wu 2007a).

Handbook of Natural Language Processing and Machine Translation 243

2.4.6.3 Semantic SMT: Roles

With the encouraging successes in applying sense disambiguation modeling to SMT,
we now turn to the other major area of lexical semantics: semantic roles. The most
glaring errors made by statistical machine translation systems continue to be those
resulting in confusion of semantic roles. These sorts of translation errors often result in
serious misunderstandings of the essential meaning of the source utterances — who did
what to whom, for whom or what, how, where, when and why.

It has been widely observed that the negative impacts of such errors on the utility of
the translation are inadequately reflected by evaluation metrics based on lexical criteria.
The accuracy of translation lexical choice has reached increasingly satisfactory levels, at
least for largely literal genres, such as newswire, which helps boost lexically oriented
scores like BLEU (or METEOR, NIST, or numerous others) despite serious role confusion
errors in the translations.

It has also often been noted that precision-oriented metrics such as BLEU tend to
reward fluency more than adequacy (in particular, BLEU’s length penalty is only an
indirect and weak indicator of adequacy). Today’s SMT systems produce translations that
often contain significant role confusion errors, but nevertheless read quite fluently. Thus,
while recent years have seen continued improvement in the accuracy of statistical
machine translation systems as measured by such n-gram based metrics, this
underestimates the effect of the persistent errors of role confusion upon the actual
translation utility.

This situation leads us to consider the potential application of shallow semantic
parsing and semantic role labeling models to SMT, in ways that might reduce role
confusion errors in the translation output. Within the lexical semantics community,
increasingly sophisticated models for shallow semantic parsing are being developed.
Such semantic parsers, which automatically label the predicates and arguments (roles) of
the various semantic frames in a sentence, could automatically identify inconsistent
semantic frame and role mappings between the input source sentences and their out-put
translations. This approach is supported by the results of Fung et al. (2006), which
showed that (for the English-Chinese language pairs) approximately 84% of semantic
role mappings remained consistent cross-lingually across sentence translations.

However, cautionary lessons come not only again from the difficulty of improving
SMT accuracy via syntactic and tree-based models, but also even from the above lexical
semantics models for sense disambiguation, which have only finally been successfully
applied to increasing SMT accuracy (Carpuat and Wu 2007a; Chan et al. 2007; Gimenez
and Marquez 2007a) after surprising initial failures (e.g., Carpuat and Wu (2005)). We
anticipate at least as much difficulty with semantic role models.

Avoiding the many potential blind alleys calls for careful analysis and evaluation of
(1) the frequencies of types of SMT errors where semantic parsing and role labeling
could help, (2) if and when semantic roles offer more accurate guidance to SMT than
merely syntactic annotation, and (3) the potential quantitative impact of realistic semantic
role guidance to SMT systems, at least in terms of scores such as BLEU and METEOR. We
now discuss a series of four experiments designed to address each of these questions,

244 Chapter 2: Machine Translation from Text

using English-Chinese parallel resources, a typical representative SMT system based on
Moses and shallow semantic parsers for both English and Chinese.

2.4.6.3.1 Related work

While this is a new avenue of inquiry, the background relevant to the experiments
described here includes: (1) a broad body of work on shallow semantic parsing and
semantic role labeling, the majority of which has been performed on English, (2) a
relatively small body of work specific to semantic parsing and semantic role labeling of
Chinese, and (3) a proposal to measure semantic role overlap as one of the key factors in
new MT evaluation metrics.

Shallow semantic parsing

Semantic parsers analyze a sentence with the aim of identifying the “who did what to
whom, for whom or what, how, where, when and why.” Shallow semantic parsing
extracts the predicate argument structure of verbs in a sentence based on the syntactic tree
of that sentence. For example, the predicate argument structure of the verb hold in Figure
2.32 specifies a “holding” relation between both sides (who) and meeting (what) on
Sunday (when). For a sentence with multiple verbs, there can be multiple predicate
argument structures.

Shallow semantic parsing systems are mostly based on classifiers that learn from a
manually annotated semantic corpus (Gildea and Jurafsky 2002; Pradhan et al. 2005).
Following the publication of the Proposional Bank (PropBank) (Palmer et al. 2005) first
in English, then in Chinese, it has been possible to train these classifiers to perform
semantic analysis on news wire type of texts.

Figure 2.32: Chinese shallow semantic parsing example.

Handbook of Natural Language Processing and Machine Translation 245

Chinese shallow semantic parsing

Systems that perform shallow semantic parsing on Chinese texts are likewise based
on classifiers and trained on the Chinese PropBank and the bilingual English-Chinese
Parallel PropBank (Sun and Jurafsky 2004; Xue 2006; Fung et al. 2006). It is interesting
to note that, despite the very different characteristics of Chinese verbs (Xue and Palmer
2005) from those in English, the core algorithm of a shallow semantic parser remains the
same. As was found to be the case in English, SVM classifiers have been found to
outperform maximum entropy classifiers for this task (Fung et al. 2006). The primary
difference lies in the feature set chosen to represent semantic information.

In experiments carried out on PropBank data using gold standard syntactic parse
trees, extended syntactic features such as Path Trigram and Path Abbreviations were
found to have the highest contribution to system performance (Fung et al. 2006). Another
feature, Verb Cluster, was also found to be most useful by Xue and Palmer (2005).

MT evaluation metrics based on semantic role overlap

Gimenez and Marquez (2007b, 2008) introduced and refined a set of new MT
evaluation metrics employing rich assortments of features reflecting various kinds of
similarity at lexical, shallow syntactic, deep syntactic, shallow semantic and deep
semantic levels.

Under a number of scenarios, particularly the out-of-domain scenarios, measuring
the overlap of shallow semantic roles between the source and target language sentence
pairs contributes to improved correlation with human judgment of translation quality.
Unsurprisingly, measuring the overlap of manually annotated deep semantic relations
contributes even more in some scenarios. However, given the state of automatic semantic
parsing technology, realistically, we are today still much closer to being able to
incorporate automatic shallow semantic parsing into working SMT systems, and thus, we
focus on shallow semantic parsing and semantic role labeling for the present.

2.4.6.3.2 Semantic frames in SMT output

The first of the experiments aims to provide a more concrete understanding of one of
the key questions as to the role of semantic parsing in SMT: how well do typical current
SMT systems already perform on semantic frames?

The annotated example in Figure 2.33 shows, from bottom to top, (IN) a fragment of
a typical Chinese input source sentence that is drawn from newswire text, (REF) the
corresponding fragment from its English reference sentence, and (MT) the corresponding
fragment of the output sentence from a state-of-the-art SMT system.

A relevant subset of the semantic roles and predicates has been annotated in these
fragments. In the Chinese input and its corresponding English reference there are two
main verbs marked PRED. The first, (arrived), has two arguments: one in an ARGO agent
role, (Kerry), and another in an ARG4 destination role, (Cairo). The second verb,
(engaged), has four arguments: one in an ARGO agent role, again (Kerry), one in an

246 Chapter 2: Machine Translation from Text

ARG1 role, (discussions), and two others in ARGM-MNR manner roles, (with Mubarak)
and (on topics).?

Figure 2.33: Example of semantic frames in Chinese input and English MT output. Lit is the literal
translation where PART stands for particle.

In contrast, in the SMT translation output, a very different set of predicates and
arguments is seen. While the PRED arrived still has the same correct ARGO Kerry and
ARG4 Cairo, now the ARGM-MNR manner role with President Mubarak is incorrectly
modifying the arrived, instead of an engaged predicate. In fact, the engaged predicate has
erroneously been completely dropped by the SMT system, so there is no verb to which
the arguments of engaged can be attached.

Figure 2.34 shows another typical example. Again, PRED marks the main verb in the
Chinese input source fragment and its corresponding English reference, (taking). It has
two arguments: an ARG1 (battle examples), and an ARG2 (analysis and study).

The SMT translation output, however, not only lacks the main verb, but includes
many incorrect predicates and roles. Such spurious predicate-argument structures are
clearly seriously detrimental to even cooperative readers straining to guess the meaning
of the original Chinese.

2 Minor variations on the role labeling in these examples are possible, but not central to the present point.

Handbook of Natural Language Processing and Machine Translation 247

Lit: [Kerry] arrive Cairo with [President Mubarak] [PART Iraq issue Lebanon issue Sudan Darfur
issue as well as bilateral relation etc.] [engaged in] PART active [discussion]

Figure 2.34: Example of semantic frames in Chinese input and English MT output.

Experimental setup

To assess the above sorts of phenomena quantitatively, we designed an experiment
making use of 745 bi-sentences extracted from the Parallel Prop-Bank with gold standard
annotations of both syntactic and semantic roles.

We use the Chinese sentences as system input and their corresponding English
translations as the reference translations. We use the open source statistical machine
translation decoder Moses (Koehn et al. 2007) for the experiments, translating the
PropBank Chinese sentences into English with the same model trained for our
participation in the IWSLT 2007 evaluation campaign (Shen et al. 2007).The English
translations generated by the decoder are the system output. Based on the system input
and the reference translation, we intend to investigate whether the predicate verbs are
correctly translated and their predicate argument structures preserved in the system
output.

We first randomly select 50 bi-sentences, without any constraint on the translation
accuracy of the predicate verbs, to form the first observation data set (data set A).

Experimental results

Human evaluation of these results show that, for all 138 predicate verbs in the system
input (Chinese sentences), only 79 (around 57%) of them are correctly translated in the
system output; and given such correctly translated predicate verbs, the translation of their
semantic arguments can only achieve around 51% overall F-measure. The detailed results
are shown in Table 2.52, data set A.

43% of the Chinese predicate verbs are either not translated at all into English or are
translated into a different part-of-speech category such as nouns or adjectives. As shown
in Figure 2.35, the predicate verb fZ / located in the input Chinese sentence is not

translated in the system output.

248 Chapter 2: Machine Translation from Text

Data set A Data set B
P-A Precision | Recall |F-measure | Precision | Recall |F-measure
Structure
Predicate 0.98 0.57 0.72 1.00 1.00 1.00
ARGO 0.74 0.38 0.50 0.83 0.66 0.74
ARG1 0.73 0.41 0.53 0.84 0.78 0.81
ARG2 0.82 0.32 0.46 0.80 0.78 0.38
ARG3 1.00 0.67 0.80 0.00 0.00 N/A
ARG4 1.00 0.33 0.51 0.50 1.00 0.66
All ARGs 0.74 0.39 0.51 0.84 0.68 0.75

Table 2.52: Predicate-argument structure translations from Chinese to English in data sets A and B.

IN [ARGO LidF & IX] HEA[PRED £7]T-[ARGL A 48 5 fue A BRIV 2R p i Hb X T o
LIT: [Above mentioned development zone] basically [located] in [Fujian economy
most active PART southwestern area].

MT: The basic development zones in the southeastern region of Fujian’s economy is
the most active.

REF: The above-mentioned development zones are basically [PRED located] in the
Southeastern area of Fujian whose economy is most active.

Figure 2.35: Example of semantic frames in Chinese input and English MT output.

2.4.6.3.3 Semantic roles in SMT output

In the previous experiment, the semantic role accuracy in output translations was
negatively affected by errors in identifying the central verb in the first place, as we have
seen in both introductory examples of Section 2.4.6.3.2, as well as, the example of Figure
2.32. Without the verb, properly identifying the arguments becomes meaningless. It is,
therefore, worth asking a secondary version of the question: providing the verb is
correctly translated, then how well do typical current SMT systems perform on semantic
roles?

Experimental setup

Since nearly half of the predicate verbs in the system input are not translated or
wrongly translated in the system output in the previous experiment, we construct another
data set (data set B) by randomly selecting 50 bi-sentences under an additional constraint
that all predicate verbs are correctly translated. We carry out the same analysis on data set
B and the result is shown in the data set B portion of Table 2.52.

Experimental results

For data set B, the overall F-measure of the translation of the semantic arguments is
about 75%, which is 24 points higher than that in data set A. In this data set B, we also
find that some of the semantic roles are missing in the system output.

Handbook of Natural Language Processing and Machine Translation 249

IN: 2™ A , CR ARFHKTHE~EF, [ARCGO HFBEE~HNEHRENMX[PRED X] [ARGL BZZH] o

LIT: Last year April, CR company begin PART its bankruptcy procedure, [its all of assets PART
compensation rate] only [5 percent].

REF: In April of last year, the CR company began bankruptcy procedures and [ARGO the debt
compensation rate of all its assets] [PRED was] only [ARG15%)]

MT: In April of last year, the company began bankruptcy procedures, all of its debt rate [PRED was] only
[ARG1 five percent][ARGO of the assets] of the CR.

Figure 2.36: Example of semantic frames in Chinese input and English MT output

IN: [ARGO fARMEEBAN] X T FELBE[PRED £i]7 [ARG1 AELRR S HE].

LIT: [Burma and Thailand government] today afternoon at here [sign] PART [two country
border trade agreement].

REF: This afternoon [ARGO the Myanmaran and Thai governments] [PRE signed] [ARG1
an agreement on border trade between their two countries] here.

MT:[ARG? Myanmar and Thailand’s government] of [ARG? The two countries border
trade

Figure 2.37: Example of semantic frames in Chinese input and English MT output.

A common type of translation error occurs when a group of words that together have
a single semantic role in the source language (Chinese) are split into separate groups in
the translation (English) often in the wrong word order. In the example of Figure 2.36,
the phrase H:ATA % = ftfii=E (Its all of capital PART compensation rate) in the input is
translated into two separate phrases in the output: its debt rate and of the assets, creating
different semantic relationships compared to the original semantic role of the source
phrase. Finally, even though all the words in the arguments of a certain predicate verb are
correctly translated into English, their semantic roles are found to be confusing in the
translation leading to ambiguity in the interpretation of the translated sentences. As
shown in the example of Figure 2.37, although words in both ARGO and ARGL1 are
correctly translated into English, we still cannot understand the final translated sentence,
because the semantic roles of these two phrases are confused. We cannot tell which
semantic roles Myanmar and Thailand's government and the two countries border trade
agreements are supposed to play. This confusion arises from the incorrect position of the
predicate verb signed.

As we can see, the types of translation errors shown in the examples of Figure 2.35 to
Figure 2.37 lead to ambiguity in the final understanding of the translation even though
the system output still reads fluently. This is caused by the fact that current n-gram based
SMT systems are not designed to take semantic roles into consideration.

2.4.6.3.4 Semantic vs. syntactic roles

The third experiment aims to answer another key question: if we favor semantic role
consistency across both the source input sentence and the output translation, would this

250 Chapter 2: Machine Translation from Text

outperform merely favoring syntactic role consistency across the bi-sentence? In other
words, does incorporating semantic role analysis contribute anything beyond the current
work on syntactic SMT models?

Experimental setup

To address this question, we perform a different analysis of the previously described
set of 745 bilingual sentence pairs with manually annotated syntactic and semantic roles
from the Parallel PropBank.

The syntactic roles are manually annotated according to Treebank guidelines.
Whereas, the Chinese sentences are annotated with both “subject” and “object” syntactic
roles, their English counterparts are only annotated with “subject” roles without the
“object” roles.

Furthermore, we manually align the predicate argument structures across the bi-
sentences for our experiment. The experiment is done as follows:

1. We first extract all predicate argument structure mappings from the manually
annotated and structurally aligned corpus. We compute the statistics of direct
semantic role mappings (ARGi to ARGi) based on the translation.

2. From the output of step 1, we further look at the syntactic roles associated with
each bilingual argument mapping. We use the semantic role boundaries from the
annotated corpus to find the syntactic roles.

3. The corresponding Chinese/English syntactic roles are then constructed as
syntactic role mappings.

Experimental results

Given all the direct semantic role mappings from Chinese to English, the proportion
of syntactic role mappings for the syntactic subject is listed in Table 2.53. We can see
that only 84.26% of direct semantic role mappings result from direct syntactic role
projections. More than 15% of the subjects are not translated into subjects, even though
their semantic roles are preserved across language.

This result shows that semantic roles enforce cross lingual translation patterns than
can be done purely by projecting syntactic roles. Whereas syntactic roles vary for each
language, semantic roles that convey the meaning of a sentence are translingual.

Syntactic role mapping Freq Pct
ZH subject < EN subject 514 84.26%
ZH subject <> EN NP 44 7.21%
ZH subject < EN PP 31 5.08%
ZH subject < EN S 15 2.46%
ZH subject «» EN other 6 0.98%

Table 2.53: Among gold standard Chinese (ZH) to English (EN) semantic role argument translations, the
degree of correspondence of syntactic role mappings.

Handbook of Natural Language Processing and Machine Translation 251

2.4.6.3.5 Improving SMT with semantic frames

In the fourth experiment, we aim to assess the potential quantitative impact of
realistic semantic role guidance to SMT systems, in terms of BLEU and METEOR scores.
This is done by simulating the effect of enforcing consistency between the semantic
predicates and arguments across both the input source sentence and the translation output.

Experimental setup

For this experiment, we return to data set B, as described in Section 2.4.6.3.3. For each
sentence, two types of semantic parse based corrections are permitted to the output
translation.

First, the constituent phrases corresponding to either the predicates or the arguments
for any labeled semantic role are permitted to be reordered such that a semantic parse of
the reordered translation consistently matches the role label on the corresponding phrase
in the input source sentence.

Second, if the translation of a predicate in the input source sentence is missing in the
output translation, then a translation of that predicate may be added to the output
translation such that, again, a semantic parse of the translation consistently associates it
with the corresponding arguments for that predicate.

Experimental results

The results, as shown in Table 2.54, show that favoring semantic frame and role
consistency across the source input sentence and the output translation improves BLEU
and METEOR scores. The accuracy improves on the order of two points, for both
metrics. The example of Figure 2.38 shows how two of the constituent phrases are
reordered.

It is worth noting that both BLEU and METEOR are still n-gram based metrics, which
are of limited accuracy at evaluating fine-grained semantic distinctions in the translations.
We suspect that the enhancement in translation quality would be even more obvious
under utility-based MT evaluation strategies; this is one main direction for future
research.

Enforcing
Baseline |consistent
Metric | translation |semantic parses
BLEU 34.76 36.62
METEOR 63.5 65.9

Table 2.54: SMT performance improvement with semantic predicate and role consistency constraints.

2.4.6.4 Conclusions

Our experiments indicate that statistical machine translation can indeed benefit from
lexical semantics, with respect to both sense disambiguation and semantic roles.

With respect to sense disambiguation, we have presented a new Phrase Sense
Disambiguation that is the first model to successfully incorporate WSD predictions into
phrase-based SMT. The experiments show that three adaptations from traditional WSD
configurations are necessary: (1) PSD sense inventories must be the phrasal translations

252 Chapter 2: Machine Translation from Text

IN:IIRBESRALRRKRPLEERXEBREN A, ANEREBRAZLASHEN EERNE.

LIT: Processing trade in Guangdong foreign trade development PART has decisive PART
position, same time also is Guangdong Hong Kong Macao Taiwan economy trade cooperation
PART important content.

REF: The processing trade occupies a crucial position in the development of foreign economy
and trade in Guangdong and at the same time is important content in the economic and trade
cooperation between Guangdong, Hong Kong, Macao and Taiwan

MT: In the processing trade in Guangdong’s foreign trade and economic development in
Guangdong, Hong Kong, Macao, Taiwan occupies a decisive position at the same time, it is an
important content of the economic and trade cooperation.

Figure 2.38: Example of semantic frames in Chinese input and English MT output.

learned in the SMT translation lexicon, rather than traditional WSD senses that come
from arbitrary sense inventories, (2) PSD targets must be phrases, rather than traditional
WSD targets that are single words, and (3) PSD must be fully integrated into the
decoding search itself, as opposed to preprocessing or postprocessing stages.

