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1 Introduction

One of the most exciting promises of research in artificial intelligence is com-
puters that can understand natural human language. The main obstacle to ful-
filling this promise has been the difficulty of modeling linguistic phenomena in
sufficient detail. Natural language follows few hard and fast rules. Therefore, a
good model must account for tendencies and likelihoods. Although people use
language all the time, they cannot accurately assign probability distributions
over linguistic data by introspection.

Fortunately, the amount of computing power available for research has been
steadily doubling since the 1980s and there has been a dramatic increase in the
amount of linguistic data available online. These resources have made possible
a new approach to the language modeling problem—the empirical approach.
If people cannot specify statistical language models by introspection, perhaps
computers can induce the models from data.

One kind of raw material that has become much more plentiful since the
birth of the Web is parallel texts in multiple languages (Resnik, 1999). A text
and its translation constitute a bitext. Bitexts are one of the richest sources of
linguistic knowledge because the translation of a text into another language
can be viewed as a detailed annotation of what that text means. One might
think that if that other language is also a natural language, then a computer is
no further ahead, because it cannot understand the annotation any more than
it can understand the original text. However, just the knowledge that the two
data streams are semantically equivalent leads to a kind of understanding that
enables computers to perform an important class of “intelligent” functions.

In particular, many functions that involve two or more languages can now
be automated to some degree. Easier tasks, such as finding corresponding
regions of parallel texts, can now be fully automated. On the other extreme
of the difficulty continuum, the Web has spawned a number of online services
that perform fully automatic translation from one language to another, with
varying degrees of success. The Web has also created a demand for new kinds
of multilingual functions, such as cross-language information retrieval, that
computers are far better suited to perform than people. All these functions
require knowledge of semantic equivalence across languages.

Formally, semantic equivalence between different languages or parts thereof
is a mathematical relation called translational equivalence. The relation holds
between expressions with the same meaning. The expressions can be as small
as individual morphemes or as large as entire texts and speeches. To achieve
the kind of limited understanding described above, it is first necessary to break
down translational equivalence between texts into equivalence between smaller
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text units. The present work is about automatic discovery and exploitation of
translational equivalence between words.

Translational equivalence can range over token pairs or type pairs. Tokens
are instances of linguistic units in particular positions in particular texts. Types
are abstract sets of tokens with identical appearance. For example, the first
word in this sentence is a For token. That token and all other For tokens in this
book and in other English texts constitute the word type For. With any kind of
data, a computer must know something about the properties of types to infer
properties of tokens, and vice versa. Using knowledge about types to find their
tokens is usually called pattern recognition. Using information about tokens to
induce models of their types is called learning. This book is organized around
the type-token symbiosis.

Part I of the book deals with pattern recognition—using knowledge about
types to infer knowledge about tokens. Even a very rough approximation of
translational equivalence among word types is sufficient to recognize transla-
tionally equivalent tokens. Chapter 2 shows how to find corresponding word
tokens in bitext automatically using, e.g., only the cognate heuristic and/or a
few hundred entries automatically extracted from an on-line bilingual dictio-
nary. Chapter 3 shows how correspondence among word tokens can be quickly
and accurately extended to correspondence among longer bitext segments such
as sentences. Chapter 4 shows how the techniques developed in chapter 2 can
be applied to build a translators’ tool for automatically detecting omissions in
translations. Omission detection is typical of the kind of problem whose solu-
tion was previously thought to require full understanding of two languages, but
that now can be approached with bitext-driven empirical methods.

Part II of the book deals with issues at the type-token interface. Chapter 5
describes how a model of co-occurrence can abstract a translational equiva-
lence relation at the token level to a translational equivalence relation at the
type level. Almost all published methods of learning translational equivalence
among word types, including the methods in this book, start by considering
what pairs of word tokens co-occur in corresponding regions of the training bi-
text. Counting co-occurrences correctly is crucial, but the most commonly used
counting method turns out to be suboptimal for most applications. Chapter 5
exposes the problem and offers some solutions. It also shows how to count co-
occurrences in arbitrary bitexts, not just in the restricted class of bitexts most
often addressed in the literature to date.

The other chapter in part II describes a project undertaken to manually
annotate translational equivalence at the token level in a significant subset of a
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large bitext. I use these annotations in subsequent chapters as a gold standard
for evaluating various models of translational equivalence among word types.
The annotation style guide appears as appendix A. The annotations themselves
are freely downloadable for research purposes.

Part III of the book is about models of translational equivalence among
word types (or translation models,1 for short). Chapter 7 describes how to
exploit two properties of bitext to improve translation model accuracy. The
chapter also shows how a statistical model can incorporate various kinds of
pre-existing knowledge that might be available about particular language pairs.
Even the simplest kinds of language-specific knowledge, such as the distinc-
tion between content words and function words, are shown to reliably boost
translation model accuracy. Chapter 8 tackles another long-standing problem:
how to estimate translational equivalence, given that many word sequences are
translated non-compositionally. The solution lies in an information-theoretic
method for automatically discovering these non-compositional compounds and
then treating them as atomic words within the methods of chapter 7. Chapter 9
develops a new method for unsupervised word-sense discrimination, in order
to enable word-to-word translation models to account for polysemy.

The main innovations in this book have been rigorously evaluated and shown
to advance the state of the art on the relevant criteria. Significant quantitative
improvements in engineering methods often translate into qualitative improve-
ments. Occasionally, a quantitative improvement will make a new application
feasible by tipping the cost-efficiency balance, whether financial cost or com-
putational cost. I hope that each reader will envision at least one new applica-
tion of the ideas in this book, in addition to the ones I have proposed here.

Throughout the book, CALLIGRAPHIC letters denote text corpora and
other sets of sets; capital letters denote collections, including sequences and
bags; italics denote scalar variables; and the Helvetica font denotes literals.
I also distinguish between types and tokens by using bold face for the former
and plain font for the latter.





I TRANSLATIONAL EQUIVALENCE AMONG WORD
TOKENS





2 A Geometric Approach to Mapping Bitext Correspondence

The first step in most empirical work in multilingual natural language processing (NLP)
is to find sets of corresponding word tokens in the two halves of a bitext (bitext maps).
Bitext mapping can be viewed as a form of pattern recognition. As in other kinds of
pattern recognition, success hinges on three tasks: signal generation, noise filtering,
and search. Given effective signal generators and noise filters, it is possible to map
bitext correspondence with high accuracy using a greedy algorithm that runs in linear
space and time. This chapter presents the Smooth Injective Map Recognizer (SIMR), a
generic pattern recognition algorithm that is particularly well-suited to mapping bitext
correspondence.

2.1 Introduction

Existing translations contain more solutions to more translation problems than any other
existing resource (Isabelle, 1992).

Although the above statement concerned translation problems faced by human
translators, recent research (Brown et al., 1993b; Melamed, 1996a; Al-Onaizan
et al., 1999) suggests that it also applies to problems in machine translation.
Texts that are available in two languages (bitexts) (Harris, 1988) also play
a pivotal role in various less automated applications. For example, bilingual
lexicographers can use bitexts to discover new cross-language lexicalization
patterns (Catizone et al., 1989; Gale & Church, 1991b); students of foreign
languages can use one half of a bitext to practice their reading skills, referring
to the other half for translation when they get stuck (Nerbonne et al., 1997).
Bitexts are of little use, however, without an automatic method for matching
corresponding text units in their two halves.

The bitext-mapping problem can be formulated in terms of pattern recog-
nition. From this point of view, the success of a bitext-mapping algorithm
hinges on three tasks: signal generation, noise filtering, and search. This chap-
ter presents the Smooth Injective Map Recognizer (SIMR), a generic pattern-
recognition algorithm that is particularly well-suited to mapping bitext cor-
respondence. SIMR demonstrates that, given effective signal generators and
noise filters, it is possible to map bitext correspondence with high accuracy in
linear space and time. If necessary, SIMR can be used with the Geometric Seg-
ment Alignment (GSA) algorithm described in chapter 3, which uses segment
boundary information to reduce general bitext maps to segment alignments.
Evaluation on pre-existing gold standards has shown that SIMR’s bitext maps
and GSA’s alignments are more accurate than those of comparable algorithms
in the literature.
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Figure 2.1
A bitext space.

The chapter begins with a geometric interpretation of the bitext-mapping
problem and a discussion of previous work. SIMR is detailed in section 2.4
and evaluated in section 2.6.

2.2 Bitext Geometry

Each bitext defines a rectangular bitext space, as illustrated in figure 2.1. The
lower left corner of the rectangle is the origin of the bitext space and represents
the two texts’ beginnings. The upper right corner is the terminus and represents
the texts’ ends. The line between the origin and the terminus is the main
diagonal. The slope of the main diagonal is the bitext slope.

Each bitext space is spanned by a pair of axes. The lengths of the axes are
the lengths of the two component texts. The axes of a bitext space are measured
in characters, because text lengths measured in characters correlate better than
text lengths measured in tokens (Gale & Church, 1991a). This correlation is
important for geometric bitext-mapping heuristics, such as those described
in section 2.4.4. Although the axes are measured in characters, I will argue
that word tokens are the optimum level of analysis for bitext mapping. By
convention, each token is assigned the position of its median character.

Each bitext space contains a number of true points of correspondence
(TPCs), other than the origin and the terminus. TPCs exist both at the co-
ordinates of matching text units and at the coordinates of matching text unit
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boundaries. If a token at position p on the x-axis and a token at position q

on the y-axis are translations of each other, then the coordinate (p, q) in the
bitext space is a TPC.1 If a sentence on the x-axis ends at character r and
the corresponding sentence on the y-axis ends at character s, then the coordi-
nate (r + .5, s + .5) is a TPC. The .5 is added because it is the inter-sentence
boundaries that correspond, rather than the final characters of the sentences.
Similarly, TPCs arise from corresponding boundaries between paragraphs,
chapters, list items, etc. Groups of TPCs with a roughly linear arrangement
in the bitext space are called chains.

Bitext maps are injective (1-to-1) partial functions in bitext spaces. A com-
plete set of TPCs for a particular bitext is the true bitext map (TBM). The
purpose of a bitext mapping algorithm is to produce bitext maps that are the
best possible approximations of each bitext’s TBM.

2.3 Previous Work

Early bitext mapping algorithms focused on finding corresponding sentences
(Debili & Sammouda, 1992; Kay & Röscheisen, 1993). Although sentence
maps are too coarse for some bitext applications (e.g., the one in chapter 4
and the one described by Macklovitch [1995]), sentences were a relatively easy
starting point, because their order rarely changes during translation. Therefore,
most sentence-mapping algorithms ignore the possibility of crossing corre-
spondences and aim to produce only an alignment. Given parallel texts U and
V , an alignment is a segmentation of U and V into n segments each, so that
for each i, 1 ≤ i ≤ n, ui and vi are mutual translations. An aligned segment
pair ai is an ordered pair (ui, vi). Thus, an alignment A can also be defined as
a sequence of aligned segments: A≡ 〈a1, . . . , an〉. In 1991, two teams of re-
searchers independently discovered that sentences from bitexts involving clean
translations can be aligned with high accuracy just by matching sentence se-
quences with similar lengths (Brown et al., 1991a; Gale & Church, 1991a).
Both teams approached the alignment problem via maximum likelihood esti-
mation, but used different models.

Brown et al. (1991a) formulated the problem as a hidden Markov model
(HMM), based on a two-stage generative process. Stage one generated some
number of aligned segment pairs; stage two decided how many segments
from each half of the bitext to put in each aligned segment pair. Brown et
al. (1991a) took advantage of various lexical “anchors” in the bitext that they
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were experimenting with. These anchors were also generated by the HMM,
according to their respective probability functions. All the hidden variables
were estimated using the EM algorithm (Dempster et al., 1977).

Gale & Church (1991a) began with a less structured model and proceeded
to estimate its parameters through a series of approximations. Given the set A

of all possible alignments, the maximum likelihood alignment is

Amax = arg max
A∈A

Pr(A|U , V ). (2.1)

Gale & Church first assumed that the probability of any aligned segment pair
is independent of any other segment pair:

Amax = arg max
A∈A

|A|∏

i=1

Pr(ai|ui, vi). (2.2)

Next, they assumed that the only feature of ui and vi that influences the proba-
bility of their alignment is a function d(ui, vi) of the difference in their lengths,
in characters:

Amax = arg max
A∈A

|A|∏

i=1

Pr(ai|d(ui, vi)). (2.3)

By Bayes’ rule, we find that

Amax = arg max
A∈A

|A|∏

i=1

Pr(d(ui, vi)|ai) Pr(ai)

Pr(d(ui, vi))
. (2.4)

Ignoring the normalizing constant Pr(d(ui, vi)) and taking the logarithm, Gale
& Church arrived at

Amax = arg max
A∈A

|A|∑

i=1

log Pr(d(ui, vi)|ai) Pr(ai). (2.5)

Gale & Church empirically estimated the distributions Pr(d(ui, vi)|ai) and
Pr(ai) from a hand-aligned training bitext and then used dynamic program-
ming to solve equation (2.5).

The length-based alignment algorithms work remarkably well on language
pairs like French/English and German/English, considering how little informa-
tion they use. However, length correlations are not as high when either of the
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Table 2.1
Alignment algorithms that don’t look at the words can fumble in bitext regions like this vote record.
Source: Chen (1993)

English French

...
...

Mr. McInnis? M. McInnis?
Yes. Oui.
Mr. Saunders? M. Saunders?
No. Non.
Mr. Cossitt? M. Cossitt?
Yes. Oui.
...

...

languages involved does not use a phonetically based alphabet (e.g., Chinese).
Even in language pairs where the length correlation is high, length-based al-
gorithms can fumble in bitext regions that contain many segments of similar
length, like the vote record in table 2.1. The only way to ensure a correct align-
ment in such cases is to look at the words. For this reason, Chen (1993) added
a statistical translation model to the Brown et al. alignment algorithm, and Wu
(1994) added a translation lexicon to the Gale & Church alignment algorithm.

A translation lexicon T can be represented as a sequence of t entries, where
each entry is a pair of words: T ≡ 〈(x1, y1), . . . , (xt , yt)〉. Roughly speaking,
Wu (1994) extended the method of Gale & Church (1991a) by a matching
function m(u, v, j) that was equal to one whenever xj ∈ u and yj ∈ v for
lexicon entry (xj , yj), and zero otherwise. The information in the matching
function was then used along with the information in d(ui, vi) to condition the
probability of alignments in equation (2.3):

Amax = arg max
A∈A

|A|∏

i=1

Pr(ai|d(ui, vi); m(ui, vi, 1), . . . , m(ui, vi, t)). (2.6)

From this point, (Wu) proceeded along the lines of equations (2.4) and (2.5)
and the dynamic programming solution.

Another interesting approach is possible when part-of-speech taggers are
available for both languages. The insight that parts of speech are usually pre-
served in translation enabled Papageorgiou et al. (1994) to design an alignment
algorithm that maximizes the number of matching parts of speech in aligned
segments. It is difficult to compare this algorithm’s performance to that of other
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algorithms in the literature, because results were reported only for a relatively
easy bitext. On this bitext, the algorithm’s performance was nearly perfect. A
translation model between parts of speech would not help on bitext regions like
the one in table 2.1.

The alignment algorithms described above work nearly perfectly given clean
bitexts that have easily detectable sentence boundaries. However, bitext map-
ping at the sentence level is not an option for many bitexts (Church, 1993).
Sentences are often difficult to detect, especially when punctuation is missing
due to OCR errors. More importantly, bitexts often contain lists, tables, titles,
endnotes, citations and/or mark-up codes that foil sentence alignment methods.
Church’s solution was to map bitext correspondence at the level of the small-
est text units—characters. Characters match across languages to the extent that
they participate in orthographic cognates—words with similar meanings and
spellings in different languages. Since there are far more characters than sen-
tences in any bitext, the quadratic computational complexity of this approach
presented an efficiency problem. Church showed how to use a high-band filter
to find a rough bitext map quickly.

Church’s rough bitext maps were intended for input into Dagan et al.
(1993b)’s slower algorithm for refinement. Dagan et al. used the rough bitext
map to define a distance-based model of co-occurrence (see chapter 5). Then
they adapted Brown et al. (1993b)’s statistical translation Model 2 to work
with this model of co-occurrence. The information in the translation model
was more reliable than character-level cognate information, so it produced a
higher signal-to-noise ratio in the bitext space. Therefore, Dagan et al. (1993b)
were able to filter out many of the imperfections of the initial bitext map.

A limitation of Church’s method, and therefore also of (Dagan et al.)’s
method, is that orthographic cognates exist only among languages with sim-
ilar alphabets (Church et al., 1993). Fung has investigated ways to make these
methods useful when cognates cannot be found. First, she introduced the K-vec
algorithm (Fung & Church, 1994), which used a rough model of co-occurrence
to bootstrap a small translation lexicon. The translation lexicon indicated points
of correspondence in the bitext map, much the same way as matching charac-
ter n-grams. These points of correspondence could then be further refined using
the methods previously developed by Church (1993) and Dagan et al. (1993b).
Later, Fung & McKeown (1994) improved K-vec by employing relative posi-
tion offsets, instead of a fixed model of co-occurrence. This strategy made the
algorithm more robust for more noisy bitexts.
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2.4 The Smooth Injective Map Recognizer (SIMR)

2.4.1 Overview

SIMR borrows several insights from previous work. Like the algorithms of
Gale & Church (1991a) and Brown et al. (1991a), SIMR exploits the corre-
lation between the lengths of mutual translations. Like char_align (Church,
1993), SIMR infers bitext maps from likely points of correspondence between
the two texts, points that are plotted in a two-dimensional space of possibil-
ities. Unlike previous methods, however, SIMR greedily searches for only a
small chain of correspondence points at a time.

The search begins in a small search rectangle in the bitext space whose di-
agonal is parallel to the main diagonal. The search for each chain alternates
between a generation phase and a recognition phase. In the generation phase,
SIMR generates candidate points of correspondence within the search rectan-
gle that satisfy the supplied matching predicate, as explained in section 2.4.2
below. In the recognition phase, SIMR invokes the chain-recognition heuristic
to select the most likely chain of true points of correspondence (TPCs) among
the generated points. The most likely chain of TPCs is the set of points whose
geometric arrangement most resembles the typical arrangement of TPCs. The
parameters of the chain recognition heuristic are optimized on a small training
bitext. If no suitable chains are found, the search rectangle is proportionally ex-
panded by the minimum possible amount and the generation-recognition cycle
is repeated. The rectangle keeps expanding until at least one acceptable chain
is found. If more than one acceptable chain is found in the same cycle, SIMR
accepts the chain whose points are least dispersed around its least-squares line.
Each time SIMR accepts a chain, it moves the search rectangle to another re-
gion of the bitext space to search for the next chain.

SIMR employs a simple heuristic to select regions of the bitext space to
search. To a first approximation, TBMs are monotonically increasing func-
tions. This means that if SIMR accepts one chain, it should look for others
either above and to the right or below and to the left of the one it has just found.
All SIMR needs is a place to start the trace, and a good place to start is at the
beginning. Since the origin of the bitext space is always a TPC, the first search
rectangle is anchored at the origin. Subsequent search rectangles are anchored
at the top right corner of the previously found chain, as shown in figure 2.2.

The expanding-rectangle search strategy makes SIMR robust in the face of
TBM discontinuities. Figure 2.2 shows a segment of the TBM that contains
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Figure 2.2
SIMR’s “expanding rectangle” search strategy. The search rectangle is anchored at the top right
corner of the previously accepted chain. Its diagonal remains parallel to the main diagonal.

a vertical gap (an omission in the text on the x-axis). As the search rectangle
grows, it will eventually intersect with the TBM, even if the discontinuity is
quite large.2 The noise filter described in section 2.4.3 reduces the chances that
SIMR will be led astray by false points of correspondence.

2.4.2 Point Generation

Before SIMR can decide where to generate candidate points of correspon-
dence, it must be told which pairs of words have coordinates within the bound-
aries of the current search rectangle. The mapping from tokens to axis positions
is performed by a language-specific axis generator (see section 2.7.2). SIMR
calls one of its matching predicates on each pair of tokens whose coordinate
falls within the search rectangle. A matching predicate is a heuristic for de-
ciding whether two given tokens might be mutual translations. Two kinds of
information that a matching predicate can rely on most often are cognates and
translation lexicons.

Two word tokens are orthographic cognates if they have the same mean-
ing and similar spellings. Similarity of spelling can be measured in more or
less complicated ways. The first published attempt to exploit cognates for
bitext-mapping purposes (Simard et al., 1992) deemed two alphabetic tokens
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cognates if their first four characters were identical. This criterion proved sur-
prisingly effective, given its simplicity. However, like all heuristics, it produced
some false positives and some false negatives. An example of a false negative
is the word pair government and gouvernement. The false positives were often
words differing greatly in length, like conseil and conservative. These examples
suggest that a more accurate cognate matching criterion can be driven by ap-
proximate string matching. For example, McEnery & Oakes (1995) threshold
the Dice coefficient of matching character bigrams in each pair of candidate
cognates. The matching predicates in SIMR’s current implementation thresh-
old the Longest Common Subsequence Ratio (LCSR).

The LCSR of two tokens is the ratio of the length of their longest (not
necessarily contiguous) common subsequence (LCS) and the length of the
longer token. In symbols,

LCSR(A, B)= length[LCS(A, B)]

max[length(A), length(B)]
. (2.7)

For example, gouvernement, which is 12 characters long, has 10 characters
that appear in the same order in government, so the LCSR for these two words
is 10/12. On the other hand, the LCSR for conseil and conservative is only
6/12. A simple dynamic programming algorithm can compute the LCS in
O(n2) (Bellman, 1957). A rather more complicated algorithm can compute
it in O(n log log n) time on average (Hunt & Szymanski, 1977).

When dealing with language pairs that have different alphabets, the match-
ing predicate can employ phonetic cognates. When language L1 borrows a
word from language L2, the word is usually written in L1 similarly to the way
it sounds in L2. Thus, French and Russian /pɔrtməne/ are cognates, as are En-
glish /sIstəm/ and Japanese /šisutemu/. For many languages, it is not difficult
to construct an approximate mapping from the orthography to its underlying
phonological form. Given such a mapping for L1 and L2, it is possible to iden-
tify cognates despite incomparable orthographies.

Knight & Graehl (1997) have shown that it is possible to find phonetic
cognates even between languages whose writing systems are as different as
those of English and Japanese. They have built a weighted finite-state au-
tomaton (WFSA), based on empirically estimated probability distributions, for
back-transliterating English loan words written in katakana into their original
English form. The WFSA efficiently represents a large number of translitera-
tion probabilities between words written in the katakana and Roman alphabets.
Standard finite-state techniques can efficiently find the most likely path through
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the WFSA from a given Japanese word written in katakana to a given En-
glish word. The weight of the most likely path is an estimate of the probability
that the former is a transliteration of the latter. Thresholding this probability
would lead to a phonetic cognate-matching predicate for English/Japanese bi-
texts. The threshold would need to be optimized together with SIMR’s other
parameters, in the same way that the LCSR threshold is currently optimized
(see section 2.5).

Cognates are more common in bitexts from more similar language pairs, and
from text genres where more word borrowing occurs, such as technical texts.
In the non-technical Canadian Hansards (parliamentary debate transcripts pub-
lished in English and in French), an LCSR cutoff of .58 finds cognates for
roughly one quarter of all text tokens. Even distantly related languages like
English and Czech share a large number of orthographic cognates in the form
of proper nouns, numerals and punctuation. When one or both of the languages
involved is written in pictographs, cognates can still be found among punctua-
tion and numerals. However, these kinds of cognates are usually too sparse to
build an accurate bitext map from.

When the matching predicate cannot generate enough candidate correspon-
dence points based on cognates, its signal can be strengthened by a seed
translation lexicon—a simple list of word pairs that are believed to be mutual
translations. Seed translation lexicons can be extracted from machine-readable
bilingual dictionaries (MRBDs) in the rare cases where MRBDs are available.
In other cases, they can be constructed automatically or semi-automatically
using any of several published methods (Fung & Church, 1994; Fung, 1995b;
Melamed, 1996a; Resnik & Melamed, 1997).3 A matching predicate based on
a seed translation lexicon deems two candidate tokens to be mutual translations
if the token pair appears in the lexicon. Since the matching predicate need not
be perfectly accurate, the seed translation lexicons need not be perfectly accu-
rate either.

All the matching predicates described above can be fine-tuned with stop-
lists for one or both languages. For example, closed-class words are unlikely
to have cognates. Indeed, French/English words like a, an, on, and par often
produce spurious points of correspondence. The same problem is caused by
faux amis (“false friends”) (Macklovitch, 1995), words with similar spellings
but different meanings in different languages. For example, the French word
librarie means bookstore, not library, and actuel means current, not actual. A
matching predicate can use a list of closed-class words and/or a list of pairs of
faux amis to filter out spurious matches.
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Frequent word types cause false points of correspondence that line up in rows and columns.

2.4.3 Noise Filter

Inspection of several bitext spaces has revealed a common noise pattern, illus-
trated in figure 2.3. It consists of correspondence points that line up in rows or
columns associated with frequent word types. Word types like the English arti-
cle a can produce one or more correspondence points for almost every sentence
in the opposite text. Only one point of correspondence in each row and column
can be correct; the rest are noise. It is difficult to measure exactly how much
noise is generated by frequent tokens, and the proportion is different for every
bitext. Informal inspection of some bitext spaces indicated that frequent tokens
are often responsible for the lion’s share of the noise. Reducing this source of
noise makes it much easier for SIMR to stay on track.

Other bitext-mapping algorithms mitigate this source of noise either by as-
signing lower weights to correspondence points associated with frequent word
types (Church, 1993) or by deleting frequent word types from the bitext alto-
gether (Dagan et al., 1993b). However, a word type that is relatively frequent
overall can be rare in some parts of the text. In those parts, the word type can
provide valuable clues to correspondence. On the other hand, many tokens of a
relatively rare type can be concentrated in a short segment of the text, resulting
in many false correspondence points. The varying concentration of identical to-
kens suggests that more localized noise filters would be more effective. SIMR’s
localized search strategy provides a vehicle for a localized noise filter.

The filter is based on the maximum point ambiguity level parameter. For
each point p = (x, y), let X be the number of points in column x within the
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anchor off track

false chain

Figure 2.4
SIMR’s noise filter makes an important contribution to the signal-to-noise ratio in the bitext space.
Even if one chain of false points of correspondence slips by the chain recognition heuristic, the
expanding rectangle is likely to find its way back to the TBM trace before the chain recognition
heuristic accepts another chain.

search rectangle, and let Y be the number of points in row y within the search
rectangle. The ambiguity level of p is defined as X + Y − 2. In particular, if
p is the only point in its row and in its column, then its ambiguity level is
zero. The chain recognition heuristic ignores points whose ambiguity level is
too high. What makes this a localized filter is that only points within the search
rectangle count toward one another’s ambiguity level. The ambiguity level of
a given point can change when the search rectangle expands or moves.

The noise filter ensures that false points of correspondence are relatively
sparse, as illustrated in figure 2.4. Even if one chain of false points of cor-
respondence slips by the chain-recognition heuristic, the expanding rectangle
is likely to find its way back to the TBM trace before the chain-recognition
heuristic accepts another chain. If the matching predicate generates a reason-
ably strong signal, then the signal-to-noise ratio will be high and SIMR is not
likely to get lost, even though it is a greedy algorithm with no ability to look
ahead.

2.4.4 Point Selection

After noise filtering, most TPC chains conform to the pattern illustrated in
figure 2.5. The pattern can be characterized by three properties:

. Injectivity: No two points in a chain of TPCs can have the same x- or y-co-
ordinates.
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Figure 2.5
Typical pattern of candidate points of correspondence in a bitext space, after noise filtering. The
true points of correspondence trace the true bitext map parallel to the main diagonal.

. Linearity: TPCs tend to line up straight. Recall that sets of points with a
roughly linear arrangement are called chains.
. Low Variance of Slope: The slope of a TPC chain is rarely very different
from the bitext slope.

SIMR exploits these properties to decide which chains might be TPC chains.
First, chains that lack the injectivity property are rejected outright. The remain-
ing chains are filtered using two threshold parameters: maximum point disper-
sal and maximum angle deviation. The linearity of each chain is measured as
the root mean squared distance of the chain’s points from the chain’s least-
squares line. If this distance exceeds the maximum point dispersal threshold,
the chain is rejected. The angle of each chain’s least-squares line is compared
to the arctangent of the bitext slope. If the difference exceeds the maximum
angle deviation threshold, the chain is rejected.

2.4.5 Reduction of the Search Space

In a search rectangle containing n points, there are 2n possible chains—too
many to search by brute force. The properties of TPCs listed above provide
two ways to constrain the search.
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The Linearity property leads to a constraint on the chain size. Chains of
only a few points are unreliable, because they often line up straight by co-
incidence. Chains that are too long span too much of the TBM to be well
approximated by a line. SIMR uses a fixed chain size k, 6≤ k ≤ 11. The exact
value of k is optimized together with the other parameters, as described in sec-
tion 2.5. Fixing the chain size at k reduces the number of candidate chains to(
n
k

)= n!
(n−k)!k! .

For typical values of n and k,
(
n
k

)
can still reach into the millions. The Low

Variance of Slope property suggests another constraint: SIMR should consider
only chains that are roughly parallel to the main diagonal. Two lines are parallel
if the perpendicular displacement between them is constant. So chains that
are roughly parallel to the main diagonal will consist of points that all have
roughly the same displacement4 from the main diagonal. Points with similar
displacement can be grouped together by sorting, as illustrated in figure 2.6.
Then, chains that are most parallel to the main diagonal will be contiguous
subsequences of the sorted point sequence. In a region of the bitext space
containing n points, there will be only n− k + 1 such subsequences of length
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(points 5 – 10)

subsequence 8
(points 8 – 13)

subsequence 1
(points 1 – 6)
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Figure 2.6
The chain recognition heuristic exploits the Low Variance of Slope property of TPC chains. The
candidate points of correspondence are numbered according to their displacement from the main
diagonal. The chain most nearly parallel to the main diagonal is always one of the contiguous
subsequences of this ordering. For a fixed chain size of 6, there are 13 − 6 + 1 = 8 contiguous
subsequences in this region of 13 points. Of these 8, the fifth subsequence is the best chain.
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k. The most computationally expensive step in the chain recognition process is
the insertion of candidate points into the sorted point sequence.

2.4.6 Enhancements

The following sections describe two of the more interesting enhancements in
the current SIMR implementation.

Overlapping Chains SIMR’s fixed chain size imposes a rather arbitrary
fragmentation on the TBM trace. Each chain starts at the top-right corner
of the previously found chain, but these chain boundaries are independent
of discontinuities or angle variations in the TBM trace. Therefore, SIMR is
likely to miss TPCs wherever the TBM is not linear. One way to make SIMR
more robust is to start the search rectangle just above the lowest point of the
previously found chain, instead of just above the highest point. If the chain size
is fixed at k, then each linear stretch of s TPCs results in s − k + 1 overlapping
chains.

Unfortunately, this solution introduces another problem: Two overlapping
chains can be inconsistent. The injective property of TBMs implies that when-
ever two (interpolated) chains overlap in the x or y dimension but are not
identical in the region of overlap, then one of the chains must be wrong. To re-
solve such conflicts, SIMR employs a post-processing algorithm to eliminate
conflicting chains one at a time, until all remaining chains are pairwise con-
sistent. The conflict-resolution algorithm is based on the heuristic that chains
that conflict with a larger number of other chains are more likely to be wrong.
The algorithm sorts all chains on how many other chains they conflict with
and eliminates them in this sort order, one at a time, until no conflicts remain.
Whenever two or more chains are tied in the sort order, the conflict resolution
algorithm eliminates all but the chain with the least point dispersal.

Additional Search Passes To ensure that SIMR rejects spurious chains, the
maximum angle deviation threshold must be set low. However, like any heuris-
tic filter, this one will reject some perfectly valid candidates. If a more precise
bitext map is desired, some of these valid chains can be recovered during an
extra sweep through the bitext space. Since bitext maps are mostly injective,
valid chains that are rejected by the angle deviation filter usually occur between
two accepted chains, as shown in figure 2.7. If chains C and D are accepted as
valid, then the slope of the TBM between the end of chain C and the start of
chain D must be much closer to the slope of chain X than to the slope of the
main diagonal. Chain X should be accepted. During a second pass through the
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Figure 2.7
Chain X is perfectly valid, even though it has a highly deviant slope. Such chains can be recovered
by re-searching regions between accepted chains. The slope of the local main diagonal can be quite
different from the slope of the global main diagonal.

bitext space, SIMR searches for sandwiched chains in any space between two
accepted chains that is large enough to accommodate another chain. This sub-
space of the bitext space will have its own main diagonal. The slope of this
local main diagonal can be quite different from the slope of the global main
diagonal.

An additional search through the bitext space also enables SIMR to re-
cover chains that were missed because of an inversion in the translation. Non-
monotonic TBM segments result in a characteristic map pattern, as a conse-
quence of the injectivity of bitext maps. SIMR has no problem with small non-
monotonic segments inside chains. However, the expanding rectangle search
strategy can miss larger non-monotonic segments that do not fit inside one
chain. In figure 2.8, the vertical range of segment j corresponds to a vertical
gap in SIMR’s first-pass map. The horizontal range of segment j corresponds
to a horizontal gap in SIMR’s first-pass map. Similarly, any non-monotonic
segment of the TBM will occupy the intersection of a vertical gap and a hor-
izontal gap in the monotonic first-pass map. Furthermore, switched segments
are usually adjacent and relatively short. Therefore, to recover non-monotonic
segments of the TBM, SIMR need only search gap intersections that are close
to the first-pass map. There are usually very few such intersections that are
large enough to accommodate new chains, so the second-pass search requires
only a small fraction of the computational effort of the first pass.
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Figure 2.8
Segments i and j switched places during translation. Any non-monotonic segment of the TBM
will occupy the intersection of a vertical gap and a horizontal gap in the monotonic first-pass map.
These larger non-monotonic segments can be recovered during a second sweep through the bitext
space.