With respect to semantic roles, we have presented a series of experimental studies
that illuminate more precisely the likely contribution of semantic roles in improving
statistical machine translation accuracy. The experiments reported studied several aspects
key to success: (1) the frequencies of types of SMT errors where semantic parsing and
role labeling could help, (2) if and where semantic roles offer more accurate guidance to
SMT than merely syntactic annotation, and (3) the potential quantitative impact of
realistic semantic role guidance to SMT systems, in terms of BLEU and METEOR scores.
All sets of results support the utility of shallow semantic parsing and semantic role
labeling for improving certain limited but important aspects of SMT accuracy.

These results suggest that lexical semantics has an important role to play in the future
of statistical machine translation. Significant adaptations of existing, traditionally
configured models will be necessary, however and this should be a major focus of further
research.

2.5 Language Modeling for SMT

2.5.1. Distributed Language Modeling
Authors: Ying Zhang, Stephan VVogel, Ahmad Emami, Kishore Papineni, Jeffrey Sorensen and Jerry Quinn

2.5.1.1 Introduction

Statistical language models have a major role in applications such as Automatic
Speech Recognition (ASR) (Bahl et al. 1983), Statistical Machine Translation (SMT)
(Brown et al. 1990) and Information Retrieval (Ponte and Croft 1998).

In conventional n-gram language models, the frequencies of all (or a subset of) the n-
grams in a corpus are counted, from which the conditional probabilities P(wi|wii_‘,1l+1) of

Handbook of Natural Language Processing and Machine Translation 253

a word given its history of n-1 words are computed. Conventional n-gram models have a
large number of parameters which need to be reliably estimated. These models are
plagued by the high dimensionality problem; in order to estimate their parameters, a large
amount of training data is required. In general, the number of unique n-grams increases
very fast as the training data size or the n-gram order increases and this makes it very
difficult, if not impossible, to scale up standalone n-gram language models (Goodman
2001). Table 2.55 shows the number of n-gram types and tokens in a 600M word English
corpus. Training a 5-gram language model for this data will require estimating
probabilities and storing the information for 677,159,302 n-grams This LM will then
require several gigabytes of RAM to be loaded into the memory to be used by the SMT
or ASR decoders.

n Type Token n Type Token

1 1,607,516 | 612,028,815 6 387,342,304 562,604,106
2 | 23,449,845 | 595,550,700 7 422,068,382 562,612,205
3]105,752,368 | 579,072,585 | 8 | 442,459,893 562,632,078
4]221,359,119 | 562,595,837 | 9 | 455,861,099 562,664,071
5 1324,990,454 | 562,598,343 | 10 | 465,694,116 562,718,797

Table 2.55: of n-gram types and tokens in a corpus of 600M words.

There are techniques that can reduce the size of a language model, for example using
count cut-offs or employing the entropy-based pruning of (Stolcke, 1998). However these
methods have their own limitations and it is not possible to keep the size of language
models built on ever increasing data without sacrificing some performance.

During the GALE project, Carnegie Mellon University (CMU) and IBM T.J. Watson
Research Center independently developed Distributed Language Modeling systems
(DLM) to make use of training data in the scale of billions of words. The key idea DLM
is to split the large training corpus into manageable chunks and distribute them among a
cluster of computers. Each computer hosts a chunk of the training corpus and provides on
the fly services to language model queries. In distributed language models, the
probability of a word given its history is calculated on the fly based on statistics
estimated (also on the fly) from the distributed training corpus. Also, retaining the corpus
in its original (split among many computers) brings about the advantage of being able to
compute, on the fly, not just the conditional probabilities, but also other type of statistics
(e.g. co-occurrence, skip n-gram probabilities, etc). This is not possible with traditional n-
gram models where all the statistics (probabilities) are pre-computed and hence fixed.

The CMU approach and IBM approach have many common features in their
underlying research ideas and overall system design. However, being independently
developed at two separate institutions, they differ in architecture and implementation and
are used in different applications. Both systems use Suffix Arrays to store the split
corpora. Using suffix array allows for efficient computation of different statistics (e.g., n-
grams, co-occurrence counts, etc.) from a given corpus. IBM also developed a CountTree
data structure that allows for much more compact storage of the corpora, but at the
disadvantage of being able only to store n-gram type counts, which are the most common
used corpus statistics in language modeling.

254 Chapter 2: Machine Translation from Text

While the main purpose of developing distributed language model systems was to
make building very large language models possible, there are additional advantages of
using the proposed distributed architectures. First, these systems are easily scalable; more
data can be incrementally added without the need to change or recompute any of the pre-
existing modules, and the model can be easily grown as more data becomes available.
Second, each part of the corpus can be dynamically assigned a different weight based on
the application. Different clients can simultaneously use the distributed corpora with
different weights on the corpora. This is done at runtime without any need to rebuild any
part of the system. For example, CMU used this flexibility of the architecture to
experiment with an online language model adaptation.

The IBM system was used with MT decoders, where all the decoder LM queries were
submitted to the distributed system. The system was efficient and responsive enough to
keep the decoding times short (at most a few times slower than using traditional
standalone LMSs) while answering queries from multiple decoders simultaneously. All
CMU and IBM’s ASR experiments were carried out in the N-best rescoring framework.
Both IBM and CMU report significant improvement in BLEU scores for the MT
experiments and IBM reports gains from using the distributed LM in ASR experiments.

2.5.1.2 Distributed Architecture

The IBM and CMU architectures are very similar. Figure 2.39 illustrates the
architecture of the IBM distributed language model. The data is divided among several
machines, which we refer to as the LM workers. There is no training data stored on the
server machine; its sole job is to facilitate communication between the clients and the
workers and to compute the language model probabilities.

The communication between the server and the workers is implemented using the
Message Passing Interface (MPI) library (Gropp et al. 1999). Communication between
the clients and the server is implemented via TCP/IP socket networking. This allows a
more flexible architecture where clients can connect to and disconnect from the server at
will and independently. Clients usually send queries in large batches so as to minimize
the TCP/IP communication overhead.

Figure 2.39: Distributed Architecture. Clients can have different weight vectors

Each worker is capable of storing either a whole corpus or a stand-alone, smoothed n-
gram language model. Section 2.5.1.3 details the use of suffix arrays for storing a corpus

Handbook of Natural Language Processing and Machine Translation 255

and for efficient lookups of n-gram counts. A client can request any mixture of the
workers, specifying arbitrary weights for each of the component corpora or language
models.

2.5.1.3 Suffix arrays

Suffix array was introduced as an efficient method to find instances for a string in a
large text corpus. It has been successfully applied in many natural language processing
areas (Yamamoto and Church 2001; Ando and Lee 2003). In this section, we will
introduce the basic concepts and functions of suffix array.

Indexing the Corpus with Suffix Array

For a monolingual text «# with N words aia; ... an, we denote the suffix of o4 that
starts at position i as 4;. 4 is aiai1 ... an . 4 has N suffixes: {A1, A,, ..., An}. Sort these
suffixes according to their lexicographical order and we will have a sorted list, such as
[Ass2, Azo, A1, A1s11, ..., A7]. The starting positions of the suffixes in the sorted list form a
new array X with N elements, for example, X = [452, 30, 1, 1511, ..., 7]. We call X the
suffix array of corpus 4.

Formally, suffix array X is a sorted array of the N suffixes of -4, where X[K] is the
starting position in <4 of the k™ smallest suffix. In other words,

Axpy < Axpy < -+ < Axny, Where “<” denotes the lexicographical order.

The sorting of set {4, 4,, ..., Ay} can be done in log,(N +1) stages and requires O(N
log N) time in the worst case (Manber and Myers, 1993). The fast sorting algorithm
requires additional data structure to keep track of the partially sorted suffixes and thus
requires additional memory in indexing. In most of our applications, suffix array only
need to be built once and speed is not a major concern. We would rather use a O(N log N)
algorithm which is relatively slower but could index a much larger corpus given the
limited amount of memory.

In our implementation, each word a; is represented by a 4-byte vocld and each suffix
is a 4-byte pointer pointing to the starting position in «Z Thus 8N bytes memory is
needed in order to index the corpus 4.

Searching a Corpus Indexed by its Suffix Array

We need to search the suffix array of o7 to find all instances of an n-gram f in 4
either to measure the frequency of f or to retrieve the actual location of each occurrence.

Definition: For a string u, let u'l’u be the prefix consisting of the first p words of u if
u contains more than p words and u otherwise. Define the relation <, to be the
lexicographical order of p-word prefixes; that is, u <, v iff u’l’ < v’l’v. Relations <,, =, >p,
and 2, are defined in a similar way.

Let! = min(k : f <, Axpg or k = N + 1) and r = max(k : Axgq <, f ork=0). If I <r,
then for any k €[1, r] both f<, Axpq and f 2, Axpq are true, meaning that Vk € [1, r], Axpq =n

f.
Using a simple binary search in X, we can find / and r using O(log N) comparisons of
strings of size at most n. Each such string comparison requires O(n) single word

256 Chapter 2: Machine Translation from Text

comparisons. Thus the suffix array allows us to find all instances of a string f in «# in
O(n log N) time. With I and r found, the number of occurrences of fisr -I + 1 and f is
located (starting) in o4 at positions X[I], X[I + 1], ..., X[r].

Frequencies of all the substrings in a sentence

Inasentence f=f£, fo, ..., fi .., fm, there are m unigram, m - 1 bigram, m - 2 trigram,
..., and one m-gram in f. Based on the original algorithm described by Manber and Myers
(1990), locating one n-gram in <4 requires O(n log N) in time. For each n-gram, there are
total O(n) single-word comparisons for each of the log N binary searches.

A naive algorithm of locating all substrings in f thus requires logN - Y7~ ;(m — 2 +
m3=3m?+2m

Dn = ———log N, which is O(m? log N) in time.

Zhang and Vogel (2005) introduce a faster algorithm for locating frequencies of all
substrings in a sentence in O(m2 log N) time. It executes m naive searches for the exact
substring f{* (i = 1, .., m) and along the trace of the binary search, bookkeeping the suffix
array ranges for its prefixes. Each search uses O(log N) comparisons and each such
comparison requires only one word comparison. Thus the search fm is of complexity O(m
log N). The time complexity is O(m?2 log N) for searching all the substrings in sentence f.

n since 2001 after the incident of the terrorist
1| 2.19x10% | 7559 | 4.43x10% | 1.67x10° | 2989 6.9x10° | 1.67x10° | 6160
[2] 165 | 105 1.19x10* | 1892 34 2.07x10° | 807
| 3] 6 56 106 6 3 162
| 4] 0 0 0 1 0
| 5 | 0 0 0 0
| 6 | 0 0 0
| 7] 0 0
| 8]
attacks On the united states
9278 | 2.7x10° | 1.67x10% | 5.1x10* | 3.78x10°
1398 1656 5.64x10% | 3.72x10* | 3.29x10*
181 216 545 605 2.58x10%
35 67 111 239 424
0 15 34 77 232
0 0 10 23 76
0 0 0 7 23
0 0 0 0 7

Figure 2.40: Frequencies of all the embedded n-grams in sentence “since 2001 after the incident of the
terrorist attacks on the united states.”

Figure 2.40 shows the frequencies of all the embedded n-grams in sentence “since
2001 after the incident of the terrorist attacks on the united states” matched against a 26
million words corpus. For example, unigram “after” occurs 4.43-10* times, trigram “after
the incident” occurs 106 times. The longest n-gram that can be matched is 8-gram “of the
terrorist attacks on the united states”, which occurs 7 times in the corpus.

Handbook of Natural Language Processing and Machine Translation 257

Locating the sentence IDs of the n-gram occurrences

The frequency of an n-gram in the training corpus can be used to derive statistics
about this continuous n-gram. Sometimes we also want to know the frequency of
discontinuous n-grams. A discontinuous n-gram such as “take - by surprise” is
composed from several words or phrases that are not adjacent to each other. These words
and phrases have strong dependency with each other and together they form a meaningful
unit. One way to estimate the co-occurrences of the discontinuous n-grams is to find out
how often all parts of the noncontiguous n-gram occur in the same sentence. To calculate
that, we need to know all the sentence I1Ds for sentences in which n-grams appear.

Given a testing sentence f of m words, we can use the algorithm described above to
find the range [Lr] for an embedded n-gram f of . For any ke [I,r], the suffix X[K] starts
with £ in the corpus. In other words, we could find all the locations of £ in ‘F as {pos |
X[, X[1 + 11, ..., X[r]}.

A naive way to facilitate the conversion from location to sentence ID is to add the
sentence ID information in the original corpus before the suffix array indexing. Treat the
augmented corpus as a normal text and index it using the suffix array. For a location pos
in the corpus, scan towards left of the corpus until a word (s) is seen. The next left word
contains the sentence ID information and the number of steps taken during scanning is
the offset value. For each occurrence, the conversion requires O(m) steps of scanning,
where m is the average length of sentences in F.

To speed up the conversion, we introduce an additional array A to record the offset
information. A[pos] has the offset value of word a,.s with respect to the sentence start of
fs where a,os lies in. Given a location pos, word ap.s is located as the A[pos]-th word
in fs where s = apos-appos)- This operation takes only O(1) in time. Assuming that all the
sentences in F are shorter than 255 words, we only need one byte to represent the offset
of each word, which means N additional bytes are needed for the A array.

Overall, we use 4 bytes to represent each word, 4 bytes for each suffix pointer and 1
byte for the offset value of each word. In total, we need in total 9N bytes to index a
corpus of N words.

2.5.1.4 CountTree

Language models constitute that largest static data structures used in our systems, and
language model lookups comprise typically 30% or more of our processing time. We
designed a new data structure, called the CountTree to facilitate our experiments. This
data structure is designed to be space efficient and is organized in a manner that provides
efficient access on a single processor, but it is also capable of being partitioned by n-gram
prefix in a distributed fashion.

CountTree has the following features:

e Raw 64 bit count representation

e Node compression techniques for reduced memory usage
e Hash tables for fast child node access

258 Chapter 2: Machine Translation from Text

e Cache-aware node data layout
e Easily partitionable

By using 64 bit raw counts, different forms of smoothing techniques could be tried
while using the same data structure. 64 bit counts are important as the size of data sets
head beyond Gigaword corpora.

The basic design of the CountTree LM is a depth-first tree of nodes. The root node is
a flat table of arcs to child nodes. Word ids are implicit. Each arc contains a 64 bit
unigram count and 64 bit byte offset to the child bigram node.

Basic internal nodes have a 32 bit header storing the number of arcs in the header
with several flags. All word IDs are stored in a hash table array following the header.
After the word ids, arcs are stored containing a 32 bit count and 32 bit relative address.

To compress a node, the IDs are stored using 16 bits if all are small enough. Counts
are also stored in 16 bits if possible. If a child leaf node contains 1 arc, it will be
compressed and stored into relative offset of the parent arc. Leaf nodes can implicitly
represent count 1 arcs, saving more space.

By storing the word identifiers first, contiguously, the table to be searched is made
more compact, reducing the number of CPU cache entries (or cache lines) that must be
used during search. Using a cache table prevents the cache misses associated with the
probes of a binary search. If an entry is found, only a single data arc needs to be read,
using only one additional CPU cache entry.

Because searching is almost always performed in a depth-first manner, it is natural to
store the tree data in a similar fashion. Thus, when descending a tree, child nodes are
nearby, often in the same memory page. As one moves down the tree, average number of
child nodes decreases fast and the search becomes more efficient.

Depth-first storage also makes partitioning easy. Each partition gets one or more sub-
trees of the LM, starting with bigram nodes. Each sub-tree is contiguous in the LM data-
file, simplifying the job of loading only a subset of the data. The root node is stored in the
client. Each unigram arc stores a pointer to the appropriate partition in the offset node.
When looking up an LM value, the client looks up the root node unigram count, and then
sends the n-gram to the partition stored in the offset. When the remaining counts come
back, they are combined with the unigram data to compute the final value.

2.5.1.5 Language Modeling

Nativeness of Complete Sentences

We introduce the concept of nativeness Q to quantify how likely a sentence e is
generated by a native speaker. A correct sentence should have higher nativeness score
than an ill-formatted one. Unlike the sentence likelihood, which is defined as the
probability of this sentence generated by a language model, nativeness is only a score of
real value and is not necessarily probability. Since we cannot ask a native speaker to
assign scores to a sentence for its nativeness, we need to estimate this value based on
statistics calculated from a collection of sentences & which resembles what a native
speaker would generate.

Handbook of Natural Language Processing and Machine Translation 259

Before we describe how nativeness is estimated, we first introduce the related
notation used in the following discussions. An English sentence e of length J is a
sequence of / words: ey, ..., €, .., €, .., €, 0r eljfor short. e/ denotes an n-gram eie;1 ...
embedded in the sentence. We use ¢é to represent a generic n-gram when n is unspecified.
C(é & is the frequency of ¢ in corpus £and Q(e|&) denotes the nativeness of e estimated
based on & 2* When there is only one corpus, or the identity of &is clear from the context,
we simply use C(é) and Q(e) instead of their full form.

We propose four methods to estimate Q(e) from the data.

e Q.. Number of n-grams matched.
The simplest metric for sentence nativeness is to count how many n-grams in this
sentence can be found in the corpus.

Qc(e]) =%, %), 5 (e]) (2.34)

1:¢(el)>0

8(el) = 0:C(e)) =0

For example, Q. for sentence in Figure 2.40 is 52, because 52 n-grams have non-
zero counts.
e Qi Average interpolated n-gram conditional probability.

- 1/]
Qz(n)(elj) = (H{=1 D=1 P (el eil—l%+1)) (2.35)

Pleilef) = G s
P(e;lei=L, ,)is the maximum-likelihood estimation based on the frequency of n-
grams. A, is the weight for the k-gram conditional probability, >} 1, = 1. ; can
be optimized by using the held-out data or simply use some heuristics to favor
long n-grams.

Qieny is similar to the standard n-gram LM except that the probability is averaged
over the length of the sentence. This is to prevent shorter sentences being unfairly
favored.

e Q. Sum of n-grams’ non-compositionality. Unlike Q. where all matched n-
grams are equally weighted, Q.. weights each n-gram by their non-
compositionality (Zhang et al. 2006).

2+ English is used here for the convenience of description. Most techniques developed in this section are
intended to be language-independent.

260

Chapter 2: Machine Translation from Text

For each matched n-gram, we consider all possible ways of cutting/decomposing
it into two short n-grams, for example “the terrorist attacks on the united states”
could be decomposed into (“the”, “terrorist attacks on the united states”) or (“the
terrorist”, “attacks on the united states”), ... , or (“the terrorist attacks on the
united”, “states”). For each cut we calculate the point-wise mutual information
(PMI) between the two short n-grams. The one with the minimal PMI is the most

“natural” cut for this n-gram. The PMI over the natural cut quantifies the non-
compositionality I,. of an n-gram Wi] . The higher the value of I,w(wi’ w) the more
likely Wi]w is a meaningful constituent, in other words, it is less likely that Wi] is

composed from two short n-grams just by chance (Yamamoto and Church,
2001). Define @, formally as:

an(elj) = Z{=1 Z§=i+1 Lnc (el]) (2.36)
Inc(eij) _ ming, I(eik; e,i+1) : C(ei]') >0 -
0 : C(eij) =0
i P eij
I(ef5ep,q) = log#@ (2.38)

The n-gram probabilities in Equation 2.37 are estimated by the maximum-
likelihood estimation.
Q- Sum of pointwise mutual information of the distant n-gram pairs Qpc
calculates the PMI of two adjacent n-grams and uses the sum to measure the non-
compositionality of the sentence. Q: calculates the PMI of any non-adjacent n-
gram pairs based on the co-occurrence of these two n-gram in the same sentences
in the training data. The co-occurrences is calculated from the intersection of
sentence IDs where each n-gram appear. Sentence IDs are retrieved using
methods described in Section 2.5.1.3. We use the sum of all non-adjacent n-gram
pairs’ PMI value to measure the coherence inside a sentence. This is inspired by
the single-word trigger model developed by Rosenfeld (1994). We extend the
concept from word-triggers to phrase-triggers in this section. Instead of
considering each trigger as a feature and combining all features in a log-linear
model, we sum up PMI values of all triggers.
Define Q: as:

Qie) =3/ 225 2] | (e'h; eh) (2:39)

2=J1+g+1 iy’ "l

where g is the minimum *“gap” length between two n-grams.

Handbook of Natural Language Processing and Machine Translation 261

Smoothing

n-gram language models require many parameters to be estimated before the model
can be used. These parameters include estimates of word string probabilities, as well as,
the parameters used for smoothing. Smoothing is one of the most important issues in
language modeling. The key idea of smoothing is to discount some probability mass of
observed events so that there is a little bit of probability mass left for unseen events. For
example, in backoff language models, the weights for backing-off from higher order to
lower order n-grams need to be estimated. Similarly, in linearly interpolated models,

Pinep(Wi|wiTni1) = Awii:%+1pml(Wi|Wii-_ﬁ+1) +
(1= Ayimr IPinep(WilwiTas2) (2.40)

where the maximum likelihood estimate P,; is interpolated with the lower order
smoothed model Piny, Which is defined in a similar fashion. A model is typically built
iteratively starting with the lowest order probabilities (Frederick and Mercer 1980).
Estimating a distinct 4 ;-1 for each w!Zl. | is not practical; in practice the A ;-

i-n+1 Wi-n+1

values are grouped into bins based on the word counts C(w/Z},), where the final weight
in each bin is assumed to be equal (Bahl et al. 1983).

Normally, in linearly interpolated models, the interpolation weights, A -1 are

i-n+1

estimated on some held-out data using the EM algorithm (Dempster et al. 1977). In a
similar fashion, backoff models use ad-hoc discounting and backoff parameters that are
estimated, or assigned manually, before the language model is used.

CMU Model

Three nativeness metrics proposed in section the beginning of this section (Qix), Qne
and Q) are based on the maximum likelihood estimation of n-gram probabilities. Qi)
interpolates the conditional probabilities using different history length and thus has some
smoothing. Other metrics do not have explicit smoothing built in.

Model-best | 3144
Qi+, equally weighted interpolation 32.16
Qice), equally weighted interpolation 32.41
Que), favor long n-grams, A= k/21 32.40
Qice), equally weighted + GT 32.35

Table 2.56: Comparing different smoothing approaches in N-best list re-ranking.

We suspect that smoothing may not be so important for the N-best list re-ranking task
as compared to the LM used in the ASR and SMT decoder. If an n-gram is unseen in the
training data, assigning 0 as its probability is not acceptable. In a generative probabilistic
LM all n-grams have some positive probabilities, no matter how bizarre the n-gram. For
us, assigning 0 as the nativeness score to an n-gram is fine because the score is only used
to discriminate between two sentences. To test the impact of smoothing on N-best list re-

262 Chapter 2: Machine Translation from Text

ranking, we implemented the Good-Turing smoothing (Good 1953) in the Qix) metric.
Good-Turing (GT) smoothing is easy to implement and the count-of-count information
can be obtained on the fly by scanning the suffix-array indexed corpus (Zhang, 2006),
which fits our online model set up well. The implementation was validated on a SMT
decoder and showed some small improvements over the MLE estimation. However,
when applied on the N-best list re-ranking task, GT-smoothing performed slightly worse
than using MLE only. Table 2.56 shows the re-ranking results using different smoothing
methods. The N-best list is a 10K-list generated by Hiero (Chiang, 2005) on the Chinese
MTO3 data. Here we used only a 270M word corpus for the re-ranking experiment.

IBM Model

For simplicity, we have decided to use linear interpolation as the smoothing method
for our distributed LM architecture. It is also possible to use a backoff smoothing
framework, at the cost of a bit more involved lookups and computations. However, we
carried out some simple experiments with different smoothing techniques and decided
that the choice of smoothing method is less relevant as we move to very large corpora.

Noting that the 4 -1 are functions of only the counts Cw/Z}.,), we have instead
iI-n+1
opted for a closed-form heuristic formula for computing 4, ;-1 . After plotting the

i-n+1

weights 4 -1 estimated using EM on a held-out set against counts C(wl-i_‘,iﬂ) we
i-n+1

noticed that the plot can be approximately fitted to a log-linear curve, from which we
estimated the interpolation weights for the distributed language model:

Ayizi = 0.1log; Cwiih,,)+03 (2.41)

from which all the n + 1 interpolation weights for the model in Equation 2.40 are

computed in an iterative manner starting from the highest order n-gram.
The clear advantage of this heuristic formula is that A ;-1 ; is directly computable

i-n+1
from word counts in the training data. It should also be noted that there is no lookup
overhead here, since the count C(w/Z.,,) needs to be extracted to estimate the

probability Py, (w;|wiZt,,).

Training | A estimation Perplexity
| EM 193
| heuristic 216
I EM 128
1 heuristic 137

Table 2.57: Perplexities for different interpolation weight estimation methods

Table 2.57 shows perplexities of linear interpolated 5-gram models using both the
bucketed EM estimate and heuristic interpolation weights. There are two different
training data sets used, denoted by I and Il in the table and consisting of approximately
200M and 2.9G words respectively. The held-out data used for EM estimation of the

Handbook of Natural Language Processing and Machine Translation 263

weights is a corpus of 35M words. The vocabulary size is 128K and the perplexities are
reported on an unseen test set of 58M words.

As can be seen in the table the linearly interpolated model with heuristic interpolation
weights has comparable perplexity to those estimated using the EM algorithm. It should
also be noted that EM maximizes the performance of the model for likelihood and hence,
the perplexity. We expect the difference between the heuristic and EM estimated weights
to be smaller when used for a practical task such as ASR or SMT where the performance
is measured by metrics, which are not fully correlated with perplexity.

Smoothed LM workers

It is possible to have LM workers that store an already smoothed language model
instead of a corpus. These workers do not provide the server with counts and can only
send smoothed probabilities for the queries n-grams. In case the collection of LM
workers contains both corpora (suffix arrays) and smoothed LMs; the server must
somehow combine all the information from the workers to compute a final smoothed
probability. Assume there are m; workers with suffix array corpora and m, standalone
smoothed n-gram models for a total of k = m; + m, workers. Assuming that the j™ client

is using the worker mixture vector (sljs, szjs, s,{s), then the aggregate count is simply
cI(WP) =¥ s7 ¢; (W) where C;(WJ) is the count of n-gram W for the corpus

i=1-i
stored at client i.

In case the client requested probabilities, the aggregate probability P; (w,|W/*™1)
(for workers 1 through m,) is computed according to Equation 2.40 and Equation 2.41
above, F using the aggregate statistics . Taking into account the standalone smoothed
LM workers, the final probability is defined as follows:

. ~ . ~ . 5]
PI(wy | W) = al P} (wy, |[W1) + (1 —a’)Zﬁizmz .
1=1"1

PL(wp|W™Y) (242)

where P‘},(wn|W1”‘1) is the probability from the it standalone worker and o/ =

my j
Xi=1Si

z:ml+m2 Sj :
i=1 i

2.5.1.6 Experiments and Results

We carried out experiments using our distributed language model for both speech
recognition and machine translation tasks. In the machine translation experiments, the
distributed language model was used by CMU to re-rank the N-best list and experiment
with online language model adaptation. IBM directly integrated the distributed LM into
the decoder. In the speech recognition experiments, the distributed model was used only
in re-ranking N-best lists created by a speech recognition decoder using standard
language models.

264 Chapter 2: Machine Translation from Text

CMU N-best List Re-ranking Results

CMU uses the distributed language model on very large data to re-rank the N-best
list.

Table 2.58 lists results of the re-ranking experiments under different conditions. The
re-ranked translation improved the BLEU score from 31.44 to 32.64, significantly better
than the model-best translation.

of Relevant Chunks per. Sent| 1 2 5
offline 3-gram KN| 32.22
offline 4-gram KN| 32.22

Q4 32.27
Q| 32.00
Qua| 32.18
Qx| 32.21
Qo) 32.19
Q7| 32.22
Qnd 32.29

Table 2.58: BLEU scores of the re-ranked translations. Baseline score = 31.44

10 20 150
32.08

32.53
32.48

32.38
32.14
32.36
32.33
32.22
32.29
32.52

32.40
32.14
32.28
32.35
32.37
32.37
32.61

32.47
32.15
32.44
3241
32.45
32.44
32.55

32.51
32.16
3241
32.37
32.40
32.40
32.64

32.41

32.56

Different metrics are used under the same data situation for comparison. Q., though
extremely simple, gives quite nice results on N-best list re-ranking. With only one corpus
chunk (the most relevant one) for each source sentence, Q. improved the BLEU score to
32.27. We suspect that Q. works well because it is in line with the nature of BLEU score.
BLEU measures the similarity between the translation hypothesis and human reference by
counting how many n-grams in MT can be found in the references.

Instead of assigning weights 1 to all the matched n-grams in Q., Qnc Weights each n-
gram by its non-compositionality. For all data conditions, Q.. consistently gives the best
results.

Metric family Qi is close to the standard n-gram LM probability estimation.
Because no smoothing is used, Q3 performance (32.00) is slightly worse than the
standard 3-gram LM result (32.22). On the other hand, increasing the length of the
history in Qi) generally improves the performance.

Systtem | LM Size LM Type | BLEU NIST
Baseline | 200 M 3-gram | 31.44 9.01
3-gram 32.08 9.14

2900 M 4-gram 32.53 9.19

20M Qnc 32.34 9.20

Re- per sent. Qe 32.46 9.21
ranked Qnc+ Qc | 32.60 9.24
Qnc 32.60 9.23

200M Q: 32.79 9.25

persent. Qie)+ Qt | 32.90 9.28

Table 2.59: Re-ranking N-best list using distributed language model.

Handbook of Natural Language Processing and Machine Translation 265

Table 2.59 compares re-ranking results using standard 3-gram and 4-gram language
model with using Qn., Q. features. For each testing sentence, most relevant corpus chunks
of 20M/200M words are used as the training data to calculate the nativeness scores for re-
ranking. From this result, we can see that by considering long distance dependencies of n-
grams in a sentence (Qr) improves the discriminative power of the language model.

CMU Online Language Model Adaptation

Although statistical systems usually improve with more data, performance can
decrease if additional data does not resemble the test data. We would prefer to use data
that is more “relevant” to the testing data than using all data in a bag.

The concept of “relevance” depends on the application. In Information Retrieval (IR),
a document is considered to be “relevant” to a user’s search intention if it contains the
query words. For this purpose, features like TF-IDF score which capture the key words of
a document work well in estimating the “relevance” and are widely used in IR. For
statistical machine translation, however, a relevant corpus chunk is the one on which we
can train a better language model that helps the decoder to generate a better translation.
The quality of the translation is evaluated by calculating the n-gram precision and recall
against human generated reference translations. To be consistent with the evaluation
methods, we consider using n-gram based features to predict the relevance of a corpus
chunk to a testing sentence.

Relevance measurements

Here we study several simple statistics to select relevant corpus chunks to build LM
for each testing sentence f. These relevance statistics are calculated over the N-best
translations of f.

Perplexity
The standard measurement for language model quality is perplexity. Considering the
N-best list as a document of N English sentences, we can calculate the standard language
model perplexity of the N-best list using the language model trained on each of the
corpus chunk & Denote the N-best translation list of f as T. T contains |T| English words
from all N translations. The perplexity of language model trained on € is measured on T =
€1 ... €1
1

PP(T| &) =exp (— T

T i—
I log p (Wil w{Zh 1)) (243)
The pitfall here is that two perplexities are not directly comparable if two language
models are trained from different corpus. Perplexities are only comparable when two
corpora have the same vocabulary size which is most likely not true as we only split the
corpora into chunks of similar size without considering the resulting vocabulary size.

266 Chapter 2: Machine Translation from Text

Bag-of-n-gram Coverage Rate
Define the bag-of-n-gram coverage rate of corpora &, to sentence f; as:

R(&s; 1)=XN-; Qe |€y) (2.44)

For hypothesis egr)e, the r™ hypothesis in the N-best list, Qc(e§”|ed) is the number of

n-gram tokens in the hypothesis that can be found in & (see Eqn.

QC(e{) = 2{21 Z§:1 5 (el]))

Informally, R(&g; ;) estimates how well & covers n-grams (tokens) in the N-best list of f;.
The higher the coverage, the more relevant & is to f;.

Weighted n-gram Coverage Rate

Unlike the bag-of-n-gram coverage rate where n-grams of different orders are
considered equally, weighted n-gram coverage rate applies different weights on n-gram
coverage rates of different orders. Intuitively, we should predict a corpus chunk to be
more relevant than another if it has a higher high-order n-gram coverage rate.

Define M(E,f), the weighted n-gram coverage rate of corpus € for a sentence f as:
where Coverage,(&,f) is the k™ order n-grams coverage rate of the corpus on f’s N-best
list:

M(EF)= X }-; A Coverage, (&) (2.45)

where Coverage,,(&,f) is the k™ order n-grams coverage rate of the corpus on f’s N-
best list:

i+k—1 i+k—1
L k=1, (N C(ei)¢’(ei £)
C Ef=—i L) 2.46
overage (&€= S (e F T (2.46)
i+k—1.,,(0) (N), €&
e; efey ".epf 7}

C(ef**=1) is the frequency of n-gram type e/**~*’s occurrences in the N-best list

and
, P 2 RN
d)(el-”k_l,) _ {1, ife; existsin € (2.47)

0, otherwise.

Informally, we predict a corpus chunk &, to be most “relevant” to a testing sentence f
if n-grams in f’s N-best translations can be most covered by &;.

Experiments

The experiment is set up as follows. The LDC Gigaword corpus (both version 2 and
version 3) of 4,916,610,128 words is split into 104 chunks based on their natural order
(news source and time released). The N-best list used in this experiment is a list of 1000-
best translations of 191 testing sentences (20 documents) extracted from the Chinese

Handbook of Natural Language Processing and Machine Translation 267

MTO4 test set by the Hiero system (Chiang 2005). For each one of the 191 testing
sentence, we use each individual corpus chunk to re-rank its N-best list using the Qnc
feature. The difference of the re-ranked-best hypothesis and the model-best hypothesis in
BLEU score is the gain of the corpus chunk denoted as g(t;d). g(t;d) can be negative if
the re-ranked-best hypothesis has lower BLEU score than the model-best baseline
translation.

Table 2.60 shows the predicted BLEU gain and the actual BLEU scores of using single
features to select the most relevant corpus chunk for re-ranking. In general, higher order
k-gram coverage rate predicts relevance better than lower-order coverage rate. However,
from 5-gram coverage rate to 6-gram coverage rate we see a slight drop in predicted gain.
Our explanation is that given the current SMT quality, 6-gram coverage rate is very low
and a few “lucky” 6-gram hits are not representative of the corpus chunk. Results also
show that k-gram coverage rate outperforms perplexity in predicting corpus relevance.

Relevance Feature Gain BLEU
SN Q:.(eME) 097 30.17
Coverage;(&; f) 020 2953
Coverage,(&; T) 140 29.89
Coverages(&; f) 152 30.14
Coveragey(E; f) 133 30.20
Coverages(&; f) 207 30.34
Coverageg(E; f) 197 3042
LYV Quey(e™E) | 106 3037
L3N Qe(e®E) | 000 20.89
PP(f |€) | 044 30.14

Table 2.60: Predicted BLEU gain and actual BLEU scores of using single LM feature to re-rank the N-best list.

Relevance features can be combined in a linear function to predict the relevance of a
corpus chunk to a sentence. Table 2.61 shows the gain in BLEU score after re-ranking the
N-best list using the most relevant corpus chunk selected based on manually set feature
weights.

IBM Speech Recognition Results

We carried out experiments re-ranking the N-best lists output by a speech recognizer.
The system description is similar to that given by Saon et al. (2005). The lattices are
generated using a two-pass speech recognition system that performs a speaker-
independent recognition pass; then a series of speaker adaptation steps, including vocal
tract length normalization, feature-space MLLR and MLLR; and concludes with a
speaker-adapted recognition pass. The speaker-independent and speaker-adapted acoustic
models are trained on a 450-hour corpus comprising the 1996 and 1997 English
Broadcast News Speech collections and the English broadcast audio from TDT-4. The
language model used by the decoder was a 4-gram modified Kneser-Ney model trained
on 192M words and interpolated with five other 4-gram models trained on topic specific
subsets of the original 192M words data. The final merged model was pruned to a total of

268 Chapter 2: Machine Translation from Text

3.2M n-grams. The final speaker-adapted recognition pass performed in-memory lattice
re-scoring using a larger, 30M n-gram language model that differed from the one used to
produce the decoding graph only in the degree of pruning.

Weights of k-gram Coverage Rate

Feature Combinations| 1 2 3 4 5 6 | BLEU Gain
1, 2-gram coverage rate| 1.0 2.0 0.73
1, 2-gram coverage rate[-1.0 2.0 0.77
1, 2-gram coverage rate|-2.0 1.0 1.12
1, 2, 3-gram coverage rate| -2.0 1.0 2.0 0.74
1, 2, 3, 4-gram coverage rate| -2.0 1.0 2.0 3.0 1.27
1,2, 3,4, 5-gram coverage rate|-2.0 1.0 20 3.0 4.0 1.30
2, 3, 4, 5-gram coverage rate 20 30 40 50 111
2, 3, 4, 5-gram coverage rate 40 9.0 16.0 25.0 1.54
2,3, 4,5, 6-gram coverage rate 20 30 40 50 6.0 1.07
2,3, 4,5, 6-gram coverage rate 40 9.0 16.0 25.0 36.0 1.14
1,2,3,4,5, 6-gram coveragerate [-2.0 2.0 3.0 40 50 6.0 1.09
1,2,3,4,5, 6-gram coveragerate| 1.0 4.0 9.0 16.0 25.0 36.0 1.14

Table 2.61: Feature weights set following the heuristic that higher order k-gram coverage rates have more
discriminative power in choosing relevant corpus chunks.

RT-03 |Dev-04 |RT-04
baseline 9.5 17.7 15.0
5-gram DLM (9.0 17.4 14.5

Table 2.62: ASR N-best re-ranking

Table 2.62 shows the results of using the distributed language model, in this case a 5-
gram trained on 4 billion words, for re-ranking the 500-best lists from two DARPA’s
EARS program English Broadcast News evaluation sets (RT-03 and RT-04) and one
development set (Dev-04). As can be seen, using the larger distributed LM results in
considerable improvements in Word Error Rate across all three sets. It should be noted
that out of the 500 hypotheses per utterance in average only 9.5 were unique word strings
and the distributed model achieved the shown reduction by effectively only re-raking
these remaining few hypotheses.

IBM Machine Translation Results

The phrase decoder we use is inspired by Tillmann and Ney (2003). It is a multi-
stack, multi-beam search decoder with as many stacks as the length of the source
sentence and a beam associated with each stack. It is described in more details by Al-
Onaizan (2005). The training data for the Arabic translation system consisted of 4.6M
sentence pairs, totaling 124M Arabic and 143M English words. The MT-03 and MT-05
test sets consist of 663 and 1056 segments, respectively. We also used a different decoder
based on the Maximum Entropy (MaxEnt) approach. The MaxEnt decoder is a novel
method of using simple translation blocks, which allows the translation problem to be
cast into a classification problem where instead of encoding the context in long phrasal
blocks, it is cast as feature function on simple blocks (lttycheriah and Roukos 2007).

Handbook of Natural Language Processing and Machine Translation 269

For the Chinese translation system CE Training data there were about 8.4M sentence
pairs, totaling 212.5M Chinese and 241.2M English words. We only used the phrase-
based decoder for the Chinese to English translation experiments. It should be noted that
the training data was sampled for each test set; the actual training data being used is in
average 400K sentences in size. The test sets MT-03, MT-04 and MT-05 are 919, 1788
and 1082 sentences long, respectively.