2.5 Parameter Optimization

SIMR’s parameters—the fixed chain size, the LCSR threshold used in the
matching predicate, and the thresholds for maximum point dispersal, maxi-
mum angle deviation, and maximum point ambiguity—interact in complicated
ways. Ideally, SIMR should be reparameterized so that its parameters are pair-
wise independent. Then it may be possible to optimize the parameters ana-
lytically, or at least in a probabilistic framework. For now, the easiest way to
optimize these parameters is via simulated annealing (Vidal, 1993), a simple
general framework for optimizing highly interdependent parameter sets.

Simulated annealing requires an objective function to optimize. The objec-
tive function for bitext mapping should measure the difference between the
TBM and the interpolated bitext maps produced with the current parameter set.
In geometric terms, the difference is a distance. The distance between a bitext
map and each TPC can be defined in a number of ways. The simplest metrics
are the horizontal distance and the vertical distance, but these metrics measure
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Two text segments at the end of Sentence A were switched during translation, resulting in a
non-monotonic segment. To interpolate injective bitext maps, non-monotonic segments must be
encapsulated in Minimum Enclosing Rectangles (MERs). A unique bitext map can then be in-
terpolated by using the lower left and upper right corners of the MER (map M2), instead of the
non-monotonic correspondence points (function M1).

the error with respect to only one language or the other. A more robust average
is the distance perpendicular to the main diagonal. In order to penalize large
errors more heavily, root-mean-squared (RMS) distance should be minimized
instead of mean distance.

There is a slight complication in the computation of distances between two
partial functions: Linear interpolation is not well-defined for non-monotonic
sets of points. It would be incorrect to simply connect the dots left to right, be-
cause the resulting function may not be injective. To interpolate injective bitext
maps, non-monotonic segments must be encapsulated in Minimum Enclosing
Rectangles (MERs), as shown in figure 2.9. A unique bitext map results from
interpolating between the lower left and upper right corners of the MER, in-
stead of using the non-monotonic correspondence points.

2.6 Evaluation

SIMR’s parameters were optimized by simulated annealing, as described in the
previous section. A separate optimization was performed on separate training
bitexts for each of four language pairs. SIMR was then evaluated on previ-
ously unseen test bitexts in the four language pairs. The evaluation metric and
the objective function for optimization were the root-mean-squared distance,
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Table 2.2
SIMR accuracy on training bitexts for four language pairs.

Language Number of Training RMS error
pair training TPCs genre in characters

French / English 598 marketing report 6.6
Spanish / English 562 software manuals 5.5
Korean / English 615 military manuals 3.9
Chinese / English 678, 915, 695 the Bible 7.9, 6.5, 7.8

Table 2.3
SIMR error estimates on different text genres in four language pairs.

Language pair Bitext or genre Number of test TPCs RMS Error in characters

French / English parliamentary debates 7123 5.7
CITI technical reports 365, 305, 176 4.4, 2.6, 9.9
other technical reports 561, 1393 21, 14
court transcripts 1377 3.9
U.N. annual report 2049 12
I.L.O. report 7129 6.4

Spanish / English software manuals 376, 151, 100, 349 4.6, 0.67, 5.2, 4.7

Korean / English military manuals 40, 88, 186, 299 2.6, 7.1, 25, 7.8
military messages 192 0.53

Chinese / English I Corinthians 437 17
II Corinthians 257 11
Daniel 357 12
Ecclesiastes 222 9.1
Ezra 280 59
Hebrews 303 14
Nehemiah 406 50
Revelations 404 6.8
Romans 433 14
Zechariah 211 15

in characters, between each TPC and the interpolated bitext map produced by
SIMR, where the distance was measured perpendicular to the main diagonal.
Tables 2.2 and 2.3 report SIMR’s errors on the training and test bitexts, respec-
tively.

The TBM samples used for training and testing were derived from seg-
ment alignments. The Chinese/English alignments were based on Biblical
verse boundaries, which are constant across languages. The bitexts in the
other three language pairs had been manually aligned by bilingual annotators
(Melamed, 1997b). The alignments were converted into sets of coordinates
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in the bitext space by pairing the character positions at the ends of aligned
segment pairs.

This TBM sampling method artificially reduced the error estimates. Most of
the aligned segments were sentences, which ended with a period. Whenever
SIMR matched the periods correctly, the interpolated bitext map was pulled
close to the TPC, even though it may have been much farther off in the middle
of the sentence. Thus, the results in table 2.3 should be considered only relative
to each other and to other results obtained under the same experimental condi-
tions. It would be impressive indeed if any bitext mapping algorithm’s actual
RMS error were less than one character on bitexts involving languages with
different word order, such as English/Korean.

The matching predicates for French/English and Spanish/English relied on
an LCSR threshold to find cognates. Seed translation lexicons were used for
Korean/English and Chinese/English, with 5228 entries in the former and 7997
in the latter. The Korean text contained some roman character strings, so
the matching predicate for Korean/English also generated candidate points
of correspondence whenever one of these strings coordinated in the search
rectangle with an identical string in the English half of the bitext. In addition,
English, French, Spanish and Korean stop-lists were used to prevent matches of
closed-class words. The translation lexicons and stop-lists had been developed
independently of the training and test bitexts.

The French/English part of the evaluation was performed on bitexts from
the publicly available corpus de bi-texte anglais-français (BAF) (Simard &
Plamondon, 1996). SIMR’s error distribution on the “parliamentary debates”
bitext in this collection is given in table 2.4. This distribution can be compared
to the error distributions reported for the same test set by Dagan et al. (1993b).
Dagan et al. (1993b) report parts of their error distribution in words, rather than
in characters: “In 55% of the cases, there is no error in word_align’s output
(distance of 0), in 73% the distance from the correct alignment is at most 1, and
in 84% the distance is at most 3.” These distances were measured horizontally
from the bitext map rather than perpendicularly to the main diagonal. Given
the bitext slope for that bitext and a conservative estimate of six characters
per word (including the space between words), each horizontal word of error
corresponds to just over four characters of error perpendicular to the main
diagonal. Thus, Dagan et al. (1993b)’s “no error” is the same as two characters
of error or less, i.e., less than half a word. One word of error is the same as
an error of up to six characters, and three words of error are equivalent to
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Table 2.4
SIMR’s error distribution on the French/English “parliamentary debates” bitext. Errors were mea-
sured perpendicular to the main diagonal.

Number of Error range Fraction of
test points in characters test points

1 -101 .0001
2 -80 to -70 .0003
1 -70 to -60 .0001
5 -60 to -50 .0007
4 -50 to -40 .0006
6 -40 to -30 .0008
9 -30 to -20 .0013
29 -20 to -10 .0041
3057 -10 to 0 .4292
3902 0 to 10 .5478
43 10 to 20 .0060
28 20 to 30 .0039
17 30 to 40 .0024
5 40 to 50 .0007
8 50 to 60 .0011
1 60 to 70 .0001
1 70 to 80 .0001
1 80 to 90 .0001
1 90 to 100 .0001
1 110 to 120 .0001
1 185 .0001

7123 -101 to 185 1.000

4 · 3 1
2 = 14 characters. On this basis, table 2.5 compares the accuracy of SIMR

and word_align.5

Another interesting comparison is in terms of maximum error. Certain ap-
plications of bitext maps, like the one described in chapter 4, can tolerate many
small errors but no large ones. As shown in table 2.4, SIMR’s bitext map was
never off by more than 185 characters from any of the 7123 segment bound-
aries. 185 characters is about 1.5 times the length of an average sentence (see
chapter 4). word_align’s input is the output of char_align and Dagan et al.
(1993b) have reported that word_align cannot escape from char_align’s
worst errors. An independent implementation of char_align (Simard, 1995)
erred by more than one thousand characters on the same bitext.

The Spanish/English and Korean/English bitexts were hand-aligned when
SIMR was being ported to these language pairs. The Spanish/English bitexts
were drawn from the Sun Solaris AnswerBooks and hand-aligned by Philip
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Table 2.5
Comparison of error distributions for SIMR and word_align on the parliamentary debates bitext.

Error of at most Error of at most Error of at most
Algorithm 2 characters 6 characters 14 characters

word_align 55% 73% 84%
SIMR 93% 97% 98%

Resnik. The Korean/English bitexts were provided by MIT’s Lincoln Labo-
ratories and hand-aligned by Young-Suk Lee. Table 2.3 shows that SIMR’s
performance on Spanish/English and Korean/English bitexts is no worse than
its performance on French/English bitexts.

The Chinese/English bitexts were acquired with the help of Resnik et al.
(1997), who compiled the most common 66 books of the Bible online in a
variety of languages. Biblical text exhibits a variety of genres and styles, so
I decided to use three different texts for training and cross-validation. On
the basis of previous experience (Melamed, 1996b), I decided to train on
books that had between 500 and 1000 aligned segments (verses). The books
of Proverbs, Mark, and II Samuel were selected at random from this subset. I
wanted to test SIMR on a variety of bitexts as quickly as possible. Therefore,
for testing, I decided to use all the books of the Bible that had less than 500
verses, of which there were ten.

With the exception of Ezra and Nehemiah, SIMR’s accuracy on all the books
was comparable to its accuracy on bitexts in other language pairs and other
genres (Melamed, 1997b). The two exceptions were surprising and disappoint-
ing. Bitext mapping is typically used in a pipeline with other processes, rather
than as an end in itself, so it is unacceptable for a bitext-mapping algorithm
to fail two times out of ten. I undertook some error analysis in order to learn
more.

The porting guidelines (Melamed, 1996b) describe a general error-hunting
strategy that can be used to debug training data intended for optimizing SIMR’s
parameters. I used this strategy to analyze the test data. I found that SIMR
got both the Ezra and Nehemiah bitext maps mostly right. However, both of
the problematic bitexts contained short segments in which SIMR made several
large errors in a row. The RMS error metric is very sensitive to large errors,
even if they are few in number.

Next, I looked at the bitexts themselves in the region where SIMR was far off
the mark. The problem, illustrated in figure 2.10, became readily apparent. The
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10:38: From the descendants of Binnui: Shimei,
10:39: Shelemiah, Nathan, Adaiah,
10:40: Macnadebai, Shashai, Sharai,
10:41: Azarel, Shelemiah, Shemariah,
10:42: Shallum, Amariah and Joseph.
10:43: From the descendants of Nebo: Jeiel, Mattithiah, Zabad, Zebina, Jaddai,

Joel and Benaiah.

Figure 2.10
Genealogy excerpt from the New International Version of the book of Ezra.

Bible contains a number of passages describing genealogies, which contain lit-
tle besides names and punctuation. The names were not in the Chinese/English
seed translation lexicon. Punctuation marks alone could not provide a suffi-
ciently strong signal for SIMR to follow. SIMR essentially skipped over these
regions of the bitext space, unable to find any suitable chains of correspon-
dence points there. Interpolation of SIMR’s bitext map across the gaps was a
poor approximation to the TBM for these bitexts.

The error analysis above provides some justification for absolving SIMR of
its performance on Ezra and Nehemiah, and for considering its performance
on the other bitexts as more indicative. First, the problem arose from a quirk
in the bitext (exceedingly long strings of proper nouns) that is unlikely to be
encountered in other bitexts. Second, the problem is solvable. Proper nouns
that are translated into Chinese from another language are usually written so as
to retain much of their pronunciation. Therefore, proper nouns can be matched
across Chinese/English bitexts as phonetic cognates (Knight & Graehl, 1997;
Chen et al., 1998; Wan & Verspoor, 1998). A matching predicate that can
supplement its translation lexicon with phonetic cognates could provide an
even stronger signal. In addition to preventing large errors in the rare cases
encountered here, the stronger signal can improve SIMR’s performance on
more typical bitexts.

The results in table 2.3 were obtained using a version of SIMR that included
all the enhancements described in section 2.4.6. It is interesting to consider
the degree to which each enhancement improves performance. I remapped the
French/English bitexts listed in table 2.3 with two stripped-down versions of
SIMR. One version was basic SIMR without any enhancements. The other ver-
sion incorporated overlapping chains, but performed only one search pass. The
deterioration in performance varied widely. For example, on the parliamentary
debates bitext, the RMS error rose from 5.7 to 16 when only one search pass
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was allowed, but rose only another two points to 18 using non-overlapping
chains. In contrast, on the U.N. Annual Report bitext, the extra search passes
made no difference at all but non-overlapping chains increased the RMS error
from 12 to 40. For most of the other bitexts, each enhancement reduced the
RMS error by a few characters, compared to the basic version. However, the
improvement was not universal: the RMS error of the basic SIMR was 19
for the “other technical report” on which the enhanced SIMR scored 21. The
expected value of the enhancements is difficult to predict, because each en-
hancement is aimed at solving a particular pattern recognition problem, and
each problem may or may not occur in a given bitext. The relationship be-
tween geometric patterns in TPC chains and syntactic properties of bitexts is a
ripe research topic.

2.7 Implementation of SIMR for New Language Pairs

SIMR can be ported to a new language pair in three steps.

2.7.1 Step 1: Construct Matching Predicate

The original SIMR implementation for French/English included matching
predicates that could use cognates and/or translation lexicons. For language
pairs in which lexical cognates are frequent, a cognate-based matching pred-
icate should suffice. In other cases, SIMR can use a seed translation lexicon
to boost the number of candidate points of correspondence produced in the
generation phase. The matching predicate for Spanish/English uses only cog-
nates. For Korean/English and Chinese/English, SIMR takes advantage of
punctuation and numeral cognates but supplements them with a translation
lexicon.

Although the Korean/English translation lexicon contains 5228 entries,
fewer than 150 entries were used to map the Korean/English bitexts in table 2.3.
Most of these 150 entries were used only once. Similar usage ratios were ob-
served for Chinese/English. It seems likely that a much smaller translation
lexicon can be equally effective, if the entries in this lexicon are more relevant
to the bitexts being mapped. If this conjecture is true, then a bilingual lexicog-
rapher should be able to build a matching predicate for any pair of languages
in a matter of hours.
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2.7.2 Step 2: Construct Axis Generators

In order for SIMR to generate candidate points of correspondence in the search
rectangle, it needs to know which token pairs’ coordinates fall within the search
rectangle. Therefore, it needs to know the position of each token within each of
the two texts. It is the axis generator’s job to map the two halves of the bitext to
positions on the x- and y-axes of the bitext space, before SIMR starts searching
for TPC chains. Axis generators need to be built only once per language,
rather than once per language pair. However, they should be designed with the
matching predicate in mind.

If the matching predicate uses cognates, then every word that might have a
cognate in the other half of the bitext should be assigned its own axis position.
This rule applies to punctuation and numbers as well as to “lexical” cognates.
In the case of lexical cognates, the axis generator typically needs to invoke a
language-specific tokenization program to identify words in the text. If no such
program is available in advance, then writing it may constitute a significant part
of the porting effort. The effort may be lessened, however, by the realization
that it is acceptable for the tokenization program to overgenerate, just as it is
for the matching predicate.

For example, when tokenizing German text, it is not necessary for the tok-
enizer to know which compound words are translated as a unit. If a German
lexicon indicates that a word has another word as a substring, then the tok-
enizer should simply generate an extra axis position for that substring. More
specifically, suppose we want to tokenize the German word Kindergarten, a
noun-noun compound that literally means children’s garden. Kindergarten is
translated into some languages as a unit; e.g., English has borrowed it ver-
batim. In other languages, the concept is expressed compositionally; e.g., the
French translation is jardin d’enfants, three words that literally mean garden of

children. Suppose we have a German lexicon in which the component nouns
Kinder and Garten are also listed. To maximize the chances of Kindergarten in
the German half of a bitext being matched to a cognate in the opposite half of
the bitext, independently of the language of that other half, the tokenizer should
generate one axis position for Kindergarten and extra axis positions for Kinder

and for garten. If the axis generator sees Kindergarten stretching from the 50th
character to the 62nd character in a German text, it should output (53.5, kinder)

and (59.5, garten), as well as (56.5, kindergarten).
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When lexical cognates are not being used, the axis generator need only iden-
tify punctuation, numerals, and those character strings in the text that also
appear on the relevant side of the translation lexicon.6 It would be pointless to
plot other words on the axes because the matching predicate could never match
them anyway. Therefore, for languages like Chinese and Japanese, which
are written without spaces between words, tokenization boils down to string
matching. In this manner, SIMR circumvents the difficult word-identification
problems in these languages.

An important source of error for SIMR is “non-linguistic” text, such as white
space or tables of numbers. During translation, such text is usually copied
rather than translated, resulting in TBM segments whose slope is exactly 1.
These segments can constitute a large enough portion of the TBM to severely
skew the slope of the main diagonal. Thus, they can fool SIMR into searching
the whole bitext space for TPC chains whose slope is close to 1, even though
most of the bitext map between “linguistic” parts of the bitext has a very
different slope. Sometimes the translation of non-linguistic text is completely
erratic, especially where white space is concerned.

A simple solution to this problem is to delete the non-linguistic text. Af-
ter SIMR produces a map for the resulting bitext, a post-processor scales the
points in the map to account for the deleted text segments. The current im-
plementation of SIMR treats only white space in the above manner, because
strings of white space are easy to identify. A general method for classifying
a given string as linguistic or non-linguistic can be adopted from language
identification methods (e.g. Elworthy, 1998). Given a character-level language
model, it is straightforward to compute the likelihood Pr(string|language)

Pr(string|¬language) that a
string was generated by the language in question. This likelihood will be less
than 1 in all or most of the substrings in a non-linguistic text region.

2.7.3 Step 3: Reoptimize Parameters

The last step in the porting process is to reoptimize SIMR’s numerical param-
eters. The most tedious part of the porting process is the construction of TBMs
against which SIMR’s parameters can be optimized and tested. The easiest way
to construct these gold standards is to extract them from pairs of hand-aligned
text segments: The final character positions of each segment in an aligned pair
are the coordinates of a TPC. Over the course of two porting efforts, I devel-
oped and refined tools and methods that allow a bilingual annotator to construct
the required TBMs very efficiently from a raw bitext (Melamed, 1996b). The
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procedure was used to hand-align 1338 Spanish/English segments in about
five hours and 1224 Korean/English segments in about twelve hours. These
amounts of hand-aligned data sufficed for training, cross-validation, and test-
ing. Using the established methodology, it should be possible to create enough
hand-aligned data to port SIMR to any language pair in under two days.

2.8 Conclusion

The Smooth Injective Map Recognizer (SIMR) is based on innovative ap-
proaches to each of the three main components of a bitext-mapping algorithm:
signal generation, noise filtering, and search. The advances in signal generation
stemmed from the use of word-based matching predicates. When word-pair
coordinates are plotted in a Cartesian bitext space, the geometric heuristics of
existing sentence alignment algorithms can be exploited just as easily and to a
greater extent at the word level. The cognate heuristic of character-based bitext-
mapping algorithms also works better at the word level, because cognateness
can be defined more precisely in terms of words, e.g., using the Longest Com-
mon Subsequence Ratio. Most importantly, matching heuristics based on ex-
isting translation lexicons can be defined only at the word level. When neither
cognates nor sentence boundaries can be found, we can still map bitexts in
any pair of languages using a small hand-constructed translation lexicon. To
complement word-based matching predicates, I have proposed localized noise
filtering. Localized noise filters are more accurate than global ones because
they are sensitive to local variations in noise distributions. The combination
of a strong signal and an accurate noise filter makes localized search heuristics
possible. Localized search heuristics can directly exploit the geometric tenden-
cies of TPC chains in order to search the bitext space in linear space and time,
a level of efficiency that is particularly important for large bitexts.

SIMR also advances the state of the art of bitext mapping on several other
criteria. Evaluation on pre-existing gold standards has shown that SIMR can
map bitexts with high accuracy in a variety of language pairs and text gen-
res without getting lost. SIMR is robust in the face of translation irregularities
like omissions and allows crossing correspondences to account for word-order
differences. SIMR encapsulates its language-specific heuristics, so that it can
be ported to any language pair with minimal effort (Melamed, 1997b). These
features make SIMR one of the mostly widely applicable bitext-mapping algo-
rithms published to date.
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There are numerous ways to improve the methods presented here. For exam-
ple, the current highly interdependent parameter set makes it too complicated
for SIMR to exploit graded information that is available in the signal, such
as the actual LCSRs, the actual angle deviations, and the actual point disper-
sals. All SIMR can do now is compare these quantities to a threshold. If SIMR
were reparameterized so that its parameters were pairwise independent, then it
would be possible to optimize the coefficients of a linear combination of graded
parameters. Efficient use of more of the information in the signal would proba-
bly lead to better performance. Thus, the details of the current implementation
are less important than the general approach to bitext mapping advocated here.



3 Application: Alignment

Many existing translators’ tools and machine translation strategies depend on aligned
text segments. An alignment does not permit crossing correspondences, so it is a special
case of the more general correspondence relation. This chapter presents the Geometric
Segment Alignment (GSA) algorithm, which uses segment boundary information to
reduce general bitext maps to accurate segment alignments. Evaluation on a pre-existing
gold standard has shown that GSA produces more accurate alignments than previously
published algorithms that were tested the same way. GSA’s expected running time is
linear in the size of the input, faster than dynamic programming methods, which take
O(n2). Therefore, it is not necessary to partially pre-align large bitexts manually before
input to GSA.

3.1 Introduction

SIMR has no idea that words are often used to make sentences. It just outputs
a series of corresponding token positions, leaving users free to draw their own
conclusions about how the texts’ larger units correspond. However, many exist-
ing translators’ tools and machine translation strategies depend on aligned sen-
tences or other aligned text segments. What can SIMR do for them? Formally,
an alignment is a correspondence relation that does not permit crossing corre-
spondences. This chapter presents the Geometric Segment Alignment (GSA)
algorithm, which uses segment boundary information to reduce the correspon-
dence relation in SIMR’s output to a segment alignment. The GSA algorithm
can be applied equally well to sentences, paragraphs, lists of items, or any other
text units for which boundary information is available.

3.2 Correspondence is Richer Than Alignment

A set of correspondence points, supplemented with segment boundary infor-
mation, expresses segment correspondence, which is a richer representation
than segment alignment. Figure 3.1 illustrates how segment boundaries form
a grid over the bitext space. Each cell in the grid represents the intersection of
two segments, one from each half of the bitext. A point of correspondence in-
side cell (X, y) indicates that some token in segment X corresponds with some
token in segment y; i.e., segments X and y correspond. For example, figure 3.1
indicates that segment e corresponds with segments G and H.

In contrast to a correspondence relation, “an alignment is a segmentation
of the two texts such that the nth segment of one text is the translation of the
nth segment of the other” (Simard et al., 1992). For example, given the token
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Figure 3.1
Segment boundaries form a grid over the bitext space. Each cell in the grid represents the product
of two segments, one from each half of the bitext. A point of correspondence inside cell (X, y)
indicates that some token in segment X corresponds to some token in segment y; i.e., the seg-
ments X and y correspond. So, for example, segment E corresponds with segment d. The aligned
blocks are outlined with solid lines.

correspondences in figure 3.1, the segment 〈G, H〉 should be aligned with the
segment 〈e, f〉. If segments 〈X1, . . . , Xn〉 align with segments 〈y1, . . . , yn〉,
then (〈X1, . . . , Xn〉, 〈y1, . . . , yn〉) is an aligned block. In geometric terms,
aligned blocks are rectangular regions of the bitext space such that the sides
of the rectangles coincide with segment boundaries, and such that no two rect-
angles overlap either vertically or horizontally. The aligned blocks in figure 3.1
are enclosed by solid lines.

SIMR’s initial output has more expressive power than the alignment that
can be derived from it. One illustration of this difference is that segment cor-
respondence can represent order inversions, but segment alignment cannot.
Inversions occur surprisingly often in real bitexts, even for sentence-size seg-
ments (Church, 1993). Figure 3.1 provides another illustration. If, instead of
the point in cell (H,e), there were a point in cell (G,f), the correct alignment
for that region would still be (〈G, H〉, 〈e, f〉). If there were points of correspon-
dence in both (H,e) and (G,f), the correct alignment would remain the same.
Yet the three cases are clearly different. If a lexicographer wanted to see a word
in segment G in its bilingual context, it would be useful to know whether seg-
ment f is relevant.
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3.3 The Geometric Segment Alignment (GSA) Algorithm

Given a sequence of segment boundaries for each half of a bitext, the Geomet-
ric Segment Alignment (GSA) algorithm reduces sets of correspondence points
to segment alignments. The algorithm’s first step is to perform a transitive clo-
sure over the input correspondence relation. For instance, if the input contains
(G,e), (H,e), and (H,f), then GSA adds the pairing (G,f). Next, GSA forces all
segments to be contiguous: If segment Y corresponds with segments x and z

but not y, the pairing (Y , y) is added. In geometric terms, these two operations
arrange all cells that contain points of correspondence into non-overlapping
rectangles, while adding as few cells as possible. The result is an alignment
relation.

A complete set of TPCs, together with appropriate boundary information,
guarantees a perfect alignment. Alas, the points of correspondence postulated
by SIMR are neither complete nor noise-free. SIMR makes errors of omis-
sion and errors of commission. Fortunately, the noise in SIMR’s output causes
alignment errors in predictable ways. GSA employs several backing-off heuris-
tics to reduce the number of errors.

Typical errors of commission are stray points of correspondence like the one
in cell (H, e) in figure 3.1. This point indicates that 〈G, H〉 and 〈e, f〉 should
form a 2 × 2 aligned block, whereas the lengths of the component segments
suggest that a pair of 1 × 1 blocks is more likely. In a separate development
bitext, I have found that SIMR is usually wrong in these cases. To reduce such
errors, GSA asks Gale & Church’s length-based alignment algorithm (Gale &
Church, 1991a; Simard, 1995) for a second opinion on any aligned block that
is not 1× 1. Whenever the length-based algorithm prefers a more fine-grained
alignment, its judgment overrules SIMR’s opinion.

Typical errors of omission are illustrated in figure 3.1 by the complete ab-
sence of correspondence points between segments 〈B, C, D〉 and 〈b, c〉. This
empty block of segments is sandwiched between aligned blocks. It is highly
likely that at least some of these segments are mutual translations, despite
SIMR’s failure to find any points of correspondence between them. Therefore,
GSA treats all sandwiched empty blocks as aligned blocks. If an empty block
is not 1× 1, GSA re-aligns it using Gale & Church’s a length-based algorithm,
just as it would re-align any other many-to-many aligned block.

The most problematic cases involve an error of omission adjacent to an error
of commission, as in blocks (〈〉, 〈h〉) and (〈J, K〉, 〈i〉). If the point in cell (J,i)
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should really be in cell (J,h), then re-alignment inside the erroneous blocks
would not solve the problem. A naive solution is to merge these blocks and
then to re-align them using a length-based method. Unfortunately, this kind
of alignment pattern, i.e., 0 × 1 followed by 2 × 1, is surprisingly often cor-
rect. Length-based methods assign low probabilities to such pattern sequences
and usually get them wrong. Therefore, GSA also considers the confidence
level with which the length-based alignment algorithm reports its re-alignment.
If this confidence level is sufficiently high, GSA accepts the length-based
re-alignment; otherwise, the alignment indicated by SIMR’s points of cor-
respondence is retained. The minimum confidence at which GSA trusts the
length-based re-alignment is a GSA parameter, which has been optimized on a
separate development bitext.

3.4 Evaluation

GSA processed two bitext maps produced by SIMR using two different match-
ing predicates. The first matching predicate relied only on cognates that pass
a certain LCSR threshold, as described in section 2.4.2. The second match-
ing predicate was like the first, except that it also generated a point of corre-
spondence whenever the input token pair appeared as an entry in a translation
lexicon. The translation lexicon was automatically extracted from an MRBD
(Cousin et al., 1991).

Bitexts involving millions of segments are becoming more and more com-
mon. Before comparing bitext alignment algorithms in terms of accuracy, it
is important to compare their asymptotic running times. In order to run a
quadratic-time alignment algorithm in a reasonable amount of time on a large
bitext, the bitext must be pre-segmented into a set of smaller bitexts. When a bi-
text contains no easily recognizable “anchors,” such as paragraphs or sections,
this first-pass alignment must be done manually.

Given a reasonably good bitext map, GSA’s expected running time is linear
in the number of input segment boundaries. In all the bitexts on which GSA
was trained and tested, the points of correspondence in SIMR’s output were
sufficiently dense and precise that GSA backed off to a quadratic-time align-
ment algorithm only for very small aligned blocks. For example, when the seed
translation lexicon was used in SIMR’s matching predicate, the largest aligned
block that needed to be re-aligned was 5× 5 segments. Without the seed trans-
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Errors, given Errors, not given
Bitext Algorithm aligned paragraphs % aligned paragraphs %

“easy” Gale & Church (1991a) not available 128 1.8
Hansard Simard et al. (1992) 114 1.6 171 2.4
(n = 7123) SIMR/GSA 104 1.5 115 1.6

SIMR/GSA with MRBD 80 1.1 90 1.3

“hard” Gale & Church (1991a) not available 80 3.0
Hansard Simard et al. (1992) 50 1.9 102 3.8
(n = 2693) SIMR/GSA 50 1.9 61 2.3

SIMR/GSA with MRBD 45 1.7 48 1.8

Table 3.1
Comparison of bitext alignment algorithms’ accuracy. One error is counted for each aligned block
in the reference alignment that is missing from the test alignment.

lation lexicon, the largest re-aligned block was 7× 7 segments. Thus, GSA can
obviate the need to pre-align large bitexts manually.

Table 3.1 compares GSA’s accuracy on the “easy” and “hard” French/
English bitexts with the accuracy of two other alignment algorithms, as re-
ported by Simard et al. (1992). The error metric counts one error for each
aligned block in the reference alignment that is missing from the test align-
ment. To take into account the possibility of modularizing the overall alignment
task into paragraph alignment followed by sentence alignment, Simard et al.
(1992) reported the accuracy of their sentence alignment algorithm when a
perfect alignment at the paragraph level is given. SIMR/GSA was also tested
in this manner, yielding the second set of comparisons in table 3.1.

Due to the scarcity of hand-aligned training bitexts at my disposal, GSA’s
backing-off heuristics are somewhat ad hoc. Even so, GSA performs at least as
well as, and usually better than, other alignment algorithms for which compara-
ble results have been published. Chen (1993) has also published a quantitative
evaluation of his alignment algorithm on these reference bitexts, but his eval-
uation was done post hoc. Since the results here are based on a gold standard,
they are not comparable to Chen’s results. Among other reasons, error rates
based on a gold standard are sometimes inflated by errors in the gold standard,
as was indeed the case for the gold standard used here (see chapter 4). It is
also an open question whether GSA performs better than the algorithm pro-
posed by Wu (1994). The two algorithms have not yet been evaluated on the
same test data. For now, I can offer only a theoretical reason why SIMR+GSA
should be more accurate than the algorithms of Chen and Wu: Bitext maps lead
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to alignment more directly than a translation model (Chen, 1993) or a transla-
tion lexicon (Wu, 1994), because both segment alignments and bitext maps are
relations between token instances, rather than between token types.

3.5 Conclusion

Admittedly, GSA is useful only when a good bitext map is available. In such
cases, there are three reasons to favor GSA over other options for alignment:
One, it is simply more accurate. Two, its expected running time is linear in the
size of the bitext. Therefore, three, it is not necessary to pre-align large bitexts
manually before input to GSA.

More important than GSA’s current performance is GSA’s potential perfor-
mance. With a bigger development bitext, more effective backing-off heuristics
can be developed. More precise input could also make a difference: GSA’s per-
formance will improve in lockstep with SIMR’s performance.



4 Application: Automatic Detection of Omissions
in Translations

ADOMIT is an algorithm for Automatic Detection of OMIssions in Translations. The
algorithm relies solely on geometric analysis of bitext maps and uses no linguistic in-
formation. This property allows it to deal equally well with omissions that do not corre-
spond to linguistic units, such as might result from word-processing mishaps. ADOMIT
has proven its worth by discovering errors in a hand-constructed gold standard for eval-
uating bitext mapping algorithms. Quantitative evaluation on simulated omissions has
shown that ADOMIT can find a large enough proportion of typical omissions to be of
great practical benefit. The technique is easy to implement and easy to integrate into a
translator’s work routine.

4.1 Introduction

Omissions in translations arise in several ways. A tired translator can acciden-
tally skip a sentence or a paragraph in a large text. Pressing a wrong key can
cause a word-processing system to delete several lines without warning. Such
anomalies can usually be detected by careful proof-reading. However, price
competition is forcing translation bureaus to cut down on this labor-intensive
practice. An automatic method of detecting omissions can be a great help in
maintaining translation quality.

ADOMIT is an algorithm for Automatic Detection of OMIssions in Trans-
lations. ADOMIT rests on principles of geometry, and uses no linguistic in-
formation. This property allows it to deal equally well with omissions that do
not correspond to linguistic units, such as might result from word-processing
mishaps. ADOMIT is limited only by the quality of the available bitext map.

The chapter begins by describing the geometric properties of bitext maps
that make possible the Basic Method for detecting omissions. Section 4.3
shows that the Basic Method can reliably detect alignment errors in hand-
aligned bitexts. Section 4.4 suggests how the omission detection technique can
be embodied in a translators’ tool. The main obstacle to perfect omission detec-
tion is noise in bitext maps, which is characterized in section 4.5. ADOMIT is a
more robust variation of the Basic Method. Section 4.6 explains how ADOMIT
filters out some of the noise in bitext maps, section 4.7 describes my method for
simulating omissions, and section 4.8 demonstrates ADOMIT’s performance
and its value as a quality-control tool.

4.2 The Basic Method

Any algorithm for detecting omissions in a translation must use a process
of elimination: It must first decide which segments of the original text have
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An omission in bitext space. Regions A and B correspond to regions a and b, respectively. Region
O has no corresponding region on the vertical axis.

corresponding segments in the translation. This decision requires a detailed de-
scription of the correspondence between units of the original text and units of
the translation, i.e., a bitext map. Omissions in translations give rise to distinc-
tive patterns in bitext maps, as illustrated in figure 4.1. The nearly horizontal
part of the bitext map in region O takes up almost no part of the vertical axis.
This region represents a section of the text on the horizontal axis that has no
corresponding section in the text on the vertical axis—the very definition of
an omission. The slope between the end points of the region is unusually low.
An omission in the text on the horizontal axis would manifest itself as a nearly
vertical region of the bitext map. These unusual slope conditions are the key to
detecting omissions.

Given a noise-free bitext map, omissions are easy to detect. First, a bitext
space is constructed by placing the original text on the x-axis and the transla-
tion on the y-axis. Second, the known points of correspondence are plotted in
the bitext space. Each adjacent pair of points delimits a segment of the bitext
map. Any segment whose slope is unusually low is probably an omission. This
notion can be made precise by specifying a slope angle threshold t . So, third,
segments with slope angle a < t are flagged as omitted segments.
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4.3 Noise-Free Bitext Maps

The only way to ensure that a bitext map is noise-free is to construct one by
hand. Simard et al. (1992) hand-aligned corresponding sentences in two ex-
cerpts of the Canadian Hansards (parliamentary debate transcripts available
in English and French). For historical reasons, these bitexts are called “easy”
and “hard” in the literature. The sentence-based alignments were converted to
character-based alignments by noting the corresponding character positions at
the end of each pair of aligned sentences. The result was two hand-constructed
bitext maps. Several researchers besides me have used these particular bitext
maps as a gold standard for evaluating bitext mapping and alignment algo-
rithms (Simard et al., 1992; Church, 1993; Dagan et al., 1993b).

Surprisingly, ADOMIT found a number of errors in these hand-aligned bi-
texts, both in the alignment and in the original translation. ADOMIT processed
both halves of both bitexts using slope angle thresholds of 5◦, 10◦, 15◦, 20◦,
and 25◦. For each run, ADOMIT produced a list of the bitext map’s segments
whose slope angles were below the specified threshold t . The output for the
French half of the “easy” bitext, with t = 15◦, consisted of the following 10
items:

(26869, 29175) to (26917, 29176)

(42075, 45647) to (42179, 45648)

(44172, 47794) to (44236, 47795)

(211071, 230935) to (211379, 231007)

(211725, 231714) to (211795, 231715)

(319179, 348672) to (319207, 348673)

(436118, 479850) to (436163, 479857)

(453064, 499175) to (453116, 499176)

(504626, 556847) to (504663, 556848)

(658098, 726197) to (658225, 726198)

Each ordered pair is a coordinate in the bitext space; each pair of coordinates
delimits one omitted segment. Examination of these 10 pairs of character
ranges in the bitext revealed that

. four omitted segments pointed to omissions in the original translation;

. four omitted segments pointed to alignment errors;

. one omitted segment pointed to an omission that apparently caused an align-
ment error (i.e., one of each);
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. one omitted segment pointed to a piece of text that was duplicated in the
original but translated only once.

With t = 10◦, nine of the 10 segments in the list still came up; eight out
of 10 remained with t = 5◦. Similar errors were discovered in the other half
of the “easy” bitext and in the “hard” bitext, including one omission of more
than 450 characters. Other segments appeared in the list for t > 15◦. None of
the other segments were outright omissions or misalignments. However, all of
them corresponded to non-literal translations or paraphrases. For instance, with
t = 20◦, ADOMIT discovered a case in which “Why is the government doing
this?” was translated as “Pourquoi?”

The hand-aligned bitexts were also used to measure ADOMIT’s recall. The
human aligners indicated omissions in the original translation by 1–0 align-
ments (Gale & Church, 1991a; Isabelle, 1995). ADOMIT did not use this
information; the algorithm has no notion of a line of text. However, a simple
cross-check showed that ADOMIT found all of the omissions. The README
file distributed with the bitexts admitted that the “human aligners weren’t in-
fallible” and predicted “probably no more than five or so” alignment errors.
ADOMIT corroborated this prediction by finding exactly five alignment errors.
Thus, ADOMIT achieved perfect recall on both kinds of errors.

4.4 A Translator’s Tool

As any translator knows, many omissions are intentional. Translations are
seldom word for word. Metaphors and idioms usually cannot be translated
literally, so paraphrasing is common. Sometimes a paraphrased translation is
much shorter or much longer than the original. Segments of the bitext map
that represent such translations have slope characteristics similar to omissions,
even though the translations may be perfectly valid. These cases are termed
intended omissions to distinguish them from omission errors. To be useful,
the omission detection algorithm must be able to tell the difference between
intended and unintended omissions.

Fortunately, the two kinds of omissions have different length distributions.
Intended omissions are seldom longer than a few words, whereas accidental
omissions are often on the order of a sentence or more. So, a simple heuris-
tic for separating the accidental omissions from the intended omissions is to
sort all the omitted segments from longest to shortest. The longer accidental
omissions will float to the top of the sorted list.
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interpolated true bitext map

Figure 4.2
An undetectable error in the bitext map. A real omission could result in the same map pattern as
these erroneous points.

Translators can search for omissions when they finish a translation, just
as they might run a spelling checker. A translator can find omission errors
by scanning the sorted list of omitted segments from the top and examining
the relevant regions of the bitext. Each time the list points to an accidental
omission, the translator can make an appropriate correction in the translation.
If the translation is reasonably complete, the accidental omissions will quickly
stop appearing in the list and the correction process can stop. Only the smallest
errors of omission will remain.

4.5 Noisy Bitext Maps

The results of section 4.3 demonstrate ADOMIT’s potential. However, such
stellar performance is only possible with a nearly perfect bitext map. Such
bitext maps rarely exist outside the laboratory; today’s best automatic methods
for finding bitext maps are far from perfect. At least two kinds of map errors
can interfere with omission detection. One kind results in spurious omitted
segments, while the other hides real omissions.

Figure 4.2 shows how erroneous points in a bitext map can be indistinguish-
able from omitted segments. When such errors occur in the map, ADOMIT
cannot help but announce an omission where there isn’t one. This kind of map
error is the main obstacle to the algorithm’s precision.
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The other kind of map error is the main obstacle to the algorithm’s recall. A
typical manifestation is illustrated in figure 4.1. The map segments in Region
O contradict the injective property of bitext maps. Most of the points in Region
O are probably noise, because they map many positions on the x-axis to just
a few positions on the y-axis. Such spurious points break up large omitted
segments into sequences of small ones. When the omitted segments are sorted
by length for presentation to the translator, the fragmented omitted segments
sink to the bottom of the list, along with segments that correspond to small
intended omissions. The translator is likely to stop scanning the sorted list of
omissions before reaching them.

4.6 ADOMIT

ADOMIT alleviates the fragmentation problem by finding and ignoring ex-
traneous map points. A couple of definitions help to explain the technique.
Recall that omitted segments are defined with respect to a chosen slope an-
gle threshold t : Any segment of the bitext map with slope angle less than t

is an omitted segment. An omitted segment that contains extraneous points
can be characterized as a sequence of minimal omitted segments, interspersed
with one or more interfering segments. The following terms are illustrated in
figure 4.3. A minimal omitted segment is an omitted segment between two
adjacent points in the bitext map. A maximal omitted segment is an omitted
segment that is not a proper subsegment of another omitted segment. Inter-
fering segments are subsegments of maximal omitted segments with a slope
angle above the chosen threshold. Interfering segments are always delimited

minimal
omitted segment

interfering
segment

maximal
omitted segment

Figure 4.3
Fragmentation of omitted segments. Maximal omitted segments would be easy to find, were it not
for interfering segments.
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An efficient search for maximal omitted segments. The array of minimal omitted segments lies
above line B̄. Any sequence of segments starting at s, such that the slope angle of the whole
sequence is less than t , must end at some point e in the triangle �sib.

by extraneous map points. If it were not for interfering segments, the frag-
mentation problem could be solved by simply concatenating adjacent min-
imal omitted segments. Using these definitions, the problem of reconstruct-
ing maximal omitted segments can be stated as follows: Which sequences of
minimal omitted segments resulted from fragmentation of a maximal omitted
segment?

A maximal omitted segment must have a slope angle below the chosen
threshold t . So the problem can be solved by considering each pair of minimal
omitted segments to see if the slope angle between the starting point of the
first and the end point of the second is less than t . This brute-force solution
requires approximately 1

2n
2 comparisons. Since a large bitext can have tens of

thousands of minimal omitted segments, a faster method is desirable.
Theorem 1 suggests a fast algorithm to search for pairs of minimal omitted

segments that are farthest apart and that may have resulted from fragmentation
of a maximal omitted segment. The theorem is illustrated in figure 4.4. B and
T are mnemonics for “bottom” and “top.”

Theorem 4.1 Let A be the array of all minimal omitted segments, sorted by
the abscissa of the left end point. Let B̄ be a line in the bitext space whose slope
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equals the bitext slope, such that all the segments in A lie above B̄. Let s be the
left endpoint of a segment in A. Let �T be a ray starting at s with a slope angle
equal to the chosen threshold t . Let i be the intersection of B̄ and �T . Let b be
the point on B̄ with the same abscissa as s. Now, a maximal omitted segment
starting at s must end at some point e in the triangle �sib.

Proof Suppose e is outside �sib. Then e must be to the left of segment b̄s,
below segment b̄i, or above segment s̄i. s is defined as the left end point, so e

cannot be to the left of s. By definition of B̄, e cannot be below segment b̄i. If
e were above segment s̄i, then the slope angle of segment s̄e would be greater
than the slope angle of �T = t , so s̄e could not be an omitted segment.

ADOMIT exploits theorem 4.1 as follows. Each minimal omitted segment z
in A is considered in turn. Starting at z, ADOMIT searches the array A for
the last (i.e., rightmost) segment whose right end point e is in the triangle
�sib. Usually, this segment will be z itself, in which case the single minimal
omitted segment is deemed a maximal omitted segment. When e is not on the
same minimal omitted segment as s, ADOMIT concatenates all the segments
between s and e to form a maximal omitted segment. The search starting from
segment z can stop as soon as it encounters a segment with a right end point
higher than i. For useful values of t , each search will span no more than a
handful of candidate end points. Processing the entire array A in this manner
produces the desired set of maximal omitted segments very quickly.

4.7 Simulation of Omissions

To accurately evaluate a system for detecting omissions in translations, it is
necessary to use a bitext with many omissions whose locations are known in
advance. For perfect validity, the omissions should be those of a real translator,
working on a real translation, detected by a perfect proof-reader. Unfortunately,
first drafts of translations that had been subjected to careful revision were
not readily available. Therefore, the evaluation proceeded by simulation. The
advantage of a simulation was complete control over the lengths and relative
positions of omissions. This is important because the noise in a bitext map is
more likely to obscure a short omission than a long one.

The simulated omissions’ lengths were chosen to represent the lengths of
typical sentences and paragraphs in real texts. A corpus of 61479 Le Monde
paragraphs yielded a median French paragraph length of 553 characters. I had
no corpus of French sentences, so I estimated the median French sentence
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length less directly. A corpus of 43747 Wall Street Journal sentences yielded a
median English sentence length of 126 characters. This number was multiplied
by 1.103, the ratio of text lengths in the “easy” Hansard bitext, to yield a
median French sentence length of 139. Of course, the lengths of sentences and
paragraphs in other text genres will vary.

The placement of simulated omissions in the text was governed by the
assumption that translators’ errors of omission occur independently of one
another. This assumption implied that it was reasonable to scatter the simulated
omissions in a single text. To simplify subsequent evaluation, the omissions
were spaced at least 1000 characters apart. Such a distribution of simulated
omissions simplified the experimental design, because performance on a fixed
number of omissions in one text would be the same as performance on the
same number of omissions scattered among multiple texts. As a result, the
bitext-mapping algorithm had to be run only once per parameter set, instead
of separately for each of the omissions in that parameter set.

Sentence-length omissions were simulated by deleting 100 segments from
the French half of the “easy” Hansard bitext, 139 characters per segment. The
position of each simulated omission was randomly generated from a uniform
distribution, except that a minimum buffer zone of 1000 characters was en-
forced between consecutive omissions. The “easy” bitext was selected because
it is the one for which the densest hand-constructed true bitext map (TBM)
was available.1 The TBM was used to find the segments in the English half of
the bitext that corresponded to the deleted French segments. For the purposes
of the simulation, these English segments served as the “true” omitted seg-
ments. The same procedure was used to simulate paragraph-length omissions,
this time deleting segments of 533 characters each.

4.8 Evaluation

A useful evaluation of any omission detection algorithm must take the human
factor into account. A translator is unlikely to slog through a long series of false
alarms to make sure that there are no more true omissions in the translation.
Several consecutive false omissions will deter the translator from searching
any further. On average, the more consecutive false omissions it takes for a
translator to give up, the more true omissions she will find. Thus, recall on this
tasks correlates with the translator’s patience. Translator patience was one of
the independent variables in this experiment, quantified in terms of the number
of consecutive false omissions that the translator will tolerate.
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Figure 4.5
Evaluation method for simulated omissions.

Separate evaluations were carried out for the Basic Method and for
ADOMIT. Each algorithm was evaluated on the two different omission lengths.
The evaluation of each algorithm on each omission length was carried out ac-
cording to the following method, as illustrated in figure 4.5:

1. The SIMR bitext mapping algorithm in section 2.4 was used to find a map
between the original English text and the French text containing the simulated
omissions.2

2. The bitext map resulting from step 1 was fed into the omission detection
algorithm, which flagged what it thought were omitted segments. The flagged
omitted segments, which varied in length because of noise in the bitext map,
were sorted in order of decreasing length.
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An example of the order of “true” and “false” omissions when sorted by length. Horizontal runs
correspond to consecutive “true” omissions in the output; vertical runs correspond to consecutive
“false” omissions. In this example, the first run of more than three “false” omissions occurs only
after 87 “true” omissions.

3. Each omitted segment in the list output by step 2 was compared, in order, to
the list of true omitted segments. If any of the true omitted segments overlapped
the flagged omitted segment, the “true omissions” counter was incremented.
Otherwise, the “false omissions” counter was incremented. An example of the
resulting pattern of increments is shown in figure 4.6.

4. The pattern of increments was further analyzed to find the first point at
which the “false omissions” counter was incremented three times in a row.
The value of the “true omissions” counter at that point represented the recall
achieved by translators who give up after three consecutive false omissions. To
measure the recall that would be achieved by more patient translators, the “true
omissions” counter was also recorded at the first run of four consecutive false
omissions and at the first run of five.

5. Steps 1 to 4 were repeated on 10 different sets of simulated omissions in
order to measure 95% confidence intervals.

The low slope angle thresholds used in section 4.3 are suboptimal in the pres-
ence of noise, because much of the noise results in segments of very low slope.
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Mean recall scores for simulated paragraph-size (553-character) omissions for translators with
varying degrees of patience. Error bars represent 95% confidence intervals.
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Mean recall scores for simulated sentence-size (139-character) omissions for translators with
varying degrees of patience. Error bars represent 95% confidence intervals.
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New thresholds were reoptimized for ADOMIT and for the Basic Method us-
ing a separate development bitext. The algorithms were never informed of the
length or number of simulated omissions, nor that all the omissions were of the
same length in a given text.

Figures 4.7 and 4.8 plot the mean recall scores for translators with different
amounts of patience. ADOMIT outperformed the Basic Method by up to 48
percentage points. ADOMIT is also more robust, as indicated by its narrower
confidence intervals. The results shows that ADOMIT can help translators
catch more than 90% of all paragraph-size omissions and more than half of
all sentence-size omissions.

4.9 Conclusion

ADOMIT demonstrates that bitext maps have applications other than inducing
statistical translation models, and that accurate high-resolution bitext maps are
more valuable than mere alignments. Given a perfect bitext map, ADOMIT can
reliably detect even the smallest errors of omission. Given SIMR’s bitext maps,
ADOMIT finds enough typical omissions to be a valuable quality control tool
for translators and translation bureaus.





II THE TYPE-TOKEN INTERFACE





5 Models of Co-occurrence

A model of co-occurrence in bitext is a boolean predicate that indicates whether a
given pair of word tokens co-occur in corresponding regions of the bitext space. Co-
occurrence is a precondition for the possibility that two tokens might be mutual transla-
tions. Models of co-occurrence are the glue that binds methods for mapping bitext cor-
respondence and methods for estimating translation models into an integrated system
for exploiting parallel texts. Different models of co-occurrence are possible, depending
on the kind of bitext map available, the language-specific information available, and the
assumptions made about the nature of translational equivalence. Although most statis-
tical translation models are based on models of co-occurrence, modeling co-occurrence
optimally is more difficult than may at first appear.

5.1 Introduction

Most methods for estimating translation models from bitext start with the fol-
lowing intuition: Words that are translations of each other are more likely to
appear in corresponding bitext regions than other pairs of words. The intu-
ition is simple, but its correct exploitation turns out to be rather subtle. Most
of the literature on translation model estimation presumes that corresponding
regions of the input bitexts are represented by neatly aligned segments. As dis-
cussed in chapter 2, however, most of the bitexts available today are not easy to
align. Moreover, imposing an alignment relation on such bitexts is inefficient,
because alignments cannot capture crossing correspondences among text seg-
ments.

Chapter 2 proposed methods for producing general bitext maps for arbitrary
bitexts. The present chapter shows how to use bitext maps and other infor-
mation to construct a model of co-occurrence. A model of co-occurrence is a
boolean predicate that indicates whether a given pair of word tokens co-occur
in corresponding regions of the bitext space. Co-occurrence is a precondition
for the possibility that two tokens might be mutual translations. Models of co-
occurrence are the glue that binds methods for mapping bitext correspondence
and methods for estimating translation models into an integrated system for ex-
ploiting parallel texts. When the model of co-occurrence is modularized away
from the translation model, it also becomes easier to study translation model
estimation methods per se.

Different models of co-occurrence are possible, depending on the kind of
bitext map available, the language-specific information available, and the as-
sumptions made about the nature of translational equivalence. The following
three sections explore these three variables.
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5.2 Relevant Regions of the Bitext Space

By definition of “mutual translations,” corresponding regions of a text and
its translation contain word token pairs that are mutual translations. There-
fore, a general representation of bitext correspondence is the natural concept
on which to build a model of where mutual translations co-occur. The most
general representation of bitext correspondence is a bitext map, as described
in section 2.2. Token pairs whose coordinates are part of the true bitext map
(TBM) are mutual translations, by definition of the TBM. The a priori like-
lihood that two tokens are mutual translations is inversely correlated with the
distance between the tokens’ coordinate in the bitext space and the interpolated
TBM.

It may be possible to develop translation model estimation methods that are
initialized with a graded model of co-occurrence. However, all models in this
book and all models I’ve seen in the literature are initialized with a boolean
co-occurrence model—they want to know either that two tokens co-occur or
that they do not. A boolean co-occurrence predicate can be defined by setting
a threshold δ on the distance from the interpolated bitext map. Any token pair
whose coordinate is closer than δ to the bitext map would be considered to co-
occur by this predicate. The optimal value of δ varies with the language pair,
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Figure 5.1
Distance-based model of co-occurrence. Word token pairs whose coordinates lie in the shaded
region count as co-occurrences. Thus, (s, t2) co-occur, but (s, t1) do not.
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the bitext genre and the application. More generally, different thresholds δ1

and δ2 can be applied on each side of the TBM. Figure 5.1 illustrates what I
call the distance-based model of co-occurrence. Dagan et al. (1993b) were the
first to use a distance-based model of co-occurrence, although they measured
the distance in words rather than in characters.

General bitext mapping algorithms are a relatively recent invention. So far,
most researchers interested in co-occurrence of mutual translations have relied
on bitexts in which sentence boundaries (or other text unit boundaries) were
easy to find (e.g. Gale & Church, 1991b; Kumano & Hirakawa, 1994; Fung,
1995b; Melamed, 1995). Aligned text segments suggest a boundary-based
model of co-occurrence, as illustrated in figure 5.2.

For bitexts involving languages with similar word order, a more accurate
combined model of co-occurrence can be built using both segment boundary
information and the map-distance threshold. As shown in figure 5.3, each of
these constraints eliminates the noise from a characteristic region of the bitext
space.

5.3 Co-occurrence Counting Methods

Both the boundary-based and distance-based constraints restrict the region of
the bitext space where tokens may be considered to co-occur. Yet these con-
straints do not answer the question of how to count co-occurrences within the
restricted regions. It is somewhat surprising that this is a question at all, and
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Boundary-based model of co-occurrence. Word token pairs whose coordinates lie in shaded re-
gions count as co-occurrences. In contrast with figure 5.1, (s, t1) co-occur but (s, t2) do not.
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Combined model of co-occurrence. Word token pairs whose coordinates lie in shaded regions
count as co-occurrences. In contrast with figures 5.1 and 5.2, neither (s, t1) nor (s, t2) co-occur.
Striped regions indicate eliminated sources of noise.

most authors ignore it. However, when authors specify their translation model
estimation algorithms in sufficient detail to answer this question, the most fre-
quent answer (given, e.g., by Brown et al., 1993b; Dagan et al., 1993b; Kupiec,
1993; Melamed, 1995) turns out to be suboptimal for most applications.

The problem is easiest to illustrate under the boundary-based model of co-
occurrence. Given two aligned text segments, the most common way to count
co-occurrences is by multiplication:

cooc(u, v)= e(u) · f (v), (5.1)

where e(u) and f (v) are the frequencies of occurrence of u and v in their
respective segments. This method works fine for most u and v, where e(u)

and f (v) are either 0 or 1, and equation (5.1) returns 1 just in case both
words occur. The problem arises when e(u) > 1 and f (v) > 1. For example, if
e(u)= f (v)= 3, then according to equation (5.1), cooc(u, v)= 9!

A nonlinear relationship between co-occurrence counts and marginal fre-
quency counts is not a problem for Brown et al. (1993b)’s Model 1, because its
search space is everywhere concave, so it has only one local optimum (Brown
et al., 1993b, equation 74). It is straightforward to estimate Model 1’s globally
optimal parameter values, as long as all the relevant co-occurrence counts are
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initialized to more than zero. For all other translation models that I’m aware of,
the search space has many local optima, so it is important to choose favorable
initial conditions.

Loosely speaking, the best initial conditions for a statistical model are those
that are closest to the globally optimal parameter values. If maximum likeli-
hood estimation is used to search for the optimum parameters, then, all else
equal, the best initialization is the relative frequency of whatever phenom-
ena are being modeled. For translation models, this line of reasoning suggests
co-occurrence counts that grow linearly with marginal frequencies. If the two
aligned segments in the example above are really translations of each other,
then it is most likely that each of the occurrences of u is a translation of just
one of the occurrences of v. Although it may not be known which of the three
v’s each u corresponds to, the number of times that u and v co-occur as possible
translations of each other in that segment pair must be 3.

There are various ways to arrive at cooc(u, v)= 3. Two of the simplest ways
are

cooc(u, v)=min[e(u), f (v)] (5.2)

and

cooc(u, v)=max[e(u), f (v)]. (5.3)

Equation (5.2) is based on the simplifying assumption that each word is trans-
lated to at most one other word.1 Equation (5.3) is based on the simplifying
assumption that each word is translated to at least one other word. Either sim-
plifying assumption yields more generally useful co-occurrence counts than
the multiplication method in equation (5.1).

Counting co-occurrences is more difficult under a distance-based co-
occurrence model, because there are no aligned segments and consequently
no useful definition for e() and f (). Furthermore, under a distance-based co-
occurrence model, the co-occurrence relation is not transitive. As illustrated
in figure 5.4, it is possible that t1 co-occurs with s1, s1 co-occurs with t2,
t2 co-occurs with s2, but t1 does not co-occur with s2. The correct counting
method becomes clearer if the problem is recast in graph-theoretic terms. Let
the words in each half of the bitext represent the vertices on one side of a bipar-
tite graph. Let there be edges between each pair of words whose co-ordinates
are closer than δ to the bitext map. Now, under the “at most one” assumption
of equation (5.2), each co-occurrence is represented by an edge in the graph’s
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Under a distance-based model of co-occurrence, the co-occurrence relation is not transitive.

maximum matching.2 Under the “at least one” assumption of equation (5.3),
each co-occurrence is represented by an edge in the graph’s smallest vertex
cover. Maximum matching can be computed in polynomial time for any graph
(Ahuja et al., 1993). Vertex cover can be solved in polynomial time for bipar-
tite graphs.3 It’s likely that the solutions to both problems can be found very
quickly by exploiting the ordering among the nodes. That is, the search space
can be drastically reduced by noting that if s2 falls between s1 and s3, and t1

co-occurs with s1 but not with s2, then t1 cannot co-occur with s3. It is of no
importance that maximum matchings and minimum vertex covers may be non-
unique—by definition, all solutions have the same number of edges, and this
number is the correct co-occurrence count.

5.4 Language-Specific Filters

Co-occurrence is a universal precondition for translational equivalence among
word tokens in bitexts. Other preconditions may be imposed if certain
language-specific resources are available (Melamed, 1995). For example, parts
of speech tend to be preserved in translation (Papageorgiou et al., 1994). If
part-of-speech taggers are available for both languages in a bitext, and if cases
in which one part of speech is translated to another are not important for the
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intended application, then we can rule out the possibility of translational equiv-
alence for all token pairs involving different parts of speech. A more obvious
source of language-specific information is a machine-readable bilingual dic-
tionary (MRBD). If token a in one half of the bitext is found to co-occur
with token b in the other half, and (a, b) is an entry in the MRBD, then it
is highly likely that the tokens a and b are indeed mutual translations. In this
case, there is no point considering the co-occurrence of a or b with any other
token. Similarly, exclusive candidacy can be granted to cognate token pairs
(see section 2.4.2).

All the translation models in this book are based on co-occurrence counts.
None of them rely on any language-specific resource. However, more accu-
rate models may result if the co-occurrence counts are biased with language-
specific knowledge. Without loss of generality, whenever I refer to co-
occurrence counts in the rest of this book, I can refer to co-occurrence counts
that have been filtered using whatever language-specific resources happen
to be available. It does not matter if there are dependencies among the dif-
ferent knowledge sources, as long as each is used as a simple filter on the
co-occurrence relation (Melamed, 1995).

5.5 Conclusion

In this short chapter, I have investigated methods for modeling word token co-
occurrence. Models of co-occurrence are a necessary precursor to all the most
accurate translation models in the literature and all the translation models in
this book. So far, most researchers have relied on only a restricted form of
co-occurrence, based on a restricted kind of bitext map, applicable to only a
limited class of bitexts. I have shown how a more general co-occurrence model
can be based on any bitext map, and thus on any bitext.

The correct method for counting the number of times that two words co-
occur turns out to be rather subtle, especially for more general co-occurrence
models. As noted in section 5.3, many published translation models have been
based on suboptimal models of co-occurrence. This chapter has exposed their
shortcomings and shown how to improve them.





6 Manual Annotation of Translational Equivalence

Bilingual annotators were paid to link roughly sixteen thousand corresponding words
between on-line versions of the Bible in modern French and modern English. These an-
notations are freely available to the research community to serve as a standard data
set for developing and testing translation lexicons and statistical translation models.
This chapter describes the annotated bitext, the specially designed annotation tool,
and the strategies employed to increase the consistency of the annotations. The anno-
tation process was repeated five times by different annotators. Inter-annotator agree-
ment rates indicate that the annotations are reasonably reliable and that the method
is easy to replicate. The gold standard annotations can be freely downloaded from
http://www.cis.upenn.edu/∼melamed.

6.1 Introduction

Appropriately encoded expert opinions about which parts of a text and its trans-
lation are semantically equivalent can accelerate progress in several areas of
computational linguistics. First, researchers in translation theory and lexical
semantics can mine such data for insights about cross-linguistic lexicaliza-
tion patterns. Second, Resnik & Yarowsky (1997) have suggested that cross-
linguistic lexicalization patterns are an excellent criterion for deciding what
sense distinctions should be made by monolingual word-sense disambiguation
algorithms. My own motivation was in a third area. Until now, translation lex-
icons and statistical translation models have been evaluated either subjectively
(e.g. White & O’Connell, 1993) or using only approximate metrics, such as
perplexity with respect to other models (Brown et al., 1993b). One might think
that machine-readable bilingual dictionaries could be used to evaluate repre-
sentations of translational equivalence. Unfortunately, bilingual dictionaries
can only approximate this relation, because the complete translational equiv-
alence relation for any pair of languages is too large to describe in print and
evolves too rapidly for lexicographers to keep pace. More significantly, dictio-
naries provide no indication of the relative importance of different translations
for each head word.

To enable objective and more accurate comparisons of different translation
models, I have designed a method for constructing a close approximation of
token-level translational equivalence for a given bitext. The design allows ab-
straction of the word–token relation to the corresponding word–type relation,
so that evaluation can be performed both at the type and token levels. The
design has been implemented to link roughly 16000 corresponding words be-
tween online versions of the Bible in modern French and modern English. As
explained in section 6.2, this text was selected to facilitate widespread use and
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standardization, which was neither a goal nor an outcome of a similar earlier
project (Sadler & Vendelmans, 1990). A further distinguishing characteristic
of the present work is its emphasis on measurable consistency. Inter-annotator
agreement rates are reported in section 6.5.

Construction of a gold standard of this sort turned out to be very challenging
for two reasons. First, translational equivalence is a rather subjective notion, so
it would have been difficult for annotators to reach consensus about word-level
correspondence without a detailed style guide, such as the one in appendix A.
Development of an unbiased style guide for this task is itself very challeng-
ing, as evidenced by the intense debate on this topic during the second cam-
paign of the ARCADE competition (Langlais et al., 1998). Second, there is
no simple way for annotators to record word correspondences that isn’t highly
error-prone. To reduce data-entry errors, I designed the special annotation tool
described in section 6.3.

6.2 The Gold-Standard Bitext

The first step in creating the gold standard was to choose a bitext. To make
my results easy to replicate, I decided to work with the Bible. The Bible is
the most widely translated text in the world, and it exists in electronic form in
many languages. Replication of experiments with the Bible is facilitated by its
canonical segmentation into verses, which is constant across all translations.1

After some simple reformatting, e.g., using the tools described by Resnik et
al. (1997), the verse segmentation can serve as a ready-made, indisputable and
fairly detailed bitext map. Among the many languages in which the Bible is
available online, I chose to work with two with which I have some familiarity:
modern French and modern English. For modern English I used the New
International Version (NIV) and for modern French the Edition Louis Segond,
1910 (LSG).2

Next, I had to decide which parts of the bitext to annotate. My decision on
which books to include was guided by two practical considerations. First, most
online versions include a particular set of 66 books (Resnik et al., 1997). From
these 66, I excluded Ecclesiastes, Hosea and Job, because these books are not
very well understood, and so their translations are often extremely inconsistent
(Aster, 1997). The remaining 63 books comprise 29614 verses. My choice
of verses among these 29614 was motivated by the desire to make the gold
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standard useful for evaluating non-probabilistic translation lexicons. I will
argue in section 7.7.2 that the accuracy of an automatically induced translation
lexicon can be evaluated only in terms of the bitext from which it was induced:
Reliable evaluation of a word’s entry in the lexicon requires knowledge of all
of that word’s translations in the bitext. Therefore, I decided to annotate a set
of verses that includes all instances of a set of randomly selected word types.
However, the set of word types was not completely random, because I also
wanted to make the gold standard useful for investigating the effect of word
frequency on the accuracy of translation lexicon construction methods.

To meet all these goals, I used the following procedure to select verses that
contain a random sample of word types, stratified by word frequency.

1. I pre-processed both halves of the Bible bitext to separate punctuation
symbols from the words to which they were adjacent and to split elided forms
(hyphenated words, contractions, French du and aux, etc.) into multiple tokens.
To keep the bitext easy for the annotators to read, I did not lemmatize inflected
forms. The resulting bitext comprised 814451 tokens in the English half and
896717 tokens in the French half, of 14817 and 21372 types, respectively.

2. I computed a histogram of the words in the English Bible.

3. I randomly selected a focus set of 100 word types, consisting of 25 types
that occurred only once, 25 types that occurred twice, 25 types that occurred
three times and 25 types that occurred four times.

4. I extracted the English verses containing all the instances of all the words
in the focus set, and the French translations of those verses.

5. Step 4 resulted in some verses being selected more than once, because
they contained more than one of the words in the focus set. I eliminated
the duplications by discarding the lower-frequency word in each conflict and
resampling from the word types with that frequency.

The 100 types in the final focus set are listed in table 6.1. The tokens of
these word types are contained in (1+ 2+ 3+ 4) ∗ 25= 250 verse pairs. By
design, all the possible correct translations of the focus words in the bitext
can be automatically extracted from the annotations of these 250 verse pairs.
Including the focus words, the 250 verses in the gold standard comprise 7510
English word tokens and 8191 French word tokens, of 1714 and 1912 distinct
types, respectively.
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Table 6.1
Word types in the gold standard’s focus set.