The results for the Arabic-English and Chinese-English experiments are given in
Table 2.63. The 3-gram LM is a linearly interpolated model trained with a vocabulary
size of 128K on about 2.8 billion words with bigram and trigram with less than 3 n-grams
pruned. The 5-gram distributed model was trained on 2.3 billion words with a vocabulary
size of just over a million. As can be seen, using the distributed model that allows for
larger corpus and higher order n-gram with no pruning (not to mention larger vocabulary
size) results in significant improvements across all systems and test set. For example, in
the case of the Arabic-English system, the phrase-based decoder achieves a 3.3 BLEU
point improvement in using a 5-gram language model over a 3-gram for both MT-03 and
MT-05 test sets.

Model Language | MT-03 MT-04 MT-05
Phrase-based Decoder 3gm 48.84 - 46.92
Phrase-based Decoder 5gm DLM Arabic 51.10 - 50.25
MaxEnt Decoder 3gm 48.95 - 48.02
MaxEnt Decoder 5gm DLM 51.35 - 51.30
3-gram Chinese 26.93 28.72 26.10

5-gram DLM 29.10 30.09 29.18

Table 2.63: BLEU Results

When compared with the ASR experiments, it is clear that we achieve better
improvements with the distributed LM for the SMT task. One explanation is that for the
SMT experiments, the distributed language model was directly integrated into the
decoder, whereas in the ASR experiments the distributed model was used only to re-rank
very shallow (N = 9.5) N-best lists. Another explanation is that the tokenization and
vocabulary selection for the distributed language model were optimized with only the
SMT tasks in mind.

2.5.1.7 Related work

On using LM to re-rank the N-best list, Kirchhoff and Yang (2005) used a factored 3-
gram model and a 4-gram LM (modified KN smoothing) together with seven system
scores to re-rank an SMT N-best. They improved the translation quality of their best
baseline (Spanish-English) from BLEU 30.5 to BLEU 31.0.

On large language model work, Brants et al. (2007) use the MapReduce
programming model to train on terabytes of data and to generate terabytes of language
models. The trained n-gram information is distributed in a distributed cluster. New
decoder architecture is implemented to access the n-gram information efficiently by first
queuing certain number of LM requests (e.g., 1,000 or 10,000) and sends them in a batch
to servers.

270 Chapter 2: Machine Translation from Text

On language model adaptation work, lyer and Ostendorf (1999) selected and weighed
data to train language modeling for ASR. The data was selected based on its relevance for
a topic or the similarity to the in-domain data. Each additional document is classified to
be in-domain or out-of-domain according to cosine distance with TF-IDF term weights,
POS-tag LM and a 3-gram word LM. n-gram counts from the in-domain and the
additionally selected out-of-domain data are then combined with an weighting factor to
estimate a LM with standard smoothing. Hildebrand et al. (2005) use information
retrieval to select relevant data to train adapted translation and language models for an
SMT system.

2.5.1.8 Conclusion

In this section we presented novel distributed architectures from IBM and CMU for
storing large scale and scalable corpora and language models. The distributed architecture
is capable of handling arbitrarily large corpora, while placing no restrictions on either the
n-gram order or vocabulary size. Computing n-gram counts of arbitrary order was made
possible by storing the original corpus in the suffix array format.

Three key features make these systems different from the traditional n-gram language
models. First, the underlying suffix array language model allows them to use arbitrarily
long history; second, the distributed computing architecture makes it possible to use
arbitrarily large training data; and finally, the on-the-fly language model estimation
facilitates the client to dynamically adapt the language model for each testing sentence.
Furthermore, as more data becomes available it is quite straightforward to add them to
the model as only the new data needs to be processed. In traditional n-gram models the
entire counting and smoothing steps for all the training data needs to be repeated anytime
one wished to add more data to the model.

Several different uses of the distributed architecture were discussed. IBM introduced
a simple, but powerful heuristic smoothing algorithm to compute language model
probabilities on-the-fly from the counts aggregated form the suffix array corpora. This
heuristic algorithm was used in MT decoding and ASR N-best re-ranking experiments.
CMU experimented with different sentence-level nativeness scores. They also exploited
the flexibility of the distributed architecture, in terms of dynamically changing the
weights on different corpora, to implement an online adaptive language model.

IBM applied the distributed language model in both MT decoding and N-best list re-
ranking of a state-of-the-art ASR system. In both scenarios, consistent and considerable
improvements in translation quality (for MT experiments as measured by the BLEU score)
and transcription accuracy (WER in ASR experiments) were achieved. Similarly, CMU
experiments have shown that the distributed suffix array language model can be used
reliably and effectively for re-ranking the N-best list of the statistical machine translation
system and significantly improves the translation quality.

Handbook of Natural Language Processing and Machine Translation 271

2.6 Search and Complexity

2.6.1. Improvements for Beam Search in Statistical Machine
Translation

Authors: Oliver Bender, Richard Zens and Hermann Ney

2.6.1.1 Introduction

In statistical machine translation (SMT), search (or decoding or generation) is the
task of finding the target language sentence e;’ that maximizes the posterior probability
given the source sentence f/ . Here, we are considering a phrase-based approach with a
segmentation s;X into K phrases (Och et al. 1999; Zens and Ney 2004; Koehn et al.
2003). Assuming a log-linear model with component models h(-) and scaling factors A,
m=1,...,M, we obtain the decision rule:

el = argmax, i {maxy s ¥—1 Am hm(el, s £} (2.48)

We have to carry out a maximization over all possible target sentences e;’ and over
all possible segmentations s;X. As enumerating all target sentences is infeasible, we are
facing a hard optimization problem. In particular, we have to decide on:

e the number of phrases K,
e the phrase segmentation s;¥ of the source sentence and
e the phrase translations & for each source phrase f .

However, we can exploit the structural properties of the models. We can interpret the
search as a sequence of decisions (&, by, ji) for k =1,..., K. At each step, we decide on a
source phrase f, identified by its start and end positions s, = (bji) and the corresponding
translation é,. To ensure that there are no gaps and no overlap, we keep track of the set of
source positions that are already translated (‘covered’). We call this the coverage set
C < {1,...,J} and refer to the number of covered source positions of a hypothesis as its
cardinality c. Furthermore, the search space can be regarded as a graph where the arcs are
labeled with the decisions (&, j,j') and the states are labeled with the coverage sets C.
The initial state is labeled with the empty coverage set, i.e., no source word is yet
translated and the goal state is labeled with the full coverage C = {1, ..., J}. Each path
through this graph represents a possible translation of the source sentence, simply by
concatenation of the target phrases é along the path. Hence, the search problem can also
be looked at as finding the optimal path through this graph.

Except for the language model (LM) and a distortion penalty model (DM), all the
models of our decoder are defined on the level of single phrases, i.e., they have no
dependencies across phrase boundaries and can, therefore, be computed for each phrase
pair without context information. We group these models together and call them phrase
models. With respect to the sequence of decisions (éy, by, jx), the phrase models do not
depend on the decisions taken so far. According to Zens and Ney (2008), we use

272 Chapter 2: Machine Translation from Text

qmv(€x, by, ji) to denote the weighted sum of all phrase model scores for this decision
(also called state). The LM on the other hand depends on the last (n-1) words of the target
sentence and the DM depends on the end position of the previous phrase. Nevertheless,
we want to compute the scores of individual states and therefore introduce state copies
and distinguish them according to the history. We use é’ ® ¢ to denote the LM history
after expanding the given history &’ with the phrase €. The corresponding expansion
score weighted with the LM scaling factor is denoted as q.m(€|€"). Accordingly, we use
qom(j,j’) to denote the weighted score of a jump from source position j to source position
Jj’. Obviously, (é,j,j") can occur multiple times in the search space. To avoid repeated
computations, we determine the set of possible target phrases for all source phrases
before the actual search and store the target phrases along with their scores in a table
EG)).

Summing up, the states in the search space can be identified by a triple (C, &, j),
where C denotes the coverage set, & denotes the LM history and j denotes the end
position of the last source phrase. During search, a translation hypothesis is expanded by
computing the successor states for the current state (C, &, j). The expansion with a phrase
pair (&,j",j') vyields the successor state (CuU{j”,..,j'},é®é&',j') and the
corresponding score is calculated as:

qr(€’,j",J") + quu(é’|é) + qom(, j") -

We have to ensure that there is no overlap, i.e. C n {j" ...,j'} = .

2.6.1.2 Beam Search

As the size of the search graph is exponential in the source sentence length, we have
to use approximations to find a solution efficiently. In fact, it has been shown by Knight,
(1999) that the search problem is NP-hard. A recent exposition to the search problem was
proposed by Jelinek (1998). Here, we resort to dynamic programming (Bellman 1957)
and beam search (Jelinek, 1998) to address this problem. Using dynamic programming
(DP), i.e., first computing small sub-problems and then assembling the solution for the
whole problem from these sub-problems, we reduce the number of paths that we have to
explore in the search graph. The idea of beam search is to keep the promising candidates
and to discard hypotheses that are unlikely to yield the optimal solution. Thereby, beam
search may generate suboptimal solutions. In the following, we make an explicit
distinction between reordering and lexical hypotheses:

e Coverage hypothesis C. We use the term coverage hypothesis to refer to the set
of all lexical hypotheses with the same coverage C.

e Lexical hypothesis (C, &, j). A lexical hypothesis is identified by a coverage C, a
language model history é and a source sentence position j.

The number of coverage or more intuitive reordering hypotheses indicates how many
alternative reorderings per cardinality are investigated during the search. The number of
lexical hypotheses per reordering hypothesis indicates the lexical alternatives that are
taken into account.

Handbook of Natural Language Processing and Machine Translation 273

2.6.1.2.1 Monotone Search
Q(0,9)=0

QG,&) =max yr;y < pe; {QG)€) +qmE"j + 1)) + quu(e”|e")}

el 8 @e =4

Q = maxe{Q(, &) + qLu($; &)}

Figure 2.41: Dynamic programming recursion for monotone search.

If we prohibit phrase rearrangements during translation, both source and target
sentence are processed in monotone order. There is no reordering of the phrases and the
distortion penalty model becomes unnecessary. As a consequence, the monotone search
problem can be solved efficiently using DP. For the decision rule given in Section
2.6.1.1, we define the quantity Q(j, &) as the maximum score of a phrase sequence that
ends with the language model history é and covers positions 1 to j of the source sentence
and obtain the DP recursion as shown in Figure 2.41. The $ symbol denotes the sentence
boundary marker and Ls denotes the maximum phrase length in the source language.
During the search, we store back-pointers to the previous best decision B(:,") and to the
maximizing arguments A(:,"). After the search, the back pointers are used to trace back
the best decisions and generate the translation. The resulting complexity is linear in the
length of the source sentence, and thus, allows for a very efficient implementation.

The drawback is that reordering is only possible within the phrases (solely the
sequence of phrases is enforced to be monotone). However, the monotone search
algorithm is suitable for language pairs which have a similar word order, e.g., Arabic-
English, as can be seen in Section 2.6.1.4.

2.6.1.2.2 Non-Monotone Search

If we tackle the translation problem for language pairs with a different word order,
such as Chinese-English, the monotone search is inappropriate. Instead, we need to
explicitly permit reordering. Tillmann and Ney (2003) described a non-monotone search
algorithm for single word based translation. The idea is that the search proceeds
synchronously with the number of already translated source positions. Therefore, they
call their algorithm source cardinality synchronous search. Here, we use a phrase-based
version of their method. We generate the translation phrase by phrase, i.e., the search is
monotone in the target language. To permit reordering, we are allowed to jump back and
forth within the source sentence. As one constraint of the phrase-based approach is that
each source position is translated by exactly one target phrase, we have to keep track of
the source positions already translated. Recapitulate that this corresponds to the coverage
cc{1,....J}.

In contrast to the monotone search, the auxiliary quantity for the DP recursion now
also depends on the coverage set. Q(C, é, j) denotes the maximum score of a path leading
from the initial state to the state (C, é,j). The corresponding DP recursion for the non-
monotone search is given in Figure 2.42.

274 Chapter 2: Machine Translation from Text

Q(6,$,0)=0
Q&)= o XL e\ ...j}e"j") +qm(é",j',j) + qum(e”|é") + qom(", j') }
Al sc

§, e e @e =6

0 = maXé,j{Q({lr r]}ré!]) + qLM($|é) + qDM(j!] + 1)}

Figure 2.42: Dynamic programming recursion for non-monotone search.

Figure 2.43: Illustration of the (non-monotone) search process. For each cardinality, we have a list of
coverage hypotheses (boxes). For each coverage hypothesis, we have a list of lexical hypotheses (circles).

As for the monotone search, we store back pointers B(-) to the previous best decision
as well as the maximizing arguments A(:). For each cardinality ¢, we have to iterate over
all possible source phrase lengths I. Then, we have to account for all the possible
predecessor coverages €’ with cardinality ¢ - I. Next, we have to select a source phrase
f = fj» -, fj+1 Dy choosing the start position j. Eventually, we consider all existing
predecessor states &', j" and all translation options &' € E(j,j + 1) to compute the score
of the expansion. In Figure 2.43, we illustrate the (non-monotone) search. For each
cardinality, we have a list of coverage hypotheses, here represented as boxes. For each
coverage hypothesis, we have a list of lexical hypotheses, here represented as circles. We
generate a specific lexical hypothesis (the black circle) with cardinality ¢ by expanding
shorter hypotheses. The hypotheses with cardinality ¢ - 1 are expanded with one-word
phrases, the hypotheses with cardinality ¢ - 2 are expanded with two-word phrases, etc.
Consequently, all generated hypotheses have the same cardinality which allows for very
efficient recombination and pruning. In contrast, e.g., Koehn et al. (2007) and Tillmann
(2006) expand hypotheses with cardinality c into higher cardinalities.

In principle, we have to loop over all possible coverage sets which yields an
exponential complexity of the non-monotone search algorithm, taking into account that

Handbook of Natural Language Processing and Machine Translation 275

Zﬁzo (ﬁ) = 2J. To make the translation process manageable, we resort to a beam search
strategy and apply pruning at several levels.

2.6.1.2.3 Pruning

Our decoder implements two variants of pruning: threshold pruning (or beam
pruning) and histogram pruning (Steinbiss et al. 1994). Threshold pruning secures that
only hypotheses are kept whose scores are close to the best one. A drawback is that
threshold pruning effects the beam size only indirect and that there is no upper limit on
the number of hypotheses in the beam. Histogram pruning on the other hand means that
only the best N hypotheses are kept and is thus, a very simple way of limiting the beam
size. In this work, we mainly use histogram pruning. Threshold pruning is only partially
applied, e.g., to tune the system in terms of translation speed.

The novel contribution of this work is that we make an explicit distinction between
reordering and lexical pruning:

Reordering pruning:

The number of reordering hypotheses per cardinality c is limited. If we prune a
reordering hypothesis, we remove all associated lexical hypotheses.
Lexical pruning:

The number of lexical hypotheses per reordering hypothesis is limited.

To be specific, we use the following pruning strategies.

Observation Pruning

Here, we limit the number of phrase translation candidates per source phrase. This is
actually done before search. We apply observation histogram pruning with parameter N.
Thus, if there are more than N, target phrases for a particular source phrase, we keep only
the top N, candidates. In practice, N, = 50 already achieves good results while keeping
the phrase tables manageable, in particular for large-scale tasks such as GALE.

Lexical Pruning Per Coverage

Here, we consider all lexical hypotheses that share the same coverage C, differing for
instance in their language model history é or the end position of the last phrase j. During
pruning, we compare hypotheses which cover different parts of the source sentence.
Hence, it is important to use a rest score estimate for completing these hypotheses.
Without such a rest score estimate, the search would first focus on the easy-to-translate
part of the source sentence. In this work, we deploy a rest score estimate R(C, j) including
translation, language and distortion model computed on sequences of source positions. A
detailed description of the rest score estimate is given by Zens and Ney (2008). The rest
cost estimate is of special importance for smaller beam sizes. Let 1, denote the pruning
threshold and let Q(C) denote the maximum score of any hypothesis with coverage C:

€(Q) = max, ;{Q(C, &,)) + R(C,)}

276 Chapter 2: Machine Translation from Text

Then, we keep a hypothesis with score if: Q(C, é, j)

Generally, we apply histogram pruning with parameter N.. Thus, if there are more
than N, hypotheses for a particular coverage C, then we keep only the top N, candidates.
In practice, N = 500,..., 20 000 are typical values.

Coverage Pruning per Cardinality

Here, we consider all coverage hypotheses with a given cardinality c. Q(C) is defined
as the maximum score of any hypothesis with coverage € and is used here as score of the
coverage hypothesis C. Let 7. denote the pruning threshold, then we keep a coverage
hypothesis with score Q(C) if:

Q(C) +1c = maxc,c|=ce,i{Q(C, &)) + R(C,)}

Generally, we apply histogram pruning with parameter N¢ . Thus, if there are more
than N¢ coverage hypotheses for a particular cardinality ¢, we keep only the top N¢
candidates. Keep in mind that if we prune a coverage hypothesis C, we remove all lexical
hypotheses with coverage C. In practice, N¢ is in the range of 5 to 50.

2.6.1.3 Search Algorithm

Due to histogram pruning, the computational complexity of the non-monotone search
is now also linear in the sentence length (although encountering a rather large constant
factor). On the other hand, the search is now no longer guaranteed to find the (global)
optimal translation candidate. However, the experimental results show that the pruning
strategies almost cause no loss in translation quality. Section 2.6.1.4 also stresses the
importance of the coverage pruning to adjust the balance between hypotheses
representing different reorderings (coverage hypotheses) and hypotheses with different
lexical representations.

Putting everything together, the resulting pseudo code for the non-monotone search
algorithm including pruning is:

INPUT: source sentence f1] translation optionsE(j,j') for1 < j < j' <],
models gr(-), quu(+) and qom(:)

0 Q(9,%, 0) = 0; all other Q(:,-,") entries are initialized to —co

1 FOR cardinality c=1TOJ DO

2 IF ¢ > Ls THEN purgeCardinality c - Ls - 1

3 FOR source phrase length I =1 TO min{Ls, c} DO

4 FOR ALL coverages C’ c {1,...,J}:|C|=c-I DO

5 FOR ALL start positionsj € {1,...,J} : C'n{j,....j+ 1} =@ DO

6 coverage C = C' U{j,...,.j+ [}

7 FOR ALL states é’,j' € Q(C',-,-) DO

Handbook of Natural Language Processing and Machine Translation 277

8 partial score ¢ = Q(C',&',j") + qom(j’)

9 IFq+R(Cj+1)+ qwm(jj+]1) isTooBadForCoverage C
10 THEN CONTINUE

11 FOR ALL phrase translations &'’ € E(j, j + I) DO

12 partial score ¢’=q + R(C,j+ 1) + qw (€",),j +1)

13 IF g’ isTooBadForCoverage C THEN BREAK

14 score =q +qm(é",j,j+1) + qum(é"|é")

15 IF score+R(C,j+I) isTooBadForCoverage C THEN CONTINUE
16 language model state &€ = &' ® &’

17 IF score > Q(C,é,j + 1)

18 THEN Q(C,é,j + 1) =score

19 B(C.ej+D=(Ce,j)

20 ACeéj+D=¢

21 pruneCardinality c

The basic concept of the algorithm is the same as for the monotone search. A key
challenge is to perform as much computations outside the inner loops as possible and to
apply pruning wherever applicable. The function 'pruneCardinality c' applies coverage
and cardinality pruning after all hypotheses with the current cardinality ¢ have been
generated (line 21). In the function 'purgeCardinality ¢', we free the memory (except trace
back information) of all hypotheses with cardinality c¢. For example, the coverage sets
and the LM histories are not needed anymore, and thus, the memory can be reused.
Furthermore, we can stop the expansion whenever it is clear that the resulting hypotheses
would be pruned anyway. This is done via the 'x isTooBadForCoverage C' function. As
the translation options E(-,-) are sorted once before the search, we can process the
hypotheses according to their score and check:

e if the partial score plus rest cost estimate plus an optimistic estimation for the
translation model score is too bad, we can skip all of the possible phrase
translations (line 9),

e if the partial score without LM is already too bad, we can omit the LM score
computation (line 13),

e if the score of the expansion is too bad, we can ignore to check for recombination
(line 15).