Frequency 1 Frequency 2 Frequency 3 Frequency 4

Akkad Alexandrian Beginning Anointed
Arnan Around Cover Derbe
Ashterathite Carites Formerly Izharites
Bimhal Dressed Gatam Jeriah
Cun Exalt Inquire Mikloth
Ephai Finish agrees assurance
Ethiopians Halak deceivers burnished
Harnepher Helam defended circle
Impress Jahleel defiling defender
Jairite Jokmeam drain dens
Jeberekiah Kehelathah engulfed examined
Manaen Plague equity failing
Nekeb Zeus evident herald
apt brandish goldsmiths leadership
eyesight fulfilling intense loathe
handmill hotly partners radiance
improperly intelligible profound rallied
journeys ledges progress refusing
origins lit rout secretaries
parade pardoned stared student
readily petitioned starting stumbles
unending reappears swirling thankful
unsatisfied thwarts thistles topaz
unsuited undoing tingle violently
visitors unscathed woodcutters wisely

6.3 The Blinker Annotation Tool

To promote consistent annotation, I needed an effective way to link corre-
sponding words in the bitext. I could have just asked bilingual annotators to
type in pairs of numbers corresponding to the word positions of mutual transla-
tions in their respective verses. However, such a data entry process would be so
error-prone as to render the annotations highly unreliable. Instead, I designed
the Blinker (“bilingual linker”), a mouse-driven graphical annotation tool. Im-
plemented at the University of Maryland under the direction of Philip Resnik,
the Blinker allowed annotators to “link” any number of words to each other.
First, the words are selected with the left mouse button. When the right mouse
button is clicked, the Blinker links all the selected words by lines drawn be-
tween them on the screen. Words that were omitted from the translation were
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Figure 6.1
A Blinker session.

indicated by a link to one of the “Not Translated” bars. The Blinker makes
heavy use of color-coding, but a greyscale screen capture of a Blinker session
is shown in figure 6.1. Detailed instructions for using the Blinker are given in
figure 6.2.

6.4 Methods for Increasing Reliability

Translational equivalence is often difficult to determine at the word level.
Many words are translated only as part of larger text units, and even Biblical
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How to Use the Blinker

The Blinker (for “bilingual linker”) is a mouse-driven graphical user interface. Here’s
how to use it:

. To specify the correspondence between two or more words,

1. Select the words you want by clicking on them with the LEFT mouse button.
The boxes around the words will turn pink. (Note: Clicking on a word again will
“unselect” it.)

2. Either click on one of the Link bars, or click the MIDDLE or RIGHT mouse
button. The Blinker will draw lines between the words that you’ve selected and
color their boxes light blue.

. To specify that a word is not translated, click on the word (it will turn pink), and then
click on the Not Translated bar beside it. The Blinker will draw a line from the word
to the Not Translated bar.

. If you ever change your mind, you can simply re-link words that you’ve already
linked. The Blinker will delete all the links previously associated with those words
and draw the new links that you’ve specified.

. You will see four buttons at the bottom of each verse pair.

1. When you’ve finished specifying all the correspondences for a pair of verses,
click the Next >> button at the bottom. The Blinker will verify that all the words
on both sides have been accounted for, and then present you with the next pair of
verses in the set.

2. The << Prev button allows you to return to previous verse pairs in the same set.

3. The Reset button allows you to erase all the links in the verse pair currently on
the screen.

4. The Reload button allows you to reload the most recent links for the whole set of
verse pairs, e.g. after you’ve pressed Reset or when you return to a set after taking
a break.

Your work is permanently saved whenever you press Next >> , << Prev or
Reload .

Figure 6.2
Blinker instructions.
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translations are sometimes inconsistent or incomplete. Therefore, I adopted
several measures to increase the reliability of the gold-standard annotations.

First, instead of relying on only one or two annotators, I recruited as many
as I could find—seven—with the intent of creating multiple annotations for the
same data. Each set of annotations could be compared to the others, in order to
identify deviations from the norm. The replication of effort also made it pos-
sible to evaluate the gold standard itself in terms of inter-annotator agreement
rates.

Second, I designed the Blinker to prevent an annotator from proceeding to
the next verse pair until all the words in the current verse pair were annotated.
If an annotator felt that a given word did not have a translational equivalent in
the opposite verse, he or she had to explicitly mark the word as “Not Trans-
lated.” This forced-choice annotation method can be contrasted with the strat-
egy adopted in the Penn Treebank project for part-of-speech (POS) annotation
(Marcus et al., 1993). Most of the Penn Treebank was annotated for POS only
once, and the annotation method was to manually correct the output of an au-
tomatic POS tagger. Marcus et al. (1993) reported that this method produced
more reliable annotations than manual POS tagging from scratch. However,
a reliable “corrective” annotation method is only possible given a reasonably
good first approximation. Such an approximation might have been achieved by
one of the translation models described in chapter 7, but only at the expense of
biasing the gold standard towards a particular translation model, which would
have defeated the purpose of the project. Another justification for the forced-
choice approach is the overwhelming bias towards a “no-link” annotation—the
vast majority of word pairs are not linked. When I attempted the task myself, I
was amazed at how many words I forgot to link. A disadvantage of the forced-
choice approach is that forced decisions are not reliable when they are difficult.
The reliability of the gold standard is discussed in section 6.5.

My third strategy for increasing the reliability of the gold standard was bor-
rowed from the Penn Treebank project (Marcus et al., 1993): I constructed an
annotation style guide, which appears as appendix A. To reduce experimenter
bias, the guide was based largely on the intuitions of the annotators:

1. I wrote a draft version of the General Guidelines, shown in section A.1.

2. Two groups of annotators each annotated a set of ten randomly selected
verse pairs from the Bible bitext, using the draft General Guidelines. There
were seven annotators, so one set of 10 verse pairs was annotated four times
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and the other three times. These dry-run annotations also served to acclimate
the annotators to the task.

3. The different annotations for each verse pair were automatically compared.

4. I manually analyzed the differences and identified the major sources of
variation in the annotations.

5. I reconvened four of the seven annotators and presented them with examples
of the different kinds of variation, one kind at a time. We briefly discussed each
kind of variation, and then the annotators voted on the preferred annotation
style.

6. I compiled the votes and the examples on which they were based into the
Detailed Guidelines in section A.2. I also added some clarifying examples post
hoc.

7. When the annotators began annotating the gold standard, they reported
a few additional difficult cases. By email, I solicited votes on the preferred
annotation style for these difficult cases from all the annotators. The majority
opinions were incorporated into the style guide.

The annotators were encouraged to conform to the style guide by a finan-
cial incentive plan. They were offered a bonus for each “difficult” verse-pair
on which their rate of agreement with other annotators was the highest. The
definition of “difficult” was left intentionally vague, to prevent any attempts at
collaborative cheating.

6.5 Inter-Annotator Agreement

Annotators A1, A2 and A3 annotated all 250 verse pairs. The other four an-
notators could not devote so much time to the project. To accommodate them,
verse pairs 1 through 100 were annotated by annotators A4 and A6, while verse
pairs 101 through 250 were annotated by annotators A5 and A7. I report sepa-
rate inter-annotator agreement statistics for verse pairs up to #100 and for verse
pairs starting with #101.

The simplest way to measure agreement would have been to compute a
single rate for each pair of annotators over whichever parts of the gold standard
they both annotated. However, standard deviations could not be computed
this way. The next simplest way to measure agreement would have been to
compute separate agreement rates for each of the 250 verse pairs, and then
to find the means and standard deviations of these 250 rates. However, this
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approach would have inflated the agreement rates, because links in shorter
verse pairs were easier to assign and therefore less likely to diverge. Since
there were fewer links in shorter verse pairs, each of these “easier” links would
have influenced the mean agreement rate more than the links in long verse
pairs. A more accurate method for measuring agreement lay between these
two extremes. I divided part 1 of the gold standard into 10 sets of 10 verse
pairs each, and part 2 into 10 sets of 15 verse pairs each. I pooled the links in
each set of verses and computed 10 agreement rates for each pair of annotators
for each part of the gold standard. Then, I computed the means and standard
deviations of the 10 rates for each pair of annotators for each part of the gold
standard.

A straightforward metric for measuring agreement rates can be derived from
the recall and precision measures widely used in the information retrieval
literature. When comparing a set of “test” elements X to a set of “correct”
elements Y ,

precision(X|Y )= |X ∩ Y |
|X| , (6.1)

recall(X|Y )= |X ∩ Y |
|Y | . (6.2)

X and Y can be fuzzy sets, such as probability distributions, in which case |X|
is defined as the sum of the weights of the elements in X and |X ∩ Y | is the sum
of the weights of the elements shared by X and Y . Equations (6.1) and (6.2)
differ only in the set whose size is used as the denominator. If neither X nor Y

is privileged, or if precision and recall are equally important, we can compute
a symmetric measure of agreement D as the harmonic mean of precision and
recall:

D(X, Y )= 2
1

Precision(X|Y )
+ 1

Recall(X|Y )

= 2 ∗ |X ∩ Y |
|X| + |Y | . (6.3)

D is the set-theoretic equivalent of the Dice coefficient (Dice, 1945) and con-
veniently ranges from zero to one.

From an information-processing point of view, the input to the annotators
was a set of aligned text segments and their output was a set of pairs of cor-
responding word positions. So, inter-annotator agreement should be measured
in terms of the similarity between sets of pairs of corresponding word posi-
tions. There is a small problem with counting pairs of word positions at face
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value, however, which is related to the problem with the naive method of count-
ing co-occurrences using equation (5.1). The annotators of the gold standard
could link each word to as many other words as they wished (e.g., “take their
stand” in figure 6.1). Therefore, an evaluation metric that treats all link tokens
as equally important would place undue importance on words that were linked
more than once.

One solution to this problem is to attach a weight w(u, v) to each link token
(u, v), where

w(u, v)= 1

max[fanout(u), fanout(v)]
. (6.4)

The fanout function returns the number of links attached to its argument. When
the link tokens are weighted in this fashion, the weights attached to each word
will sum to at most one. With the link weights in place, we can compute preci-
sion, recall, and D as defined above. This solution is somewhat deficient, be-
cause when the lowest common multiple of fanout(u) and fanout(v) is neither
fanout(u) nor fanout(v), then neither u nor v will carry full weight. However,
such cases are so rare that they can be ignored for the sake of a simple evalu-
ation method. Some of the evaluations in the following chapters are based on
equation (6.3), weighted by equation (6.4).

For the purposes of evaluating the gold standard itself, I used a slightly more
complicated but non-deficient weighting scheme. First, links were treated as
directed arcs from the French side of the bitext to the English side. Weights
were normalized so that the weights of the arcs emitted by any single French
word token summed to 1. However, no limit was placed on the total weight
of arcs that could point to an English word token. With the arcs weighted in
this fashion, an agreement rate DF→E was computed between each pair of
annotators using equation (6.3). Then the arcs were reversed and reweighted
so that the weights of the arcs emitted by any one English word summed to 1,
but the weight of arcs pointing to a French word was unrestricted. A second
agreement rate DE→F was computed between each pair of annotators with the
arcs normalized in this direction. The final agreement rate was the mean of
DF→E and DE→F . The rates for each pair of annotators, for each part of the
gold standard, along with the mean for each annotator and the grand mean, are
shown in table 6.2.

Regardless of how literal the translation is in a given bitext, some words will
not correspond well to words on the other side. In particular, the translations of
function words often depend more strongly on the content words around them
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Table 6.2
Percent inter-annotator agreement, ± standard deviation.

Part 1: Verse pairs 1–100
A2 A3 A4 A5 annotator mean

81.81 ± 4.61 89.64 ± 5.38 82.91 ± 4.73 86.06 ± 4.21 A1 85.11 ± 5.67
81.71 ± 3.10 79.27 ± 3.14 81.73 ± 2.75 A2 81.13 ± 3.71

82.53 ± 5.23 85.96 ± 3.11 A3 84.96 ± 5.38
79.54 ± 3.84 A4 81.06 ± 4.68

A5 83.32 ± 4.53

grand mean 83.12 ± 5.16

Part 2: Verse pairs 101–250
A2 A3 A6 A7 annotator mean

81.92 ± 3.97 87.85 ± 2.79 77.04 ± 2.99 85.82 ± 2.02 A1 83.15 ± 5.12
81.45 ± 3.91 74.20 ± 4.11 80.50 ± 3.55 A2 79.52 ± 4.99

76.81 ± 2.89 85.00 ± 2.12 A3 82.78 ± 5.11
75.63 ± 2.51 A6 75.92 ± 3.38

A7 81.74 ± 4.84

grand mean 80.62 ± 5.44

than on the function words themselves. Function words are the first to change
when a translator decides to paraphrase. Most of the annotation style guide
was devoted to annotation conventions for function words. These observations
suggest that the inter-annotator agreement may be higher for content words
than for function words.

Since function words are not important for some applications of translation
models, it is useful to measure the inter-annotator agreement rates for content
words only. I compiled a stoplist of 287 function words for English and 375
function words for French. These lists consist of all words that are not nouns,
verbs, adverbs or adjectives, in addition to all inflections of all auxiliary verbs
(do, go, be, etc. and their French equivalents). The gold standard contained
2871 English word tokens and 2768 French word tokens that were not on the
stoplist. From the complete set of annotations, I removed all the links that had a
stoplisted word on either side. Then, I re-evaluated inter-annotator agreement,
using the same method, but only on the remaining links. Table 6.3 shows the
results. The effect of ignoring function words is well illustrated by the 10% rise
in the grand mean of table 6.3 over the grand mean of table 6.2.

The inter-annotator agreement rates in tables 6.2 and 6.3 indicate that the
annotators were doing mostly the same thing most of the time, and that the
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Table 6.3
Percent inter-annotator agreement on content words only, ± standard deviation.

Part 1: Verse pairs 1–100
A2 A3 A4 A5 annotator mean

90.60 ± 4.62 94.37 ± 4.99 91.75 ± 3.38 94.20 ± 3.28 A1 92.73 ± 4.45
90.20 ± 3.20 90.52 ± 2.94 90.54 ± 2.24 A2 90.46 ± 3.38

91.85 ± 4.69 94.33 ± 3.74 A3 92.69 ± 4.58
92.17 ± 2.48 A4 91.57 ± 3.55

A5 92.81 ± 3.40

grand mean 92.05 ± 4.01

Part 2: Verse pairs 101–250
A2 A3 A6 A7 annotator mean

90.91 ± 3.81 94.17 ± 2.69 88.38 ± 3.56 94.37 ± 2.57 A1 91.96 ± 4.06
90.92 ± 3.43 87.80 ± 4.20 90.79 ± 3.24 A2 90.11 ± 3.93

88.88 ± 4.23 93.52 ± 2.56 A3 91.87 ± 3.92
88.04 ± 3.36 A6 88.28 ± 3.90

A7 91.68 ± 3.87

grand mean 90.78 ± 4.18

task is reasonably well-defined and reasonably easy to replicate. This claim is
strengthened by the observation that annotator A6 was a low outlier regardless
of whether function word links are considered, which is why the grand means
are lower for part 2 than for part 1. Nevertheless, the agreement rates are not as
high as one might like. Although much more research is required to draw any
conclusions with certainty, I can suggest three reasons why the inter-annotator
agreement rates are not any higher.

First, despite the care taken with Biblical translations, many aligned Bible
verses carry significantly different meanings. For example:

English: They also brought to the proper place their quotas of barley and straw

for the chariot horses and the other horses.

French: Ils faisaient aussi venir de l’orge et de la paille pour les chevaux et les

coursiers dans le lieu où se trouvait le roi, chacun selon les ordres qu’il avait reçus.

One possible explanation for the divergence is that neither of my Bible versions
is a translation of the other; rather, both are probably translations of a third
original, if not two different originals. Furthermore, careful translation often
requires non-literal translation. This practice is particularly apparent in the case
of the Bible.
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Second, the style guide was based on only a small sample of annotated bi-
text, and it was inevitable that new sources of variation in the annotations
would occur in previously unseen bitext. In order to further standardize the
annotation style, it would have been necessary to update the style guide it-
eratively, checking each new batch of annotated verses for new sources of
inter-annotator variation. Such a procedure was beyond my time and budget
constraints.

Third, as with all first versions of such tools, the Blinker annotation tool left
much to be desired. For example, when one of a pair of verses was significantly
longer than the other, the lines representing some of the links were nearly
vertical and blended together. One annotator admitted by email, “I do at times
throw up my hands in frustration at how hard it is . . . to link a word at the
top to a word at the veeeeeeeery bottom. I reckon you just may get extra ‘not-
linked’s because of this.” A better Blinker design, perhaps akin to the Cairo tool
(Smith & Jahr, 2000), might have made it easier for the annotators to follow
the style guide.

6.6 Conclusion

This chapter describes a method for manually constructing explicit represen-
tations of translational equivalence. After a detailed style guide was written,
a special annotation tool was used to annotate corresponding words in a large
part of a widely available bitext. Among other uses, the annotations are in-
tended for use as a gold-standard for comparing automatically constructed
models of translational equivalence, and thus also for comparing the meth-
ods used to construct such models. Inter-annotator agreement rates on the gold
standard are roughly 82%, or roughly 92% if function words are ignored. These
rates indicate that the gold standard is reasonably reliable and that the task is
reasonably easy to replicate. The gold standard annotations are freely available
from http://www.cis.upenn.edu/~melamed.





III TRANSLATIONAL EQUIVALENCE AMONG WORD
TYPES





7 Word-to-Word Models of Translational Equivalence

Bitexts have properties that distinguish them from other kinds of parallel data. First,
most words in a bitext translate to only one other word. Second, bitext correspondence
is typically only partial—many words in each text have no clear equivalent in the other
text. This chapter presents methods for biasing statistical translation models to reflect
these properties. Analysis of the expected behavior of these biases in the presence of
sparse data predicts that they will result in more accurate models. The prediction is
confirmed by evaluation with respect to independent human judgments—models biased
in this fashion are significantly more accurate than a baseline knowledge-free model.
This chapter also shows how a statistical translation model can take advantage of pre-
existing knowledge that might be available about particular language pairs. Even the
simplest kinds of language-specific knowledge, such as the distinction between content
words and function words, are shown to reliably boost translation model performance
on some tasks. Statistical models that reflect knowledge about the model domain com-
bine the best of both the rationalist and empiricist paradigms.

7.1 Introduction

The idea of a computer system for translating from one language to another is
almost as old as the idea of computer systems. Warren Weaver (1955) wrote
about “mechanical translation” as early as 1949. More recently, Brown et
al. (1988) suggested that it may be possible to construct machine translation
systems automatically. Instead of codifying the human translation process from
introspection, Brown et al. proposed machine learning techniques to induce
models of the process from examples of its input and output. The proposal
generated much excitement, because it held the promise of automating a task
that forty years of research have proven very labor-intensive and error-prone.
Yet very few other researchers have taken up the cause, partly because Brown
et al.’s approach was quite a departure from the paradigm in vogue at the
time.

Brown et al.’s most important insight was that translational equivalence is
a relation that can be learned from data. Like all mathematical models, the
best translation models are those whose parameters correspond best with the
sources of variance in the data. Probabilistic translation models whose param-
eters reflect universal properties of translational equivalence and/or existing
knowledge about particular languages and language pairs benefit from the best
of both the empiricist and rationalist traditions.

This chapter presents three such models, along with methods for efficiently
estimating their parameters. Each new method is designed to take into account
an additional universal property of translational equivalence in bitexts:
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1. Most word tokens translate to only one word token. I approximate this
tendency with a one-to-one assumption.

2. Most text segments are not translated word for word. I build an explicit
noise model.

3. Different linguistic objects have statistically different behavior in transla-
tion. I show a way to condition translation models on different word classes to
help take the variety into account.

Quantitative evaluation with respect to the gold standard developed in chapter 6
has shown that each of the three biases significantly improves translation model
accuracy over a baseline knowledge-free model.

A review of some previously published translation models follows an intro-
duction to translation model taxonomy. The core of the chapter is a presenta-
tion of the model estimation biases described above. Section 7.7 describes the
results of a variety of experiments designed to evaluate these innovations. The
last section suggests ways to employ this chapter’s techniques for accelerated
development of lexicons for machine translation systems.

7.2 Translation Model Decomposition

There are two kinds of applications of translation models: those where word
order plays a crucial role and those where it doesn’t. Empirically estimated
models of translational equivalence among word types can play a central role
in both kinds of applications.

Applications in which word order is not essential include

. cross-language information retrieval (e.g. McCarley, 1999)

. multilingual document filtering (e.g. Oard, 1997)

. computer-assisted language learning (e.g. Nerbonne et al., 1997)

. certain machine-assisted translation tools (e.g. ADOMIT in chapter 4 or
Macklovitch, 1994)
. concordancing for bilingual lexicography (e.g. Catizone et al., 1989; Gale &
Church, 1991b)
. corpus linguistics (e.g. Svartvik, 1992)
. “crummy” machine translation (e.g. Church & Hovy, 1993; Resnik, 1997)
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For these applications, empirically estimated models have a number of advan-
tages over hand-crafted models such as on-line versions of bilingual dictio-
naries. Two of the advantages are the possibility of better coverage and the
possibility of frequent updates by non-expert users to keep up with rapidly
evolving vocabularies.

A third advantage is that statistical models can provide more accurate infor-
mation about the relative importance of different translations. Such information
is crucial for applications such as cross-language information retrieval (CLIR).
In the vector space approach to CLIR, the query vector Q′ is in a different lan-
guage (a different vector space) from the document vectors D. A word-to-word
translation model T can map Q′ into a vector Q in the vector space of D . In
order for the mapping to be accurate, T must be able to encode many levels of
relative importance among the possible translations of each element of Q′. A
typical bilingual dictionary says only what the possible translations are, which
is equivalent to positing a uniform translational distribution. The performance
of cross-language information retrieval with a uniform T is likely to be lim-
ited in the same way as the performance of conventional information retrieval
without term frequency information, i.e., where the system knows which terms
occur in which documents, but not how often (Buckley, 1993).

Applications in which word order is crucial include speech recognition for
translation (Brousseau et al., 1995), bootstrapping of OCR systems for new
languages (Resnik & Kanungo, 1999), interactive translation (Foster et al.,
1996), and fully automatic high-quality machine translation (e.g. Al-Onaizan
et al., 1999). In such applications, a word-to-word translation model can serve
as an independent module in a more complex sequence-to-sequence1 trans-
lation model. The independence of such a module is desirable for two rea-
sons, one practical and one philosophical. The practical reason is illustrated
in this chapter: Order-independent translation models can be accurately esti-
mated more efficiently in isolation. The philosophical reason is that words are
an important epistemological category in our naive mental representations of
language. We have many intuitions (and even some testable theories) about
what words are and how they behave. It is useful to bring these intuitions
to bear on our translation models without being distracted by other facets of
language, such as phrase structure. For example, the translation models in
chapter 8 are motivated by the observation that spaces in text do not neces-
sarily delimit words; the models presented in chapter 9 are motivated by the
common belief that words can have multiple senses.
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The independence of a word-to-word translation module in a sequence-to-
sequence translation model can be effected by a two-stage decomposition. The
first stage is based on the observation that every sequence L is just an ordered
bag, and that the bag B can be modeled independently of its order O. For
example, the sequence 〈abc〉 consists of the bag {c, a, b} and the ordering
relation {(b, 2), (a, 1), (c, 3)}. If we represent each sequence L as a pair (B, O),
then

Pr(L)≡ Pr(B, O) (7.1)

= Pr(B) · Pr(O|B). (7.2)

Now, let L1 and L2 be two sequences and let A be a one-to-one mapping be-
tween the elements of L1 and the elements of L2. Borrowing a term from the
operations research literature, I shall refer to such mappings as assignments.2

Let A be the set of all possible assignments between L1 and L2. Using assign-
ments, we can decompose conditional and joint probabilities over sequences:

Pr(L1|L2)=
∑

A∈A
Pr(L1, A|L2), (7.3)

Pr(L1, L2)=
∑

A∈A
Pr(L1, A, L2) (7.4)

where

Pr(L1, A|L2)≡ Pr(B1, O1, A|L2) (7.5)

= Pr(B1, A|L2) · Pr(O1|B1, A, L2), (7.6)

Pr(L1, A, L2)≡ Pr(B1, O1, A, B2, O2) (7.7)

= Pr(B1, A, B2) · Pr(O1, O2|B1, A, B2). (7.8)

Summing bag pair probabilities over all possible assignments, we obtain a bag-
to-bag translation model:

Pr(B1, B2)=
∑

A∈A
Pr(B1, A, B2). (7.9)

The second stage of decomposition takes us from bags of words to the words
they contain. The following bag-pair generation process illustrates how a word-
to-word translation model can be embedded in a bag-to-bag translation model
for languages L1 and L2:
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1. Generate a bag size l.3 l is also the assignment size.

2. Generate l language-independent concepts C1, . . . , Cl.

3. From each concept Ci, 1≤ i ≤ l, generate a pair of word sequences (�ui, �vi)

from L∗1 × L∗2, according to the distribution trans(�u, �v), to lexicalize the con-
cept in the two languages.4 Some concepts are not lexicalized in some lan-
guages, so one of �ui and �vi may be empty.

A pair of bags containing m and n non-empty word sequences can be generated
by a process in which l is anywhere between 1 and m+ n.

For notational convenience, the elements of the two bags can be labeled so
that B1≡ { �u1, . . . , �ul} and B2≡ { �v1, . . . , �vl}, where some of the �us and �vs may
be empty. The elements of an assignment, then, are pairs of bag element labels
A≡ {(i1, j1), . . . , (il, jl)}, where each i ranges over { �u1, . . . , �ul}, each j ranges
over { �v1, . . . , �vl}, each i is distinct and each j is distinct. The label pairs in a
given assignment can be generated in any order, so there are l! ways to generate
an assignment of size l.5 It follows that the probability of generating a pair of
bags (B1, B2) with a particular assignment A of size l is

Pr(B1, A, B2|l, C, trans)= Pr(l) · l!
∏

(i,j)∈A

∑

C∈C
Pr(C)trans( �ui, �vi|C). (7.10)

The above equation holds regardless of how we represent concepts. There
are many plausible representations, such as pairs of trees from synchronous
tree adjoining grammars (Abeillé et al., 1990; Shieber, 1994; Candito, 1998),
lexical conceptual structures (Dorr, 1992) and WordNet synsets (Miller, 1990;
Vossen, 1998). Of course, for a representation to be used, a method must
exist for estimating its distribution in data. A useful representation will reduce
the entropy of the trans distribution, which is conditioned on the concept
distribution as shown in equation (7.10). This topic is beyond the scope of this
chapter, however. I mention it only to show how the models presented here
may be used as building blocks for models that are more psycholinguistically
sophisticated.

To make the translation model estimation methods presented here as gen-
eral as possible, I assume a totally uninformative concept representation—the
trans distribution itself. In other words, I assume that each different pair of
word sequence types is deterministically generated from a different concept,
so that trans(�ui, �vi|C) is zero for all concepts except one. Now, a bag-to-bag
translation model can be fully specified by the distributions of l and trans:
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Pr(B1, A, B2|l, trans)= Pr(l) · l!
∏

(i,j)∈A

trans( �ui, �vj ). (7.11)

The probability distribution trans(�u, �v) is a word-to-word translation
model. Unlike the models proposed by Brown et al. (1993b), this model is
symmetric, because both word bags are generated together from a joint prob-
ability distribution. Brown et al.’s models, reviewed in section 7.4.2, generate
one half of the bitext given the other half, so they are represented by conditional
probability distributions. A sequence-to-sequence translation model can be ob-
tained from a word-to-word translation model by combining equation (7.11)
with order information, as in equation (7.8).

7.3 The One-to-One Assumption

The most general word-to-word translation model trans(�u, �v), where �u and
�v range over sequences in L1 and L2, has an infinite number of parameters.
This model can be constrained in various ways to make it more practical. The
models presented in this chapter are based on the one-to-one assumption: Each
word is translated to at most one other word. In these models, �u and �v may
consist of at most one word each. As before, one of the two sequences (but
not both) may be empty. I describe empty sequences as consisting of a special
null word, so that each word sequence contains exactly one word and can
be treated as a scalar. Henceforth, I shall write u and v instead of �u and �v.
Under the one-to-one assumption, a pair of bags containing m and n non-empty
words can be generated by a process where the bag size l is anywhere between
max(m, n) and m+ n.

The one-to-one assumption is not as restrictive as it may appear. The ex-
planatory power of a model based on this assumption may be raised to an ar-
bitrary level by extending Western notions of what words are to include words
that contain spaces (e.g., in English) or several characters (e.g., in Chinese).
For example, in chapter 8, I show how to estimate word-to-word translation
models where a word can be a non-compositional compound consisting of sev-
eral space-delimited tokens. For the purposes of this chapter, however, words
are the tokens generated by my tokenizers and stemmers for the languages in
question. Therefore, the models in this chapter are only a first approximation to
the vast complexities of translational equivalence between natural languages.
They are intended mainly as stepping stones towards better models.
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7.4 Previous Work

7.4.1 Non-Probabilistic Translation Lexicons

Many researchers have proposed greedy algorithms for estimating non-
probabilistic word-to-word translation models, also known as translation lexi-
cons (e.g. Catizone et al., 1989; Gale & Church, 1991b; Fung, 1995b; Kumano
& Hirakawa, 1994; Melamed, 1995; Wu & Xia, 1994). Most of these algo-
rithms can be summarized as follows:

1. Choose a similarity function S between word types in L1 and word types
in L2.

2. Compute association scores S(u, v) for a set of word type pairs (u, v) ∈
(L1 × L2) that occur in training data.

3. Sort the word pairs in descending order of their association scores.

4. Discard all word pairs for which S(u, v) is less than a chosen threshold. The
remaining word pairs become the entries in the translation lexicon.

The various proposals differ mainly in their choice of similarity function. A
minor variant can be found in work by Daille et al. (1994), who discard all but
the most highly associated entry for each word on one side of the bitext.

The biggest innovation since the first of these algorithms appeared is the
“context heterogeneity” similarity function (Fung, 1995a). It is well known
that all words have a characteristic signature in the frequency distribution of
the words around them. For example, in English, the frequency of Her is unusu-
ally high in the vicinity of Majesty. Fung discovered that certain parts of these
signatures are preserved in translation.6 In particular, the highest peaks in the
frequency distribution remain high. These peaks are what Fung collectively
calls “context heterogeneity.” If two words in two different languages have
contexts that are heterogeneous in a similar way, then it is likely that the simi-
larity arose from words in their respective contexts that are mutual translations.
Fung showed how the similarity between the heterogeneity of two words’ con-
texts can be measured by approximate spectrum matching techniques borrowed
from the speech recognition literature. These techniques are robust to noise in
the translation, such as large omissions. A drawback of the context heterogene-
ity similarity function is that it is reliable only for frequent words. However,
it is much better than nothing when parallel texts are not available. It is also
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nods his head .He

hoche la tête .Il

Figure 7.1
nods and hoche often co-occur, as do nods and head. The direct association between nods and
hoche, and the direct association between nods and head give rise to an indirect association
between hoche and head.

useful for constructing a seed translation lexicon for SIMR when no suitable
MRBD or bilingual lexicographer is available (Dagan, 1997).

Given a reasonable similarity function, the greedy algorithm works remark-
ably well, considering how simple it is. However, the association scores in
step 2 are typically computed independently of each other. The problem with
this independence assumption is illustrated in figure 7.1. The two word se-
quences represent corresponding regions of an English/French bitext. If nods

and hoche co-occur much more often than expected by chance, then any rea-
sonable similarity metric will deem them likely to be mutual translations. nods

and hoche are indeed mutual translations, so their tendency to co-occur is
called a direct association. Now, suppose that nods and head often co-occur
in English. Then hoche and head will also co-occur more often than expected
by chance. The dashed arrow between hoche and head in figure 7.1 represents
an indirect association, since the association between hoche and head arises
only by virtue of the association between each of them and nods. Models of
translational equivalence that are ignorant of indirect associations have “a ten-
dency . . . to be confused by collocates” (Dagan et al., 1993b).

Paradoxically, the irregularities (noise) in text and in translation mitigate
the problem. If noise in the data reduces the strength of a direct association,
then the same noise will reduce the strengths of any indirect associations that
are based on this direct association. On the other hand, noise can reduce the
strength of an indirect association without affecting any direct associations.
Therefore, direct associations are usually stronger than indirect associations.
If all the entries in a translation lexicon are sorted by their association scores,
the direct associations will be very dense near the top of the list and sparser
towards the bottom.

Gale & Church (1991b) have shown that entries at the very top of the list can
be over 98% correct. Their algorithm gleaned lexicon entries for about 61% of
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the word tokens in a sample of 800 English sentences. To obtain 98% precision,
their algorithm selected only entries for which it had high confidence that the
association score was high. These would be the word pairs that co-occur most
frequently. A random sample of 800 sentences from the same corpus showed
that 61% of the word tokens, where the tokens are of the most frequent types,
represent 4.5% of all the word types.

A similar strategy was employed by Wu & Xia (1994) and by Fung (1995b).
Fung skimmed off the top 23.8% of the noun-noun entries in her lexicon to
achieve a precision of 71.6%. Wu & Xia reported automatic acquisition of
6517 lexicon entries from a 3.3-million-word corpus, with a precision of 86%.
The first 3.3 million word tokens in an English corpus from a similar genre
contained 33490 different word types, suggesting a recall of roughly 19%.
Note, however, that Wu & Xia chose to weight their precision estimates by
the probabilities attached to each entry:

For example, if the translation set for English word detect has the two correct Chinese
candidates with 0.533 probability and with 0.277 probability, and the incorrect transla-
tion with 0.190 probability, then we count this as 0.810 correct translations and 0.190
incorrect translations. (Wu & Xia, 1994, p. 211)

This is a reasonable evaluation method, but it is not comparable to methods
that simply count each lexicon entry as either right or wrong (e.g. Daille et al.,
1994; Melamed, 1996a). A weighted precision estimate pays more attention to
entries that are more frequent and hence easier to estimate. Therefore, weighted
precision estimates are generally higher than unweighted ones.

7.4.2 Re-estimated Sequence-to-Sequence Translation Models

Most probabilistic translation model re-estimation algorithms published to date
are variations on the theme proposed by Brown et al. (1993b). These models in-
volve conditional probabilities, but they can be compared to symmetric models
if the latter are normalized by the appropriate marginal distribution. I review
these models using the notation in table 7.1.
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Table 7.1
Variables used to describe translation models.

(U, V) = the two halves of the bitext
(U , V ) = a pair of aligned text segments in (U, V)

e(u) = the unigram frequency of u in U

f (v) = the unigram frequency of v in V

cooc(u, v) = the number of times that u and v co-occur
trans(v|u) = the probability that a token of u will be translated as a token of v

Models Using Co-occurrence Information Only Brown et al. (1993) em-
ploy the Expectation-Maximization (EM) algorithm (Dempster et al., 1977)
to estimate the parameters of their Model 1. On iteration i, the EM algorithm
re-estimates the model parameters transi(v|u) based on their estimates from it-
eration i − 1. In Model 1, the relationship between the new parameter estimates
and the old ones is

transi(v|u)= z
∑

(U ,V )∈(U,V)

transi−1(v|u) · e(u) · f (v)∑
u′∈U transi−1(v|u′) (7.12)

where z is a normalizing factor.7

It is instructive to consider the form of equation (7.12) when all the trans-
lation probabilities trans(v|u) for a particular u are initialized to the same
constant p, as Brown et al. (1993b p. 273) actually do:

trans1(v|u)= z
∑

(U ,V )∈(U,V)

p · e(u) · f (v)
p · |U | (7.13)

= z
∑

(U ,V )∈(U,V)

e(u) · f (v)
|U | . (7.14)

The initial translation probability trans1(v|u) is set proportional to the co-
occurrence count of u and v and inversely proportional to the length of each
segment U in which u occurs. The intuition behind the numerator is central
to most bitext-based translation models: The more often two words co-occur,
the more likely they are to be mutual translations. The intuition behind the
denominator is that the co-occurrence count of u and v should be discounted
to the degree that v also co-occurs with other words in the same segment
pair.
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Now consider how equation (7.14) would behave if all the text segments on
each side were of the same length,8 so that each token of v co-occurs with
exactly c words (where c is constant):

trans1(v|u)= z
∑

(U ,V )∈(U,V)

e(u) · f (v)
c

(7.15)

= z

c

∑

(U ,V )∈(U,V)

e(u) · f (v). (7.16)

The normalizing coefficient z/c is constant over all words. The only differ-
ence between equations (7.14) and (7.16) is that the former discounts co-
occurrences proportionally to the segment lengths. When information about
segment lengths is not available, the only information available to initialize
Model 1 is the co-occurrence counts. This property makes Model 1 an ap-
propriate baseline for comparison to more sophisticated models that use other
information sources, both in the work of Brown et al. and in the work described
here.

Word Order Correlation Biases In any bitext, the positions of words rela-
tive to the true bitext map correlate with the positions of their translations. The
correlation is stronger for language pairs with more similar word orders. Brown
et al. (1988) introduced the idea that this correlation can be encoded in trans-
lation model parameters. Under the boundary-based model of co-occurrence,
their Model 2 defines alignment probabilities a(i|j , m, n), where i and j de-
note absolute word positions in a pair of aligned segments and m and n are the
segment lengths. In order to estimate Model 2, the alignment probabilities are
initialized to be all equally likely: a(i|j , m, n)= 1/m; the translation parame-
ters are initialized using Model 1. Both sets of parameters are then re-estimated
using the EM algorithm.

In Model 2, the relationships between the new parameter estimates and the
old ones are:

ai(i|j , m, n)= y
∑

(U ,V )∈(U,V)

transi−1(vj |ui)ai−1(i|j , m, n)∑n
i′=1 transi−1(vj |ui′)ai−1(i′|j , m, n)

, (7.17)

transi(v|u)=

z
∑

(U ,V )∈(U,V)

n∑

i=1

m∑

j=1

transi−1(v|u)ai−1(i|j , m, n)κ(ui, u)κ(vj , v)∑n
i′=1 transi−1(v|ui′)ai−1(i′|j , m, n)

. (7.18)
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y and z are normalizing factors and κ is the Kronecker function, equal to
one when its arguments are the same and zero otherwise. The introduction of
the a(i|j , m, n) parameters in the above equations makes the word translation
probabilities dependent on the positions of the words in their respective seg-
ments. Brown et al. (1993b, p. 283) report that Model 2 has far less perplexity
on training data than their Model 1. This is not surprising, since Model 2 has
more parameters, and Model 1 makes no attempt to model word order.

Dagan et al. (1993b) observed that the Model 2 parameters “are highly
redundant. For example, it is likely that a(i|j , m, n) will be very close to
a(i + 1|j + 1, m, n) and a(i|j , m + 1, n + 1)” (p. 4). Dagan et al. replaced
Brown et al.’s alignment parameters, which were based on absolute word posi-
tions in aligned segments, with a much smaller set of offset probabilities o(d).
o(d) represents the probability that the distance between the coordinate of a
pair of words that are mutual translations and the bitext map is d. The num-
ber of different parameters o(d) is constrained by δ, the maximum distance
from the bitext map at which words may be considered to co-occur (see sec-
tion 5.2). Dagan et al. measure distances in the bitext space vertically and in
words, rather than perpendicular to the bitext map and in characters. Under this
metric, they typically limit δ to 20 words. The much smaller number of parame-
ters allowed this model to be effectively trained on much smaller bitexts. Vogel
et al. (1996) have shown how some additional independence assumptions can
turn this model into an HMM, enabling more efficient parameter estimation.
The relative word positions represented by the parameters allow this model to
work with the distance-based model of co-occurrence, in which absolute word
positions do not exist.

The offset probabilities in Dagan et al.’s model are estimated by the EM
algorithm, similarly to the way the alignment probabilities are estimated in
Brown et al.’s Model 2. However, Dagan et al. do not use the maximum
likelihood parameter estimates. Instead, they make even stronger use of the
word order correlation bias to “model the dependence between [alignments
for] words that are near one another” (Dagan et al., 1993b, p. 5). First, they
determine a “set of relevant connections” by discarding all alignments whose
probabilities fall below a certain threshold t . Then, they estimate alignments
for words that are not aligned by interpolating between the alignments of
preceding and following words. The most probable alignment is then found by
a dynamic programming algorithm similar to that described by Gale & Church
(1991b). Dagan et al. do not specify how to set the threshold t automatically
for previously unseen bitexts.



Word-to-Word Models of Translational Equivalence 93

It cannot be overemphasized that the word order correlation bias is just
knowledge about the problem domain, which can be used to guide the search
for the optimum model parameters. Translational equivalence can be empiri-
cally modeled for any pair of languages, but some models and model biases
work better for some language pairs than for others. The word order corre-
lation bias is most useful when it has high predictive power, i.e., when the
distribution of alignments or offsets has low entropy. The entropy of this dis-
tribution is indeed relatively low for the language pair that both Brown et al.
and Dagan et al. were working with—French and English have very similar
word order. A word order correlation bias, as well as the phrase-structure bi-
ases in Brown et al. (1993b)’s Models 4 and 5, would be less beneficial with
noisier training bitexts or for language pairs with less similar word order. Nev-
ertheless, one should use all available information sources if one wants to build
the best possible translation model. Section 7.5.3 suggests a way to add word
order correlation bias to the models presented in this chapter.

Brown et al.’s Models 3, 4, and 5 Model 3 introduces fertility parameters
to model the number of target word tokens that each source word token may
arise from. However, the fertility parameters are estimated independently of
the translation parameters, so it is not possible to reconstruct a word type’s
most likely phrasal translations just by convolving the relevant distributions.
Models 4 and 5 attempt to take into account phrase structure. Although Brown
et al.’s Models 1 and 2 have been widely replicated, I am not aware of any
replications of their higher models, except for Al-Onaizan et al.’s (1999) repli-
cation of model 3. I can offer two possible explanations for this apparent lack of
interest. First, the higher models involve an enormous number of parameters,
which can be estimated reasonably well only given vast quantities of training
data. Second, these models lack intuitive appeal. For these reasons, I shall give
no further consideration to Brown et al.’s Models 3, 4, and 5, except to offer
some qualitative comments about Model 3 in section 8.9.

7.4.3 Re-estimated Bag-to-Bag Translation Models

At about the same time that I developed the models in this chapter, Hiem-
stra (1996) independently developed his own bag-to-bag model of translational
equivalence. His model is also based on a one-to-one assumption, but it differs
from my models in that it allows empty words in only one of the two bags,
the one representing the shorter sentence. Thus, Hiemstra’s model is similar
to the first model in section 7.5, but it has a little less explanatory power.
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Hiemstra’s approach also differs from mine in his use of the Iterative Pro-
portional Fitting Procedure (IPFP) (Deming & Stephan, 1940) for parameter
estimation.

The IPFP is a method for fitting the cells in a contingency table to the known
marginals. In (Hiemstra)’s model, the two-dimensional contingency table is a
probability distribution over all possible events in a word-to-word translation
model. The row and column totals are fixed at the marginal word probabilities
in the two halves of the bitext. After the cells are initialized, the IPFP iteratively
adjusts the cells in the table, under the constraint that the whole table must sum
to one. On each iteration, the sum of the probabilities in each row approaches
the marginal probability for that row, and likewise for the columns. The rate of
approach is inversely proportional to the log-ratio of the sum of the values in
a given row or column and the relevant marginal total. The IPFP is guaranteed
to converge (Rüschendorf, 1995).

The IPFP is quite sensitive to initial conditions, so (Hiemstra) investigated a
number of initialization options. Choosing the most advantageous, (Hiemstra)
has published parts of the translational distributions of certain words, induced
using both his method and Brown et al. (1993b)’s Model 1 from the same train-
ing bitext. Subjective comparison of these examples suggests that (Hiemstra)’s
method is more accurate. Hiemstra (1998) has also evaluated the recall and
precision of his method and of Model 1 on a small hand-constructed set of link
tokens in a particular bitext. Model 1 fared worse, on average.

7.5 Parameter Estimation

This section describes my methods for estimating the parameters of a sym-
metric word-to-word translation model from a bitext. For most applications,
we are interested in estimating the probability trans(u, v) of jointly generating
the pair of words (u, v). Unfortunately, these parameters cannot be directly in-
ferred from a training bitext, because we don’t know which words in one half
of the bitext were generated together with which words in the other half. The
observable features of the bitext are only the co-occurrence counts cooc(u, v)
(see chapter 5).

Methods for estimating translation parameters from co-occurrence counts
typically involve link counts—links(u, v)—that represent hypotheses about
the number of times that u and v were generated together, for each u and
v in the bitext. A link token is an ordered pair of word tokens, one from
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each half of the bitext. A link type is an ordered pair of word types. The link
counts links(u, v) range over link types. We can always estimate trans(u, v)
by normalizing link counts so that

∑
u,v trans(u, v)= 1:

trans(u, v)= links(u, v)∑
u′,v′ links(u′, v′)

. (7.19)

For estimation purposes, it is convenient to employ also a separate set of
non-probabilistic parameters score(u, v), which represent the chances that u
and v can ever be mutual translations, i.e., that there exists some context in
which tokens u and v are generated from the same concept. The relationship
between score(u, v) and trans(u, v) can be more or less direct, depending on
the model and its estimation method. Each of the models presented below uses
a different score formulation.

All my methods for estimating the translation parameters trans(u, v) share
the following general outline:

1. Initialize the score parameters to a first approximation, based only on co-
occurrence counts.

2. Approximate the expected link counts links(u, v), as a function of the score
parameters and the co-occurrence counts.

3. Estimate trans(u, v), by normalizing the link counts as in equation (7.19).
If less than .0001 of the trans(u, v) distribution changed from the previous
iteration, then stop.

4. Re-estimate the parameters score(u, v), as a function of the link counts and
the co-occurrence counts.

5. Repeat from step 2.

Under certain conditions, a parameter estimation process of this sort is an
instance of the Expectation-Maximization (EM) algorithm (Dempster et al.,
1977). As explained below, meeting these conditions is computationally too
expensive for my models.9 Therefore I employ some approximations, which
lack the EM algorithm’s convergence guarantee.

The maximum likelihood approach to estimating the unknown parameters
is to find the set of parameters +̂ that maximize the probability of the training
bitext (U, V):

+̂= arg max
+

Pr(U, V|+). (7.20)
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The probability of the bitext is a sum over the distribution A of possible
assignments:

Pr(U, V|+)=
∑

A∈A
Pr(U, A, V|+). (7.21)

The number of possible assignments grows exponentially with the size of
aligned text segments in the bitext. Due to the parameter interdependencies
introduced by the one-to-one assumption, we are unlikely to find a method for
decomposing the assignments into parameters that can be estimated indepen-
dently of each other (as in Brown et al., 1993b, equation 26). Barring such a
decomposition method, the MLE approach is infeasible. This is why we must
make do with approximations to the EM algorithm.

In this situation, Brown et al. (1993b, p. 293) recommend “evaluating the ex-
pectations using only a single, probable alignment.” The single most probable
assignment Amax is the maximum a posteriori (MAP) assignment:

Amax = arg max
A∈A

Pr(U, A, V|+) (7.22)

= arg max
A∈A

Pr(l) · l!
∏

(i,j)∈A
trans(ui, vj ) (7.23)

= arg max
A∈A

log


Pr(l) · l!

∏

(i,j)∈A
trans(ui, vj )


 (7.24)

= arg max
A∈A



log[Pr(l) · l!]+

∑

(i,j)∈A
log trans(ui, vj )



 . (7.25)

To simplify things further, let us assume that Pr(l) · l! is constant, so that

Amax = arg max
A∈A

∑

(i,j)∈A
log trans(ui, vj ). (7.26)

If we represent the bitext as a bipartite graph and weight the edges by log
trans(u, v), then the right-hand side of equation (7.26) is an instance of the
weighted maximum matching problem and Amax is its solution. For a bipar-
tite graph G= (V1 ∪ V2, E), with v = |V1 ∪ V2| and e = |E|, the lowest cur-
rently known upper bound on the computational complexity of this problem
is O(ve + v2 log v) (Ahuja et al., 1993, p. 500). Although this upper bound is
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Table 7.2
A co-occurrence contingency table.

u ¬u Total

v cooc(u, v) cooc(¬u, v) cooc(·, v)
¬v cooc(u, ¬v) cooc(¬u, ¬v) cooc(·, ¬v)
Total cooc(u, ·) cooc(¬u, ·) cooc(·, ·)

polynomial, it is still too expensive for typical bitexts.10 Section 7.5.1 describes
a greedy approximation to the MAP approximation.

7.5.1 Method A: The Competitive Linking Algorithm

Step 1: Initialization Almost every translation model estimation algorithm
exploits the well-known correlation between translation probabilities and co-
occurrence counts. Many algorithms also normalize the co-occurrence counts
cooc(u, v) by the marginal frequencies of u and v. However, these quantities
account for only the three outlined cells in table 7.2. The statistical interdepen-
dence between two word types can be estimated more robustly by considering
the whole table. For example, Gale & Church (1991b) suggest that “φ2, a χ2-
like statistic, seems to be a particularly good choice because it makes good use
of the off-diagonal cells” in the contingency table.

In informal experiments described elsewhere (Melamed, 1995), I found that
the G2 statistic suggested by Dunning (1993) slightly outperforms φ2. Let the
cells of the contingency table be named as follows:

u ¬u

v a b

¬v c d

Now,

G2(u, v)= 2 log
B(a|a + b, p1)B(c|c + d, p2)

B(a|a + b, p)B(c|c + d, p)
, (7.27)

where B(k|n, p) = (n
k

)
pk(1 − p)n−k are binomial probabilities. The statistic

uses maximum likelihood estimates for the probability parameters: p1 = a
a+b

,
p2 = c

c+d
, p = a+c

a+b+c+d
. G2 is easy to compute because the binomial coef-

ficients in the numerator and in the denominator cancel each other out. All
my methods initialize the parameters score(u, v) to G2(u, v), except that any
pairing with null is initialized to an infinitesimal value. I have also found it
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useful to smooth the co-occurrence counts, e.g., using the Simple Good-Turing
smoothing method (Gale & Sampson, 1995), before computing G2.

Step 2: Estimation of Link Counts To further reduce the complexity of
estimating link counts, I employ the competitive linking algorithm, which is
a greedy approximation to the MAP approximation:

1. Sort all the score(u, v) from highest to lowest.

2. For each score(u, v), in order:

(a) If u (resp., v) is null, consider all tokens of v (resp., u) in the bitext linked
to null. Otherwise, link all co-occurring token pairs (u, v) in the bitext.

(b) The one-to-one assumption implies that linked words cannot be linked
again. Therefore, remove all linked word tokens from their respective halves
of the bitext.

The competitive linking algorithm can be viewed as a heuristic search for the
most likely assignment in the space of all possible assignments. The heuristic
is that the most likely assignments contain links that are individually the most
likely. The search proceeds by a process of elimination. In the first search iter-
ation, all the assignments that do not contain the most likely link are discarded.
In the second iteration, all the assignments that do not contain the second most
likely link are discarded, and so on until only one assignment remains.11 The
algorithm greedily selects the most likely links first, and then selects less likely
links only if they don’t conflict with previous selections. The probability of a
link being rejected increases with the number of links that are selected before
it, and thus decreases with the link’s score. In this problem domain, the com-
petitive linking algorithm usually finds one of the most likely assignments, as
I show in section 7.7. Under an appropriate hashing scheme, the expected run-
ning time of the competitive linking algorithm is linear in the size of the input
bitext.

Step 4: Re-estimation of the Model Parameters Method A re-estimates
the score parameters as the logarithm of the trans parameters. The competi-
tive linking algorithm cares only about the relative magnitudes of the various
score(u, v). However, equation (7.26) is a sum rather than a product, so I scale
the trans parameters logarithmically, to be consistent with its probabilistic in-
terpretation:

scoreA(u, v)= log trans(u, v). (7.28)
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7.5.2 Method B: Improved Estimation Using an Explicit Noise Model

Yarowsky (1993) has shown that “for several definitions of sense and collo-
cation, an ambiguous word has only one sense in a given collocation with a
probability of 90–99%.” In other words, a single contextual clue can be a highly
reliable indicator of a word’s sense. One of the definitions of “sense” studied
by Yarowsky was a word token’s translation in the other half of a bitext. For
example, the English word sentence may be considered to have two senses,
corresponding to its French translations peine (judicial sentence) and phrase

(grammatical sentence). If a token of sentence occurs in the vicinity of a word
like jury or prison, then it is far more likely to be translated as peine than as
phrase. “In the vicinity of” is one kind of collocation. Co-occurrence in bi-
text space is another kind of collocation. If each word’s translation is treated
as a sense tag (Resnik & Yarowsky, 1997), then “translational” collocations
have the unique property that the collocate and the word sense are one and the
same!

Method B exploits this property under the hypothesis that “one sense per
collocation” holds for translational collocations. This hypothesis implies that
if u and v are possible mutual translations and a token u co-occurs with a
token v in the bitext, then with very high probability the pair (u, v) was
generated from the same concept and should be linked. To test this hypothesis,
I ran one iteration of Method A on 300000 aligned sentence pairs from the
Canadian Hansards bitext. I then plotted the ratio links(u,v)

cooc(u,v) for several values
of cooc(u, v) as in figure 7.2. The curves show that the ratio links(u,v)

cooc(u,v) tends
to be either very high or very low. This bimodality is not an artifact of the
competitive linking process, because in the first iteration, linking decisions are
based only on the initial similarity metric.

Information about how often words co-occur without being linked can be
used to bias the estimation of translation model parameters. The smaller the
ratio links(u,v)

cooc(u,v) , the more likely it is that u and v are not mutual translations,
and that links posited between tokens of u and v are noise. The bias can be
implemented via auxiliary parameters that model the curve illustrated in fig-
ure 7.2. The competitive linking algorithm creates all the links of a given type
independently of each other.12 So, the distribution of the number links(u, v)
of links connecting word types u and v can be modeled by a binomial distri-
bution with parameters cooc(u, v) and p(u, v). p(u, v) is the probability that
u and v will be linked when they co-occur. There is never enough data to ro-
bustly estimate each p parameter separately. Instead, I model all the ps with
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cooc (u,v) = 16

cooc (u,v) = 9
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Figure 7.2
The ratio links(u, v)/cooc(u, v), for several values of cooc(u, v).

just two parameters. For u and v that are mutual translations, p(u, v) will av-
erage to a relatively high probability, which I call λ+. For u and v that are not
mutual translations, p(u, v) will average to a relatively low probability, which
I call λ−. λ+ and λ− correspond to the two peaks of the distribution links(u,v)

cooc(u,v)
illustrated in figure 7.2. The two parameters can also be interpreted as the rates
of true and false positives. If the translation in the bitext is consistent and the
translation model is accurate, then λ+ will be close to one and λ− will be close
to zero.

To find the most likely values of the auxiliary parameters λ+ and λ−, I adopt
the standard method of maximum likelihood estimation and find the values
that maximize the probability of the link frequency distribution under the usual
independence assumptions:

Pr(links|model)=
∏

u,v

Pr(links(u, v)|cooc(u, v), λ+, λ−). (7.29)

Table 7.3 summarizes the variables involved in this auxiliary estimation
process.

The factors on the right-hand side of equation (7.29) can be written explicitly
with the help of a mixture coefficient. Let τ be the probability that an arbitrary
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Table 7.3
Variables used to describe Method B.

links(u, v) = the number of times that u and v are hypothesized to co-occur as mutual translations
B(k|n, p) = probability of k being generated from a binomial distribution with parameters n and p

λ+ = probability of a link given mutual translations
λ− = probability of a link given not mutual translations
λ = probability of a link
τ = probability of mutual translations
K = total number of links in the bitext
N = total number of co-occurrences in the bitext

co-occurring pair of word types are mutual translations. Let B(k|n, p) denote
the probability that k links are observed out of n co-occurrences, where k has a
binomial distribution with parameters n and p. Then the probability that word
types u and v will be linked links(u, v) times out of cooc(u, v) co-occurrences
is a mixture of two binomials:

Pr(links(u, v)|cooc(u, v), λ+, λ−)

= τB(links(u, v)|cooc(u, v), λ+)+ (1− τ)B(links(u, v)|cooc(u, v), λ−)
(7.30)

One more variable allows us to express τ in terms of λ+ and λ−: Let λ

be the probability that an arbitrary co-occuring pair of word tokens will be
linked, regardless of whether or not they are mutual translations. Since τ is
constant over all word types, it also represents the probability that an arbitrary
co-occurring pair of word tokens are mutual translations. Therefore,

λ= τλ+ + (1− τ)λ−. (7.31)

λ can also be estimated empirically. Let K be the total number of links in the
bitext and let N be the total number of word token pair co-occurrences:

K =
∑

u,v

links(u, v), (7.32)

N =
∑

u,v

cooc(u, v). (7.33)

By definition,

λ=K/N . (7.34)
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Equating the right-hand sides of equations (7.31) and (7.34) and rearranging
the terms, we get:

τ = K/N − λ−

λ+ − λ−
. (7.35)

Since τ is now a function of λ+ and λ−, only the latter two variables represent
degrees of freedom in the model.

In the preceding equations, either u or v can be null. However, the
number of times that a word co-occurs with null is not an observable fea-
ture of bitexts. To make sense of co-occurrences with null, we can view
co-occurrences as potential links and cooc(u, v) as the maximum number
of times that tokens of u and v might be linked. From this point of view,
cooc(u, null) should be set to the unigram frequency of u, since each to-
ken of u represents one potential link to null, and similarly for cooc(null,
v). These co-occurrence counts should be summed together with all the others
in equation (7.33).

The probability function expressed by equations (7.29) and (7.30) may have
many local maxima. In practice, these local maxima are like pebbles on a
mountain, invisible at low resolution. I computed equation (7.29) over various
combinations of λ+ and λ− after one iteration of Method A over 300000
aligned sentence pairs from the Canadian Hansard bitext. Figure 7.3 illustrates
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Pr(links|model), as given in equation (7.29), has only one global maximum in the region of
interest, where 1 > λ+ > λ > λ− > 0.
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that the region of interest in the parameter space, where 1 > λ+ > λ > λ− > 0,
has only one dominant global maximum. This global maximum can be found
by standard hill-climbing methods, as long as the step size is large enough to
avoid getting stuck on the pebbles.

Given estimates for λ+ and λ−, we can compute B(links(u, v)|cooc(u, v),
λ+) and B(links(u, v)|cooc(u, v), λ−) for each occurring combination of links
and cooc values. These are the probabilities that links(u, v) links were gener-
ated out of cooc(u, v) possible links by a process that generates correct links
and by a process that generates incorrect links, respectively. The ratio of these
probabilities is the likelihood ratio in favor of the types u and v being possible
mutual translations, for all u and v:

scoreB(u, v)= log
B(links(u, v)|cooc(u, v), λ+)
B(links(u, v)|cooc(u, v), λ−)

. (7.36)

Method B differs from Method A only in its redefinition of the score function
in equation (7.36). The auxiliary parameters λ+ and λ− and the noise model
that they represent can be employed the same way in translation models that
are not based on the one-to-one assumption.

7.5.3 Method C: Improved Estimation Using Pre-Existing Word Classes

In Method B, the estimation of the auxiliary parameters λ+ and λ− depends
only on the overall distribution of co-occurrence counts and link frequencies.
All word pairs that co-occur the same number of times and are linked the
same number of times are assigned the same score. More accurate models
can be induced by taking into account various features of the linked tokens.
For example, frequent words are translated less consistently than rare words
(Catizone et al., 1989). To take these differences into account, we can estimate
separate values of λ+ and λ− for different ranges of cooc(u, v). Similarly,
the auxiliary parameters can be conditioned on the linked parts of speech.
A kind of word order correlation bias can be effected by conditioning the
auxiliary parameters on the relative positions of linked word tokens in their
respective texts. Just as easily, we can model link types that coincide with
entries in an on-line bilingual dictionary separately from those that do not
(cf. Brown et al., 1993a). When the auxiliary parameters are conditioned on
different link classes, their optimization is carried out separately for each
class:
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scoreC(u, v|Z = class(u, v))= log
B(links(u, v)|cooc(u, v), λ+Z)

B(links(u, v)|cooc(u, v), λ−Z)
. (7.37)

Section 7.7.1 describes the link classes used in the experiments below.

7.6 Effects of Sparse Data

The one-to-one assumption is a potent weapon against the ever-present sparse
data problem. The assumption makes possible accurate estimation of transla-
tional distributions even for words that occur only once, as long as the sur-
rounding words are more frequent. In most translation models, link scores are
correlated with co-occurrence frequency. So, the links between tokens u and
v for which score(u, v) is highest are the ones for which there is the most
evidence, and thus also the ones that are easiest to predict correctly. Winner-
take-all link assignment methods, such as the competitive linking algorithm,
can leverage their accuracy on the more confident links to raise the accuracy
of the less confident links, thereby preventing links based on indirect asso-
ciations (see section 7.4.1). For example, suppose that u1 and u2 co-occur
with v1 and v2 in the training data, and the model estimates score(u1, v1) =
.05, score(u1, v2)= .02, and score(u2, v2)= .01. According to the one-to-one
assumption, (u1, v2) is an indirect association and the correct translation of
v2 is u2. To the extent that the one-to-one assumption is valid, it reduces the
probability of spurious links for the rarer words. The more incorrect candidate
translations can be eliminated for a given rare word, the more likely the correct
translation is to be found. So, the probability of a correct match for a rare word
is proportional to the fraction of words around it that can be linked with higher
confidence. This fraction is largely determined by two bitext properties: the
distribution of word frequencies and the distribution of co-occurrence counts.
I explore each of these properties in turn.

The distribution of word frequencies is a function of corpus size. The words
in any text corpus are drawn from a large but finite vocabulary. As the corpus
gets larger, fewer new words appear, and the average frequency of words
already in the corpus rises. I took random samples of varying sizes from
large text corpora in French and in English. The corpora comprised news
text (Le Monde and Wall Street Journal), parliamentary debate transcripts
(Hansards) and Sun Microsystems software documentation (AnswerBooks).
Figure 7.4 shows the log-log relationship between sample size and the fraction
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Figure 7.4
The log-log relationship between corpus size and the proportion of singletons.

of words (by token) that appear in the sample only once. For example, suppose
we draw a random sample of one million words from Le Monde and then select
a random word type w from this random sample. According to figure 7.4, the
chances are roughly 0.017 that w appears only once in that one million words.
If the sample were only one thousand words, however, our chances of drawing
a singleton rise to 0.317. The nearly linear shape of the log-log curve seems
largely invariant across languages and text genres, as predicted by Zipf (1936).
Some curves in the graph are higher than others, because the language genres
from which the corpora were drawn have richer vocabularies. For example,
the fraction of singleton words is consistently smaller in the stemmed English
Hansards than in the same text when it is not stemmed, which is the whole
motivation for stemming. Figure 7.5, based on Le Monde text, shows that
the log-log relationship holds for higher frequencies too. In a larger corpus,
a larger fraction of the word types appear more frequently. Thus, corpus size
determines the probability that a randomly chosen word will have a particular
frequency.

The likelihood of a correct link for a rare word token w also depends on one
other variable. If w co-occurs with only one rare word (in the opposite half of
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The log-log relationship for higher frequencies. The bottom curve in this graph is the same as the
top curve in figure 7.4

the bitext), then the competitive linking algorithm is likely to eliminate all of
w’s indirect associations before it attempts to link w. Problems arise only when
more than one candidate remains for linking to w. What is the probability that
w co-occurs with more than one rare word? Suppose that w co-occurs with
γ words in the opposite half of the bitext, where γ is either the vertical or
horizontal component of δ.13 Let p be the probability that a word co-occurring
with w is rare. Then the probability of exactly k rare words co-occuring with
w can be approximated by a binomial distribution with parameters γ and p.
It follows that the probability of more than one rare word co-occurring with
w is

Pr(more than 1 rare word co-occuring)= 1− B(0|γ , p)− B(1|γ , p). (7.38)

Figure 7.6 plots equation (7.38) over different values of γ and p. The range of
p corresponds roughly to the range of the y-axis in figures 7.4 and 7.5. The fig-
ure illustrates how the power of the one-to-one assumption varies with corpus
size. It also illustrates why δ should not be set too high in the distance-based
model of co-occurrence. For example, at p = .03 and γ = 10, the probabil-
ity of a second rare word co-occurring is .034, but if γ is doubled to 20, the
probability of a second rare word more than triples to .12.
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Probability of more than one rare word co-occurring.

7.7 Evaluation

7.7.1 Evaluation at the Token Level

This section compares translation model estimation methods A, B, and C to
one another and to Brown et al. (1993b)’s Model 1. To reiterate, Model 1 is
based on co-occurrence information only; Method A is based on the one-to-
one assumption; Method B adds the “one sense per collocation” hypothesis
to Method A; Method C conditions the auxiliary parameters of Method B on
various word classes. Whereas Methods A and B and Model 1 were fully spec-
ified in section 7.4.2 and section 7.5, the latter section described a variety of
features on which Method C might classify links. For the purposes of the exper-
iments described in this chapter, Method C employed the simple classification
in table 7.4 for both languages in the bitext. All classification was performed by
table lookup; no context-aware part-of-speech tagger was used. In particular,
words that were ambiguous between open classes and closed classes were al-
ways deemed to be in the closed class. The only language-specific knowledge
involved in this classification method is the list of function words in class F.
Certainly, more sophisticated word classification methods could produce bet-
ter models, but even the simple classification in Table 7.4 should suffice to
demonstrate the method’s potential.

Rates of Convergence Before diving into the main results, it is interesting
to compare the convergence rates of the four different models. Figure 7.7
shows that, although the EM algorithm guarantees monotonic convergence
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Table 7.4
Word classes used by Method C for the experiments described in this chapter. Link classes were
constructed by taking the cross-product of the word classes.

Class code Description

EOS End-Of-Sentence punctuation
EOP End-Of-Phrase punctuation, such as commas and colons
SCM Subordinate Clause Markers, such as ” and (
SYM Symbols, such as ˜ and ∗
NU the null word, in a class by itself
C Content words: nouns, adjectives, adverbs, non-auxiliary verbs
F all other words, i.e., function words

for Model 1, it requires more iterations to converge on these training data
than Models A, B, and C. To be fair, we must remember that Method B and
Method C take time to estimate their auxiliary parameters on each iteration, so
figure 7.7 does not say which method is fastest in real time. Such a comparison
is very dependent on the details of each method’s implementation. In the
current (very inefficient) implementations, Model A converged in about six
hours, Model B in about 20 hours, Model C in about 24 hours, and Model 1 in
about 27 hours.