The presented algorithm is comparable with the cube pruning approach of Chiang
(2005) and Huang and Chiang (2007). We observed that there is virtually no difference
between cube pruning and our implementation, but the benefits of cube pruning, i.e.,
fewer LM expansions, can be achieved by simpler means as shown in this work. Early
discarding of likely weak translation candidates and the effect of including the distortion
rest score is equivalent to the method presented by Moore and Quirk (2007).

278 Chapter 2: Machine Translation from Text

2.6.1.4 Experimental Results

We carried out experiments on the Chinese-English and Arabic-English GALE MT
from text tasks (2007 development sets), i.e. translating texts out of the newswire (NW)
and web domain (WT). The corpus statistics are shown in Table 2.64. Additional
monolingual data, e.g. GigaWord v2, TDT, etc., were used for LM training. We applied
modified Kneser-Ney discounting as provided by the SRILM toolkit (Stolcke 2002). For
both tasks, translation results in terms of BLEU (Papineni et al. 2002) and TER (Snover et
al. 2006) scores are reported in Table 2.65. These scores were calculated case insensitive
and w.r.t single references. The reordering limit in all experiments was 10 words.

Chinese [English [Arabic | English
Sentence pairs 8.7M 7.4M

Train Runningwords |[230M | 230 M 186 M 188 M
Vocabulary size | 242K 242K 565K 506K

NW Sentences 554 686

—_ Words 19K | 21K 27K | 30K
WT Sentences 657 907

Words 18K | 20K 23K | 28K

Table 2.64: Corpus statistics of the Chinese-English and Arabic-English GALE MT from text task (2007
development sets).

BLEU TER
CE NW 18.66 68.29
CEWT 15.62 73.01
AE NW 29.60 54.75
AEWT 18.92 73.88

Table 2.65: Translation performance for GALE MT from text tasks (2007 development sets)

In Figure 2.44 and Figure 2.45, we separate the effect of the number of lexical and
reordering hypotheses on the translation quality. The plots demonstrate that already a
small number of lexical alternatives is sufficient to achieve good translation quality. For
each curve, we limited the number of reordering hypotheses and varied the maximum
number of lexical hypotheses per reordering hypothesis. Thus, along the x-axis we
increased the search space by allowing for more lexical choice, whereas from curve to
curve we allowed for more reordering. The overall search space is limited by the product
of the two numbers, i.e. we varied the beam size from 1 to 64K. Both figures point out
that there is no benefit from increasing the number of lexical choices beyond 16
candidates per reordering hypotheses. If we look at the maximum number of reordering
choices, we see that reordering seems to be only a minor problem for the Arabic-English
language pair. In combination with the implicit within phrase word reorderings, just 4
reordering alternatives times 16 lexical hypotheses for each of them are sufficient to
exhaust the search space. By contrast, the maximum number of coverage hypotheses has
a much bigger effect on the BLEU score for the Chinese-English translation direction.
There is a considerable improvement by increasing the number of coverage hypotheses

Handbook of Natural Language Processing and Machine Translation 279

up to 64. Furthermore, the improvement achieved by taking more reordering alternatives
into account exceeds the improvement due to more lexical choices.

Figure 2.44: Effect of the number of lexical and Figure 2.45: Effect of the number of lexical and
reordering hypotheses for the Chinese-English reordering hypotheses for the Arabic-English
newswire task. web text task.

Finally, we performed a comparison with Moses (Koehn et al. 2007), a publicly
available decoder. We used identical settings (TM, LM, A, etc.) to translate the test data
with varying beam sizes and measured the BLEU score and the speed of the two decoders.
We observed that we can achieve the same BLEU score as Moses at a higher translation
speed. Since we used a different subset of our MT development data drawn from the
newswire domain, the numbers are not directly linked to the ones of Table 2.65 and
Figure 2.44. Nevertheless, by looking at Figure 2.46, we found out that our decoder is
faster by a factor of 10 to 20, e.g., if we look at the BLEU score level of 36.9%, our
decoder (225.3 words per sec) is even 23 times faster than Moses (9.8 words per sec).
These numbers indicate that our decoder is significantly more efficient than Moses,
which makes our decoder appealing for online translations.

Figure 2.46: Comparison with Moses.

2.6.1.5 Conclusion

We presented an efficient search algorithm for phrase-based SMT. At first, we
analyzed the search problem in detail and then developed the algorithm resorting to
dynamic programming and beam search. The experimental results pointed out that it is
important to keep alternative reordering hypotheses in the beam for the Chinese-English

280 Chapter 2: Machine Translation from Text

language pair. On the other side, already a small number of lexical alternatives per
reordering yields translations of good quality. A comparison with Moses emphasized the
efficiency of the presented implementation, as our decoder is significantly faster at the
same level of translation quality.

2.6.2. Handling Complexity in Decoding
Author: Christoph Tillmann

2.6.2.1 Introduction

This section presents several extensions of a commonly used phrase-based decoder
for SMT (Koehn 2004a; Och and Ney 2004).% Such decoders are widely used within the
GALE project and this section demonstrates ways of making these decoders more
efficient in a principled way. It follows work by Tillmann and Ney (2003), in which the
word reordering problem in SMT is linked to the traveling salesman problem (TSP). In
that paper, a DP-based (dynamic programming-based) optimization algorithm to solve
the TSP (Held and Karp 1962) serves as a starting point to handle the word reordering
problem efficiently. The Held-Karp algorithm is a special case of a shortest path finding
algorithm in a directed acyclic graph (DAG) (Dreyfus and Law 1977). Following this line
of argumentation, this section spells out an approach that handles SMT decoding as a
shortest path finding problem in dag's in some detail.

The translation model used in this section is a so called block-based model. A block
is a pair of phrases which are translations of each other. During decoding, we view
translation as a block segmentation process, where the input sentence is segmented from
left to right and the target sentence is generated one phrase at a time. For some language
pairs, close to state-of-the-art performance can be obtained by generating a largely
monotone block sequence. A block sequence is scored as follows:

sw(bT') = L=y w' - f (by, bi—1). (2.49)

We try to find a block sequence b; that minimizes s,, (b1*) under the restriction that
the concatenated source phrases of the blocks b; yield a segmentation of the input
sentence. We use the following block bigram scoring: a block pair (b; b) is represented
as a feature vector flb; b) € R". w is the feature weight vector which is trained on some
development set. The feature vector components are the negative logarithm of some
probabilities. Under this view, SMT becomes quite similar to sequential natural language
annotati%n problems such as part-of-speech tagging, phrase chunking and shallow
parsing.

% The work presented in this section is a compilation of work that has been published previously by Tillmann
(2001, 2006, 2008) and Tillmann and Ney (2003).

% Since standard phrase-based decoders rely mostly on locally computed feature functions, the decoding
algorithms presented in this section are applicable to them as well.

Handbook of Natural Language Processing and Machine Translation 281

2.6.2.2 Beam-Search Decoder

In DP-based decoders for SMT, the search space is dynamically constructed: suitably
defined lists of path hypotheses are maintained. This section focuses on some details how
these path hypotheses are managed: using two stacks or multiple stacks. The standard
phrase-based decoder by Koehn (2004a) uses J hypotheses stacks, one stack for each
source position in the input sentence. The algorithm finds the Viterbi block translation for
the model defined in Equation 2.49. Search states are 3-tuples of the following type:

[C,h;d]. (2.50)

h = ([, j], [u v]) is the state history, where ([j, j]) is the interval where the most
recent source phrase matched the input sentence and [u, v] are the final two target words
of the partial translation produced so far. d is the partial translation cost. Here, we use a
coverage vector C to ensure that each source position is covered exactly once. That way,
we make sure that a consistent alignment is produced. By including a coverage vector C
into the search state definition we obtain an inherently exponential complexity: for an
input sentence of length J there are 2/ coverage vectors (Koehn 2004a). By restricting the
coverage vector appropriately, the decoding can be carried out efficiently as shown in
Section 2.6.2.3. When a state of the type in Equation 2.50 is extended by some additional
phrase match, a local transition cost A is computed. The partial cost d of the new state is
computed as d = d + A. If the original state covers k source positions and the latest
source phrase match is I words long, the new hypothesis is added into the (k + I)-th stack.

The second implementation uses two stacks to keep a single beam of active states.
This corresponds to a beam-search decoder in speech recognition, where path hypotheses
that correspond to word sequences are processed in a time-synchronous way. At a given
time step the decoder keeps only hypotheses within some percentage of the best
hypothesis (Lowerre and Reddy 1980; Ney et al. 1992). The state definition in Equation
2.51 includes an additional field I that keeps track of how much of the most recent source
phrase match has been covered.

[C L h;d]. (2.51)

When a phrase is matched to the input sentence, the pointer [is set to position j where
the most recent block match starts. As long as the pointer [is not yet equal to the match
end position j, it is increased: I := | + 1. Here, the single-beam decoder processes
hypotheses cardinality-synchronously, i.e., states that cover k source positions generate
new states that cover k + 1 positions. The local transition cost A’ is spread evenly over
the span of the latest match of length I: A" = A/l . The algorithm stores the states in only
two stacks I" and T": T contains the most probable hypotheses that were kept in the last
beam pruning step all of which cover k source positions. I' contains all the newly
generated hypotheses before they are pruned in the next pruning step.

Before expanding a state set, states are pruned based on their coverage vector and the
path cost: two different pruning strategies are used that have been introduced by Tillmann
and Ney (2003) coverage pruning prunes states that share the same coverage vector C, 2)
cardinality pruning prunes states according to the number of covered positions k: all

282 Chapter 2: Machine Translation from Text

states in the beam are compared with each other. The size of the beam depends locally on
the number of hypotheses whose score is close to the top scoring one. In particular the
cardinality pruning becomes an efficient pruning strategy in the case of the two-stack
decoder: all active hypotheses are compared against each other. Adding a state to a stack
includes adding the state if it is not yet present or updating its shortest path cost d if the
state is already in that stack. This operation is also called recombination. It is a way to
prune the stack safely without the risk of additional search errors. The recombination
becomes very efficient if the coverage vector is restricted as shown in the next section.
The multiple stack and two stack algorithm search slightly different search graphs where
the single-beam algorithm with the more ‘regularly’ structured search graph results in a
more efficient pruning strategy. The results of Tillmann (2006) show that using two
stacks results in a runtime reduction of a factor of two when compared to a standard
decoder for phrase-based SMT that uses a single stack for each source position.

2.6.2.3 Shortest Path Algorithm for Directed Acyclic Graphs (DAG)

This section compares the phrase decoding algorithms to a shortest path finding
algorithm for Directed Acyclic Graphs (DAG). A DAG G = (V, E) is a weighted graph for
which a topological sort of its vertex set V exists: all the vertices can be enumerated in
linear order. For such a weighted graph, we can compute the shortest path from a single
source in O(|V] + |E]) time, where |V] is the number of vertexes and |E| number of edges in
the graph.

Here, vertices in the DAG correspond to the states defined in Equation 2.50 and
edges correspond to transitions between states. The vertex set is finite since there is only
a finite number of states. The corresponding graph contains no loops by definition: state
transitions exist only from a state that covers fewer source positions to a successor state
that covers additional (more) source positions. The fact that states are generated by
increasing coverage cardinality can be understood as computing a topological sort of the
vertices on the fly. The analysis in terms of a DAG shortest path algorithm can be used
for a simple complexity analysis of the proposed algorithms. Local state transitions
correspond to an edge traversal in the DAG search algorithm. These involve costly look-
up operations, e.g., language, distortion and translation model probability lookup.
Typically the computation time for update operations on lists T" is negligible compared to
these probability lockups’. That way, the search algorithm's complexity is simply
computed as the number of edges in the search graph: O(|V| + |E]) = O(|E]). Such an
analysis has been presented by Tillmann (2001) for a series of reordering restrictions. In
the case that the number of holes in the coverage vector for a left-to-right traversal of the
input sentence is bounded by a constant k, e.g. k = 3, Tillmann (2001) gives a proof that
the complexity for the resulting search algorithm is bounded by J+2 where J is the length
of the input sentence (the complexity due to the use of a language model or distortion
model is ignored).?’ It is interesting to note that these complexity bounds are achieved

27 Tillmann’s analysis (2001) is carried out for a word-based search where search states are of the form [C, j]
and j denotes the last covered source position j. The search state definition for a phrase-based decoder might
result in a slightly higher complexity bound, but a dag complexity analysis remains feasible.

Handbook of Natural Language Processing and Machine Translation 283

without the typical reordering window size restriction. Designing algorithms with
provable upper complexity bounds might be a way to obtain more efficient decoding
algorithm in the future.

The stack-based decoding algorithms can also be compared to an Earley-style parsing
algorithm that processes lists of parse states in a single left-to-right run over the input
sentence. That parsing algorithm can also be analyzed in terms of a DAG (Jurafsky and
Martin 2000). Furthermore, the use of the pointer [in the state definition in Equation 2.51
is related to the use of the so-called dotted rules in the Earley parser states.

2.6.2.4 POS-based Re-order Rules

The section sketches an extension of the beam-search decoder introduced in Section
2.6.2.2, where POS-based reorder rules (Crego and Marino 2006) are tightly integrated
into a single-beam left-to-right search. Reorder rules are typically applied to the source
and/or target sentence as a preprocessing step (Xia and McCord 2004; Collins et al.
2005; Paulik et al. 2007) A few dozen reorder rules generate a so-called reordering graph.
In comparison, the novel rule-driven decoder can handle about 30,000 rules efficiently.
The algorithm described in this section uses an intermediate data structure called an edge
that represents a source phrase together with its target phrase translation (A similar data
structure is called translation option by Koehn (2004a)). For each input interval that is
matched by some source phrase, we store a list of possible target phrase translations as
edges in a chart. Additionally, we replace the reorder graph generation by a simpler edge
generation process which involves only local computation. To formalize the approach,
the search state definition in Equation 2.50 is modified as follows:

[s; [i,j], 1, s-, e €{false, true}] (2.52)

Here, the coverage vector C is replaced by a single number s: a monotone search is
carried out and all the source positions up to position s (including s) are covered. [i, j] is
the coverage interval for the last source phrase translated (the same as in Equation 2.50).
r is the rule identifier, s, is the starting position for the match of the ™ rule in the input
sentence and e is a flag that indicates whether the hypothesis h has covered the entire
span of rule r yet.?®

States are extended by finding matching edges: simple or rule edges. We illustrate the
generation of these edges in Figure 2.47 for the use of two overlapping rules on a source
segment of four words ay, - - -, as. The two rules correspond to matching POS sequences,
i.e., the input sentence has been POS tagged and a POS tag p; has been assigned to each
word a; . Edges are shown as rectangles. In the top half of the picture, six simple edges
which correspond to six phrase-to-phrase translations are enumerated. In the bottom half
of Figure 2.47, we show the newly generated rule edges. A rule edge is generated from a
simple edge via a reorder rule application and we add it into the chart. Here, rule 1

28 For technical details, see the work of Tillmann (2008).

284 Chapter 2: Machine Translation from Text

generates two new edges and rule 2 generates four new edges. For a consistent processing
of the rule edges within the rule match interval, they are assigned one out of three
positions: BEGIN, INTER(mediate) and END. We carry out the edge generation process
in the following way: for each source interval [k, I] all the matching phrase pairs are
found and added into the chart as simple edges. In a second run over the input sentence
for each source interval [k, I], all matching POS sequences are computed and the
corresponding source words ay, - - -, a; are reordered according to the rule permutation. On
the reordered word sequence phrase matches are computed and added into the chart. This
edge generation is computationally ‘light-weight” and typically takes only a few percent
of the overall decoding time. Finally, the rule-driven decoder searches through the DAG
defined by both simple and rule edges to find the best scoring block translation sequence.

11

T T T T
a a a a
0 1 2 3
1. RULE: 1 2 0 J
2. RULE: 1 (] 3 2

Figure 2.47: Addition of rule edges to a chart containing 6 simple edges. Rule application results in the
generation of special rule edges. These edges are processed in an order consistent with the rule.

It is important to point out that the coverage vector component has been removed
altogether from the search state definition in Equation 2.52. This way, the rule-driven
search results in an essentially linear time decoding algorithm by ‘indexing' the search
space according to the rules and making extended use of the basic edge data structure.
The rule-driven decoder uses the two stack implementation shown in Section 2.6.2.2.
Here, we use an additional probabilistic feature, which is derived from the rule unigram
count N(r). Tillmann (2008), compares the rule-driven decoder to a standard phrase-
based decoder. It is shown that decoding can be carried out efficiently and reliably with a
large reordering window of 15 words: a small improvement in terms of BLEU is reported
for a standard Arabic-English translation task. In addition, the rule-driven decoder
handles a huge set of about 30,000 rules efficiently.

2.6.2.5 Efficient Block Segmentation Algorithm

A common approach to phrase-based SMT is to learn phrasal translation pairs from
word-aligned training data. In this case, one uses a symmetrization step (Och and Ney
2004) and a word-alignment is computed for both translation directions source-to-target
and target-to-source and the intersection of these two alignments is computed to obtain a
high-precision word alignment. Here, we note that if this intersection covers all source

Handbook of Natural Language Processing and Machine Translation 285

and target positions, then it constitutes a bijection between source and target sentence
positions.?? Additionally, Och and Ney (2004) define the notion of consistency for the set
of phrasal translations that are learned from word-aligned training data; when projecting
source intervals to target intervals and target intervals to source intervals no alignment
link may lie outside the resulting phrase link. In Figure 2.48, we show examples of
consistent and inconsistent phrase pairs. The word alignment for that sentence pair links J
=4 source and I = 4 target words. The alignment links that yield a bijection are shown as
solid dots. When the alignment A is a bijection, by definition each target position i is
aligned to exactly one source position j and vice versa and source and target sentence
have the same length.

000 e 000 e
Target ©|® 00 Target _O,.,qu‘
0|0 @O He) Oi. O
® O OO |® 0i0 O
Source Source

Figure 2.48: The left picture shows three consistent phrase pairs while the right picture shows three non-
consistent phrase pairs.

We show that an efficient DP-based phrase alignment algorithm exists if the phrase
pairs involved are consistent with an underlying alignment bijection. Without an
underlying alignment 4, each pair of source interval S and target interval T defines a
possible phrase link and this unrestricted phrase alignment problem has been shown to be
NP-complete (De Nero and Klein 2008). The consistency restriction drastically reduces
the number of phrase pair links. Source and target sentence segmentations are linked
in a perfect way. Because of the bijection and the consistency restriction, target
interval segmentation alone is sufficient to determine the source interval
segmentation and the phrase alignment simultaneously. This close link is illustrated
in Figure 2.49. The DP algorithm that makes use of the observation above uses the
following auxiliary quantity:

2% Tillmann (2003) reports an intersection coverage of about 65 % for Arabic-English data and a coverage of 40
% for Chinese-English data under real conditions.

286 Chapter 2: Machine Translation from Text

' 3 A
® O OO ® O 0|0

Target 0|0 @|0O O O @O
O|® O|O O @ O|O
Coolel ., [OO][e] .
A Source Source
@O OO 00O

Tagt 0[O @ O Ol%@O
ol _NoNe O|®@|O0 O
Olcocel , [coQ[e] ,

Source Source

Figure 2.49: Four block segmentations of a sentence pair if the intersection is a bijection. The segmentation
that covers the whole sentence pair with a single block is not shown.