Experimental Method Each of the four methods was used to estimate a
word-to-word translation model from the 29614 verse pairs in the Bible bitext
described in chapter 6. All methods were deemed to have converged when
less than .0001 of the translational probability distribution changed from one
iteration to the next. The links assigned by each of Methods A, B, and C
in the last iteration were normalized into joint probability distributions using
equation (7.19). I shall refer to these joint distributions as Model A, Model B
and Model C, respectively. Each of the joint probability distributions was
further normalized into two conditional probability distributions, one in each
direction. Since Model 1 is inherently directional, its conditional probability
distributions were estimated separately in each direction, instead of being
derived from a joint distribution.

The four models’ predictions were compared to the gold-standard anno-
tations described in chapter 6. Each model guessed one translation (either
stochastically or deterministically, depending on the task) for each word on one
side of the gold-standard bitext. Therefore, precision = recall here, and I refer
to the results simply as “percent correct.” The accuracy of each model was av-
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Convergence rates for Model 1 and Methods A, B, and C. Changes from each iteration to the next
were measured in terms of the set-theoretic Dice coefficient.

eraged over the two directions of translation: English to French and French to
English. The five-fold replication of annotations in the test data made possible
computation of the statistical significance of the differences in model accuracy.
The statistical significance of all results in this section was measured at the
α = .05 level, using the Wilcoxon signed ranks test. Although the models were
evaluated on part of the same bitext on which they were trained, the evaluations
were with respect to the translational equivalence relation hidden in this bitext,
not with respect to any of the bitext’s visible features. Such testing on training
data is standard practice for unsupervised learning algorithms, where the ob-
jective is to compare several methods. Of course, performance would degrade
on previously unseen data.

In addition to the different translation models, there were two other indepen-
dent variables in the experiment: method of translation and whether function
words were included. Some applications, such as query translation for CLIR,
don’t care about function words. To get a sense of the relative effectiveness
of the different translation model estimation methods when function words
are taken out of the equation, I removed from the gold standard all link to-
kens where one or both of the linked words were closed-class words. Then, I
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removed all closed-class words (including non-alphabetic symbols) from the
models and renormalized the conditional probabilities.

The method of translation was either “single-best” or “whole distribution.”
“Single-best” translation is the kind that somebody might use to get the gist
of a foreign-language document. The input to the task was one side of the
gold standard bitext. The output was the model’s single best guess about the
translation of each word in the input, together with the input word. In other
words, each model produced link tokens consisting of input words and their
translations.

For some applications, however, it is insufficient to guess only the single
most likely translation of each word in the input. The model is expected to out-
put the “whole distribution” of possible translations for each input word. This
distribution is then combined with other distributions that are relevant to the
application. For example, for cross-language information retrieval, the transla-
tional distribution can be combined with the distribution of term frequencies.
For statistical machine translation, the translational distribution can be decoded
with a source language model (Brown et al., 1988; Al-Onaizan et al., 1999).
To predict how the different models might perform in such applications, the
“whole distribution” task was to generate a whole set of links from each input
word, weighted according to the probability assigned by the model to each of
the input word’s translations.

The mean results are plotted in figures 7.8 and 7.9 with 95% confidence in-
tervals. All four graphs in these figures are on the same scale to facilitate com-
parison. On both tasks involving the entire vocabulary, each of the biases pre-
sented in this chapter improves the efficiency of modeling the available training
data. When closed-class words were ignored, Model 1 performed better than
Method A, because open-class words are more likely to violate the one-to-one
assumption. However, the explicit noise model in Methods B and C boosted
their scores significantly higher than Model 1 and Method A. Method B was
better than Method C at choosing the single best open-class links, and the sit-
uation was reversed for the whole distribution of open-class links. However,
the differences in performance between these two methods were tiny on the
open-class tasks, because they left only two classes for Method C to distin-
guish: content words and nulls. Most of the scores on the whole distribution
task were lower than their counterparts on the single-best translation task, be-
cause it is more difficult for any statistical method to correctly model the less
common translations. The “best” translations are usually the most common.
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Figure 7.8
Comparison of model performance on “single-best” translation task. (a) All links; (b) open-class
links only.
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Figure 7.9
Comparison of model performance on “whole-distribution” task. (a) All links; (b) open-class links
only.
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To study how the benefits of the various biases vary with training corpus
size, I evaluated Models A, B, C, and 1 on the “whole distribution” translation
task, after training them on three different-size subsets of the Bible bitext. The
first subset consisted of only the 250 verse pairs in the gold-standard. The
second subset included these 250 plus another random sample of 2250 for
a total of 2500, an order of magnitude larger than the first subset. The third
subset contained all 29614 verse pairs in the Bible bitext, roughly an order of
magnitude larger than the second subset. All models were compared to the five
gold standard annotations, and the scores were averaged over the two directions
of translation, as before. Again, because the total probability assigned to all
translations for each source word was one, precision= recall= percent correct
on this task.

The mean scores over the five gold standard annotations are graphed in
figure 7.10, where the right edge of the figure corresponds to the means of
figure 7.9(a). Figure 7.10 supports the hypothesis in section 7.6 that the biases
presented in this chapter are even more valuable when the training data are
more sparse. The one-to-one assumption is useful, even though it forces us
to use a greedy approximation to maximum likelihood. In relative terms, the
advantage of the one-to-one assumption is much more pronounced on smaller
training sets. For example, Model A is 102% more accurate than Model 1 when
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Figure 7.10
Effects of training set size on model accuracy on the “whole distribution” task.
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trained on only 250 verse pairs. The explicit noise model buys a considerable
gain in accuracy across all sizes of training data, as do the link classes of
Model C. In concert, when trained and tested only on the gold-standard test set,
the three biases outperformed Model 1 by up to 125%. This difference is even
more significant given the absolute performance ceiling of 82% established by
the inter-annotator agreement rates on the gold standard.

7.7.2 Evaluation at the Type Level

An important application of statistical translation models is to help lexicog-
raphers compile bilingual dictionaries. Dictionaries are written to answer the
question, “What are the possible translations of X?” This is a question about
link types, rather than about link tokens.

Evaluation by link type is a thorny issue. Human judges often disagree about
the degree to which context should play a role in judgments of translational
equivalence. For example, the Harper-Collins French Dictionary (Cousin et
al., 1990) gives the following French translations for English appoint: nommer,

engager, fixer, désigner. Likewise, most lay judges would not consider instituer

a correct French translation of appoint. In actual translations, however, when
the object of the verb is commission, task force, panel, etc., English appoint

is usually translated into French as instituer. To take into account this kind of
context-dependent translational equivalence, link types must be evaluated with
respect to the bitext whence they were induced.

It is with this kind of evaluation in mind that I designed the verse-pair
sampling strategy described in section 6.2. The gold standard consists of verse
pairs that include all of the Bible bitext’s instances of a focus set of 100
randomly sampled English word types. The set of French word types with
which an annotator linked tokens of each English word type constitutes the
set of valid translations in this bitext for that English word type in the Bible.
These translation sets can be compared by type to the translations of the focus
types predicted by each translation model.

The evaluation of translation models at the word-type level is complicated
by the possibility of phrasal translations. The gold-standard annotators were
free to link each word to as many other words as they wished (e.g., “take their
stand” in figure 6.3). In contrast, all the methods being evaluated here pro-
duce models of translational equivalence between individual words only. How
can we decide whether a single-word translation “matches” a phrasal transla-
tion? The answer lies in the observation that corpus-based lexicography usually
involves a lexicographer. Bilingual lexicographers can use bilingual concor-
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Figure 7.11
Model accuracy on the gold-standard focus types, averaged by type.

dancing software to find instances of any link type induced from a bitext and
to display these instances sorted by their contexts (e.g. Simard et al., 1993;
Langlois, 1996). Given a partially correct link type, the lexicographer can usu-
ally reconstruct the complete link type from the contexts in the concordance.
For example, if the model proposes an equivalence between immédiatement

and right, a bilingual concordance can show the lexicographer that the model
was really trying to capture the equivalence between immédiatement and right

away or between immédiatement and right now. Since link type evaluation is
intended to gauge performance on a task that has a person in the loop, I shall
treat partially correct link types as correct.

Another way in which the lexicographer can complement the translation
model is to weed out links between content words and function words. The
focus set contains only content words. To make the evaluation more true to the
task, I ignored all links involving any function words, both in the gold standard
and in the translation models.14

Figure 7.11 compares the recall and precision of the focus types in Models 1,
A, B, and C with respect to each of the five gold-standard annotations. As
expected, Model 1’s long tail of low probabilities gives it high recall but low
precision. In contrast, most bilingual dictionaries have nearly perfect precision
at low recall. Lexicographers are likely to prefer tools with a similar bias in
their output.
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Distribution of link type scores. The long plateaus correspond to the most common combinations
of links(u,v)

cooc(u,v) : 1/1, 2/2 and 3/3.

In earlier work (Melamed, 1996a), I performed a less rigorous post-hoc eval-
uation of the link types produced by an earlier version of Method B.15 The
bitext used for this evaluation was the same aligned Hansards bitext used by
Gale & Church (1991b), except that I used only 300,000 aligned segment pairs
to save time. The bitext was automatically pre-tokenized to delimit punctua-
tion, English possessive pronouns and French elisions. Morphological variants
in both halves of the bitext were stemmed to a canonical form.

The link types assigned by the converged model were sorted by the scores
in equation (7.36). Figure 7.12 shows the distribution of these scores on a log
scale. The log scale helps to illustrate the plateaus in the curve. The longest
plateau represents the set of word pairs that were linked once out of one co-
occurrence (1/1) in the bitext. All these word pairs were equally likely to be
correct. The second-longest plateau resulted from word pairs that were linked
twice out of two co-occurrences (2/2), and the third longest plateau is from
word pairs that were linked three times out of three co-occurrences (3/3).
As usual, the entries with higher scores were more likely to be correct. By
discarding entries with lower scores, coverage could be traded for accuracy.
This trade-off was measured at three points, representing cutoffs at the end of
each of the three longest plateaus.
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Table 7.5
Lexicon coverage at three different minimum score thresholds. The bitext contained 41028 differ-
ent English words and 36314 different French words, for a total of 77342.

Total English French
Cutoff Minimum lexicon words words
plateau score entries represented % represented %

3/3 28 32274 14299 35 13409 37
2/2 18 43075 18533 45 17133 47
1/1 9 88633 36371 89 33017 91

The traditional method of measuring coverage requires knowledge of the
correct link types, which is impossible to determine without a gold standard.
An approximate coverage measure can be based on the number of different
words in the corpus. For lexicons extracted from corpora, perfect coverage
implies at least one entry containing each word in the corpus. One-sided vari-
ants, which consider only source words, have also been used (Gale & Church,
1991b). Table 7.5 shows both the marginal (one-sided) and the combined cov-
erage at each of the three cutoff points. It also shows the absolute number of
(non-null) entries in each of the three lexicons. Of course, the size of auto-
matically induced lexicons depends on the size of the training bitext. Table 7.5
shows that, given a sufficiently large bitext, the method can automatically con-
struct translation lexicons with as many entries as published bilingual dictio-
naries.

The next task was to measure accuracy. It would have taken too long to
evaluate every lexicon entry manually. Instead, I took five random samples
(with replacement) of 100 entries each from each of the three lexicons. Each
of the samples was first compared to a translation lexicon extracted from a
machine-readable bilingual dictionary (Cousin et al., 1991). All the entries
in the sample that appeared in the dictionary were assumed to be correct. I
checked the remaining entries in all the samples by hand. To take context-
dependent translational equivalence into account, I evaluated the accuracy of
the translation lexicons in the context of the bitext whence they were extracted,
using a simple bilingual concordancer. A lexicon entry (u,v) was considered
correct if u and v ever appeared as direct translations of each other in an aligned
segment pair. That is, a link type was considered correct if any of its tokens
were correct.

Direct translations come in different flavors. Most entries that I checked
by hand were of the plain vanilla variety that you might find in a bilingual
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Table 7.6
Distribution of different types of correct lexicon entries at varying levels of coverage
(mean ± standard deviation).

Cutoff Coverage % type V % type P % type I Total % accuracy

3/3 36% 89 ± 2.2 3.4 ± 0.5 7.6 ± 3.2 99.2 ± 0.8
2/2 46% 81 ± 3.0 8.0 ± 2.1 9.8 ± 1.8 99.0 ± 1.4
1/1 90% 82 ± 2.5 4.4 ± 0.5 6.0 ± 1.9 92.8 ± 1.1
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Figure 7.13
Translation lexicon accuracy with 95% confidence intervals at varying levels of coverage.

dictionary (entry type V). However, a significant number of words trans-
lated into a different part of speech (entry type P). For instance, in the entry
(protection, protégé), the English word is a noun but the French word is an
adjective. This entry appeared because to have protection is often translated
as être protégé (to be protected) in the bitext. The entry will never occur in
a bilingual dictionary, but users of translation lexicons, be they human or
machine, will want to know that translations often happen this way. Incom-
plete entries, described above, were counted in a third category (entry type
I). Whether incomplete entries should be considered correct depends on the
application.

Table 7.6 shows the distribution of correct lexicon entries among the types
V, P, and I. Figure 7.13 graphs the accuracy of the method against coverage,
with 95% confidence intervals. The upper curve represents accuracy when in-
complete links are considered correct, and the lower when they are considered
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incorrect. On the former metric, the method can generate translation lexicons
with accuracy and coverage both exceeding 90%, as well as dictionary-sized
translation lexicons that are over 99% correct.

7.8 Application to MT Lexicon Development

Translation lexicons are a vital component of any machine translation (MT)
system. The high cost of lexicon development and maintenance is a major en-
try barrier for potential new vendors in the MT market, and a hindrance to
growth for existing vendors. Many have tried to accelerate the MT lexicon de-
velopment process by incorporating automatic methods for finding translation
candidates in text corpora. Typically, these candidates are presented to a human
expert for validation. Automatic methods must be accurate to be effective; oth-
erwise, the experts in the loop would spend most of their time filtering errors,
instead of adding information to the MT system. Dagan & Church (1994) were
the first to report sufficiently accurate methods, and the state of the art has
advanced considerably since then.

The integration of automatic methods into the MT lexicon development
process has the potential to improve not only cost-efficiency but also accuracy.
This is especially true when an existing lexicon is being retargeted or special-
ized for a new domain or sublanguage. In most cases, the MT developer is not
a domain expert, and will be unable to predict accurately which entries need
to be added or modified. Discrepancies between an existing translation lexicon
and translation patterns in a bitext are easy to detect automatically. In the same
way, automatic methods can help MT developers keep up with rapidly evolving
vocabulary.

Translation lexicons that are probabilistic offer additional advantages. If
there isn’t enough time or money to enhance the lexicon by hand, then the
most frequent translation in the automatically constructed lexicon is better
than no translation at all. Even with a manually enhanced lexicon, frequency
information can be used as a default target word selection strategy in unfamiliar
linguistic contexts (Turcato, 1998). The same information can also be used to
produce more natural-looking language, by generating synonyms in proportion
to their frequency. Perhaps most importantly, only probabilistic translation
lexicons contain sufficient information to make possible automatic methods
for accurate identification of non-compositional compounds, such as the one
described in chapter 8.
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To understand the optimal division of labor between MT developers and
existing automatic methods for translation lexicon construction, it helps to
think of the MT lexicon construction process as answering two questions:

1. What are the possible translations for each source word?

2. In what contexts are the various translations used?

Automatic methods are not yet good enough to answer question 2 reliably.
They can, however, answer question 1, as demonstrated in this chapter. They
can answer it even better when used in a semi-automatic mode with a human
in the loop. Once a set of possible translations has been semi-automatically
identified, it can be filtered and supplemented by hand and enhanced with
context-dependent selectional preferences.

If we assume that the cost of computer time is negligible compared to the
cost of human labor, then the most efficient lexicon construction process is one
that does as much of the work as possible. To be helpful, automation must help
the lexicon developer to construct lexicon entries more quickly. In addition, the
time saved by accelerated entry construction must not be wasted in rejecting
false candidates. Much of this chapter described how to improve automatic
translation lexicon construction methods by taking advantage of pre-existing
knowledge. Such knowledge is just as valuable if it is not previously encoded,
but is supplied on the fly by the MT developer.

These observations suggest an iterative semi-automatic MT lexicon devel-
opment strategy:

1. Run the best available automatic translation lexicon construction algorithm
on all available bitexts in the relevant language pair.

2. Sort the entries in the output by their association score, as in figure 7.12.

3. Present the human developer with the sorted lexicon entries for validation,
along with their bilingual contexts in a bilingual concordance (Langlois, 1996).

4. The developer should continue validating entries in order down the list, until
the ratio of true and false entries drops below some reasonable threshold.

5. Fix the association scores of the rejected entries at negative infinity. This
will prevent their co-occurrences in the bitext from ever being linked. Since
links are very interdependent, this negative information should improve the
average quality of entries that have not yet been presented for validation.

6. Repeat from step 1 until valid entries become too rare to worry about.
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I am not aware of any empirical evaluations of the above strategy. Yet the
experiments summarized in section 7.7.2 suggest that automatic methods are
now sufficiently accurate to have a significant positive impact on the efficiency
of MT lexicon development. In addition, these methods may be able to in-
crease coverage and accuracy, and to provide better information about non-
compositional compounds. These considerations will become more important
as MT consumers become more demanding and vocabulary evolution acceler-
ates.

7.9 Conclusion

There are many ways to model translational equivalence and many ways to
estimate translation models. “The mathematics of statistical machine transla-
tion” proposed by Brown et al. (1993b) is just one kind of mathematics for
one kind of statistical translation. In this chapter, I have proposed and evalu-
ated new kinds of translation model biases, alternative parameter estimation
strategies, and techniques for exploiting pre-existing knowledge that may be
available about particular languages and language pairs. On a variety of eval-
uation metrics, each infusion of knowledge about the problem domain yielded
better translation models.

Each innovation presented here opens the way for more research. Model bi-
ases can be mixed and matched with one another, with previously published
biases like the word order correlation bias, and with other biases yet to be in-
vented. The competitive linking algorithm can be generalized in various ways.
New kinds of pre-existing knowledge can be exploited to improve accuracy
for particular language pairs or even just for particular bitexts. It is difficult to
say where the greatest advances will come from. Yet one thing is clear from
our current vantage point: Research on empirical methods for modeling trans-
lational equivalence has not run out of steam, as some have claimed, but has
only just begun.





8 Automatic Discovery of Non-Compositional Compounds

Automatic segmentation of text into minimal content-bearing units is an unsolved prob-
lem even for languages like English. Spaces between words offer an easy first approx-
imation, but this approximation is not good enough for machine translation, because
many word sequences are not translated word for word. This chapter presents an ef-
ficient automatic method for discovering sequences of words that are translated as a
unit. The method can discover hundreds of non-compositional compounds on each iter-
ation, and it can construct longer compounds out of shorter ones. Objective evaluation
on a word-for-word translation task has shown the method’s potential to improve the
accuracy of statistical models of translational equivalence.

8.1 Introduction

The optimal way to analyze linguistic data into its primitive elements is rarely
obvious but often crucial. Identifying phones and words in speech has been
a major focus of research. Automatically finding words in text, the problem
addressed here, is largely unsolved for languages such as Chinese and Thai,
which are written without spaces (but see Wu & Fung, 1994; Sproat et al.,
1996. Spaces in texts of languages like English offer an easy first approxi-
mation to minimal content-bearing units. However, this approximation mis-
analyzes non-compositional compound (NCC) words such as kick the bucket

and hot dog. The interesting property of such word sequences for our purposes
is that they are not translated word for word. Therefore, translation models that
treat NCCs as atomic units are likely to perform better.

Non-compositionality with respect to translational equivalence is the only
kind of non-compositionality that a translation model needs to take into ac-
count, and it is the only kind that the methods in this chapter are designed
to discover. In particular, these methods pay no attention to phrases that are
translated word for word despite non-compositional semantics, such as the En-
glish metaphors ivory tower and banana republic, which translate literally into
French. On the other hand, these methods will detect word sequences that are
often paraphrased in translation but have compositional meanings in the mono-
lingual sense. For example, tax system is most often translated into French as
régime fiscal. In this chapter, a non-compositional compound (NCC) is a (not
necessarily contiguous) sequence of words whose translation is not typically
composed of the translations of its parts. The classification of a given word se-
quence with respect to translational compositionality depends on the language
to which it is being translated.
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If NCCs are not translated word for word, then one way to discover NCCs is
to induce and analyze a translation model. This chapter is about an information-
theoretic approach to this kind of epistemological discovery. The method is
based on the insight that treatment of NCCs as atomic units increases the pre-
dictive power of translation models. Therefore, whether a given sequence of
words is an NCC can be determined by comparing the predictive power of two
translation models that differ on whether or not they treat the word sequence
as an NCC.

Searching a space of data models in this manner has been proposed be-
fore, e.g., by Brown et al. (1992) and Wang et al. (1996) (reviewed in sec-
tion 8.9), but these proposals have been limited by the computational expense
of model induction and the typically vast number of potential NCCs that need
to be tested. The method presented here overcomes this limitation by mak-
ing independence assumptions that allow hundreds of NCCs to be discov-
ered from each pair of induced translation models. It is further accelerated by
heuristics for gauging the a priori likelihood of validation for each candidate
NCC.

The predictive power of a translation model depends on what the model is
meant to predict. This chapter considers two different applications of transla-
tion models and two corresponding objective functions. The different objective
functions lead to different mathematical formulations of predictive power, dif-
ferent heuristics for estimating predictive power, and different classifications
of word sequences with respect to compositionality. Each new batch of vali-
dated NCCs raises the value of the objective function for the given application,
as demonstrated in section 8.8. You can skip ahead to table 8.3 for a random
sample of the NCCs that the method validated for use in a machine translation
task.

8.2 Objective Functions

The decision whether a given sequence of words is usually translated as a unit
can be made automatically if it can be expressed in terms of an explicit ob-
jective function for the given application. The first application I consider is
statistical machine translation involving a directed word-to-word translation
model and a target language model. Recall that if S and T represent the dis-
tributions of linked words in the source and target1 texts, then a word-to-word
translation model is a joint probability distribution Pr(s, t), that indicates the
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Two translation models that may be induced from the trivial bitext at the top of the figure.
Translation models that know about NCCs have higher mutual information than those that do
not.

probability that a randomly selected link in the bitext links s ∈ S with t ∈ T.2

If only the translation model may be varied, then the objective function for
this application should be based on how well the translation model predicts
the distribution of words in the target language. One such objective function is
called mutual information. Mutual information measures how well one random
variable predicts another:3

I (S; T)=
∑

s∈S

∑

t∈T
Pr(s, t) log

Pr(s, t)

Pr(s) Pr(t)
. (8.1)

When Pr(s, t) is a word-to-word translation model, mutual information indi-
cates how well the model can predict the distribution of words in the target text
given the distribution of words in the source text, and vice versa.

Figure 8.1 shows a simple example of how recognition of NCCs increases
the mutual information of translation models. The English word balance is
most often translated into French as équilibre and sheet usually becomes feuille.

However, a balance sheet is a bilan. A translation model that doesn’t recognize
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balance sheet as an NCC would distribute the translation probabilities of bilan

over multiple English words, as shown in the Incorrect Model. The Incorrect
Model is uncertain about how bilan should be translated. On the other hand,
the Correct Model, which recognizes balance sheet as an NCC, is completely
certain about its translation. As a result, the mutual information of the Incorrect
Model is

2 · 1

3
log

1
3

1
2 · 1

3

+ 2 · 1

6
log

1
6

1
2 · 1

3

= 2

3
log 2,

whereas the mutual information of the Correct Model is log 3.

8.3 Search

An explicit objective function immediately leads to a simple NCC discovery
method:

1. Pick a random sequence of words in the source text.

2. Induce two translation models, a trial translation model that treats the
candidate word sequence as an NCC and a base translation model that does
not.

3. Compute the value of the objective function for both translation models.

4. If the value of the objective function is higher in the trial model than in the
base model, then the candidate NCC is, in fact, an NCC; otherwise it is not.

5. Repeat.

Whenever an NCC is discovered in this manner, both the base and trial trans-
lation models in subsequent search iterations can take it into account.

The NCC discovery algorithm can be viewed as a search through a lattice
of compound lexicons, like the one in figure 8.2. Each compound lexicon
is identified by the NCCs that it recognizes. The lexicons are ordered by
inclusion. The search begins at the bottom of the lattice, with a lexicon that
does not recognize any NCCs. Selecting a random NCC to test is equivalent
to selecting a random parent node, one level higher. Each time an NCC is
discovered, the next search iteration begins one level higher. Thus, the level
at which a search iteration begins indicates the number of NCCs discovered so
far.
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Figure 8.2
A fragment of the lattice of compound lexicons for the text 〈u v w x y z〉. Each compound lexicon
is identified by the NCCs that it recognizes. The lexicons are ordered by inclusion.

8.4 Predictive Value Functions

Texts contain an enormous number of word sequences, only a tiny fraction
of which are NCCs, and it takes considerable computational effort to in-
duce each translation model. Therefore, the simple NCC discovery method
described above is impractical. It is necessary to test many NCCs on each
pair of translation models. Suppose we induce a trial translation model from
texts E and F that simultaneously involves a number of NCCs in the lan-
guage S of E, and compare it to a base translation model without any of those
NCCs. We would like to keep the NCCs that caused a net increase in the ob-
jective function I and discard those that caused a net decrease. We need some
method of assigning credit for the difference in the value of I between the two
models.

The most straightforward method for credit assignment is to define a pre-
dictive value function iT(s) that distributes the model’s objective function over
the words s ∈ S:
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I (S; T)=
∑

s∈S
iT(s). (8.2)

Since the objective function in equation (8.1) is already a summation over the
source words, a corresponding predictive value function can be derived by
canceling that summation:

iT(s)=
∑

t∈T
Pr(s, t) log

Pr(s, t)

Pr(s) Pr(t)
. (8.3)

The predictive value function iT(s) represents the contribution of s to the
objective function of the whole translation model. I write simply i(s) when
T is clear from the context.

If i and i′ are the predictive value functions for source words in the base
translation model and trial translation model, respectively, then the net change
in the objective function effected by each candidate NCC xy is

%xy = i′(x)+ i′(y)+ i′(xy)− i(x)− i(y). (8.4)

The terms i′(x) and i′(y) are necessary to take into account the predictive value
of x and y in the trial translation model when they occur without each other.
If %xy > 0, then xy is a valid NCC with respect to the objective function from
which i and i′ were derived.

Comparison of predictive value functions across translation models can be
done only under

Assumption 8.1 Treating the bigram 〈x, y〉 as an NCC does not affect the
predictive value function of any s ∈ S other than x and y.

Assumption 8.1 would be likely to be false if either x or y were part of any
candidate NCC other than xy. Therefore, NCCs that are tested at the same time
must satisfy the mutual exclusion condition: No word s ∈ S may participate
in more than one candidate NCC at the same time. Assumption 8.1 may not
be completely safe even under this condition, due to the imprecise nature of
translation model estimation algorithms.

8.5 Iteration

The mutual exclusion condition implies that multiple tests are still necessary.
Furthermore, equation (8.4) allows testing of only two-word NCCs, but longer
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NCCs certainly exist. Given parallel texts E and F , the following algorithm
runs multiple NCC tests and allows for recognition of progressively longer
NCCs:

1. Initialize the stop-list and the NCC list to be empty.

2. Induce a base translation model between E and F .

3. For all contiguous bigrams 〈x, y〉 in E that are not on the stop-list and whose
frequency is at least φ,4 compute %̂xy, the estimate of %xy, using the equations
in section 8.6.

4. Make a list of candidate NCCs, consisting of all the bigrams 〈x, y〉 for
which %̂xy > 0. Sort the list in decreasing order of %̂xy.

5. To enforce the mutual exclusion condition, remove from the list all can-
didates 〈x, y〉 in which either x or y is part of another bigram higher in the
list.

6. Copy E to E′. For each bigram 〈x, y〉 remaining on the candidate NCC list,
fuse each instance of 〈x, y〉 in E′ into a single token xy.

7. Induce a trial translation model between E′ and F .

8. Compute the actual %xy values for all candidate NCCs, using equations
(8.3) and (8.4).

9. For each candidate NCC xy, if %xy > 0, then add xy to the NCC list;
otherwise add 〈x, y〉 to the stop-list.

10. In E, find all occurrences of all NCCs on the NCC list and replace them
with single “fused” tokens, which the translation model construction algorithm
will treat as atomic units.

11. Repeat from step 2.

This iterative NCC discovery algorithm can also be viewed as a search
through a lattice of compound lexicons. Refer again to figure 8.2. On the first
search iteration, as before, the base translation model is based on the lexicon
at level 0, which does not recognize any NCCs. On subsequent iterations, the
base translation model is based on the lexicon that recognizes all the previously
validated NCCs. As in the simpler search algorithm in section 8.3, the trial
translation model on each iteration is based on the lowest lexicon in the lattice
that recognizes all of the candidate NCCs (as well as the NCCs validated on
previous iterations). Unlike in the simpler search algorithm, however, the trial
model’s lexicon need not be an immediate parent of the base model’s lexicon.
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For example, if the NCCs remaining on the list of candidates after step 5 of the
first iteration are uv, wx, and yz, then the trial translation model will be based
on the lexicon in the center of level 3. Now, suppose that the NCCs wx and yz

are validated, but the NCC uv is rejected. Then the next iteration of the search
will begin at the lowest lexicon that recognizes only the newly validated NCCs
and the NCCs that were recognized previously. In this case, it is the rightmost
lexicon on level 2. Note that, on the next iteration, the newly discovered NCCs
wx and yz can be put together into the longer candidate NCC wxyz, as shown
in the rightmost lexicon on level 3. Also note that the difference in the lattice
levels between the base lexicons of successive search iterations corresponds
to the number of validated NCCs on those iterations. As will be shown in
section 8.8, this NCC discovery algorithm can jump up hundreds of levels on
each iteration.

In its simplest form, the algorithm considers only contiguous word se-
quences as candidate NCCs. However, function words are translated very
inconsistently, and it is difficult to model their translational distributions ac-
curately. Ahrenberg et al. (1998) have suggested that it may be more practical
to construct lists of non-compositional closed-class words by hand, and to
remove them from consideration by the NCC recognition system. Certainly,
pre-existing knowledge from a human expert can improve efficiency. How-
ever, this kind of preprocessing does not help us discover non-compositional
open-class NCCs that happen to contain function words. In some cases, adding
linguistic knowledge by hand is not even an option. To make discovery of
NCCs involving function words more likely, I consider content words that are
separated by one or two function words to be contiguous. Thus, NCCs like
blow . . . whistle and icing . . . cake may contain gaps. Fusing NCCs with gaps
may fuse some words incorrectly, when the NCC is a frozen expression. For
example, we would want to recognize that icing . . . cake is an NCC when we
see it in new text, but not if it occurs in a sentence like “Mary ate the icing
off the cake.” To distinguish such cases, it is necessary to determine, for each
NCC containing a gap, whether that NCC is part of a frozen expression. The
price for the flexibility afforded by NCC gaps is three extra steps in each search
iteration, after step 5.

5.1 Fill gaps in proposed NCCs by looking through the text. Some NCCs
have multiple possible gap fillers, as in make up {my, your, his, their, etc.}

mind. When the gap-filling procedure finds two or three possible fillers, the
most frequent filler is used, and the rest are ignored in the hope that they will
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be discovered on the next iteration. When there are more than three possible
fillers, the NCC is probably not part of a frozen expression, so the gap remains
unfilled.

5.2 The gap fillers may be identical to elements of other NCCs either higher
or lower on the list of candidate NCCs, violating the mutual exclusion condi-
tion. If the gap is an element in a candidate NCC higher on the list, then remove
the current candidate from the list. If the gap is an element in a candidate NCC
lower on the list, then remove that other candidate from the list.

6.1 (after step 6) Move all words in the fused NCC to the location of the
leftmost word in E′. E.g., an instance of the previous example in the text might
be fused as make_up_〈GAP〉_mind his.

The algorithm can also be run in “two-sided” mode so that it looks for
NCCs in E and in F on alternate iterations. This mode enables the translation
model to link NCCs in one language to NCCs in the other. A separate lattice of
compound lexicons would be required for each half of the bitext, to represent
the search space of the two-sided NCC discovery algorithm.

In principle, the NCC discovery algorithm could iterate until %̂xy ≤ 0 for
all bigrams. This would be a classic case of over-fitting the model to the train-
ing data. NCC discovery is most useful if it is stopped at the point where the
validated NCCs maximize the application’s objective function on new data. A
domain-independent method to find this point is to use held-out data or, more
generally, to cross-validate between different subsets of the training data. Al-
ternatively, when the application involves human inspection, e.g., for bilingual
lexicography, a suitable stopping point can be found by manually inspecting
validated NCCs.

8.6 Credit Estimation

Section 8.4 described how to carry out NCC validity tests, but not how to
choose which NCCs to test. Making this choice at random would make the
NCC discovery process too slow, because the vast majority of word sequences
are not valid NCCs. The discovery process can be greatly accelerated by testing
only candidate NCCs for which equation (8.4) is likely to be positive. This
section presents a way to guess, before inducing a trial translation model,
whether %xy will be positive for a given candidate NCC xy. To do so, it is
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necessary to estimate i′(x), i′(y), and i′(xy), using only the base translation
model.

First, a bit of notation. Let (x|_y) be the set of tokens of x whose right
context is y, and let (y|x_) be the set of tokens of y whose left context is x.
Now, i′(x) and i′(y), can be estimated under

Assumption 8.2 When x occurs without y in its context, it will be linked to
the same target words by the trial translation model as by the base translation
model, and likewise for y without x.