Qs(i) := score of the best partial segmentation that covers the target interval [1, i] and
ends in block b. The DP-based algorithm to compute Q,(i) is:

input: Parallel sentence pair and alignment A .
initialization : Qp(i) = - forall i=0, - - -, Iand blocks b .
Sentence initial cost Q5(0) = 0.0.
foreachi=1,2,---,1do
foreachi = 0,1,2,---,i—1do
Project interval T=[i + 1, i] and check block link (T, S) for consistency.
if (T, S) IS CONSISTENT
Set block b = (words in T, words in S)
Q, (1) = max,, A(b,b)+Q,, (i)
recover optimal segmentation b :
- find best end hypothesis: max;, Q;, (I)

A block segmentation is guaranteed to be found: the block that covers all source and
target position is consistent by definition. Target intervals are processed from bottom to
top. A target interval T = [i, i] is projected using the word alignment A, where a given
target interval might not yield a consistent phrase pair, e.g. in Figure 2.49, out of all eight
possible target segmentations, only five yield segmentations with consistent block links.
For the initialization, we set Qy(i) = —oo for all target positions i =0, - - -, I and blocks b
and cost Q;(0) = 0.0, where b is a special starting block positioned at the sentence
beginning. The final score is obtained as Qrint = max, Qn(I), Where I is the length of the
target sentence. A(b, b) denotes a transition cost for placing consecutive blocks which
might use the same baseline features as in Section 2.6.2. Depending on the features that
are being used, the auxiliary quantity in Q,(i) needs to be adjusted, e.g., by including
source matching intervals to handle distortion features. The complexity of the algorithm

Handbook of Natural Language Processing and Machine Translation 287

is O(|B|- I°) assuming that the transition cost A(b, b) between adjacent blocks can be
computed in constant time. Here, |B| denotes the number of blocks that can be extracted
from the aligned sentence pair. The presented DP-based algorithm is interesting
theoretically because it solves a NP-complete problem efficiently (under the consistency
restriction) for arbitrary long sentence pairs and unrestricted phrase-level reordering.

2.6.2.6 Discussion

Future work might bring the DP algorithms in Section 2.6.2.2 and Section 2.6.2.5
together: if the alignment intersection covers a source and target sentence only partially,
the number of consistent phrase pairs is increased significantly. A stack-based search can
be used to find a phrase alignment efficiently under the consistency restriction. Such an
algorithm might be helpful in training a phrase-based system discriminatively. The
single-pass, left-to-right beam search algorithms presented in Section 2.6.2.2 and Section
2.6.2.4 might be extended to decode with hierarchical model parameters. Under
appropriate restrictions, this might result in a more efficient decoding algorithm when
compared to a standard chart-based decoder.

2.6.3. Lattice Decoding for Hierarchical Models
Authors: Philip Resnik, Chris Dyer and Smaranda Muresan

2.6.3.1 Introduction

In any machine translation system, a number of choices are made at the outset.
Typically these include aspects of source language representation such as segmentation,
morphological analysis and orthographic normalization and are categorized as decisions
about preprocessing. It is natural to ask which choices lead to better translations. Is it
better to separate Arabic clitics into distinct tokens? How aggressive should the Chinese
segmenter be? Unfortunately, the answer to questions like these is, fairly universally, “it
depends”. For example, Habash and Sadat (2006) show that the optimal Arabic
preprocessing approach is highly dependent on the amount of training data available. As
a result, in the absence of useful generalizations, experimenters must resort to labor-
intensive experimentation on development data, make a choice and hope that it is the
right choice when the test data come along.

In this section, we describe a new approach that replaces static preprocessing
decisions with dynamic representational decisions taken at runtime. The intuition is
straightforward: the input representation to the decoder should capture all the possible
decisions, rather than committing to a single resolution of preprocessing ambiguity and
the decoder should be equipped to make relevant choices taking into account all the
information available to it. In principle (and, as we will show, in practice), the “right
choice” might in fact vary from word to word within a sentence being translated. The
algorithms we present are inspired by recent developments in speech translation, where
preserving ambiguity about the words that were spoken yields better performance than
translating the 1-best transcription. We show how decoding with hierarchical phrase-
based models (Chiang 2007) can be extended first to handle confusion networks, which

288 Chapter 2: Machine Translation from Text

admit particularly efficient dynamic programming algorithms at the cost of some over
generation (Dyer 2007a), and then to handle weighted lattices in the general case (Dyer
et al. 2008). We briefly summarize relevant GALE experimentation, demonstrating
significant improvements in translation quality and we close by discussing the promise of
the approach for future work.

2.6.3.2 Preprocessing and Ambiguity

Because state-of-the-art statistical MT methods focus on learning source/target
mappings from parallel text, the quality of translation depends heavily on language-
specific processing. In any MT system, such preprocessing turns out to be surprisingly
important, sometimes bearing as much responsibility for system performance (or lack
thereof) as the scale of the training data or the cleverness of the models.

Preprocessing issues need to be addressed for any source and target languages and
conceptually, these issues bear a strong family resemblance to problems associated with
index term extraction in cross language information retrieval (Levow et al., 2005). For IR
systems, the goal is to characterize a document’s content as a collection of discrete units
that map sensibly to query terms. For MT systems, the goal is to represent the source and
target sentences as token sequences for which correspondences of meaning are captured
well by means of token-level alignments. Examples pointed out by Levow, Oard and
Resnik are just as pertinent for MT as for IR: splitting clitics in Romance languages
(m’aidez = m’ aidez = me aidez), bound morpheme segmentation in Arabic (wktAbAn =
w ktAb An [and two books]), Chinese word segmentation and German decompounding
(finanzminister = finanz minister [minister of finance]). And, of course, for all
languages, particularly in the newswire genre, the quality of translation can depend
heavily on the treatment of numbers, dates and named entities.

A common approach, really the path of least resistance, is to preprocess the source
sentence via 1-best analysis and if multiple analyzers are available, to run experiments on
development data in order to select a single best analyzer whose 1-best output will be
used. For example, Habash and Sadat (2006) explore a variety of approaches to Arabic
morpheme splitting for MT. Each segmentation scheme is applied to the full training data
and test data and the one performing best on the full test set is identified. However, this
approach fails to take into account the fact that different analyzers may perform well on
different subsets of the data.

One could therefore imagine treating different subsets of the data differently in terms
of their preprocessing. This could include distinctions at the document level, e.g.,
training different systems, with different preprocessing approaches for newswire versus
Web materials. Or, one could imagine going further, taking a supervised classification
approach and directing different input sentences to MT system variants that use the
preprocessing choices most likely to lead to good translations.

In this work, we have taken that intuition a step further, in keeping with the logical
question it raises: why should the selection of the best preprocessing path even be made
at the sentence level? It might well be that the quality of preprocessing choices varies
across individual phrases within a single sentence. This motivates an approach in which
sub-sentential preprocessing alternatives are preserved in the representation of the source

Handbook of Natural Language Processing and Machine Translation 289

sentence, with statistical modeling/learning enabling the best possible combination of
choices spanning the entire sentence.

2.6.3.3 Preserving Ambiguity Using Confusion Networks

Confusion networks are a compact representation of ambiguity that were introduced
in speech recognition (Mangu et al. 2000) and have proven useful in phrase-based
statistical machine translation (Bertoldi et al. 2007). In this section, we briefly
characterize confusion networks in formal terms, then show how they can be handled as
input to a hierarchical phrase-based decoder and finally summarize some experimental
results that demonstrate their value.

2.6.3.3.1 Definition

A confusion network G is a weighted directed acyclic graph with words labeling its
edges, a single start node and a single end node. Unlike conventional word lattices, which
can describe any finite set of strings, CNs are constrained such that every path in G goes
through every node in the same order. This allows G to efficiently represent a very large
number of sentences and permits the definition of very efficient dynamic programming
algorithms for decoding.

Formally, G can be described as a tuple of a word matrix F and a posterior probability
matrix p, where p;;=P(F;j|i, 0). Traditionally, o represents observations of the acoustic
signal in a speech recognizer, but in our setting it arises from preprocessing ambiguity.
We refer to the column of words at F; as the alternatives at position .30

1 2 3 4 5 6 7
sAfr 08 | Al- 09 [r}ys 09 |- 05 |[Amryky 0.9 |EIY 0.3 |pbgdAd 1.0
sfyr 02|e 01]e¢ 0.1 |Al- 0.4 |[AmrykA 0.1 [IA 03

e 01 Aly 0.2
fy 01
e 0.1

Table 2.66: Example confusion network. A CN has a fixed length and each column has a distribution over
words that may appear in that position. This example shows some ambiguities typical of an ASR system for
the Arabic sentence sAfr Alr}ys AlAmryky AlY bgdAd (in English, the American president traveled to
Bagdad).

Table 2.66 illustrates a confusion network that would be typical as output from an
Arabic ASR system. Arabic words are given in the Buckwalter convention. In this
artificial example, the 1-best transcription hypothesis (top row) contains two mistakes.
The first mistake is at position 4, where the correct word, the definite article Al, has lower

% In order to describe sentences that are arbitrarily shorter than the length of the paths through the network,
Fi can also contain a special symbol ethat indicates a word skip.

290 Chapter 2: Machine Translation from Text

probability than the preposition li. The second, at position six, misidentifies the
preposition AlY (to) as EIY (on).

2.6.3.3.2 Decoding confusion networks with hierarchical models

Bertoldi et al. (2007) demonstrated that phrase-based translation systems can be
adapted to efficiently translate ambiguous input represented as a confusion network.
Given the promising performance of the hierarchical translation models introduced by
Chiang (2007), which enable MT systems to capture hierarchical structure without the
necessity of appealing to treebank-derived parsing, we found it natural to extend
decoding for such models in a similar way, in order to defer the resolution of
preprocessing ambiguity (Dyer 2007a).

Following Shieber et al. (1995), Goodman (1999) and Chiang (2007), we
characterize hierarchical analysis, i.e., parsing, as a deductive proof system. In an
inference rule

115W1"'Ik5Wk

¢

I:w

when antecedents I, --- I, are true with weights w, ---wy, then consequent I is provable
with weight w. Axioms are inference rules with no antecedents. ¢ is any number of side
conditions that must be true for the inference to be made.

Traditional CKY-style parsing of an input sequence f; --- f,, is captured concisely by
inference rules (1) and (2), where item [X, i, j] : w indicates that a subtree of category X
has been recognized spanning f; --- f; with weight w. The classic dynamic programming
version of CKY is merely a systematic search for a proof of [S, 0, n] involving
memoization of inferred items.

Zofivw

[Z,ii+1]:w (2.53)

Z-XY:wq [X,ik]:w, [Y Kk, jl:ws
[Z,i,]]:w1 Xwy Xwg

(2.54)

Extending the algorithm to parse a confusion network G rather than single best
preprocessing analysis f; -+ f,, requires two straightforward modifications. 3 First,
inference rule Equation 2.53 is changed to allow generation of multiple neighbor
inferences in the search space by “scanning” any token in column F;.

Z—-F; W
Rdndil’ 2V (2.55)
[Z,1i+1]:wXDit1k

Second, to properly handle ¢ - words, we add:

% Using dynamic programming, the resulting algorithm runs in time O(n3d), where d is the maximum number
of preprocessing alternatives in any column.

Handbook of Natural Language Processing and Machine Translation 291

[X,i,j]:w _
T+ wnpy Tk =€ (259

We employ standard log-linear modeling for hierarchical translation (Och and Ney
2002; Chiang 2007); the probability P(D) for a synchronous derivation D is modeled as

P(D) o [1; [Tryep hi (i)™ (2.57)

where the Iy are inferred items [X, i, j] in the derivation, h; are model features and the A
are log-linear parameters tuned on held-out development data.

2.6.3.3.3 Experimental results

Dyer (2007a) established the utility of confusion network input for hierarchical
decoding by demonstrating significant performance improvements in Czech-English
translation. These experiments used the standard feature set for hierarchical translation
modeling (Chiang 2007) and confusion networks were constructed by lemmatizing each
word in the test set and having two alternatives at each position in the confusion network:
the surface form, and the lemmatized form. Significant improvements over baseline
surface and lemma systems were observed. Furthermore, our experiments showed that
previous results, indicating that lemmatizing input before translating it yielded better
performance, did not generalize to our systems (which used much more training data),
suggesting that deferring decisions about the proper level of morphological simplification
until decoding time has value.

Another source of ambiguity that is well-suited for representation in a confusion
network concerns the proper amount of diacritization that should be used when
translating from Arabic. Arabic orthography does not capture all the phonemic
distinctions that are made in the spoken language since optional diacritics are used to
indicate consonant quality as well as the identity of short vowels. When these diacritics
are absent (as is the case in virtually all text genres), a single orthographic form will
correspond to several phonemically distinct words. This insight was the motivation for a
study by Diab, Ghoneim and Habash, who used SVMs to predict missing diacritics as a
preprocessing step for MT (Diab et al. 2007). Although a variety of different
diacriticization schemes were attempted, the study failed to find any set of diacritics that
consistently improved translation quality on an Arabic-English task. The authors
conclude that the fragmentation of training data resulting from the proliferation of
distinctive forms resulted in poorly estimated translation models. However, confusion
networks offer the possibility of using the more precise diacritized forms when adequate
training data is available but backing off to less exact forms when this is not the case.
Table 2.67 shows the results of our Arabic diacrtization lattice experiments.*” For each
test set, corresponding to the same test sets used by Diab et al. (2007), we see

%2 For descriptions of the training data, alignment and language models used, refer to the work of Diab et al.
(2007).

292 Chapter 2: Machine Translation from Text

improvements in translation quality as measured by both BLEU and TER.* Using
bootstrap resampling, all improvements are estimated to be significant at p < .05.

Condition MT03 _MTO05 MT06
BASELINE (BLeu) | 450 422 442
CN (BLeu) | 459 431 451
BASELINE _ (TER) | 483 47.6 465
CN (Ter) | 476 467 457

Table 2.67: Results of Arabic diacritization confusion network experiments.

2.6.3.4 Preserving Ambiguity Using Lattices

Many forms of preprocessing do not produce alternatives in one-to-one
correspondence with the original sequence of input tokens. Chinese word segmentation
and Arabic affix splitting are notable examples. It is always possible to approximate more
general correspondences using e-transitions. For example, a deferred decision about
whether to preserve the surface form of AlktAb or to represent it as Al ktAb can be
represented in a confusion network by using an arc ¢, so that AlktAb+ e has the same span
as Al+ktAb. However, this use of etransitions creates two problems. First, the resulting
confusion network overgenerates; that is, it permits paths that would not be possible if a
single arc for AlktAb could be placed in direct correspondence with two arcs representing
the distinct tokens Al and ktAb. Second, it can be difficult to decide where the etransition
should be deployed: why AlktAb+eand not e+AlktAb?

These problems disappear if alternative analyses are allowed to use any number of
arcs necessary to span the same portion of the original input, i.e., if the ambiguous
alternatives are represented using a lattice structure. In 2008, Dyer et al. introduced
decoding of lattices within hierarchical phrase-based modeling frameworks, which we
briefly summarize here.

2.6.3.4.1 Definition

A word lattice G = (V, E) is a directed acyclic graph that formally constitutes a
weighted finite state automaton (FSA) and we will stipulate that exactly one node has no
outgoing edges and is designated the ‘end node’. It is worth noting that because of these
restrictions, the FSA is guaranteed to describe a finite set of strings. An edge e; € E is
labeled with a word f{e;) (in the case of our model, in the source language) or to indicate
an empty transition. Each edge is associated with a cost, which for present purposes we
assume is scalar.®

Two special classes of restricted word lattices deserve mention. First, an FSA
generating a single sentence is the most basic restricted lattice possible. Second,
confusion networks are a special case where the linear structure of a sentence is preserved
and alternative arcs between adjacent nodes permit the encoding of a multitude of paths.

% TER is translation edit rate so lower scores are better.
3 We have implemented vector-valued edge costs, as well, but do not describe those here.

Handbook of Natural Language Processing and Machine Translation 293

| 0 | 1 | 2 |
LFoy poj Roj |Fiy piy; Ry [Fz; pz; Rz |

[a 1 1 [b 1 2 | ¢ 1 3 |
a 13 1 b 1 2 c 12 3
x U3 1 d 12 3
e 13 1
X 1/2 1 y 1 2 b 1/2 3
a 12 2 c 12 3

Table 2.68: Topologically ordered chart encoding of the three lattices in Figure 2.50. Each cell ij in this
table is a triple (Fij, pij, Rij)

For translation, we will find it useful to encode a lattice G in a chart based on a
topological ordering of the nodes, as described by Cheppalier et al. (1999). The chart
representation of the graph is a triple of two dimensional matrices (F, p, R), which can be
constructed from the topologically numbered graph. F; ; is the word label of the j
transition leaving node i. The corresponding transition cost is p; ;. R;; is the node
number of the node on the right side of the j* transition leaving node i. Note that R; ; > i
for all i, j. Table 2.68 shows the word lattice from Figure 2.50 represented in matrix form
as (F, p, R).

Figure 2.50: Three examples of word lattices: (a) sentence, (b) confusion network and (c) non-linear
word lattice. Nodes are numbered according to a topological ordering.

2.6.3.4.2 Decoding lattices with hierarchical models

We again describe hierarchical phrase-based analysis via inference rules in a
deductive proof system. Although there are a variety of context-free parsers that can
parse a word lattice, we present a bottom-up algorithm for parsing general word lattices
with unrestricted (i.e., non-binarized) context-free grammars, since the synchronous
grammars learned in typical modeling are not in Chomsky-normal form. The parser we
present here is a generalization of a CKY parser for lattices presented by Cheppalier et al.
(1999).

AXxioms:

[X_),y—”]:W(XK(V,a))EG,ie [0,|V] — 2]

294 Chapter 2: Machine Translation from Text

Inference rules:
[X - aeFipB, i,j]:w
[X g aFj,k . ﬁ, i,Rj,k]:W X pj,k

[X > aep,ijliw
[X d (l.‘B,i,Rj,k]:W ij,k

ik =€

[Z > aeXB,i,kl:wy [X > yekjl:w,
[Z - (XX',B, i,j]:W1 X W

Goal state:

[S—>ye,0,|V]-1]

Briefly, the three inference rules, which are shown above are as follows: (1) match a
terminal symbol and move across one edge in the lattice; (2) move across an e-edge
without advancing the dot in an incomplete rule; (3) advance the dot across a non-
terminal symbol given appropriate antecedents. The first of these applies when the next
symbol in the grammar rule is a terminal that matches the label on the jt transition out of
node i, i.e. a “scan” operation. The second is used to advance across any null transitions
in the word lattice. The third rule applies when it has been proven that a non-terminal of
type X starting at node i exists, i.e. a “completer” step.

The parser we have just described generalizes a standard sentence parser to accept
word lattices. Note that any derivation in the translation forest picks out a distinct path
through the source lattice in addition to a translation. For more information on the issues
associated with decoding, refer to the work of Dyer et al. (2008).

2.6.3.4.3 Experimental results

Both Chinese and Arabic orthography concatenate morphemes that are separated by
whitespace in English. This situation results in large vocabularies in these languages
which can lead to poor estimations of translation models. To address this, some kind of
segmentation preprocessing is necessary. However, as we have indicated, the appropriate
level of segmentation may depend on a variety of factors and vary even within a single
sentences. Furthermore, the process of generating a segmentation for Chinese is
inherently ambiguous: not even native speakers can agree on the appropriate
segmentation granularity. Word lattices represent a very compact way of encoding
segmentation alternatives and enabling their resolution to be deferred until during
decoding. In this section, we report results showing the effect of using segmentation
lattices when translating from Arabic and Chinese into English.

In our experiments we used two state-of-the-art Chinese word segmenters: one
developed at Harbin Institute of Technology (Zhao et al. 2001), and one developed at
Stanford University (Tseng et al. 2005). In addition, we used a character-based

Handbook of Natural Language Processing and Machine Translation 295

segmentation. In the remainder of this section, we use cs for character segmentation, hs
for Harbin segmentation and ss for Stanford segmentation. We built two types of lattices:
one that combines the Harbin and Stanford segmenters (hs+ss) and one which uses all
three segmentations (hs+ss+cs). The systems used in these experiments were trained on
the NIST MTO06 Eval training corpus, without the UN data. The Chinese portion of the
corpus was analyzed with the three segmentation schemes. For the systems using word
lattices, the training data contained the versions of the corpus appropriate for the
segmentation schemes used in the input. Table 2.69 summarizes the results for Chinese-
English translation using a standard hierarchical phrase-based translation model. On both
test sets, there were significant gains for using segmentation lattices over any single-best
segmentation and as more segmentations were added, the further the quality of the
translation improved. Results are reported using case-insensitive BLEU with 4 reference
translations.