Assumption 8.2 says that

i′(x)= i(x|_¬y), (8.5)

i′(y)= i(y|¬x_). (8.6)

Estimating i′(xy) is more difficult because it requires knowledge of the en-
tire translational distributions of both x and y, conditioned on all the contexts
of x and y. Since we wish to consider hundreds of candidate NCCs simultane-
ously, and contexts from many megabytes of text, all this information would
not fit on disk, let alone in memory. The best we can do with today’s resources
is approximate with lower-order distributions that are easier to compute.

The approximation begins with

Assumption 8.3 If xy is a valid NCC, then at most one of x and y is linked
to a target word whenever x and y co-occur.

Assumption 8.3 follows from the one-to-one assumption explained in sec-
tion 7.3. It implies that for all t ∈ T

Pr′(xy, t)= Pr(x|_y, t)+ Pr(y|x_, t), (8.7)

where Pr′() refers to the trial translation model. The approximation continues
with

Assumption 8.4 If xy is a valid NCC, then for all t ∈ T, either Pr(x, t)= 0
or Pr(y, t)= 0.

Assumption 8.4 expresses the “one sense per collocation” hypothesis for trans-
lational collocations explained in section 7.5.2. It implies that for all t ∈ T,
either

Pr(x|_y, t)= 0 (8.8)
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or

Pr(y|x_, t)= 0. (8.9)

Under assumptions 8.3 and 8.4, we can estimate i′(xy) as follows:

i′(xy)=
∑

t∈T
Pr′(xy, t) log

Pr′(xy, t)

Pr(xy) Pr(t)
(8.10)

(by Eq. 8.7)=
∑

t∈T
[Pr(x|_y, t)+ Pr(y|x_, t)] log

[Pr(x|_y, t)+ Pr(y|x_, t)]

Pr(xy) Pr(t)

(by Eq. 8.8)=
∑

t∈T
Pr(x|_y, t) log

Pr(x|_y, t)

Pr(x|_y) Pr(t)

(by Eq. 8.9) +
∑

t∈T
Pr(y|x_, t) log

Pr(y|x_, t)

Pr(y|x_) Pr(t)
.

Note that, by definition, Pr(x|_y)= Pr(y|x_)= Pr(xy).
The final form of equation (8.10) allows us to partition the terms in equa-

tion (8.4) into two sets, one for each of the components of the candidate NCC:

%̂xy = %̂x→y + %̂x←y (8.11)

where

%̂x→y = − i(x) (8.12)

+
∑

t∈T
Pr(x|_¬y, t) log

Pr(x|_¬y, t)

Pr(x|_¬y) Pr(t)

+
∑

t∈T
Pr(x|_y, t) log

Pr(x|_y, t)

Pr(x|_y) Pr(t)

and

%̂x←y = − i(y) (8.13)

+
∑

t∈T
Pr(y|¬x_, t) log

Pr(y|¬x_, t)

Pr(y|¬x_) Pr(t)

+
∑

t∈T
Pr(y|x_, t) log

Pr(y|x_, t)

Pr(y|x_) Pr(t)
.
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All the terms in equation (8.12) depend only on the probability distributions
Pr(x, t), Pr(x|_y, t) and Pr(x|_¬y, t). All the terms in equation (8.13) de-
pend only on Pr(y, t), Pr(y|x_, t) and Pr(y|¬x_, t). These distributions can
be computed reasonably efficiently by memory-external sorting and streamed
accumulation.

8.7 Single-Best Translation

Single-best translation is the kind of translation that somebody might use to
get the gist of a foreign-language document, without a target language model.
For this application, it is sufficient to predict only the most likely translation of
each source word. The rest of the translational distribution can be ignored. Let
mT(s) be the most likely translation of each source word s, according to the
translation model:

mT(s)= arg max
t∈T Pr(s, t). (8.14)

Again, I write simply m(s) when T is clear from the context. The objective
function V for this application follows by analogy with the mutual information
function I in equation (8.1):

V (S; T)=
∑

s∈S

∑

t∈T
δ(t , m(s)) Pr(s, t) log

Pr(s, t)

Pr(s) Pr(t)

=
∑

s∈S
Pr(s, m(s)) log

Pr(s, m(s))

Pr(s) Pr(m(s))
. (8.15)

δ is the Kronecker delta function, equal to one when its arguments are identical
and zero otherwise. The form of the objective function again permits easy
distribution of its value over the s ∈ S:

vT(s)= Pr(s, m(s)) log
Pr(s, m(s))

Pr(s) Pr(m(s))
. (8.16)

The formula for assigning credit among the candidate NCCs for the net change
in the objective function remains the same as in equation (8.4):

%xy = v′(x)+ v′(y)+ v′(xy)− v(x)− v(y). (8.17)

It is easier to estimate the values of v′, using only the base translation model,
than to estimate the values of i′, since only the most likely translations need to
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be considered, rather than entire translational distributions. v′(x) and v′(y) are
again estimated under assumption 8.2:

v′(x)= v(x|_¬y) (8.18)

v′(y)= v(y|¬x_). (8.19)

v′(xy) can be estimated without making the strong assumptions 8.3 and 8.4.
Instead, I use the weaker

Assumption 8.5 Let m(x|_y) and m(y|x_) be the most frequent translations
of x and y in each other’s presence, in the base translation model. Then in
the trial translation model that recognizes xy as an NCC, the most frequent
translation of xy will be the more frequent of m(x|_y) and m(y|x_).

Assumption 8.5 implies that

v′(xy)=max[v(x|_y), v(y|x_)]. (8.20)

This quantity can be computed exactly at a reasonable computational expense.

8.8 Experiments

I carried out two experiments on transcripts of Canadian parliamentary debates,
known as the Hansards. French and English versions of these texts had been
previously aligned by sentence (Gale & Church, 1991a).5 Morphological vari-
ants in both languages were stemmed to a canonical form. Thirteen million
words (in both languages combined) were used for training and another two
and a half million were used for testing. The training data contained 31663 dis-
tinct French word types and 29635 distinct English word types. All translation
models were induced using the method of Melamed (1997c).6 Six iterations of
the NCC discovery algorithm were run in “two-sided” mode, using the objec-
tive function I , and ten iterations were run using the objective function V .

Tables 8.1 and 8.2 chart the NCC discovery process. The NCCs proposed
for the V objective function were much more likely to be validated than those
proposed for I , because the predictive value function v′ is much easier to
estimate a priori than the predictive value function i′. In the first three iterations
on the English side of the bitext, 192 NCCs were validated for I and 1493
were validated for V . Of the 1493 NCCs validated for V , 98 NCCs consisted
of three words, three consisted of four words and one consisted of five words.
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Table 8.1
NCCs proposed and validated, using the mutual information objective function I .

Iteration Bitext Number of Number of Validation
number side candidate NCCs validated NCCs rate

1 English 647 105 16%
2 French 618 121 20%
3 English 253 49 19%
4 French 245 41 17%
5 English 161 38 24%
6 French 205 33 16%

Table 8.2
NCCs proposed and validated, using the simpler objective function V .

Iteration Bitext Number of Number of Validation
number side candidate NCCs validated NCCs rate

1 English 761 747 98%
2 French 480 471 98%
3 English 428 412 96%
4 French 217 213 98%
5 English 342 334 98%
6 French 206 201 98%
7 English 323 311 96%
8 French 386 370 96%
9 English 267 256 96%
10 French 475 461 97%

The French NCCs were longer on average, due to the frequent “N de N”
construction for noun compounds.

The first experiment involved the mutual information objective function I

and its associated predictive value function in equation (8.3). The first step in
the experiment was the construction of five new versions of the test data, in
addition to the original version. Version k of the test data was constructed by
fusing all NCCs validated up to iteration k on the training data. The second step
was to induce a translation model from each version of the test data. Figure 8.3
shows that the mutual information of successive test translation models rose as
desired.

The impact of NCC recognition on the single-best translation task was mea-
sured using unsupervised evaluation, illustrated in figure 8.4. Unsupervised
evaluation can be used to compare different translation methods objectively
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Figure 8.3
Mutual information of successive translation models induced on held-out test data. Translation
models that know about NCCs have higher mutual information than those that do not.

and automatically without a gold-standard. The algorithms are based on the
observation that if translation model X is better than translation model Y , and
each model generates a bag of words from one half of a held-out test bitext,
then the bag of words in the other half of that bitext will be more similar to the
translation produced by X than to the translation produced by Y . Evaluation
supervised by a gold standard can test whether a translation model generated
the correct target word from each source word. In the absence of a gold stan-
dard, we can still test whether the target words generated by the model match
the target words in the corresponding segment of the bitext, without consider-
ing which source word generated which target word. This test is insensitive to
errors involving null words. It also ignores the errors of a translation model
that generates the right target words from the wrong source words. However,
such a model is usually penalized for not generating the target word that should
have been generated from those source words. The only case where a model
might “cheat” on unsupervised evaluation is when there is insufficient evi-
dence for the correct translation of a source word s1 in the training data, but
the model generates the correct translation of s1 from another source word s2.
Unsupervised evaluation can be done the same way on a “whole distribution”
translation task, where the model is expected to generate the entire translational
distribution for each source word, rather than just the single most likely trans-
lation. Either way, the performance metric is based on intersections of fuzzy
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Comparison of translation model evaluation methods, with and without a gold standard.
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sets, as described in section 6.5. The reliability of unsupervised evaluation will
be investigated in section 9.7.1.

For the models in this chapter, unsupervised evaluation is actually more
appropriate than comparison to a gold standard, because the objective functions
I and V are designed to optimize predictions about which words appear in the
target text, not predictions about which source words generate which target
words. For example, suppose that in the bitext (E, F), words w and v often
co-occur in E, and that v is usually translated to u in F , but w is a function
word that is usually not translated. An annotator might consistently link u

to v but link w to “Not Translated”, i.e., to null. However, a model of
translational equivalence between E to F would have higher predictive power
if it recognized vw as an NCC and generated both v and w from each token
of u.

The second experiment was based on the simpler objective function V and
its associated predictive value function in equation (8.16). The single best
translations generated by different translation models were compared with the
words in the target half of a held-out test bitext. The comparison was made
in terms of word precision and word recall in aligned sentence pairs, ignoring
word order. I compared the 11 base translation models induced in 10 iterations
of the algorithm in section 8.5. The first model is numbered 0, to indicate that
it did not recognize any NCCs. Each of the 11 translation models generated a
trial target text from the test source text as follows, one sentence at a time:

1. Fuse all word sequences in the source text that correspond to NCCs recog-
nized by the translation model.

2. For each word in the source text, add its most likely translation to the trial
target text.

3. If the most likely translation is an NCC, then break it up into its compo-
nents.

I computed precision, recall, and the set-theoretic Dice coefficient, by sen-
tence, for each of the models’ trial target texts, with respect to the target half
of the test bitext, in both directions of translation. Figure 8.5 shows that NCC
recognition generally increased recall while decreasing precision on succes-
sive iterations. The Dice coefficients show that the increase in recall generally
outweighed the loss in precision.7 The number of NCCs validated on each it-
eration was never more than 2.5% of the vocabulary size. Thus, the curves in
figure 8.5 have a very small range, but the trends are clear.
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Unsupervised evaluation scores for 11 translation models. Labels 0 to 10 indicate iteration number.
Left: English→ French; Right: French→ English. Below: Dice coefficients with 95% confidence
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A qualitative assessment of the NCC discovery method can be made by look-
ing at table 8.3. It contains a random sample of 50 of the English NCCs accu-
mulated in the first five iterations of the algorithm in section 8.5, using the sim-
pler objective function V . All of the NCCs in the table are non-compositional
with respect to the objective function V . Many of the NCCs, like red tape and
blaze the trail, are true idioms. Some NCCs are incomplete. E.g., flow- has not
yet been recognized as a non-compositional part of flow-through share, and like-
wise for head in rear its ugly head. These NCCs would probably be completed
if the algorithm were allowed to run for more iterations.

Some of the other entries deserve more explanation. First, Della Noce is
the last name of a former Canadian Member of Parliament. Every occurrence
of this name in the French training text was tokenized as Della noce with a
lowercase “n,” because noce is a common noun in French meaning marriage,

and the tokenization algorithm lowercased all capitalized words that were
found in the lexicon. When this word occurred in the French text without Della,

its English translation was marriage, but when it occurred as part of the name,
its translation was Noce. So, the algorithm decided that the French bigram
Della Noce is non-compositional with respect to the objective function V and
validated it as an NCC. On a subsequent iteration, the algorithm found that
only half of the English bigram Della Noce was ever linked to a French word
(the French NCC Della_noce) so it decided that the English Della Noce must
also be an NCC. This is one of the few personal names in the Hansards that are
NCCs with respect to translational equivalence.

Another interesting entry in the table is the last one. The capitalized En-
glish words Generic and Association are translated with perfect consistency
to Generic and association, respectively, in the training text. The translation
of the middle two words, however, is non-compositional. When Pharmaceu-

tical and Industry occur together, they are rendered in the French text without
translation as Pharmaceutical Industry. When they occur separately, they are
translated into pharmaceutique and industrie. Thus, the English bigram Phar-

maceutical Industry is an NCC, but the words that always occur around it
are not part of the NCC. Similar reasoning applies to ship unprocessed ura-

nium. The bigram 〈ship, unprocessed〉 is an NCC because its components are
translated non-compositionally whenever they co-occur. However, uranium is
always translated as uranium in this bitext, so it is not part of the NCC. This
NCC demonstrates that valid NCCs may span the boundaries of grammatical
constituents.



Table 8.3
Random sample of 50 of the 1493 NCCs validated in the first three iterations of the NCC discovery
algorithm on the English half of the bitext, using the objective function V .

Count NCC (in italics) in typical context Non-compositional translation in French text

786 could have pourrait
183 flow-through shares actions accréditives
79 I repeat je tiens à dire
63 the case I just mentioned le cas que je viens de mentionner
36 tax base assiette fiscale
34 single parent family famille monoparentale
24 perform 〈GAP 〉 duty assumer . . . fonction
23 red tape la paperasserie
17 middle of the night en pleine nuit
17 Della Noce Della noce (see text for explanation)
16 heating oil mazout
14 proceeds of crime les produits tirés du crime
11 rat pack meute
10 urban dwellers citadins
10 nuclear generating station centrale nucléaire
10 Air India disaster écrasement de l’avion indien
9 Ottawa River Outaouais
8 I dare hope j’ose croire
8 Ottawa Valley vallée de l’Outaouais
7 plea bargaining marchandage
7 manifestly unfounded claims avoir revendiqué á tort le statut
7 a group called Rural Dignity une groupe appelé Rural Dignity
6 a slight bit la moindre
6 cry for help appel au secour
5 video tape vidéo
5 sow the seed semer
5 arrange a meeting organiser un entretien
4 shot-gun wedding mariage forcé
4 we lag behind nous traînions de la patte
4 Great West Life Company Great West Life Company
4 Canadian Forces Base and cease negotiations mettre fin et interrompre le négociation
3 severe sentence sévère sanction
3 rear its ugly head manifesté
3 inability to deal effectively with ne sait pas traiter de manière efficace avec
3 en masse en bloc
3 create a disturbance suscite de perturbation
3 blaze the trail ouvre la voie
2 wrongful conviction erreur judiciaire
2 weak sister parent pauvre
2 the users and providers of transportation des utilisateurs et des transporteurs
2 understand the motivation saisir le motif
2 swimming pool piscine
2 ship unprocessed uranium expédier de l’uranium non raffiné
2 by reason of insanity pour cause d’aliénation mentale
2 l’agence de Presse libre du Québec l’agence de Presse libre du Québec
2 do cold weather research étudier l’effet du froid
2 the bread basket of the nation le grenier du Canada
2 turn back the boatload of European Jews renvoyer tout ces juifs européens
2 Generic Pharmaceutical Industry Association Generic Pharmaceutical Industry Association
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8.9 Related Work

Brown et al. (1993b)’s Model 3 implicitly accounted for NCCs in the target lan-
guage by estimating “fertility” distributions for words in the source language.
A source word s with fertility n could generate a sequence of n target words, if
each word in the sequence was also in the translational distribution of s and the
target language model assigned a sufficiently high probability to the sequence.
However, (Brown et al.)’s models do not account for NCCs in the source lan-
guage. Recognition of source-language NCCs would improve the performance
of their models, but (Brown et al.) warn that

[O]ne must be discriminating in choosing multi-word [con]cepts. The caution that
we have displayed thus far in limiting ourselves to [con]cepts with fewer than two
words was motivated primarily by our respect for the featureless desert that multi-word
[con]cepts offer a priori. (Brown et al., 1993b, p. 294)

The heuristics in section 8.6 are designed specifically to find the interesting
features in that featureless desert. Ahrenberg et al. (1998) have proposed some
simpler search methods whose performance may be sufficient for less auto-
mated applications. They also recommended some knowledge-based efficiency
boosters that can be applied both to their search methods and to the ones de-
scribed in this chapter.

Another approach is possible when part-of-speech taggers are available for
both languages under consideration. Shin et al. (1996) began by inducing
a translation model from a small Korean/English bitext using Brown et al.
(1993b)’s Model 1. They found that the Korean/English desert is not quite as
featureless as the French/English one, because only 34% of the word-token
translational equivalences in their bitext were one to one. Still, they were faced
with the problem of estimation from sparse data. Instead of analyzing the
grains of sand in their desert, they chose to look at the dunes represented by
part-of-speech sequences. The backing-off strategy simplified their estimation
problem, and they reported respectable precision. However, the information
lost by ignoring the words may explain why they did not report how many
NCCs the method discovered.

Many authors (e.g. Daille et al., 1994; Smadja, 1992) define “collocations”
in terms of monolingual frequency and part-of-speech patterns. Markedly high
frequency is a necessary property of NCCs, because otherwise they would
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fall out of use (Baayen & Lieber, 1997). However, at least for translation-
related applications, it is not a sufficient property. Non-compositional transla-
tion cannot be detected reliably without looking at translational distributions.
The deficiency of criteria that ignore translational distributions is illustrated
by their propensity to validate most personal names as “collocations.” At least
among Western European languages, translations of the vast majority of per-
sonal names are perfectly compositional.

Several authors have used mutual information or related statistics as an ob-
jective function for word clustering (Dagan et al., 1993a; Brown et al., 1992;
Pereira et al., 1993; Wang et al., 1996), for automatic determination of phone-
mic baseforms (Lucassen & Mercer, 1984), for knowledge acquisition for
second language learning (Kita et al., 1993), and for language modeling for
speech recognition (Ries et al., 1996). Wang et al. (1996) also employ parallel
texts and independence assumptions that are similar to those described in sec-
tion 8.6. Like Brown et al. (1992), they report a modest improvement in model
perplexity and encouraging qualitative results. Although the applications con-
sidered in this chapter are different, the strategy is similar: search a space of
data models for the one with maximum predictive power.

There has been some research into matching compositional phrases across
bitexts. For example, Kupiec (1993) presented a method for finding transla-
tions of whole noun phrases. Wu (1995) showed how to use an existing trans-
lation lexicon to populate a database of “phrasal correspondences” for use
in example-based machine translation. Knowledge about such compositional
translation patterns will be indispensable as we progress from word-to-word
translation models towards more structured sequence-to-sequence models.

8.10 Conclusion

It is well known that two languages are more informative than one (Dagan
et al., 1991). I have argued that texts in two languages are not only prefer-
able but necessary for automatic discovery of non-compositional compounds
for translation-related applications. Given a method for constructing statisti-
cal translation models, NCCs can be discovered by maximizing the models’
information-theoretic predictive power over parallel data sets. This chapter pre-
sented an efficient algorithm for such epistemological discovery. Recognition
of NCCs improved model performance on a simple translation task.
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Lists of NCCs derived from parallel data may be useful for NLP applications
that do not involve parallel data. Translation-oriented NCC lists can be used di-
rectly in applications that have a human in the loop, such as computer-assisted
lexicography, computer-assisted language learning, and corpus linguistics. To
the extent that translation-oriented definitions of compositionality overlap with
other definitions, NCC lists derived from parallel data may benefit other appli-
cations where NCCs play a role, such as information retrieval (Evans & Zhai,
1996) and language modeling for speech recognition (Ries et al., 1996). To the
extent that different applications have different objective functions, researchers
seeking to optimize these functions can benefit from an understanding of how
they differ. The present work is a step towards such understanding, because “an
explication of a monolingual idiom might best be given after bilingual idioms
have been properly understood” (Bar-Hillel, 1964, p. 48).





9 Sense-to-Sense Models of Translational Equivalence

Polysemy is a major confounding variable for empirically estimated models of trans-
lational equivalence. Automatic word-sense disambiguation can improve such models,
but only if the disambiguation is with respect to word senses that actually occur in the
data. This chapter presents an algorithm for deciding the sense inventories of words in
bitext, including the number of sense divisions appropriate for each word. The decisions
are based on information-theoretic measures of the predictive values of the contexts of
the words in question. Evaluation on held-out data has shown that the algorithm can
boost the accuracy of word-to-word translation models.

9.1 Introduction

The explanatory power of a statistical model depends on how well its parame-
ters correspond with sources of variation in the data. One of the main sources of
variation in translational equivalence is polysemy. Different senses of the same
word often have different translations. A good statistical translation model
should have independent parameters for all the word senses in the data, not
just for all the words.

In order to estimate such a model, we must first distinguish the differ-
ent word senses in the training bitext. In this chapter, I present an automatic
method for deciding the sense inventory for each word that occurs in a given
bitext. The sense inventory is based on and used by a word-to-word transla-
tion model in an iterative fashion, for the purpose of improving the translation
model. This goal should not be confused with the goal of inducing context-
aware translation models, which is a vast topic beyond the scope of this book.

Each word’s sense inventory is based on the contexts in which that word
appears. For clarity, I adopt Brown et al. (1991b)’s term informant to denote
a single piece of evidence from the context of the word in question; i.e., a
single context can contain many informants. Yarowsky (1993) has studied the
relative efficacy of different informants for distinguishing word senses. This
chapter explores only the orthogonal question of how best to exploit what-
ever informants happen to be available, for the purpose of improving word-
to-word translation models. In keeping with the language-independent tenor
of this book, I have not experimented with syntactic context, the use of which
presumes the availability of at least a rudimentary syntactic parser. Instead, I
have considered only the simplest kind of informants: words anywhere within
a fixed-size window around the word to be disambiguated. This kind of in-
formant is one of the few kinds available to information retrieval systems for
disambiguating the senses of words in queries, which are often just a few words
with no syntactic structure. To save computing time, I limited the window
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boundaries to ±5 words. The restriction to very simple informants in a very
small window is quite severe, but the aim here is to demonstrate the method’s
general viability, rather than to post huge performance gains. Much more in-
formation from the context can and should be used in practice.

There are many different notions of word sense. Section 9.3 motivates and
operationalizes the notion that is relevant to statistical translation models. From
this notion I derive an information-theoretic objective function, whose opti-
mization is hypothesized to improve statistical translation models. Section 9.5
describes an efficient optimization method. An application is described in sec-
tion 9.6, which is followed by experimental results. Most of this chapter dis-
cusses word sense disambiguation for only one (arbitrary) word type, with the
understanding that the method can be repeated for every word in the vocabu-
lary.

9.2 Previous Work

Many authors have proposed automatic methods for disambiguating polyse-
mous words. However, I know of no published work on automatically deter-
mining, in the first place, the number of senses that a given word type has in
a given text or text collection. Instead, a popular approach has been to assume
that the text’s sense inventory coincides with an existing sense inventory ex-
tracted from a machine-readable dictionary, from an on-line thesaurus, or from
WordNet (Miller, 1990). However, machine-readable bilingual dictionaries are
a poor source of word sense inventories. Fewer than 60% of the word types
in the relatively non-domain-specific record of the Canadian parliamentary de-
bates (Hansards) can be found in the on-line version of the college-size Collins
French/English Dictionary (Cousin et al., 1991). The coverage drops to only
25% for more specialized texts like computer software manuals. Even worse,
the entries that do appear in the dictionary may be misleading for technical
terms that are derived from common words, such as file and mouse. In gen-
eral, the vocabulary in any such resource does not overlap very much with the
vocabulary in any given text.

The coverage is even worse for word senses than for words. There is little
agreement on the correct granularity of sense distinctions between any two
dictionaries. So, we should not expect any pre-existing sense inventory to
correctly model the distribution of word senses in a given text, unless the
inventory is based exclusively on that text. After an extensive survey of the
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way word senses are used in lexicography and in NLP, Kilgarriff (1997a)
concluded:

There is no reason to expect a single set of word senses to be appropriate for different
NLP applications. In particular, the sets of word senses presented in different dictio-
naries and thesauri have been prepared, for various purposes, for various human users:
there is no reason to believe those sets are appropriate for any NLP application.

A more sophisticated approach starts by decomposing word sense disam-
biguation into two subtasks. The first subtask is to cluster word tokens into
senses; the second subtask is to label the clusters with one of a predetermined
set of sense labels. Schuetze (1998) has named the first subtask word sense
discrimination, and has observed that the second subtask (labeling) is not nec-
essary for some applications. Word sense discrimination can be accomplished
by standard clustering algorithms, if the appropriate number of senses is spec-
ified in advance. Instead of relying on a pre-existing sense inventory, Schuetze
& Pedersen (1995) suggested that the number of senses of each word should be
determined by the word’s frequency. One can imagine choosing the number of
clusters based on other properties of the word as well, such as on its semantic
entropy (Melamed, 1997a). In practice, this approach works better than using
a pre-existing sense inventory (cf. Schuetze, 1998; Voorhees, 1993), because
the granularity of sense divisions for each word is partially determined by the
amount of information available about that word in the text corpus. In particu-
lar, the likelihood of finding a reliably discriminating informant for each word
sense rises with the word’s frequency. A drawback of Schuetze’s discrimina-
tion method is that the contexts of a given word type may not have sufficient
discriminating power to distinguish the preselected number of senses. When
this happens, the clustering process is either random or driven by noise.

The word sense discrimination problem is arguably easier in the context of
translation models than in the context of Schuetze & Pedersen (1995)’s vec-
tor space models, because the number of link types in a translation model is
an upper bound on the number of possible word senses. The symbiotic rela-
tionship between translation models and word sense discrimination algorithms
was first exploited by Brown et al. (1991b). Their strategy was to partition
words into word senses so as to maximize the mutual information between
word senses and their informants. This mathematically elegant and intuitively
plausible objective function turned the task into an immense search problem.
Lacking efficient search methods, Brown et al. decided to pursue the less am-
bitious goal of sense-tagging a predetermined number of words with only two
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senses each. Even this more modest approach improved the accuracy of their
context-aware translation models.

9.3 Formulation of the Problem

The sense distinctions that are most relevant to translation models and their
applications are those that are “lexicalized cross-linguistically” (Resnik &
Yarowsky, 1997). Conversely, translation models provide a way to character-
ize cross-linguistic lexicalization patterns. Given a perfect translation model
and a noise-free bitext, we need only look at the link types generated by the
model in the bitext to determine the inventory of senses for each word in that
bitext and the contexts in which each sense occurs. Of course, perfect trans-
lation models do not exist, so we must deal with noise. In addition to noise,
we must deal with synonymy. Suppose that word s1 in one half of a bitext is
sometimes translated as t1 and sometimes as t2 in the other half. It’s possible
that t1 and t2 are translations of two different senses of s1, but it’s also possible
that t1 and t2 are synonyms and correspond to one and the same sense of s1!
It is impossible to distinguish the two cases by looking only at the translation
model. How can we decide between polysemy and synonymy? The answer is
that if a word is polysemous, then its different senses will typically appear in
different contexts.

A word sense should be considered distinct if its presence or absence is sig-
nificantly easier to predict in particular contexts than in general. If the presence
or absence of a word sense is governed by the probability distribution s, the
difficulty of predicting events in this distribution is an information-theoretic
quantity called entropy, denoted H(s). Entropy can also be computed for con-
ditional distributions. For example, we can compute the difficulty of predicting
the presence or absence of a word sense given a particular informant c, and call
it H(s|c). The greater the difference between H(s) and H(s|c), the more likely
it is that s is a distinct word sense. It is a theorem of information theory that
H(s)−H(s|c)= I (s; c). Thus, the degree to which the presence or absence
of a word sense s is conditioned by the distribution C of informants in which
s’s word type appears can be expressed by the mutual information between the
distribution of that word sense and the distribution of its informants:

I (s; C)=
∑

c∈C

[
Pr(s, c) log

Pr(s, c)

Pr(s) Pr(c)
+ Pr(¬s, c) log

Pr(¬s, c)

Pr(¬s) Pr(c)

]
. (9.1)
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In general, we want to partition each word type into as many senses as can be
reliably predicted by the distribution of co-occurring informants. If I (s; c) > 0
for a word sense s and an informant c, then c is a predictive informant and s
can be reliably predicted. If we let S be a partitioning of a word’s link types
into senses, then the word sense discrimination problem can be formulated as
follows: Find the partition of link types S and the set of informants C that
maximize

I (S; C)=
∑

s∈S

∑

c∈C
Pr(s, c) log

Pr(s, c)

Pr(s) Pr(c)
. (9.2)

The objective function above is more general that the objective function used
by Brown et al. (1991b) because S is not limited to binary partitions. The two
main obstacles to maximizing equation (9.2) are estimation error and compu-
tational complexity. Section 9.4 addresses the former; section 9.5 addresses the
latter.

9.4 Noise Filters

Truly predictive informants are relatively rare. Most words that co-occur do so
by chance. So, I (s; c) > 0 for almost any (s, c) pair that occurs in the data. If
these estimates of mutual information were taken at face value, then almost all
link types would be discriminated as distinct senses. I have adopted several
measures to distinguish the truly predictive informants from noise. First, I
smooth all (sense, informant) co-occurrence counts using the method described
by Yarowsky (1996, pp. 66–79). Second, I disallow very rare word senses—a
link type must occur at least twice in the bitext to be allowed its own sense
partition. Singleton link types are forced to merge. Third, I model the noise
with pseudolinks.

A pseudolink is a randomly chosen subset of the tokens of one link type.
The tokens of the link type not in the chosen subset represent another subset
and another pseudolink. Once a link type is partitioned into two pseudolinks p1

and p2, it is possible to measure I (P ; c) for each informant c, where P is the
smoothed probability distribution over {p1, p2}. The procedure can be repeated
for all link types in the bitext to generate a distribution of mutual information
values. Since pseudolinks represent spurious sense partitions, this distribution
is a noise model.
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The noise model provides a simple way to distinguish the informants that are
truly predictive from the ones that co-occur randomly: The mutual information
between a truly predictive informant and the given sense partition will usually
exceed most of the values in the noise model. In my experiments, I have set
the threshold at the 99th percentile of the noise distribution. This is a very
strict criterion, set to demonstrate the method’s general viability in the absence
of most noise. The optimal noise threshold depends on the application, the
languages involved, and the literalness of translation in the bitext.

9.5 The SenseClusters Algorithm

The computational complexity of the word sense discrimination problem stems
from two sources. First, the number of possible informants for each word
can be as large as the whole vocabulary. Second, the number of possible
partitions of t link types is exponential in t . For some words, the number
of different link types exceeds 30 even in the relatively compact translation
models described in chapter 7, so it is infeasible to search an exponential
number of partitions. There are two approaches to reducing the computational
complexity, one randomized and one greedy.

The top-down approach, also known as divisive clustering, would start with
all link types in the same cluster, then recursively split the cluster to optimize
the objective function. For a cluster with t link types, there would be 2t−1 ways
to partition it into two clusters, which is still exponential. However, Li & Abe
(1996) have proposed that the split can be made randomly and then “fixed,”
e.g., by simulated annealing. Depending on the parameter settings, simulated
annealing need not be exponential, but it is typically not very fast. For the
present purposes, it would also need to be repeated once to form each new
cluster.

The bottom-up approach, also known as agglomerative clustering, admits a
greater reduction in complexity via a greedy heuristic.1 The algorithm starts
with each link type in its own cluster. It then greedily merges one pair of
clusters at a time. The pair to be merged at each step is the one that, if merged,
would effect the biggest gain in the objective function. If Si and Sj are two
sense clusters, then the gain in merging them into Si∪j is given by:

gain(Si, Sj)= I (Si∪j ; Ci∪j )− I (Si; Ci)− I (Sj ; Cj). (9.3)
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The algorithm stops when gain(Si, Sj) ≤ 0 for all i and j . If t is the number
of different link types for the word being discriminated, then initially there
are O(t2) possible merges. The total number of possible merge operations
is bounded by log t2 = 2 log t . However, after the initial t2 computations,
gain(Si, Sj) needs to be recomputed only for the cluster Si created in the most
recent merge together with each of the remaining clusters Sj , 1≤ j ≤ t , j �= i.
Thus, the algorithm runs in O(t2 + t log t)=O(t2).

To reduce the number of informants considered during each computation of
the objective function, I make two simplifying assumptions:

Assumption 9.1 Informants are independently distributed.

Assumption 9.2 Suppose that

. Si∪j = Si ∪ Sj is the union of two sense clusters;

. Ci∪j is the set of informants that predict Si∪j better than any other sense, i.e.,
Ci∪j = {c|I (Si∪j ; c)≥ I (Sk; c), for 1≤ k ≤ |S|};

. Ci is the set of informants that predict Si better than any other sense, i.e.,
Ci = {c|I (Si; c)≥ I (Sk; c), for 1≤ k ≤ |S|};

. Cj is the set of informants that predict Sj better than any other sense, i.e.,
Cj = {c|I (Sj ; c)≥ I (Sk; c), for 1≤ k ≤ |S|};

. C0 is the set of informants that are not predictive of any sense cluster, i.e.,
C0 = {c|I (Sk; c)≤ θ for 1≤ k ≤ |S|}, where θ is the noise threshold;

then Ci∪j ⊆ Ci ∪ Cj ∪ C0.

These assumptions are embodied in the SenseClusters algorithm in figure 9.1.
The output of SenseClusters is a partitioning of the link types into clusters,

some with predictive informants attached and some without. According to
the principle of maximum entropy, we should not attempt to model more
degrees of freedom than are supported by the data. So, in a final clean-up
sweep, all the clusters without predictive informants attached are merged with
the maximum likelihood (most frequent) cluster. In the context of translation
model estimation, this step can be viewed as “backing off” to a less specific
but more reliable estimator. If none of a word’s link types can be reliably
distinguished from the most frequent link type, then, according to the data,
that word has only one sense.
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Initialization:

1. Put each link type in a separate sense cluster.

2. Assign each informant c to the sense cluster Si that maximizes I (Si; c). Let the set
of informants assigned to sense cluster Si be called Ci. A sense cluster may have no
informants assigned to it.

3. If an informant is not predictive of any sense cluster, then put it in the
“non-predictive” informant set C0.

4. For each pair of sense clusters Si and Sj ,

(a) Let Si∪j and Ci∪j be defined as in assumption 9.2.

(b) Estimate gain(Si, Sj), using equation (9.3).

Iteration: While there is a pair of sense clusters Si and Sj for which gain(Si, Sj) > 0,

1. Merge the two sense clusters Si and Sj for which gain(Si, Sj) is greatest.

2. Let Ci∪j , defined in 4(a) above, be the set of informants assigned to the merged
cluster.

3. Return the non-predictive informants to C0 = Ci ∪ Cj ∪ C0 − Ci∪j .
4. For each remaining cluster Sk, k �= i, k �= j , estimate gain(Si∪j , Sk) using
equation (9.3).

Figure 9.1
Algorithm SenseClusters

9.6 An Application

The most straightforward way to exploit the output of SenseClusters is to
construct a decision procedure based on the informants attached to each sense,
to sense-tag2 all polysemous words in the bitext, and then to induce a new
translation model that treats each sense as a different word. Sense-tagging
increases the vocabulary size, thereby increasing the degrees of freedom in
the model. The extra degrees of freedom are the main reason why Brown et
al. (1991b) were able to show significantly improved performance. However,
if Yarowsky (1993) is right that two senses of the same word are very unlikely
to co-occur, then the score()s of all link types in the various translation models
in chapter 7 are already estimated independently of each other. And if we
take a word’s translation to be its sense, then each link type involving a given
word represents a different sense of that word, so models that account for each
different link type independently already have enough parameters to model
independent word senses.
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Nevertheless, all published probabilistic translation models require an initial
similarity metric based only on co-occurrence counts. The metrics that work
best scale down their similarity estimates by the marginal probabilities of
the words involved, which makes all the parameters for a given word type
initially interdependent. Even though the one-to-one assumption can gradually
reduce this interdependence, I hypothesized that stronger enforcement of the
independence of different senses during computation of the initial similarity
metric could improve translation model accuracy. A sense-tagged text gives
each word sense its own frequency count, allowing the initial similarity metric
to be estimated independently for each word sense.

To test my hypothesis, I implemented the following translation model induc-
tion system:

1. Induce a translation model from bitext, using translation Model C described
in chapter 7.

2. Use SenseClusters to determine a sense inventory for all words on one side
of the bitext.

3. Build a decision list (Yarowsky, 1996, chapter 5), in which the decisions
can be based on a word’s translations or on the informants in its monolingual
context.

4. Use the decision list to sense-tag one side of the bitext.

5. Repeat from Step 2, treating each sense of each word as a different word
type.

The cycle can be terminated when SenseClusters discovers no additional sense
distinctions in Step 2, or when the translation model’s performance on a de-
velopment test set stops improving. Sense-to-sense translation models can also
be co-trained (Blum & Mitchell, 1998) in “two-sided” mode, if SenseClusters
distinguishes senses in alternate halves of the bitext on each iteration. It may
also be advantageous to process both halves in the same iteration.

9.7 Experiments

I ran six iterations of the above system on two different training bitexts. The
translation models resulting from each iteration were then evaluated on a
previously unseen test bitext. The first training bitext consisted of the 29364
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Table 9.1
Number of additional sense distinctions discovered by SenseClusters on each iteration on the
English side of two bitexts.

Iteration Bible Hansards

1 774 1206
2 204 356
3 62 88
4 19 25
5 9 8
6 2 3

unannotated verse pairs in the Bible bitext described in chapter 6. The cor-
responding test bitext was the 250 hand-annotated verses in that bitext. The
second bitext was the first 100000 segment pairs from Set-A of the Canadian
Hansards CD-ROM (Graff et al., 1997). For testing, I used 10 sets of 5000 seg-
ment pairs each from the next 100000 segment pairs in Set-A. In both bitexts,
punctuation was ignored for efficiency reasons.

9.7.1 Quantitative Results

Table 9.1 shows the number of new sense distinctions discovered by Sense-
Clusters on each iteration in each bitext. The English vocabulary in the Bible
training bitext originally contained 14644 word types. The English half of
the Hansards training bitext comprised 19650 word types. No lemmatization
was performed on the Bible bitext, so the English Bible vocabulary includes
a number of morphological variants of some lemmas. On the other hand, all
morphological variants in the Hansards bitext were conflated to a canonical
form. Lemmatization makes the data less sparse (see section 7.6) and provides
insight into how the system would behave given more training data, without
incurring more computational expense. Table 9.1 shows that both runs have
nearly converged after six iterations.

Table 9.2 shows the final polysemy distribution of English words in each
bitext, i.e., the number of words that have the given number of senses after
six iterations. Note that the Bible sense distinctions may include distinctions
between morphological variants of the same lemma. The average polysemy in
the English Hansards is significantly higher than in the English Bible, because
lemmatization made the Hansards less sparse, so there was more evidence
for more sense distinctions. On the other hand, SenseClusters did not come
even close to making all the possible distinctions. After six iterations, 51%
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Table 9.2
Number and percentage of English words in each bitext that have the given polysemy, i.e., the
given number of senses.

Polysemy Bible % Hansards %

1 14193 96.92 18815 95.83
2 224 1.53 434 2.257
3 82 0.56 193 0.983
4 45 0.31 75 0.38
5 37 0.25 45 0.23
6 24 0.16 27 0.14
7 15 0.10 21 0.11
8 13 7
9 6 9
10 2 4
11 1 2
12 2 1
13 0 1

of the sense clusters in the English Bible vocabulary and 48% of the sense
clusters in the English Hansards vocabulary consisted of more than one link
type. Moreover, there were 148 clusters in the English Hansard vocabulary
with twenty or more link types each, and there were 57 such large clusters
in the English Bible vocabulary.

I evaluated the Bible translation models in two ways. First, I ran the “whole
distribution” task described in section 7.7.1. The five-fold replication of anno-
tations in the test data made it possible to compute the statistical significance
of the differences in model accuracy. Second, I took this opportunity to test
the validity of the unsupervised evaluation method described in section 8.8. To
measure statistical significance, I divided the 250 verse pairs in the test bitext
into ten samples of 25 verse pairs each. No hand-annotated links were available
for the Hansards bitext, so I could evaluate its models only by using unsuper-
vised evaluation.

Since the test bitexts had not been sense-tagged, I removed the sense tags
from the words in the translation models and conflated the different senses of
each word, before normalizing each translation model into a conditional distri-
butions. No contextual information was used during evaluation, in contrast to
the experiments of Brown et al. (1991b) and Kikui (1998). For both supervised
and unsupervised evaluation, the translation models distributed a total proba-
bility mass of one among the predicted translations for each “source” word,
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Figure 9.2
Effect of SenseClusters on translation model accuracy on the hand-annotated portion of the Bible
bitext. Iteration 0 is the baseline model.

regardless of the number of words in the held-out “target” text. Under unsu-
pervised evaluation, this translation method usually results in higher precision
than recall if the target text has more words than the source, and vice versa. To
counter this bias, and to make the results comparable across the two evaluation
methods, I measured performance using the set-theoretic Dice coefficient (see
chapter 6), and averaged the scores between the two directions of translation,
as in section 7.7.1.

The performance of SenseClusters on the Bible bitext, using both super-
vised and unsupervised evaluation, is shown in figure 9.2. In both cases, the
performance improvements after the first and second iterations are statistically
significant at the α = .05 level using the Wilcoxon signed ranks test. Subse-
quent iterations resulted in no significant differences. These scores are not
comparable to those reported in section 7.7.1, because there the training bi-
text included the test bitext, but here it does not. The correlation of ρ = .999
between the supervised and unsupervised scores is empirical evidence that un-
supervised evaluation is internally valid.

Figure 9.3 plots the mean unsupervised evaluation scores for the Hansards
test bitexts. By far the biggest change in performance was the improvement
after the first iteration, after which performance dropped slightly on iterations
three and four, rose on iteration five and dropped again on iteration six. On
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Effect of SenseClusters on translation model accuracy on the Hansard test bitext. Iteration 0 is the
baseline model.

this bitext, SenseClusters seems to have done most of its useful work on the
first iteration. The subsequent tiny performance drops may have resulted from
overtraining.

These results show that SenseClusters can improve the accuracy of word-to-
word translation models. The demonstrated performance improvements were
small, as expected, due to the severe limits on the kinds and amount of in-
formation made available to the system (see section 9.1). To understand why
SenseClusters improves translation models, recall that model induction is a
search for optimal parameters. Even though parameter estimation algorithms
such as EM (e.g., Dempster et al., 1977) are guaranteed to find a local max-
imum in their search space, the peak at which they converge depends on
the topology of the search space. This dependence is stronger for algorithms
like competitive linking that lack any convergence guarantees. Polysemous
words force a single dimension of the search space (a single word) to repre-
sent what should ideally be independent dimensions for each word sense. The
spurious conflation of independent dimensions confounds the search. Sense-
tagging deconflates these separate dimensions, giving the model more degrees
of freedom and making it easier for the model induction algorithm to find a
good representation of the training data. A better translation model will, in
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turn, generate more correct link tokens in the bitext, enabling more of them
to contribute relevant contextual evidence. When more of the evidence passes
the noise filter described in section 9.4, SenseClusters can distinguish more
senses. The system converges when it cannot find any more dimensions to
deconflate.

9.7.2 Qualitative Results

To illustrate the kinds of sense distinctions discovered by SenseClusters, I se-
lected ten words at random among the polysemous words in the Hansards
English vocabulary. For each of these ten words, table 9.3 shows the French
translations that account for at least 10% of each sense’s translational probabil-
ity mass, and the predictive informants for each sense.3 The table reveals some
translation modeling errors and several interesting properties of the experimen-
tal system described above. The system constructs a hierarchy of senses for
each word, where SenseClusters adds another level to the hierarchy on each it-
eration. Of course, a new level is only added for a given word if it is supported
by the data. The hierarchy of sense tags is a decision tree, in which the tagging
decision at each node depends on the informants attached to each subnode. At
each node, there can be a default “most frequent” decision that has no infor-
mants attached. In table 9.3, digits attached to informants represent sense tags;
e.g., “be.1.2” is the second subsense of the first sense of “be.”

The existence of multiple levels of sense distinctions in the Hansards data
shows that some sense distinctions could be made reliably only after the rel-
evant informants were themselves split into distinct senses. For example, the
translations of like were initially split into five clusters, where the most fre-
quent translations in each cluster were aimer, <null>, comme, ressembler,

and question, respectively. On the second iteration, the aimer cluster was fur-
ther split into an aimer cluster and a vouloir cluster, and a second <null>
cluster was split off the comme cluster. Finally, the third iteration found that
the most frequent translation of the ressembler cluster was also <null>, but
that the links to ressembler were reliably predictable in the context of the first
sense of be. Thus, two of the <null> clusters represent the default senses
at their nodes in the sense hierarchy of like. This example also illustrates that
the system is somewhat vulnerable to fragmentation of training data, especially
where the troublesome<null> links are concerned. More efficient utilization
of contextual information is a rich topic for future work.
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Table 9.3
A random sample of ten English words from the Hansards that SenseClusters deemed polysemous.
Digits appended to informants are sense tags.

Sense Translation(s) Informant(s) in Explanatory
Word freq. in cluster monolingual context notes

Act 1667 loi the
46 acte BNA, British, “the British North

North, America America Act”
3 agricole Land.1
2 pension Social “Social Security Act”

South 178 sud York “York-sud”
37 South, <null> Shore
19 Sud Africa “Afrique du Sud”

after 881 après <number>, <comma>
427 <null> look particle in “look after”
25 ensuite that

close 177 <null>
94 fermer down
90 près, presque to, <number>, “close to <number>

per, cent per cent”
55 étroit with, consultation
22 terminer I, like “In closing, I would like . . . ”
20 fermeture programme, “The programme to

small, post, close small post offices
office, end ends in September.”

could 2610 pouvoir the
204 ne, y, faire not

80 alors, sans, possible be.2
53 afin, ainsi so
15 si truth

like 1166 aimer to.1, should.2 “I should like to . . . ”
605 vouloir would.1 “Je voudrais . . . ”
583 <null> put, a, question
422 comme
163 <null>
62 <null> should.2, to.2, to.1
26 ressembler be.1.1 “to be like . . . ”
24 question ask, supplementary T.M. error

market 1046 marché the
46 vente, sur, débouché for
24 commercialiser, produce, quantity,

commercialisation article
20 marchand value

please 722 avoir <period>, <comma> T.M. error
156 heureux be.1.2

87 plaisir, réjouir, volontiers be.1.1
47 <null> <period>
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Table 9.3 (continued)

Sense Translation(s) Informant(s) in Explanatory
Word freq. in cluster monolingual context notes

promote 138 favoriser
5 créer unemployment

right 977 droit have, their, human, “ . . . have their human
to, of, strike, the right to strike . . . ”

541 <null> now, way “right now”
281 très question, direct, “the question directed

by, gentleman, hon., by the gentleman
prime, minister, from Prince Albert
member, for, to the right honorable
Prince, Albert prime minister”

94 raison think, he, be, wrong “I think he is wrong.”
44 tout across, country “right across the country”

“dans tout le pays”
41 droite my, friend “my friend to my right”
20 direction step, in, “a step in the

direction right direction”

9.8 Conclusion

In this chapter, I have shown how an information-theoretic criterion for sense
distinctions can be used as an objective function for improving translation
model accuracy. Under a couple of simplifying assumptions, this objective
function can be efficiently optimized by the SenseClusters word sense discrim-
ination algorithm. SenseClusters overcomes a serious limitation of previous
attempts: it automatically determines the number of sense divisions that are
appropriate to each word, ranging from one for monosemous words up to as
many senses as there are link types for the word in a word-to-word translation
model. Objective evaluation has shown that these techniques can improve the
accuracy of word-to-word translation models.

The research described in this chapter naturally intersects with a variety
of other research areas, and these intersections deserve more attention than I
have given them so far. For example, it would be useful to adopt the methods
of Yarowsky (1993) to investigate which informant types are most useful for
this kind of lexical ambiguity resolution, and how they can be combined with-
out violating too many independence assumptions. The noise filtering methods
in section 9.4 can benefit from more principled methods of finding optimum
thresholds. In addition to splitting single words into multiple senses, it would
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be useful to combine SenseClusters with methods for automatically discover-
ing sets of words that have the same sense, i.e., synonyms. These need not
necessarily be synonyms in the classical sense; they can be arbitrary word
classes used to back off from sparse data (Brown et al., 1992; Och, 1999).
The fine-tuning of equivalence classes of words in bitext can also improve the
performance of other algorithms that are based on translation models, such as
the algorithms for NCC induction described in chapter 8.

It is likely that SenseClusters can be retargeted towards other applications,
especially if it is used with context-aware translation models. The algorithm
produces sense-tags and lists of their predictive informants as a side effect.
Predictive informants are the key to accurate context-aware translation mod-
els. The sense tags might be used as training data for supervised word sense
disambiguation (Resnik & Yarowsky, 1997). Kilgarriff (1997b) suggests that
sense-tagged corpora are also useful for lexicographers, who often need to find
more examples of a particular word sense.





10 Summary and Outlook

Parts I and III of this book presented state-of-the-art solutions to the first two
major problems along the path from raw bitext to real-world applications:
mapping bitext correspondence and inducing word-to-word translation models.
Part II showed how generalized models of co-occurrence can glue together
the solutions to these two problems into an integrated system for exploiting
arbitrary parallel texts.

I. Translational Equivalence among Word Tokens

Chapter 2 began by showing that the language-specific aspects of the bitext
mapping problem can be encapsulated and modularized away. What remains
is a geometric pattern recognition problem. From this point of view, the best
solution is the one that maximizes the signal-to-noise ratio in the search space
and employs the fastest and most accurate search algorithm. Chapter 2 con-
tinued by demonstrating how to maximize the signal strength for any bitext in
any pair of languages, and how to minimize noise using a novel localized fil-
ter. In addition to these programmatic insights, the chapter’s chief contribution
is the Smooth Injective Map Recognizer (SIMR) algorithm. SIMR is the first
general bitext mapping algorithm to achieve state-of-the-art accuracy in linear
expected space and time. SIMR’s accuracy made possible the applications in
chapters 3 and 4.

Chapter 3 applied the insights of chapter 2 to the long-standing bitext align-
ment problem. Since alignment is formally easier that the general bitext map-
ping problem, a good alignment can be extracted from a good general bitext
map. Chapter 3 presented the Geometric Segment Alignment (GSA) algorithm,
designed to distill a segment alignment from a bitext map combined with infor-
mation about segment boundaries. Evaluation on a pre-existing gold standard
has shown that alignments extracted by GSA from a good general bitext map
are more accurate than those produced directly by other published methods.

Chapter 4 is proof positive that bitext maps are useful for something other
than machine translation. Omissions in translations are one of the biggest qual-
ity control problems facing translators today. Chapter 4 showed that accurate
general bitext maps of the kind produced by SIMR make possible the first
published practical solution to this problem. A geometric characterization of
omissions in translations and a noise filter designed to overcome characteristic
imperfections in bitext maps are the key to Automatic Detection of OMIssions
in Translations (ADOMIT). ADOMIT can be used by translators to catch omis-
sion errors in translations, in the same way that they might use a spell-checker.
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II. The Type-Token Interface

Chapter 5 introduced formal models of co-occurrence. These models dictate
how to compute co-occurrence counts, which are the starting point for most
statistical translation models. Although counting co-occurrences is a simple
idea, its correct implementation turned out to be rather subtle, especially in
the absence of information about text segment boundaries. To reduce the re-
liance of many published translation model estimation methods on clean and
order-preserving translations, chapter 5 showed how to compute co-occurrence
counts given an arbitrary (not necessarily monotonic) bitext map. Given a tool
for harvesting bitexts from the internet, such as the one described by Resnik
(1999), these insights have the potential to break the data bottleneck that has
stifled research in this field.

Chapter 6 described a project to design and implement a model-independent
gold standard for evaluating models of translational equivalence. The design
made evaluation possible at both the type and token levels. The project in-
cluded the design and implementation of the “Blinker” bitext annotation tool,
the development of an annotation style guide (appendix A), and the invention
of several strategies for raising inter-annotator agreement rates. The agreement
rates indicated that the annotations are reasonably reliable and that the task
is easy to replicate. The gold-standard annotations are freely downloadable
from http://www.cis.upenn.edu/~melamed to encourage further research
in this field.

III. Translational Equivalence among Word Types

Chapter 7 proved the feasibility of modeling translational equivalence indepen-
dently of word order. The computational complexity of estimating translation
models of this kind led to the introduction of the one-to-one assumption and
the invention of the competitive linking algorithm. Chapter 7 also showed why
and how more accurate translation models can be estimated using an explicit
noise model. Further, chapter 7 showed how the noise model can be condi-
tioned on almost any kind of pre-existing language-specific knowledge that
might be available, and that even the simplest linguistic bias can improve trans-
lation model accuracy.

Chapters 8 and 9 strove to break free of the word typology imposed on
text translation models by the idiosyncratic orthographic conventions of writ-
ten languages. Translational equivalence between the vocabularies of two lan-
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guages is easiest to describe in terms of their minimal content-bearing units.
One such unit may be represented by a phrase of several words; several units
may be represented by the same word type. The set of possible mappings be-
tween minimal content-bearing units and strings in text represents a search
space. Chapters 8 and 9 developed information-theoretic objective functions
for searching two subspaces of this space. In both cases, the goal was to modify
the parameter set of a translation model to better match the sources of variance
in the data, thereby improving the resulting models. The objective function in
chapter 8 was designed to discover word sequences whose translations were
not composed of the translations of the individual words, so that these word
sequences could be assigned their own translational distribution. The objective
function in chapter 9 was designed to increase the number of translation pa-
rameters for each word proportionally to the degree of polysemy of that word,
so that each distinct word sense would have its own translational distribution.
Each of these two chapters presented novel efficient methods for optimizing
their respective objective functions. In both cases, optimization of the objective
function improved translation model accuracy.

Outlook

It is in the nature of engineering research to improve on existing solutions.
Future advances in the state of the art of solving the problems addressed in this
book are likely to come from research with the following foci:

. If bitext mapping can be viewed as a pattern recognition problem, then
the way to improve its solution is to improve the signal-to-noise ratio in the
bitext space. The most valuable improvements in signal generation or in noise
filtering will be the language-independent ones, but many language-specific
heuristics are also possible.
. Manual annotation of translational equivalence can be done more reliably
given a better annotation tool and a more detailed style guide.
. All the translation model biases introduced in this book can be modeled
more cleverly and estimated more efficiently. They can also be combined with
other biases in the literature, such as the word order correlation bias. However,
the most significant improvements in statistical translation models will come
from insights into how to model the remaining sources of variation in the data.
The next big challenge is to account for word-order variation with bilingual
bilexical dependency models.





A Annotation Style Guide for the Blinker Project

A.1 General Guidelines

You will be working with pairs of corresponding Bible verses in English and
French. Your task will be to specify how words correspond within the paired
verses, using the Blinker. For example, when the Blinker presents you with
the pair of verses in figure A.1, you might link them as in figure A.2. As
you can see, most words are linked to only one word in the other language.
However, this is not always the case, as demonstrated by “toute” and “leur” in
this example.

Sometimes you will see the English on the left and the French on the right,
sometimes vice versa. You will also notice that we have done some “reto-
kenization” on some of the verses. In both the English and the French, we
separate hyphenated words and elisions into separate words. For example, you
will see “de le” instead of “du” in French, and “Lord’s” will appear as “Lord’s”

Thus the heavens and the earth were finished and all
the host of them.

Ainsi furent acheves les cieux et la terre, et toute
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Example 1.
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Figure A.2
Example 2.

in English. Although this is an unusual way of writing, it will make it easier
for you to link the words correctly.

Two kinds of complications arise when the translation is not very literal.

A.1.1 Omissions in Translation

You may see words in the verse of one language whose meaning is not con-
tained at all in the verse of the other language. Here is another verse pair from
Genesis:

French: fixe moi ton salaire , et je te le donnerai .

English: And he said , Appoint me thy wages , and I will give it .

Although the English verse begins “And he said,” there is no corresponding
language in the French verse. When this happens, you should link the extrane-
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fixe moi ton salaire, et je te le donnerai.
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Example 3.

ous words to the “Not Translated” bar on the corresponding side of the screen,
as in figure A.3.

Careful! Many of the translations are very non-literal. However, you should
only link words to “Not Translated” when you can answer “Yes” to the follow-
ing question: If the seemingly extraneous words were simply deleted from their
verse, would the two verses become more similar in meaning? If the answer is
“No,” then some words in the translation share some meaning with some of
the words that seem extraneous. So, those words are not really extraneous and
should not be marked “Not Translated.”

A.1.2 Phrasal Correspondence

The other problem with non-literal translations is that sometimes it is necessary
to link entire phrases to each other. Here is another example from Genesis:
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And Noah began to be an husbandman, and he
planted a vineyard.

Noa commenca a cultiver la terre, et planta de la
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Example 4.

English: And Noah began to be an husbandman , and he planted a vineyard :

French: Noà commença á cultiver la terre , et planta de la vigne .

The words in “to be an husbandman” and in “cultiver la terre” do not corre-
spond one to one, although the two phrases mean the same thing in this context.
Therefore, the two phrases should be linked as wholes, by linking each word in
one to each word in the other, as in figure A.4. Likewise, “de la vigne” means
“some vines,” not “a vineyard.” figure A.4 shows these phrases as completely
interlinked.

The divergence in meaning may be so great for some pairs of passages that
the best annotation might seem to be to link both passages to “Not Translated”
in their entirety. Whenever you have this urge, please remember that neither
version of the Bible from which we drew these verses is a translation of the
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other. Instead, they are both translations of a third version. Each translation
introduces some idiosyncrasies, and when two such idiosyncrasies happen in
the same place in the text, the two passages may seem to have nothing to do
with each other. The decision whether to link or not to link should not be based
on the question of whether one passage could have arisen as a translation of the
other. A more appropriate criterion is whether both passages could have arisen
as translations of a third.

A.2 Detailed Guidelines

You should specify as detailed a correspondence as possible, even when non-
literal translations make it difficult to find corresponding words. See figures
A.5—A.7.

A.2.1 Idioms and Near Idioms

“Frozen” expressions that are unique to one language or the other should be
linked as wholes. See figure A.8.
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Figure A.5
Example 5: Right. Example 6: Wrong.
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Example 7: Right. Example 8: Wrong.
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A.2.2 Referring Expressions

Pronouns and Definite Descriptions Divergent descriptions of the same
thing should be linked as wholes, as in figure A.4. This rule holds even when
one description is a pronoun. See figure A.9.

Resumptive Pronouns Resumptive pronouns refer to something previously
described in the same sentence, called the antecedent. When a resumptive pro-
noun occurs in a verse, but not in its translation, both the resumptive pronoun
and its antecedent should be linked to the translation of the antecedent. Relative
markers should be treated the same way. See figures A.10–A.12.

Conjunctive Non-Parallelism When a piece of text is repeated in a verse but
not in its translation, all instances of that piece of text in the first verse should
be linked to the one translation. See figures A.13 and A.14.
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Example 17.

They Ils
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allésgone

Figure A.15
Example 18.

A.2.3 Verbs

Negation French negation often involves two words where English uses only
one. In all such cases, both pieces of the French negation should be linked to
the English negation. Examples include ne . . . pas, ne . . . point, ne . . . rien,
ne . . . jamais, ne . . . que.

Auxiliary Verbs Auxiliary verbs should not be linked to the main verb in
the translation whenever that main verb also has auxiliaries attached. How-
ever, auxiliaries often do not match, especially when the verb tenses are slightly
altered in translation. When there are auxiliaries in a verse but not in its trans-
lation, both the auxiliaries and the main verb should be linked to the main verb
in the translation. See figures A.15 and A.16.

But consider May . . . be / soit in figure A.17.
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May

those

who

bless

you

be 

blessed

Béni

soit

quiconque

te

bénira

Figure A.17
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Passivization The order of corresponding words in a pair of verses may be
very different when one verse is in the passive voice and the other is in the
active voice. You should make an effort to tease apart the correspondences,
instead of linking whole phrases. See figures A.18 and A 19.

A.2.4 Prepositions

Extra Prepositions When a verse contains a preposition that does not appear
in the translation, the preposition should be linked to the translation of the
preposition’s object, not the translation of its subject. See figures A.20 and
A.21.

Divergent Prepositions When a piece of text is slightly paraphrased, two
prepositions that never mean the same thing literally may need to be linked
anyway. See figure A.22.
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A.2.5 Determiners

Extra Determiners Extra determiners in a verse should be linked together
with their noun to the noun’s translation. See figures A.23 and A.24.

Possessives English and French possessive markers are different but easy to
identify. They should be linked separately from their nouns. See figure A.25.
The English plural possessive marker is just an apostrophe. See figure A.26.

A.2.6 Punctuation

Punctuation Series Sometimes a verse pair contains several identical (or
similar) punctuation marks on each side, but in different quantities. In such
cases, the best linking strategy is to link all the words other than the punctu-
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ation marks first. Then link the punctuation marks to minimize the number of
“crossing” links. See figure A.27.

Punctuation and Conjunction When a series of conjunctions in one verse
corresponds to a series of punctuation marks in the other verse, don’t hesitate
to link words to punctuation marks; e.g., English “and” will often correspond
to a French comma.



Notes

Chapter 1

1. Note that the term translation model, which is standard in the literature, refers to a static
mathematical relationship between two data sets. In this usage, the term says nothing about the
process of translation, automated or otherwise.

Chapter 2

1. Larger chunks of text can be coordinated the same way, if we assign them the positions of
their median character. If multiple TPCs arise at the same x- or y-position as a result, then we can
maintain the bijectivity of the TBM by giving precedence to TPCs that coordinate the smallest text
units.

2. See chapter 4 for more evidence.

3. Most published methods for automatically constructing translation lexicons require a pre-
existing bitext map, which seems to render them useless for the purposes of bitext mapping
algorithms. Fortunately, only one seed translation lexicon is required for each language pair, or
at worst for each sublanguage. If we expect to map many bitexts in the same language pair, then it
becomes feasible to spend a few hours creating one bitext map by hand. Melamed (1996b) explains
how to do so quickly and efficiently. Better yet, Fung (1995b) shows how it may be possible to
extract a small translation lexicon and a rough bitext map simultaneously.

4. Displacement can be negative.

5. Error measurements at the character level are less susceptible to random variation than measure-
ments at the word level. Character-level measurements also have the advantage of being universally
applicable to all languages, including those in which words are difficult to identify automatically.

6. Multi-word expressions in the translation lexicon can be treated just like any other character
string.

Chapter 4

1. The misalignments listed in section 4.3 had been corrected.

2. SIMR can map English/French bitexts using cognates and/or a translation lexicon. Use of both
kinds of information results in more accurate bitext maps, which make omission detection easier.
However, wide-coverage translation lexicons are rarely available. To make the evaluation more
representative, SIMR was run using cognates only.

Chapter 5

1. The translation models in chapter 7 are based on this assumption.

2. A maximum matching is a subgraph that solves the cardinality matching problem (Ahuja et al.,
1993, pp. 469-470).

3. The algorithm is folklore, but Phillips & Warnow (1996) describe relevant methods.

Chapter 6

1. Resnik et al. (1997) discuss exceptions.
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2. Both are on-line at http://bible.gospelcom.net. Use of the NIV requires a research
license (International Bible Society, Attn: NIV Permission Director, 1820 Jet Stream Drive,
Colorado Springs, CO 80921-3969). LSG is freely downloadable for research purposes; see
http://cedric.cnam.fr/ABU/.

Chapter 7

1. “Sentence-to-sentence” might be a more transparent term, but all the models that I’m aware of
apply equally well to sequences of words that are not sentences.

2. Assignments are different from Brown et al. (1993b)’s alignments in that assignments can range
over pairs of arbitrary labels, not necessarily sequence position indexes. Also, unlike alignments,
assignments must be one-to-one.

3. The exact nature of the bag size distribution is immaterial for the present purposes.

4. Since they are put into bags, ui and vi could just as well be bags instead of sequences. I make
them sequences only to be consistent with more sophisticated models that take into account non-
compositional compounds, such as those described in chapter 8.

5. The number of permutations is smaller when either bag contains two or more identical elements,
but this detail does not affect the estimation algorithms presented here.

6. Rapp (1995) discovered the same thing at about the same time.

7. This expression is obtained by substituting Brown et al. (1993b)’s equation (17) into their
equation (14).

8. Or, equivalently, if the notion of segments were dispensed with altogether, as under the distance-
based model of co-occurrence (see chapter 5).

9. For example, the expectation in step 2 would need to be computed exactly, rather than merely
approximated.

10. At least for my current very inefficient implementation.

11. The competitive linking algorithm can be generalized to stop searching before the number
of possible assignments is reduced to one, at which point the link counts can be computed as
probabilistically weighted averages over the remaining assignments. I use this method to resolve
ties.

12. Except for the case when multiple tokens of the same word type occur near each other, which
I hereby sweep under the carpet.

13. I.e., γ is the same as Dagan et al. (1993b)’s window width.

14. A more difficult question is whether it would be useful to include null links in this evaluation.
I decided to exclude them for the sake of simplicity.

15. I.e., Method C and more recent versions of Method B should perform better.

Chapter 8

1. In the context of symmetric translation models, the words “source” and “target” are merely
labels.

2. s ∈ S means that PrS(s) > 0.

3. See Cover & Thomas (1991) for a good introduction to information theory.
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4. The threshold φ reduces errors due to noise in the data and in the translation model. It also
ameliorates the overtraining tendencies of the objective functions described in this chapter. I use
φ = 2.

5. Although these alignments were less accurate than what might have been produced by the
method in chapter 3, they were already available. Given more accurate alignments, the results
can only improve.

6. These experiments were done before my translation model estimation methods were improved
into the ones described in chapter 7. Given more accurate translation models, the results can only
improve.

7. These results differ from those reported earlier (Melamed, 1997d), because source words that
were not in the training data were no longer copied to the output.

Chapter 9

1. Li & Abe (1998) independently started working on agglomerative clustering at about the same
time as I did.

2. The tags for different senses need not reflect any pre-existing sense inventory; they need only
be distinct.

3. The average polysemy of this random sample is much higher than one might expect from
table 9.2, but such was the luck of the draw.
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