(Source Type) Language | MTO5 MTO06
Cs 29.0 28.2
Hs 30.0 29.1
Ss Chinese 30.7 29.6
hs+ss 313 30.1
hs+ss+cs 31.8 304
SURFACE 52.5 39.9
MORPH Arabic 53.8 41.8
MORPH+SURFACE 54.5 42.9

Table 2.69: Chinese word segmentation and Arabic morpheme segmentation results in BLEU.

Arabic orthography, although it uses spaces to delimit many more morphemes than
Chinese, is nevertheless problematic for MT since a large class of functional elements
(prepositions, pronouns, tense markers, conjunctions, definiteness markers) are attached
to their host stems. Thus, while the training data may provide good evidence for the
translation of a particular stem by itself, the same stem may not be attested when attached
to a particular conjunction. We, therefore, conjectured that Arabic-English translation
might also benefit from deferring segmentation decisions until decoding. To test this, we
created lattices from an unsegmented version of the Arabic test data and generated
alternative arcs where clitics (mostly prepositions), as well as, the definiteness marker
(Al-) and the future tense marker (s-) were segmented into tokens.® We used the
Buckwalter morphological analyzer and disambiguated the analysis using a simple
unigram model trained on the Penn Arabic Treebank. Table 2.69 summarizes the results
for lattices versus two baseline systems and we again can see that there are advantages
for including multiple segmentation alternatives in a lattice.

% This corresponds approximately to the D3 segmentation described by Habash and
Sadat (2006).

296 Chapter 2: Machine Translation from Text

2.6.3.5 Conclusions

By introducing the decoding of source lattices, we have opened up a new avenue of
inquiry based on a key insight that is absent from most current MT research: the given
source language sentence is not the only way an author’s meaning could have been
expressed. This is true for low-level preprocessing phenomena of the kind we have
discussed so far: if you give several Chinese speakers the same written sentence, they
may disagree on the correct word segmentation even if they agree on the meaning! It is
also clear for other issues such as morphological analysis. But we would argue that one
can take this idea even further.

Consider, for convenience, an example using English as the source: The Democratic
candidates stepped up their attacks during the debate. Current syntax-based statistical
MT systems would decode based on analysis of this sentence’s structure, with particular
treatment of constituents, dependencies, morphological pre-analysis, etc. varying from
approach to approach. However, the same basic meaning could have been expressed in
many different ways.

During the debate the Democratic candidates stepped up their attacks.
The Democratic contenders ratcheted up their attacks during the debate.
The Democratic candidates attacked more aggressively during the debate.
The candidates in the Democratic debate attacked more vigorously.

Some variations are lexical (candidates versus contenders, attacks versus attacked)
and others reflect syntactic alternatives for packaging up the combination of attacking
and increasing, e.g., whether the attacking or the increasing serves as the main verb.
However, the observation underlying the work we have reported here holds at all levels:
given the available training data, some parts of the sentence’s meaning may be better
translated when expressed one way, while other parts may be better translated when
expressed another way and we want to employ the power of the entire model in order to
make those choices in a fine-grained way.

We plan, therefore, to use source-sentence lattices to further investigate the power of
encapsulating source-sentence expression alternatives, now tackling a whole range of
variations from those closer to the surface (segmentation, morphology) all the way up to
variations at the level of meaning (lexical choice, syntactic alternations, paraphrase).
Source lattices are the key to attacking these problems in a unified setting and, crucially,
exploiting generalizations about the source language while still maintaining the surface-
to-surface orientation, trainability and decoding paradigm that characterizes the statistical
state of the art.

Handbook of Natural Language Processing and Machine Translation 297

2.7 Adaptation and Data Selection

2.7.1. BiTAM: Bilingual Topic AdMixture Models for
Bilingual Topic Exploration, Word Alignment and
Translation

Authors: Bing Zhao and Eric P. Xing

2.7.1.1 Introduction

Most SMT systems view parallel data as independent sentence-pairs whether or not
they are from the same document-pair. As a result, translation models are learned only at
sentence-pair level and sentences are translated indifferently, because the document
context and structure — for translating documents — are generally ignored. In fact,
translating documents differs considerably from translating a group of unrelated
sentences. A sentence, when taken out of the context from the document, is generally
more ambiguous and less effective for translation. One should avoid destroying a
coherent document by simply translating it into a group of sentences which are unrelated
to each other and detached from the context.

Developments in statistics, genetics and machine learning have shown that the latent
semantic aspects of complex data can often be captured by a model known as the
statistical admixture (or mixed membership model of Erosheva et al. (2004)).
Statistically, an object is said to be derived from an admixture if it consists of a bag of
elements, each sampled independently or coupled in a certain way, from a mixture model.
In the context of SMT, each parallel document-pair is treated as an object. Depending on
the chosen modeling granularity, all sentence-pairs or word-pairs in a document-pair
correspond to the basic elements constituting the object and the mixture from which the
elements are sampled can correspond to a collection of translation lexicons and
monolingual word frequencies based on different topics (e.g., economics, politics, sports,
etc.). Variants of admixture models have appeared in population genetics, as published by
Pritchard et al. (2000) and text modeling, as published Blei et al. (2003) and Erosheva et
al. (2004).

Recently, we proposed a Bilingual Topic-AdMixture (BiTAM) means (Zhao and
Xing 2006) of modeling the topical aspects of SMT; this enables word-pairs from a
parallel document-pair to share one topic-specific translation lexicons, with proper
document-specific weights. BiTAMs, generalizations over IBM Model-1, are efficient to
learn and scalable for large training data. However, they do not capture locality
constraints of word alignment, i.e., words “close-in-source” are aligned to words “close-
in-target”, under document-specific topical assignments. To incorporate such constraints,
we integrate the strengths of both HMM and BiTAM and propose a Hidden Markov
Bilingual Topic-AdMixture model, or HM-BiTAM as used by Zhao and Xing (2007), for
word alignment to leverage both locality constraints and topical context underlying
parallel document-pairs. Related works of Saiz (2008), skipping the Bayesian part of the
mixtures priors, showed limited improvements on using mixtures of translation models of
IBM Model-1 IBM Model-2 and HMMs. Improvements are also reported on adapting the

298 Chapter 2: Machine Translation from Text

language models using topical mixtures defined over bilingual data (Tam et al. 2007) and
adapting translation models using mixtures with mixture-weights assigned using
empirical methods based on empirical text distance defined on data partitions. This
section focuses on Bayesian learning to mix the underlying translation models in various
hierarchical structures.

In the BiTAM framework, a topic corresponds to a point in a conditional simplex:
each source word invokes a simplex, in which each dimension corresponds to a bilingual
translation candidate. The hidden topics are leveraged in learning topic-specific bilingual
translation lexicons, to enrich the emission distributions in IBM models or HMM, and
thereby, improve their modeling expressiveness. Under this framework, bilingual
statistics are shared more effectively across different topics. Constrained by the hidden
topics, a word will have only limited translation candidates. The translation models,
therefore, are expected to be smaller and sharper.

In this work, we start from the simplest BiTAM, drawn upon IBM Model-1, to
introduce the basics. We examine HM-BITAM, integrating HMM, to estimate topic-
specific word-to-word translation lexicons (lexical mappings), as well as the monolingual
topic-specific word-frequencies for both languages, via variational learning from the
document-level context in parallel document-pairs. HM-BiTAM models offer a
principled way of inferring optimal translation from a given source language in a context-
dependent fashion. We report an extensive empirical analysis of HM-BiTAM, in
comparison with the related methods. The results show our model’s effectiveness on the
word-alignment task. We also demonstrate two application aspects: the utilization of
HM-BiTAM for bilingual topic exploration and its ap-plication for improving translation
qualities.

2.7.1.2 Notations and Terminologies

To identify the latent variables to capture the abstract notations of bilingual topics,
we start from a revisit to the parallel data to introduce the entities in our BiTAM models
including “word-pair”, “sentence-pair” and “document-pair” following the notations used
in Brown et al. (1993):

e A word-pair (fj, &) is the basic unit discrete data for machine translation, where f;
is a French word and e; is an English word. j and i are the positions in the
corresponding French sentence f and English sentence e.

e A sentence-pair (f, e) contains the source sentence f with a length of J: f =
fi,f2, fj, fy atarget sentence e with a length of I: e = e, e;,-¢j, - ¢;.
The two sentences f and e are translation of each other.

e A document-pair (F, E) contains two documents: source document: F and the
target E, which are mutual translations of each other. F has N sentences: F =
{f.In =1, ---, N}. For simplicity, let’s assume the sentence-level alignment is one-
to-one mapping. Therefore, a document-pair has a sequence of N parallel
sentence-pairs {(f,, e))jn = 1, ---, N}, where (f,, e,) is the nt" parallel sentence-
pair.

Handbook of Natural Language Processing and Machine Translation 299

e A parallel-corpus C is a collection of M parallel document-pairs, indexed by d:
{(F, E)¢ld =1, ---, M}. For notations used in the noisy channel model, we denote
the French part monolingual corpus as Cg and English part as Ce. We are using
the end-user terminology: French is the source language and English is the target
language; we are translating foreign language (e.g., French) into English.

Traditional statistical machine translation uses a noisy-channel model to describe the
translating process:

e’ = argmax g, P(fle)P(e) (2.58)

where e is a English sentence, decoded as the translation of the source sentence f; P(fle) is
the translation model, for example, the traditional IBM Model 1 ~ 5 and HMM; P(e) is a
language model, such as a trigram.

Now, the translation model can be extended to the document-level using the notations
given in the above. Instead of translating at the sentence-level, we are able to translate at
the document-level, shown in Egn. 2.59.

C; = argmax;c P(Cr|Cg)P(CE) (2.59)

where P(Cr|Cg) is a document-level translation model: a generative model for the whole
document of Cg as one entity. In this model, we are able to introduce the topics for each
document-pair to improve the model’s expressive power. Rather than being translated
into unrelated segments and then pieced together later on, as presented in traditional
approaches, the sentences in the new model can meaningfully be threaded and integrated
during translation by the topics in the documents. As a result, the translation is more
coherent since the document is treated as a whole entity.

A document-pair (F, E) is treated as an admixture of topics, which is induced by
random draws of a topic, from a pool of topics, for each sentence-pair. A unique
normalized and real-valued vector 6, referred to as a topic-weight vector, captures the
contribution of different topics and is instantiated for each document-pair, so that the
sentence-pairs with their alignments are generated from topics mixed according to these
common proportions. Marginally, a sentence-pair is word aligned according to a unique
topic-specific bilingual model given the hidden topical assignments. Therefore, the
sentence-level translations are coupled, rather than being independent as assumed in the
IBM or HMM models and their extensions.

We will introduce the proposed document-level translation models, starting from
extending IBM Model-1 to BiTAM Model-1 and then moving to HMM, with similar
derivations, to finalize HM-BiTAM.

2.7.1.3 Bilingual Topic Admixture Model-1

The first model BiTAM-1, proposed within this BiTAM framework, generalizes over
the simplest IBM Model-1 style word alignment. BiTAM-1 is a generative model: each
parallel document-pair is represented as a random mixture over a set of latent topics, in
which each topic is characterized by a distribution over aligned word pairs.

300 Chapter 2: Machine Translation from Text

2.7.1.3.1 Sampling Scheme for BiTAM Model-1

The generative process (i.e., sampling process) for a parallel document-pair (F, E) is
described as below:

1. Sample number of sentence-pairs N from a Poisson(y).

2. Sample topic assignment 4 from a Dirichlet («).

3. For each sentence-pair (f, €) in the document,
(a) Sample source sentence length J from a Poisson(9).
(b) Sample a topic z; from Multinomial(6y);
(c) Sample a word alignment link a; from a Dirichlet (¢).
(d) Sample a foreign word f; according to p(fle, aj, z, sz).

The parameters of this model are: K topic indicator variables for each parallel
document-pair: t1, tz, -+, tx ; A K-dimensional Dirichlet random variable g4, which takes
values in the (K—1)-simplex and has the following probability density on this simplex:

— 1—‘(Zlk(=1 ak) a;—1 . ag—1
p(g’ 0!) - Hlk{=1r(0‘k) 91 91((2.60)

where the parameter o is a K-dim vector with each component o > 0 and I'(x) is the
Gamma function. The alignment vector is a={a1, az, ---, a; }, with a;=i maps the French
word f; to the English word e;. To be more specific, word alignment link g; is a selector,
which selects the English word at position a; to be aligned to the French word f; at the
position j in the French sentence. The word-level topic-specific translation lexicon
probabilities are parameterized by a k X |Vi X |Vg| table: S, where |V is the size of
English vocabulary and |V is the size of French vocabulary. gy . =p(f = file =
e;,z = k) is a corpus-level parameter: topic-specific translation lexicon. In practice, this
table is very sparse: one French word f has on average a few candidate English word e
translations given the topic assignment of z; this table is usually much smaller than the
standard IBM Model-1: p(fle), which does not consider topical context at all.

The last two sub-steps in the sampling scheme define a translation model: an
alignment link a; is proposed and an observation of fj is generated according to the
proposed topic-specific distributions and the word alignment. In this BiTAM-1, the
generative scheme is simplified starting from as simple as the one in IBM Model-1: g; is
sampled independently and uniformly.

The number of sentence-pairs N is independent of the other data generating variables
0, z and a. Thus, its randomness is generally ignored in our modeling. The same
assumption applies to the variable of J from a Poisson(s) and we choose the same
uniform distribution as used in IBM models and ignore the prior for a; from a Dirichlet
(&) in this section. Also, we do not consider the modeling of E in the translation model
within the noisy-channel paradigm. The graphical model describing this generative
model of BiTAM-1 is shown in Figure 2.51.

Handbook of Natural Language Processing and Machine Translation 301

Figure 2.51: Graphical Model representations for (a) IBM Model-1 and (b) BiTAM Model-1. Model
parameter for IBM Model-1 in figure (a) is B = p(fle), which is a simple word-to-word translation lexicon;
Model parameters for BiTAM Model-1 (in (b)) are topic-specific lexicons: B = p(fle, z) and a Dirichlet prior
parameter o. All the plates represent replicates. The outmost plate (M-plate) represents M bilingual document-
pairs, while the inner N-plate represents the N repeated choice of topics for each sentence-pairs in the
document; and the inner J-plate represents J word-pairs within each sentence-pair. Shaded nodes are
observations; unshaded nodes are hidden variables. a and S are the corpus level parameters. B, for BiTAM, is
a three-dimensional matrix, representing the topic-specific translation lexicons: p(fle,z).

Note, for BITAM models within one parallel document-pair, the sentence-pairs are
connected by the hidden node 6. Therefore, the sentence-pairs are no longer independent
of one another as in the traditional IBM Models; they are conditionally independent given
the topic mixture assignment of 6,. In this model, the simplified assumption is that each
sentence-pair has a topic. Therefore, the word-pairs within a sentence-pair are not
independent as in the traditional IBM Model-1; they are conditionally independent given
the sentence-pair’s topic z.

Given the parameters of «, £ and a set of N alignment vectors A = {a;jn =1, -+, N},
the conditional distribution of a topic mixture 8, a set of N topics z and a set of N bag-of-
word observations f is given by:

p(F,A,0,2|E, a,B) = p(8la) [17-1p(2n) P(fn, anlen, fz,),

where p(zy|0) = 6; is the probability for sampling a topic z, such that z, = 1, where i is a
unique topic index. Marginalizing out 8 and z, we can obtain the marginal distribution of
generating F from E for each parallel document-pair, as shown below:

p(F,A|E, a,B) = [p(0la)([Th=1 X2, P(za|60) (£, anlen, B,,)) d6, (2.61)

where p(f,|e,, ay, B;,) is a topic-specific sentence-level translation model under the
topic assignment of z,. After marginalizing out the hidden topic assignments z, we have:

p(fulen a,,0) =3, p(2,10)p(f,]en an, Bz,), (2.62)

where p(z,|0) = 6; is topic weight for choosing topic-i and this reveals that the
proposed sentence-level alignment model is, in essence, an additive mixture of topic-
specific translation models.

According to the simplified model shown in Figure 2.51, the French words f;’s are
conditionally independent of each other, the alignment variables a;’s are independent of

302 Chapter 2: Machine Translation from Text

other variables and further more we assume all alignments are equally probable for
simplicity reason. Now the probability distribution for each sentence-pair is further
simplified:

p(fn anlen B,) ~ 1=y p(fjl €ar Bay)- (263)

The translation model for the whole parallel corpus is given by taking the product of
the marginal probabilities of each single document as shown in the following equation:

p(CFlcE; a, B) X
Mo [pOald) iy (TN Bagn P Zanl00) TUL p(fans Agn|€ans Baqy)) A6y (260

Overall, in this generative model, the model parameters are at different levels. The
parameters of a and £ are corpus-level parameters; 0y is the document-level parameter,
sampled once per document-pair; the variable g, is the sentence-level parameter,
sampled once per sentence-pair in the document-pair; the variables of fz,; and aq.; are
word-pair level variables, sampled for each word-pair in the sentence-pair.

2.7.1.3.2 Inference and Learning for BiTAM Model-1

For inference and learning, the posterior distribution of the hidden variables given a
document-pair is:
_ p(FA#0,z|Ea,p)

p(A 0,z|F.E a,B) = T oFE) (2.65)

ONONOP

Figure 2.52: Graphical Model representation of the variational distribution to approximate the posteriors in
Bilingual AdMixture Model-1.

N

M

Due to the hybrid nature of the “V” structure (explain-away structure) in the
graphical model in Figure 2.51, the hidden variables of A, # and z are all coupled
together. This makes the joint posterior distribution intractable to compute. We resort to
the generalized mean field approximation as used by Xing et al. (2003) and carry out the
variational inference. The variational inference is essentially to use Jensen’s inequality to
obtain an adjustable lower bound on the log-likelihood, which is easier to optimize.

Handbook of Natural Language Processing and Machine Translation 303

Shown in Figure 2.52, a simple way to obtain a tractable family of lower bounds is to
break the graphical model into smaller isolated pieces and decouple the estimation of the
posteriors with additional free variational parameters introduced. The family is indexed
by the following variational distributions. For a given document-pair, the approximated
posterior inference is shown below.

Q(e: z,a) = q(@ly) HrAll:l q(zn|Pn) H£n=1 q(anj Mnj) (2.66)

where the Dirichlet parameter y and the multinomial parameters (¢s,---, ¢n) and the
conditional multinomial parameters (Any, -, Ann) are the free parameters. These
parameters are document specific.

The estimation of the parameters is variational EM. In the E-step, for each document-
pair, find the optimal values for the variational parameters; in the M-step, maximize the
resulting lower bound on the log-likelihood with respect to the model parameters of a
and g.

For machine translation, the inference algorithm we want should be fast and efficient.
We use variational EM with deterministic annealing (Smith and Eisner 2004) to
overcome the local optimum.

According to the assumption of exchangeability for document-pairs, the overall log
likelihood of a parallel corpus is the sum of the log likelihood of each individual
document-pair; moreover, the overall variational lower bound is the sum of each
individual variational bounds. The updating equations for the variational parameters are
straightforward to compute via a fix-point algorithm, as listed as below:

Yk = Qg + ZZL Dank (2.67)
Bank < exp(P (i) — P25 vir]) exp (Z;d" ngn ®anji log .Bk,ei,fj) (2.68)

Adnji < exp (le‘f:l Pani log ,Bk,ei,fj) (2.69)

To update the topic-specific lexicons Sy, we have:

Biees o S Tty T10 S0 b S(f, [)8(e, €) Adgnji (2.70)

The true prior of the observed document-pair is unknown, but it can be learned
iteratively. To learn the parameter of Dirichlet prior o, one can use gradient ascent
approach (Sj6lander et al. 1996). At each iteration, ax > 0 is updated using the sufficient
statistics of yx collected from the whole corpus.

2.7.1.4 Hm-BiTAM: Hidden Markov Bilingual Topic AdMixture Model

In this section, we generalize over HMM, a key component for most of the state-of-
the-art SMT systems, within BiTAM framework, using similar derivations as described
in the previous section for BITAM Model-1, to formulate Hidden Markov Bilingual
Topic AdMixture (HM-BiTAM) models.

304 Chapter 2: Machine Translation from Text

2.7.1.4.1 Hidden Markov Model for Sentence-Pairs

Within a sentence-pair, Vogel et al. (1996) implement the “proximity-bias”
assumption, that words “close-in-source” are aligned to words “close-in-target”, which is
effective for improving word alignment accuracies, especially for linguistically close
language-pairs.

A graphical model representation for such an HMM is illustrated in Figure 2.53(a).
Specifically, we introduce the mapping j— a;, which assigns a French word f; in position j
to an English word e; in position i = a; denoted as e,;. Each (ordered) French word f; is an
observation and it is generated by an HMM state defined as [eq;, aj], where the alignment
indicator a; for position j is considered to have a dependency on the previous alignment
aj1. Thus, a first-order HMM for an alignment between e =ey; and f=f1; is defined as:

]
P(f1:])|e1:1) = z np(fj)

ay:j j=1
where p(ajja;;1) is the state transition probability; J and | are sentence lengths of the
French and English sentences, respectively. The transition model enforces the proximity
bias.

eaj) P(f1:j)|e1:1)

Figure 2.53: The graphical model representations of (a) HMM and (b) HM-BiTAM, for parallel corpora.
Circles represent random variables, hexagons denote parameters and observed variables are shaded.

Much of HMM’s success relies on the transition probability of
T, = p(a; = i|aj—; = i")which considers only the positions of the source and target

tokens. The emission probability p (fj|ea].), however, totally ignores the lexical context

either from sentence-pairs, or document-pairs. Overall, HMM is less sensitive in training
toward a better lexicon due to the ignorance to the adjacent lexical context. Systems rely
on higher-order IBM models to refine the lexical choices.

In HM-BITAM, we not only incorporate the transition probability of HMM, but also
introduce an emission probability which is sensitive to the lexical context:B, = p(fle, k),

Handbook of Natural Language Processing and Machine Translation 305

as shown in the graphical model representation in Figure 2.53(b). The lexical context is
abstracted in the choice of a topical mixture k, which is inferred via variation learning
with a Dirichlet prior. Each observation f is generated by a vector and each weighted
dimension is defined by a tuple: (e, k), inferred from the context as in BiITAM-1. Given a
document-pair (F, E) containing N one-to-one sentence-level aligned pairs (e, f.), HM-
BiTAM implements the following generative scheme.

2.7.1.4.2 A Generative Scheme for HM-BiTAM

Similar to BiTAM-1, with a conjugate prior Dirichlet(«), the topic-weight vector
(TWV), 6, for each document-pair (F., En), is sampled independently from each other.
Let the non-underscripted & denote the TWV of a typical document-pair (F, E), a
collection of topic-specific translation lexicons be B = {Bi}, where B;;, =P (f =
file = e;; z = k) is the conditional probability of translating e into f under a given topic
indexed by z; the topic-specific monolingual model f={fx}, which can be the usual LDA-
style monolingual unigrams. The sentence-pairs {f,, e,} are drawn independently from a
mixture of topics. Specifically (as illustrated also in Figure 2.53(b)):

1. 6 ~ Dirichlet(a)
2. For each sentence-pair (fp, €n),
(@) z, ~Multinomial(d) sample the topic
(b) en1., 120 ~ P(enlzy; B) sample all English words from a monolingual
topic model (e.g., a monogram model),
(c) Foreach positionj, =1,..., J,inf,
i. a, ~ P(aj|a;,—1;T) sample an alignment link a;_ from a first-order
Markov process,
i f; ~ P(fjn|en, aj) Zn; B) sample a foreign word f; according to a
topic specific translation lexicon.

From the sampling scheme above, a sentence-pair consists of a mixture of latent
bilingual topics; words within the sentence-pair shares the same set of topics; each topic
(a point in a conditional simplex) is associated with a distribution over bilingual word-
pairs. Overall in HM-BiTAM, a word f is generated by two hidden factors: a latent topic z
drawn from a document-specific distribution over K topics and the English word e
identified by the hidden alignment variable a, as summarized in P(f; |en, a;,,zn; B).
Both hidden factors will be inferred in a mean-field approximation setup as detailed
in the following section.

2.7.1.5 Learning and Inference for HM-BiTAM

The graphical model in Figure 2.53(b) and the sampling scheme in Section 2.7.1.4
describe the conditional dependencies among the variables. For models like HM-BIiTAM,
one has to resort to approximate methods to exploit conditional independence

306 Chapter 2: Machine Translation from Text

relationship for estimating posteriors, which are closely related to mean-field methods in
statistical physics. A generalized mean-field approximation scheme is presented here for
infering latent variables in HM-BiTAM and a variational EM algorithm for estimating the
model parameters. All the algorithms could be easily extended to various HM-BiTAMSs
where a topic is sampled at a deeper level for each word-pair, or a higher level at
document-pair. Please refer to the work of Zhao (2007) for detailed derivations.

2.7.1.5.1 Variational Inference

The complete likelihood of a document-pair (F, E) under HM-BiTAM can be
expressed as follows:

P(F.E0,Z dla,B,T,B) = p(8]|a)P(Z|0)P(alT)P(F|d,Z E,B)P(E|Z f), (271

where P(d|T) = [1V-, Hf’;l P(a; |a; _1;T) represents the probability of a sequence of
alignment jumps; P(F|d,Z E,B) = [IY_, H§11P(ﬁn|ajn,en,zn,B) is the document-
level translation probability; and P(E|z, B) is the topic-conditional likelihood of the
English document based on a topic-dependent monogram model as used in LDA.

To approximate the posterior p(a, 8, Z|F,E) we employ a generalized mean field
approach and adopt the following factored approximation to the true posterior:
q(6,7,d) = qO1P)qZ$)q(dld), where q(017), q(Zl¢) and q(d|1) are
reparameterized Dirichlet, multinomial and HMM, respectively, determined by some
variational parameters that correspond to the expected sufficient statistics of the
dependent variables of each factor as shown by Xing et al. (2003).

As well known in the variational inference literature, solutions to the above
variational parameters can be obtained by minimizing the Kullback-Leibler divergence
between q(6,Z,a) and p(6, Z, a|F, E), or equivalently, by optimizing the lower bound of
the expected (over q(-)) log likelihood defined by Equation 2.68, via a fixed-point
iteration. Due to space limit, we forego a detailed derivation and directly give the fixed-
point equations below:

Pk =g + X1 Ok, @2.72)

P < exp ((W(Yk) -P[ZK, Yk.]) X exp (2?;1 E;’Ll An,jilog ﬁk.ein) x

anTL
exp (Zf,izl Yrevp 2eevy 1 (fj,, f)1(ej €)My log Bf,e,k)a (2.13)

o) In In
Anji € exp(Xir_; Ay joq 7 10gT; i) X exp(Tiy Ay jar, l0g Ty i) X
exp(ZfEVF ZeEVE 1 (f}n ’ f)l(einJ e) legzl ¢n,k IOg Bf,e,k) X

exp (Zlk(=1 ¢n,k lOg Bk,ein) (2-74)

Handbook of Natural Language Processing and Machine Translation 307

where 1(-,") denotes an indicator function and ¥(:)represents the digamma function.

The vector ¢, = (J)n,l, ...,(f)n‘K) given by Equation 2.74 represents the approximate
posterior of the topic weights for each sentence-pair (f,, e,). The topical information for
updating ¢, is collected from three aspects: aligned word-pairs weighted by the
corresponding topic-specific translation lexicon probabilities, topical distributions of
monolingual English language model and the smoothing factors from the topic prior.

Equation 2.75 gives the approximate posterior probability for alignment between the
Jj-th word in f, and the i-th word in e,. Intuitively, the first two terms represent the
messages corresponding to the forward and backward passes in HMM; the third term
represents the emission probabilities and it can be viewed as a geometric interpolation of
the strengths of individual topic-specific lexicons; and the last term provides further
smoothing from monolingual topic-specific aspects.

Inference of optimum word-alignment One of the translation model’s goals is to infer
the optimum word alignment: a” = argmax, P(a|F, E). The variational inference scheme
described above leads to an approximate alignment posterior q(d, Z), which is in fact a
reparameterized HMM. Thus, extracting the optimum alignment amounts to applying an

Viterbi algorithm on ¢(d, A).

2.7.1.5.2 Variational EM for parameter estimation

To estimate the HM-BiTAM parameters, which include the Dirichlet hyperparameter

a, the transition matrix T, the topic-specific monolingual English monogram {ﬁ and the
topic-specific translation lexicon {B«}, we employ an variational EM algorithm which
iterates between computing variational distribution of the hidden variables (the E-step) as
described in the previous subsection and optimizing the parameters with respect to the
variational likelihood (the M-step). Here are the update equations for the M-step:

Ti",i' o YN Z;’Ll Anji A j-1,i" 2.75)
J I

Bf ek % Ymeq DI Y= 1(fjn» f) 1(ei,») Anji Pric (2.76)
N In In

.[))k,e X Zn=1 Zi=1 Zj=1 1ei,e An,j,iqbn,k- (2'77)

For updating Dirichlet hyperparameter o, which is a corpus-level parameter, we
resort to gradient accent as used by Sjélander et al. (1996). The overall computation
complexity of the model is linear to the number of topics.

2.7.1.5.3 Exploring Bilingual Topics using HM-BiTAM

HM-BiTAM can be used as a bilingual topic explorer in the LDA-style and beyond.
Given paired documents, it can extract each topic in both languages in a consistent
fashion, which is not guaranteed otherwise when topics are extracted independently from
each language using two separate LDAsS.

308 Chapter 2: Machine Translation from Text

The topics of English and the foreign language will share similar semantic meanings
because of the parallel nature of the training data for machine translation. Shown in
Figure 2.53(b), both the English and foreign topics are sampled from the same
distribution 8, which is a document-specific, topic-weight vector.

Although there is an inherent asymmetry in the bilingual topic representation in HM-
BiTAM (that the mono-lingual topic representations 4 are only defined on English and
the foreign topic representations are implicit via the topical translation models), it is not
difficult to retrieve the monolingual topic representations of the foreign language via a
marginalization over hidden word alignment. For example, the frequency (i.e.,
monogram) of foreign word £, under topic 4 can be computed by

P(fwlk) ~ Zw P(fwlew, Bi) P(ew|Bi) (2.78)

As a result, HM-BIiTAM can actually be used as a bilingual topic explorer in the
LDA-style and beyond. Given paired documents, it can extract the representations of
each topic in both languages in a consistent fashion (which is not guaranteed if topics are
extracted separately from each language using, e.g., LDA), as well as the lexical
mappings under each topics, based on a maximal likelihood or Bayesian principle. In
Section 2.7.1.5, we demonstrate outcomes of this application.

2.7.1.6 Experiments

We investigate three main aspects of the HM-BiTAM model: word alignment,
bilingual topic exploration and machine translation. The Chinese-to-English data was
used for experiments. We implemented BiTAMs based on the implementations of IBM
Models and HMM in GIZA++ (Och and Ney 2004), which includes refinements such as
special a treatment of the jJump to a NULL word.

. # tokens

Train #Doc. #Sent. English | Chinese

TreeBank 316 4172 133,598 105,331
Sinorama04 6367 282176 | 10,321,061 | 10,027,095
Sinorama02 2373 103252 3,810,664 3,146,014
Chnews.2005 1001 10317 326,347 270,274
FBIS.BENJING 6111 99396 4,199.030 3,527,786
XinHua.NewsStory 17260 98444 3,807,884 3,915,267

| Parallel translation 33,428 597,757 22,598,584 20,991,767 |

Table 2.70: Training data statistics

Our training data is a collection of parallel document-pairs, with document
boundaries explicitly given. As shown in Table 2.70, the corpora used are mainly general
newswire, covering various topics, such as economics, politics, educations and sports.
For word alignment evaluation, our test set consists of 95 document-pairs, with 627
manually-aligned sentence-pairs and 14,769 alignment links in total, from NIST
MTEval’01 dry-run data. Word segmentations and tokenizations were also fixed
manually for optimal word-alignment decisions. This test set contains relatively long

Handbook of Natural Language Processing and Machine Translation 309

sentence-pairs, with an average sentence length of 40.67 tokens. The long sentences
introduce more ambiguities for alignment tasks.

For testing translation quality, NIST MTEval’02 MT evaluation data is used as
development data and ten documents from NIST MTEval’04 MT evaluation are used as
the unseen test data. BLEU scores are reported to evaluate translation quality with HM-
BiTAM models. More experimental setups for several BiTAM conditions are
documented by Zhao (2007).

2.7.1.6.1 Empirical Validation

Word Alignment Accuracy We trained HM-BIATM using parallel corpora of sizes
ranging from 6M to 22.6M words and we used the F-measure, the harmonic mean of
precision and recall, to evaluate word alignment accuracy. The baseline IBM models
were trained using an 1%h°4® scheme.® Refined alignments are obtained from both
directions of baseline models in the same way as described by Och and Ney (2004).

o

2(2) OHMM
.] OBITAM

o4 T l7 ____ B IBM-4

s0 | — B HM-BITAM

6M 11M 22.6M
Figure 2.54: Alignment accuracy (F-measure) of different models trained on corpora of different sizes.

Figure 2.54 shows the alignment accuracies of HM-BiTAM, in comparison with that
of the baseline-HMM, the baseline BiTAM and the IBM Model-4. Overall, HM-BIiTAM
gives significantly better F-measures over HMM, with absolute margins of 7.56%, 5.72%
and 6.91% on training sizes of 6M, 11M and 22.6M words, respectively. In HM-BiTAM,
two key factors contribute to narrowing down the word-alignment decisions: the position
and the lexical mapping. The position part is the same as the baseline HMM,
implementing the *“proximity-bias”. Whereas the emission lexical probability is different,
each state is a mixture of topic-specific translation lexicons, of which the weights are
inferred using document contexts. The topic-specific translation lexicons are sharper and
smaller than the global one used in HMM. Thus, the improvements of HM-BiTAM over
HMM essentially resulted from the topic-admixture lexicons adjusted to a particular
document-pair. Not surprisingly, HM-BiTAM also outperforms the baseline BiTAM
significantly, because BiTAM captures only the topical aspects and ignores the proximity
bias.

Notably, HM-BiTAM outperforms IBM Model-4 by a margin of 3.43%, 3.64% and
2.73%, respectively. IBM Model-4 already integrates the fertility and distortion

% Eight iterations for IBM Model-1, five iterations for HMM and three iterations for IBM Model-4 with
deficient EM.

310 Chapter 2: Machine Translation from Text

submodels on top of a HMM, which already narrows down the word-alignment choices.
However, IBM Model-4 does not have a scheme to adjust its lexicon probabilities
specific to document topical-context as in HM-BiTAM. HM-BiTAM wins over IBM-4
by leveraging topic models that capture the document context.

Likelihood on Training and Unseen Documents:

Figure 2.55 shows comparisons of the likelihoods of document-pairs in the training
set under HM-BiTAM with those under IBM Model-4 or HMM. Each point in the figure
represents one document-pair; the y-coordinate corresponds to the negative log-likelihood
under HM-BIiTAM and the x-coordinate gives the counterparts under IBM Model-4 or
HMM. Overall the likelihoods under HM-BiTAM are significantly better than those
under HMM and IBM Model-4, revealing the better modeling power of HM-BiTAM.

Negative log-likehood: HM-BITAM (y-axis) vs IBM Model-4 (x-axds) & HMM (x-axis)

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
IBM Modek-4 (with deficient EM)

5000
4000
3000
2000

1000

HM-BITAM: -leg(likelihood) per doc

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
HMM (with forward-backward EM)

Figure 2.55: Comparison of likelihoods of data under different models. Top: HM-BiTAM
vs. IBM Model-4; bottom: HM-BiTAM vs. HMM.

We applied HM-BIiTAM to ten document-pairs selected from MTO04, which were not
included in the training. These unseen document-pairs contain long sentences and diverse
topics. As shown in Table 2.71, the likelihoods of HM-BiTAM on these unseen data
dominates significantly over HMM, BiTAM and IBM Models in every case, confirming
that HM-BIiTAM indeed offers a better fit and generalizability for the bilingual
document-pairs.

Handbook of Natural Language Processing and Machine Translation 311

. . HM-
Publisher Genre IBM-1 HMM IBM-4 BiTAM BITAM
AgenceFrance(AFP) news -3752.94 | -3388.72 | -3448.28 | -3602.28 -3188.90
AgenceFrance(AFP) news -3341.69 | -2899.93 | -3005.80 | -3139.95 -2595.72
AgenceFrance(AFP) news -2527.32 | -2124.75 | -2161.31 | -2323.11 -2063.69
ForeignMinistryPRC | speech | -2313.28 | -1913.29 | -1963.24 | -2144.12 -1669.22

HongKongNews speech | -2198.13 | -1822.25 | -1890.81 -2035 -1423.84
People’s Daily editorial | -2485.08 | -2094.90 | -2184.23 -2377.1 -1867.13
United Nation speech | -2134.34 | -1755.11 | -1821.29 | -1949.39 -1431.16
XinHua News news -2425.09 | -2030.57 | -2114.39 | -2192.9 -1991.31
XinHua News news -2684.85 | -2326.39 | -2352.62 | -2527.78 -2317.47
ZaoBao News editorial | -2376.12 | -2047.55 | -2116.42 | -2235.79 -1943.25

Avg. Perplexity 123.83 60.54 68.41 107.57 43.71

Table 2.71: Likelihoods of unseen documents under HM-BiTAMs, in comparison with competing models.

2.7.1.6.2 Application 1: Bilingual Topic Extraction

Monolingual topics: HM-BIiTAM facilitates inference of the latent LDA-style
representations of topics made by Blei et al. (2003), in both English and the foreign
language (i.e., Chinese), from a given bilingual corpora. The English topics (represented
by the topic-specific word frequencies) can be directly read-off from the HM-BIiTAM
parameters . As discussed in Section 2.7.1.3, even though the topic-specific distributions
of words for the Chinese corpora are not directly encoded in the HM-BiTAM, we can
marginalize over all possible alignments of the parallel data to synthesize them based on
the monolingual English topics and the topic-specific lexical mapping from English to
Chinese.

Table 2.72 shows five topics, in both English and Chinese, learned via HM-BIiTAM.
The top-ranked frequent words in each topic exhibit coherent semantic meanings; and
there are also consistencies between the word semantics under the same topic indexes
across languages. Under HM-BiTAM, the two respective monolingual word distributions
for the same topic are statistically coupled due to sharing of the same topic for each
sentence-pair in the two languages. Whereas, if one merely apply LDA to the corpora in
each language separately, such coupling can not be exploited. This coupling enforces
consistency between the topics across languages. However, like general clustering
algorithms, topics in HM-BiTAM, are not necessarily to present obvious semantic labels.

For instance, Topic-"sports” is about the sports-meetings for handicapped people and
Topic-"energy” is about the resources needs for the quick economic development in
China. Secondly, the semantic labels are highly parallel between English and Chinese:
the exact parallel nature on topic assignment captured by our HM-BITAM.

Topic-Specific Lexicon Mapping: Word-to-word translation lexicons (lexical
mappings) between languages are invaluable resource for multilingual natural language
processing. IBM Models, however, do not exhibit enough power to disambiguate the
translation candidates, because they solely rely on the cooccurrence counts from the
training data. Once the topic/subject is changed, IBM models can not adjust accordingly
for choices for word translations. Contrary to IBM models, our proposed BiTAM models

312 Chapter 2: Machine Translation from Text

present a very natural way to handle switching topics and subjects via topic mixtures.

“sports” “housing” “takeover”
English Chinese English Chinese English Chinese
teams A(people) house {1: 5 (house) Chongging [% (countrie